diff options
Diffstat (limited to 'src/H5FSsection.c')
-rw-r--r-- | src/H5FSsection.c | 333 |
1 files changed, 146 insertions, 187 deletions
diff --git a/src/H5FSsection.c b/src/H5FSsection.c index 27486f1..d15e299 100644 --- a/src/H5FSsection.c +++ b/src/H5FSsection.c @@ -307,6 +307,20 @@ HDfprintf(stderr, "%s: fspace->alloc_sect_size = %Hu, fspace->sect_size = %Hu\n" * Purpose: Release the section info, either giving ownership back to * the cache or letting the free space header keep it. * + * Add the fix in this routine to resolve the potential infinite loop + * problem when allocating file space for the meta data of the + * self-referential free-space managers at file closing. + * + * On file close or flushing, when the section info is modified + * and protected/unprotected, does not allow the section info size + * to shrink: + * --if the current allocated section info size in fspace->sect_size is + * larger than the previous section info size in fpsace->alloc_sect_size, + * release the section info + * --Otherwise, set the fspace->sect_size to be the same as + * fpsace->alloc_sect_size. This means fspace->sect_size may be larger + * than what is actually needed. + * * Return: SUCCEED/FAIL * * Programmer: Quincey Koziol @@ -357,6 +371,11 @@ HDfprintf(stderr, "%s: fspace->alloc_sect_size = %Hu, fspace->sect_size = %Hu\n" /* Check if section info lock count dropped to zero */ if(fspace->sinfo_lock_count == 0) { hbool_t release_sinfo_space = FALSE; /* Flag to indicate section info space in file should be released */ + hbool_t flush_in_progress = FALSE; /* Is flushing in progress */ + + /* Check whether cache is flush_in_progress */ + if(H5AC_get_cache_flush_in_progress(f->shared->cache, &flush_in_progress) < 0) + HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Can't get flush_in_progress") /* Check if we actually protected the section info */ if(fspace->sinfo_protected) { @@ -370,9 +389,17 @@ HDfprintf(stderr, "%s: fspace->alloc_sect_size = %Hu, fspace->sect_size = %Hu\n" /* Note that we've modified the section info */ cache_flags |= H5AC__DIRTIED_FLAG; + /* On file close or flushing, does not allow section info to shrink in size */ + if(f->closing || flush_in_progress) { + if(fspace->sect_size > fspace->alloc_sect_size) + cache_flags |= H5AC__DELETED_FLAG | H5AC__TAKE_OWNERSHIP_FLAG; + else + fspace->sect_size = fspace->alloc_sect_size; + /* Check if the section info size in the file has changed */ - if(fspace->sect_size != fspace->alloc_sect_size) + } else if(fspace->sect_size != fspace->alloc_sect_size) cache_flags |= H5AC__DELETED_FLAG | H5AC__TAKE_OWNERSHIP_FLAG; + } /* end if */ /* Sanity check */ @@ -410,11 +437,20 @@ HDfprintf(stderr, "%s: Relinquishing section info ownership\n", FUNC); /* Check if the section info was modified */ if(fspace->sinfo_modified) { /* Check if we need to release section info in the file */ - if(H5F_addr_defined(fspace->sect_addr)) + if(H5F_addr_defined(fspace->sect_addr)) { /* Set flag to release section info space in file */ - release_sinfo_space = TRUE; - else + /* On file close or flushing, only need to release section info with size + bigger than previous section */ + if(f->closing || flush_in_progress) { + if(fspace->sect_size > fspace->alloc_sect_size) + release_sinfo_space = TRUE; + else + fspace->sect_size = fspace->alloc_sect_size; + } else + release_sinfo_space = TRUE; + } else HDassert(fspace->alloc_sect_size == 0); + } /* end if */ else { /* Sanity checks... */ @@ -2414,84 +2450,31 @@ done: /*------------------------------------------------------------------------- * Function: H5FS_vfd_alloc_hdr_and_section_info_if_needed * - * Purpose: This function is part of a hack to patch over a design - * flaw in the free space managers for file space allocation. - * Specifically, if a free space manager allocates space for - * its own section info, it is possible for it to - * go into an infinite loop as it: - * - * 1) computes the size of the section info - * - * 2) allocates file space for the section info - * - * 3) notices that the size of the section info - * has changed - * - * 4) deallocates the section info file space and - * returns to 1) above. - * - * Similarly, if it allocates space for its own header, it - * can go into an infinite loop as it: - * - * 1) allocates space for the header - * - * 2) notices that the free space manager is empty - * and thus should not have file space allocated - * to its header - * - * 3) frees the space allocated to the header - * - * 4) notices that the free space manager is not - * empty and thus must have file space allocated - * to it, and thus returns to 1) above. - * - * In a nutshell, the solution applied in this hack is to - * deallocate file space for the free space manager(s) that - * handle FSM header and/or section info file space allocations, - * wait until all other allocation/deallocation requests have - * been handled, and then test to see if the free space manager(s) - * in question are empty. If they are, do nothing. If they - * are not, allocate space for them at end of file bypassing the - * usual file space allocation calls, and thus avoiding the - * potential infinite loops. - * - * The purpose of this function is to allocate file space for + * Purpose: The purpose of this function is to allocate file space for * the header and section info of the target free space manager - * directly from the VFD if needed. In this case the function - * also re-inserts the header and section info in the metadata - * cache with this allocation. - * - * When paged allocation is not enabled, allocation of space - * for the free space manager header and section info is - * straight forward -- we simply allocate the space directly - * from file driver. - * - * Note that if f->shared->alignment > 1, and EOA is not a - * multiple of the alignment, it is possible that performing - * these allocations may generate a fragment of file space in - * addition to the space allocated for the section info. This - * excess space is dropped on the floor. As shall be seen, - * it will usually be reclaimed later. - * - * When page allocation is enabled, things are more difficult, - * as there is the possibility that page buffering will be - * enabled when the free space managers are read. To allow - * for this, we must ensure that space allocated for the - * free space manager header and section info is either larger - * than a page, or resides completely within a page. - * - * Do this by allocating space for the free space header and - * section info starting at page boundaries, and extending - * allocation to the next page boundary. This of course wastes - * space, but see below. - * - * On the first free space allocation / deallocation after the - * next file open, we will read the self referential free space - * managers, float them and reduce the EOA to its value prior - * to allocation of file space for the self referential free - * space managers on the preceeding file close. This EOA value - * is stored in the free space manager superblock extension - * message. + * if they are not allocated yet. + * + * The previous hack in this routine to avoid the potential infinite + * loops by allocating file space directly from the end of the file + * is removed. The allocation can now be done via the usual + * file space allocation call H5MF_alloc(). + * + * The design flaw is addressed by not allowing the size + * of section info to shrink. This means, when trying to allocate + * section info size X via H5MF_alloc() and the section info size + * after H5MF_alloc() changes to Y: + * --if Y is larger than X, free the just allocated file space X + * via H5MF_xfree() and set fspace->sect_size to Y. + * This routine will be called again later from + * H5MF_settle_meta_data_fsm() to allocate section info with the + * larger fpsace->sect_size Y. + * --if Y is smaller than X, no further allocation is needed and + * fspace->sect_size and fspace->alloc_sect_size are set to X. + * This means fspace->sect_size may be larger than what is + * actually needed. + * + * This routine also re-inserts the header and section info in the + * metadata cache with this allocation. * * Return: Success: non-negative * Failure: negative @@ -2508,8 +2491,6 @@ H5FS_vfd_alloc_hdr_and_section_info_if_needed(H5F_t *f, H5FS_t *fspace, hsize_t hdr_alloc_size; hsize_t sinfo_alloc_size; haddr_t sect_addr = HADDR_UNDEF; /* address of sinfo */ - haddr_t eoa_frag_addr = HADDR_UNDEF; /* Address of fragment at EOA */ - hsize_t eoa_frag_size = 0; /* Size of fragment at EOA */ haddr_t eoa = HADDR_UNDEF; /* Initial EOA for the file */ herr_t ret_value = SUCCEED; /* Return value */ @@ -2525,12 +2506,6 @@ H5FS_vfd_alloc_hdr_and_section_info_if_needed(H5F_t *f, H5FS_t *fspace, /* the section info should be unlocked */ HDassert(fspace->sinfo_lock_count == 0); - /* no space should be allocated */ - HDassert(*fs_addr_ptr == HADDR_UNDEF); - HDassert(fspace->addr == HADDR_UNDEF); - HDassert(fspace->sect_addr == HADDR_UNDEF); - HDassert(fspace->alloc_sect_size == 0); - /* persistent free space managers must be enabled */ HDassert(f->shared->fs_persist); @@ -2542,125 +2517,109 @@ H5FS_vfd_alloc_hdr_and_section_info_if_needed(H5F_t *f, H5FS_t *fspace, HDassert((f->shared->fs_strategy == H5F_FSPACE_STRATEGY_FSM_AGGR) || (f->shared->fs_strategy == H5F_FSPACE_STRATEGY_PAGE)); - if(fspace->serial_sect_count > 0) { + if(fspace->serial_sect_count > 0 && fspace->sinfo) { /* the section info is floating, so space->sinfo should be defined */ - HDassert(fspace->sinfo); - - /* start by allocating file space for the header */ - - /* Get the EOA for the file -- need for sanity check below */ - if(HADDR_UNDEF == (eoa = H5F_get_eoa(f, H5FD_MEM_FSPACE_HDR))) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTGET, FAIL, "Unable to get eoa") - /* check for overlap into temporary allocation space */ - if(H5F_IS_TMP_ADDR(f, (eoa + fspace->sect_size))) - HGOTO_ERROR(H5E_RESOURCE, H5E_BADRANGE, FAIL, "hdr file space alloc will overlap into 'temporary' file space") + if(!H5F_addr_defined(fspace->addr)) { - hdr_alloc_size = H5FS_HEADER_SIZE(f); - - /* if page allocation is enabled, extend the hdr_alloc_size to the - * next page boundary. - */ - if(H5F_PAGED_AGGR(f)) { - HDassert(0 == (eoa % f->shared->fs_page_size)); + /* start by allocating file space for the header */ - hdr_alloc_size = ((hdr_alloc_size / f->shared->fs_page_size) + 1) * f->shared->fs_page_size; + /* Get the EOA for the file -- need for sanity check below */ + if(HADDR_UNDEF == (eoa = H5F_get_eoa(f, H5FD_MEM_FSPACE_HDR))) + HGOTO_ERROR(H5E_RESOURCE, H5E_CANTGET, FAIL, "Unable to get eoa") - HDassert(hdr_alloc_size >= H5FS_HEADER_SIZE(f)); - HDassert((hdr_alloc_size % f->shared->fs_page_size) == 0); - } /* end if */ + /* check for overlap into temporary allocation space */ + if(H5F_IS_TMP_ADDR(f, (eoa + fspace->sect_size))) + HGOTO_ERROR(H5E_RESOURCE, H5E_BADRANGE, FAIL, "hdr file space alloc will overlap into 'temporary' file space") - /* allocate space for the hdr */ - if(HADDR_UNDEF == (fspace->addr = H5FD_alloc(f->shared->lf, H5FD_MEM_FSPACE_HDR, - f, hdr_alloc_size, &eoa_frag_addr, &eoa_frag_size))) - HGOTO_ERROR(H5E_FSPACE, H5E_CANTALLOC, FAIL, "can't allocate file space for hdr") + hdr_alloc_size = H5FS_HEADER_SIZE(f); - /* if the file alignment is 1, there should be no - * eoa fragment. Otherwise, drop any fragment on the floor. - */ - HDassert((eoa_frag_size == 0) || (f->shared->alignment != 1)); + if(H5F_PAGED_AGGR(f)) + HDassert(0 == (eoa % f->shared->fs_page_size)); - /* Cache the new free space header (pinned) */ - if(H5AC_insert_entry(f, H5AC_FSPACE_HDR, fspace->addr, fspace, H5AC__PIN_ENTRY_FLAG) < 0) - HGOTO_ERROR(H5E_FSPACE, H5E_CANTINIT, FAIL, "can't add free space header to cache") + /* Allocate space for the free space header */ + if(HADDR_UNDEF == (fspace->addr = H5MF_alloc(f, H5FD_MEM_FSPACE_HDR, hdr_alloc_size))) + HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "file allocation failed for free space header") - *fs_addr_ptr = fspace->addr; + /* Cache the new free space header (pinned) */ + if(H5AC_insert_entry(f, H5AC_FSPACE_HDR, fspace->addr, fspace, H5AC__PIN_ENTRY_FLAG) < 0) + HGOTO_ERROR(H5E_FSPACE, H5E_CANTINIT, FAIL, "can't add free space header to cache") - /* now allocate file space for the section info */ + *fs_addr_ptr = fspace->addr; + } - /* Get the EOA for the file -- need for sanity check below */ - if(HADDR_UNDEF == (eoa = H5F_get_eoa(f, H5FD_MEM_FSPACE_SINFO))) - HGOTO_ERROR(H5E_FSPACE, H5E_CANTGET, FAIL, "Unable to get eoa") + if(!H5F_addr_defined(fspace->sect_addr)) { - /* check for overlap into temporary allocation space */ - if(H5F_IS_TMP_ADDR(f, (eoa + fspace->sect_size))) - HGOTO_ERROR(H5E_FSPACE, H5E_BADRANGE, FAIL, "sinfo file space alloc will overlap into 'temporary' file space") + /* now allocate file space for the section info */ - sinfo_alloc_size = fspace->sect_size; + /* Get the EOA for the file -- need for sanity check below */ + if(HADDR_UNDEF == (eoa = H5F_get_eoa(f, H5FD_MEM_FSPACE_SINFO))) + HGOTO_ERROR(H5E_FSPACE, H5E_CANTGET, FAIL, "Unable to get eoa") - /* if paged allocation is enabled, extend the sinfo_alloc_size to the - * next page boundary. - */ - if(H5F_PAGED_AGGR(f)) { - HDassert(0 == (eoa % f->shared->fs_page_size)); + /* check for overlap into temporary allocation space */ + if(H5F_IS_TMP_ADDR(f, (eoa + fspace->sect_size))) + HGOTO_ERROR(H5E_FSPACE, H5E_BADRANGE, FAIL, "sinfo file space alloc will overlap into 'temporary' file space") - sinfo_alloc_size = ((sinfo_alloc_size / f->shared->fs_page_size) + 1) * f->shared->fs_page_size; + sinfo_alloc_size = fspace->sect_size; - HDassert(sinfo_alloc_size >= fspace->sect_size); - HDassert((sinfo_alloc_size % f->shared->fs_page_size) == 0); - } /* end if */ + if(H5F_PAGED_AGGR(f)) + HDassert(0 == (eoa % f->shared->fs_page_size)); - /* allocate space for the section info */ - if(HADDR_UNDEF == (sect_addr = H5FD_alloc(f->shared->lf, H5FD_MEM_FSPACE_SINFO, - f, sinfo_alloc_size, &eoa_frag_addr, &eoa_frag_size))) - HGOTO_ERROR(H5E_FSPACE, H5E_CANTALLOC, FAIL, "can't allocate file space") + /* allocate space for the section info */ + if(HADDR_UNDEF == (sect_addr = H5MF_alloc(f, H5FD_MEM_FSPACE_SINFO, sinfo_alloc_size))) + HGOTO_ERROR(H5E_FSPACE, H5E_NOSPACE, FAIL, "file allocation failed for section info") - /* if the file alignment is 1, there should be no - * eoa fragment. Otherwise, drop the fragment on the floor. - */ - HDassert((eoa_frag_size == 0) || (f->shared->alignment != 1)); + /* update fspace->alloc_sect_size and fspace->sect_addr to reflect + * the allocation + */ + if(fspace->sect_size > sinfo_alloc_size) { + hsize_t saved_sect_size = fspace->sect_size; - /* update fspace->alloc_sect_size and fspace->sect_addr to reflect - * the allocation - */ - fspace->alloc_sect_size = fspace->sect_size; - fspace->sect_addr = sect_addr; - - /* insert the new section info into the metadata cache. */ - - /* Question: Do we need to worry about this insertion causing an - * eviction from the metadata cache? Think on this. If so, add a - * flag to H5AC_insert() to force it to skip the call to make space in - * cache. - * - * On reflection, no. - * - * On a regular file close, any eviction will not change the - * the contents of the free space manager(s), as all entries - * should have correct file space allocated by the time this - * function is called. - * - * In the cache image case, the selection of entries for inclusion - * in the cache image will not take place until after this call. - * (Recall that this call is made during the metadata fsm settle - * routine, which is called during the serialization routine in - * the cache image case. Entries are not selected for inclusion - * in the image until after the cache is serialized.) - * - * JRM -- 11/4/16 - */ - if(H5AC_insert_entry(f, H5AC_FSPACE_SINFO, sect_addr, fspace->sinfo, H5AC__NO_FLAGS_SET) < 0) - HGOTO_ERROR(H5E_FSPACE, H5E_CANTINIT, FAIL, "can't add free space sinfo to cache") + if(H5MF_xfree(f, H5FD_MEM_FSPACE_SINFO, sect_addr, sinfo_alloc_size) < 0) + HGOTO_ERROR(H5E_FSPACE, H5E_CANTFREE, FAIL, "unable to free free space sections") + fspace->sect_size = saved_sect_size; + } else { + fspace->alloc_sect_size = sinfo_alloc_size; + fspace->sect_size = sinfo_alloc_size; + fspace->sect_addr = sect_addr; + + /* insert the new section info into the metadata cache. */ + + /* Question: Do we need to worry about this insertion causing an + * eviction from the metadata cache? Think on this. If so, add a + * flag to H5AC_insert() to force it to skip the call to make space in + * cache. + * + * On reflection, no. + * + * On a regular file close, any eviction will not change the + * the contents of the free space manager(s), as all entries + * should have correct file space allocated by the time this + * function is called. + * + * In the cache image case, the selection of entries for inclusion + * in the cache image will not take place until after this call. + * (Recall that this call is made during the metadata fsm settle + * routine, which is called during the serialization routine in + * the cache image case. Entries are not selected for inclusion + * in the image until after the cache is serialized.) + * + * JRM -- 11/4/16 + */ + if(H5AC_insert_entry(f, H5AC_FSPACE_SINFO, sect_addr, fspace->sinfo, H5AC__NO_FLAGS_SET) < 0) + HGOTO_ERROR(H5E_FSPACE, H5E_CANTINIT, FAIL, "can't add free space sinfo to cache") - /* We have changed the sinfo address -- Mark free space header dirty */ - if(H5AC_mark_entry_dirty(fspace) < 0) - HGOTO_ERROR(H5E_FSPACE, H5E_CANTMARKDIRTY, FAIL, "unable to mark free space header as dirty") + /* We have changed the sinfo address -- Mark free space header dirty */ + if(H5AC_mark_entry_dirty(fspace) < 0) + HGOTO_ERROR(H5E_FSPACE, H5E_CANTMARKDIRTY, FAIL, "unable to mark free space header as dirty") - /* since space has been allocated for the section info and the sinfo - * has been inserted into the cache, relinquish ownership (i.e. float) - * the section info. - */ - fspace->sinfo = NULL; + /* since space has been allocated for the section info and the sinfo + * has been inserted into the cache, relinquish ownership (i.e. float) + * the section info. + */ + fspace->sinfo = NULL; + } + } } /* end if */ done: |