diff options
Diffstat (limited to 'src/H5Ppublic.h')
-rw-r--r-- | src/H5Ppublic.h | 3130 |
1 files changed, 2938 insertions, 192 deletions
diff --git a/src/H5Ppublic.h b/src/H5Ppublic.h index 801c561..6235ac8 100644 --- a/src/H5Ppublic.h +++ b/src/H5Ppublic.h @@ -111,23 +111,50 @@ extern "C" { /*******************/ /* Define property list class callback function pointer types */ -//! [H5P_cls_create_func_t_snip] +//! <!-- [H5P_cls_create_func_t_snip] --> typedef herr_t (*H5P_cls_create_func_t)(hid_t prop_id, void *create_data); -//! [H5P_cls_create_func_t_snip] -//! [H5P_cls_copy_func_t_snip] +//! <!-- [H5P_cls_create_func_t_snip] --> + +//! <!-- [H5P_cls_copy_func_t_snip] --> typedef herr_t (*H5P_cls_copy_func_t)(hid_t new_prop_id, hid_t old_prop_id, void *copy_data); -//! [H5P_cls_copy_func_t_snip] -//! [H5P_cls_close_func_t_snip] +//! <!-- [H5P_cls_copy_func_t_snip] --> + +//! <!-- [H5P_cls_close_func_t_snip] --> typedef herr_t (*H5P_cls_close_func_t)(hid_t prop_id, void *close_data); -//! [H5P_cls_close_func_t_snip] +//! <!-- [H5P_cls_close_func_t_snip] --> /* Define property list callback function pointer types */ -//! [H5P_prp_cb1_t_snip] +//! <!-- [H5P_prp_cb1_t_snip] --> +/** + * \brief Callback function for H5Pregister2(),H5Pregister1(),H5Pinsert2(),H5Pinsert1() + * + * \param[in] name The name of the property + * \param[in] size The size of the property in bytes + * \param[in,out] value The value for the property + * \return \herr_t + * + * \details The H5P_prp_cb1_t() describes the parameters used by the + * property create,copy and close callback functions. + */ typedef herr_t (*H5P_prp_cb1_t)(const char *name, size_t size, void *value); -//! [H5P_prp_cb1_t_snip] -//! [H5P_prp_cb2_t_snip] +//! <!-- [H5P_prp_cb1_t_snip] --> + +//! <!-- [H5P_prp_cb2_t_snip] --> +/** + * \brief Callback function for H5Pregister2(),H5Pregister1(),H5Pinsert2(),H5Pinsert1() + * + * \plist_id{prop_id} + * \param[in] name The name of the property + * \param[in] size The size of the property in bytes + * \param[in] value The value for the property + * \return \herr_t + * + * \details The H5P_prp_cb2_t() describes the parameters used by the + * property set ,copy and delete callback functions. + */ typedef herr_t (*H5P_prp_cb2_t)(hid_t prop_id, const char *name, size_t size, void *value); -//! [H5P_prp_cb2_t_snip] +//! <!-- [H5P_prp_cb2_t_snip] --> + typedef H5P_prp_cb1_t H5P_prp_create_func_t; typedef H5P_prp_cb2_t H5P_prp_set_func_t; typedef H5P_prp_cb2_t H5P_prp_get_func_t; @@ -135,60 +162,93 @@ typedef herr_t (*H5P_prp_encode_func_t)(const void *value, void **buf, size_t *s typedef herr_t (*H5P_prp_decode_func_t)(const void **buf, void *value); typedef H5P_prp_cb2_t H5P_prp_delete_func_t; typedef H5P_prp_cb1_t H5P_prp_copy_func_t; -//! [H5P_prp_compare_func_t_snip] + +//! <!-- [H5P_prp_compare_func_t_snip] --> typedef int (*H5P_prp_compare_func_t)(const void *value1, const void *value2, size_t size); -//! [H5P_prp_compare_func_t_snip] +//! <!-- [H5P_prp_compare_func_t_snip] --> + typedef H5P_prp_cb1_t H5P_prp_close_func_t; /* Define property list iteration function type */ -//! [H5P_iterate_t_snip] +//! <!-- [H5P_iterate_t_snip] --> typedef herr_t (*H5P_iterate_t)(hid_t id, const char *name, void *iter_data); -//! [H5P_iterate_t_snip] +//! <!-- [H5P_iterate_t_snip] --> -/* Actual IO mode property */ +//! <!--[H5D_mpio_actual_chunk_opt_mode_t_snip] --> +/** + * Actual IO mode property + * + * \details The default value, #H5D_MPIO_NO_CHUNK_OPTIMIZATION, is used for all + * I/O operations that do not use chunk optimizations, including + * non-collective I/O and contiguous collective I/O. + */ typedef enum H5D_mpio_actual_chunk_opt_mode_t { - /* The default value, H5D_MPIO_NO_CHUNK_OPTIMIZATION, is used for all I/O - * operations that do not use chunk optimizations, including non-collective - * I/O and contiguous collective I/O. - */ H5D_MPIO_NO_CHUNK_OPTIMIZATION = 0, + /**< No chunk optimization was performed. Either no collective I/O was + attempted or the dataset wasn't chunked. */ H5D_MPIO_LINK_CHUNK, + /**< Collective I/O is performed on all chunks simultaneously. */ H5D_MPIO_MULTI_CHUNK + /**< Each chunk was individually assigned collective or independent I/O based + on what fraction of processes access the chunk. If the fraction is greater + than the multi chunk ratio threshold, collective I/O is performed on that + chunk. The multi chunk ratio threshold can be set using + H5Pset_dxpl_mpio_chunk_opt_ratio(). The default value is 60%. */ } H5D_mpio_actual_chunk_opt_mode_t; +//! <!--[H5D_mpio_actual_chunk_opt_mode_t_snip] --> +//! <!-- [H5D_mpio_actual_io_mode_t_snip] --> +/** + * The following values are conveniently defined as a bit field so that + * we can switch from the default to independent or collective and then to + * mixed without having to check the original value. + */ typedef enum H5D_mpio_actual_io_mode_t { - /* The following four values are conveniently defined as a bit field so that - * we can switch from the default to independent or collective and then to - * mixed without having to check the original value. - * - * NO_COLLECTIVE means that either collective I/O wasn't requested or that - * no I/O took place. - * - * CHUNK_INDEPENDENT means that collective I/O was requested, but the - * chunk optimization scheme chose independent I/O for each chunk. - */ - H5D_MPIO_NO_COLLECTIVE = 0x0, + H5D_MPIO_NO_COLLECTIVE = 0x0, + /**< No collective I/O was performed. Collective I/O was not requested or + collective I/O isn't possible on this dataset */ H5D_MPIO_CHUNK_INDEPENDENT = 0x1, - H5D_MPIO_CHUNK_COLLECTIVE = 0x2, - H5D_MPIO_CHUNK_MIXED = 0x1 | 0x2, - - /* The contiguous case is separate from the bit field. */ + /**< HDF5 performed one the chunk collective optimization schemes and each + chunk was accessed independently */ + H5D_MPIO_CHUNK_COLLECTIVE = 0x2, + /**< HDF5 performed one the chunk collective optimization schemes and each + chunk was accessed collectively */ + H5D_MPIO_CHUNK_MIXED = 0x1 | 0x2, + /**< HDF5 performed one the chunk collective optimization schemes and some + chunks were accessed independently, some collectively. */ + /** \internal The contiguous case is separate from the bit field. */ H5D_MPIO_CONTIGUOUS_COLLECTIVE = 0x4 + /**< Collective I/O was performed on a contiguous dataset */ } H5D_mpio_actual_io_mode_t; +//! <!-- [H5D_mpio_actual_io_mode_t_snip] --> -/* Broken collective IO property */ +//! <!-- [H5D_mpio_no_collective_cause_t_snip] --> +/** + * Broken collective IO property + */ typedef enum H5D_mpio_no_collective_cause_t { - H5D_MPIO_COLLECTIVE = 0x00, - H5D_MPIO_SET_INDEPENDENT = 0x01, - H5D_MPIO_DATATYPE_CONVERSION = 0x02, - H5D_MPIO_DATA_TRANSFORMS = 0x04, - H5D_MPIO_MPI_OPT_TYPES_ENV_VAR_DISABLED = 0x08, - H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES = 0x10, - H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET = 0x20, - H5D_MPIO_PARALLEL_FILTERED_WRITES_DISABLED = 0x40, + H5D_MPIO_COLLECTIVE = 0x00, + /**< Collective I/O was performed successfully */ + H5D_MPIO_SET_INDEPENDENT = 0x01, + /**< Collective I/O was not performed because independent I/O was requested */ + H5D_MPIO_DATATYPE_CONVERSION = 0x02, + /**< Collective I/O was not performed because datatype conversions were required */ + H5D_MPIO_DATA_TRANSFORMS = 0x04, + /**< Collective I/O was not performed because data transforms needed to be applied */ + H5D_MPIO_MPI_OPT_TYPES_ENV_VAR_DISABLED = 0x08, + /**< \todo FIXME! */ + H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES = 0x10, + /**< Collective I/O was not performed because one of the dataspaces was neither simple nor scalar */ + H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET = 0x20, + /**< Collective I/O was not performed because the dataset was neither contiguous nor chunked */ + H5D_MPIO_PARALLEL_FILTERED_WRITES_DISABLED = 0x40, + /**< \todo FIXME! */ H5D_MPIO_ERROR_WHILE_CHECKING_COLLECTIVE_POSSIBLE = 0x80, - H5D_MPIO_NO_COLLECTIVE_MAX_CAUSE = 0x100 + /**< \todo FIXME! */ + H5D_MPIO_NO_COLLECTIVE_MAX_CAUSE = 0x100 + /**< Sentinel */ } H5D_mpio_no_collective_cause_t; +//! <!-- [H5D_mpio_no_collective_cause_t_snip] --> /********************/ /* Public Variables */ @@ -493,8 +553,6 @@ H5_DLL hid_t H5Pcreate(hid_t cls_id); * list of this class is being created. The #H5P_cls_create_func_t * callback function is defined as follows: * - * \todo fix snippets to work, when you click on them. - * * \snippet this H5P_cls_create_func_t_snip * * The parameters to this callback function are defined as follows: @@ -1233,8 +1291,6 @@ H5_DLL herr_t H5Pget_size(hid_t id, const char *name, size_t *size); * property list objects; the initial value is assumed to * have any necessary setup already performed on it. * - * \todo "cpp_note" goes here - * * \since 1.8.0 * */ @@ -1326,9 +1382,6 @@ H5_DLL htri_t H5Pisa_class(hid_t plist_id, hid_t pclass_id); * If the membership changes during the iteration, the function's * behavior is undefined. * - * - * \todo "cpp_note" goes here - * * \since 1.4.0 * */ @@ -1582,16 +1635,12 @@ H5_DLL int H5Piterate(hid_t id, int *idx, H5P_iterate_t iter_func, void *iter_da * property is being closed. The #H5P_prp_close_func_t callback * function is defined as follows: * - * \snippet this H5P_prp_cb2_t_snip + * \snippet this H5P_prp_cb1_t_snip * * The parameters to the callback function are defined as follows: * * <table> * <tr> - * <td>\ref hid_t \c prop_id</td> - * <td>IN: The identifier of the property list being closed</td> - * </tr> - * <tr> * <td>\Code{const char * name}</td> * <td>IN: The name of the property in the list</td> * </tr> @@ -1611,8 +1660,6 @@ H5_DLL int H5Piterate(hid_t id, int *idx, H5P_iterate_t iter_func, void *iter_da * list close routine returns an error value but the property list is * still closed. * - * \todo "cpp_note" goes here - * * \since 1.8.0 * */ @@ -1701,7 +1748,7 @@ H5_DLL herr_t H5Punregister(hid_t pclass_id, const char *name); /* Object creation property list (OCPL) routines */ /** - * \ingroup OCPL + * \ingroup DCPL * * \brief Verifies that all required filters are available * @@ -1805,7 +1852,7 @@ H5_DLL herr_t H5Pget_attr_phase_change(hid_t plist_id, unsigned *max_compact, un * \todo Signature for H5Pget_filter2 is different in H5Pocpl.c than in * H5Ppublic.h * - * \plist_id{plist_id} + * \ocpl_id{plist_id} * \param[in] idx Sequence number within the filter pipeline of the filter * for which information is sought * \param[out] flags Bit vector specifying certain general properties of the @@ -1869,7 +1916,7 @@ H5_DLL H5Z_filter_t H5Pget_filter2(hid_t plist_id, unsigned idx, unsigned int *f * * \brief Returns information about the specified filter * - * \plist_id + * \ocpl_id{plist_id} * \param[in] filter_id Filter identifier * \param[out] flags Bit vector specifying certain general * properties of the filter @@ -1927,10 +1974,7 @@ H5_DLL herr_t H5Pget_filter_by_id2(hid_t plist_id, H5Z_filter_t filter_id, unsig * * \brief Returns the number of filters in the pipeline * - * \todo Signature for H5Pget_nfilters() is different in H5Pocpl.c than in - * H5Ppublic.h. - * - * \plist_id + * \ocpl_id{plist_id} * * \return Returns the number of filters in the pipeline if successful; * otherwise returns a negative value. @@ -1938,8 +1982,8 @@ H5_DLL herr_t H5Pget_filter_by_id2(hid_t plist_id, H5Z_filter_t filter_id, unsig * \details H5Pget_nfilters() returns the number of filters defined in the * filter pipeline associated with the property list \p plist_id. * - * In each pipeline, the filters are numbered from 0 through N-1, - * where N is the value returned by this function. During output to + * In each pipeline, the filters are numbered from 0 through \Code{N-1}, + * where \c N is the value returned by this function. During output to * the file, the filters are applied in increasing order; during * input from the file, they are applied in decreasing order. * @@ -1987,7 +2031,7 @@ H5_DLL herr_t H5Pget_obj_track_times(hid_t plist_id, hbool_t *track_times); * * \brief Modifies a filter in the filter pipeline * - * \plist_id + * \ocpl_id{plist_id} * \param[in] filter Filter to be modified * \param[in] flags Bit vector specifying certain general properties * of the filter @@ -2016,7 +2060,7 @@ H5_DLL herr_t H5Pmodify_filter(hid_t plist_id, H5Z_filter_t filter, unsigned int * * \brief Delete one or more filters in the filter pipeline * - * \plist_id + * \ocpl_id{plist_id} * \param[in] filter Filter to be deleted * * \return \herr_t @@ -2170,7 +2214,7 @@ H5_DLL herr_t H5Pset_attr_phase_change(hid_t plist_id, unsigned max_compact, uns * * \brief Sets deflate (GNU gzip) compression method and compression level * - * \plist_id + * \ocpl_id{plist_id} * \param[in] level Compression level * * \return \herr_t @@ -2226,7 +2270,7 @@ H5_DLL herr_t H5Pset_deflate(hid_t plist_id, unsigned level); * * \brief Adds a filter to the filter pipeline * - * \param[in] plist_id Dataset or group creation property list identifier + * \ocpl_id{plist_id} * \param[in] filter Filter identifier for the filter to be added to the * pipeline * \param[in] flags Bit vector specifying certain general properties of @@ -2478,7 +2522,7 @@ H5_DLL herr_t H5Pset_deflate(hid_t plist_id, unsigned level); * (The SZIP filter is an exception to this rule; see H5Pset_szip() * for details.) * - * \todo Removed several references to links to documentation + * \see \ref_filter_pipe, \ref_group_impls * * \version 1.8.5 Function applied to group creation property lists. * \since 1.6.0 @@ -2491,7 +2535,7 @@ H5_DLL herr_t H5Pset_filter(hid_t plist_id, H5Z_filter_t filter, unsigned int fl * * \brief Sets up use of the Fletcher32 checksum filter * - * \param[in] plist_id Dataset or group creation property list identifier + * \ocpl_id{plist_id} * * \return \herr_t * @@ -2672,7 +2716,7 @@ H5_DLL herr_t H5Pget_shared_mesg_index(hid_t plist_id, unsigned index_num, unsig /** * \ingroup FCPL * - * \brief Retrieves number of shared object header message indexes in file + * \brief Retrieves the number of shared object header message indexes in file * creation property list * * \fcpl_id{plist_id} @@ -3237,8 +3281,8 @@ H5_DLL herr_t H5Pget_core_write_tracking(hid_t fapl_id, hbool_t *is_enabled, siz * <td>#H5FD_SEC2</td> * <td>This driver uses POSIX file-system functions like read and * write to perform I/O to a single, permanent file on local disk - * with no system buffering. This driver is POSIX-compliant and is - * the default file driver for all systems.</td> + * with no system buffering. This driver is POSIX-compliant and + * is the default file driver for all systems.</td> * <td>H5Pset_fapl_sec2()</td> * </tr> * <tr> @@ -3276,8 +3320,9 @@ H5_DLL herr_t H5Pget_core_write_tracking(hid_t fapl_id, hbool_t *is_enabled, siz * <td>#H5FD_CORE</td> * <td>With this driver, an application can work with a file in * memory for faster reads and writes. File contents are kept in - * memory until the file is closed. At closing, the memory version - * of the file can be written back to disk or abandoned.</td> + * memory until the file is closed. At closing, the memory + * version of the file can be written back to disk or abandoned. + * </td> * <td>H5Pset_fapl_core()</td> * </tr> * <tr> @@ -3286,7 +3331,8 @@ H5_DLL herr_t H5Pget_core_write_tracking(hid_t fapl_id, hbool_t *is_enabled, siz * <td>With this driver, the HDF5 file’s address space is partitioned * into pieces and sent to separate storage files using an * underlying driver of the user’s choice. This driver is for - * systems that do not support files larger than 2 gigabytes.</td> + * systems that do not support files larger than 2 gigabytes. + * </td> * <td>H5Pset_fapl_family()</td> * </tr> * <tr> @@ -3352,7 +3398,7 @@ H5_DLL hid_t H5Pget_driver(hid_t plist_id); * struct. Driver-specific versions of that struct are defined * for each low-level driver in the relevant source code file * H5FD*.c. For example, the struct used for the MULTI driver is - * #H5FD_multi_fapl_t defined in H5FDmulti.c. + * \c H5FD_multi_fapl_t defined in H5FDmulti.c. * * If no driver-specific properties have been registered, * H5Pget_driver_info() returns NULL. @@ -3369,8 +3415,50 @@ H5_DLL hid_t H5Pget_driver(hid_t plist_id); * */ H5_DLL const void *H5Pget_driver_info(hid_t plist_id); -H5_DLL herr_t H5Pget_elink_file_cache_size(hid_t plist_id, unsigned *efc_size); -H5_DLL herr_t H5Pget_evict_on_close(hid_t fapl_id, hbool_t *evict_on_close); +/** + * \ingroup FAPL + * + * \brief Retrieves the size of the external link open file cache + * + * \fapl_id{plist_id} + * \param[out] efc_size External link open file cache size in number of files + * + * \return \herr_t + * + * \details H5Pget_elink_file_cache_size() retrieves the number of files that + * can be held open in an external link open file cache. + * + * \since 1.8.7 + * + */ +H5_DLL herr_t H5Pget_elink_file_cache_size(hid_t plist_id, unsigned *efc_size); +/** + * \ingroup FAPL + * + * \brief Retrieves the file access property list setting that determines + * whether an HDF5 object will be evicted from the library's metadata + * cache when it is closed + * + * \fapl_id + * \param[out] evict_on_close Pointer to a variable that will indicate if + * the object will be evicted on close + * + * \return \herr_t + * + * \details The library's metadata cache is fairly conservative about holding on + * to HDF5 object metadata (object headers, chunk index structures, + * etc.), which can cause the cache size to grow, resulting in memory + * pressure on an application or system. When enabled, the "evict on + * close" property will cause all metadata for an object to be + * immediately evicted from the cache as long as it is not referenced + * by any other open object. + * + * See H5Pset_evict_on_close() for additional notes on behavior. + * + * \since 1.10.1 + * + */ +H5_DLL herr_t H5Pget_evict_on_close(hid_t fapl_id, hbool_t *evict_on_close); /** * \ingroup FAPL * @@ -3386,9 +3474,7 @@ H5_DLL herr_t H5Pget_evict_on_close(hid_t fapl_id, hbool_t *evict_on_close) * application can retrieve a file handle for low-level access to * a particular member of a family of files. The file handle is * retrieved with a separate call to H5Fget_vfd_handle() (or, - * in special circumstances, to H5FDget_vfd_handle()). - * - * \todo References the VFL documentation. + * in special circumstances, to H5FDget_vfd_handle(), see \ref VFL). * * \since 1.6.0 * @@ -3415,8 +3501,113 @@ H5_DLL herr_t H5Pget_family_offset(hid_t fapl_id, hsize_t *offset); * */ H5_DLL herr_t H5Pget_fclose_degree(hid_t fapl_id, H5F_close_degree_t *degree); +/** + * \ingroup FAPL + * + * \brief Retrieves a copy of the file image designated as the initial content + * and structure of a file + * + * \fapl_id + * \param[in,out] buf_ptr_ptr On input, \c NULL or a pointer to a + * pointer to a buffer that contains the + * file image.\n On successful return, if \p buf_ptr_ptr is not + * \c NULL, \Code{*buf_ptr_ptr} will contain a pointer to a copy + * of the initial image provided in the last call to + * H5Pset_file_image() for the supplied \p fapl_id. If no initial + * image has been set, \Code{*buf_ptr_ptr} will be \c NULL. + * \param[in,out] buf_len_ptr On input, \c NULL or a pointer to a buffer + * specifying the required size of the buffer to hold the file + * image.\n On successful return, if \p buf_len_ptr was not + * passed in as \c NULL, \p buf_len_ptr will return the required + * size in bytes of the buffer to hold the initial file image in + * the supplied file access property list, \p fapl_id. If no + * initial image is set, the value of \Code{*buf_len_ptr} will be + * set to 0 (zero) + * \return \herr_t + * + * \details H5Pget_file_image() allows an application to retrieve a copy of the + * file image designated for a VFD to use as the initial contents of a file. + * + * If file image callbacks are defined, H5Pget_file_image() will use + * them when allocating and loading the buffer to return to the + * application (see H5Pset_file_image_callbacks()). If file image + * callbacks are not defined, the function will use \c malloc and \c + * memcpy. When \c malloc and \c memcpy are used, it is the caller’s + * responsibility to discard the returned buffer with a call to \c + * free. + * + * It is the responsibility of the calling application to free the + * buffer whose address is returned in \p buf_ptr_ptr. This can be + * accomplished with \c free if file image callbacks have not been set + * (see H5Pset_file_image_callbacks()) or with the appropriate method + * if file image callbacks have been set. + * + * \see H5LTopen_file_image(), H5Fget_file_image(), H5Pset_file_image(), + * H5Pset_file_image_callbacks(), H5Pget_file_image_callbacks(), + * \ref H5FD_file_image_callbacks_t, \ref H5FD_file_image_op_t, + * <a href="https://portal.hdfgroup.org/display/HDF5/HDF5+File+Image+Operations"> + * HDF5 File Image Operations</a>. + * + * + * \since 1.8.9 + * + */ H5_DLL herr_t H5Pget_file_image(hid_t fapl_id, void **buf_ptr_ptr, size_t *buf_len_ptr); +/** + * \ingroup FAPL + * + * \brief Retrieves callback routines for working with file images + * + * \fapl_id + * \param[in,out] callbacks_ptr Pointer to the instance of the + * #H5FD_file_image_callbacks_t struct in which the callback + * routines are to be returned\n + * Struct fields must be initialized to NULL before the call + * is made.\n + * Struct field contents upon return will match those passed in + * in the last H5Pset_file_image_callbacks() call for the file + * access property list \p fapl_id. + * \return \herr_t + * + * \details H5Pget_file_image_callbacks() retrieves the callback routines set for + * working with file images opened with the file access property list + * \p fapl_id. + * + * The callbacks must have been previously set with + * H5Pset_file_image_callbacks() in the file access property list. + * + * Upon the successful return of H5Pset_file_image_callbacks(), the + * fields in the instance of the #H5FD_file_image_callbacks_t struct + * pointed to by \p callbacks_ptr will contain the same values as were + * passed in the most recent H5Pset_file_image_callbacks() call for the + * file access property list \p fapl_id. + * + * \see H5LTopen_file_image(), H5Fget_file_image(), H5Pset_file_image(), + * H5Pset_file_image_callbacks(), H5Pget_file_image_callbacks(), + * \ref H5FD_file_image_callbacks_t, \ref H5FD_file_image_op_t, + * <a href="https://portal.hdfgroup.org/display/HDF5/HDF5+File+Image+Operations"> + * HDF5 File Image Operations</a>. + * + * \since 1.8.9 + * + */ H5_DLL herr_t H5Pget_file_image_callbacks(hid_t fapl_id, H5FD_file_image_callbacks_t *callbacks_ptr); +/** + * \ingroup FAPL + * + * \brief Retrieves the file locking property values + * + * \fapl_id + * \param[out] use_file_locking File locking flag + * \param[out] ignore_when_disabled Ignore when disabled flag + * \return \herr_t + * + * \details H5Pget_file_locking() retrieves the file locking property values for + * the file access property list specified by \p fapl_id. + * + * \since 1.10.7 + * + */ H5_DLL herr_t H5Pget_file_locking(hid_t fapl_id, hbool_t *use_file_locking, hbool_t *ignore_when_disabled); /** * \ingroup FAPL @@ -3471,11 +3662,212 @@ H5_DLL herr_t H5Pget_gc_references(hid_t fapl_id, unsigned *gc_ref /*out*/); * */ H5_DLL herr_t H5Pget_libver_bounds(hid_t plist_id, H5F_libver_t *low, H5F_libver_t *high); +/** + * \ingroup FAPL + * + * \brief Get the current initial metadata cache configuration from the + * provided file access property list + * + * \fapl_id{plist_id} + * \param[in,out] config_ptr Pointer to the instance of #H5AC_cache_config_t + * in which the current metadata cache configuration is to be + * reported + * \return \herr_t + * + * \note The \c in direction applies only to the \ref H5AC_cache_config_t.version + * field. All other fields are \c out parameters. + * + * \details The fields of the #H5AC_cache_config_t structure are shown + * below: + * \snippet H5ACpublic.h H5AC_cache_config_t_snip + * \click4more + * + * H5Pget_mdc_config() gets the initial metadata cache configuration + * contained in a file access property list and loads it into the + * instance of #H5AC_cache_config_t pointed to by the \p config_ptr + * parameter. This configuration is used when the file is opened. + * + * Note that the version field of \Code{*config_ptr} must be + * initialized; this allows the library to support earlier versions of + * the #H5AC_cache_config_t structure. + * + * See the overview of the metadata cache in the special topics section + * of the user guide for details on the configuration data returned. If + * you haven't read and understood that documentation, the results of + * this call will not make much sense. + * + * \since 1.8.0 + * + */ H5_DLL herr_t H5Pget_mdc_config(hid_t plist_id, H5AC_cache_config_t *config_ptr); /* out */ +/** + * \ingroup FAPL + * + * \brief Retrieves the metadata cache image configuration values for a file + * access property list + * + * \fapl_id{plist_id} + * \param[out] config_ptr Pointer to metadata cache image configuration values + * \return \herr_t + * + * \details H5Pget_mdc_image_config() retrieves the metadata cache image values + * into \p config_ptr for the file access property list specified in \p + * plist_id. + * + * #H5AC_cache_image_config_t is defined as follows: + * \snippet H5ACpublic.h H5AC_cache_image_config_t_snip + * \click4more + * + * \since 1.10.1 + */ H5_DLL herr_t H5Pget_mdc_image_config(hid_t plist_id, H5AC_cache_image_config_t *config_ptr /*out*/); +/** + * \ingroup FAPL + * + * \brief Gets metadata cache logging options + * + * \fapl_id{plist_id} + * \param[out] is_enabled Flag whether logging is enabled + * \param[out] location Location of log in UTF-8/ASCII (file path/name) (On + * Windows, this must be ASCII) + * \param[out] location_size Size in bytes of the location string + * \param[out] start_on_access Whether the logging begins as soon as the file is + * opened or created + * \return \herr_t + * + * \details The metadata cache is a central part of the HDF5 library through + * which all file metadata reads and writes take place. File metadata + * is normally invisible to the user and is used by the library for + * purposes such as locating and indexing data. File metadata should + * not be confused with user metadata, which consists of attributes + * created by users and attached to HDF5 objects such as datasets via + * \ref H5A API calls. + * + * Due to the complexity of the cache, a trace/logging feature has been + * created that can be used by HDF5 developers for debugging and + * performance analysis. The functions that control this functionality + * will normally be of use to a very limited number of developers + * outside of The HDF Group. The functions have been documented to help + * users create logs that can be sent with bug reports. + * + * Control of the log functionality is straightforward. Logging is + * enabled via the H5Pset_mdc_log_options() function, which will modify + * the file access property list used to open or create a file. This + * function has a flag that determines whether logging begins at file + * open or starts in a paused state. Log messages can then be + * controlled via the H5Fstart_mdc_logging() / H5Fstop_mdc_logging() + * functions. H5Pget_mdc_log_options() can be used to examine a file + * access property list, and H5Fget_mdc_logging_status() will return + * the current state of the logging flags. + * + * The log format is described in the + * <a href="https://bit.ly/2PG6fNv">Metadata Cache Logging</a> document. + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pget_mdc_log_options(hid_t plist_id, hbool_t *is_enabled, char *location, size_t *location_size, hbool_t *start_on_access); -H5_DLL herr_t H5Pget_meta_block_size(hid_t fapl_id, hsize_t *size /*out*/); +/** + * \ingroup FAPL + * + * \brief Returns the current metadata block size setting + * + * \fapl_id{fapl_id} + * \param[out] size Minimum size, in bytes, of metadata block allocations + * + * \return \herr_t + * + * \details Returns the current minimum size, in bytes, of new + * metadata block allocations. This setting is retrieved from the + * file access property list \p fapl_id. + * + * This value is set by H5Pset_meta_block_size() and is + * retrieved from the file access property list \p fapl_id. + * + * \since 1.4.0 + */ +H5_DLL herr_t H5Pget_meta_block_size(hid_t fapl_id, hsize_t *size); +/** + * \ingroup FAPL + * + * \brief Retrieves the number of read attempts from a file access + * property list + * + * \fapl_id{plist_id} + * \param[out] attempts The number of read attempts + * + * \return \herr_t + * + * \details H5Pget_metadata_read_attempts() retrieves the number of read + * attempts that is set in the file access property list \p plist_id. + * + * For a default file access property list, the value retrieved + * will depend on whether the user sets the number of attempts via + * H5Pset_metadata_read_attempts(): + * + * <ul> + * + * <li>If the number of attempts is set to N, the value + * returned will be N. + * <li>If the number of attempts is not set, the value returned + * will be the default for non-SWMR access (1). SWMR is short + * for single-writer/multiple-reader. + * </ul> + * + * For the file access property list of a specified HDF5 file, + * the value retrieved will depend on how the file is opened + * and whether the user sets the number of read attempts via + * H5Pset_metadata_read_attempts(): + * + * <ul> + * <li>For a file opened with SWMR access: + * + * <ul> + * <li> If the number of attempts is set to N, the value + * returned will be N. + * <li> If the number of attempts is not set, the value + * returned will be the default for SWMR access (100). + * </ul> + * <li>For a file opened without SWMR access, the value + * retrieved will always be the default for non-SWMR access + * (1). The value set via H5Pset_metadata_read_attempts() does + * not have any effect on non-SWMR access. + * </ul> + * + * \par Failure Modes + * \parblock + * + * When the input property list is not a file access property list. + * + * When the library is unable to retrieve the number of read attempts from + * the file access property list. + * + * \endparblock + * + * \par Examples + * \parblock + * + * The first example illustrates the two cases for retrieving the number + * of read attempts from a default file access property list. + * + * \include H5Pget_metadata_read_attempts.1.c + * + * The second example illustrates the two cases for retrieving the + * number of read attempts from the file access property list of a file + * opened with SWMR acccess. + * + * \include H5Pget_metadata_read_attempts.2.c + * + * The third example illustrates the two cases for retrieving the number + * of read attempts from the file access property list of a file opened + * with non-SWMR acccess. + * + * \include H5Pget_metadata_read_attempts.3.c + * + * \endparblock + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pget_metadata_read_attempts(hid_t plist_id, unsigned *attempts); /** * \ingroup FAPL @@ -3510,10 +3902,102 @@ H5_DLL herr_t H5Pget_metadata_read_attempts(hid_t plist_id, unsigned *attempts); * */ H5_DLL herr_t H5Pget_multi_type(hid_t fapl_id, H5FD_mem_t *type); +/** + * \ingroup FAPL + * + * \brief Retrieves the object flush property values from the file access property list + * + * \fapl_id{plist_id} + * \param[in] func The user-defined callback function + * \param[in] udata The user-defined input data for the callback function + * + * \return \herr_t + * + * \details H5Pget_object_flush_cb() gets the user-defined callback + * function that is set in the file access property list + * \p fapl_id and stored in the parameter \p func. The callback is + * invoked whenever an object flush occurs in the file. This + * routine also obtains the user-defined input data that is + * passed along to the callback function in the parameter + * \p udata. + * + * \par Example + * \parblock + * The example below illustrates the usage of this routine to obtain the + * object flush property values. + * + * \include H5Pget_object_flush_cb.c + * \endparblock + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pget_object_flush_cb(hid_t plist_id, H5F_flush_cb_t *func, void **udata); -H5_DLL herr_t H5Pget_page_buffer_size(hid_t plist_id, size_t *buf_size, unsigned *min_meta_per, - unsigned *min_raw_per); +/** + * \ingroup FAPL + * + * \brief Retrieves the maximum size for the page buffer and the minimum + percentage for metadata and raw data pages + * + * \fapl_id{plist_id} + * \param[out] buf_size Maximum size, in bytes, of the page buffer + * \param[out] min_meta_perc Minimum metadata percentage to keep in the + * page buffer before allowing pages containing metadata to + * be evicted + * + * \param[out] min_raw_perc Minimum raw data percentage to keep in the + * page buffer before allowing pages containing raw data to + * be evicted + * + * \return \herr_t + * + * \details H5Pget_page_buffer_size() retrieves \p buf_size, the maximum + * size in bytes of the page buffer, \p min_meta_perc, the + * minimum metadata percentage, and \p min_raw_perc, the + * minimum raw data percentage. + * + * \since 1.10.1 + */ +H5_DLL herr_t H5Pget_page_buffer_size(hid_t plist_id, size_t *buf_size, unsigned *min_meta_perc, + unsigned *min_raw_perc); +/** + * \ingroup FAPL + * + * \brief Returns maximum data sieve buffer size + * + * \fapl_id{fapl_id} + * \param[in] size Maximum size, in bytes, of data sieve buffer + * + * \return \herr_t + * + * \details H5Pget_sieve_buf_size() retrieves, size, the current maximum + * size of the data sieve buffer. + * + * This value is set by H5Pset_sieve_buf_size() and is retrieved + * from the file access property list fapl_id. + * + * \version 1.6.0 The \p size parameter has changed from type \c hsize_t + * to \c size_t + * \since 1.4.0 + */ H5_DLL herr_t H5Pget_sieve_buf_size(hid_t fapl_id, size_t *size /*out*/); +/** + * \ingroup FAPL + * + * \brief Retrieves the current small data block size setting + * + * \fapl_id{fapl_id} + * \param[out] size Maximum size, in bytes, of the small data block + * + * \result \herr_t + * + * \details H5Pget_small_data_block_size() retrieves the current setting + * for the size of the small data block. + * + * If the returned value is zero (0), the small data block + * mechanism has been disabled for the file. + * + * \since 1.4.4 + */ H5_DLL herr_t H5Pget_small_data_block_size(hid_t fapl_id, hsize_t *size /*out*/); /** * \ingroup FAPL @@ -3684,6 +4168,64 @@ H5_DLL herr_t H5Pset_alignment(hid_t fapl_id, hsize_t threshold, hsize_t alignme */ H5_DLL herr_t H5Pset_cache(hid_t plist_id, int mdc_nelmts, size_t rdcc_nslots, size_t rdcc_nbytes, double rdcc_w0); +/** + * \ingroup FAPL + * + * \brief Sets write tracking information for core driver, #H5FD_CORE + * + * \fapl_id{fapl_id} + * \param[in] is_enabled Boolean value specifying whether feature is + enabled + * \param[in] page_size Positive integer specifying size, in bytes, of + * write aggregation pages Value of 1 (one) enables + * tracking with no paging. + * + * \return \herr_t + * + * \details When a file is created or opened for writing using the core + * virtual file driver (VFD) with the backing store option + * turned on, the core driver can be configured to track + * changes to the file and write out only the modified bytes. + * + * This write tracking feature is enabled and disabled with \p + * is_enabled. The default setting is that write tracking is + * disabled, or off. + * + * To avoid a large number of small writes, changes can + * be aggregated into pages of a user-specified size, \p + * page_size. + * + * Setting \p page_size to 1 enables tracking with no page + * aggregation. + * + * The backing store option is set via the function + * H5Pset_fapl_core. + * + * \attention + * \parblock + * This function is only for use with the core VFD and must + * be used after the call to H5Pset_fapl_core(). It is an error + * to use this function with any other VFD. + * + * It is an error to use this function when the backing store + * flag has not been set using H5Pset_fapl_core(). + * + * This function only applies to the backing store write + * operation which typically occurs when the file is flushed + * or closed. This function has no relationship to the + * increment parameter passed to H5Pset_fapl_core(). + * + * For optimum performance, the \p page_size parameter should be + * a power of two. + * + * It is an error to set the page size to 0. + * \endparblock + * + * \version 1.8.14 C function modified in this release to return error + * if \p page_size is set to 0 (zero). + * \since 1.8.13 + * + */ H5_DLL herr_t H5Pset_core_write_tracking(hid_t fapl_id, hbool_t is_enabled, size_t page_size); /** * \ingroup FAPL @@ -3712,8 +4254,141 @@ H5_DLL herr_t H5Pset_core_write_tracking(hid_t fapl_id, hbool_t is_enabled, size * */ H5_DLL herr_t H5Pset_driver(hid_t plist_id, hid_t driver_id, const void *driver_info); +/** + * \ingroup FAPL + * + * \brief Sets the number of files that can be held open in an external + * link open file cache + * + * \par Motivation + * \parblock + * The <em>external link open file cache</em> holds files open after + * they have been accessed via an external link. This cache reduces + * the number of times such files are opened when external links are + * accessed repeatedly and can siginificantly improves performance in + * certain heavy-use situations and when low-level file opens or closes + * are expensive. + * + * H5Pset_elink_file_cache_size() sets the number of files + * that will be held open in an external link open file + * cache. H5Pget_elink_file_cache_size() retrieves the size of an existing + * cache; and H5Fclear_elink_file_cache() clears an existing cache without + * closing it. + * \endparblock + * + * \fapl_id{plist_id} + * \param[in] efc_size External link open file cache size in number of files + * <em>Default setting is 0 (zero).</em> + * + * \return \herr_t + * + * \details H5Pset_elink_file_cache_size() specifies the number of files + * that will be held open in an external link open file cache. + * + * The default external link open file cache size is 0 (zero), + * meaning that files accessed via an external link are not + * held open. Setting the cache size to a positive integer + * turns on the cache; setting the size back to zero turns it + * off. + * + * With this property set, files are placed in the external + * link open file cache cache when they are opened via an + * external link. Files are then held open until either + * they are evicted from the cache or the parent file is + * closed. This property setting can improve performance when + * external links are repeatedly accessed. + * + * When the cache is full, files will be evicted using a least + * recently used (LRU) scheme; the file which has gone the + * longest time without being accessed through the parent file + * will be evicted and closed if nothing else is holding that + * file open. + * + * Files opened through external links inherit the parent + * file’s file access property list by default, and therefore + * inherit the parent file’s external link open file cache + * setting. + * + * When child files contain external links of their own, the + * caches can form a graph of cached external files. Closing + * the last external reference to such a graph will recursively + * close all files in the graph, even if cycles are present. + * \par Example + * \parblock + * The following code sets up an external link open file cache that will + * hold open up to 8 files reached through external links: + * + * \code + * status = H5Pset_elink_file_cache_size(fapl_id, 8); + * \endcode + * \endparblock + * + * \since 1.8.7 + */ H5_DLL herr_t H5Pset_elink_file_cache_size(hid_t plist_id, unsigned efc_size); +/** + * \ingroup FAPL + * + * \brief Controls the library's behavior of evicting metadata associated with + * a closed object + * + * \fapl_id + * \param[in] evict_on_close Whether the HDF5 object should be evicted on close + * + * \return \herr_t + * + * \details The library's metadata cache is fairly conservative about holding + * on to HDF5 object metadata(object headers, chunk index structures, + * etc.), which can cause the cache size to grow, resulting in memory + * pressure on an application or system. When enabled, the "evict on + * close" property will cause all metadata for an object to be evicted + * from the cache as long as metadata is not referenced by any other + * open object. + * + * This function only applies to file access property lists. + * + * The default library behavior is to not evict on object or file + * close. + * + * When applied to a file access property list, any subsequently opened + * object will inherit the "evict on close" property and will have + * its metadata evicted when the object is closed. + * + * \since 1.10.1 + * + */ H5_DLL herr_t H5Pset_evict_on_close(hid_t fapl_id, hbool_t evict_on_close); +/** + * \ingroup FAPL + * + * \brief Sets offset property for low-level access to a file in a family of + * files + * + * \fapl_id + * \param[in] offset Offset in bytes within the HDF5 file + * + * \return \herr_t + * + * \details H5Pset_family_offset() sets the offset property in the file access + * property list \p fapl_id so that the user application can + * retrieve a file handle for low-level access to a particular member + * of a family of files. The file handle is retrieved with a separate + * call to H5Fget_vfd_handle() (or, in special circumstances, to + * H5FDget_vfd_handle(); see \ref VFL). + * + * The value of \p offset is an offset in bytes from the beginning of + * the HDF5 file, identifying a user-determined location within the + * HDF5 file. + * The file handle the user application is seeking is for the specific + * member-file in the associated family of files to which this offset + * is mapped. + * + * Use of this function is only appropriate for an HDF5 file written as + * a family of files with the \c FAMILY file driver. + * + * \since 1.6.0 + * + */ H5_DLL herr_t H5Pset_family_offset(hid_t fapl_id, hsize_t offset); /** * \ingroup FAPL @@ -3776,9 +4451,279 @@ H5_DLL herr_t H5Pset_family_offset(hid_t fapl_id, hsize_t offset); * */ H5_DLL herr_t H5Pset_fclose_degree(hid_t fapl_id, H5F_close_degree_t degree); +/** + * \ingroup FAPL + * + * \brief Sets an initial file image in a memory buffer + * + * \fapl_id + * \param[in] buf_ptr Pointer to the initial file image, or + * NULL if no initial file image is desired + * \param[in] buf_len Size of the supplied buffer, or + * 0 (zero) if no initial image is desired + * + * \return \herr_t + * + * \details H5Pset_file_image() allows an application to provide a file image + * to be used as the initial contents of a file. + * Calling H5Pset_file_image()makes a copy of the buffer specified in + * \p buf_ptr of size \p buf_len. + * + * \par Motivation: + * H5Pset_file_image() and other elements of HDF5 are + * used to load an image of an HDF5 file into system memory and open + * that image as a regular HDF5 file. An application can then use the + * file without the overhead of disk I/O. + * + * \par Recommended Reading: + * This function is part of the file image + * operations feature set. It is highly recommended to study the guide + * [<em>HDF5 File Image Operations</em>] + * (https://portal.hdfgroup.org/display/HDF5/HDF5+File+Image+Operations + * ) before using this feature set. See the “See Also” section below + * for links to other elements of HDF5 file image operations. + * + * \see + * \li H5LTopen_file_image() + * \li H5Fget_file_image() + * \li H5Pget_file_image() + * \li H5Pset_file_image_callbacks() + * \li H5Pget_file_image_callbacks() + * + * \li [HDF5 File Image Operations] + * (https://portal.hdfgroup.org/display/HDF5/HDF5+File+Image+Operations) + * in [Advanced Topics in HDF5] + * (https://portal.hdfgroup.org/display/HDF5/Advanced+Topics+in+HDF5) + * + * \li Within H5Pset_file_image_callbacks(): + * \li Callback #H5FD_file_image_callbacks_t + * \li Callback #H5FD_file_image_op_t + * + * \version 1.8.13 Fortran subroutine added in this release. + * \since 1.8.9 + * + */ H5_DLL herr_t H5Pset_file_image(hid_t fapl_id, void *buf_ptr, size_t buf_len); +/** + * \ingroup FAPL + * + * \brief Sets the callbacks for working with file images + * + * \note **Motivation:** H5Pset_file_image_callbacks() and other elements + * of HDF5 are used to load an image of an HDF5 file into system + * memory and open that image as a regular HDF5 file. An application + * can then use the file without the overhead of disk I/O.\n + * **Recommended Reading:** This function is part of the file + * image operations feature set. It is highly recommended to study + * the guide [HDF5 File Image Operations] + * (https://portal.hdfgroup.org/display/HDF5/HDF5+File+Image+Operations + * ) before using this feature set. See the “See Also” section below + * for links to other elements of HDF5 file image operations. + * + * \fapl_id + * \param[in,out] callbacks_ptr Pointer to the instance of the + * #H5FD_file_image_callbacks_t structure + * + * \return \herr_t \n + * **Failure Modes**: Due to interactions between this function and + * H5Pset_file_image() and H5Pget_file_image(), + * H5Pset_file_image_callbacks() will fail if a file image has + * already been set in the target file access property list, \p fapl_id. + * + * \details H5Pset_file_image_callbacks() sets callback functions for working + * with file images in memory. + * + * H5Pset_file_image_callbacks() allows an application to control the + * management of file image buffers through user defined callbacks. + * These callbacks can be used in the management of file image buffers + * in property lists and with certain file drivers. + * + * H5Pset_file_image_callbacks() must be used before any file image has + * been set in the file access property list. Once a file image has + * been set, the function will fail. + * + * The callback routines set up by H5Pset_file_image_callbacks() are + * invoked when a new file image buffer is allocated, when an existing + * file image buffer is copied or resized, or when a file image buffer + * is released from use. + * + * Some file drivers allow the use of user-defined callback functions + * for allocating, freeing, and copying the driver’s internal buffer, + * potentially allowing optimizations such as avoiding large \c malloc + * and \c memcpy operations, or to perform detailed logging. + * + * From the perspective of the HDF5 library, the operations of the + * \ref H5FD_file_image_callbacks_t.image_malloc "image_malloc", + * \ref H5FD_file_image_callbacks_t.image_memcpy "image_memcpy", + * \ref H5FD_file_image_callbacks_t.image_realloc "image_realloc", and + * \ref H5FD_file_image_callbacks_t.image_free "image_free" callbacks + * must be identical to those of the + * corresponding C standard library calls (\c malloc, \c memcpy, + * \c realloc, and \c free). While the operations must be identical, + * the file image callbacks have more parameters. The return values + * of \ref H5FD_file_image_callbacks_t.image_malloc "image_malloc" and + * \ref H5FD_file_image_callbacks_t.image_realloc "image_realloc" are identical to + * the return values of \c malloc and \c realloc. The return values of + * \ref H5FD_file_image_callbacks_t.image_malloc "image_malloc" and + * \ref H5FD_file_image_callbacks_t.image_free "image_free" differ from the return + * values of \c memcpy and \c free in that the return values of + * \ref H5FD_file_image_callbacks_t.image_memcpy "image_memcpy" and + * \ref H5FD_file_image_callbacks_t.image_free "image_free" can also indicate failure. + * + * The callbacks and their parameters, along with a struct and + * an \c ENUM required for their use, are described below. + * + * <b>Callback struct and \c ENUM:</b> + * + * The callback functions set up by H5Pset_file_image_callbacks() use + * a struct and an \c ENUM that are defined as follows + * + * The struct #H5FD_file_image_callbacks_t serves as a container + * for the callback functions and a pointer to user-supplied data. + * The struct is defined as follows: + * \snippet H5FDpublic.h H5FD_file_image_callbacks_t_snip + * + * Elements of the #H5FD_file_image_op_t are used by the + * callbacks to invoke certain operations on file images. The ENUM is + * defined as follows: + * \snippet H5FDpublic.h H5FD_file_image_op_t_snip + * + * The elements of the #H5FD_file_image_op_t are used in the following + * callbacks: + * + * - The \ref H5FD_file_image_callbacks_t.image_malloc "image_malloc" callback + * contains a pointer to a function that must appear to HDF5 to have + * functionality identical to that of the standard C library \c malloc() call. + * + * - Signature in #H5FD_file_image_callbacks_t: + * \snippet H5FDpublic.h image_malloc_snip + * \n + * - The \ref H5FD_file_image_callbacks_t.image_memcpy "image_memcpy" + * callback contains a pointer to a function + * that must appear to HDF5 to have functionality identical to that + * of the standard C library \c memcopy() call, except that it returns + * a \p NULL on failure. (The \c memcpy C Library routine is defined + * to return the \p dest parameter in all cases.) + * + * - Setting \ref H5FD_file_image_callbacks_t.image_memcpy "image_memcpy" + * to \c NULL indicates that HDF5 should invoke + * the standard C library \c memcpy() routine when copying buffers. + * + * - Signature in #H5FD_file_image_callbacks_t: + * \snippet H5FDpublic.h image_memcpy_snip + * \n + * - The \ref H5FD_file_image_callbacks_t.image_realloc "image_realloc" callback + * contains a pointer to a function that must appear to HDF5 to have + * functionality identical to that of the standard C library \c realloc() call. + * + * - Setting \ref H5FD_file_image_callbacks_t.image_realloc "image_realloc" + * to \p NULL indicates that HDF5 should + * invoke the standard C library \c realloc() routine when resizing + * file image buffers. + * + * - Signature in #H5FD_file_image_callbacks_t: + * \snippet H5FDpublic.h image_realloc_snip + * \n + * - The \ref H5FD_file_image_callbacks_t.image_free "image_free" callback contains + * a pointer to a function that must appear to HDF5 to have functionality + * identical to that of the standard C library \c free() call, except + * that it will return \c 0 (\c SUCCEED) on success and \c -1 (\c FAIL) on failure. + * + * - Setting \ref H5FD_file_image_callbacks_t.image_free "image_free" + * to \c NULL indicates that HDF5 should invoke + * the standard C library \c free() routine when releasing file image + * buffers. + * + * - Signature in #H5FD_file_image_callbacks_t: + * \snippet H5FDpublic.h image_free_snip + * \n + * - The \ref H5FD_file_image_callbacks_t.udata_copy "udata_copy" + * callback contains a pointer to a function + * that, from the perspective of HDF5, allocates a buffer of suitable + * size, copies the contents of the supplied \p udata into the new + * buffer, and returns the address of the new buffer. The function + * returns NULL on failure. This function is necessary if a non-NULL + * \p udata parameter is supplied, so that property lists containing + * the image callbacks can be copied. If the \p udata parameter below + * is \c NULL, then this parameter should be \c NULL as well. + * + * - Signature in #H5FD_file_image_callbacks_t: + * \snippet H5FDpublic.h udata_copy_snip + * \n + * - The \ref H5FD_file_image_callbacks_t.udata_free "udata_free" + * callback contains a pointer to a function + * that, from the perspective of HDF5, frees a user data block. This + * function is necessary if a non-NULL udata parameter is supplied so + * that property lists containing image callbacks can be discarded + * without a memory leak. If the udata parameter below is \c NULL, + * this parameter should be \c NULL as well. + * + * - Signature in #H5FD_file_image_callbacks_t: + * \snippet H5FDpublic.h udata_free_snip + * + * - \p **udata**, the final field in the #H5FD_file_image_callbacks_t + * struct, provides a pointer to user-defined data. This pointer will + * be passed to the + * \ref H5FD_file_image_callbacks_t.image_malloc "image_malloc", + * \ref H5FD_file_image_callbacks_t.image_memcpy "image_memcpy", + * \ref H5FD_file_image_callbacks_t.image_realloc "image_realloc", and + * \ref H5FD_file_image_callbacks_t.image_free "image_free" callbacks. + * Define udata as \c NULL if no user-defined data is provided. + * + * \since 1.8.9 + * + */ H5_DLL herr_t H5Pset_file_image_callbacks(hid_t fapl_id, H5FD_file_image_callbacks_t *callbacks_ptr); +/** + * \ingroup FAPL + * + * \brief Sets the file locking property values + * + * \fapl_id + * \param[in] use_file_locking Toggle to specify file locking (or not) + * \param[in] ignore_when_disabled Toggle to ignore when disabled (or not) + * + * \return \herr_t + * + * \details H5Pset_file_locking() overrides the default file locking flag + * setting that was set when the library was configured. + * + * This setting can be overridden by the \c HDF5_USE_FILE_LOCKING + * environment variable. + * + * File locking is used when creating/opening a file to prevent + * problematic file accesses. + * + * \since 1.10.7 + * + */ H5_DLL herr_t H5Pset_file_locking(hid_t fapl_id, hbool_t use_file_locking, hbool_t ignore_when_disabled); +/** + * \ingroup FAPL + * + * \brief Sets garbage collecting references flag + * + * \fapl_id + * \param[in] gc_ref Flag setting reference garbage collection to on (1) or off (0) + * + * \return \herr_t + * + * \details H5Pset_gc_references() sets the flag for garbage collecting + * references for the file. + * + * Dataset region references and other reference types use space in an + * HDF5 file's global heap. If garbage collection is on and the user + * passes in an uninitialized value in a reference structure, the heap + * might get corrupted. When garbage collection is off, however, and + * the user re-uses a reference, the previous heap block will be + * orphaned and not returned to the free heap space. + * + * When garbage collection is on, the user must initialize the + * reference structures to 0 or risk heap corruption. + * + * The default value for garbage collecting references is off. + * + */ H5_DLL herr_t H5Pset_gc_references(hid_t fapl_id, unsigned gc_ref); /** * \ingroup FAPL @@ -3861,10 +4806,11 @@ H5_DLL herr_t H5Pset_gc_references(hid_t fapl_id, unsigned gc_ref); * <td>\p low=#H5F_LIBVER_V18<br /> * \p high=#H5F_LIBVER_V18</td> * <td> - * \li The library will create objects with the latest format versions - * available to library release 1.8.x. + * \li The library will create objects with the latest format + * versions available to library release 1.8.x. * \li API calls that create objects or features that are available - * to versions of the library greater than 1.8.x release will fail. + * to versions of the library greater than 1.8.x release will + * fail. * \li Earlier versions of the library may not be able to access * objects created with this setting.</td> * </tr> @@ -3872,14 +4818,15 @@ H5_DLL herr_t H5Pset_gc_references(hid_t fapl_id, unsigned gc_ref); * <td>\p low=#H5F_LIBVER_V18<br /> * \p high=#H5F_LIBVER_V110</td> * <td> - * \li The library will create objects with the latest format versions - * available to library release 1.8.x. + * \li The library will create objects with the latest format + * versions available to library release 1.8.x. * \li The library will allow objects to be created with the latest * format versions available to library release 1.10.x. - * Since 1.10.x is also #H5F_LIBVER_LATEST, there is no upper limit - * on the format versions to use. For example, if a newer format - * version is required to support a feature e.g. virtual dataset, - * this setting will allow the object to be created. + * Since 1.10.x is also #H5F_LIBVER_LATEST, there is no upper + * limit on the format versions to use. For example, if a + * newer format version is required to support a feature e.g. + * virtual dataset, this setting will allow the object to be + * created. * \li Earlier versions of the library may not be able to access * objects created with this setting.</td> * </tr> @@ -3888,39 +4835,356 @@ H5_DLL herr_t H5Pset_gc_references(hid_t fapl_id, unsigned gc_ref); * \p high=#H5F_LIBVER_V110 * </td> * <td> - * \li The library will create objects with the latest format versions - * available to library release 1.10.x. + * \li The library will create objects with the latest format + * versions available to library release 1.10.x. * \li The library will allow objects to be created with the latest * format versions available to library release 1.10.x. - * Since 1.10.x is also #H5F_LIBVER_LATEST, there is no upper limit - * on the format versions to use. For example, if a newer format - * version is required to support a feature e.g. virtual dataset, - * this setting will allow the object to be created. + * Since 1.10.x is also #H5F_LIBVER_LATEST, there is no upper + * limit on the format versions to use. For example, if a + * newer format version is required to support a feature e.g. + * virtual dataset, this setting will allow the object to be + * created. * \li This setting allows users to take advantage of the latest - * features and performance enhancements in the library. However, - * objects written with this setting may be accessible to a smaller - * range of library versions than would be the case if low is set - * to #H5F_LIBVER_EARLIEST. - * \li Earlier versions of the library may not be able to access objects created with this + * features and performance enhancements in the library. + * However, objects written with this setting may be + * accessible to a smaller range of library versions than + * would be the case if low is set to #H5F_LIBVER_EARLIEST. + * \li Earlier versions of the library may not be able to access + * objects created with this * setting. * </td> * </tr> * </table> * - * \version 1.10.2 #H5F_LIBVER_V18 added to the enumerated defines in #H5F_libver_t. + * \version 1.10.2 #H5F_LIBVER_V18 added to the enumerated defines in + * #H5F_libver_t. * * \since 1.8.0 * */ H5_DLL herr_t H5Pset_libver_bounds(hid_t plist_id, H5F_libver_t low, H5F_libver_t high); +/** + * \ingroup FAPL + * + * \brief Set the initial metadata cache configuration in the indicated File + * Access Property List to the supplied value + * + * \fapl_id{plist_id} + * \param[in] config_ptr Pointer to the instance of \p H5AC_cache_config_t + * containing the desired configuration + * \return \herr_t + * + * \details The fields of the #H5AC_cache_config_t structure are shown + * below: + * \snippet H5ACpublic.h H5AC_cache_config_t_snip + * \click4more + * + * \details H5Pset_mdc_config() attempts to set the initial metadata cache + * configuration to the supplied value. It will fail if an invalid + * configuration is detected. This configuration is used when the file + * is opened. + * + * See the overview of the metadata cache in the special topics section + * of the user manual for details on what is being configured. If you + * have not read and understood that documentation, you really should + * not be using this API call. + * + * \since 1.8.0 + * + */ H5_DLL herr_t H5Pset_mdc_config(hid_t plist_id, H5AC_cache_config_t *config_ptr); +/** + * \ingroup FAPL + * + * \brief Sets metadata cache logging options + * + * \fapl_id{plist_id} + * \param[in] is_enabled Whether logging is enabled + * \param[in] location Location of log in UTF-8/ASCII (file path/name) + * (On Windows, this must be ASCII) + * \param[in] start_on_access Whether the logging will begin as soon as the + * file is opened or created + * + * \return \herr_t + * + * \details The metadata cache is a central part of the HDF5 library through + * which all file metadata reads and writes take place. File metadata + * is normally invisible to the user and is used by the library for + * purposes such as locating and indexing data. File metadata should + * not be confused with user metadata, which consists of attributes + * created by users and attached to HDF5 objects such as datasets via + * H5A API calls. + * + * Due to the complexity of the cache, a trace/logging feature has + * been created that can be used by HDF5 developers for debugging and + * performance analysis. The functions that control this functionality + * will normally be of use to a very limited number of developers + * outside of The HDF Group. The functions have been documented to + * help users create logs that can be sent with bug reports. + * + * Control of the log functionality is straightforward. Logging is + * enabled via the H5Pset_mdc_log_options() function, + * which will modify the file access property list used to open or + * create a file. This function has a flag that determines whether + * logging begins at file open or starts in a paused state. Log + * messages can then be controlled via the H5Fstart_mdc_logging() + * and H5Fstop_mdc_logging() function. + * + * H5Pget_mdc_log_options() can be used to examine a file access + * property list, and H5Fget_mdc_logging_status() will return the + * current state of the logging flags. + * + * The log format is described in [<em>Metadata Cache Logging</em>] + * (https://portal.hdfgroup.org/display/HDF5/Fine-tuning+the+Metadata+Cache). + * + * \since 1.10.0 + * + */ H5_DLL herr_t H5Pset_mdc_log_options(hid_t plist_id, hbool_t is_enabled, const char *location, hbool_t start_on_access); +/** + * \ingroup FAPL + * + * \brief Sets the minimum metadata block size + * + * \fapl_id{fapl_id} + * \param[in] size Minimum size, in bytes, of metadata block allocations + * + * \return \herr_t + * + * \details H5Pset_meta_block_size() sets the minimum size, in bytes, of + * metadata block allocations when #H5FD_FEAT_AGGREGATE_METADATA is set by a VFL + * driver. + + * Each raw metadata block is initially allocated to be of the given size. + * Specific metadata objects (e.g., object headers, local heaps, B-trees) are then + * sub-allocated from this block. + * + * The default setting is 2048 bytes, meaning that the library will + * attempt to aggregate metadata in at least 2K blocks in the file. + * Setting the value to zero (\Code{0}) with this function will turn + * off metadata aggregation, even if the VFL driver attempts to use the + * metadata aggregation strategy. + * + * Metadata aggregation reduces the number of small data objects in the file that + * would otherwise be required for metadata. The aggregated block of metadata is + * usually written in a single write action and always in a contiguous block, + * potentially significantly improving library and application performance. + * + * \since 1.4.0 + */ H5_DLL herr_t H5Pset_meta_block_size(hid_t fapl_id, hsize_t size); +/** + * \ingroup FAPL + * + * \brief Sets the number of read attempts in a file access property list + * + * \fapl_id{plist_id} + * \param[in] attempts The number of read attempts. Must be a value greater than \Code{0} + * + * \return \herr_t + * + * \return Failure Modes: + * - When the user sets the number of read attempts to \Code{0}. + * - When the input property list is not a file access property list. + * - When the library is unable to set the number of read attempts in the file access property list. + * + * \details H5Pset_metadata_read_attempts() sets the number of reads that the + * library will try when reading checksummed metadata in an HDF5 file opened + * with SWMR access. When reading such metadata, the library will compare the + * checksum computed for the metadata just read with the checksum stored within + * the piece of checksum. When performing SWMR operations on a file, the + * checksum check might fail when the library reads data on a system that is not + * atomic. To remedy such situations, the library will repeatedly read the piece + * of metadata until the check passes or finally fails the read when the allowed + * number of attempts is reached. + * + * The number of read attempts used by the library will depend on how the file is + * opened and whether the user sets the number of read attempts via this routine: + + * - For a file opened with SWMR access: + * - If the user sets the number of attempts to \Code{N}, the library will use \Code{N}. + * - If the user does not set the number of attempts, the library will use the + * default for SWMR access (\Code{100}). + * - For a file opened with non-SWMR access, the library will always use the default + * for non-SWMR access (\Code{1}). The value set via this routine does not have any effect + * during non-SWMR access. + * + * \b Example: The first example illustrates the case in setting the number of read attempts for a file + * opened with SWMR access. + * + * \snippet H5Pset_metadata_read_attempts.c SWMR Access + * + * \b Example: The second example illustrates the case in setting the number of + * read attempts for a file opened with non-SWMR access. The value + * set in the file access property list does not have any effect. + * + * \snippet H5Pset_metadata_read_attempts.c non-SWMR Access + * + * \note \b Motivation: On a system that is not atomic, the library might + * possibly read inconsistent metadata with checksum when performing + * single-writer/multiple-reader (SWMR) operations for an HDF5 file. Upon + * encountering such situations, the library will try reading the metadata + * again to obtain consistent data. This routine provides the means to set + * the number of read attempts other than the library default. + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pset_metadata_read_attempts(hid_t plist_id, unsigned attempts); +/** + * \ingroup FAPL + * + * \brief Specifies type of data to be accessed via the \Code{MULTI} driver, + * enabling more direct access + * + * \fapl_id{fapl_id} + * \param[in] type Type of data to be accessed + * + * \return \herr_t + * + * \details H5Pset_multi_type() sets the \Emph{type of data} property in the file + * access property list \p fapl_id. This setting enables a user + * application to specify the type of data the application wishes to + * access so that the application can retrieve a file handle for + * low-level access to the particular member of a set of \Code{MULTI} + * files in which that type of data is stored. The file handle is + * retrieved with a separate call to H5Fget_vfd_handle() (or, in special + * circumstances, to H5FDget_vfd_handle(); see \ref VFL. + * + * The type of data specified in \p type may be one of the following: + * + * <table> + * <tr> + * <td>#H5FD_MEM_SUPER</td> <td>Super block data</td> + * </tr> + * <tr> + * <td>#H5FD_MEM_BTREE</td> <td>B-tree data</td> + * </tr> + * <tr> + * <td>#H5FD_MEM_DRAW</td> <td>Dataset raw data</td> + * </tr> + * <tr> + * <td>#H5FD_MEM_GHEAP</td> <td>Global heap data</td> + * </tr> + * <tr> + * <td>#H5FD_MEM_LHEAP</td> <td>Local Heap data</td> + * </tr> + * <tr> + * <td>#H5FD_MEM_OHDR</td> <td>Object header data</td> + * </tr> + * </table> + * + * This function is for use only when accessing an HDF5 file written as a set of + * files with the \Code{MULTI} file driver. + * + * \since 1.6.0 + */ H5_DLL herr_t H5Pset_multi_type(hid_t fapl_id, H5FD_mem_t type); +/** + * \ingroup FAPL + * + * \brief Sets a callback function to invoke when an object flush occurs in the file + * + * \fapl_id{plist_id} + * \op{func} + * \op_data_in{udata} + * + * \return \herr_t + * + * \details H5Pset_object_flush_cb() sets the callback function to invoke in the + * file access property list \p plist_id whenever an object flush occurs in + * the file. Library objects are group, dataset, and committed + * datatype. + * + * The callback function \p func must conform to the prototype defined below: + * \code + * typedef herr_t (*H5F_flush_cb_t)(hid_t object_id, void *user_data) + * \endcode + * + * The parameters of the callback function, per the above prototypes, are defined as follows: + * - \Code{object_id} is the identifier of the object which has just been flushed. + * - \Code{user_data} is the user-defined input data for the callback function. + * + * \b Example: The example below illustrates the usage of this routine to set + * the callback function to invoke when an object flush occurs. + * + * \include H5Pset_object_flush_cb.c + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pset_object_flush_cb(hid_t plist_id, H5F_flush_cb_t func, void *udata); +/** + * \ingroup FAPL + * + * \brief Sets the maximum size of the data sieve buffer + * + * \fapl_id{fapl_id} + * \param[in] size Maximum size, in bytes, of data sieve buffer + * + * \return \herr_t + * + * \details H5Pset_sieve_buf_size() sets \p size, the maximum size in bytes of the + * data sieve buffer, which is used by file drivers that are capable of + * using data sieving. + * + * The data sieve buffer is used when performing I/O on datasets in the + * file. Using a buffer which is large enough to hold several pieces of + * the dataset being read in for hyperslab selections boosts + * performance by quite a bit. + * + * The default value is set to 64KB, indicating that file I/O for raw + * data reads and writes will occur in at least 64KB blocks. Setting + * the value to zero (\Code{0}) with this API function will turn off + * the data sieving, even if the VFL driver attempts to use that + * strategy. + * + * Internally, the library checks the storage sizes of the datasets in + * the file. It picks the smaller one between the size from the file + * access property and the size of the dataset to allocate the sieve + * buffer for the dataset in order to save memory usage. + * + * \version 1.6.0 The \p size parameter has changed from type \Code{hsize_t} to \Code{size_t}. + * + * \since 1.4.0 + */ H5_DLL herr_t H5Pset_sieve_buf_size(hid_t fapl_id, size_t size); +/** + * \ingroup FAPL + * + * \brief Sets the size of a contiguous block reserved for small data + * + * \fapl_id{fapl_id} + * \param[in] size Maximum size, in bytes, of the small data block. + The default size is \Code{2048}. + * + * \return \herr_t + * + * \details H5Pset_small_data_block_size() reserves blocks of \p size bytes for the + * contiguous storage of the raw data portion of \Emph{small} datasets. The + * HDF5 library then writes the raw data from small datasets to this + * reserved space, thus reducing unnecessary discontinuities within + * blocks of meta data and improving I/O performance. + * + * A small data block is actually allocated the first time a qualifying + * small dataset is written to the file. Space for the raw data portion + * of this small dataset is suballocated within the small data block. + * The raw data from each subsequent small dataset is also written to + * the small data block until it is filled; additional small data + * blocks are allocated as required. + * + * The HDF5 library employs an algorithm that determines whether I/O + * performance is likely to benefit from the use of this mechanism with + * each dataset as storage space is allocated in the file. A larger + * \p size will result in this mechanism being employed with larger + * datasets. + * + * The small data block size is set as an allocation property in the + * file access property list identified by \p fapl_id. + * + * Setting \p size to zero (\Code{0}) disables the small data block mechanism. + * + * \since 1.4.4 + */ H5_DLL herr_t H5Pset_small_data_block_size(hid_t fapl_id, hsize_t size); /** * \ingroup FAPL @@ -3943,14 +5207,242 @@ H5_DLL herr_t H5Pset_small_data_block_size(hid_t fapl_id, hsize_t size); H5_DLL herr_t H5Pset_vol(hid_t plist_id, hid_t new_vol_id, const void *new_vol_info); #ifdef H5_HAVE_PARALLEL +/** + * \ingroup GACPL + * + * \brief Sets metadata I/O mode for read operations to collective or independent (default) + * + * \gacpl_id + * \param[in] is_collective Boolean value indicating whether metadata reads are collective + * (\Code{1}) or independent (\Code{0}). + * Default mode: Independent (\Code{0}) + * + * \return \herr_t + * + * \details H5Pset_all_coll_metadata_ops() sets the metadata I/O mode for read + * operations in the access property list \p plist_id. + * + * When engaging in parallel I/O, all metadata write operations must be + * collective. If \p is_collective is \Code{1}, this property specifies + * that the HDF5 library will perform all metadata read operations + * collectively; if \p is_collective is \Code{0}, such operations may + * be performed independently. + * + * Users must be aware that several HDF5 operations can potentially + * issue metadata reads. These include opening a dataset, datatype, or + * group; reading an attribute; or issuing a \Emph{get info} call such + * as getting information for a group with H5Fget_info(). Collective + * I/O requirements must be kept in mind when issuing such calls in the + * context of parallel I/O. + * + * If this property is collective on a file access property list that + * is used in creating or opening a file, then the HDF5 library will + * assume that all metadata read operations issued on that file + * identifier will be issued collectively from all ranks irrespective + * of the individual setting of a particular operation. If this + * assumption is not adhered to, corruption will be introduced in the + * metadata cache and HDF5’s behavior will be undefined. + * + * Alternatively, a user may wish to avoid setting this property + * globally on the file access property list, and individually set it + * on particular object access property lists (dataset, group, link, + * datatype, attribute access property lists) for certain operations. + * This will indicate that only the operations issued with such an + * access property list will be called collectively and other + * operations may potentially be called independently. There are, + * however, several HDF5 operations that can issue metadata reads but + * have no property list in their function signatures to allow passing + * the collective requirement property. For those operations, the only + * option is to set the global collective requirement property on the + * file access property list; otherwise the metadata reads that can be + * triggered from those operations will be done independently by each + * process. + * + * Functions that do not accommodate an access property list but that + * might issue metadata reads are listed in \ref maybe_metadata_reads. + * + * \attention As noted above, corruption will be introduced into the metadata + * cache and HDF5 library behavior will be undefined when both of the following + * conditions exist: + * - A file is created or opened with a file access property list in which the + * collective metadata I/O property is set to \Code{1}. + * - Any function is called that triggers an independent metadata read while the + * file remains open with that file access property list. + * + * \attention An approach that avoids this corruption risk is described above. + * + * \sa_metadata_ops + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pset_all_coll_metadata_ops(hid_t plist_id, hbool_t is_collective); +/** + * \ingroup GACPL + * + * \brief Retrieves metadata read mode setting + * + * \gacpl_id + * \param[out] is_collective Pointer to a buffer containing the Boolean value indicating whether metadata + * reads are collective (\Code{>0}) or independent (\Code{0}). + * Default mode: Independent (\Code{0}) + * + * \return \herr_t + * + * \details H5Pget_all_coll_metadata_ops() retrieves the collective metadata read setting from the access + * property list \p plist_id into \p is_collective. + * + * \sa_metadata_ops + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pget_all_coll_metadata_ops(hid_t plist_id, hbool_t *is_collective); +/** + * \ingroup FAPL + * + * \brief Sets metadata write mode to collective or independent (default) + * + * \fapl_id{plist_id} + * \param[out] is_collective Boolean value indicating whether metadata + * writes are collective (\Code{>0}) or independent (\Code{0}). + * \Emph{Default mode:} Independent (\Code{0}) + * \return \herr_t + * + * \details H5Pset_coll_metadata_write() tells the HDF5 library whether to + * perform metadata writes collectively (1) or independently (0). + * + * If collective access is selected, then on a flush of the metadata + * cache, all processes will divide the metadata cache entries to be + * flushed evenly among themselves and issue a single MPI-IO collective + * write operation. This is the preferred method when the size of the + * metadata created by the application is large. + * + * If independent access is selected, the library uses the default + * method for doing metadata I/O either from process zero or + * independently from each process. + * + * \sa_metadata_ops + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pset_coll_metadata_write(hid_t plist_id, hbool_t is_collective); +/** + * \ingroup FAPL + * + * \brief Retrieves metadata write mode setting + * + * \fapl_id{plist_id} + * \param[out] is_collective Pointer to a boolean value indicating whether + * metadata writes are collective (\Code{>0}) or independent (\Code{0}). + * \Emph{Default mode:} Independent (\Code{0}) + * \return \herr_t + * + * \details H5Pget_coll_metadata_write() retrieves the collective metadata write + * setting from the file access property into \p is_collective. + * + * \sa_metadata_ops + * + * \since 1.10.0 + */ H5_DLL herr_t H5Pget_coll_metadata_write(hid_t plist_id, hbool_t *is_collective); + +/** + * \todo Add missing documentation + */ H5_DLL herr_t H5Pget_mpi_params(hid_t fapl_id, MPI_Comm *comm, MPI_Info *info); + +/** + * \todo Add missing documentation + */ H5_DLL herr_t H5Pset_mpi_params(hid_t fapl_id, MPI_Comm comm, MPI_Info info); #endif /* H5_HAVE_PARALLEL */ +/** + * \ingroup FAPL + * + * \brief Sets the metadata cache image option for a file access property list + * + * \fapl_id{plist_id} + * \param[out] config_ptr Pointer to metadata cache image configuration values + * \return \herr_t + * + * \details H5Pset_mdc_image_config() sets the metadata cache image option with + * configuration values specified by \p config_ptr for the file access + * property list specified in \p plist_id. + * + * #H5AC_cache_image_config_t is defined as follows: + * \snippet H5ACpublic.h H5AC_cache_image_config_t_snip + * \click4more + * + * \par Limitations: While it is an obvious error to request a cache image when + * opening the file read only, it is not in general possible to test for + * this error in the H5Pset_mdc_image_config() call. Rather than fail the + * subsequent file open, the library silently ignores the file image + * request in this case.\n It is also an error to request a cache image on + * a file that does not support superblock extension messages (i.e. a + * superblock version less than 2). As above, it is not always possible to + * detect this error in the H5Pset_mdc_image_config() call, and thus the + * request for a cache image will fail silently in this case as well.\n + * Creation of cache images is currently disabled in parallel -- as above, + * any request for a cache image in this context will fail silently.\n + * Files with cache images may be read in parallel applications, but note + * that the load of the cache image is a collective operation triggered by + * the first operation that accesses metadata after file open (or, if + * persistent free space managers are enabled, on the first allocation or + * deallocation of file space, or read of file space manager status, + * whichever comes first). Thus the parallel process may deadlock if any + * process does not participate in this access.\n + * In long sequences of file closes and opens, infrequently accessed + * metadata can accumulate in the cache image to the point where the cost + * of storing and restoring this metadata exceeds the benefit of retaining + * frequently used metadata in the cache image. When implemented, the + * #H5AC_cache_image_config_t::entry_ageout should address this problem. In + * the interim, not requesting a cache image every n file close/open cycles + * may be an acceptable work around. The choice of \c n will be driven by + * application behavior, but \Code{n = 10} seems a good starting point. + * + * \since 1.10.1 + */ H5_DLL herr_t H5Pset_mdc_image_config(hid_t plist_id, H5AC_cache_image_config_t *config_ptr); +/** + * \ingroup FAPL + * + * \brief Sets the maximum size for the page buffer and the minimum percentage + * for metadata and raw data pages + * + * \fapl_id{plist_id} + * \param[in] buf_size Maximum size, in bytes, of the page buffer + * \param[in] min_meta_per Minimum metadata percentage to keep in the page buffer + * before allowing pages containing metadata to be evicted (Default is 0) + * \param[in] min_raw_per Minimum raw data percentage to keep in the page buffer + * before allowing pages containing raw data to be evicted (Default is 0) + * \return \herr_t + * + * \details H5Pset_page_buffer_size() sets buf_size, the maximum size in bytes + * of the page buffer. The default value is zero, meaning that page + * buffering is disabled. When a non-zero page buffer size is set, the + * library will enable page buffering if that size is larger or equal + * than a single page size if a paged file space strategy is enabled + * using the functions H5Pset_file_space_strategy() and + * H5Pset_file_space_page_size(). + * + * The page buffer layer captures all I/O requests before they are + * issued to the VFD and "caches" them in fixed sized pages. Once the + * total number of pages exceeds the page buffer size, the library + * evicts pages from the page buffer by writing them to the VFD. At + * file close, the page buffer is flushed writing all the pages to the + * file. + * + * If a non-zero page buffer size is set, and the file space strategy + * is not set to paged or the page size for the file space strategy is + * larger than the page buffer size, the subsequent call to H5Fcreate() + * or H5Fopen() using the \p plist_id will fail. + * + * The function also allows setting the minimum percentage of pages for + * metadata and raw data to prevent a certain type of data to evict hot + * data of the other type. + * + * \since 1.10.1 + * + */ H5_DLL herr_t H5Pset_page_buffer_size(hid_t plist_id, size_t buf_size, unsigned min_meta_per, unsigned min_raw_per); @@ -4288,7 +5780,7 @@ H5_DLL H5D_layout_t H5Pget_layout(hid_t plist_id); * virtual dataset that has the creation property list specified * by \p dcpl_id. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -4331,7 +5823,7 @@ H5_DLL herr_t H5Pget_virtual_count(hid_t dcpl_id, size_t *count /*out*/); * assigned to \p size for a second H5Pget_virtual_dsetname() * call, which will retrieve the actual dataset name. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -4375,7 +5867,7 @@ H5_DLL ssize_t H5Pget_virtual_dsetname(hid_t dcpl_id, size_t index, char *name / * \p size for a second H5Pget_virtual_filename() call, which * will retrieve the actual filename. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -4400,7 +5892,7 @@ H5_DLL ssize_t H5Pget_virtual_filename(hid_t dcpl_id, size_t index, char *name / * index, \p index, and returns a dataspace identifier for the * selection within the source dataset used in the mapping. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -4425,7 +5917,7 @@ H5_DLL hid_t H5Pget_virtual_srcspace(hid_t dcpl_id, size_t index); * index, \p index, and returns a dataspace identifier for the * selection within the virtual dataset used in the mapping. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -5159,6 +6651,133 @@ H5_DLL herr_t H5Pset_scaleoffset(hid_t plist_id, H5Z_SO_scale_type_t scale_type, * */ H5_DLL herr_t H5Pset_szip(hid_t plist_id, unsigned options_mask, unsigned pixels_per_block); + +/** + * \ingroup DCPL + * + * \brief Sets the mapping between virtual and source datasets + * + * \dcpl_id + * \param[in] vspace_id The dataspace identifier with the selection within the + * virtual dataset applied, possibly an unlimited selection + * \param[in] src_file_name The name of the HDF5 file where the source dataset is + * located or a \Code{"."} (period) for a source dataset in the same + * file. The file might not exist yet. The name can be specified using + * a C-style \c printf statement as described below. + * \param[in] src_dset_name The path to the HDF5 dataset in the file specified by + * \p src_file_name. The dataset might not exist yet. The dataset name + * can be specified using a C-style \c printf statement as described below. + * \param[in] src_space_id The source dataset’s dataspace identifier with a + * selection applied, possibly an unlimited selection + * \return \herr_t + * + * \details H5Pset_virtual() maps elements of the virtual dataset (VDS) + * described by the virtual dataspace identifier \p vspace_id to the + * elements of the source dataset described by the source dataset + * dataspace identifier \p src_space_id. The source dataset is + * identified by the name of the file where it is located, + * \p src_file_name, and the name of the dataset, \p src_dset_name. + * + * \par C-style \c printf Formatting Statements: + * C-style \c printf formatting allows a pattern to be specified in the name + * of a source file or dataset. Strings for the file and dataset names are + * treated as literals except for the following substitutions: + * <table> + * <tr> + * <td>\Code{"%%"}</td> + * <td>Replaced with a single \Code{"%"} (percent) character.</td> + * </tr> + * <tr> + * <td><code>"%<d>b"</code></td> + * <td>Where <code>"<d>"</code> is the virtual dataset dimension axis (0-based) + * and \Code{"b"} indicates that the block count of the selection in that + * dimension should be used. The full expression (for example, \Code{"%0b"}) + * is replaced with a single numeric value when the mapping is evaluated at + * VDS access time. Example code for many source and virtual dataset mappings + * is available in the "Examples of Source to Virtual Dataset Mapping" + * chapter in the + * <a href="https://portal.hdfgroup.org/display/HDF5/RFC+HDF5+Virtual+Dataset"> + * RFC: HDF5 Virtual Dataset</a>. + * </td> + * </tr> + * </table> + * If the printf form is used for the source file or dataset names, the + * selection in the source dataset’s dataspace must be fixed-size. + * + * \par Source File Resolutions: + * When a source dataset residing in a different file is accessed, the + * library will search for the source file \p src_file_name as described + * below: + * \li If \p src_file_name is a \Code{"."} (period) then it refers to the + * file containing the virtual dataset. + * \li If \p src_file_name is a relative pathname, the following steps are + * performed: + * - The library will get the prefix(es) set in the environment + * variable \c HDF5_VDS_PREFIX and will try to prepend each prefix + * to \p src_file_name to form a new \p src_file_name. If the new + * \p src_file_name does not exist or if \c HDF5_VDS_PREFIX is not + * set, the library will get the prefix set via H5Pset_virtual_prefix() + * and prepend it to \p src_file_name to form a new \p src_file_name. + * If the new \p src_file_name does not exist or no prefix is being + * set by H5Pset_virtual_prefix() then the path of the file containing + * the virtual dataset is obtained. This path can be the absolute path + * or the current working directory plus the relative path of that + * file when it is created/opened. The library will prepend this path + * to \p src_file_name to form a new \p src_file_name. + * - If the new \p src_file_name does not exist, then the library will + * look for \p src_file_name and will return failure/success accordingly. + * \li If \p src_file_name is an absolute pathname, the library will first + * try to find \p src_file_name. If \p src_file_name does not exist, + * \p src_file_name is stripped of directory paths to form a new + * \p src_file_name. The search for the new \p src_file_name then follows + * the same steps as described above for a relative pathname. See + * examples below illustrating how \p src_file_name is stripped to form + * a new \p src_file_name. + * \par + * Note that \p src_file_name is considered to be an absolute pathname when + * the following condition is true: + * \li For Unix, the first character of \p src_file_name is a slash + * (\Code{/}).\n For example, consider a \p src_file_name of + * \Code{/tmp/A.h5}. If that source file does not exist, the new + * \p src_file_name after stripping will be \Code{A.h5}. + * \li For Windows, there are 6 cases: + * 1. \p src_file_name is an absolute drive with absolute pathname.\n + * For example, consider a \p src_file_name of \Code{/tmp/A.h5}. + * If that source file does not exist, the new \p src_file_name + * after stripping will be \Code{A.h5}. + * 2. \p src_file_name is an absolute pathname without specifying + * drive name.\n For example, consider a \p src_file_name of + * \Code{/tmp/A.h5}. If that source file does not exist, the new + * \p src_file_name after stripping will be \Code{A.h5}. + * 3. \p src_file_name is an absolute drive with relative pathname.\n + * For example, consider a \p src_file_name of \Code{/tmp/A.h5}. + * If that source file does not exist, the new \p src_file_name + * after stripping will be \Code{tmp/A.h5}. + * 4. \p src_file_name is in UNC (Uniform Naming Convention) format + * with server name, share name, and pathname.\n + * For example, consider a \p src_file_name of \Code{/tmp/A.h5}. + * If that source file does not exist, the new \p src_file_name + * after stripping will be \Code{A.h5}. + * 5. \p src_file_name is in Long UNC (Uniform Naming Convention) + * format with server name, share name, and pathname.\n + * For example, consider a \p src_file_name of \Code{/tmp/A.h5}. + * If that source file does not exist, the new \p src_file_name + * after stripping will be \Code{A.h5}. + * 6. \p src_file_name is in Long UNC (Uniform Naming Convention) + * format with an absolute drive and an absolute pathname.\n + * For example, consider a \p src_file_name of \Code{/tmp/A.h5}. + * If that source file does not exist, the new \p src_file_name + * after stripping will be \Code{A.h5} + * + * \see <a href="https://portal.hdfgroup.org/display/HDF5/Virtual+Dataset++-+VDS"> + * Virtual Dataset Overview</a> + * + * \see_virtual + * + * \version 1.10.2 A change was made to the method of searching for VDS source files. + * \since 1.10.0 + * + */ H5_DLL herr_t H5Pset_virtual(hid_t dcpl_id, hid_t vspace_id, const char *src_file_name, const char *src_dset_name, hid_t src_space_id); @@ -5191,8 +6810,6 @@ H5_DLL herr_t H5Pset_virtual(hid_t dcpl_id, hid_t vspace_id, const char *src_fil * \p udata is the user-defined input data for the callback * function. * - * \todo Example Usage was removed and needs to be re-added - * * \since 1.10.0 * */ @@ -5298,7 +6915,7 @@ H5_DLL ssize_t H5Pget_efile_prefix(hid_t dapl_id, char *prefix /*out*/, size_t s * NULL will return the size of the prefix without the NULL * terminator. * - * \virtual + * \see_virtual * * \since 1.10.2 * @@ -5348,7 +6965,7 @@ H5_DLL herr_t H5Pget_virtual_printf_gap(hid_t dapl_id, hsize_t *gap_size); * list, \p dapl_id, and retrieves the flag, \p view, set by the * H5Pset_virtual_view() call. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -5389,7 +7006,7 @@ H5_DLL herr_t H5Pget_virtual_view(hid_t dapl_id, H5D_vds_view_t *view); * \p boundary. It is a 1-dimensional array with \p ndims * elements, which should be the same as the rank of the * dataset’s dataspace. While appending to a dataset along a - * particular dimension index via H5DOappend(), the library + * particular dimension index via H5Dappend(), the library * determines a boundary is reached when the resulting dimension * size is divisible by \p boundary[index]. A zero value for * \p boundary[index] indicates no boundary is set for that @@ -5415,8 +7032,7 @@ H5_DLL herr_t H5Pget_virtual_view(hid_t dapl_id, H5D_vds_view_t *view); * * The callback function \p func must conform to the following * prototype: - * \Code{typedef herr_t (#H5D_append_cb_t)(hid_t dataset_id, - * hsize_t *cur_dims, void *user_data)} + * \snippet H5Dpublic.h H5D_append_cb_t_snip * * The parameters of the callback function, per the above * prototype, are defined as follows: @@ -5426,10 +7042,6 @@ H5_DLL herr_t H5Pget_virtual_view(hid_t dapl_id, H5D_vds_view_t *view); * a boundary is hit. * \li \p user_data is the user-defined input data. * - * \todo Example Usage was removed and should be added back. - * \todo Adding snippet for H5D_append_cb_t_snip did not work. - * \todo H5DOappend() not found - * * \since 1.10.0 * */ @@ -5643,7 +7255,7 @@ H5_DLL herr_t H5Pset_efile_prefix(hid_t dapl_id, const char *prefix); * buffer should not be freed until the property list has been * closed. * - * \virtual + * \see_virtual * * \since 1.10.2 * @@ -5685,7 +7297,7 @@ H5_DLL herr_t H5Pset_virtual_prefix(hid_t dapl_id, const char *prefix); * d-2 and d-3 will be filled according to the virtual * dataset’s fill value setting. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -5723,7 +7335,7 @@ H5_DLL herr_t H5Pset_virtual_printf_gap(hid_t dapl_id, hsize_t gap_size); * Missing mapped data is filled with the fill value set in the * VDS creation property list. * - * \virtual + * \see_virtual * * \since 1.10.0 * @@ -5731,8 +7343,48 @@ H5_DLL herr_t H5Pset_virtual_printf_gap(hid_t dapl_id, hsize_t gap_size); H5_DLL herr_t H5Pset_virtual_view(hid_t dapl_id, H5D_vds_view_t view); /* Dataset xfer property list (DXPL) routines */ +/** + * + * \ingroup DXPL + * + * \brief Gets B-tree split ratios for a dataset transfer property list + * + * \dxpl_id{plist_id} + * \param[out] left The B-tree split ratio for left-most nodes + * \param[out] middle The B-tree split ratio for right-most nodes and lone nodes + * \param[out] right The B-tree split ratio for all other nodes + * \return \herr_t + * + * \details H5Pget_btree_ratios() returns the B-tree split ratios for a dataset + * transfer property list. + * + * The B-tree split ratios are returned through the non-NULL arguments + * \p left, \p middle, and \p right, as set by the H5Pset_btree_ratios() + * function. + * + */ H5_DLL herr_t H5Pget_btree_ratios(hid_t plist_id, double *left /*out*/, double *middle /*out*/, double *right /*out*/); +/** + * + * \ingroup DXPL + * + * \brief Reads buffer settings + * + * \param[in] plist_id Identifier for the dataset transfer property list + * \param[out] tconv Address of the pointer to application-allocated type + * conversion buffer + * \param[out] bkg Address of the pointer to application-allocated + * background buffer + * + * \return Returns buffer size, in bytes, if successful; otherwise 0 on failure. + * + * \details H5Pget_buffer() reads values previously set with H5Pset_buffer(). + * + * \version 1.6.0 The return type changed from \p hsize_t to \p size_t. + * \version 1.4.0 The return type changed to \p hsize_t. + * + */ H5_DLL size_t H5Pget_buffer(hid_t plist_id, void **tconv /*out*/, void **bkg /*out*/); /** * @@ -5740,54 +7392,237 @@ H5_DLL size_t H5Pget_buffer(hid_t plist_id, void **tconv /*out*/, void **bkg /*o * * \brief Retrieves a data transform expression * - * \param[in] plist_id Identifier of the property list or class - * \param[out] expression Pointer to memory where the transform expression - * will be copied - * \param[in] size Number of bytes of the transform expression to copy to + * \param[in] plist_id Identifier of the property list or class + * \param[out] expression Pointer to memory where the transform expression will + * be copied + * \param[in] size Number of bytes of the transform expression to copy + * to * - * \return Returns the size of the transform expression if successful; - * otherwise returns a negative value. + * \return Success: the size of the transform expression. Failure: a negative + * value. * - * \details H5Pget_data_transform() retrieves the data transform - * expression previously set in the dataset transfer property - * list \p plist_id by H5Pset_data_transform(). + * \details H5Pget_data_transform() retrieves the data transform expression + * previously set in the dataset transfer property list \p plist_id + * by H5Pset_data_transform(). * - * H5Pget_data_transform() can be used to both retrieve the - * transform expression and to query its size. + * H5Pget_data_transform() can be used to both retrieve the transform + * expression and query its size. * * If \p expression is non-NULL, up to \p size bytes of the data - * transform expression are written to the buffer. If - * \p expression is NULL, \p size is ignored and the function - * does not write anything to the buffer. The function always - * returns the size of the data transform expression. + * transform expression are written to the buffer. If \p expression + * is NULL, \p size is ignored, and the function does not write + * anything to the buffer. The function always returns the size of + * the data transform expression. * - * If 0 is returned for the size of the expression, no data - * transform expression exists for the property list. + * If 0 is returned for the size of the expression, no data transform + * expression exists for the property list. * * If an error occurs, the buffer pointed to by \p expression is - * unchanged and the function returns a negative value. + * unchanged, and the function returns a negative value. + * + * \par Example + * An example snippet from examples/h5_dtransform.c: + * \snippet h5_dtransform.c H5Pget_data_transform_snip * * \since 1.8.0 * */ -H5_DLL ssize_t H5Pget_data_transform(hid_t plist_id, char *expression /*out*/, size_t size); +H5_DLL ssize_t H5Pget_data_transform(hid_t plist_id, char *expression /*out*/, size_t size); +/** + * + * \ingroup DXPL + * + * \brief Determines whether error-detection is enabled for dataset reads + * + * \param[in] plist_id Dataset transfer property list identifier + * + * \return Returns \p H5Z_ENABLE_EDC or \p H5Z_DISABLE_EDC if successful; + * otherwise returns a negative value. + * + * \details H5Pget_edc_check() queries the dataset transfer property + * list \p plist to determine whether error detection is enabled for + * data read operations. + * + * \since 1.6.0 + * + */ H5_DLL H5Z_EDC_t H5Pget_edc_check(hid_t plist_id); -H5_DLL herr_t H5Pget_hyper_vector_size(hid_t fapl_id, size_t *size /*out*/); -H5_DLL int H5Pget_preserve(hid_t plist_id); -H5_DLL herr_t H5Pget_type_conv_cb(hid_t dxpl_id, H5T_conv_except_func_t *op, void **operate_data); -H5_DLL herr_t H5Pget_vlen_mem_manager(hid_t plist_id, H5MM_allocate_t *alloc_func, void **alloc_info, - H5MM_free_t *free_func, void **free_info); -H5_DLL herr_t H5Pset_btree_ratios(hid_t plist_id, double left, double middle, double right); -H5_DLL herr_t H5Pset_buffer(hid_t plist_id, size_t size, void *tconv, void *bkg); +/** + * + * \ingroup DXPL + * + * \brief Retrieves number of I/O vectors to be read/written in hyperslab I/O + * + * \param[in] fapl_id Dataset transfer property list identifier + * \param[out] size Number of I/O vectors to accumulate in memory for I/O operations + * + * \return \herr_t + * + * \details H5Pget_hyper_vector_size() retrieves the number of I/O vectors to be accumulated in + * memory before being issued to the lower levels of the HDF5 library for reading or + * writing the actual data. + * + * The number of I/O vectors set in the dataset transfer property list \p fapl_id is + * returned in \p size. Unless the default value is in use, \p size was + * previously set with a call to H5Pset_hyper_vector_size(). + * + * \since 1.6.0 + * + */ +H5_DLL herr_t H5Pget_hyper_vector_size(hid_t fapl_id, size_t *size /*out*/); +/** + * + * \ingroup DXPL + * + * \brief Checks status of the dataset transfer property list (\b DEPRECATED) + * + * \deprecated{H5Pget_preserve() is deprecated as it is no longer useful; + * compound datatype field preservation is now core functionality + * in the HDF5 library.} + * + * \param[in] plist_id Identifier for the dataset transfer property list + * + * \return Returns 1 or 0 if successful; otherwise returns a negative value. + * + * \details H5Pget_preserve() checks the status of the dataset transfer + * property list. + * + * \version 1.6.0 The flag parameter was changed from INTEGER to LOGICAL to + * better match the C API. (Fortran 90) + * + */ +H5_DLL int H5Pget_preserve(hid_t plist_id); +/** + * + * \ingroup DXPL + * + * \brief Gets user-defined datatype conversion callback function + * + * \param[in] dxpl_id Dataset transfer property list identifier + * \param[out] op User-defined type conversion callback function + * \param[out] operate_data User-defined input data for the callback function + * + * \return \herr_t + * + * \details H5Pget_type_conv_cb() gets the user-defined datatype conversion + * callback function \p op in the dataset transfer property list + * \p dxpl_id. + * + * The parameter \p operate_data is a pointer to user-defined input + * data for the callback function. + * + * The callback function \p op defines the actions an application is + * to take when there is an exception during datatype conversion. + * + * Please refer to the function H5Pset_type_conv_cb() for more details. + * + */ +H5_DLL herr_t H5Pget_type_conv_cb(hid_t dxpl_id, H5T_conv_except_func_t *op, void **operate_data); +/** + * + * \ingroup DXPL + * + * \brief Gets the memory manager for variable-length datatype allocation in H5Dread() and H5Dvlen_reclaim() + * + * \param[in] plist_id Identifier for the dataset transfer property list + * \param[out] alloc_func User's allocate routine, or NULL for system malloc + * \param[out] alloc_info Extra parameter for user’s allocation routine. + * Contents are ignored if preceding + * parameter is NULL \param[out] free_func User's free routine, or NULL for + * system free \param[out] free_info + * Extra parameter for user’s free routine. Contents are ignored if preceding + * parameter is NULL + * + * \return \herr_t + * + * \details H5Pget_vlen_mem_manager() is the companion function to + * H5Pset_vlen_mem_manager(), returning the parameters set by + * that function. + * + */ +H5_DLL herr_t H5Pget_vlen_mem_manager(hid_t plist_id, H5MM_allocate_t *alloc_func, void **alloc_info, + H5MM_free_t *free_func, void **free_info); +/** + * + * \ingroup DXPL + * + * \brief Sets B-tree split ratios for a dataset transfer property list + * + * \param[in] plist_id The dataset transfer property list identifier + * \param[in] left The B-tree split ratio for left-most nodes + * \param[in] middle The B-tree split ratio for all other nodes + * \param[in] right The B-tree split ratio for right-most nodes and lone + * nodes + * + * \return \herr_t + * + * \details H5Pset_btree_ratios() sets the B-tree split ratios for a dataset + * transfer property list. The split ratios determine what percent of + * children go in the first node when a node splits. + * + * The ratio \p left is used when the splitting node is the left-most + * node at its level in the tree; + * the ratio \p right is used when the splitting node is the right-most + * node at its level; and + * the ratio \p middle is used for all other cases. + * + * A node that is the only node at its level in the tree uses the + * ratio \p right when it splits. + * + * All ratios are real numbers between 0 and 1, inclusive. + * + */ +H5_DLL herr_t H5Pset_btree_ratios(hid_t plist_id, double left, double middle, double right); + +/** + * + * \ingroup DXPL + * + * \brief Sets type conversion and background buffers + * + * \dxpl_id{plist_id} + * \param[in] size Size, in bytes, of the type conversion and background buffers + * \param[in] tconv Pointer to application-allocated type conversion buffer + * \param[in] bkg Pointer to application-allocated background buffer + * \return \herr_t + * + * \details Given a dataset transfer property list, H5Pset_buffer() sets the + * maximum size for the type conversion buffer and background buffer + * and optionally supplies pointers to application-allocated + * buffers. If the buffer size is smaller than the entire amount of + * data being transferred between the application and the file, and a + * type conversion buffer or background buffer is required, then strip + * mining will be used. + * + * Note that there are minimum size requirements for the buffer. Strip + * mining can only break the data up along the first dimension, so the + * buffer must be large enough to accommodate a complete slice that + * encompasses all of the remaining dimensions. For example, when strip + * mining a \Code{100x200x300} hyperslab of a simple data space, the + * buffer must be large enough to hold \Code{1x200x300} data + * elements. When strip mining a \Code{100x200x300x150} hyperslab of a + * simple data space, the buffer must be large enough to hold + * \Code{1x200x300x150} data elements. + * + * If \p tconv and/or \p bkg are null pointers, then buffers will be + * allocated and freed during the data transfer. + * + * The default value for the maximum buffer is 1 MiB. + * + * \version 1.6.0 The \p size parameter has changed from type hsize_t to \c size_t. + * \version 1.4.0 The \p size parameter has changed to type hsize_t. + * + */ +H5_DLL herr_t H5Pset_buffer(hid_t plist_id, size_t size, void *tconv, void *bkg); + /** * \ingroup DXPL * * \brief Sets a data transform expression * - * \param[in] plist_id Identifier of the property list or class + * \dxpl_id{plist_id} * \param[in] expression Pointer to the null-terminated data transform * expression - * * \return \herr_t * * \details H5Pset_data_transform() sets the data transform to be used for @@ -5795,11 +7630,11 @@ H5_DLL herr_t H5Pset_buffer(hid_t plist_id, size_t size, void *tconv, void *b * transfer property list \p plist_id. * * The \p expression parameter is a string containing an algebraic - * expression, such as (5/9.0)*(x-32) or x*(x-5). When a dataset - * is read or written with this property list, the transform - * expression is applied with the x being replaced by the values - * in the dataset. When reading data, the values in the file are - * not changed and the transformed data is returned to the user. + * expression, such as \Code{(5/9.0)*(x-32)} or \Code{x*(x-5)}. When a + * dataset is read or written with this property list, the transform + * expression is applied with the \c x being replaced by the values in + * the dataset. When reading data, the values in the file are not + * changed and the transformed data is returned to the user. * * Data transforms can only be applied to integer or * floating-point datasets. Order of operations is obeyed and @@ -5813,17 +7648,354 @@ H5_DLL herr_t H5Pset_buffer(hid_t plist_id, size_t size, void *tconv, void *b * */ H5_DLL herr_t H5Pset_data_transform(hid_t plist_id, const char *expression); + +/** + * \ingroup DXPL + * + * \brief Sets the dataset transfer property list to enable or disable error + * detection when reading data + * + * \dxpl_id{plist_id} + * \param[in] check Specifies whether error checking is enabled or disabled + * for dataset read operations + * \return \herr_t + * + * \details H5Pset_edc_check() sets the dataset transfer property list \p plist + * to enable or disable error detection when reading data. + * + * Whether error detection is enabled or disabled is specified in the + * \p check parameter. Valid values are #H5Z_ENABLE_EDC (default) and + * #H5Z_DISABLE_EDC. + * + * \note The initial error detection implementation, Fletcher32 checksum, + * supports error detection for chunked datasets only. + * + * \attention The Fletcher32 EDC checksum filter, set with H5Pset_fletcher32(), + * was added in HDF5 Release 1.6.0. In the original implementation, + * however, the checksum value was calculated incorrectly on + * little-endian systems. The error was fixed in HDF5 Release 1.6.3.\n + * As a result of this fix, an HDF5 library of Release 1.6.0 through + * Release 1.6.2 cannot read a dataset created or written with + * Release 1.6.3 or later if the dataset was created with the + * checksum filter and the filter is enabled in the reading + * library. (Libraries of Release 1.6.3 and later understand the + * earlier error and compensate appropriately.)\n + * \Bold{Work-around:} An HDF5 library of Release 1.6.2 or earlier + * will be able to read a dataset created or written with the + * checksum filter by an HDF5 library of Release 1.6.3 or later if + * the checksum filter is disabled for the read operation. This can + * be accomplished via an H5Pset_edc_check() call with the value + * #H5Z_DISABLE_EDC in the second parameter. This has the obvious + * drawback that the application will be unable to verify the + * checksum, but the data does remain accessible. + * + * \version 1.6.3 Error in checksum calculation on little-endian systems + * corrected in this release. + * \since 1.6.0 + * + */ H5_DLL herr_t H5Pset_edc_check(hid_t plist_id, H5Z_EDC_t check); + +/** + * \ingroup DXPL + * + * \brief Sets user-defined filter callback function + * + * \dxpl_id{plist_id} + * \param[in] func User-defined filter callback function + * \param[in] op_data User-defined input data for the callback function + * \return \herr_t + * + * \details H5Pset_filter_callback() sets the user-defined filter callback + * function \p func in the dataset transfer property list \p plist_id. + * + * The parameter \p op_data is a pointer to user-defined input data for + * the callback function and will be passed through to the callback + * function. + * + * The callback function \p func defines the actions an application is + * to take when a filter fails. The function prototype is as follows: + * \snippet H5Zpublic.h H5Z_filter_func_t_snip + * where \c filter indicates which filter has failed, \c buf and \c buf_size + * are used to pass in the failed data, and op_data is the required + * input data for this callback function. + * + * Valid callback function return values are #H5Z_CB_FAIL and #H5Z_CB_CONT. + * + * \since 1.6.0 + * + */ H5_DLL herr_t H5Pset_filter_callback(hid_t plist_id, H5Z_filter_func_t func, void *op_data); -H5_DLL herr_t H5Pset_hyper_vector_size(hid_t fapl_id, size_t size); + +/** + * \ingroup DXPL + * + * \brief Sets number of I/O vectors to be read/written in hyperslab I/O + * + * \dxpl_id{plist_id} + * \param[in] size Number of I/O vectors to accumulate in memory for I/O + * operations\n + * Must be greater than 1 (one)\n + * Default value: 1024 + * \return \herr_t + * + * \details H5Pset_hyper_vector_size() sets the number of I/O vectors to be + * accumulated in memory before being issued to the lower levels of + * the HDF5 library for reading or writing the actual data. + * + * The I/O vectors are hyperslab offset and length pairs and are + * generated during hyperslab I/O. + * + * The number of I/O vectors is passed in \p size to be set in the + * dataset transfer property list \p plist_id. \p size must be + * greater than 1 (one). + * + * H5Pset_hyper_vector_size() is an I/O optimization function; + * increasing vector_size should provide better performance, but the + * library will use more memory during hyperslab I/O. The default value + * of \p size is 1024. + * + * \since 1.6.0 + * + */ +H5_DLL herr_t H5Pset_hyper_vector_size(hid_t plist_id, size_t size); + +/** + * \ingroup DXPL + * + * \brief Sets the dataset transfer property list \p status + * + * \dxpl_id{plist_id} + * \param[in] status Status toggle of the dataset transfer property list + * \return \herr_t + * + * \deprecated This function is deprecated as it no longer has any effect; + * compound datatype field preservation is now core functionality in + * the HDF5 library. + * + * \details H5Pset_preserve() sets the dataset transfer property list status to + * \c 1 or \c 0. + * + * When reading or writing compound datatypes and the destination is + * partially initialized and the read/write is intended to initialize + * the other members, one must set this property to \c 1. Otherwise the + * I/O pipeline treats the destination datapoints as completely + * uninitialized. + * + * \todo Add missing version information: introduction, deprecation, etc. + * Why is the declaration not in the deprecated section? + * + */ H5_DLL herr_t H5Pset_preserve(hid_t plist_id, hbool_t status); + +/** + * \ingroup DXPL + * + * \brief Sets user-defined datatype conversion callback function + * + * \dxpl_id + * \param[in] op User-defined type conversion callback function + * \param[in] operate_data User-defined input data for the callback function + * \return \herr_t + * + * \details H5Pset_type_conv_cb() sets the user-defined datatype conversion + * callback function \p op in the dataset transfer property list \p + * dxpl_id + * + * The parameter operate_data is a pointer to user-defined input data + * for the callback function and will be passed through to the callback + * function. + * + * The callback function \p op defines the actions an application is to + * take when there is an exception during datatype conversion. The + * function prototype is as follows: + * \snippet H5Tpublic.h H5T_conv_except_func_t_snip + * + * \todo Add version information. + * + */ H5_DLL herr_t H5Pset_type_conv_cb(hid_t dxpl_id, H5T_conv_except_func_t op, void *operate_data); + +/** + * \ingroup DXPL + * + * \brief Sets the memory manager for variable-length datatype allocation in + * H5Dread() and H5Dvlen_reclaim() + * + * \dxpl_id{plist_id} + * \param[in] alloc_func User's allocate routine, or \c NULL for system \c malloc + * \param[in] alloc_info Extra parameter for user's allocation routine. + * Contents are ignored if preceding parameter is \c NULL. + * \param[in] free_func User's free routine, or \c NULL for system \c free + * \param[in] free_info Extra parameter for user's free routine. Contents are + * ignored if preceding parameter is \c NULL + * \return \herr_t + * + * \details H5Pset_vlen_mem_manager() sets the memory manager for + * variable-length datatype allocation in H5Dread() and free in + * H5Dvlen_reclaim(). + * + * The \p alloc_func and \p free_func parameters identify the memory + * management routines to be used. If the user has defined custom + * memory management routines, \p alloc_func and/or free_func should be + * set to make those routine calls (i.e., the name of the routine is + * used as the value of the parameter); if the user prefers to use the + * system's \c malloc and/or \c free, the \p alloc_func and \p + * free_func parameters, respectively, should be set to \c NULL + * + * The prototypes for these user-defined functions are as follows: + * \snippet H5MMpublic.h H5MM_allocate_t_snip + * + * \snippet H5MMpublic.h H5MM_free_t_snip + * + * The \p alloc_info and \p free_info parameters can be used to pass + * along any required information to the user's memory management + * routines. + * + * In summary, if the user has defined custom memory management + * routines, the name(s) of the routines are passed in the \p + * alloc_func and \p free_func parameters and the custom routines' + * parameters are passed in the \p alloc_info and \p free_info + * parameters. If the user wishes to use the system \c malloc and \c + * free functions, the \p alloc_func and/or \p free_func parameters are + * set to \c NULL and the \p alloc_info and \p free_info parameters are + * ignored. + * + * \todo Add version information. + */ H5_DLL herr_t H5Pset_vlen_mem_manager(hid_t plist_id, H5MM_allocate_t alloc_func, void *alloc_info, H5MM_free_t free_func, void *free_info); + #ifdef H5_HAVE_PARALLEL +/** + * \ingroup DXPL + * + * \brief Retrieves the type of chunk optimization that HDF5 actually performed + * on the last parallel I/O call (not necessarily the type requested) + * + * \dxpl_id{plist_id} + * \param[out] actual_chunk_opt_mode The type of chunk optimization performed by HDF5 + * \return \herr_t + * + * \par Motivation: + * A user can request collective I/O via a data transfer property list + * (DXPL) that has been suitably modified with H5Pset_dxpl_mpio(). + * However, HDF5 will sometimes ignore this request and perform independent + * I/O instead. This property allows the user to see what kind of I/O HDF5 + * actually performed. Used in conjunction with H5Pget_mpio_actual_io_mode(), + * this property allows the user to determine exactly what HDF5 did when + * attempting collective I/O. + * + * \details H5Pget_mpio_actual_chunk_opt_mode() retrieves the type of chunk + * optimization performed when collective I/O was requested. This + * property is set before I/O takes place, and will be set even if I/O + * fails. + * + * Valid values returned in \p actual_chunk_opt_mode: + * \snippet this H5D_mpio_actual_chunk_opt_mode_t_snip + * \click4more + * + * \since 1.8.8 + * + */ H5_DLL herr_t H5Pget_mpio_actual_chunk_opt_mode(hid_t plist_id, H5D_mpio_actual_chunk_opt_mode_t *actual_chunk_opt_mode); +/** + * \ingroup DXPL + * + * \brief Retrieves the type of I/O that HDF5 actually performed on the last + * parallel I/O call (not necessarily the type requested) + * + * \dxpl_id{plist_id} + * \param[out] actual_io_mode The type of I/O performed by this process + * \return \herr_t + * + * \par Motivation: + * A user can request collective I/O via a data transfer property list + * (DXPL) that has been suitably modified with H5Pset_dxpl_mpio(). + * However, HDF5 will sometimes ignore this request and perform independent + * I/O instead. This property allows the user to see what kind of I/O HDF5 + * actually performed. Used in conjunction with H5Pget_mpio_actual_chunk_opt_mode(), + * this property allows the user to determine exactly HDF5 did when + * attempting collective I/O. + * + * \details H5Pget_mpio_actual_io_mode() retrieves the type of I/O performed on + * the selection of the current process. This property is set after all + * I/O is completed; if I/O fails, it will not be set. + * + * Valid values returned in \p actual_io_mode: + * \snippet this H5D_mpio_actual_io_mode_t_snip + * \click4more + * + * \attention All processes do not need to have the same value. For example, if + * I/O is being performed using the multi chunk optimization scheme, + * one process's selection may include only chunks accessed + * collectively, while another may include chunks accessed + * independently. In this case, the first process will report + * #H5D_MPIO_CHUNK_COLLECTIVE while the second will report + * #H5D_MPIO_CHUNK_INDEPENDENT. + * + * \see H5Pget_mpio_no_collective_cause(), H5Pget_mpio_actual_chunk_opt_mode() + * + * \since 1.8.8 + * + */ H5_DLL herr_t H5Pget_mpio_actual_io_mode(hid_t plist_id, H5D_mpio_actual_io_mode_t *actual_io_mode); +/** + * \ingroup DXPL + * + * \brief Retrieves local and global causes that broke collective I/O on the last + * parallel I/O call + * + * \dxpl_id{plist_id} + * \param[out] local_no_collective_cause An enumerated set value indicating the + * causes that prevented collective I/O in the local process + * \param[out] global_no_collective_cause An enumerated set value indicating + * the causes across all processes that prevented collective I/O + * \return \herr_t + * + * \par Motivation: + * A user can request collective I/O via a data transfer property list (DXPL) + * that has been suitably modified with H5P_SET_DXPL_MPIO. However, there are + * conditions that can cause HDF5 to forgo collective I/O and perform + * independent I/O. Such causes can be different across the processes of a + * parallel application. This function allows the user to determine what + * caused the HDF5 library to skip collective I/O locally, that is in the + * local process, and globally, across all processes. + * + * \details H5Pget_mpio_no_collective_cause() serves two purposes. It can be + * used to determine whether collective I/O was used for the last + * preceding parallel I/O call. If collective I/O was not used, the + * function retrieves the local and global causes that broke collective + * I/O on that parallel I/O call. The properties retrieved by this + * function are set before I/O takes place and are retained even when + * I/O fails. + * + * Valid values returned in \p local_no_collective_cause and \p + * global_no_collective_cause are as follows or, if there are multiple + * causes, a bitwise OR of the relevant causes; the numbers in the + * center column are the bitmask values: + * \snippet this H5D_mpio_no_collective_cause_t_snip + * \click4more + * + * \attention Each process determines whether it can perform collective I/O and + * broadcasts the result. Those results are combined to make a + * collective decision; collective I/O will be performed only if all + * processes can perform collective I/O.\n + * If collective I/O was not used, the causes that prevented it are + * reported by individual process by means of an enumerated set. The + * causes may differ among processes, so H5Pget_mpio_no_collective_cause() + * returns two property values. The first value is the one produced + * by the local process to report local causes. This local information + * is encoded in an enumeration, the \ref H5D_mpio_no_collective_cause_t + * described above, with all individual causes combined into a single + * enumeration value by means of a bitwise OR operation. The second + * value reports global causes; this global value is the result of a + * bitwise-OR operation across the values returned by all the processes. + * + * \since 1.8.10 + * + */ H5_DLL herr_t H5Pget_mpio_no_collective_cause(hid_t plist_id, uint32_t *local_no_collective_cause, uint32_t *global_no_collective_cause); #endif /* H5_HAVE_PARALLEL */ @@ -5880,6 +8052,36 @@ H5_DLL herr_t H5Pget_create_intermediate_group(hid_t plist_id, unsigned *crt_int H5_DLL herr_t H5Pset_create_intermediate_group(hid_t plist_id, unsigned crt_intmd); /* Group creation property list (GCPL) routines */ + +/** + * \ingroup GCPL + * + * \brief Returns the estimated link count and average link name length in a group + * + * \gcpl_id{plist_id} + * \param[out] est_num_entries The estimated number of links in the group + * referenced by \p plist_id + * \param[out] est_name_len The estimated average length of line names in the group + * referenced by \p plist_id + * \return \herr_t + * + * \details H5Pget_est_link_info() retrieves two settings from the group creation + * property list \p plist_id: the estimated number of links that are + * expected to be inserted into a group created with the property list + * and the estimated average length of those link names. + * + * The estimated number of links is returned in \p est_num_entries. The + * limit for \p est_num_entries is 64 K. + * + * The estimated average length of the anticipated link names is returned + * in \p est_name_len. The limit for \p est_name_len is 64 K. + * + * See \ref_group_impls for a discussion of the available types of HDF5 + * group structures. + * + * \since 1.8.0 + * + */ H5_DLL herr_t H5Pget_est_link_info(hid_t plist_id, unsigned *est_num_entries /* out */, unsigned *est_name_len /* out */); /** @@ -5949,7 +8151,64 @@ H5_DLL herr_t H5Pget_link_creation_order(hid_t plist_id, unsigned *crt_order_fla */ H5_DLL herr_t H5Pget_link_phase_change(hid_t plist_id, unsigned *max_compact /*out*/, unsigned *min_dense /*out*/); +/** + * \ingroup GCPL + * + * \brief Retrieves the anticipated size of the local heap for original-style + * groups + * + * \gcpl_id{plist_id} + * \param[out] size_hint Anticipated size of local heap + * \return \herr_t + * + * \details H5Pget_local_heap_size_hint() queries the group creation property + * list, \p plist_id, for the anticipated size of the local heap, \p + * size_hint, for original-style groups, i.e., for groups of the style + * used prior to HDF5 Release 1.8.0. See H5Pset_local_heap_size_hint() + * for further discussion. + * + * \since 1.8.0 + * + */ H5_DLL herr_t H5Pget_local_heap_size_hint(hid_t plist_id, size_t *size_hint /*out*/); +/** + * \ingroup GCPL + * + * \brief Sets estimated number of links and length of link names in a group + * + * \gcpl_id{plist_id} + * \param[in] est_num_entries Estimated number of links to be inserted into group + * \param[in] est_name_len Estimated average length of link names + * \return \herr_t + * + * \details H5Pset_est_link_info() inserts two settings into the group creation + * property list plist_id: the estimated number of links that are + * expected to be inserted into a group created with the property list + * and the estimated average length of those link names. + * + * The estimated number of links is passed in \p est_num_entries. The + * limit for \p est_num_entries is 64 K. + * + * The estimated average length of the anticipated link names is passed + * in \p est_name_len. The limit for \p est_name_len is 64 K. + * + * The values for these two settings are multiplied to compute the + * initial local heap size (for old-style groups, if the local heap + * size hint is not set) or the initial object header size for + * (new-style compact groups; see \ref_group_impls). Accurately setting + * these parameters will help reduce wasted file space. + * + * If a group is expected to have many links and to be stored in dense + * format, set \p est_num_entries to 0 (zero) for maximum + * efficiency. This will prevent the group from being created in the + * compact format. + * + * See \ref_group_impls for a discussion of the available types of HDF5 + * group structures. + * + * \since 1.8.0 + * + */ H5_DLL herr_t H5Pset_est_link_info(hid_t plist_id, unsigned est_num_entries, unsigned est_name_len); /** * \ingroup GCPL @@ -6043,11 +8302,115 @@ H5_DLL herr_t H5Pset_link_creation_order(hid_t plist_id, unsigned crt_order_flag * */ H5_DLL herr_t H5Pset_link_phase_change(hid_t plist_id, unsigned max_compact, unsigned min_dense); +/** + * \ingroup GCPL + * + * \brief Specifies the anticipated maximum size of a local heap + * + * \gcpl_id{plist_id} + * \param[in] size_hint Anticipated maximum size in bytes of local heap + * \return \herr_t + * + * \details H5Pset_local_heap_size_hint() is used with original-style HDF5 + * groups (see “Motivation” below) to specify the anticipated maximum + * local heap size, size_hint, for groups created with the group + * creation property list \p plist_id. The HDF5 library then uses \p + * size_hint to allocate contiguous local heap space in the file for + * each group created with \p plist_id. + * + * For groups with many members or very few members, an appropriate + * initial value of \p size_hint would be the anticipated number of + * group members times the average length of group member names, plus a + * small margin: + * \code + * size_hint = max_number_of_group_members * + * (average_length_of_group_member_link_names + 2) + * \endcode + * If it is known that there will be groups with zero members, the use + * of a group creation property list with \p size_hint set to to 1 (one) + * will guarantee the smallest possible local heap for each of those groups. + * + * Setting \p size_hint to zero (0) causes the library to make a + * reasonable estimate for the default local heap size. + * + * \par Motivation: + * In situations where backward-compatibility is required, specifically, when + * libraries prior to HDF5 Release 1.8.0 may be used to read the file, groups + * must be created and maintained in the original style. This is HDF5’s default + * behavior. If backward compatibility with pre-1.8.0 libraries is not a concern, + * greater efficiencies can be obtained with the new-format compact and indexed + * groups. See <a href="https://portal.hdfgroup.org/display/HDF5/Groups">Group + * implementations in HDF5</a> in the \ref H5G API introduction (at the bottom).\n + * H5Pset_local_heap_size_hint() is useful for tuning file size when files + * contain original-style groups with either zero members or very large + * numbers of members.\n + * The original style of HDF5 groups, the only style available prior to HDF5 + * Release 1.8.0, was well-suited for moderate-sized groups but was not optimized + * for either very small or very large groups. This original style remains the + * default, but two new group implementations were introduced in HDF5 Release 1.8.0: + * compact groups to accommodate zero to small numbers of members and indexed groups + * for thousands or tens of thousands of members ... or millions, if that's what + * your application requires.\n + * The local heap size hint, \p size_hint, is a performance tuning parameter for + * original-style groups. As indicated above, an HDF5 group may have zero, a handful, + * or tens of thousands of members. Since the original style of HDF5 groups stores the + * metadata for all of these group members in a uniform format in a local heap, the size + * of that metadata (and hence, the size of the local heap) can vary wildly from group + * to group. To intelligently allocate space and to avoid unnecessary fragmentation of + * the local heap, it can be valuable to provide the library with a hint as to the local + * heap’s likely eventual size. This can be particularly valuable when it is known that + * a group will eventually have a great many members. It can also be useful in conserving + * space in a file when it is known that certain groups will never have any members. + * + * \since 1.8.0 + * + */ H5_DLL herr_t H5Pset_local_heap_size_hint(hid_t plist_id, size_t size_hint); /* Map access property list (MAPL) routines */ #ifdef H5_HAVE_MAP_API +/** + * \ingroup MAPL + * + * \brief Set map iteration hints + * + * \mapl_id + * \param[in] key_prefetch_size Number of keys to prefetch at a time during + * iteration + * \param[in] key_alloc_size The initial size of the buffer allocated to hold + * prefetched keys + * \return \herr_t + * + * \details H5Pset_map_iterate_hints() adjusts the behavior of H5Miterate() when + * prefetching keys for iteration. The \p key_prefetch_size parameter + * specifies the number of keys to prefetch at a time during + * iteration. The \p key_alloc_size parameter specifies the initial + * size of the buffer allocated to hold these prefetched keys. If this + * buffer is too small it will be reallocated to a larger size, though + * this may result in an additional I/O. + * + * \since 1.12.? + * + */ H5_DLL herr_t H5Pset_map_iterate_hints(hid_t mapl_id, size_t key_prefetch_size, size_t key_alloc_size); +/** + * \ingroup MAPL + * + * \brief Set map iteration hints + * + * \mapl_id + * \param[out] key_prefetch_size Pointer to number of keys to prefetch at a time + * during iteration + * \param[out] key_alloc_size Pointer to the initial size of the buffer allocated + * to hold prefetched keys + * \return \herr_t + * + * \details H5Pget_map_iterate() returns the map iterate hints, \p key_prefetch_size + * and \p key_alloc_size, as set by H5Pset_map_iterate_hints(). + * + * \since 1.12.? + * + */ H5_DLL herr_t H5Pget_map_iterate_hints(hid_t mapl_id, size_t *key_prefetch_size /*out*/, size_t *key_alloc_size /*out*/); #endif /* H5_HAVE_MAP_API */ @@ -6409,9 +8772,6 @@ H5_DLL herr_t H5Pset_elink_acc_flags(hid_t lapl_id, unsigned flags); * </pre> * * - * \todo Add Programming Note for C++ Developers Using C Functions - * - * * \since 1.8.3 * */ @@ -6594,10 +8954,7 @@ H5_DLL herr_t H5Pset_nlinks(hid_t plist_id, size_t nlinks); * \li H5Pget_mcdt_search_cb() * \li H5Pset_copy_object() * \li H5Pset_mcdt_search_cb() - * - * \todo missing link to "Copying Committed Datatypes with H5Ocopy - A - * comprehensive discussion of copying committed datatypes (PDF) - * in Advanced Topics in HDF5 + * \li \ref_h5ocopy * * \since 1.8.9 * @@ -6711,8 +9068,7 @@ H5_DLL herr_t H5Pget_copy_object(hid_t plist_id, unsigned *copy_options /*out*/) * \li H5Pget_mcdt_search_cb() * \li H5Pset_copy_object() * \li H5Pset_mcdt_search_cb() - * - * \todo Link to Copying Committed Datatypes with H5Ocopy was removed. + * \li \ref_h5ocopy * * \since 1.8.9 * @@ -6803,8 +9159,8 @@ H5_DLL herr_t H5Pget_mcdt_search_cb(hid_t plist_id, H5O_mcdt_search_cb_t *func, * \li H5Pget_mcdt_search_cb() * \li H5Pset_copy_object() * \li H5Pset_mcdt_search_cb() + * \li \ref_h5ocopy * - * \todo Link to Copying Committed Datatypes with H5Ocopy was removed. * \version 1.8.9 #H5O_COPY_MERGE_COMMITTED_DTYPE_FLAG added in this release. * * \since 1.8.0 @@ -6890,9 +9246,7 @@ H5_DLL herr_t H5Pset_copy_object(hid_t plist_id, unsigned copy_options); * \li H5Pget_mcdt_search_cb() * \li H5Pset_copy_object() * \li H5Pset_mcdt_search_cb() - * - * \todo Link removed to "Copying Committed Datatypes with H5Ocopy" in Advanced Topics in HDF5 - * \todo Programming Note for C++ Developers Using C Functions: + * \li \ref_h5ocopy * * \since 1.8.9 * @@ -6911,38 +9265,316 @@ H5_DLL herr_t H5Pset_mcdt_search_cb(hid_t plist_id, H5O_mcdt_search_cb_t func, v #define H5P_NO_CLASS H5P_ROOT /* Typedefs */ +/** + * \ingroup GPLOA + * + * \brief Registers a permanent property with a property list class + * + * \plistcls_id{cls_id} + * \param[in] name Name of property to register + * \param[in] size Size of property in bytes + * \param[in] def_value Default value for property in newly created + * property lists + * \param[in] prp_create Callback routine called when a property list is + * being created and the property value will be + * initialized + * \param[in] prp_set Callback routine called before a new value is + * copied into the property's value + * \param[in] prp_get Callback routine called when a property value is + * retrieved from the property + * \param[in] prp_del Callback routine called when a property is deleted + * from a property list + * \param[in] prp_copy Callback routine called when a property is copied + * from a property list + * \param[in] prp_close Callback routine called when a property list is + * being closed and the property value will be + * disposed of + * + * \return \herr_t + * + * \deprecated As of HDF5-1.8 this function was deprecated in favor of + * H5Pregister2() or the macro H5Pregister(). + * + * \details H5Pregister1() registers a new property with a property list + * class. The property will exist in all property list objects + * of that class after this routine is finished. The name of + * the property must not already exist. The default property + * value must be provided and all new property lists created + * with this property will have the property value set to the + * default provided. Any of the callback routines may be set + * to NULL if they are not needed. + * + * Zero-sized properties are allowed and do not store any data in + * the property list. These may be used as flags to indicate the + * presence or absence of a particular piece of information. The + * default pointer for a zero-sized property may be set to NULL. + * The property \p prp_create and \p prp_close callbacks are called for + * zero-sized properties, but the \p prp_set and \p prp_get callbacks + * are never called. + * + * The \p prp_create routine is called when a new property list with + * this property is being created. The #H5P_prp_create_func_t + * callback function is defined as #H5P_prp_cb1_t. + * + * The \p prp_create routine may modify the value to be set and those + * changes will be stored as the initial value of the property. + * If the \p prp_create routine returns a negative value, the new + * property value is not copied into the property and the + * \p prp_create routine returns an error value. + * + * The \p prp_set routine is called before a new value is copied into + * the property. The #H5P_prp_set_func_t callback function is defined + * as #H5P_prp_cb2_t. + * + * The \p prp_set routine may modify the value pointer to be set and + * those changes will be used when setting the property's value. + * If the \p prp_set routine returns a negative value, the new property + * value is not copied into the property and the \p prp_set routine + * returns an error value. The \p prp_set routine will not be called + * for the initial value; only the \p prp_create routine will be + * called. + * + * \b Note: The \p prp_set callback function may be useful to range + * check the value being set for the property or may perform some + * transformation or translation of the value set. The \p prp_get + * callback would then reverse the transformation or translation. + * A single \p prp_get or \p prp_set callback could handle multiple + * properties by performing different actions based on the property + * name or other properties in the property list. + * + * The \p prp_get routine is called when a value is retrieved from a + * property value. The #H5P_prp_get_func_t callback function is + * defined as #H5P_prp_cb2_t. + * + * The \p prp_get routine may modify the value to be returned from the + * query and those changes will be returned to the calling routine. + * If the \p prp_set routine returns a negative value, the query + * routine returns an error value. + * + * The \p prp_del routine is called when a property is being + * deleted from a property list. The #H5P_prp_delete_func_t + * callback function is defined as #H5P_prp_cb2_t. + * + * The \p prp_del routine may modify the value passed in, but the + * value is not used by the library when the \p prp_del routine + * returns. If the \p prp_del routine returns a negative value, + * the property list deletion routine returns an error value but + * the property is still deleted. + * + * The \p prp_copy routine is called when a new property list with + * this property is being created through a \p prp_copy operation. + * The #H5P_prp_copy_func_t callback function is defined as + * #H5P_prp_cb1_t. + * + * The \p prp_copy routine may modify the value to be set and those + * changes will be stored as the new value of the property. If + * the \p prp_copy routine returns a negative value, the new + * property value is not copied into the property and the \p prp_copy + * routine returns an error value. + * + * The \p prp_close routine is called when a property list with this + * property is being closed. The #H5P_prp_close_func_t callback + * function is defined as #H5P_prp_cb1_t. + * + * The \p prp_close routine may modify the value passed in, but the + * value is not used by the library when the \p prp_close routine + * returns. If the \p prp_close routine returns a negative value, the + * property list close routine returns an error value but the property + * list is still closed. + * + * The #H5P_prp_cb1_t is as follows: + * \snippet this H5P_prp_cb1_t_snip + * + * The #H5P_prp_cb2_t is as follows: + * \snippet this H5P_prp_cb2_t_snip + * + * + * \cpp_c_api_note + * + */ /* Function prototypes */ H5_DLL herr_t H5Pregister1(hid_t cls_id, const char *name, size_t size, void *def_value, H5P_prp_create_func_t prp_create, H5P_prp_set_func_t prp_set, H5P_prp_get_func_t prp_get, H5P_prp_delete_func_t prp_del, H5P_prp_copy_func_t prp_copy, H5P_prp_close_func_t prp_close); +/** + * \ingroup GPLOA + * + * \brief Registers a temporary property with a property list + * + * \plist_id + * \param[in] name Name of property to create + * \param[in] size Size of property in bytes + * \param[in] value Initial value for the property + * \param[in] prp_set Callback routine called before a new value is copied + * into the property's value + * \param[in] prp_get Callback routine called when a property value is + * retrieved from the property + * \param[in] prp_delete Callback routine called when a property is deleted + * from a property list + * \param[in] prp_copy Callback routine called when a property is copied + * from an existing property list + * \param[in] prp_close Callback routine called when a property list is + * being closed and the property value will be disposed + * of + * + * \return \herr_t + * + * \deprecated As of HDF5-1.8 this function was deprecated in favor of + * H5Pinsert2() or the macro H5Pinsert(). + * + * \details H5Pinsert1() creates a new property in a property + * list. The property will exist only in this property list and + * copies made from it. + * + * The initial property value must be provided in \p value and + * the property value will be set accordingly. + * + * The name of the property must not already exist in this list, + * or this routine will fail. + * + * The \p prp_set and \p prp_get callback routines may be set to NULL + * if they are not needed. + * + * Zero-sized properties are allowed and do not store any data + * in the property list. The default value of a zero-size + * property may be set to NULL. They may be used to indicate the + * presence or absence of a particular piece of information. + * + * The \p prp_set routine is called before a new value is copied + * into the property. The #H5P_prp_set_func_t callback function + * is defined as #H5P_prp_cb2_t. + * The \p prp_set routine may modify the value pointer to be set and + * those changes will be used when setting the property's value. + * If the \p prp_set routine returns a negative value, the new property + * value is not copied into the property and the \p set routine + * returns an error value. The \p prp_set routine will be called for + * the initial value. + * + * \b Note: The \p prp_set callback function may be useful to range + * check the value being set for the property or may perform some + * transformation or translation of the value set. The \p prp_get + * callback would then reverse the transformation or translation. + * A single \p prp_get or \p prp_set callback could handle multiple + * properties by performing different actions based on the + * property name or other properties in the property list. + * + * The \p prp_get routine is called when a value is retrieved from + * a property value. The #H5P_prp_get_func_t callback function + * is defined as #H5P_prp_cb2_t. + * + * The \p prp_get routine may modify the value to be returned from + * the query and those changes will be preserved. If the \p prp_get + * routine returns a negative value, the query routine returns + * an error value. + * + * The \p prp_delete routine is called when a property is being + * deleted from a property list. The #H5P_prp_delete_func_t + * callback function is defined as #H5P_prp_cb2_t. + * + * The \p prp_copy routine is called when a new property list with + * this property is being created through a \p prp_copy operation. + * The #H5P_prp_copy_func_t callback function is defined as + * #H5P_prp_cb1_t. + * + * The \p prp_copy routine may modify the value to be set and those + * changes will be stored as the new value of the property. If the + * \p prp_copy routine returns a negative value, the new property value + * is not copied into the property and the prp_copy routine returns an + * error value. + * + * The \p prp_close routine is called when a property list with this + * property is being closed. + * The #H5P_prp_close_func_t callback function is defined as + * #H5P_prp_cb1_t. + * + * The \p prp_close routine may modify the value passed in, the + * value is not used by the library when the close routine + * returns. If the \p prp_close routine returns a negative value, + * the property list \p prp_close routine returns an error value + * but the property list is still closed. + * + * \b Note: There is no \p prp_create callback routine for temporary + * property list objects; the initial value is assumed to + * have any necessary setup already performed on it. + * + * The #H5P_prp_cb1_t is as follows: + * \snippet this H5P_prp_cb1_t_snip + * + * The #H5P_prp_cb2_t is as follows: + * \snippet this H5P_prp_cb2_t_snip + + * \cpp_c_api_note + */ H5_DLL herr_t H5Pinsert1(hid_t plist_id, const char *name, size_t size, void *value, H5P_prp_set_func_t prp_set, H5P_prp_get_func_t prp_get, H5P_prp_delete_func_t prp_delete, H5P_prp_copy_func_t prp_copy, H5P_prp_close_func_t prp_close); +/** + * \ingroup GPLO + * + * \brief Encodes the property values in a property list into a binary + * buffer + * + * \plist_id + * \param[out] buf Buffer into which the property list will be encoded. + * If the provided buffer is NULL, the size of the + * buffer required is returned through \p nalloc; the + * function does nothing more. + * \param[out] nalloc The size of the required buffer + * + * \return \herr_t + * + * \deprecated As of HDF5-1.12 this function has been deprecated in favor of + * H5Pencode2() or the macro H5Pencode(). + * + * \details H5Pencode1() encodes the property list \p plist_id into the + * binary buffer \p buf. + * + * If the required buffer size is unknown, \p buf can be passed + * in as NULL and the function will set the required buffer size + * in \p nalloc. The buffer can then be created and the property + * list encoded with a subsequent H5Pencode1() call. + * + * If the buffer passed in is not big enough to hold the encoded + * properties, the H5Pencode1() call can be expected to fail with + * a segmentation fault. + * + * Properties that do not have encode callbacks will be skipped. + * There is currently no mechanism to register an encode callback for + * a user-defined property, so user-defined properties cannot currently + * be encoded. + * + * Some properties cannot be encoded, particularly properties that are + * reliant on local context. + * + * \since 1.10.0 + * + */ H5_DLL herr_t H5Pencode1(hid_t plist_id, void *buf, size_t *nalloc); /** - * \ingroup OCPL + * \ingroup DCPL * * \brief Returns information about a filter in a pipeline (DEPRECATED) * - * \todo H5Pget_filter1() prototype does not match source in H5Pocpl.c. - * Also, it is not in a deprecated file. Is that okay? + * * * \plist_id{plist_id} - * \param[in] filter Sequence number within the filter pipeline of the filter - * for which information is sought - * \param[out] flags Bit vector specifying certain general properties of - * the filter + * \param[in] filter Sequence number within the filter pipeline of + * the filter for which information is sought + * \param[out] flags Bit vector specifying certain general properties + * of the filter * \param[in,out] cd_nelmts Number of elements in \p cd_values - * \param[out] cd_values Auxiliary data for the filter - * \param[in] namelen Anticipated number of characters in \p name - * \param[out] name Name of the filter + * \param[out] cd_values Auxiliary data for the filter + * \param[in] namelen Anticipated number of characters in \p name + * \param[out] name Name of the filter * * \return Returns the filter identifier if successful; Otherwise returns * a negative value. See: #H5Z_filter_t * + * \deprecated When was this function deprecated? + * * \details H5Pget_filter1() returns information about a filter, specified * by its filter number, in a filter pipeline, specified by the * property list with which it is associated. @@ -6977,13 +9609,127 @@ H5_DLL herr_t H5Pencode1(hid_t plist_id, void *buf, size_t *nalloc); H5_DLL H5Z_filter_t H5Pget_filter1(hid_t plist_id, unsigned filter, unsigned int *flags /*out*/, size_t *cd_nelmts /*out*/, unsigned cd_values[] /*out*/, size_t namelen, char name[]); -H5_DLL herr_t H5Pget_filter_by_id1(hid_t plist_id, H5Z_filter_t id, unsigned int *flags /*out*/, - size_t *cd_nelmts /*out*/, unsigned cd_values[] /*out*/, size_t namelen, - char name[] /*out*/); -H5_DLL herr_t H5Pget_version(hid_t plist_id, unsigned *boot /*out*/, unsigned *freelist /*out*/, - unsigned *stab /*out*/, unsigned *shhdr /*out*/); -H5_DLL herr_t H5Pset_file_space(hid_t plist_id, H5F_file_space_type_t strategy, hsize_t threshold); -H5_DLL herr_t H5Pget_file_space(hid_t plist_id, H5F_file_space_type_t *strategy, hsize_t *threshold); +/** + * \ingroup DCPL + * + * \brief Returns information about the specified filter + * + * \plist_id{plist_id} + * \param[in] id Filter identifier + * \param[out] flags Bit vector specifying certain general properties + * of the filter + * \param[in,out] cd_nelmts Number of elements in \p cd_values + * \param[out] cd_values Auxiliary data for the filter + * \param[in] namelen Anticipated number of characters in \p name + * \param[out] name Name of the filter + * + * + * \return Returns a non-negative value if successful; Otherwise returns + * a negative value. + * + * \deprecated As of HDF5-1.8 this function was deprecated in favor of + * H5Pget_filter_by_id2() or the macro H5Pget_filter_by_id(). + * + * \details H5Pget_filter_by_id1() returns information about a filter, specified + * in \p id, a filter identifier. + * + * \p plist_id must be a dataset or group creation property list and + * \p id must be in the associated filter pipeline. + * + * The \p id and \p flags parameters are used in the same + * manner as described in the discussion of H5Pset_filter(). + * + * Aside from the fact that they are used for output, the parameters + * \p cd_nelmts and \p cd_values[] are used in the same manner as + * described in the discussion of H5Pset_filter(). + * On input, the \p cd_nelmts parameter indicates the number of entries + * in the \p cd_values[] array allocated by the calling program; + * on exit it contains the number of values defined by the filter. + * + * On input, the \p namelen parameter indicates the number of + * characters allocated for the filter name by the calling program + * in the array \p name[]. On exit \p name[] contains the name of the + * filter with one character of the name in each element of the array. + * + * If the filter specified in \p id is not set for the property + * list, an error will be returned and this function will fail. + * + * + * \version 1.8.5 Function extended to work with group creation property + * lists. + * \version 1.8.0 Function H5Pget_filter_by_id() renamed to + * H5Pget_filter_by_id1() and deprecated in this release. + * \version 1.6.0 Function introduced in this release. + */ +H5_DLL herr_t H5Pget_filter_by_id1(hid_t plist_id, H5Z_filter_t id, unsigned int *flags /*out*/, + size_t *cd_nelmts /*out*/, unsigned cd_values[] /*out*/, size_t namelen, + char name[] /*out*/); +/** + * \ingroup FCPL + * + * \brief Retrieves the version information of various objects + * for a file creation property list(deprecated) + * + * \plist_id + * \param[out] boot Pointer to location to return super block version number + * \param[out] freelist Pointer to location to return global freelist version number + * \param[out] stab Pointer to location to return symbol table version number + * \param[out] shhdr Pointer to location to return shared object header version + * number + * + * \return \herr_t + * + * \deprecated Deprecated in favor of the function H5Fget_info() + * + * \details H5Pget_version() retrieves the version information of various objects + * for a file creation property list. Any pointer parameters which are + * passed as NULL are not queried. + * + * \version 1.6.4 \p boot, \p freelist, \p stab, \p shhdr parameter types + * changed to unsigned. + * + */ +H5_DLL herr_t H5Pget_version(hid_t plist_id, unsigned *boot /*out*/, unsigned *freelist /*out*/, + unsigned *stab /*out*/, unsigned *shhdr /*out*/); +/** + * \ingroup FCPL + * + * \brief Sets the file space handling strategy and the free-space section + * size threshold. + * + * \fcpl_id{plist_id} + * \param[in] strategy The file space handling strategy to be used. See: + * #H5F_fspace_strategy_t + * \param[in] threshold The smallest free-space section size that the free + * space manager will track + * + * \return \herr_t + * + * \deprecated When was this function deprecated? + * + * \details Maps to the function H5Pset_file_space_strategy(). + * + */ +H5_DLL herr_t H5Pset_file_space(hid_t plist_id, H5F_file_space_type_t strategy, hsize_t threshold); +/** + * \ingroup FCPL + * + * \brief Retrieves the file space handling strategy, and threshold value for + * a file creation property list + * + * \fcpl_id{plist_id} + * \param[out] strategy Pointer to the file space handling strategy + * \param[out] threshold Pointer to the free-space section size threshold value + * + * \return \herr_t + * + * \deprecated When was this function deprecated? + * + * \details Maps to the function H5Pget_file_space_strategy() + * + * + */ +H5_DLL herr_t H5Pget_file_space(hid_t plist_id, H5F_file_space_type_t *strategy, hsize_t *threshold); #endif /* H5_NO_DEPRECATED_SYMBOLS */ #ifdef __cplusplus |