diff options
Diffstat (limited to 'src/H5Shyper.c')
-rw-r--r-- | src/H5Shyper.c | 5730 |
1 files changed, 3716 insertions, 2014 deletions
diff --git a/src/H5Shyper.c b/src/H5Shyper.c index a6494d9..c2cdf2b 100644 --- a/src/H5Shyper.c +++ b/src/H5Shyper.c @@ -42,46 +42,111 @@ /* Local Macros */ /****************/ +/* Macro for checking if two ranges overlap one another */ +/* + * Three possible conditions for overlapping: + * 1. The lower bound of range #1 is between the lower and + * higher bounds of range #2. In other words, the low + * part of range #1 will at least overlap with range #2. + * 2. The higher bound of range #1 is between the lower and + * higher bounds of range #2. In other words, the upper + * part of range #1 will at least overlap with range #2. + * 3. Range #1 includes range #2, i.e. the lower bound + * is smaller than that of range #2 and the higher bound + * is larger than that of range #2. + */ +/* (Assumes that low & high bounds are _inclusive_) */ +#define H5S_RANGE_OVERLAP(L1, H1, L2, H2) \ + /* condition 1 */ \ + (((L1) >= (L2) && (L1) <= (H2)) || \ + /* condition 2 */ \ + ((H1) >= (L2) && (H1) <= (H2)) || \ + /* condition 3 */ \ + ((L1) <= (L2) && (H1) >= (H2))) + +/* Flags for which hyperslab fragments to compute */ +#define H5S_HYPER_COMPUTE_B_NOT_A 0x01 +#define H5S_HYPER_COMPUTE_A_AND_B 0x02 +#define H5S_HYPER_COMPUTE_A_NOT_B 0x04 + +/* Macro to advance a span, possibly recycling it first */ +#define H5S_HYPER_ADVANCE_SPAN(recover, curr_span, next_span) \ + do { \ + H5S_hyper_span_t *saved_next_span = (next_span); \ + \ + /* Check if the span should be recovered */ \ + if(recover) { \ + H5S__hyper_free_span(curr_span); \ + (recover) = FALSE; \ + } /* end if */ \ + \ + /* Set the current span to saved next span */ \ + (curr_span) = saved_next_span; \ + } while(0) + /******************/ /* Local Typedefs */ /******************/ +/* Define alias for hsize_t, for allocating H5S_hyper_span_info_t + bounds objects */ +/* (Makes it easier to understand the alloc / free calls) */ +typedef hsize_t hbounds_t; + /********************/ /* Local Prototypes */ /********************/ static H5S_hyper_span_t *H5S__hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next); -static herr_t H5S__hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size); -static void H5S__hyper_span_scratch(H5S_hyper_span_info_t *spans); -static H5S_hyper_span_info_t *H5S__hyper_copy_span(H5S_hyper_span_info_t *spans); +static H5S_hyper_span_info_t *H5S__hyper_new_span_info(unsigned rank); +static H5S_hyper_span_info_t *H5S__hyper_copy_span(H5S_hyper_span_info_t *spans, + unsigned rank); static hbool_t H5S__hyper_cmp_spans(const H5S_hyper_span_info_t *span_info1, const H5S_hyper_span_info_t *span_info2); -static herr_t H5S__hyper_free_span_info(H5S_hyper_span_info_t *span_info); -static herr_t H5S__hyper_free_span(H5S_hyper_span_t *span); -static hbool_t H5S__hyper_is_valid_helper(const H5S_hyper_span_info_t *spans, - const hssize_t *offset, const hsize_t *size); -static herr_t H5S__hyper_recover_span(hbool_t *recover, - H5S_hyper_span_t **curr_span, H5S_hyper_span_t *next_span); -static H5S_hyper_span_t *H5S__hyper_coord_to_span(unsigned rank, - const hsize_t *coords); -static herr_t H5S__hyper_append_span(H5S_hyper_span_t **prev_span, - H5S_hyper_span_info_t **span_tree, hsize_t low, hsize_t high, - H5S_hyper_span_info_t *down, H5S_hyper_span_t *next); +static void H5S__hyper_free_span_info(H5S_hyper_span_info_t *span_info); +static void H5S__hyper_free_span(H5S_hyper_span_t *span); +static herr_t H5S__hyper_span_blocklist(const H5S_hyper_span_info_t *spans, + hsize_t start[], hsize_t end[], hsize_t rank, hsize_t *startblock, hsize_t *numblocks, + hsize_t **buf); +static herr_t H5S__get_select_hyper_blocklist(H5S_t *space, hsize_t startblock, + hsize_t numblocks, hsize_t *buf); +static H5S_hyper_span_t *H5S__hyper_coord_to_span(unsigned rank, const hsize_t *coords); +static herr_t H5S__hyper_append_span(H5S_hyper_span_info_t **span_tree, + unsigned ndims, hsize_t low, hsize_t high, H5S_hyper_span_info_t *down); static herr_t H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, - H5S_hyper_span_info_t *b_spans, H5S_hyper_span_info_t **a_not_b, + H5S_hyper_span_info_t *b_spans, unsigned selector, + unsigned ndims, H5S_hyper_span_info_t **a_not_b, H5S_hyper_span_info_t **a_and_b, H5S_hyper_span_info_t **b_not_a); -static herr_t H5S__hyper_merge_spans(H5S_t *space, - H5S_hyper_span_info_t *new_spans, hbool_t can_own); -static hsize_t H5S__hyper_spans_nelem(const H5S_hyper_span_info_t *spans); +static herr_t H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans); +static hsize_t H5S__hyper_spans_nelem(H5S_hyper_span_info_t *spans); +static herr_t H5S__hyper_add_disjoint_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans); static H5S_hyper_span_info_t *H5S__hyper_make_spans(unsigned rank, - const hsize_t *start, const hsize_t *stride, const hsize_t *count, - const hsize_t *block); + const hsize_t *start, const hsize_t *stride, + const hsize_t *count, const hsize_t *block); +static herr_t H5S__hyper_update_diminfo(H5S_t *space, H5S_seloper_t op, + const H5S_hyper_dim_t *new_hyper_diminfo); static herr_t H5S__hyper_generate_spans(H5S_t *space); +static hbool_t H5S__check_spans_overlap(const H5S_hyper_span_info_t *spans1, + const H5S_hyper_span_info_t *spans2); +static herr_t H5S__fill_in_new_space(H5S_t *space1, H5S_seloper_t op, + H5S_hyper_span_info_t *space2_span_lst, hbool_t can_own_span2, + hbool_t *span2_owned, hbool_t *updated_spans, H5S_t **result); static herr_t H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], const hsize_t stride[], const hsize_t count[], const hsize_t block[]); +static herr_t H5S__set_regular_hyperslab(H5S_t *space, const hsize_t start[], + const hsize_t *app_stride, const hsize_t app_count[], const hsize_t *app_block, + const hsize_t *opt_stride, const hsize_t opt_count[], const hsize_t *opt_block); +static herr_t H5S__fill_in_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2, + H5S_t **result); +static H5S_t *H5S__combine_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2); +static herr_t H5S__hyper_iter_get_seq_list_gen(H5S_sel_iter_t *iter, size_t maxseq, + size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len); +static herr_t H5S__hyper_iter_get_seq_list_opt(H5S_sel_iter_t *iter, size_t maxseq, + size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len); +static herr_t H5S__hyper_iter_get_seq_list_single(H5S_sel_iter_t *iter, size_t maxseq, + size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len); static void H5S__hyper_get_clip_diminfo(hsize_t start, hsize_t stride, hsize_t *count, hsize_t *block, hsize_t clip_size); static hsize_t H5S__hyper_get_clip_extent_real(const H5S_t *clip_space, @@ -89,11 +154,9 @@ static hsize_t H5S__hyper_get_clip_extent_real(const H5S_t *clip_space, /* Selection callbacks */ static herr_t H5S__hyper_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection); -static herr_t H5S__hyper_get_seq_list(const H5S_t *space, unsigned flags, - H5S_sel_iter_t *iter, size_t maxseq, size_t maxbytes, - size_t *nseq, size_t *nbytes, hsize_t *off, size_t *len); static herr_t H5S__hyper_release(H5S_t *space); static htri_t H5S__hyper_is_valid(const H5S_t *space); +static hsize_t H5S__hyper_span_nblocks(H5S_hyper_span_info_t *spans); static hssize_t H5S__hyper_serial_size(const H5S_t *space); static herr_t H5S__hyper_serialize(const H5S_t *space, uint8_t **p); static herr_t H5S__hyper_deserialize(H5S_t **space, const uint8_t **p); @@ -105,10 +168,11 @@ static herr_t H5S__hyper_num_elem_non_unlim(const H5S_t *space, static htri_t H5S__hyper_is_contiguous(const H5S_t *space); static htri_t H5S__hyper_is_single(const H5S_t *space); static htri_t H5S__hyper_is_regular(const H5S_t *space); +static htri_t H5S__hyper_shape_same(const H5S_t *space1, const H5S_t *space2); static herr_t H5S__hyper_adjust_u(H5S_t *space, const hsize_t *offset); static herr_t H5S__hyper_project_scalar(const H5S_t *space, hsize_t *offset); static herr_t H5S__hyper_project_simple(const H5S_t *space, H5S_t *new_space, hsize_t *offset); -static herr_t H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space); +static herr_t H5S__hyper_iter_init(const H5S_t *space, H5S_sel_iter_t *iter); /* Selection iteration callbacks */ static herr_t H5S__hyper_iter_coords(const H5S_sel_iter_t *iter, hsize_t *coords); @@ -117,12 +181,10 @@ static hsize_t H5S__hyper_iter_nelmts(const H5S_sel_iter_t *iter); static htri_t H5S__hyper_iter_has_next_block(const H5S_sel_iter_t *sel_iter); static herr_t H5S__hyper_iter_next(H5S_sel_iter_t *sel_iter, size_t nelem); static herr_t H5S__hyper_iter_next_block(H5S_sel_iter_t *sel_iter); +static herr_t H5S__hyper_iter_get_seq_list(H5S_sel_iter_t *iter, size_t maxseq, + size_t maxbytes, size_t *nseq, size_t *nbytes, hsize_t *off, size_t *len); static herr_t H5S__hyper_iter_release(H5S_sel_iter_t *sel_iter); -/* Static function for optimizing hyperslab */ -static hbool_t H5S__hyper_rebuild_helper(const H5S_hyper_span_t *span, - H5S_hyper_dim_t span_slab_info[], unsigned rank); -static hbool_t H5S__hyper_rebuild(H5S_t *space); /*****************************/ /* Library Private Variables */ @@ -139,7 +201,6 @@ const H5S_select_class_t H5S_sel_hyper[1] = {{ /* Methods on selection */ H5S__hyper_copy, - H5S__hyper_get_seq_list, H5S__hyper_release, H5S__hyper_is_valid, H5S__hyper_serial_size, @@ -152,6 +213,7 @@ const H5S_select_class_t H5S_sel_hyper[1] = {{ H5S__hyper_is_contiguous, H5S__hyper_is_single, H5S__hyper_is_regular, + H5S__hyper_shape_same, H5S__hyper_adjust_u, H5S__hyper_project_scalar, H5S__hyper_project_simple, @@ -181,11 +243,10 @@ static const H5S_sel_iter_class_t H5S_sel_iter_hyper[1] = {{ H5S__hyper_iter_has_next_block, H5S__hyper_iter_next, H5S__hyper_iter_next_block, + H5S__hyper_iter_get_seq_list, H5S__hyper_iter_release, }}; -/* Static variables */ - /* Arrays for default stride, block, etc. */ static const hsize_t H5S_hyper_zeros_g[H5S_MAX_RANK] = { 0,0,0,0, 0,0,0,0, @@ -204,12 +265,18 @@ H5FL_DEFINE_STATIC(H5S_hyper_sel_t); /* Declare a free list to manage the H5S_hyper_span_t struct */ H5FL_DEFINE_STATIC(H5S_hyper_span_t); -/* Declare a free list to manage the H5S_hyper_span_info_t struct */ -H5FL_DEFINE_STATIC(H5S_hyper_span_info_t); +/* Declare a free list to manage the H5S_hyper_span_info_t + hsize_t array struct */ +H5FL_BARR_DEFINE_STATIC(H5S_hyper_span_info_t, hbounds_t, H5S_MAX_RANK * 2); /* Declare extern free list to manage the H5S_sel_iter_t struct */ H5FL_EXTERN(H5S_sel_iter_t); +/* Current operation generation */ +/* (Start with '1' to avoid clashing with '0' value in newly allocated structs) */ +static uint64_t H5S_hyper_op_gen_g = 1; + + +/* Uncomment this, to provide the debugging routines for printing selection info */ /* #define H5S_HYPER_DEBUG */ #ifdef H5S_HYPER_DEBUG static herr_t @@ -218,9 +285,9 @@ H5S__hyper_print_spans_helper(FILE *f, const H5S_hyper_span_t *span, unsigned de FUNC_ENTER_STATIC_NOERR while(span) { - HDfprintf(f,"%s: depth=%u, span=%p, (%Hu, %Hu), nelem=%Hu, pstride=%Hu\n", FUNC, depth, span, span->low, span->high, span->nelem, span->pstride); - if(span->down && span->down->head) { - HDfprintf(f,"%s: spans=%p, count=%u, scratch=%p, head=%p\n", FUNC, span->down, span->down->count, span->down->scratch, span->down->head); + HDfprintf(f,"%s: %*sdepth=%u, span=%p, (%Hu, %Hu), next=%p\n", FUNC, depth * 2, "", depth, span, span->low, span->high, span->next); + if(span->down) { + HDfprintf(f,"%s: %*sspans=%p, count=%u, bounds[0]={%Hu, %Hu}, head=%p\n", FUNC, (depth + 1) * 2, "", span->down, span->down->count, span->down->low_bounds[0], span->down->high_bounds[0], span->down->head); H5S__hyper_print_spans_helper(f, span->down->head, depth + 1); } /* end if */ span = span->next; @@ -235,7 +302,7 @@ H5S__hyper_print_spans(FILE *f, const H5S_hyper_span_info_t *span_lst) FUNC_ENTER_STATIC_NOERR if(span_lst != NULL) { - HDfprintf(f, "%s: spans=%p, count=%u, scratch=%p, head=%p\n", FUNC, span_lst, span_lst->count, span_lst->scratch, span_lst->head); + HDfprintf(f, "%s: spans=%p, count=%u, bounds[0]={%Hu, %Hu}, head=%p\n", FUNC, span_lst, span_lst->count, span_lst->low_bounds[0], span_lst->high_bounds[0], span_lst->head); H5S__hyper_print_spans_helper(f, span_lst->head, 0); } /* end if */ @@ -284,15 +351,184 @@ H5S__hyper_print_diminfo(FILE *f, const H5S_t *space) { FUNC_ENTER_STATIC_NOERR - H5S__hyper_print_diminfo_helper(f, "opt_diminfo", space->extent.rank, space->select.sel_info.hslab->opt_diminfo); - H5S__hyper_print_diminfo_helper(f, "app_diminfo", space->extent.rank, space->select.sel_info.hslab->app_diminfo); + H5S__hyper_print_diminfo_helper(f, "diminfo.opt", space->extent.rank, space->select.sel_info.hslab->diminfo.opt); + H5S__hyper_print_diminfo_helper(f, "diminfo.app", space->extent.rank, space->select.sel_info.hslab->diminfo.app); FUNC_LEAVE_NOAPI(SUCCEED) } + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_print_spans_dfs + PURPOSE + Output the span elements for one span list in depth-first order + USAGE + herr_t H5S__hyper_print_spans_dfs(f, span_lst, depth) + FILE *f; IN: the file to output + const H5S_hyper_span_info_t *span_lst; IN: the span list to output + unsigned depth; IN: the level of this span list + RETURNS + non-negative on success, negative on failure + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_print_spans_dfs(FILE *f, const H5S_hyper_span_info_t *span_lst, + unsigned depth, unsigned dims) +{ + H5S_hyper_span_t *actual_tail = NULL; + H5S_hyper_span_t *cur_elem; + unsigned num_elems = 0; + unsigned u, elem_idx; + + FUNC_ENTER_STATIC_NOERR + + /* get the actual tail from head */ + cur_elem = span_lst->head; + HDassert(cur_elem); /* at least 1 element */ + while(cur_elem) { + actual_tail = cur_elem; + cur_elem = cur_elem->next; + num_elems++; + } /* end while */ + + for(u = 0; u < depth; u++) + HDfprintf(f, "\t"); + HDfprintf(f, "DIM[%u]: ref_count=%u, #elems=%u, head=%p, tail=%p, actual_tail=%p, matched=%t\n", depth, + span_lst->count, num_elems, span_lst->head, + span_lst->tail, actual_tail, (span_lst->tail == actual_tail)); + + for(u = 0; u < depth; u++) + HDfprintf(f, "\t"); + HDfprintf(f, "low_bounds=["); + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%llu,", span_lst->low_bounds[u]); + HDfprintf(f, "%llu]\n", span_lst->low_bounds[dims - 1]); + + for(u = 0; u < depth; u++) + HDfprintf(f, "\t"); + HDfprintf(f, "high_bounds=["); + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%llu,", span_lst->high_bounds[u]); + HDfprintf(f, "%llu]\n", span_lst->high_bounds[dims - 1]); + + cur_elem = span_lst->head; + elem_idx = 0; + while(cur_elem) { + for(u = 0; u < depth; u++) + HDfprintf(f, "\t"); + HDfprintf(f, "ELEM[%u]: ptr=%p, low=%Hu, high=%Hu, down=%p\n", + elem_idx++, cur_elem, cur_elem->low, cur_elem->high, cur_elem->down); + if(cur_elem->down) + H5S__hyper_print_spans_dfs(f, cur_elem->down, depth + 1, dims); + cur_elem = cur_elem->next; + } /* end while */ + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* end H5S__hyper_print_spans_dfs() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_print_space_dfs + PURPOSE + Output the span elements for one hyperslab selection space in depth-first order + USAGE + herr_t H5S__hyper_print_space_dfs(f, space) + FILE *f; IN: the file to output + const H5S_t *space; IN: the selection space to output + RETURNS + non-negative on success, negative on failure + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_print_space_dfs(FILE *f, const H5S_t *space) +{ + const H5S_hyper_sel_t *hslab = space->select.sel_info.hslab; + const unsigned dims = space->extent.rank; + unsigned u; + + FUNC_ENTER_STATIC_NOERR + + HDassert(hslab); + + HDfprintf(f, "=======================\n"); + HDfprintf(f, "SPACE: span_lst=%p, #dims=%u, offset_changed=%d\n", hslab->span_lst, dims, space->select.offset_changed); + + HDfprintf(f, " offset=["); + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%lld,", space->select.offset[u]); + HDfprintf(f, "%lld]\n", space->select.offset[dims - 1]); + + HDfprintf(f, " low_bounds=["); + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%llu,", space->select.sel_info.hslab->diminfo.low_bounds[u]); + HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->diminfo.low_bounds[dims - 1]); + } /* end if */ + else { + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%llu,", space->select.sel_info.hslab->span_lst->low_bounds[u]); + HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->span_lst->low_bounds[dims - 1]); + } /* end else */ + + HDfprintf(f, " high_bounds=["); + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%llu,", space->select.sel_info.hslab->diminfo.high_bounds[u]); + HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->diminfo.high_bounds[dims - 1]); + } /* end if */ + else { + for(u = 0; u < dims - 1; u++) + HDfprintf(f, "%llu,", space->select.sel_info.hslab->span_lst->high_bounds[u]); + HDfprintf(f, "%llu]\n", space->select.sel_info.hslab->span_lst->high_bounds[dims - 1]); + } /* end else */ + + /* Print out diminfo, if it's valid */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) + H5S__hyper_print_diminfo(f, space); + + /* Start print out the highest-order of dimension */ + if(hslab->span_lst) + H5S__hyper_print_spans_dfs(f, hslab->span_lst, 0, dims); + HDfprintf(f, "=======================\n\n"); + + FUNC_LEAVE_NOAPI(SUCCEED) +} /* end H5S__hyper_print_space_dfs() */ #endif /* H5S_HYPER_DEBUG */ /*------------------------------------------------------------------------- + * Function: H5S__hyper_get_op_gen + * + * Purpose: Acquire a unique operation generation value + * + * Return: Operation generation value (can't fail) + * + * Programmer: Quincey Koziol + * Saturday, January 19, 2019 + * + * Notes: Assumes that a 64-bit value will not wrap around during + * the lifespan of the process. + * + *------------------------------------------------------------------------- + */ +uint64_t +H5S__hyper_get_op_gen(void) +{ + FUNC_ENTER_PACKAGE_NOERR + + FUNC_LEAVE_NOAPI(H5S_hyper_op_gen_g++); +} /* end H5S__hyper_op_gen() */ + + +/*------------------------------------------------------------------------- * Function: H5S__hyper_iter_init * * Purpose: Initializes iteration information for hyperslab selection. @@ -302,7 +538,7 @@ H5S__hyper_print_diminfo(FILE *f, const H5S_t *space) * Programmer: Quincey Koziol * Saturday, February 24, 2001 * - * Notes: If the 'elmt_size' parameter is set to zero, the regular + * Notes: If the 'iter->elmt_size' field is set to zero, the regular * hyperslab selection iterator will not be 'flattened'. This * is used by the H5S_select_shape_same() code to avoid changing * the rank and appearance of the selection. @@ -310,37 +546,47 @@ H5S__hyper_print_diminfo(FILE *f, const H5S_t *space) *------------------------------------------------------------------------- */ static herr_t -H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) +H5S__hyper_iter_init(const H5S_t *space, H5S_sel_iter_t *iter) { - unsigned rank; /* Dataspace's dimension rank */ - unsigned u; /* Index variable */ + hsize_t *slab_size; /* Pointer to the dataspace dimensions to use for calc. slab */ + hsize_t acc; /* Accumulator for computing cumulative sizes */ + unsigned slab_dim; /* Rank of the fastest changing dimension for calc. slab */ + unsigned rank; /* Dataspace's dimension rank */ + unsigned u; /* Index variable */ + int i; /* Index variable */ + herr_t ret_value = SUCCEED; /* return value */ - FUNC_ENTER_STATIC_NOERR + FUNC_ENTER_STATIC /* Check args */ HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space)); HDassert(iter); HDassert(space->select.sel_info.hslab->unlim_dim < 0); - /* Initialize the number of points to iterate over */ - iter->elmt_left = space->select.num_elem; + /* Initialize the hyperslab iterator's rank */ iter->u.hyp.iter_rank = 0; /* Get the rank of the dataspace */ - rank = space->extent.rank; + rank = iter->rank; + + /* Attempt to rebuild diminfo if it is invalid and has not been confirmed + * to be impossible. + */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO) + H5S__hyper_rebuild((H5S_t *)space); /* Casting away const OK -NAF */ /* Check for the special case of just one H5Sselect_hyperslab call made */ - if(space->select.sel_info.hslab->diminfo_valid) { + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { /* Initialize the information needed for regular hyperslab I/O */ const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ const hsize_t *mem_size; /* Temporary pointer to dataspace extent's dimension sizes */ unsigned cont_dim = 0; /* # of contiguous dimensions */ /* Set the temporary pointer to the dimension information */ - tdiminfo = space->select.sel_info.hslab->opt_diminfo; + tdiminfo = space->select.sel_info.hslab->diminfo.opt; /* Set the temporary pointer to the dataspace extent's dimension sizes */ - mem_size = space->extent.size; + mem_size = iter->dims; /* * For a regular hyperslab to be contiguous up to some dimension, it @@ -367,11 +613,9 @@ H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) /* Check if the regular selection can be "flattened" */ if(cont_dim > 0) { - hsize_t acc; /* Accumulator for "flattened" dimension's sizes */ - hbool_t last_dim_flattened = TRUE; /* Flag to indicate that the last dimension was flattened */ + hbool_t last_dim_flattened = TRUE; /* Flag to indicate that the last dimension was flattened */ unsigned flat_rank = rank-cont_dim; /* Number of dimensions after flattening */ unsigned curr_dim; /* Current dimension */ - int i; /* Index variable */ /* Set the iterator's rank to the contiguous dimensions */ iter->u.hyp.iter_rank = flat_rank; @@ -400,7 +644,7 @@ H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count; iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block * acc; iter->u.hyp.size[curr_dim] = mem_size[i] * acc; - iter->u.hyp.sel_off[curr_dim] = space->select.offset[i] * (hssize_t)acc; + iter->u.hyp.sel_off[curr_dim] = iter->sel_off[i] * (hssize_t)acc; /* Reset the "last dim flattened" flag to avoid flattened any further dimensions */ last_dim_flattened = FALSE; @@ -415,7 +659,7 @@ H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) iter->u.hyp.diminfo[curr_dim].count = tdiminfo[i].count; iter->u.hyp.diminfo[curr_dim].block = tdiminfo[i].block; iter->u.hyp.size[curr_dim] = mem_size[i]; - iter->u.hyp.sel_off[curr_dim] = space->select.offset[i]; + iter->u.hyp.sel_off[curr_dim] = iter->sel_off[i]; } /* end else */ /* Decrement "current" flattened dimension */ @@ -426,20 +670,23 @@ H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) /* Initialize "flattened" iterator offset to initial location and dataspace extent and selection information to correct values */ for(u = 0; u < flat_rank; u++) iter->u.hyp.off[u] = iter->u.hyp.diminfo[u].start; + + /* Set up information for computing slab sizes */ + slab_dim = iter->u.hyp.iter_rank - 1; + slab_size = iter->u.hyp.size; } /* end if */ else { + /* Make local copy of the regular selection information */ + HDcompile_assert(sizeof(iter->u.hyp.diminfo) == sizeof(space->select.sel_info.hslab->diminfo.opt)); + H5MM_memcpy(iter->u.hyp.diminfo, tdiminfo, sizeof(iter->u.hyp.diminfo)); + /* Initialize position to initial location */ - /* Also make local copy of the regular selection information */ - for(u = 0; u < rank; u++) { - /* Regular selection information */ - iter->u.hyp.diminfo[u].start = tdiminfo[u].start; - iter->u.hyp.diminfo[u].stride = tdiminfo[u].stride; - iter->u.hyp.diminfo[u].count = tdiminfo[u].count; - iter->u.hyp.diminfo[u].block = tdiminfo[u].block; - - /* Position information */ + for(u = 0; u < rank; u++) iter->u.hyp.off[u] = tdiminfo[u].start; - } /* end if */ + + /* Set up information for computing slab sizes */ + slab_dim = iter->rank - 1; + slab_size = iter->dims; } /* end else */ /* Flag the diminfo information as valid in the iterator */ @@ -451,12 +698,10 @@ H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) else { /* Initialize the information needed for non-regular hyperslab I/O */ H5S_hyper_span_info_t *spans; /* Pointer to hyperslab span info node */ + /* Share the source dataspace's span tree by incrementing the reference count on it */ HDassert(space->select.sel_info.hslab->span_lst); - /* Make a copy of the span tree to iterate over */ - iter->u.hyp.spans = H5S__hyper_copy_span(space->select.sel_info.hslab->span_lst); - - /* Set the nelem & pstride values according to the element size */ - H5S__hyper_span_precompute(iter->u.hyp.spans, iter->elmt_size); + iter->u.hyp.spans = space->select.sel_info.hslab->span_lst; + iter->u.hyp.spans->count++; /* Initialize the starting span_info's and spans */ spans = iter->u.hyp.spans; @@ -475,14 +720,33 @@ H5S__hyper_iter_init(H5S_sel_iter_t *iter, const H5S_t *space) spans = spans->head->down; } /* end for */ + /* Set up information for computing slab sizes */ + slab_dim = iter->rank - 1; + slab_size = iter->dims; + /* Flag the diminfo information as not valid in the iterator */ iter->u.hyp.diminfo_valid = FALSE; } /* end else */ + /* Compute the cumulative size of dataspace dimensions */ + for(i = (int)slab_dim, acc = iter->elmt_size; i >= 0; i--) { + iter->u.hyp.slab[i] = acc; + acc *= slab_size[i]; + } /* end for */ + + /* Initialize more information for irregular hyperslab selections */ + if(!iter->u.hyp.diminfo_valid) { + /* Set the offset of the first element iterated on, in each dimension */ + for(u = 0; u < rank; u++) + /* Compute the sequential element offset */ + iter->u.hyp.loc_off[u] = ((hsize_t)((hssize_t)iter->u.hyp.off[u] + iter->sel_off[u])) * iter->u.hyp.slab[u]; + } /* end if */ + /* Initialize type of selection iterator */ iter->type = H5S_sel_iter_hyper; - FUNC_LEAVE_NOAPI(SUCCEED) +done: + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_iter_init() */ @@ -610,13 +874,11 @@ H5S__hyper_iter_block(const H5S_sel_iter_t *iter, hsize_t *start, hsize_t *end) } /* end for */ } /* end if */ else { - /* Copy the start of the block */ - for(u = 0; u < iter->rank; u++) + /* Copy the start & end of the block */ + for(u = 0; u < iter->rank; u++) { start[u] = iter->u.hyp.span[u]->low; - - /* Copy the end of the block */ - for(u = 0; u < iter->rank; u++) end[u] = iter->u.hyp.span[u]->high; + } /* end for */ } /* end else */ FUNC_LEAVE_NOAPI(SUCCEED) @@ -1087,12 +1349,11 @@ H5S__hyper_iter_next_block(H5S_sel_iter_t *iter) /*-------------------------------------------------------------------------- NAME - H5S__hyper_get_seq_list_gen + H5S__hyper_iter_get_seq_list_gen PURPOSE Create a list of offsets & lengths for a selection USAGE - herr_t H5S_select_hyper_get_file_list_gen(space,iter,maxseq,maxelem,nseq,nelem,off,len) - H5S_t *space; IN: Dataspace containing selection to use. + herr_t H5S__hyper_iter_get_seq_list_gen(iter,maxseq,maxelem,nseq,nelem,off,len) H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last position of interest in selection. size_t maxseq; IN: Maximum number of sequences to generate @@ -1116,21 +1377,21 @@ H5S__hyper_iter_next_block(H5S_sel_iter_t *iter) REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) +H5S__hyper_iter_get_seq_list_gen(H5S_sel_iter_t *iter, size_t maxseq, size_t maxelem, + size_t *nseq, size_t *nelem, hsize_t *off, size_t *len) { H5S_hyper_span_t *curr_span; /* Current hyperslab span node */ H5S_hyper_span_t **ispan; /* Iterator's hyperslab span nodes */ - hsize_t slab[H5S_MAX_RANK]; /* Cumulative size of each dimension in bytes */ - hsize_t acc; /* Accumulator for computing cumulative sizes */ - hsize_t loc_off; /* Element offset in the dataspace */ + hsize_t *slab; /* Cumulative size of each dimension in bytes */ + hsize_t loc_off; /* Byte offset in the dataspace */ hsize_t last_span_end = 0; /* The offset of the end of the last span */ - hsize_t *abs_arr; /* Absolute hyperslab span position */ - const hssize_t *off_arr; /* Offset within the dataspace extent */ + hsize_t *abs_arr; /* Absolute hyperslab span position, in elements */ + hsize_t *loc_arr; /* Byte offset of hyperslab span position within buffer */ + const hssize_t *sel_off; /* Offset within the dataspace extent */ + size_t span_elmts = 0; /* Number of elements to actually use for this span */ size_t span_size = 0; /* Number of bytes in current span to actually process */ - size_t io_left; /* Number of elements left to process */ - size_t io_bytes_left; /* Number of bytes left to process */ + size_t io_left; /* Initial number of elements to process */ + size_t io_elmts_left; /* Number of elements left to process */ size_t io_used; /* Number of elements processed */ size_t curr_seq = 0; /* Number of sequence/offsets stored in the arrays */ size_t elem_size; /* Size of each element iterating over */ @@ -1138,12 +1399,10 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ int curr_dim; /* Current dimension being operated on */ unsigned u; /* Index variable */ - int i; /* Index variable */ FUNC_ENTER_STATIC_NOERR /* Check args */ - HDassert(space); HDassert(iter); HDassert(maxseq > 0); HDassert(maxelem > 0); @@ -1153,45 +1412,39 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, HDassert(len); /* Set the rank of the fastest changing dimension */ - ndims = space->extent.rank; + ndims = iter->rank; fast_dim = (ndims - 1); /* Get the pointers to the current span info and span nodes */ curr_span = iter->u.hyp.span[fast_dim]; abs_arr = iter->u.hyp.off; - off_arr = space->select.offset; + loc_arr = iter->u.hyp.loc_off; + slab = iter->u.hyp.slab; + sel_off = iter->sel_off; ispan = iter->u.hyp.span; elem_size = iter->elmt_size; /* Set the amount of elements to perform I/O on, etc. */ H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); - io_left = MIN(maxelem, (size_t)iter->elmt_left); - io_bytes_left = io_left * elem_size; - - /* Compute the cumulative size of dataspace dimensions */ - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= space->extent.size[i]; - } /* end for */ + io_elmts_left = io_left = MIN(maxelem, (size_t)iter->elmt_left); /* Set the offset of the first element iterated on */ for(u = 0, loc_off = 0; u < ndims; u++) - /* Compute the sequential element offset */ - loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; - - /* Range check against number of elements left in selection */ - HDassert(io_bytes_left <= (iter->elmt_left * elem_size)); + loc_off += loc_arr[u]; /* Take care of any partial spans leftover from previous I/Os */ if(abs_arr[fast_dim] != curr_span->low) { /* Finish the span in the fastest changing dimension */ - /* Compute the number of bytes to attempt in this span */ - H5_CHECKED_ASSIGN(span_size, size_t, ((curr_span->high - abs_arr[fast_dim])+1)*elem_size, hsize_t); + /* Compute the number of elements to attempt in this span */ + H5_CHECKED_ASSIGN(span_elmts, size_t, ((curr_span->high - abs_arr[fast_dim]) + 1), hsize_t); + + /* Check number of elements against upper bounds allowed */ + if(span_elmts > io_elmts_left) + span_elmts = io_elmts_left; - /* Check number of bytes against upper bounds allowed */ - if(span_size > io_bytes_left) - span_size = io_bytes_left; + /* Set the span_size, in bytes */ + span_size = span_elmts * elem_size; /* Add the partial span to the list of sequences */ off[curr_seq] = loc_off; @@ -1204,10 +1457,10 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, last_span_end = loc_off + span_size; /* Decrement I/O left to perform */ - io_bytes_left -= span_size; + io_elmts_left -= span_elmts; /* Check if we are done */ - if(io_bytes_left > 0) { + if(io_elmts_left > 0) { /* Move to next span in fastest changing dimension */ curr_span = curr_span->next; @@ -1217,15 +1470,21 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Move iterator for fastest changing dimension */ abs_arr[fast_dim] = curr_span->low; + loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[fast_dim])) * slab[fast_dim]; + ispan[fast_dim] = curr_span; } /* end if */ } /* end if */ else { /* Advance the hyperslab iterator */ - abs_arr[fast_dim] += span_size / elem_size; + abs_arr[fast_dim] += span_elmts; /* Check if we are still within the span */ if(abs_arr[fast_dim] <= curr_span->high) { - iter->u.hyp.span[fast_dim] = curr_span; + /* Sanity check */ + HDassert(ispan[fast_dim] == curr_span); + + /* Update byte offset */ + loc_arr[fast_dim] += span_size; } /* end if */ /* If we walked off that span, advance to the next span */ else { @@ -1236,7 +1495,12 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, if(NULL != curr_span) { /* Reset absolute position */ abs_arr[fast_dim] = curr_span->low; - iter->u.hyp.span[fast_dim] = curr_span; + + /* Update location offset */ + loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[fast_dim])) * slab[fast_dim]; + + /* Reset the span in the current dimension */ + ispan[fast_dim] = curr_span; } /* end if */ } /* end else */ } /* end else */ @@ -1251,13 +1515,16 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Work back up through the dimensions */ while(curr_dim >= 0) { /* Reset the current span */ - curr_span = iter->u.hyp.span[curr_dim]; + curr_span = ispan[curr_dim]; /* Increment absolute position */ abs_arr[curr_dim]++; /* Check if we are still within the span */ if(abs_arr[curr_dim] <= curr_span->high) { + /* Update location offset */ + loc_arr[curr_dim] += slab[curr_dim]; + break; } /* end if */ /* If we walked off that span, advance to the next span */ @@ -1273,6 +1540,9 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Reset absolute position */ abs_arr[curr_dim] = curr_span->low; + /* Update byte location */ + loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim]; + break; } /* end if */ else @@ -1293,49 +1563,58 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, curr_dim++; /* Set the new span_info & span for this dimension */ - iter->u.hyp.span[curr_dim] = curr_span->down->head; + ispan[curr_dim] = curr_span->down->head; /* Advance span down the tree */ curr_span = curr_span->down->head; /* Reset the absolute offset for the dim */ abs_arr[curr_dim] = curr_span->low; + + /* Update the location offset */ + loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim]; } /* end while */ /* Verify that the curr_span points to the fastest dim */ - HDassert(curr_span == iter->u.hyp.span[fast_dim]); + HDassert(curr_span == ispan[fast_dim]); /* Reset the buffer offset */ for(u = 0, loc_off = 0; u < ndims; u++) - loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; + loc_off += loc_arr[u]; } /* end else */ else /* We had better be done with I/O or bad things are going to happen... */ - HDassert(io_bytes_left == 0); + HDassert(io_elmts_left == 0); } /* end if */ } /* end if */ /* Perform the I/O on the elements, based on the position of the iterator */ - while(io_bytes_left > 0 && curr_seq < maxseq) { + while(io_elmts_left > 0 && curr_seq < maxseq) { + H5S_hyper_span_t *prev_span; /* Previous hyperslab span node */ + /* Sanity check */ HDassert(curr_span); - /* Adjust location offset of destination to compensate for initial increment below */ - loc_off -= curr_span->pstride; + /* Set to current span, so the first adjustment to loc_off is 0 */ + prev_span = curr_span; /* Loop over all the spans in the fastest changing dimension */ while(curr_span != NULL) { - /* Move location offset of destination */ - loc_off += curr_span->pstride; + hsize_t nelmts; /* # of elements covered by current span */ + + /* Move location offset of current span */ + loc_off += (curr_span->low - prev_span->low) * elem_size; /* Compute the number of elements to attempt in this span */ - H5_CHECKED_ASSIGN(span_size, size_t, curr_span->nelem, hsize_t); + nelmts = (curr_span->high - curr_span->low) + 1; + H5_CHECKED_ASSIGN(span_elmts, size_t, nelmts, hsize_t); /* Check number of elements against upper bounds allowed */ - if(span_size >= io_bytes_left) { - /* Trim the number of bytes to output */ - span_size = io_bytes_left; - io_bytes_left = 0; + if(span_elmts >= io_elmts_left) { + /* Trim the number of elements to output */ + span_elmts = io_elmts_left; + span_size = span_elmts * elem_size; + io_elmts_left = 0; /* COMMON */ /* Store the I/O information for the span */ @@ -1350,9 +1629,6 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Increment the number of sequences in arrays */ curr_seq++; } /* end else */ - - /* Set the location of the last span's end */ - last_span_end = loc_off + span_size; /* end COMMON */ /* Break out now, we are finished with I/O */ @@ -1360,7 +1636,8 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, } /* end if */ else { /* Decrement I/O left to perform */ - io_bytes_left -= span_size; + span_size = span_elmts * elem_size; + io_elmts_left -= span_elmts; /* COMMON */ /* Store the I/O information for the span */ @@ -1375,9 +1652,6 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Increment the number of sequences in arrays */ curr_seq++; } /* end else */ - - /* Set the location of the last span's end */ - last_span_end = loc_off + span_size; /* end COMMON */ /* If the sequence & offset arrays are full, do what? */ @@ -1386,18 +1660,30 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, break; } /* end else */ + /* Set the location of the last span's end */ + last_span_end = loc_off + span_size; + /* Move to next span in fastest changing dimension */ + prev_span = curr_span; curr_span = curr_span->next; } /* end while */ /* Check if we are done */ - if(io_bytes_left == 0 || curr_seq >= maxseq) { + if(io_elmts_left == 0 || curr_seq >= maxseq) { + /* Sanity checks */ HDassert(curr_span); - abs_arr[fast_dim] = curr_span->low + (span_size / elem_size); + + /* Update absolute position */ + abs_arr[fast_dim] = curr_span->low + span_elmts; /* Check if we are still within the span */ if(abs_arr[fast_dim] <= curr_span->high) { - iter->u.hyp.span[fast_dim]=curr_span; + /* Reset the span for the fast dimension */ + ispan[fast_dim] = curr_span; + + /* Update location offset */ + loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + (hssize_t)span_elmts + sel_off[fast_dim])) * slab[fast_dim]; + break; } /* end if */ /* If we walked off that span, advance to the next span */ @@ -1409,7 +1695,9 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, if(curr_span != NULL) { /* Reset absolute position */ abs_arr[fast_dim] = curr_span->low; - iter->u.hyp.span[fast_dim] = curr_span; + loc_arr[fast_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[fast_dim])) * slab[fast_dim]; + ispan[fast_dim] = curr_span; + break; } /* end if */ } /* end else */ @@ -1423,13 +1711,16 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Work back up through the dimensions */ while(curr_dim >= 0) { /* Reset the current span */ - curr_span=iter->u.hyp.span[curr_dim]; + curr_span = ispan[curr_dim]; /* Increment absolute position */ abs_arr[curr_dim]++; /* Check if we are still within the span */ - if(abs_arr[curr_dim]<=curr_span->high) { + if(abs_arr[curr_dim] <= curr_span->high) { + /* Update location offset */ + loc_arr[curr_dim] += slab[curr_dim]; + break; } /* end if */ /* If we walked off that span, advance to the next span */ @@ -1445,6 +1736,9 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Reset absolute position */ abs_arr[curr_dim] = curr_span->low; + /* Update location offset */ + loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim]; + break; } /* end if */ else @@ -1456,7 +1750,7 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, /* Check if we are finished with the spans in the tree */ if(curr_dim < 0) { /* We had better be done with I/O or bad things are going to happen... */ - HDassert(io_bytes_left == 0); + HDassert(io_elmts_left == 0); break; } /* end if */ else { @@ -1470,26 +1764,29 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, curr_dim++; /* Set the new span for the next dimension down */ - iter->u.hyp.span[curr_dim] = curr_span->down->head; + ispan[curr_dim] = curr_span->down->head; /* Advance span down the tree */ curr_span = curr_span->down->head; /* Reset the absolute offset for the dim */ abs_arr[curr_dim] = curr_span->low; + + /* Update location offset */ + loc_arr[curr_dim] = ((hsize_t)((hssize_t)curr_span->low + sel_off[curr_dim])) * slab[curr_dim]; } /* end while */ /* Verify that the curr_span points to the fastest dim */ - HDassert(curr_span == iter->u.hyp.span[fast_dim]); + HDassert(curr_span == ispan[fast_dim]); } /* end else */ /* Reset the buffer offset */ for(u = 0, loc_off = 0; u < ndims; u++) - loc_off += ((hsize_t)((hssize_t)abs_arr[u] + off_arr[u])) * slab[u]; + loc_off += loc_arr[u]; } /* end while */ /* Decrement number of elements left in iterator */ - io_used = (io_left - (io_bytes_left / elem_size)); + io_used = io_left - io_elmts_left; iter->elmt_left -= io_used; /* Set the number of sequences generated */ @@ -1499,17 +1796,16 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, *nelem = io_used; FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_get_seq_list_gen() */ +} /* end H5S__hyper_iter_get_seq_list_gen() */ /*-------------------------------------------------------------------------- NAME - H5S__hyper_get_seq_list_opt + H5S__hyper_iter_get_seq_list_opt PURPOSE Create a list of offsets & lengths for a selection USAGE - herr_t H5S_select_hyper_get_file_list_opt(space,iter,maxseq,maxelem,nseq,nelem,off,len) - H5S_t *space; IN: Dataspace containing selection to use. + herr_t H5S__hyper_iter_get_seq_list_opt(iter,maxseq,maxelem,nseq,nelem,off,len) H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last position of interest in selection. size_t maxseq; IN: Maximum number of sequences to generate @@ -1533,12 +1829,11 @@ H5S__hyper_get_seq_list_gen(const H5S_t *space, H5S_sel_iter_t *iter, REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_get_seq_list_opt(const H5S_t *space, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) +H5S__hyper_iter_get_seq_list_opt(H5S_sel_iter_t *iter, size_t maxseq, size_t maxelem, + size_t *nseq, size_t *nelem, hsize_t *off, size_t *len) { hsize_t *mem_size; /* Size of the source buffer */ - hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ + hsize_t *slab; /* Hyperslab size */ const hssize_t *sel_off; /* Selection offset in dataspace */ hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */ hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary block count */ @@ -1559,7 +1854,6 @@ H5S__hyper_get_seq_list_opt(const H5S_t *space, H5S_sel_iter_t *iter, unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ unsigned ndims; /* Number of dimensions of dataset */ int temp_dim; /* Temporary rank holder */ - hsize_t acc; /* Accumulator */ hsize_t loc; /* Coordinate offset */ size_t curr_seq = 0; /* Current sequence being operated on */ size_t actual_elem; /* The actual number of elements to count */ @@ -1568,12 +1862,10 @@ H5S__hyper_get_seq_list_opt(const H5S_t *space, H5S_sel_iter_t *iter, size_t start_io_left; /* The initial number of elements left in I/O operation */ size_t elem_size; /* Size of each element iterating over */ unsigned u; /* Local index variable */ - int i; /* Local index variable */ FUNC_ENTER_STATIC_NOERR /* Check args */ - HDassert(space); HDassert(iter); HDassert(maxseq > 0); HDassert(maxelem > 0); @@ -1586,35 +1878,31 @@ H5S__hyper_get_seq_list_opt(const H5S_t *space, H5S_sel_iter_t *iter, tdiminfo = iter->u.hyp.diminfo; /* Check if this is a "flattened" regular hyperslab selection */ - if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { + if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) { /* Set the aliases for a few important dimension ranks */ ndims = iter->u.hyp.iter_rank; - fast_dim = ndims - 1; /* Set the local copy of the selection offset */ sel_off = iter->u.hyp.sel_off; - /* Set up the pointer to the size of the memory space */ + /* Set up the pointer to the size of the memory dataspace */ mem_size = iter->u.hyp.size; } /* end if */ else { /* Set the aliases for a few important dimension ranks */ - ndims = space->extent.rank; - fast_dim = ndims - 1; + ndims = iter->rank; /* Set the local copy of the selection offset */ - sel_off = space->select.offset; + sel_off = iter->sel_off; - /* Set up the pointer to the size of the memory space */ - mem_size = space->extent.size; + /* Set up the pointer to the size of the memory dataspace */ + mem_size = iter->dims; } /* end else */ - /* initialize row sizes for each dimension */ + /* Set up some local variables */ + fast_dim = ndims - 1; elem_size = iter->elmt_size; - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= mem_size[i]; - } /* end for */ + slab = iter->u.hyp.slab; /* Calculate the number of elements to sequence through */ H5_CHECK_OVERFLOW(iter->elmt_left, hsize_t, size_t); @@ -1945,17 +2233,16 @@ loc += fast_dim_buf_off; *nelem += start_io_left - io_left; FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_get_seq_list_opt() */ +} /* end H5S__hyper_iter_get_seq_list_opt() */ /*-------------------------------------------------------------------------- NAME - H5S__hyper_get_seq_list_single + H5S__hyper_iter_get_seq_list_single PURPOSE Create a list of offsets & lengths for a selection USAGE - herr_t H5S__hyper_get_seq_list_single(space, flags, iter, maxseq, maxelem, nseq, nelem, off, len) - H5S_t *space; IN: Dataspace containing selection to use. + herr_t H5S__hyper_iter_get_seq_list_single(flags, iter, maxseq, maxelem, nseq, nelem, off, len) unsigned flags; IN: Flags for extra information about operation H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last position of interest in selection. @@ -1980,18 +2267,16 @@ loc += fast_dim_buf_off; REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) +H5S__hyper_iter_get_seq_list_single(H5S_sel_iter_t *iter, size_t maxseq, size_t maxelem, + size_t *nseq, size_t *nelem, hsize_t *off, size_t *len) { const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ const hssize_t *sel_off; /* Selection offset in dataspace */ hsize_t *mem_size; /* Size of the source buffer */ hsize_t base_offset[H5S_MAX_RANK]; /* Base coordinate offset in dataspace */ hsize_t offset[H5S_MAX_RANK]; /* Coordinate offset in dataspace */ - hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ + hsize_t *slab; /* Hyperslab size */ hsize_t fast_dim_block; /* Local copies of fastest changing dimension info */ - hsize_t acc; /* Accumulator */ hsize_t loc; /* Coordinate offset */ size_t tot_blk_count; /* Total number of blocks left to output */ size_t elem_size; /* Size of each element iterating over */ @@ -2001,12 +2286,10 @@ H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ unsigned skip_dim; /* Rank of the dimension to skip along */ unsigned u; /* Local index variable */ - int i; /* Local index variable */ FUNC_ENTER_STATIC_NOERR /* Check args */ - HDassert(space); HDassert(iter); HDassert(maxseq > 0); HDassert(maxelem > 0); @@ -2019,34 +2302,31 @@ H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, tdiminfo = iter->u.hyp.diminfo; /* Check if this is a "flattened" regular hyperslab selection */ - if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { + if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) { /* Set the aliases for a few important dimension ranks */ ndims = iter->u.hyp.iter_rank; /* Set the local copy of the selection offset */ sel_off = iter->u.hyp.sel_off; - /* Set up the pointer to the size of the memory space */ + /* Set up the pointer to the size of the memory dataspace */ mem_size = iter->u.hyp.size; } /* end if */ else { /* Set the aliases for a few important dimension ranks */ - ndims = space->extent.rank; + ndims = iter->rank; /* Set the local copy of the selection offset */ - sel_off = space->select.offset; + sel_off = iter->sel_off; - /* Set up the pointer to the size of the memory space */ - mem_size = space->extent.size; + /* Set up the pointer to the size of the memory dataspace */ + mem_size = iter->dims; } /* end else */ - fast_dim = ndims - 1; - /* initialize row sizes for each dimension */ + /* Set up some local variables */ + fast_dim = ndims - 1; elem_size = iter->elmt_size; - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= mem_size[i]; - } /* end for */ + slab = iter->u.hyp.slab; /* Copy the base location of the block */ /* (Add in the selection offset) */ @@ -2099,6 +2379,7 @@ H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, else { hsize_t skip_slab; /* Temporary copy of slab[fast_dim - 1] */ size_t blk_count; /* Total number of blocks left to output */ + int i; /* Local index variable */ /* Find first dimension w/block >1 */ skip_dim = fast_dim; @@ -2230,16 +2511,16 @@ H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, HDassert(*nelem > 0); FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_get_seq_list_single() */ +} /* end H5S__hyper_iter_get_seq_list_single() */ /*-------------------------------------------------------------------------- NAME - H5S__hyper_get_seq_list + H5S__hyper_iter_get_seq_list PURPOSE Create a list of offsets & lengths for a selection USAGE - herr_t H5S__hyper_get_seq_list(space,flags,iter,maxseq,maxelem,nseq,nelem,off,len) + herr_t H5S__hyper_iter_get_seq_list(iter,maxseq,maxelem,nseq,nelem,off,len) H5S_t *space; IN: Dataspace containing selection to use. unsigned flags; IN: Flags for extra information about operation H5S_sel_iter_t *iter; IN/OUT: Selection iterator describing last @@ -2265,16 +2546,14 @@ H5S__hyper_get_seq_list_single(const H5S_t *space, H5S_sel_iter_t *iter, REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_sel_iter_t *iter, - size_t maxseq, size_t maxelem, size_t *nseq, size_t *nelem, - hsize_t *off, size_t *len) +H5S__hyper_iter_get_seq_list(H5S_sel_iter_t *iter, size_t maxseq, + size_t maxelem, size_t *nseq, size_t *nelem, hsize_t *off, size_t *len) { herr_t ret_value = FAIL; /* return value */ FUNC_ENTER_STATIC_NOERR /* Check args */ - HDassert(space); HDassert(iter); HDassert(iter->elmt_left > 0); HDassert(maxseq > 0); @@ -2283,13 +2562,11 @@ H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_s HDassert(nelem); HDassert(off); HDassert(len); - HDassert(space->select.sel_info.hslab->unlim_dim < 0); /* Check for the special case of just one H5Sselect_hyperslab call made */ - if(space->select.sel_info.hslab->diminfo_valid) { + if(iter->u.hyp.diminfo_valid) { const H5S_hyper_dim_t *tdiminfo; /* Temporary pointer to diminfo information */ const hssize_t *sel_off; /* Selection offset in dataspace */ - hsize_t *mem_size; /* Size of the source buffer */ unsigned ndims; /* Number of dimensions of dataset */ unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ hbool_t single_block; /* Whether the selection is a single block */ @@ -2299,39 +2576,30 @@ H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_s tdiminfo = iter->u.hyp.diminfo; /* Check if this is a "flattened" regular hyperslab selection */ - if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < space->extent.rank) { + if(iter->u.hyp.iter_rank != 0 && iter->u.hyp.iter_rank < iter->rank) { /* Set the aliases for a few important dimension ranks */ ndims = iter->u.hyp.iter_rank; /* Set the local copy of the selection offset */ sel_off = iter->u.hyp.sel_off; - - /* Set up the pointer to the size of the memory space */ - mem_size = iter->u.hyp.size; } /* end if */ else { /* Set the aliases for a few important dimension ranks */ - ndims = space->extent.rank; + ndims = iter->rank; /* Set the local copy of the selection offset */ - sel_off = space->select.offset; - - /* Set up the pointer to the size of the memory space */ - mem_size = space->extent.size; + sel_off = iter->sel_off; } /* end else */ fast_dim = ndims - 1; /* Check if we stopped in the middle of a sequence of elements */ if((iter->u.hyp.off[fast_dim] - tdiminfo[fast_dim].start) % tdiminfo[fast_dim].stride != 0 || ((iter->u.hyp.off[fast_dim] != tdiminfo[fast_dim].start) && tdiminfo[fast_dim].count == 1)) { - hsize_t slab[H5S_MAX_RANK]; /* Hyperslab size */ + hsize_t *slab; /* Hyperslab size */ hsize_t loc; /* Coordinate offset */ - hsize_t acc; /* Accumulator */ size_t leftover; /* The number of elements left over from the last sequence */ size_t actual_elem; /* The actual number of elements to count */ size_t elem_size; /* Size of each element iterating over */ - int i; /* Local index variable */ - /* Calculate the number of elements left in the sequence */ if(tdiminfo[fast_dim].count == 1) { @@ -2344,12 +2612,9 @@ H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_s /* Make certain that we don't write too many */ actual_elem = MIN3(leftover, (size_t)iter->elmt_left, maxelem); - /* Initialize row sizes for each dimension */ + /* Set up some local variables */ elem_size = iter->elmt_size; - for(i = (int)fast_dim, acc = elem_size; i >= 0; i--) { - slab[i] = acc; - acc *= mem_size[i]; - } /* end for */ + slab = iter->u.hyp.slab; /* Compute the initial buffer offset */ for(u = 0, loc = 0; u < ndims; u++) @@ -2398,17 +2663,17 @@ H5S__hyper_get_seq_list(const H5S_t *space, unsigned H5_ATTR_UNUSED flags, H5S_s /* Check for single block selection */ if(single_block) /* Use single-block optimized call to generate sequence list */ - ret_value = H5S__hyper_get_seq_list_single(space, iter, maxseq, maxelem, nseq, nelem, off, len); + ret_value = H5S__hyper_iter_get_seq_list_single(iter, maxseq, maxelem, nseq, nelem, off, len); else /* Use optimized call to generate sequence list */ - ret_value = H5S__hyper_get_seq_list_opt(space, iter, maxseq, maxelem, nseq, nelem, off, len); + ret_value = H5S__hyper_iter_get_seq_list_opt(iter, maxseq, maxelem, nseq, nelem, off, len); } /* end if */ else /* Call the general sequence generator routine */ - ret_value = H5S__hyper_get_seq_list_gen(space, iter, maxseq, maxelem, nseq, nelem, off, len); + ret_value = H5S__hyper_iter_get_seq_list_gen(iter, maxseq, maxelem, nseq, nelem, off, len); FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__hyper_get_seq_list() */ +} /* end H5S__hyper_iter_get_seq_list() */ /*-------------------------------------------------------------------------- @@ -2480,8 +2745,6 @@ H5S__hyper_new_span(hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, /* Copy the span's basic information */ ret_value->low = low; ret_value->high = high; - ret_value->nelem = (high - low) + 1; - ret_value->pstride = 0; ret_value->down = down; ret_value->next = next; @@ -2496,143 +2759,45 @@ done: /*-------------------------------------------------------------------------- NAME - H5S__hyper_span_precompute_helper - PURPOSE - Helper routine to precompute the nelem and pstrides in bytes. - USAGE - void H5S__hyper_span_precompute_helper(span_info, elmt_size) - H5S_hyper_span_info_t *span_info; IN/OUT: Span tree to work on - size_t elmt_size; IN: element size to work with - RETURNS - None - DESCRIPTION - Change the nelem and pstride values in the span tree from elements to - bytes using the elmt_size parameter. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static void -H5S__hyper_span_precompute_helper(H5S_hyper_span_info_t *spans, size_t elmt_size) -{ - FUNC_ENTER_STATIC_NOERR - - /* Sanity checks */ - HDassert(spans); - HDassert(spans->scratch == (H5S_hyper_span_info_t *)~((size_t)NULL) || - spans->scratch == NULL); - - /* Check if we've already set this down span tree */ - if(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) { - H5S_hyper_span_t *span; /* Hyperslab span */ - - /* Set the tree's scratch pointer */ - spans->scratch = (H5S_hyper_span_info_t *)~((size_t)NULL); - - /* Set the scratch pointers in all the nodes */ - span = spans->head; - - /* Loop over all the spans for this down span tree */ - while(span != NULL) { - /* If there are down spans, precompute their values also */ - if(span->down != NULL) - H5S__hyper_span_precompute_helper(span->down, elmt_size); - - /* Change the nelem & pstride values into bytes */ - span->nelem *= elmt_size; - span->pstride *= elmt_size; - - /* Advance to next span */ - span = span->next; - } /* end while */ - } /* end if */ - - FUNC_LEAVE_NOAPI_VOID -} /* end H5S__hyper_span_precompute_helper() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S__hyper_span_precompute - PURPOSE - Precompute the nelem and pstrides in bytes. - USAGE - herr_t H5S__hyper_span_precompute(span_info, elmt_size) - H5S_hyper_span_info_t *span_info; IN/OUT: Span tree to work on - size_t elmt_size; IN: element size to work with - RETURNS - Non-negative on success, negative on failure - DESCRIPTION - Change the nelem and pstride values in the span tree from elements to - bytes using the elmt_size parameter. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static herr_t -H5S__hyper_span_precompute(H5S_hyper_span_info_t *spans, size_t elmt_size) -{ - FUNC_ENTER_STATIC_NOERR - - HDassert(spans); - - /* Call the helper routine to actually do the work */ - H5S__hyper_span_precompute_helper(spans, elmt_size); - - /* Reset the scratch pointers for the next routine which needs them */ - H5S__hyper_span_scratch(spans); - - FUNC_LEAVE_NOAPI(SUCCEED) -} /* end H5S__hyper_span_precompute() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S__hyper_span_scratch + H5S__hyper_new_span_info PURPOSE - Reset the scratch pointers on hyperslab span trees + Make a new hyperslab span info node USAGE - void H5S__hyper_span_scratch(span_info) - H5S_hyper_span_info_t *span_info; IN: Span tree to reset + H5S_hyper_span_info_t *H5S__hyper_new_span_info(rank) + unsigned rank; IN: Rank of span info, in selection RETURNS - <none> + Pointer to new span node info on success, NULL on failure DESCRIPTION - Reset the scratch pointers on a hyperslab span tree to NULL. + Allocate and initialize a new hyperslab span info node of a given rank, + setting up the low & high bound array pointers. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS + Note that this uses the C99 "flexible array member" feature. EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -static void -H5S__hyper_span_scratch(H5S_hyper_span_info_t *spans) +static H5S_hyper_span_info_t * +H5S__hyper_new_span_info(unsigned rank) { - FUNC_ENTER_STATIC_NOERR + H5S_hyper_span_info_t *ret_value = NULL; /* Return value */ - HDassert(spans); + FUNC_ENTER_STATIC - /* Check if we've already set this down span tree */ - if(spans->scratch != NULL) { - H5S_hyper_span_t *span; /* Hyperslab span */ + /* Sanity check */ + HDassert(rank > 0); + HDassert(rank <= H5S_MAX_RANK); - /* Reset the tree's scratch pointer */ - spans->scratch = NULL; + /* Allocate a new span info node */ + if(NULL == (ret_value = (H5S_hyper_span_info_t *)H5FL_ARR_CALLOC(hbounds_t, rank * 2))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info") - /* Set the scratch pointers in all the nodes */ - span = spans->head; - while(span != NULL) { - /* If there are down spans, set their scratch value also */ - if(span->down != NULL) - H5S__hyper_span_scratch(span->down); + /* Set low & high bound pointers into the 'bounds' array */ + ret_value->low_bounds = ret_value->bounds; + ret_value->high_bounds = &ret_value->bounds[rank]; - /* Advance to next span */ - span = span->next; - } /* end while */ - } /* end if */ - - FUNC_LEAVE_NOAPI_VOID -} /* end H5S__hyper_span_scratch() */ +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_new_span_info() */ /*-------------------------------------------------------------------------- @@ -2641,8 +2806,10 @@ H5S__hyper_span_scratch(H5S_hyper_span_info_t *spans) PURPOSE Helper routine to copy a hyperslab span tree USAGE - H5S_hyper_span_info_t * H5S__hyper_copy_span_helper(spans) - H5S_hyper_span_info_t *spans; IN: Span tree to copy + H5S_hyper_span_info_t * H5S__hyper_copy_span_helper(spans, rank) + H5S_hyper_span_info_t *spans; IN: Span tree to copy + unsigned rank; IN: Rank of span tree + uint64_t op_gen; IN: Operation generation RETURNS Pointer to the copied span tree on success, NULL on failure DESCRIPTION @@ -2653,7 +2820,8 @@ H5S__hyper_span_scratch(H5S_hyper_span_info_t *spans) REVISION LOG --------------------------------------------------------------------------*/ static H5S_hyper_span_info_t * -H5S__hyper_copy_span_helper(H5S_hyper_span_info_t *spans) +H5S__hyper_copy_span_helper(H5S_hyper_span_info_t *spans, unsigned rank, + uint64_t op_gen) { H5S_hyper_span_t *span; /* Hyperslab span */ H5S_hyper_span_t *new_span; /* Temporary hyperslab span */ @@ -2665,26 +2833,30 @@ H5S__hyper_copy_span_helper(H5S_hyper_span_info_t *spans) /* Sanity checks */ HDassert(spans); - HDassert(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)); /* Check if the span tree was already copied */ - if(spans->scratch != NULL) { + if(spans->op_gen == op_gen) { /* Just return the value of the already copied span tree */ - ret_value = spans->scratch; + ret_value = spans->u.copied; /* Increment the reference count of the span tree */ ret_value->count++; } /* end if */ else { /* Allocate a new span_info node */ - if(NULL == (ret_value = H5FL_CALLOC(H5S_hyper_span_info_t))) + if(NULL == (ret_value = H5S__hyper_new_span_info(rank))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span info") - /* Copy the span_info information */ + /* Set the non-zero span_info information */ + H5MM_memcpy(ret_value->low_bounds, spans->low_bounds, rank * sizeof(hsize_t)); + H5MM_memcpy(ret_value->high_bounds, spans->high_bounds, rank * sizeof(hsize_t)); ret_value->count = 1; - /* Set the scratch pointer in the node being copied to the newly allocated node */ - spans->scratch = ret_value; + /* Set the operation generation for the span info, to avoid future copies */ + spans->op_gen = op_gen; + + /* Set the 'copied' pointer in the node being copied to the newly allocated node */ + spans->u.copied = ret_value; /* Copy over the nodes in the span list */ span = spans->head; @@ -2700,12 +2872,9 @@ H5S__hyper_copy_span_helper(H5S_hyper_span_info_t *spans) else prev_span->next = new_span; - /* Copy the pstride */ - new_span->pstride = span->pstride; - /* Recurse to copy the 'down' spans, if there are any */ if(span->down != NULL) { - if(NULL == (new_down = H5S__hyper_copy_span_helper(span->down))) + if(NULL == (new_down = H5S__hyper_copy_span_helper(span->down, rank - 1, op_gen))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab spans") new_span->down = new_down; } /* end if */ @@ -2716,6 +2885,9 @@ H5S__hyper_copy_span_helper(H5S_hyper_span_info_t *spans) /* Advance to next span */ span = span->next; } /* end while */ + + /* Retain a pointer to the last span */ + ret_value->tail = prev_span; } /* end else */ done: @@ -2729,10 +2901,11 @@ done: PURPOSE Copy a hyperslab span tree USAGE - H5S_hyper_span_info_t * H5S__hyper_copy_span(span_info) - H5S_hyper_span_info_t *span_info; IN: Span tree to copy + H5S_hyper_span_info_t * H5S__hyper_copy_span(span_info, rank) + H5S_hyper_span_info_t *span_info; IN: Span tree to copy + unsigned rank; IN: Rank of span tree RETURNS - Non-negative on success, negative on failure + Pointer to the copied span tree on success, NULL on failure DESCRIPTION Copy a hyperslab span tree, using reference counting as appropriate. (Which means that just the nodes in the top span tree are duplicated and @@ -2743,8 +2916,9 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static H5S_hyper_span_info_t * -H5S__hyper_copy_span(H5S_hyper_span_info_t *spans) +H5S__hyper_copy_span(H5S_hyper_span_info_t *spans, unsigned rank) { + uint64_t op_gen; /* Operation generation value */ H5S_hyper_span_info_t *ret_value = NULL; /* Return value */ FUNC_ENTER_STATIC @@ -2752,13 +2926,13 @@ H5S__hyper_copy_span(H5S_hyper_span_info_t *spans) /* Sanity check */ HDassert(spans); + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); + /* Copy the hyperslab span tree */ - if(NULL == (ret_value = H5S__hyper_copy_span_helper(spans))) + if(NULL == (ret_value = H5S__hyper_copy_span_helper(spans, rank, op_gen))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, NULL, "can't copy hyperslab span tree") - /* Reset the scratch pointers for the next routine which needs them */ - H5S__hyper_span_scratch(spans); - done: FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_copy_span() */ @@ -2787,72 +2961,75 @@ static H5_ATTR_PURE hbool_t H5S__hyper_cmp_spans(const H5S_hyper_span_info_t *span_info1, const H5S_hyper_span_info_t *span_info2) { - hbool_t ret_value = FALSE; /* Return value */ + hbool_t ret_value = TRUE; /* Return value */ FUNC_ENTER_STATIC_NOERR /* Check for redundant comparison (or both spans being NULL) */ - if(span_info1 == span_info2) - ret_value = TRUE; - else { + if(span_info1 != span_info2) { /* Check for one span being NULL */ if(span_info1 == NULL || span_info2 == NULL) - ret_value = FALSE; + HGOTO_DONE(FALSE) else { - const H5S_hyper_span_t *span1; - const H5S_hyper_span_t *span2; - - /* Get the pointers to the actual lists of spans */ - span1 = span_info1->head; - span2 = span_info2->head; - - /* Sanity checking */ - HDassert(span1); - HDassert(span2); - - /* infinite loop which must be broken out of */ - while(1) { - /* Check for both spans being NULL */ - if(span1 == NULL && span2 == NULL) { - ret_value = TRUE; - break; - } /* end if */ - else { - /* Check for one span being NULL */ - if(span1 == NULL || span2 == NULL) { - ret_value = FALSE; - break; - } /* end if */ + /* Compare low & high bounds for this span list */ + /* (Could compare lower dimensions also, but not certain if + * that's worth it. - QAK, 2019/01/23) + */ + if(span_info1->low_bounds[0] != span_info2->low_bounds[0]) + HGOTO_DONE(FALSE) + else if(span_info1->high_bounds[0] != span_info2->high_bounds[0]) + HGOTO_DONE(FALSE) + else { + const H5S_hyper_span_t *span1; + const H5S_hyper_span_t *span2; + + /* Get the pointers to the actual lists of spans */ + span1 = span_info1->head; + span2 = span_info2->head; + + /* Sanity checking */ + HDassert(span1); + HDassert(span2); + + /* infinite loop which must be broken out of */ + while(1) { + /* Check for both spans being NULL */ + if(span1 == NULL && span2 == NULL) + HGOTO_DONE(TRUE) else { - /* Check if the actual low & high span information is the same */ - if(span1->low != span2->low || span1->high != span2->high) { - ret_value = FALSE; - break; - } /* end if */ + /* Check for one span being NULL */ + if(span1 == NULL || span2 == NULL) + HGOTO_DONE(FALSE) else { - if(span1->down != NULL || span2 != NULL) { - if(!H5S__hyper_cmp_spans(span1->down, span2->down)) { - ret_value = FALSE; - break; + /* Check if the actual low & high span information is the same */ + if(span1->low != span2->low || span1->high != span2->high) + HGOTO_DONE(FALSE) + else { + if(span1->down != NULL || span2->down != NULL) { + if(!H5S__hyper_cmp_spans(span1->down, span2->down)) + HGOTO_DONE(FALSE) + else { + /* Keep going... */ + } /* end else */ } /* end if */ else { /* Keep going... */ } /* end else */ - } /* end if */ - else { - /* Keep going... */ } /* end else */ } /* end else */ } /* end else */ - } /* end else */ - /* Advance to the next nodes in the span list */ - span1 = span1->next; - span2 = span2->next; - } /* end while */ + /* Advance to the next nodes in the span list */ + span1 = span1->next; + span2 = span2->next; + } /* end while */ + } /* end else */ } /* end else */ - } /* end else */ + } /* end if */ + /* Fall through, with default return value of 'TRUE' if spans were already visited */ + +done: FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_cmp_spans() */ @@ -2863,10 +3040,10 @@ H5S__hyper_cmp_spans(const H5S_hyper_span_info_t *span_info1, PURPOSE Free a hyperslab span info node USAGE - herr_t H5S__hyper_free_span_info(span_info) + void H5S__hyper_free_span_info(span_info) H5S_hyper_span_info_t *span_info; IN: Span info node to free RETURNS - Non-negative on success, negative on failure + None DESCRIPTION Free a hyperslab span info node, along with all the span nodes and the 'down spans' from the nodes, if reducing their reference count to zero @@ -2876,14 +3053,12 @@ H5S__hyper_cmp_spans(const H5S_hyper_span_info_t *span_info1, EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -static herr_t +static void H5S__hyper_free_span_info(H5S_hyper_span_info_t *span_info) { - H5S_hyper_span_t *span, *next_span; - herr_t ret_value = SUCCEED; /* Return value */ - - FUNC_ENTER_STATIC + FUNC_ENTER_STATIC_NOERR + /* Sanity check */ HDassert(span_info); /* Decrement the span tree's reference count */ @@ -2891,22 +3066,28 @@ H5S__hyper_free_span_info(H5S_hyper_span_info_t *span_info) /* Free the span tree if the reference count drops to zero */ if(span_info->count == 0) { + H5S_hyper_span_t *span; /* Pointer to spans to iterate over */ /* Work through the list of spans pointed to by this 'info' node */ span = span_info->head; while(span != NULL) { + H5S_hyper_span_t *next_span; /* Pointer to next span to iterate over */ + + /* Keep a pointer to the next span */ next_span = span->next; - if(H5S__hyper_free_span(span) < 0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab span") + + /* Free the current span */ + H5S__hyper_free_span(span); + + /* Advance to next span */ span = next_span; } /* end while */ /* Free this span info */ - span_info = H5FL_FREE(H5S_hyper_span_info_t, span_info); + span_info = (H5S_hyper_span_info_t *)H5FL_ARR_FREE(hbounds_t, span_info); } /* end if */ -done: - FUNC_LEAVE_NOAPI(ret_value) + FUNC_LEAVE_NOAPI_VOID } /* end H5S__hyper_free_span_info() */ @@ -2916,10 +3097,10 @@ done: PURPOSE Free a hyperslab span node USAGE - herr_t H5S__hyper_free_span(span) + void H5S__hyper_free_span(span) H5S_hyper_span_t *span; IN: Span node to free RETURNS - Non-negative on success, negative on failure + None DESCRIPTION Free a hyperslab span node, along with the 'down spans' from the node, if reducing their reference count to zero indicates it is appropriate to @@ -2929,25 +3110,22 @@ done: EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -static herr_t +static void H5S__hyper_free_span(H5S_hyper_span_t *span) { - herr_t ret_value = SUCCEED; - - FUNC_ENTER_STATIC + FUNC_ENTER_STATIC_NOERR + /* Sanity check */ HDassert(span); /* Decrement the reference count of the 'down spans', freeing them if appropriate */ if(span->down != NULL) - if(H5S__hyper_free_span_info(span->down) < 0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab span tree") + H5S__hyper_free_span_info(span->down); /* Free this span */ span = H5FL_FREE(H5S_hyper_span_t, span); -done: - FUNC_LEAVE_NOAPI(ret_value) + FUNC_LEAVE_NOAPI_VOID } /* end H5S__hyper_free_span() */ @@ -2962,7 +3140,7 @@ done: H5S_t *src; IN: Pointer to the source dataspace hbool_t; IN: Whether to share the selection between the dataspaces RETURNS - Non-negative on success/Negative on failure + Non-negative on success, negative on failure DESCRIPTION Copies all the hyperslab selection information from the source dataspace to the destination dataspace. @@ -2999,15 +3177,8 @@ H5S__hyper_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection) /* Copy the hyperslab information */ dst_hslab->diminfo_valid = src_hslab->diminfo_valid; - if(src_hslab->diminfo_valid) { - size_t u; /* Local index variable */ - - for(u=0; u<src->extent.rank; u++) { - dst_hslab->opt_diminfo[u]=src_hslab->opt_diminfo[u]; - dst_hslab->app_diminfo[u]=src_hslab->app_diminfo[u]; - } /* end for */ - } /* end if */ - dst->select.sel_info.hslab->span_lst=src->select.sel_info.hslab->span_lst; + if(src_hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) + H5MM_memcpy(&dst_hslab->diminfo, &src_hslab->diminfo, sizeof(H5S_hyper_diminfo_t)); /* Check if there is hyperslab span information to copy */ /* (Regular hyperslab information is copied with the selection structure) */ @@ -3019,7 +3190,7 @@ H5S__hyper_copy(H5S_t *dst, const H5S_t *src, hbool_t share_selection) } /* end if */ else /* Copy the hyperslab span information */ - dst->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(src->select.sel_info.hslab->span_lst); + dst->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(src->select.sel_info.hslab->span_lst, src->extent.rank); } /* end if */ else dst->select.sel_info.hslab->span_lst = NULL; @@ -3035,18 +3206,16 @@ done: /*-------------------------------------------------------------------------- NAME - H5S__hyper_is_valid_helper + H5S__hyper_is_valid PURPOSE Check whether the selection fits within the extent, with the current offset defined. USAGE - hbool_t H5S__hyper_is_valid_helper(spans, offset, rank); - const H5S_hyper_span_info_t *spans; IN: Pointer to current hyperslab span tree - const hssize_t *offset; IN: Pointer to offset array - const hsize_t *size; IN: Pointer to size array - hsize_t rank; IN: Current rank looking at + htri_t H5S__hyper_is_valid(space); + H5S_t *space; IN: Dataspace pointer to query RETURNS - TRUE if the selection fits within the extent, FALSE if it does not + TRUE if the selection fits within the extent, FALSE if it does not and + Negative on an error. DESCRIPTION Determines if the current selection at the current offset fits within the extent for the dataspace. @@ -3055,109 +3224,109 @@ done: EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -static hbool_t -H5S__hyper_is_valid_helper(const H5S_hyper_span_info_t *spans, const hssize_t *offset, - const hsize_t *size) +static htri_t +H5S__hyper_is_valid(const H5S_t *space) { - H5S_hyper_span_t *curr; /* Hyperslab information nodes */ - hbool_t ret_value = TRUE; /* Return value */ + const hsize_t *low_bounds, *high_bounds; /* Pointers to the correct pair of low & high bounds */ + unsigned u; /* Counter */ + htri_t ret_value = TRUE; /* return value */ FUNC_ENTER_STATIC_NOERR - HDassert(spans); - HDassert(offset); - HDassert(size); + HDassert(space); - /* Check each point to determine whether selection + offset is within extent */ - curr = spans->head; - while(curr != NULL) { - /* Check if an offset has been defined */ - /* Bounds check the selected point + offset against the extent */ - if((((hssize_t)curr->low + *offset) >= (hssize_t)*size) - || (((hssize_t)curr->low + *offset) < 0) - || (((hssize_t)curr->high + *offset) >= (hssize_t)*size) - || (((hssize_t)curr->high + *offset) < 0)) - HGOTO_DONE(FALSE) + /* Check for unlimited selection */ + if(space->select.sel_info.hslab->unlim_dim >= 0) + HGOTO_DONE(FALSE) - /* Recurse if this node has down spans */ - if(curr->down != NULL) - if(!H5S__hyper_is_valid_helper(curr->down, offset + 1, size + 1)) - HGOTO_DONE(FALSE) + /* Check which set of low & high bounds we should be using */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + low_bounds = space->select.sel_info.hslab->diminfo.low_bounds; + high_bounds = space->select.sel_info.hslab->diminfo.high_bounds; + } /* end if */ + else { + low_bounds = space->select.sel_info.hslab->span_lst->low_bounds; + high_bounds = space->select.sel_info.hslab->span_lst->high_bounds; + } /* end else */ - /* Advance to next node */ - curr = curr->next; - } /* end while */ + /* Check each dimension */ + for(u = 0; u < space->extent.rank; u++) { + /* Bounds check the selected point + offset against the extent */ + if(((hssize_t)low_bounds[u] + space->select.offset[u]) < 0) + HGOTO_DONE(FALSE) + if((high_bounds[u] + (hsize_t)space->select.offset[u]) >= space->extent.size[u]) + HGOTO_DONE(FALSE) + } /* end for */ done: FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__hyper_is_valid_helper() */ +} /* end H5S__hyper_is_valid() */ /*-------------------------------------------------------------------------- NAME - H5S__hyper_is_valid + H5S__hyper_span_nblocks_helper PURPOSE - Check whether the selection fits within the extent, with the current - offset defined. + Helper routine to count the number of blocks in a span tree USAGE - htri_t H5S__hyper_is_valid(space); - H5S_t *space; IN: Dataspace pointer to query + hsize_t H5S__hyper_span_nblocks_helper(spans) + H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to count blocks of + uint64_t op_gen; IN: Operation generation RETURNS - TRUE if the selection fits within the extent, FALSE if it does not and - Negative on an error. + Number of blocks in span tree on success; negative on failure DESCRIPTION - Determines if the current selection at the current offset fits within the - extent for the dataspace. + Counts the number of blocks described by the spans in a span tree. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ -static htri_t -H5S__hyper_is_valid(const H5S_t *space) +static hsize_t +H5S__hyper_span_nblocks_helper(H5S_hyper_span_info_t *spans, uint64_t op_gen) { - htri_t ret_value = TRUE; /* return value */ + hsize_t ret_value = 0; /* Return value */ FUNC_ENTER_STATIC_NOERR - HDassert(space); + /* Sanity check */ + HDassert(spans); - /* Check for unlimited selection */ - if(space->select.sel_info.hslab->unlim_dim >= 0) - HGOTO_DONE(FALSE) + /* Check if the span tree was already counted */ + if(spans->op_gen == op_gen) + /* Just return the # of blocks in the already counted span tree */ + ret_value = spans->u.nblocks; + else { /* Count the number of elements in the span tree */ + H5S_hyper_span_t *span; /* Hyperslab span */ - /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { - const H5S_hyper_dim_t *diminfo=space->select.sel_info.hslab->opt_diminfo; /* local alias for diminfo */ - hssize_t end; /* The high bound of a region in a dimension */ - unsigned u; /* Counter */ + span = spans->head; + if(span->down) { + while(span) { + /* If there are down spans, add the total down span blocks */ + ret_value += H5S__hyper_span_nblocks_helper(span->down, op_gen); - /* Check each dimension */ - for(u = 0; u < space->extent.rank; u++) { - /* if block or count is zero, then can skip the test since */ - /* no data point is chosen */ - if(diminfo[u].count && diminfo[u].block) { - /* Bounds check the start point in this dimension */ - if(((hssize_t)diminfo[u].start + space->select.offset[u]) < 0 || - ((hssize_t)diminfo[u].start + space->select.offset[u]) >= (hssize_t)space->extent.size[u]) - HGOTO_DONE(FALSE) + /* Advance to next span */ + span = span->next; + } /* end while */ + } /* end if */ + else { + while(span) { + /* If there are no down spans, just count the block in this span */ + ret_value++; - /* Compute the largest location in this dimension */ - end = (hssize_t)(diminfo[u].start + diminfo[u].stride * (diminfo[u].count - 1) + (diminfo[u].block - 1)) + space->select.offset[u]; + /* Advance to next span */ + span = span->next; + } /* end while */ + } /* end else */ - /* Bounds check the end point in this dimension */ - if(end < 0 || end >= (hssize_t)space->extent.size[u]) - HGOTO_DONE(FALSE) - } /* end if */ - } /* end for */ - } /* end if */ - else - /* Call the recursive routine to validate the span tree */ - ret_value = H5S__hyper_is_valid_helper(space->select.sel_info.hslab->span_lst, space->select.offset, space->extent.size); + /* Set the operation generation for this span tree, to avoid re-computing */ + spans->op_gen = op_gen; + + /* Hold a copy of the # of blocks */ + spans->u.nblocks = ret_value; + } /* end else */ -done: FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__hyper_is_valid() */ +} /* end H5S__hyper_span_nblocks_helper() */ /*-------------------------------------------------------------------------- @@ -3167,7 +3336,7 @@ done: Count the number of blocks in a span tree USAGE hsize_t H5S__hyper_span_nblocks(spans) - const H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to count elements of + H5S_hyper_span_info_t *spans; IN: Hyperslab span tree to count blocks of RETURNS Number of blocks in span tree on success; negative on failure DESCRIPTION @@ -3178,7 +3347,7 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static hsize_t -H5S__hyper_span_nblocks(const H5S_hyper_span_info_t *spans) +H5S__hyper_span_nblocks(H5S_hyper_span_info_t *spans) { hsize_t ret_value = 0; /* Return value */ @@ -3186,21 +3355,13 @@ H5S__hyper_span_nblocks(const H5S_hyper_span_info_t *spans) /* Count the number of elements in the span tree */ if(spans != NULL) { - H5S_hyper_span_t *span; /* Hyperslab span */ + uint64_t op_gen; /* Operation generation value */ - span = spans->head; - while(span != NULL) { - /* If there are down spans, add the total down span blocks */ - if(span->down != NULL) - ret_value += H5S__hyper_span_nblocks(span->down); - /* If there are no down spans, just count the block in this span */ - else - ret_value++; + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); - /* Advance to next span */ - span = span->next; - } /* end while */ - } /* end else */ + ret_value = H5S__hyper_span_nblocks_helper(spans, op_gen); + } /* end if */ FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_span_nblocks() */ @@ -3235,13 +3396,14 @@ H5S__get_select_hyper_nblocks(const H5S_t *space, hbool_t app_ref) HDassert(space->select.sel_info.hslab->unlim_dim < 0); /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { + /* (No need to rebuild the dimension info yet -QAK) */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { unsigned u; /* Local index variable */ /* Check each dimension */ for(ret_value = 1, u = 0; u < space->extent.rank; u++) - ret_value *= (app_ref ? space->select.sel_info.hslab->app_diminfo[u].count : - space->select.sel_info.hslab->opt_diminfo[u].count); + ret_value *= (app_ref ? space->select.sel_info.hslab->diminfo.app[u].count : + space->select.sel_info.hslab->diminfo.opt[u].count); } /* end if */ else ret_value = H5S__hyper_span_nblocks(space->select.sel_info.hslab->span_lst); @@ -3380,11 +3542,10 @@ H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_ /* Get bounding box for the selection */ HDmemset(bounds_end, 0, sizeof(bounds_end)); - if(space->select.sel_info.hslab->unlim_dim < 0) { /* ! H5S_UNLIMITED */ + if(space->select.sel_info.hslab->unlim_dim < 0) /* ! H5S_UNLIMITED */ /* Get bounding box for the selection */ if(H5S__hyper_bounds(space, bounds_start, bounds_end) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTGET, FAIL, "can't get selection bounds") - } /* Determine whether the number of blocks or the high bounds in the selection exceed (2^32 - 1) */ if(block_count > H5S_UINT32_MAX) @@ -3394,8 +3555,8 @@ H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_ if(bounds_end[u] > H5S_UINT32_MAX) { bound_up_version = TRUE; break; - } - } + } /* end if */ + } /* end else */ /* Get the file's low_bound and high_bound */ if(H5CX_get_libver_bounds(&low_bound, &high_bound) < 0) @@ -3406,14 +3567,12 @@ H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_ if(low_bound >= H5F_LIBVER_V112 || space->select.sel_info.hslab->unlim_dim >= 0) tmp_version = MAX(H5S_HYPER_VERSION_2, H5O_sds_hyper_ver_bounds[low_bound]); - else { if(count_up_version || bound_up_version) tmp_version = is_regular ? H5S_HYPER_VERSION_2 : H5S_HYPER_VERSION_3; else tmp_version = (is_regular && block_count >= 4) ? H5O_sds_hyper_ver_bounds[low_bound] : H5S_HYPER_VERSION_1; - - } + } /* end else */ /* Version bounds check */ if(tmp_version > H5O_sds_hyper_ver_bounds[high_bound]) { @@ -3424,7 +3583,7 @@ H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_ HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "The end of bounding box in hyperslab selection exceeds 2^32") else HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "Dataspace hyperslab selection version out of bounds") - } + } /* end if */ /* Set the message version */ *version = tmp_version; @@ -3447,30 +3606,31 @@ H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_ /* Find max for count[] and block[] */ for(u = 0; u < space->extent.rank; u++) { - if(space->select.sel_info.hslab->opt_diminfo[u].count != H5S_UNLIMITED && - space->select.sel_info.hslab->opt_diminfo[u].count > max1) - max1 = space->select.sel_info.hslab->opt_diminfo[u].count; - if(space->select.sel_info.hslab->opt_diminfo[u].block != H5S_UNLIMITED && - space->select.sel_info.hslab->opt_diminfo[u].block > max1) - max1 = space->select.sel_info.hslab->opt_diminfo[u].block; - } + if(space->select.sel_info.hslab->diminfo.opt[u].count != H5S_UNLIMITED && + space->select.sel_info.hslab->diminfo.opt[u].count > max1) + max1 = space->select.sel_info.hslab->diminfo.opt[u].count; + if(space->select.sel_info.hslab->diminfo.opt[u].block != H5S_UNLIMITED && + space->select.sel_info.hslab->diminfo.opt[u].block > max1) + max1 = space->select.sel_info.hslab->diminfo.opt[u].block; + } /* end for */ /* +1 to provide room for H5S_UNLIMITED */ enc1 = H5S__hyper_get_enc_size_real(++max1); /* Find max for start[] and stride[] */ for(u = 0; u < space->extent.rank; u++) { - if(space->select.sel_info.hslab->opt_diminfo[u].start > max2) - max2 = space->select.sel_info.hslab->opt_diminfo[u].start; - if(space->select.sel_info.hslab->opt_diminfo[u].stride > max2) - max2 = space->select.sel_info.hslab->opt_diminfo[u].stride; - } + if(space->select.sel_info.hslab->diminfo.opt[u].start > max2) + max2 = space->select.sel_info.hslab->diminfo.opt[u].start; + if(space->select.sel_info.hslab->diminfo.opt[u].stride > max2) + max2 = space->select.sel_info.hslab->diminfo.opt[u].stride; + } /* end for */ /* Determine the encoding size */ enc2 = H5S__hyper_get_enc_size_real(max2); *enc_size = MAX(enc1, enc2); - } else { + } /* end if */ + else { hsize_t max_size = block_count; HDassert(space->select.sel_info.hslab->unlim_dim < 0); @@ -3481,19 +3641,18 @@ H5S__hyper_get_version_enc_size(const H5S_t *space, hsize_t block_count, uint32_ /* Determine the encoding size */ *enc_size = H5S__hyper_get_enc_size_real(max_size); - } + } /* end else */ break; default: HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown hyperslab selection version") break; - } + } /* end switch */ done: FUNC_LEAVE_NOAPI(ret_value) } /* H5S__hyper_get_version_enc_size() */ - /*-------------------------------------------------------------------------- NAME @@ -3556,8 +3715,9 @@ H5S__hyper_serial_size(const H5S_t *space) ret_value = 14 + enc_size; H5_CHECK_OVERFLOW(((unsigned)2 * enc_size * space->extent.rank * block_count), hsize_t, hssize_t); ret_value += (hssize_t)((unsigned)2 * enc_size * space->extent.rank * block_count); - } - } else if(version == H5S_HYPER_VERSION_2) { + } /* end else */ + } /* end if */ + else if(version == H5S_HYPER_VERSION_2) { /* Version 2 */ /* Size required is always: * <type (4 bytes)> + <version (4 bytes)> + <flags (1 byte)> + @@ -3567,7 +3727,8 @@ H5S__hyper_serial_size(const H5S_t *space) */ HDassert(enc_size == 8); ret_value = (hssize_t)17 + ((hssize_t)4 * (hssize_t)8 * (hssize_t)space->extent.rank); - } else { + } /* end else-if */ + else { HDassert(version == H5S_HYPER_VERSION_1); HDassert(enc_size == 4); /* Version 1 */ @@ -3583,7 +3744,6 @@ H5S__hyper_serial_size(const H5S_t *space) } /* end else */ done: - FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_serial_size() */ @@ -3746,7 +3906,7 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) hsize_t block_count = 0; /* block counter for regular hyperslabs */ unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ unsigned ndims; /* Rank of the dataspace */ - unsigned i, u; /* Local counting variable */ + unsigned u; /* Local counting variable */ hbool_t complete = FALSE; /* Whether we are done with the iteration */ hbool_t is_regular; /* Whether selection is regular */ uint8_t enc_size; @@ -3762,7 +3922,7 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) /* Set some convienence values */ ndims = space->extent.rank; - diminfo = space->select.sel_info.hslab->opt_diminfo; + diminfo = space->select.sel_info.hslab->diminfo.opt; if(space->select.sel_info.hslab->unlim_dim < 0) /* ! H5S_UNLIMITED */ block_count = H5S__get_select_hyper_nblocks(space, FALSE); @@ -3773,7 +3933,7 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) is_regular = H5S__hyper_is_regular(space); if(is_regular && - (version == H5S_HYPER_VERSION_2 || version == H5S_HYPER_VERSION_3)) + (version == H5S_HYPER_VERSION_2 || version == H5S_HYPER_VERSION_3)) flags |= H5S_HYPER_REGULAR; /* Store the preamble information */ @@ -3783,8 +3943,8 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) if(version >= 3) { *(pp)++ = flags; /* Store the flags */ *(pp)++ = enc_size; /* Store size of offset info */ - - } else { + } /* end if */ + else { if(version == 2) *(pp)++ = flags; /* Store the flags */ else @@ -3793,15 +3953,13 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) pp += 4; /* skip over space for length */ len += 4; /* ndims */ - } + } /* end else */ /* Encode number of dimensions */ UINT32ENCODE(pp, (uint32_t)ndims); if(is_regular) { - if(version >= H5S_HYPER_VERSION_2) { - HDassert(H5S_UNLIMITED == HSIZE_UNDEF); /* Iterate over dimensions */ @@ -3809,56 +3967,49 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) switch(enc_size) { case H5S_SELECT_INFO_ENC_SIZE_2: HDassert(version == H5S_HYPER_VERSION_3); - for(i = 0; i < space->extent.rank; i++) { - UINT16ENCODE(pp, diminfo[i].start); - UINT16ENCODE(pp, diminfo[i].stride); - if(diminfo[i].count == H5S_UNLIMITED) { - UINT16ENCODE(pp, H5S_UINT16_MAX); - } else { - UINT16ENCODE(pp, diminfo[i].count); - } - - if(diminfo[i].block == H5S_UNLIMITED) { - UINT16ENCODE(pp, H5S_UINT16_MAX); - } else { - UINT16ENCODE(pp, diminfo[i].block); - } + for(u = 0; u < space->extent.rank; u++) { + UINT16ENCODE(pp, diminfo[u].start); + UINT16ENCODE(pp, diminfo[u].stride); + if(diminfo[u].count == H5S_UNLIMITED) + UINT16ENCODE(pp, H5S_UINT16_MAX) + else + UINT16ENCODE(pp, diminfo[u].count) + if(diminfo[u].block == H5S_UNLIMITED) + UINT16ENCODE(pp, H5S_UINT16_MAX) + else + UINT16ENCODE(pp, diminfo[u].block) } /* end for */ break; case H5S_SELECT_INFO_ENC_SIZE_4: HDassert(version == H5S_HYPER_VERSION_3); - for(i = 0; i < space->extent.rank; i++) { - UINT32ENCODE(pp, diminfo[i].start); - UINT32ENCODE(pp, diminfo[i].stride); - if(diminfo[i].count == H5S_UNLIMITED) { - UINT32ENCODE(pp, H5S_UINT32_MAX); - } else { - UINT32ENCODE(pp, diminfo[i].count); - } - if(diminfo[i].block == H5S_UNLIMITED) { - UINT32ENCODE(pp, H5S_UINT32_MAX); - } else { - UINT32ENCODE(pp, diminfo[i].block); - } + for(u = 0; u < space->extent.rank; u++) { + UINT32ENCODE(pp, diminfo[u].start); + UINT32ENCODE(pp, diminfo[u].stride); + if(diminfo[u].count == H5S_UNLIMITED) + UINT32ENCODE(pp, H5S_UINT32_MAX) + else + UINT32ENCODE(pp, diminfo[u].count) + if(diminfo[u].block == H5S_UNLIMITED) + UINT32ENCODE(pp, H5S_UINT32_MAX) + else + UINT32ENCODE(pp, diminfo[u].block) } /* end for */ break; case H5S_SELECT_INFO_ENC_SIZE_8: HDassert(version == H5S_HYPER_VERSION_2 || version == H5S_HYPER_VERSION_3); - for(i = 0; i < space->extent.rank; i++) { - UINT64ENCODE(pp, diminfo[i].start); - UINT64ENCODE(pp, diminfo[i].stride); - if(diminfo[i].count == H5S_UNLIMITED) { - UINT64ENCODE(pp, H5S_UINT64_MAX); - } else { - UINT64ENCODE(pp, diminfo[i].count); - } - if(diminfo[i].block == H5S_UNLIMITED) { - UINT64ENCODE(pp, H5S_UINT64_MAX); - } else { - UINT64ENCODE(pp, diminfo[i].block); - } + for(u = 0; u < space->extent.rank; u++) { + UINT64ENCODE(pp, diminfo[u].start); + UINT64ENCODE(pp, diminfo[u].stride); + if(diminfo[u].count == H5S_UNLIMITED) + UINT64ENCODE(pp, H5S_UINT64_MAX) + else + UINT64ENCODE(pp, diminfo[u].count) + if(diminfo[u].block == H5S_UNLIMITED) + UINT64ENCODE(pp, H5S_UINT64_MAX) + else + UINT64ENCODE(pp, diminfo[u].block) } /* end for */ if(version == H5S_HYPER_VERSION_2) len += (4 * space->extent.rank * 8); @@ -3867,9 +4018,8 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab") break; } /* end switch */ - - } else { - + } /* end if */ + else { HDassert(version == H5S_HYPER_VERSION_1); /* Set some convienence values */ @@ -3945,11 +4095,9 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) for(u = 0; u < ndims; u++) offset[u] = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]); } /* end while */ - } /* end else */ - - } else { /* irregular */ - + } /* end if */ + else { /* irregular */ /* Encode number of hyperslabs */ switch(enc_size) { case H5S_SELECT_INFO_ENC_SIZE_2: @@ -3975,16 +4123,15 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) } /* end switch */ if(version == H5S_HYPER_VERSION_1) { - len+=4; /* block_count */ + len += 4; /* block_count */ /* Add 8 bytes times the rank for each hyperslab selected */ H5_CHECK_OVERFLOW((8 * ndims * block_count), hsize_t, size_t); len += (uint32_t)(8 * ndims * block_count); - } + } /* end if */ H5S__hyper_serialize_helper(space->select.sel_info.hslab->span_lst, start, end, (hsize_t)0, enc_size, &pp); - - } + } /* end else */ /* Encode length */ if(version <= H5S_HYPER_VERSION_2) @@ -3995,8 +4142,7 @@ H5S__hyper_serialize(const H5S_t *space, uint8_t **p) done: FUNC_LEAVE_NOAPI(ret_value) -} /* H5S__hyper_serialize() */ - +} /* end H5S__hyper_serialize() */ /*-------------------------------------------------------------------------- @@ -4066,20 +4212,21 @@ H5S__hyper_deserialize(H5S_t **space, const uint8_t **p) if(version >= (uint32_t)H5S_HYPER_VERSION_3) /* decode size of offset info */ enc_size = *(pp)++; - else { + else { /* Skip over the remainder of the header */ pp += 4; enc_size = H5S_SELECT_INFO_ENC_SIZE_8; - } + } /* end else */ /* Check for unknown flags */ if(flags & ~H5S_SELECT_FLAG_BITS) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTLOAD, FAIL, "unknown flag for selection") - } else { + } /* end if */ + else { /* Skip over the remainder of the header */ pp += 8; enc_size = H5S_SELECT_INFO_ENC_SIZE_4; - } + } /* end else */ /* Check encoded */ if(enc_size & ~H5S_SELECT_INFO_ENC_SIZE_BITS) @@ -4190,14 +4337,13 @@ H5S__hyper_deserialize(H5S_t **space, const uint8_t **p) default: HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab") break; - } + } /* end switch */ /* Set the count & stride for all blocks */ stride = count = H5S_hyper_ones_g; /* Retrieve the coordinates from the buffer */ for(u = 0; u < num_elem; u++) { - /* Decode the starting and ending points */ switch(enc_size) { case H5S_SELECT_INFO_ENC_SIZE_2: @@ -4224,7 +4370,7 @@ H5S__hyper_deserialize(H5S_t **space, const uint8_t **p) default: HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "unknown offset info size for hyperslab") break; - } + } /* end switch */ /* Change the ending points into blocks */ for(tblock = block, tstart = start, tend = end, v = 0; v < rank; v++, tstart++, tend++, tblock++) @@ -4292,7 +4438,6 @@ H5S__hyper_span_blocklist(const H5S_hyper_span_info_t *spans, hsize_t start[], hsize_t **buf) { const H5S_hyper_span_t *curr; /* Pointer to current hyperslab span */ - hsize_t u; /* Index variable */ herr_t ret_value = SUCCEED; /* return value */ FUNC_ENTER_STATIC @@ -4330,19 +4475,19 @@ H5S__hyper_span_blocklist(const H5S_hyper_span_info_t *spans, hsize_t start[], /* Encode all the previous dimensions starting & ending points */ /* Copy previous starting points */ - for(u = 0; u < rank; u++, (*buf)++) - H5MM_memcpy(*buf, &start[u], sizeof(hsize_t)); + H5MM_memcpy(*buf, start, rank * sizeof(hsize_t)); + (*buf) += rank; /* Copy starting point for this span */ - H5MM_memcpy(*buf, &curr->low, sizeof(hsize_t)); + **buf = curr->low; (*buf)++; /* Copy previous ending points */ - for(u = 0; u < rank; u++, (*buf)++) - H5MM_memcpy(*buf, &end[u], sizeof(hsize_t)); + H5MM_memcpy(*buf, end, rank * sizeof(hsize_t)); + (*buf) += rank; - /* Copy starting point for this span */ - H5MM_memcpy(*buf, &curr->high, sizeof(hsize_t)); + /* Copy ending point for this span */ + **buf = curr->high; (*buf)++; /* Decrement the number of blocks processed */ @@ -4390,7 +4535,8 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblock, hsize_t numblocks, hsize_t *buf) +H5S__get_select_hyper_blocklist(H5S_t *space, hsize_t startblock, + hsize_t numblocks, hsize_t *buf) { herr_t ret_value = SUCCEED; /* Return value */ @@ -4400,11 +4546,18 @@ H5S__get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblo HDassert(buf); HDassert(space->select.sel_info.hslab->unlim_dim < 0); + /* Attempt to rebuild diminfo if it is invalid and has not been confirmed + * to be impossible. + */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO) + H5S__hyper_rebuild(space); + /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { const H5S_hyper_dim_t *diminfo; /* Alias for dataspace's diminfo information */ hsize_t tmp_count[H5S_MAX_RANK]; /* Temporary hyperslab counts */ hsize_t offset[H5S_MAX_RANK]; /* Offset of element in dataspace */ + hsize_t end[H5S_MAX_RANK]; /* End of elements in dataspace */ unsigned fast_dim; /* Rank of the fastest changing dimension for the dataspace */ unsigned ndims; /* Rank of the dataspace */ hbool_t done; /* Whether we are done with the iteration */ @@ -4415,31 +4568,25 @@ H5S__get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblo fast_dim = ndims - 1; /* Check which set of dimension information to use */ - if(internal) + if(space->select.sel_info.hslab->unlim_dim >= 0) /* - * Use the "optimized dimension information" to pass back information - * on the blocks set, not the "application information". + * There is an unlimited dimension so we must use diminfo.opt as + * it has been "clipped" to the current extent. */ - diminfo = space->select.sel_info.hslab->opt_diminfo; + diminfo = space->select.sel_info.hslab->diminfo.opt; else - if(space->select.sel_info.hslab->unlim_dim >= 0) - /* - * There is an unlimited dimension so we must use opt_diminfo as - * it has been "clipped" to the current extent. - */ - diminfo = space->select.sel_info.hslab->opt_diminfo; - else - /* - * Use the "application dimension information" to pass back to - * the user the blocks they set, not the optimized, internal - * information. - */ - diminfo = space->select.sel_info.hslab->app_diminfo; + /* + * Use the "application dimension information" to pass back to + * the user the blocks they set, not the optimized, internal + * information. + */ + diminfo = space->select.sel_info.hslab->diminfo.app; /* Build the tables of count sizes as well as the initial offset */ for(u = 0; u < ndims; u++) { tmp_count[u] = diminfo[u].count; offset[u] = diminfo[u].start; + end[u] = diminfo[u].start + (diminfo[u].block - 1); } /* end for */ /* We're not done with the iteration */ @@ -4447,31 +4594,45 @@ H5S__get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblo /* Go iterate over the hyperslabs */ while(!done && numblocks > 0) { - hsize_t temp_off; /* Offset in a given dimension */ + /* Skip over initial blocks */ + if(startblock > 0) { + /* Skip all blocks in row */ + if(startblock >= tmp_count[fast_dim]) { + startblock -= tmp_count[fast_dim]; + tmp_count[fast_dim] = 0; + } /* end if */ + else { + /* Move the offset to the next sequence to start */ + offset[fast_dim] += diminfo[fast_dim].stride * startblock; + end[fast_dim] += diminfo[fast_dim].stride * startblock; + + /* Decrement the block count */ + tmp_count[fast_dim] -= startblock; + + /* Done with starting blocks */ + startblock = 0; + } /* end else */ + } /* end if */ /* Iterate over the blocks in the fastest dimension */ while(tmp_count[fast_dim] > 0 && numblocks > 0) { + /* Sanity check */ + HDassert(startblock == 0); - /* Check if we should copy this block information */ - if(startblock == 0) { - /* Copy the starting location */ - H5MM_memcpy(buf, offset, sizeof(hsize_t) * ndims); - buf += ndims; + /* Copy the starting location */ + H5MM_memcpy(buf, offset, sizeof(hsize_t) * ndims); + buf += ndims; - /* Compute the ending location */ - H5MM_memcpy(buf, offset, sizeof(hsize_t) * ndims); - for(u = 0; u < ndims; u++) - buf[u] += (diminfo[u].block - 1); - buf += ndims; + /* Compute the ending location */ + H5MM_memcpy(buf, end, sizeof(hsize_t) * ndims); + buf += ndims; - /* Decrement the number of blocks to retrieve */ - numblocks--; - } /* end if */ - else - startblock--; + /* Decrement the number of blocks to retrieve */ + numblocks--; /* Move the offset to the next sequence to start */ offset[fast_dim] += diminfo[fast_dim].stride; + end[fast_dim] += diminfo[fast_dim].stride; /* Decrement the block count */ tmp_count[fast_dim]--; @@ -4494,23 +4655,24 @@ H5S__get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblo if(tmp_count[temp_dim] > 0) break; + /* Reset the block count in this dimension */ + tmp_count[temp_dim] = diminfo[temp_dim].count; + /* Check for getting out of iterator */ if(temp_dim == 0) done = TRUE; - /* Reset the block count in this dimension */ - tmp_count[temp_dim] = diminfo[temp_dim].count; - /* Wrapped a dimension, go up to next dimension */ temp_dim--; } /* end while */ } /* end if */ - /* Re-compute offset array */ - for(u = 0; u < ndims; u++) { - temp_off = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]); - offset[u] = temp_off; - } /* end for */ + /* Re-compute offset & end arrays */ + if(!done) + for(u = 0; u < ndims; u++) { + offset[u] = diminfo[u].start + diminfo[u].stride * (diminfo[u].count - tmp_count[u]); + end[u] = offset[u] + (diminfo[u].block - 1); + } /* end for */ } /* end while */ } /* end if */ else { @@ -4536,7 +4698,7 @@ H5S__get_select_hyper_blocklist(H5S_t *space, hbool_t internal, hsize_t startblo hsize_t numblocks; IN: Number of hyperslab blocks to get hsize_t buf[]; OUT: List of hyperslab blocks selected RETURNS - Non-negative on success, negative on failure + Non-negative on success/Negative on failure DESCRIPTION Puts a list of the hyperslab blocks into the user's buffer. The blocks start with the 'startblock'th block in the list of blocks and put @@ -4576,7 +4738,7 @@ H5Sget_select_hyper_blocklist(hid_t spaceid, hsize_t startblock, /* Go get the correct number of blocks */ if(numblocks > 0) - ret_value = H5S__get_select_hyper_blocklist(space, 0, startblock, numblocks, buf); + ret_value = H5S__get_select_hyper_blocklist(space, startblock, numblocks, buf); else ret_value = SUCCEED; /* Successfully got 0 blocks... */ @@ -4587,76 +4749,6 @@ done: /*-------------------------------------------------------------------------- NAME - H5S_hyper_bounds_helper - PURPOSE - Gets the bounding box containing the selection. - USAGE - htri_t H5S_hyper_bounds_helper(spans, offset, rank); - const H5S_hyper_span_info_t *spans; IN: Pointer to current hyperslab span tree - const hssize_t *offset; IN: Pointer to offset array - hsize_t rank; IN: Current rank looking at - hsize_t *start; OUT: Start array bounds - hsize_t *end; OUT: End array bounds - RETURNS - Non-negative on success, negative on failure - DESCRIPTION - Retrieves the bounding box containing the current selection and places - it into the user's buffers. The start and end buffers must be large - enough to hold the dataspace rank number of coordinates. The bounding box - exactly contains the selection, ie. if a 2-D element selection is currently - defined with the following points: (4,5), (6,8) (10,7), the bounding box - with be (4, 5), (10, 8). - The bounding box calculations _does_ include the current offset of the - selection within the dataspace extent. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -static herr_t -H5S_hyper_bounds_helper(const H5S_hyper_span_info_t *spans, const hssize_t *offset, hsize_t rank, hsize_t *start, hsize_t *end) -{ - H5S_hyper_span_t *curr; /* Hyperslab information nodes */ - herr_t ret_value = SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - HDassert(spans); - HDassert(offset); - HDassert(rank < H5S_MAX_RANK); - HDassert(start); - HDassert(end); - - /* Check each point to determine whether selection+offset is within extent */ - curr=spans->head; - while(curr!=NULL) { - /* Check for offset moving selection negative */ - if(((hssize_t)curr->low + offset[rank]) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds") - - /* Check if the current span extends the bounding box */ - if((curr->low + (hsize_t)offset[rank]) < start[rank]) - start[rank] = curr->low + (hsize_t)offset[rank]; - if((curr->high + (hsize_t)offset[rank]) > end[rank]) - end[rank] = curr->high + (hsize_t)offset[rank]; - - /* Recurse if this node has down spans */ - if(curr->down != NULL) { - if(H5S_hyper_bounds_helper(curr->down, offset, (rank + 1), start, end) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADSELECT, FAIL, "failure in lower dimension") - } /* end if */ - - /* Advance to next node */ - curr = curr->next; - } /* end while */ - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S_hyper_bounds_helper() */ - - -/*-------------------------------------------------------------------------- - NAME H5S__hyper_bounds PURPOSE Gets the bounding box containing the selection. @@ -4684,8 +4776,8 @@ done: static herr_t H5S__hyper_bounds(const H5S_t *space, hsize_t *start, hsize_t *end) { - unsigned rank; /* Dataspace rank */ - unsigned i; /* index variable */ + const hsize_t *low_bounds, *high_bounds; /* Pointers to the correct pair of low & high bounds */ + unsigned u; /* Local index variable */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_STATIC @@ -4695,37 +4787,32 @@ H5S__hyper_bounds(const H5S_t *space, hsize_t *start, hsize_t *end) HDassert(start); HDassert(end); - /* Set the start and end arrays up */ - rank = space->extent.rank; - for(i = 0; i < rank; i++) { - start[i] = HSIZET_MAX; - end[i] = 0; - } /* end for */ - - /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { - const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* local alias for diminfo */ + /* Check which set of low & high bounds we should be using */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + low_bounds = space->select.sel_info.hslab->diminfo.low_bounds; + high_bounds = space->select.sel_info.hslab->diminfo.high_bounds; + } /* end if */ + else { + low_bounds = space->select.sel_info.hslab->span_lst->low_bounds; + high_bounds = space->select.sel_info.hslab->span_lst->high_bounds; + } /* end else */ - /* Check each dimension */ - for(i = 0; i < rank; i++) { - /* Check for offset moving selection negative */ - if((space->select.offset[i] + (hssize_t)diminfo[i].start) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds") + /* Loop over dimensions */ + for(u = 0; u < space->extent.rank; u++) { + /* Sanity check */ + HDassert(low_bounds[u] <= high_bounds[u]); - /* Compute the smallest location in this dimension */ - start[i] = diminfo[i].start + (hsize_t)space->select.offset[i]; + /* Check for offset moving selection negative */ + if(((hssize_t)low_bounds[u] + space->select.offset[u]) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "offset moves selection out of bounds") - /* Compute the largest location in this dimension */ - if((int)i == space->select.sel_info.hslab->unlim_dim) - end[i] = H5S_UNLIMITED; - else - end[i] = diminfo[i].start + diminfo[i].stride * (diminfo[i].count - 1) + (diminfo[i].block - 1) + (hsize_t)space->select.offset[i]; - } /* end for */ - } /* end if */ - else { - /* Call the recursive routine to get the bounds for the span tree */ - ret_value = H5S_hyper_bounds_helper(space->select.sel_info.hslab->span_lst, space->select.offset, (hsize_t)0, start, end); - } /* end if */ + /* Set the low & high bounds in this dimension */ + start[u] = (hsize_t)((hssize_t)low_bounds[u] + space->select.offset[u]); + if((int)u == space->select.sel_info.hslab->unlim_dim) + end[u] = H5S_UNLIMITED; + else + end[u] = (hsize_t)((hssize_t)high_bounds[u] + space->select.offset[u]); + } /* end for */ done: FUNC_LEAVE_NOAPI(ret_value) @@ -4776,8 +4863,9 @@ H5S__hyper_offset(const H5S_t *space, hsize_t *offset) dim_size = space->extent.size; /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { - const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* Local alias for diminfo */ + /* (No need to rebuild the dimension info yet -QAK) */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->diminfo.opt; /* Local alias for diminfo */ /* Loop through starting coordinates, calculating the linear offset */ accum = 1; @@ -4940,8 +5028,9 @@ H5S__hyper_is_contiguous(const H5S_t *space) HDassert(space); /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { - const H5S_hyper_dim_t *diminfo=space->select.sel_info.hslab->opt_diminfo; /* local alias for diminfo */ + /* (No need to rebuild the dimension info yet -QAK) */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + const H5S_hyper_dim_t *diminfo=space->select.sel_info.hslab->diminfo.opt; /* local alias for diminfo */ /* * For a regular hyperslab to be contiguous, it must have only one @@ -5122,7 +5211,10 @@ H5S__hyper_is_single(const H5S_t *space) HDassert(space); /* Check for a "single" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { + /* (No need to rebuild the dimension info yet, since the span-tree + * algorithm is fast -QAK) + */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { unsigned u; /* index variable */ /* @@ -5132,7 +5224,7 @@ H5S__hyper_is_single(const H5S_t *space) /* Check for a single block */ for(u = 0; u < space->extent.rank; u++) - if(space->select.sel_info.hslab->opt_diminfo[u].count > 1) + if(space->select.sel_info.hslab->diminfo.opt[u].count > 1) HGOTO_DONE(FALSE) } /* end if */ else { @@ -5180,7 +5272,6 @@ done: This is primarily used for reading the entire selection in one swoop. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS - Doesn't check for "regular" hyperslab selections composed of spans EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ @@ -5194,8 +5285,14 @@ H5S__hyper_is_regular(const H5S_t *space) /* Check args */ HDassert(space); + /* Attempt to rebuild diminfo if it is invalid and has not been confirmed + * to be impossible. + */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO) + H5S__hyper_rebuild((H5S_t *)space); /* Casting away const OK -NAF */ + /* Only simple check for regular hyperslabs for now... */ - if(space->select.sel_info.hslab->diminfo_valid) + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) ret_value = TRUE; else ret_value = FALSE; @@ -5206,93 +5303,395 @@ H5S__hyper_is_regular(const H5S_t *space) /*-------------------------------------------------------------------------- NAME - H5S__hyper_release + H5S__hyper_spans_shape_same_helper PURPOSE - Release hyperslab selection information for a dataspace + Helper routine to check if two hyperslab span trees are the same shape USAGE - herr_t H5S__hyper_release(space) - H5S_t *space; IN: Pointer to dataspace + hbool_t H5S__hyper_spans_shape_same_helper(span1, span2, offset, rest_zeros) + H5S_hyper_span_info_t *span_info1; IN: First span tree to compare + H5S_hyper_span_info_t *span_info2; IN: Second span tree to compare + hssize_t offset[]; IN: Offset between the span trees + hbool_t rest_zeros[]; IN: Array of flags which indicate + the rest of the offset[] array + is zero values. RETURNS - Non-negative on success/Negative on failure + TRUE (1) or FALSE (0) on success, can't fail DESCRIPTION - Releases all hyperslab selection information for a dataspace + Compare two hyperslab span trees to determine if they refer to a selection + with the same shape, with a possible (constant) offset between their + elements. Very similar to H5S__hyper_cmp_spans, except the selected + elements can be offset by a vector. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS EXAMPLES REVISION LOG - * Robb Matzke, 1998-08-25 - * The fields which are freed are set to NULL to prevent them from being - * freed again later. This fixes some allocation problems where - * changing the hyperslab selection of one dataspace causes a core dump - * when closing some other dataspace. --------------------------------------------------------------------------*/ -static herr_t -H5S__hyper_release(H5S_t *space) +static H5_ATTR_PURE hbool_t +H5S__hyper_spans_shape_same_helper(const H5S_hyper_span_info_t *span_info1, + const H5S_hyper_span_info_t *span_info2, hssize_t offset[], + hbool_t rest_zeros[]) { - herr_t ret_value = SUCCEED; + hbool_t ret_value = TRUE; /* Return value */ + + FUNC_ENTER_PACKAGE_NOERR + + /* Sanity checks */ + HDassert(span_info1); + HDassert(span_info2); + HDassert(offset); + HDassert(rest_zeros); + + /* Compare low & high bounds for this span list */ + /* (Could compare lower dimensions also, but not certain if + * that's worth it. - QAK, 2019/01/23) + */ + if((hsize_t)((hssize_t)span_info1->low_bounds[0] + offset[0]) != span_info2->low_bounds[0]) + HGOTO_DONE(FALSE) + else if((hsize_t)((hssize_t)span_info1->high_bounds[0] + offset[0]) != span_info2->high_bounds[0]) + HGOTO_DONE(FALSE) + else { + const H5S_hyper_span_t *span1; + const H5S_hyper_span_t *span2; + + /* Get the pointers to the actual lists of spans */ + span1 = span_info1->head; + span2 = span_info2->head; + + /* Sanity checking */ + HDassert(span1); + HDassert(span2); + + /* infinite loop which must be broken out of */ + while(1) { + /* Check for both spans being NULL */ + if(span1 == NULL && span2 == NULL) + HGOTO_DONE(TRUE) + + /* Check for one span being NULL */ + if(span1 == NULL || span2 == NULL) + HGOTO_DONE(FALSE) + + /* Check if the actual low & high span information is the same */ + if((hsize_t)((hssize_t)span1->low + offset[0]) != span2->low || (hsize_t)((hssize_t)span1->high + offset[0]) != span2->high) + HGOTO_DONE(FALSE) + + /* Check for down tree for this span */ + if(span1->down != NULL || span2->down != NULL) { + /* If the rest of the span trees have a zero offset, use the faster comparison routine */ + if(rest_zeros[0]) { + if(!H5S__hyper_cmp_spans(span1->down, span2->down)) + HGOTO_DONE(FALSE) + else { + /* Keep going... */ + } /* end else */ + } /* end if */ + else { + if(!H5S__hyper_spans_shape_same_helper(span1->down, span2->down, &offset[1], &rest_zeros[1])) + HGOTO_DONE(FALSE) + else { + /* Keep going... */ + } /* end else */ + } /* end else */ + } /* end if */ + else { + /* Keep going... */ + } /* end else */ + + /* Advance to the next nodes in the span list */ + span1 = span1->next; + span2 = span2->next; + } /* end while */ + } /* end else */ + + /* Fall through, with default return value of 'TRUE' if spans were already visited */ + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_spans_shape_same_helper() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_spans_shape_same + PURPOSE + Check if two hyperslab span trees are the same shape + USAGE + hbool_t H5S__hyper_spans_shape_same(span1, span2) + H5S_hyper_span_info_t *span_info1; IN: First span tree to compare + H5S_hyper_span_info_t *span_info2; IN: Second span tree to compare + RETURNS + TRUE (1) or FALSE (0) on success, can't fail + DESCRIPTION + Compare two hyperslab span trees to determine if they refer to a selection + with the same shape. Very similar to H5S__hyper_cmp_spans, except the + selected elements can be offset by a vector. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static H5_ATTR_PURE hbool_t +H5S__hyper_spans_shape_same(const H5S_hyper_span_info_t *span_info1, + const H5S_hyper_span_info_t *span_info2, unsigned ndims) +{ + const H5S_hyper_span_t *span1; /* Pointer to spans in first span tree */ + const H5S_hyper_span_t *span2; /* Pointer to spans in second span tree */ + hssize_t offset[H5S_MAX_RANK]; /* Offset vector for selections */ + hbool_t rest_zeros[H5S_MAX_RANK]; /* Vector of flags to indicate when remaining offset is all zero */ + hbool_t zero_offset; /* Whether the two selections have a non-zero offset */ + unsigned u; /* Local index variable */ + hbool_t ret_value = TRUE; /* Return value */ + + FUNC_ENTER_STATIC_NOERR + + /* Sanity check */ + HDassert(span_info1); + HDassert(span_info2); + HDassert(ndims > 0); + + /* Initialize arrays */ + HDmemset(offset, 0, sizeof(offset)); + HDmemset(rest_zeros, 0, sizeof(rest_zeros)); + + /* Check for an offset between the two selections */ + span1 = span_info1->head; + span2 = span_info2->head; + zero_offset = TRUE; + for(u = 0; u < ndims; u++) { + /* Check for offset in this dimension */ + if(span1->low != span2->low) { + offset[u] = (hssize_t)span2->low - (hssize_t)span1->low; + + /* Indicate that the offset vector is not all zeros */ + if(zero_offset) + zero_offset = FALSE; + } /* end if */ + + /* Sanity check */ + /* (Both span trees must have the same depth) */ + HDassert((span1->down && span2->down) || (NULL == span1->down && NULL == span2->down)); + + /* Advance to next dimension */ + if(span1->down) { + span1 = span1->down->head; + span2 = span2->down->head; + } /* end if */ + } /* end for */ + + /* Check if there's a "tail" of all zeros in a non-zero offset vector */ + if(!zero_offset) { + int i; /* Local index variable */ + + /* Find first non-zero offset, from the fastest dimension up */ + for(i = (int)(ndims - 1); i >= 0; i--) + if(offset[i]) { + rest_zeros[i] = TRUE; + break; + } /* end if */ + + /* Sanity check */ + /* (Must eventually have found a non-zero offset) */ + HDassert(i >= 0); + } /* end if */ + + /* If the offset vector is all zero, we can use the faster span tree + * comparison routine. Otherwise, use a generalized version of that + * routine. + */ + if(zero_offset) + ret_value = H5S__hyper_cmp_spans(span_info1, span_info2); + else + ret_value = H5S__hyper_spans_shape_same_helper(span_info1, span_info2, offset, rest_zeros); + + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_spans_shape_same() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_shape_same + PURPOSE + Check if a two hyperslab selections are the same shape + USAGE + htri_t H5S__hyper_shape_same(space1, space2) + const H5S_t *space1; IN: First dataspace to check + const H5S_t *space2; IN: Second dataspace to check + RETURNS + TRUE / FALSE / FAIL + DESCRIPTION + Checks to see if the current selection in each dataspace are the same + shape. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + Handles when both are regular in an efficient way, otherwise converts + both to span tree form (if necessary) and compares efficiently them in + that form. + + Rank of space1 must always be >= to rank of space2. + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static htri_t +H5S__hyper_shape_same(const H5S_t *space1, const H5S_t *space2) +{ + unsigned space1_rank; /* Number of dimensions of first dataspace */ + unsigned space2_rank; /* Number of dimensions of second dataspace */ + htri_t ret_value = TRUE; /* Return value */ FUNC_ENTER_STATIC /* Check args */ - HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space)); + HDassert(space1); + HDassert(space2); - /* Reset the number of points selected */ - space->select.num_elem = 0; + /* Get dataspace ranks */ + space1_rank = space1->extent.rank; + space2_rank = space2->extent.rank; - /* Release irregular hyperslab information */ - if(space->select.sel_info.hslab) { - if(space->select.sel_info.hslab->span_lst != NULL) - if(H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst) < 0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans") + /* Sanity check */ + HDassert(space1_rank >= space2_rank); + HDassert(space2_rank > 0); + + /* Rebuild diminfo if it is invalid and has not been confirmed to be + * impossible */ + if(space1->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO) + H5S__hyper_rebuild((H5S_t *)space1); /* Casting away const OK -QAK */ + if(space2->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO) + H5S__hyper_rebuild((H5S_t *)space2); /* Casting away const OK -QAK */ + + /* If both are regular hyperslabs, compare their diminfo values */ + if(space1->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES + && space2->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + int space1_dim; /* Current dimension in first dataspace */ + int space2_dim; /* Current dimension in second dataspace */ + + /* Initialize dimensions */ + space1_dim = (int)space1_rank - 1; + space2_dim = (int)space2_rank - 1; + + /* Check that the shapes are the same in the common dimensions, and that + * block == 1 in all dimensions that appear only in space1. + */ + while(space2_dim >= 0) { + if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].stride != + space2->select.sel_info.hslab->diminfo.opt[space2_dim].stride) + HGOTO_DONE(FALSE) - /* Release space for the hyperslab selection information */ - space->select.sel_info.hslab = H5FL_FREE(H5S_hyper_sel_t, space->select.sel_info.hslab); + if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].count != + space2->select.sel_info.hslab->diminfo.opt[space2_dim].count) + HGOTO_DONE(FALSE) + + if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].block != + space2->select.sel_info.hslab->diminfo.opt[space2_dim].block) + HGOTO_DONE(FALSE) + + space1_dim--; + space2_dim--; + } /* end while */ + + while(space1_dim >= 0) { + if(space1->select.sel_info.hslab->diminfo.opt[space1_dim].block != 1) + HGOTO_DONE(FALSE) + + space1_dim--; + } /* end while */ } /* end if */ + /* If both aren't regular, use fast irregular comparison */ + else { + H5S_hyper_span_info_t *spans1; /* Hyperslab spans for first dataspace */ + + /* Make certain that both selections have span trees */ + if(NULL == space1->select.sel_info.hslab->span_lst) + if(H5S__hyper_generate_spans((H5S_t *)space1) < 0) /* Casting away const OK -QAK */ + HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for hyperslab selection") + if(NULL == space2->select.sel_info.hslab->span_lst) + if(H5S__hyper_generate_spans((H5S_t *)space2) < 0) /* Casting away const OK -QAK */ + HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "can't construct span tree for hyperslab selection") + + /* If rank of space A is different (guaranteed greater) than + * rank of space B, walk down the span tree, verifying + * that the block size is 1 on the way down. + */ + if(space1_rank > space2_rank) { + unsigned diff_rank = space1_rank - space2_rank; /* Difference in ranks */ + + /* Walk down the dimensions */ + spans1 = space1->select.sel_info.hslab->span_lst; + while(diff_rank > 0) { + H5S_hyper_span_t *span; /* Span for this dimension */ + + /* Get pointer to first span in tree */ + span = spans1->head; + + /* Check for more spans in this dimension */ + if(span->next) + HGOTO_DONE(FALSE) + + /* Check for span size > 1 element */ + if(span->low != span->high) + HGOTO_DONE(FALSE) + + /* Walk down to the next dimension */ + spans1 = span->down; + diff_rank--; + } /* end while */ + + /* Sanity check */ + HDassert(spans1); + } /* end if */ + else + spans1 = space1->select.sel_info.hslab->span_lst; + + /* Compare the span trees */ + ret_value = H5S__hyper_spans_shape_same(spans1, space2->select.sel_info.hslab->span_lst, space2_rank); + } /* end else */ + + /* Fall through with 'TRUE' value, if not set earlier */ done: FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__hyper_release() */ +} /* end H5S__hyper_shape_same() */ /*-------------------------------------------------------------------------- NAME - H5S__hyper_recover_span + H5S__hyper_release PURPOSE - Recover a generated span, if appropriate + Release hyperslab selection information for a dataspace USAGE - herr_t H5S__hyper_recover_span(recover, curr_span, next_span) - unsigned *recover; IN/OUT: Pointer recover flag - H5S_hyper_span_t **curr_span; IN/OUT: Pointer to current span in list - H5S_hyper_span_t *next_span; IN: Pointer to next span + herr_t H5S__hyper_release(space) + H5S_t *space; IN: Pointer to dataspace RETURNS - Non-negative on success, negative on failure + Non-negative on success/Negative on failure DESCRIPTION - Check if the current span needs to be recovered and free it if so. - Set the current span to the next span in any case. + Releases all hyperslab selection information for a dataspace GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_recover_span(hbool_t *recover, H5S_hyper_span_t **curr_span, H5S_hyper_span_t *next_span) +H5S__hyper_release(H5S_t *space) { FUNC_ENTER_STATIC_NOERR - HDassert(recover); - HDassert(curr_span); + /* Check args */ + HDassert(space && H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space)); - /* Check if the span should be recovered */ - if(*recover) { - H5S__hyper_free_span(*curr_span); - *recover = FALSE; - } /* end if */ + /* Reset the number of points selected */ + space->select.num_elem = 0; - /* Set the current span to next span */ - *curr_span = next_span; + /* Release irregular hyperslab information */ + if(space->select.sel_info.hslab) { + if(space->select.sel_info.hslab->span_lst != NULL) + H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst); + + /* Release space for the hyperslab selection information */ + space->select.sel_info.hslab = H5FL_FREE(H5S_hyper_sel_t, space->select.sel_info.hslab); + } /* end if */ FUNC_LEAVE_NOAPI(SUCCEED) -} /* H5S__hyper_recover_span() */ +} /* end H5S__hyper_release() */ /*-------------------------------------------------------------------------- @@ -5305,7 +5704,7 @@ H5S__hyper_recover_span(hbool_t *recover, H5S_hyper_span_t **curr_span, H5S_hype unsigned rank; IN: Number of dimensions of coordinate hsize_t *coords; IN: Location of element RETURNS - Non-negative on success, negative on failure + Non-NULL pointer to new span tree on success, NULL on failure DESCRIPTION Create a span tree for a single element GLOBAL VARIABLES @@ -5327,14 +5726,20 @@ H5S__hyper_coord_to_span(unsigned rank, const hsize_t *coords) /* Search for location to insert new element in tree */ if(rank > 1) { - /* Allocate a span info node */ - if(NULL == (down = H5FL_CALLOC(H5S_hyper_span_info_t))) + /* Allocate a span info node for coordinates below this one */ + if(NULL == (down = H5S__hyper_new_span_info(rank - 1))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") + /* Set the low & high bounds for this span info node */ + H5MM_memcpy(down->low_bounds, &coords[1], (rank - 1) * sizeof(hsize_t)); + H5MM_memcpy(down->high_bounds, &coords[1], (rank - 1) * sizeof(hsize_t)); /* Build span tree for coordinates below this one */ if(NULL == (down->head = H5S__hyper_coord_to_span(rank - 1, &coords[1]))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") + + /* Update the tail pointer of the down dimension, and it's a single span element */ + down->tail = down->head; } /* end if */ /* Build span for this coordinate */ @@ -5356,12 +5761,13 @@ done: NAME H5S__hyper_add_span_element_helper PURPOSE - Add a single element to a span tree + Helper routine to add a single element to a span tree USAGE - herr_t H5S_hyper_add_span_element_helper(prev_span, span_tree, rank, coords) + herr_t H5S__hyper_add_span_element_helper(span_tree, rank, coords, first_dim_modified) H5S_hyper_span_info_t *span_tree; IN/OUT: Pointer to span tree to append to unsigned rank; IN: Number of dimensions of coordinates - hsize_t *coords; IN: Location of element to add to span tree + hsize_t *coords; IN: Location of element to add to span tree + int *first_dim_modified; IN: Index of the first dimension modified RETURNS Non-negative on success, negative on failure DESCRIPTION @@ -5374,13 +5780,9 @@ done: --------------------------------------------------------------------------*/ static herr_t H5S__hyper_add_span_element_helper(H5S_hyper_span_info_t *span_tree, - unsigned rank, const hsize_t *coords) + unsigned rank, const hsize_t *coords, int *first_dim_modified) { - H5S_hyper_span_info_t *tspan_info; /* Temporary pointer to span info */ - H5S_hyper_span_info_t *prev_span_info; /* Pointer to span info for level above current position */ - H5S_hyper_span_t *tmp_span; /* Temporary pointer to a span */ - H5S_hyper_span_t *tmp2_span; /* Another temporary pointer to a span */ - H5S_hyper_span_t *new_span; /* New span created for element */ + H5S_hyper_span_t *tail_span; /* Pointer to the tail span of one dimension */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_STATIC @@ -5389,166 +5791,196 @@ H5S__hyper_add_span_element_helper(H5S_hyper_span_info_t *span_tree, HDassert(span_tree); HDassert(rank > 0); HDassert(coords); + HDassert(first_dim_modified); /* Get pointer to last span in span tree */ - tspan_info=span_tree; - if(span_tree->scratch) - tmp_span=(H5S_hyper_span_t *)span_tree->scratch; - else { - tmp_span=span_tree->head; - HDassert(tmp_span); - span_tree->scratch=(H5S_hyper_span_info_t *)tmp_span; - } /* end else */ + tail_span = span_tree->tail; + + /* Determine if tail span includes a portion of the coordinate */ + /* (Should never happen with the lowest level in the span tree) */ + if(coords[0] >= tail_span->low && coords[0] <= tail_span->high) { + H5S_hyper_span_t *prev_down_tail_span; /* Pointer to previous down spans' tail pointer */ + hsize_t prev_down_tail_span_high; /* Value of previous down spans' tail's high value */ + + /* Retain into about down spans' tail */ + prev_down_tail_span = tail_span->down->tail; + prev_down_tail_span_high = tail_span->down->tail->high; + + /* Drop down a dimension */ + HDassert(rank > 1); + if(H5S__hyper_add_span_element_helper(tail_span->down, rank - 1, &coords[1], first_dim_modified) < 0) + HGOTO_ERROR(H5E_DATASET, H5E_CANTINSERT, FAIL, "can't insert coordinate into span tree") + + /* Check & update high bounds for lower dimensions */ + if(*first_dim_modified >= 0) { + unsigned first_dim; /* First dimension modified, relative to this span tree */ + hbool_t first_dim_set = FALSE; /* Whether first dimension modified is set */ + unsigned u; /* Local index variable */ - /* Find last span tree which includes a portion of the coordinate */ - prev_span_info=NULL; - while(coords[0]>=tmp_span->low && coords[0]<=tmp_span->high) { - /* Move rank & coordinate offset down a dimension */ - rank--; - coords++; + /* Adjust first dimension modified to be relative to this span tree */ + first_dim = (unsigned)(*first_dim_modified + 1); - /* Remember the span tree we are descending into */ - prev_span_info=tspan_info; - tspan_info=tmp_span->down; + /* Reset modified dimension, in case no bounds in this span tree change */ + *first_dim_modified = -1; - /* Get the last span in this span's 'down' tree */ - if(tspan_info->scratch) - tmp_span=(H5S_hyper_span_t *)tspan_info->scratch; - else { - tmp_span=tspan_info->head; - HDassert(tmp_span); - tspan_info->scratch=(H5S_hyper_span_info_t *)tmp_span; - } /* end else */ - } /* end while */ + /* Iterate through coordinates */ + for(u = first_dim; u < rank; u++) { + /* Check if coordinate is outside the bounds for this span tree */ + if(coords[u] > span_tree->high_bounds[u]) { + /* Update high bounds for this tree */ + span_tree->high_bounds[u] = coords[u]; - /* Check if we made it all the way to the bottom span in the tree */ - if(rank>1) { - /* Before we create another span at this level in the tree, check if - * the last span's "down tree" was equal to any other spans in this - * list of spans in the span tree. - * - * If so, release last span information and make last span merge into - * previous span (if possible), or at least share their "down tree" - * information. - */ - tmp2_span=tspan_info->head; - while(tmp2_span!=tmp_span) { - if(H5S__hyper_cmp_spans(tmp2_span->down,tmp_span->down)==TRUE) { - /* Check for merging into previous span */ - if(tmp2_span->high+1==tmp_span->low) { - /* Release last span created */ - H5S__hyper_free_span(tmp_span); - - /* Increase size of previous span */ - tmp2_span->high++; - tmp2_span->nelem++; - - /* Reset the 'tmp_span' for the rest of this block's algorithm */ - tmp_span=tmp2_span; + /* Need to signal to higher dimensions if high bounds changed */ + if(!first_dim_set) { + *first_dim_modified = (int)u; + first_dim_set = TRUE; + } /* end if */ } /* end if */ - /* Span is disjoint, but has the same "down tree" selection */ - else { - /* Release "down tree" information */ - H5S__hyper_free_span_info(tmp_span->down); + } /* end for */ + } /* end if */ - /* Point at earlier span's "down tree" */ - tmp_span->down=tmp2_span->down; + /* Check if previous tail span in down spans is different than current + * tail span, or if its high value changed, in which case we should + * check if the updated node can share down spans with other nodes. + */ + if(tail_span->down->tail != prev_down_tail_span || + prev_down_tail_span_high != tail_span->down->tail->high) { + H5S_hyper_span_t *stop_span; /* Pointer to span to stop at */ + H5S_hyper_span_t *tmp_span; /* Temporary pointer to a span */ + uint64_t op_gen; /* Operation generation value */ + + /* Determine which span to stop at */ + if(tail_span->down->tail != prev_down_tail_span) { + /* Sanity check */ + HDassert(prev_down_tail_span->next == tail_span->down->tail); + + /* Set the span to stop at */ + stop_span = prev_down_tail_span; + } /* end if */ + else { + /* Sanity check */ + HDassert(prev_down_tail_span_high != tail_span->down->tail->high); - /* Increment reference count on shared "down tree" */ - tmp_span->down->count++; - } /* end else */ + /* Set the span to stop at */ + stop_span = tail_span->down->tail; + } /* end else */ - /* Found span to merge into, break out now */ - break; - } /* end if */ + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); - /* Advance to next span to check */ - tmp2_span=tmp2_span->next; - } /* end while */ + /* Check if the 'stop' span in the "down tree" is equal to any other + * spans in the list of spans in the span tree. + * + * If so, release last span information and make last span merge into + * previous span (if possible), or at least share their "down tree" + * information. + */ + tmp_span = tail_span->down->head; + while(tmp_span != stop_span) { + hbool_t attempt_merge_spans = FALSE; /* Whether to merge spans */ - /* Make span tree for current coordinates */ - if(NULL == (new_span = H5S__hyper_coord_to_span(rank, coords))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span") + /* Different tests for when to run the 'merge' algorithm, + * depending whether there's "down trees" or not. + */ + if(NULL == tmp_span->down) { + /* Spin through spans until we find the one before the 'stop' span */ + if(tmp_span->next == stop_span) + attempt_merge_spans = TRUE; + } /* end if */ + else { + /* Check if we've compared the 'stop' span's "down tree" to + * this span's "down tree" already. + */ + if(tmp_span->down->op_gen != op_gen) { + if(H5S__hyper_cmp_spans(tmp_span->down, stop_span->down)) + attempt_merge_spans = TRUE; + + /* Remember that we visited this span's "down tree" already */ + /* (Because it wasn't the same as the 'stop' span's down tree + * and we don't need to compare it again) + */ + tmp_span->down->op_gen = op_gen; + } /* end if */ + } /* end else */ - /* Add new span tree as span */ - HDassert(tmp_span); - tmp_span->next=new_span; + /* Check for merging into previous span */ + if(attempt_merge_spans) { + if(tmp_span->high + 1 == stop_span->low) { + /* Increase size of previous span */ + tmp_span->high++; - /* Make scratch pointer point to last span in list */ - HDassert(tspan_info); - tspan_info->scratch=(H5S_hyper_span_info_t *)new_span; + /* Update pointers appropriately */ + if(stop_span == prev_down_tail_span) { + /* Sanity check */ + HDassert(stop_span->next == tail_span->down->tail); - /* Set the proper 'pstride' for new span */ - new_span->pstride=new_span->low-tmp_span->low; - } /* end if */ - else { - /* Does new node adjoin existing node? */ - if(tmp_span->high+1==coords[0]) { - tmp_span->high++; - tmp_span->nelem++; - - /* Check if this span tree should now be merged with a level higher in the tree */ - if(prev_span_info!=NULL) { - /* Before we create another span at this level in the tree, check if - * the last span's "down tree" was equal to any other spans in this - * list of spans in the span tree. - * - * If so, release last span information and make last span merge into - * previous span (if possible), or at least share their "down tree" - * information. - */ - tmp2_span=prev_span_info->head; - tmp_span=(H5S_hyper_span_t *)prev_span_info->scratch; - while(tmp2_span!=tmp_span) { - if(H5S__hyper_cmp_spans(tmp2_span->down,tmp_span->down)==TRUE) { - /* Check for merging into previous span */ - if(tmp2_span->high+1==tmp_span->low) { - /* Release last span created */ - H5S__hyper_free_span(tmp_span); - - /* Increase size of previous span */ - tmp2_span->high++; - tmp2_span->nelem++; - - /* Update pointers */ - tmp2_span->next=NULL; - prev_span_info->scratch=(H5S_hyper_span_info_t *)tmp2_span; + tmp_span->next = stop_span->next; } /* end if */ - /* Span is disjoint, but has the same "down tree" selection */ else { - /* Release "down tree" information */ - H5S__hyper_free_span_info(tmp_span->down); + /* Sanity check */ + HDassert(tmp_span->next == tail_span->down->tail); - /* Point at earlier span's "down tree" */ - tmp_span->down=tmp2_span->down; - - /* Increment reference count on shared "down tree" */ - tmp_span->down->count++; + tmp_span->next = NULL; + tail_span->down->tail = tmp_span; } /* end else */ - /* Found span to merge into, break out now */ - break; + /* Release last span created */ + H5S__hyper_free_span(stop_span); } /* end if */ + /* Span is disjoint, but has the same "down tree" selection */ + /* (If it has a "down tree") */ + else if(stop_span->down) { + /* Release "down tree" information */ + H5S__hyper_free_span_info(stop_span->down); - /* Advance to next span to check */ - tmp2_span=tmp2_span->next; - } /* end while */ - } /* end if */ + /* Point at earlier span's "down tree" */ + stop_span->down = tmp_span->down; + + /* Increment reference count on shared "down tree" */ + stop_span->down->count++; + } /* end else */ + + /* Found span to merge into, break out now */ + break; + } /* end if */ + + /* Advance to next span to check */ + tmp_span = tmp_span->next; + } /* end while */ } /* end if */ - else { - if(NULL == (new_span = H5S__hyper_new_span(coords[0], coords[0], NULL, NULL))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span") + } /* end if */ + else { + unsigned u; /* Local index variable */ - /* Add new span tree as span */ - HDassert(tmp_span); - tmp_span->next=new_span; + /* Check if we made it all the way to the bottom span list in the tree + * and the new coordinate adjoins the current tail span. + */ + if(rank == 1 && (tail_span->high + 1) == coords[0]) + /* Append element to current tail span */ + tail_span->high++; + else { + H5S_hyper_span_t *new_span; /* New span created for element */ - /* Make scratch pointer point to last span in list */ - tspan_info->scratch=(H5S_hyper_span_info_t *)new_span; + /* Make span tree for current coordinate(s) */ + if(NULL == (new_span = H5S__hyper_coord_to_span(rank, coords))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab spans for coordinate") - /* Set the proper 'pstride' for new span */ - new_span->pstride = new_span->low - tmp_span->low; + /* Add new span to span tree list */ + tail_span->next = new_span; + span_tree->tail = new_span; } /* end else */ + + /* Update high bound for current span tree */ + HDassert(coords[0] > span_tree->high_bounds[0]); + span_tree->high_bounds[0] = coords[0]; + + /* Update high bounds for dimensions below this one */ + for(u = 1; u < rank; u++) + if(coords[u] > span_tree->high_bounds[u]) + span_tree->high_bounds[u] = coords[u]; + + /* Need to signal to higher dimensions that high bounds changed */ + *first_dim_modified = 0; } /* end else */ done: @@ -5573,6 +6005,24 @@ done: GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS Assumes that the element is not already in the dataspace's selection + + NOTE: There's also an assumption about the context of this function call - + This function is only called is only being called from H5D_chunk_mem_cb + in src/H5Dchunk.c, when the library is iterating over a memory + selection, so the coordinates passed to H5S_hyper_add_span_element will + always be in increasing order (according to a row-major (i.e. C, not + FORTRAN) scan) over the dataset. Therefore, for every input of + coordinates, only the last span element (i.e., the tail pointer) in + one dimension is checked against the input. + + NOTE: This algorithm is definitely "correct" and tries to conserve memory + as much as possible, but it's doing a _lot_ of work that might be + better spent running a similar algorithm to "condense" the span tree + (possibly even back into a regular selection) just before the selection + is used for I/O on the chunk. I'm not going to spend the time on this + currently, but it does sound like a good direction to explore. + QAK, 2019/01/24 + EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ @@ -5592,9 +6042,13 @@ H5S_hyper_add_span_element(H5S_t *space, unsigned rank, const hsize_t *coords) /* Check if this is the first element in the selection */ if(NULL == space->select.sel_info.hslab) { /* Allocate a span info node */ - if(NULL == (head = H5FL_CALLOC(H5S_hyper_span_info_t))) + if(NULL == (head = H5S__hyper_new_span_info(rank))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info") + /* Set the low & high bounds for this span info node */ + H5MM_memcpy(head->low_bounds, coords, rank * sizeof(hsize_t)); + H5MM_memcpy(head->high_bounds, coords, rank * sizeof(hsize_t)); + /* Set the reference count */ head->count = 1; @@ -5602,6 +6056,9 @@ H5S_hyper_add_span_element(H5S_t *space, unsigned rank, const hsize_t *coords) if(NULL == (head->head = H5S__hyper_coord_to_span(rank, coords))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab spans for coordinate") + /* Update the tail pointer of this newly created span in dimension "rank" */ + head->tail = head->head; + /* Allocate selection info */ if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab selection") @@ -5613,7 +6070,7 @@ H5S_hyper_add_span_element(H5S_t *space, unsigned rank, const hsize_t *coords) space->select.type = H5S_sel_hyper; /* Reset "regular" hyperslab flag */ - space->select.sel_info.hslab->diminfo_valid = FALSE; + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; /* Set unlim_dim */ space->select.sel_info.hslab->unlim_dim = -1; @@ -5622,7 +6079,10 @@ H5S_hyper_add_span_element(H5S_t *space, unsigned rank, const hsize_t *coords) space->select.num_elem = 1; } /* end if */ else { - if(H5S__hyper_add_span_element_helper(space->select.sel_info.hslab->span_lst, rank, coords) < 0) + int first_dim_modified = -1; /* Index of first dimension modified */ + + /* Add the element to the current set of spans */ + if(H5S__hyper_add_span_element_helper(space->select.sel_info.hslab->span_lst, rank, coords, &first_dim_modified) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert coordinate into span tree") /* Increment # of elements in selection */ @@ -5640,117 +6100,16 @@ done: /*-------------------------------------------------------------------------- NAME - H5S_hyper_reset_scratch - PURPOSE - Reset the scratch information for span tree - USAGE - herr_t H5S_hyper_reset_scratch(space) - H5S_t *space; IN/OUT: Pointer to dataspace to reset scratch pointers - RETURNS - Non-negative on success, negative on failure - DESCRIPTION - Resets the "scratch" pointers used for various tasks in computing hyperslab - spans. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -herr_t -H5S_hyper_reset_scratch(H5S_t *space) -{ - herr_t ret_value = SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI(FAIL) - - HDassert(space); - - /* Check if there are spans in the span tree */ - if(space->select.sel_info.hslab->span_lst != NULL) - /* Reset the scratch pointers for the next routine which needs them */ - H5S__hyper_span_scratch(space->select.sel_info.hslab->span_lst); - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S_hyper_reset_scratch() */ - - -/*-------------------------------------------------------------------------- - NAME - H5S_hyper_convert - PURPOSE - Convert a compatible selection to span tree form - USAGE - herr_t H5S_hyper_convert(space) - H5S_t *space; IN/OUT: Pointer to dataspace to convert - RETURNS - Non-negative on success, negative on failure - DESCRIPTION - Converts a compatible selection (currently only "all" selections) to the - span-tree form of a hyperslab selection. (Point and "none" selection aren't - currently supported and hyperslab selection always have the span-tree form - available). - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -herr_t -H5S_hyper_convert(H5S_t *space) -{ - herr_t ret_value = SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI(FAIL) - - HDassert(space); - - /* Check the type of selection */ - switch(H5S_GET_SELECT_TYPE(space)) { - case H5S_SEL_ALL: /* All elements selected in dataspace */ - /* Convert current "all" selection to "real" hyperslab selection */ - { - const hsize_t *tmp_start; /* Temporary start information */ - const hsize_t *tmp_stride; /* Temporary stride information */ - const hsize_t *tmp_count; /* Temporary count information */ - const hsize_t *tmp_block; /* Temporary block information */ - - /* Set up temporary information for the dimensions */ - tmp_start = H5S_hyper_zeros_g; - tmp_stride = tmp_count = H5S_hyper_ones_g; - tmp_block = space->extent.size; - - /* Convert to hyperslab selection */ - if(H5S_select_hyperslab(space,H5S_SELECT_SET,tmp_start,tmp_stride,tmp_count,tmp_block)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't convert selection") - } /* end case */ - break; - - case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ - break; - - case H5S_SEL_NONE: /* No elements selected in dataspace */ - case H5S_SEL_POINTS: /* Point selection */ - case H5S_SEL_ERROR: /* Selection error */ - case H5S_SEL_N: /* Selection count */ - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "can't convert to span tree selection") - } /* end switch */ - -done: - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S_hyper_convert() */ - - -/*-------------------------------------------------------------------------- - NAME H5S__hyper_intersect_block_helper PURPOSE Helper routine to detect intersections in span trees USAGE hbool_t H5S__hyper_intersect_block_helper(spans, start, end) H5S_hyper_span_info_t *spans; IN: First span tree to operate with + unsigned rank; IN: Number of dimensions for span tree hsize_t *start; IN: Starting coordinate for block hsize_t *end; IN: Ending coordinate for block + uint64_t op_gen; IN: Operation generation RETURN Non-negative (TRUE/FALSE) on success, can't fail DESCRIPTION @@ -5761,10 +6120,9 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static hbool_t -H5S__hyper_intersect_block_helper(const H5S_hyper_span_info_t *spans, - const hsize_t *start, const hsize_t *end) +H5S__hyper_intersect_block_helper(H5S_hyper_span_info_t *spans, + unsigned rank, const hsize_t *start, const hsize_t *end, uint64_t op_gen) { - H5S_hyper_span_t *curr; /* Pointer to current span in 1st span tree */ hbool_t ret_value = FALSE; /* Return value */ FUNC_ENTER_STATIC_NOERR @@ -5774,37 +6132,52 @@ H5S__hyper_intersect_block_helper(const H5S_hyper_span_info_t *spans, HDassert(start); HDassert(end); - /* Get the span list for spans in this tree */ - curr = spans->head; - - /* Iterate over the spans in the tree */ - while(curr != NULL) { - /* Check for span entirely before block */ - if(curr->high < *start) - /* Advance to next span in this dimension */ - curr = curr->next; - /* If this span is past the end of the block, then we're done in this dimension */ - else if(curr->low > *end) - HGOTO_DONE(FALSE) - /* block & span overlap */ - else { - if(curr->down == NULL) - HGOTO_DONE(TRUE) - else { - hbool_t status; /* Status from recursive call */ + /* Check if we've already visited this span tree */ + if(spans->op_gen != op_gen) { + H5S_hyper_span_t *curr; /* Pointer to current span in 1st span tree */ + unsigned u; /* Local index variable */ - /* Recursively check spans in next dimension down */ - status = H5S__hyper_intersect_block_helper(curr->down, start + 1, end + 1); + /* Verify that there is a possibility of an overlap by checking the block + * against the low & high bounds for the span tree. + */ + for(u = 0; u < rank; u++) + if(start[u] > spans->high_bounds[u] || end[u] < spans->low_bounds[u]) + HGOTO_DONE(FALSE) - /* If there is a span intersection in the down dimensions, the span trees overlap */ - if(status == TRUE) - HGOTO_DONE(TRUE); + /* Get the span list for spans in this tree */ + curr = spans->head; - /* No intersection in down dimensions, advance to next span */ + /* Iterate over the spans in the tree */ + while(curr != NULL) { + /* Check for span entirely before block */ + if(curr->high < *start) + /* Advance to next span in this dimension */ curr = curr->next; + /* If this span is past the end of the block, then we're done in this dimension */ + else if(curr->low > *end) + HGOTO_DONE(FALSE) + /* block & span overlap */ + else { + /* If this is the bottom dimension, then the span tree overlaps the block */ + if(curr->down == NULL) + HGOTO_DONE(TRUE) + /* Recursively check spans in next dimension down */ + else { + /* If there is an intersection in the "down" dimensions, + * the span trees overlap. + */ + if(H5S__hyper_intersect_block_helper(curr->down, rank - 1, start + 1, end + 1, op_gen)) + HGOTO_DONE(TRUE) + + /* No intersection in down dimensions, advance to next span */ + curr = curr->next; + } /* end else */ } /* end else */ - } /* end else */ - } /* end while */ + } /* end while */ + + /* Set the tree's operation generation */ + spans->op_gen = op_gen; + } /* end if */ /* Fall through with 'FALSE' return value */ @@ -5829,33 +6202,130 @@ done: Quickly detect intersections between span tree and block GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS + Does not use selection offset. EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ htri_t H5S_hyper_intersect_block(H5S_t *space, const hsize_t *start, const hsize_t *end) { + const hsize_t *low_bounds, *high_bounds; /* Pointers to the correct pair of low & high bounds */ + unsigned u; /* Local index variable */ htri_t ret_value = FAIL; /* Return value */ FUNC_ENTER_NOAPI(FAIL) /* Sanity check */ HDassert(space); + HDassert(H5S_SEL_HYPERSLABS == H5S_GET_SELECT_TYPE(space)); HDassert(start); HDassert(end); - /* Check for 'all' selection, instead of a hyperslab selection */ - /* (Technically, this shouldn't be in the "hyperslab" routines...) */ - if(H5S_GET_SELECT_TYPE(space) == H5S_SEL_ALL) - HGOTO_DONE(TRUE); + /* Attempt to rebuild diminfo if it is invalid and has not been confirmed + * to be impossible. + */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_NO) + H5S__hyper_rebuild(space); - /* Check that the space selection has a span tree */ - if(NULL == space->select.sel_info.hslab->span_lst) - if(H5S__hyper_generate_spans(space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") + /* Check which set of low & high bounds we should be using */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + low_bounds = space->select.sel_info.hslab->diminfo.low_bounds; + high_bounds = space->select.sel_info.hslab->diminfo.high_bounds; + } /* end if */ + else { + low_bounds = space->select.sel_info.hslab->span_lst->low_bounds; + high_bounds = space->select.sel_info.hslab->span_lst->high_bounds; + } /* end else */ - /* Perform the span-by-span intersection check */ - ret_value = H5S__hyper_intersect_block_helper(space->select.sel_info.hslab->span_lst, start, end); + /* Loop over selection bounds and block, checking for overlap */ + for(u = 0; u < space->extent.rank; u++) + /* If selection bounds & block don't overlap, can leave now */ + if(!H5S_RANGE_OVERLAP(low_bounds[u], high_bounds[u], start[u], end[u])) + HGOTO_DONE(FALSE) + + /* Check for regular hyperslab intersection */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + hbool_t single_block; /* Whether the regular selection is a single block */ + + /* Check for a single block */ + /* For a regular hyperslab to be single, it must have only one block + * (i.e. count == 1 in all dimensions). + */ + single_block = TRUE; + for(u = 0; u < space->extent.rank; u++) + if(space->select.sel_info.hslab->diminfo.opt[u].count > 1) + single_block = FALSE; + + /* Single blocks have already been "compared" above, in the low / high + * bound checking, so just return TRUE if we've reached here - they + * would have been rejected earlier, if they didn't intersect. + */ + if(single_block) + HGOTO_DONE(TRUE) + else { + /* Loop over the dimensions, checking for an intersection */ + for(u = 0; u < space->extent.rank; u++) { + /* If the block's start is <= the hyperslab start, they intersect */ + /* (So, if the start is > the hyperslab start, check more conditions) */ + if(start[u] > space->select.sel_info.hslab->diminfo.opt[u].start) { + hsize_t adj_start; /* Start coord, adjusted for hyperslab selection parameters */ + hsize_t nstride; /* Number of strides into the selection */ + + /* Adjust start coord for selection's 'start' offset */ + adj_start = start[u] - space->select.sel_info.hslab->diminfo.opt[u].start; + + /* Compute # of strides into the selection */ + if(space->select.sel_info.hslab->diminfo.opt[u].count > 1) + nstride = adj_start / space->select.sel_info.hslab->diminfo.opt[u].stride; + else + nstride = 0; + + /* Sanity check */ + HDassert(nstride <= space->select.sel_info.hslab->diminfo.opt[u].count); + + /* "Rebase" the adjusted start coord into the same range + * range of values as the selections's first block. + */ + adj_start -= nstride * space->select.sel_info.hslab->diminfo.opt[u].stride; + + /* If the adjusted start doesn't fall within the first hyperslab + * span, check for the block overlapping with the next one. + */ + if(adj_start >= space->select.sel_info.hslab->diminfo.opt[u].block) { + hsize_t adj_end; /* End coord, adjusted for hyperslab selection parameters */ + + /* Adjust end coord for selection's 'start' offset */ + adj_end = end[u] - space->select.sel_info.hslab->diminfo.opt[u].start; + + /* "Rebase" the adjusted end coord into the same range + * range of values as the selections's first block. + */ + adj_end -= nstride * space->select.sel_info.hslab->diminfo.opt[u].stride; + + /* If block doesn't extend over beginning of next span, + * it doesn't intersect. + */ + if(adj_end < space->select.sel_info.hslab->diminfo.opt[u].stride) + HGOTO_DONE(FALSE) + } /* end if */ + } /* end if */ + } /* end for */ + + /* If we've looped through all dimensions and none of them didn't + * overlap, then all of them do, so we report TRUE. + */ + HGOTO_DONE(TRUE) + } /* end else */ + } /* end if */ + else { + uint64_t op_gen; /* Operation generation value */ + + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); + + /* Perform the span-by-span intersection check */ + ret_value = H5S__hyper_intersect_block_helper(space->select.sel_info.hslab->span_lst, space->extent.rank, start, end, op_gen); + } /* end else */ done: FUNC_LEAVE_NOAPI(ret_value) @@ -5870,7 +6340,9 @@ done: USAGE void H5S__hyper_adjust_u_helper(spans, offset) H5S_hyper_span_info_t *spans; IN: Span tree to operate with + unsigned rank; IN: Number of dimensions for span tree const hsize_t *offset; IN: Offset to subtract + uint64_t op_gen; IN: Operation generation RETURNS None DESCRIPTION @@ -5881,23 +6353,26 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static void -H5S__hyper_adjust_u_helper(H5S_hyper_span_info_t *spans, - const hsize_t *offset) +H5S__hyper_adjust_u_helper(H5S_hyper_span_info_t *spans, unsigned rank, + const hsize_t *offset, uint64_t op_gen) { FUNC_ENTER_STATIC_NOERR /* Sanity checks */ HDassert(spans); - HDassert(spans->scratch == (H5S_hyper_span_info_t *)~((size_t)NULL) || - spans->scratch == NULL); HDassert(offset); - /* Check if we've already set this down span tree */ - if(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) { + /* Check if we've already set this span tree */ + if(spans->op_gen != op_gen) { H5S_hyper_span_t *span; /* Pointer to current span in span tree */ + unsigned u; /* Local index variable */ - /* Set the tree's scratch pointer */ - spans->scratch = (H5S_hyper_span_info_t *)~((size_t)NULL); + /* Adjust the span tree's low & high bounds */ + for(u = 0; u < rank; u++) { + HDassert(spans->low_bounds[u] >= offset[u]); + spans->low_bounds[u] -= offset[u]; + spans->high_bounds[u] -= offset[u]; + } /* end for */ /* Iterate over the spans in tree */ span = spans->head; @@ -5909,11 +6384,14 @@ H5S__hyper_adjust_u_helper(H5S_hyper_span_info_t *spans, /* Recursively adjust spans in next dimension down */ if(span->down != NULL) - H5S__hyper_adjust_u_helper(span->down, offset + 1); + H5S__hyper_adjust_u_helper(span->down, rank - 1, offset + 1, op_gen); /* Advance to next span in this dimension */ span = span->next; } /* end while */ + + /* Set the tree's operation generation */ + spans->op_gen = op_gen; } /* end if */ FUNC_LEAVE_NOAPI_VOID @@ -5948,21 +6426,29 @@ H5S__hyper_adjust_u(H5S_t *space, const hsize_t *offset) HDassert(offset); /* Subtract the offset from the "regular" coordinates, if they exist */ - if(space->select.sel_info.hslab->diminfo_valid) { + /* (No need to rebuild the dimension info yet -QAK) */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { unsigned u; /* Local index variable */ for(u = 0; u < space->extent.rank; u++) { - HDassert(space->select.sel_info.hslab->opt_diminfo[u].start >= offset[u]); - space->select.sel_info.hslab->opt_diminfo[u].start -= offset[u]; + HDassert(space->select.sel_info.hslab->diminfo.opt[u].start >= offset[u]); + space->select.sel_info.hslab->diminfo.opt[u].start -= offset[u]; + + /* Adjust the low & high bounds */ + HDassert(space->select.sel_info.hslab->diminfo.low_bounds[u] >= offset[u]); + space->select.sel_info.hslab->diminfo.low_bounds[u] -= offset[u]; + space->select.sel_info.hslab->diminfo.high_bounds[u] -= offset[u]; } /* end for */ } /* end if */ /* Subtract the offset from the span tree coordinates, if they exist */ if(space->select.sel_info.hslab->span_lst) { - H5S__hyper_adjust_u_helper(space->select.sel_info.hslab->span_lst, offset); + uint64_t op_gen; /* Operation generation value */ + + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); - /* Reset the scratch pointers for the next routine which needs them */ - H5S__hyper_span_scratch(space->select.sel_info.hslab->span_lst); + H5S__hyper_adjust_u_helper(space->select.sel_info.hslab->span_lst, space->extent.rank, offset, op_gen); } /* end if */ FUNC_LEAVE_NOAPI(SUCCEED) @@ -5994,12 +6480,20 @@ H5S__hyper_project_scalar(const H5S_t *space, hsize_t *offset) HDassert(offset); /* Check for a "regular" hyperslab selection */ - if(space->select.sel_info.hslab->diminfo_valid) { - const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */ + /* (No need to rebuild the dimension info yet -QAK) */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + const H5S_hyper_dim_t *diminfo = space->select.sel_info.hslab->diminfo.opt; /* Alias for dataspace's diminfo information */ unsigned u; /* Counter */ /* Build the table of the initial offset */ for(u = 0; u < space->extent.rank; u++) { + /* Sanity check diminfo */ + HDassert(1 == diminfo[u].count); + HDassert(1 == diminfo[u].block); + + /* Sanity check bounds, while we're here */ + HDassert(diminfo[u].start == space->select.sel_info.hslab->diminfo.low_bounds[u]); + /* Keep the offset for later */ block[u] = diminfo[u].start; } /* end for */ @@ -6011,17 +6505,22 @@ H5S__hyper_project_scalar(const H5S_t *space, hsize_t *offset) /* Advance down selected spans */ curr = space->select.sel_info.hslab->span_lst->head; curr_dim = 0; - while(curr) { - /* Sanity check for more than one span */ + while(1) { + /* Sanity checks */ HDassert(NULL == curr->next); HDassert(curr->low == curr->high); + HDassert(curr_dim < space->extent.rank); /* Save the location of the selection in current dimension */ block[curr_dim] = curr->low; /* Advance down to next dimension */ - curr = curr->down->head; - curr_dim++; + if(curr->down) { + curr = curr->down->head; + curr_dim++; + } /* end if */ + else + break; } /* end while */ } /* end else */ @@ -6098,6 +6597,7 @@ H5S__hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space) H5S_hyper_span_t *prev_span = NULL; /* Pointer to previous list of spans */ unsigned delta_rank; /* Difference in dataspace ranks */ unsigned curr_dim; /* Current dimension being operated on */ + unsigned u; /* Local index variable */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_STATIC @@ -6116,10 +6616,9 @@ H5S__hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space) H5S_hyper_span_t *new_span; /* Temporary hyperslab span */ /* Allocate a new span_info node */ - if(NULL == (new_span_info = H5FL_CALLOC(H5S_hyper_span_info_t))) { + if(NULL == (new_span_info = H5S__hyper_new_span_info(new_space->extent.rank))) { if(prev_span) - if(H5S__hyper_free_span(prev_span) < 0) - HERROR(H5E_DATASPACE, H5E_CANTFREE, "can't free hyperslab span"); + H5S__hyper_free_span(prev_span); HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span info") } /* end if */ @@ -6131,13 +6630,24 @@ H5S__hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space) if(NULL == (new_span = H5S__hyper_new_span((hsize_t)0, (hsize_t)0, NULL, NULL))) { HDassert(new_span_info); if(!prev_span) - (void)H5FL_FREE(H5S_hyper_span_info_t, new_span_info); + (void)H5FL_ARR_FREE(hbounds_t, new_span_info); HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") } /* end if */ /* Set the span_info information */ new_span_info->count = 1; new_span_info->head = new_span; + new_span_info->tail = new_span; + + /* Set the bounding box */ + for(u = 0; u < delta_rank; u++) { + new_span_info->low_bounds[u] = 0; + new_span_info->high_bounds[u] = 0; + } /* end for */ + for(; u < new_space->extent.rank; u++) { + new_span_info->low_bounds[u] = base_space->select.sel_info.hslab->span_lst->low_bounds[u - delta_rank]; + new_span_info->high_bounds[u] = base_space->select.sel_info.hslab->span_lst->high_bounds[u - delta_rank]; + } /* end for */ /* Attach to new space, if top span info */ if(NULL == new_space->select.sel_info.hslab->span_lst) @@ -6159,10 +6669,9 @@ H5S__hyper_project_simple_higher(const H5S_t *base_space, H5S_t *new_space) done: if(ret_value < 0 && new_space->select.sel_info.hslab->span_lst) { if(new_space->select.sel_info.hslab->span_lst->head) - if(H5S__hyper_free_span(new_space->select.sel_info.hslab->span_lst->head) < 0) - HDONE_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "can't free hyperslab span") + H5S__hyper_free_span(new_space->select.sel_info.hslab->span_lst->head); - new_space->select.sel_info.hslab->span_lst = H5FL_FREE(H5S_hyper_span_info_t, new_space->select.sel_info.hslab->span_lst); + new_space->select.sel_info.hslab->span_lst = (H5S_hyper_span_info_t *)H5FL_ARR_FREE(hbounds_t, new_space->select.sel_info.hslab->span_lst); } /* end if */ FUNC_LEAVE_NOAPI(ret_value) @@ -6207,15 +6716,16 @@ H5S__hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, new_space->select.sel_info.hslab->unlim_dim = -1; /* Check for a "regular" hyperslab selection */ - if(base_space->select.sel_info.hslab->diminfo_valid) { + /* (No need to rebuild the dimension info yet -QAK) */ + if(base_space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { unsigned base_space_dim; /* Current dimension in the base dataspace */ unsigned new_space_dim; /* Current dimension in the new dataspace */ + unsigned u; /* Local index variable */ /* Check if the new space's rank is < or > base space's rank */ if(new_space->extent.rank < base_space->extent.rank) { - const H5S_hyper_dim_t *opt_diminfo = base_space->select.sel_info.hslab->opt_diminfo; /* Alias for dataspace's diminfo information */ + const H5S_hyper_dim_t *opt_diminfo = base_space->select.sel_info.hslab->diminfo.opt; /* Alias for dataspace's diminfo information */ hsize_t block[H5S_MAX_RANK]; /* Block selected in base dataspace */ - unsigned u; /* Local index variable */ /* Compute the offset for the down-projection */ HDmemset(block, 0, sizeof(block)); @@ -6235,15 +6745,15 @@ H5S__hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, /* Set the diminfo information for the higher dimensions */ for(new_space_dim = 0; new_space_dim < (new_space->extent.rank - base_space->extent.rank); new_space_dim++) { - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = 0; - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = 1; - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = 1; - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = 1; - - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = 0; - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride = 1; - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = 1; - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = 1; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].start = 0; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].stride = 1; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].count = 1; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].block = 1; + + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].start = 0; + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].stride = 1; + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].count = 1; + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].block = 1; } /* end for */ /* Start at beginning of base space's dimension info */ @@ -6252,31 +6762,37 @@ H5S__hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, /* Copy the diminfo */ while(base_space_dim < base_space->extent.rank) { - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].start = - base_space->select.sel_info.hslab->app_diminfo[base_space_dim].start; - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].stride = - base_space->select.sel_info.hslab->app_diminfo[base_space_dim].stride; - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].count = - base_space->select.sel_info.hslab->app_diminfo[base_space_dim].count; - new_space->select.sel_info.hslab->app_diminfo[new_space_dim].block = - base_space->select.sel_info.hslab->app_diminfo[base_space_dim].block; - - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].start = - base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].start; - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].stride = - base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].stride; - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].count = - base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].count; - new_space->select.sel_info.hslab->opt_diminfo[new_space_dim].block = - base_space->select.sel_info.hslab->opt_diminfo[base_space_dim].block; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].start = + base_space->select.sel_info.hslab->diminfo.app[base_space_dim].start; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].stride = + base_space->select.sel_info.hslab->diminfo.app[base_space_dim].stride; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].count = + base_space->select.sel_info.hslab->diminfo.app[base_space_dim].count; + new_space->select.sel_info.hslab->diminfo.app[new_space_dim].block = + base_space->select.sel_info.hslab->diminfo.app[base_space_dim].block; + + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].start = + base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].start; + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].stride = + base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].stride; + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].count = + base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].count; + new_space->select.sel_info.hslab->diminfo.opt[new_space_dim].block = + base_space->select.sel_info.hslab->diminfo.opt[base_space_dim].block; /* Advance to next dimensions */ base_space_dim++; new_space_dim++; } /* end for */ + /* Update the bounding box */ + for(u = 0; u < new_space->extent.rank; u++) { + new_space->select.sel_info.hslab->diminfo.low_bounds[u] = new_space->select.sel_info.hslab->diminfo.opt[u].start; + new_space->select.sel_info.hslab->diminfo.high_bounds[u] = new_space->select.sel_info.hslab->diminfo.low_bounds[u] + new_space->select.sel_info.hslab->diminfo.opt[u].stride * (new_space->select.sel_info.hslab->diminfo.opt[u].count - 1) + (new_space->select.sel_info.hslab->diminfo.opt[u].block - 1); + } /* end for */ + /* Indicate that the dimension information is valid */ - new_space->select.sel_info.hslab->diminfo_valid = TRUE; + new_space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_YES; /* Indicate that there's no slab information */ new_space->select.sel_info.hslab->span_lst = NULL; @@ -6321,8 +6837,8 @@ H5S__hyper_project_simple(const H5S_t *base_space, H5S_t *new_space, HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't project hyperslab selection into less dimensions") } /* end else */ - /* Indicate that the dimension information is not valid */ - new_space->select.sel_info.hslab->diminfo_valid = FALSE; + /* Copy the status of the dimension information */ + new_space->select.sel_info.hslab->diminfo_valid = base_space->select.sel_info.hslab->diminfo_valid; } /* end else */ /* Number of elements selected will be the same */ @@ -6344,7 +6860,9 @@ done: USAGE void H5S__hyper_adjust_s_helper(spans, offset) H5S_hyper_span_info_t *spans; IN: Span tree to operate with + unsigned rank; IN: Number of dimensions for span tree const hssize_t *offset; IN: Offset to subtract + uint64_t op_gen; IN: Operation generation RETURNS None DESCRIPTION @@ -6355,23 +6873,26 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static void -H5S__hyper_adjust_s_helper(H5S_hyper_span_info_t *spans, - const hssize_t *offset) +H5S__hyper_adjust_s_helper(H5S_hyper_span_info_t *spans, unsigned rank, + const hssize_t *offset, uint64_t op_gen) { FUNC_ENTER_STATIC_NOERR /* Sanity checks */ HDassert(spans); - HDassert(spans->scratch == (H5S_hyper_span_info_t *)~((size_t)NULL) || - spans->scratch == NULL); HDassert(offset); - /* Check if we've already set this down span tree */ - if(spans->scratch != (H5S_hyper_span_info_t *)~((size_t)NULL)) { + /* Check if we've already set this span tree */ + if(spans->op_gen != op_gen) { H5S_hyper_span_t *span; /* Pointer to current span in span tree */ + unsigned u; /* Local index variable */ - /* Set the tree's scratch pointer */ - spans->scratch = (H5S_hyper_span_info_t *)~((size_t)NULL); + /* Adjust the span tree's low & high bounds */ + for(u = 0; u < rank; u++) { + HDassert((hssize_t)spans->low_bounds[u] >= offset[u]); + spans->low_bounds[u] = (hsize_t)((hssize_t)spans->low_bounds[u] - offset[u]); + spans->high_bounds[u] = (hsize_t)((hssize_t)spans->high_bounds[u] - offset[u]); + } /* end for */ /* Iterate over the spans in tree */ span = spans->head; @@ -6383,11 +6904,14 @@ H5S__hyper_adjust_s_helper(H5S_hyper_span_info_t *spans, /* Recursively adjust spans in next dimension down */ if(span->down != NULL) - H5S__hyper_adjust_s_helper(span->down, offset + 1); + H5S__hyper_adjust_s_helper(span->down, rank - 1, offset + 1, op_gen); /* Advance to next span in this dimension */ span = span->next; } /* end while */ + + /* Set the tree's operation generation */ + spans->op_gen = op_gen; } /* end if */ FUNC_LEAVE_NOAPI_VOID @@ -6415,6 +6939,8 @@ H5S__hyper_adjust_s_helper(H5S_hyper_span_info_t *spans, herr_t H5S_hyper_adjust_s(H5S_t *space, const hssize_t *offset) { + hbool_t non_zero_offset = FALSE; /* Whether any offset is non-zero */ + unsigned u; /* Local index variable */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) @@ -6423,22 +6949,38 @@ H5S_hyper_adjust_s(H5S_t *space, const hssize_t *offset) HDassert(space); HDassert(offset); - /* Subtract the offset from the "regular" coordinates, if they exist */ - if(space->select.sel_info.hslab->diminfo_valid) { - unsigned u; /* Local index variable */ + /* Check for an all-zero offset vector */ + for(u = 0; u < space->extent.rank; u++) + if(0 != offset[u]) { + non_zero_offset = TRUE; + break; + } /* end if */ - for(u = 0; u < space->extent.rank; u++) { - HDassert((hssize_t)space->select.sel_info.hslab->opt_diminfo[u].start >= offset[u]); - space->select.sel_info.hslab->opt_diminfo[u].start = (hsize_t)((hssize_t)space->select.sel_info.hslab->opt_diminfo[u].start - offset[u]); - } /* end for */ - } /* end if */ + /* Only perform operation if the offset is non-zero */ + if(non_zero_offset) { + /* Subtract the offset from the "regular" coordinates, if they exist */ + /* (No need to rebuild the dimension info yet -QAK) */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + for(u = 0; u < space->extent.rank; u++) { + HDassert((hssize_t)space->select.sel_info.hslab->diminfo.opt[u].start >= offset[u]); + space->select.sel_info.hslab->diminfo.opt[u].start = (hsize_t)((hssize_t)space->select.sel_info.hslab->diminfo.opt[u].start - offset[u]); - /* Subtract the offset from the span tree coordinates, if they exist */ - if(space->select.sel_info.hslab->span_lst) { - H5S__hyper_adjust_s_helper(space->select.sel_info.hslab->span_lst, offset); + /* Adjust the low & high bounds */ + HDassert((hssize_t)space->select.sel_info.hslab->diminfo.low_bounds[u] >= offset[u]); + space->select.sel_info.hslab->diminfo.low_bounds[u] = (hsize_t)((hssize_t)space->select.sel_info.hslab->diminfo.low_bounds[u] - offset[u]); + space->select.sel_info.hslab->diminfo.high_bounds[u] = (hsize_t)((hssize_t)space->select.sel_info.hslab->diminfo.high_bounds[u] - offset[u]); + } /* end for */ + } /* end if */ + + /* Subtract the offset from the span tree coordinates, if they exist */ + if(space->select.sel_info.hslab->span_lst) { + uint64_t op_gen; /* Operation generation value */ - /* Reset the scratch pointers for the next routine which needs them */ - H5S__hyper_span_scratch(space->select.sel_info.hslab->span_lst); + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); + + H5S__hyper_adjust_s_helper(space->select.sel_info.hslab->span_lst, space->extent.rank, offset, op_gen); + } /* end if */ } /* end if */ done: @@ -6554,12 +7096,11 @@ done: PURPOSE Create a new span and append to span list USAGE - herr_t H5S__hyper_append_span(prev_span, span_tree, low, high, down, next) - H5S_hyper_span_t **prev_span; IN/OUT: Pointer to previous span in list + herr_t H5S__hyper_append_span(span_tree, ndims, low, high, down) H5S_hyper_span_info_t **span_tree; IN/OUT: Pointer to span tree to append to - hsize_t low, high; IN: Low and high bounds for new span node + unsigned ndims; IN: Number of dimension for span + hsize_t low, high; IN: Low and high bounds for new span node H5S_hyper_span_info_t *down; IN: Down span tree for new node - H5S_hyper_span_t *next; IN: Next span for new node RETURNS Non-negative on success, negative on failure DESCRIPTION @@ -6571,81 +7112,117 @@ done: REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_append_span(H5S_hyper_span_t **prev_span, - H5S_hyper_span_info_t **span_tree, hsize_t low, hsize_t high, H5S_hyper_span_info_t *down, H5S_hyper_span_t *next) +H5S__hyper_append_span(H5S_hyper_span_info_t **span_tree, unsigned ndims, + hsize_t low, hsize_t high, H5S_hyper_span_info_t *down) { H5S_hyper_span_t *new_span = NULL; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_STATIC - HDassert(prev_span); + /* Sanity check */ HDassert(span_tree); /* Check for adding first node to merged spans */ - if(*prev_span == NULL) { + if(*span_tree == NULL) { /* Allocate new span node to append to list */ - if(NULL == (new_span = H5S__hyper_new_span(low, high, down, next))) + if(NULL == (new_span = H5S__hyper_new_span(low, high, down, NULL))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") - /* Make first node in span list */ - - /* Check that we haven't already allocated a span tree */ - HDassert(*span_tree == NULL); + /* Make new span the first node in span list */ /* Allocate a new span_info node */ - if(NULL == (*span_tree = H5FL_CALLOC(H5S_hyper_span_info_t))) + if(NULL == (*span_tree = H5S__hyper_new_span_info(ndims))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") /* Set the span tree's basic information */ (*span_tree)->count = 1; (*span_tree)->head = new_span; + (*span_tree)->tail = new_span; + + /* Set low & high bounds for new span tree */ + (*span_tree)->low_bounds[0] = low; + (*span_tree)->high_bounds[0] = high; + if(down) { + /* Sanity check */ + HDassert(ndims > 1); - /* Update previous merged span */ - *prev_span = new_span; + H5MM_memcpy(&((*span_tree)->low_bounds[1]), down->low_bounds, sizeof(hsize_t) * (ndims - 1)); + H5MM_memcpy(&((*span_tree)->high_bounds[1]), down->high_bounds, sizeof(hsize_t) * (ndims - 1)); + } /* end if */ } /* end if */ /* Merge or append to existing merged spans list */ else { + htri_t down_cmp = (-1); /* Comparison value for down spans */ + /* Check if span can just extend the previous merged span */ - if((((*prev_span)->high + 1) == low) && - H5S__hyper_cmp_spans(down, (*prev_span)->down)==TRUE) { + if((((*span_tree)->tail->high + 1) == low) && + (down_cmp = H5S__hyper_cmp_spans(down, (*span_tree)->tail->down))) { /* Extend previous merged span to include new high bound */ - (*prev_span)->high = high; - (*prev_span)->nelem += (high - low) + 1; + (*span_tree)->tail->high = high; + + /* Extend span tree's high bound in this dimension */ + /* (No need to update lower dimensions, since this span shares them with previous span) */ + (*span_tree)->high_bounds[0] = high; } /* end if */ else { - /* Allocate new span node to append to list */ - if(NULL == (new_span = H5S__hyper_new_span(low, high, down, next))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span") + H5S_hyper_span_info_t *new_down; /* Down pointer for new span node */ + + /* Sanity check */ + /* (If down_cmp was set to TRUE above, we won't be in this branch) */ + HDassert(down_cmp != TRUE); /* Check if there is actually a down span */ - if(new_span->down) { + if(down) { /* Check if the down spans for the new span node are the same as the previous span node */ - if(H5S__hyper_cmp_spans(new_span->down, (*prev_span)->down)) { - /* Release the down span for the new node */ - H5S__hyper_free_span_info(new_span->down); - - /* Point the new node's down span at the previous node's down span */ - new_span->down = (*prev_span)->down; + /* (Uses the 'down span comparison' from earlier, if already computed) */ + if(down_cmp < 0 && (down_cmp = H5S__hyper_cmp_spans(down, (*span_tree)->tail->down))) + /* Share the previous span's down span tree */ + new_down = (*span_tree)->tail->down; + else + new_down = down; + } /* end if */ + else + new_down = NULL; - /* Increment the reference count to the shared down span */ - new_span->down->count++; + /* Allocate new span node to append to list */ + if(NULL == (new_span = H5S__hyper_new_span(low, high, new_down, NULL))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") + + /* Update the high bounds for current dimension */ + (*span_tree)->high_bounds[0] = high; + + /* Update low & high bounds in lower dimensions, if there are any */ + if(down) { + /* Sanity checks */ + HDassert(ndims > 1); + HDassert(down_cmp >= 0); + + /* Check if we are sharing down spans with a previous node */ + /* (Only need to check for bounds changing if down spans aren't shared) */ + if(down_cmp == FALSE) { + unsigned u; /* Local index variable */ + + /* Loop over lower dimensions, checking & updating low & high bounds */ + for(u = 0; u < (ndims - 1); u++) { + if(down->low_bounds[u] < (*span_tree)->low_bounds[u + 1]) + (*span_tree)->low_bounds[u + 1] = down->low_bounds[u]; + if(down->high_bounds[u] > (*span_tree)->high_bounds[u + 1]) + (*span_tree)->high_bounds[u + 1] = down->high_bounds[u]; + } /* end for */ } /* end if */ } /* end if */ - /* Indicate elements from previous span */ - new_span->pstride = low - (*prev_span)->low; - /* Append to end of merged spans list */ - (*prev_span)->next = new_span; - *prev_span = new_span; + (*span_tree)->tail->next = new_span; + (*span_tree)->tail = new_span; } /* end else */ } /* end else */ done: if(ret_value < 0) - if(new_span && H5S__hyper_free_span(new_span) < 0) - HDONE_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "failed to release new hyperslab span") + if(new_span) + H5S__hyper_free_span(new_span); FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_append_span() */ @@ -6657,9 +7234,18 @@ done: PURPOSE Clip a new span tree against the current spans in the hyperslab selection USAGE - herr_t H5S__hyper_clip_spans(span_a, span_b, a_not_b, a_and_b, b_not_a) + herr_t H5S__hyper_clip_spans(span_a, span_b, selector, curr_dim, dim_size, + span_a_b_bounds[4], all_clips_bound, + a_not_b, a_and_b, b_not_a) H5S_hyper_span_t *a_spans; IN: Span tree 'a' to clip with. H5S_hyper_span_t *b_spans; IN: Span tree 'b' to clip with. + unsigned selector; IN: The parameter deciding which output is needed + (only considering the last three bits ABC: + If A is set, then a_not_b is needed; + If B is set, then a_and_b is needed; + If C is set, then b_not_a is needed; + ) + unsigned ndims; IN: Number of dimensions of this span tree H5S_hyper_span_t **a_not_b; OUT: Span tree of 'a' hyperslab spans which doesn't overlap with 'b' hyperslab spans. @@ -6684,20 +7270,14 @@ done: --------------------------------------------------------------------------*/ static herr_t H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans, + unsigned selector, unsigned ndims, H5S_hyper_span_info_t **a_not_b, H5S_hyper_span_info_t **a_and_b, H5S_hyper_span_info_t **b_not_a) { - H5S_hyper_span_t *span_a; /* Pointer to a node in span tree 'a' */ - H5S_hyper_span_t *span_b; /* Pointer to a node in span tree 'b' */ - H5S_hyper_span_t *tmp_span; /* Temporary pointer to new span */ - H5S_hyper_span_t *last_a_not_b; /* Pointer to previous node in span tree 'a_not_b' */ - H5S_hyper_span_t *last_a_and_b; /* Pointer to previous node in span tree 'a_and_b' */ - H5S_hyper_span_t *last_b_not_a; /* Pointer to previous node in span tree 'b_not_a' */ - H5S_hyper_span_info_t *down_a_not_b; /* Temporary pointer to a_not_b span tree of down spans for overlapping nodes */ - H5S_hyper_span_info_t *down_a_and_b; /* Temporary pointer to a_and_b span tree of down spans for overlapping nodes */ - H5S_hyper_span_info_t *down_b_not_a; /* Temporary pointer to b_and_a span tree of down spans for overlapping nodes */ - hbool_t recover_a, recover_b; /* Flags to indicate when to recover temporary spans */ - herr_t ret_value = SUCCEED; /* Return value */ + hbool_t need_a_not_b; /* Whether to generate a_not_b list */ + hbool_t need_a_and_b; /* Whether to generate a_and_b list */ + hbool_t need_b_not_a; /* Whether to generate b_not_a list */ + herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_STATIC @@ -6708,6 +7288,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s HDassert(a_and_b); HDassert(b_not_a); + /* Set which list(s) to be generated, based on selector */ + need_a_not_b = ((selector & H5S_HYPER_COMPUTE_A_NOT_B) != 0); + need_a_and_b = ((selector & H5S_HYPER_COMPUTE_A_AND_B) != 0); + need_b_not_a = ((selector & H5S_HYPER_COMPUTE_B_NOT_A) != 0); + /* Check if both span trees are not defined */ if(a_spans == NULL && b_spans == NULL) { *a_not_b = NULL; @@ -6718,38 +7303,56 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s else if(a_spans == NULL) { *a_not_b = NULL; *a_and_b = NULL; - if(NULL == (*b_not_a = H5S__hyper_copy_span(b_spans))) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") + if(need_b_not_a) { + if(NULL == (*b_not_a = H5S__hyper_copy_span(b_spans, ndims))) + HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") + } /* end if */ + else + *b_not_a = NULL; } /* end if */ /* If span 'b' is not defined, but 'a' is, copy 'a' and set the other return span trees to empty */ else if(b_spans == NULL) { - if(NULL == (*a_not_b = H5S__hyper_copy_span(a_spans)) ) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") *a_and_b = NULL; *b_not_a = NULL; + if(need_a_not_b) { + if(NULL == (*a_not_b = H5S__hyper_copy_span(a_spans, ndims))) + HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") + } /* end if */ + else + *a_not_b = NULL; } /* end if */ /* If span 'a' and 'b' are both defined, calculate the proper span trees */ else { /* Check if both span trees completely overlap */ if(H5S__hyper_cmp_spans(a_spans, b_spans)) { *a_not_b = NULL; - if(NULL == (*a_and_b = H5S__hyper_copy_span(a_spans))) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") *b_not_a = NULL; + if(need_a_and_b) { + if(NULL == (*a_and_b = H5S__hyper_copy_span(a_spans, ndims))) + HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, FAIL, "can't copy hyperslab span tree") + } /* end if */ + else + *a_and_b = NULL; } /* end if */ else { + H5S_hyper_span_t *span_a; /* Pointer to a node in span tree 'a' */ + H5S_hyper_span_t *span_b; /* Pointer to a node in span tree 'b' */ + hbool_t recover_a, recover_b; /* Flags to indicate when to recover temporary spans */ + /* Get the pointers to the new and old span lists */ span_a = a_spans->head; span_b = b_spans->head; - /* Reset the pointers to the previous spans */ - last_a_not_b = last_a_and_b = last_b_not_a = NULL; - /* No spans to recover yet */ recover_a = recover_b = FALSE; /* Work through the list of spans in the new list */ while(span_a != NULL && span_b != NULL) { + H5S_hyper_span_info_t *down_a_not_b; /* Temporary pointer to a_not_b span tree of down spans for overlapping nodes */ + H5S_hyper_span_info_t *down_a_and_b; /* Temporary pointer to a_and_b span tree of down spans for overlapping nodes */ + H5S_hyper_span_info_t *down_b_not_a; /* Temporary pointer to b_and_a span tree of down spans for overlapping nodes */ + H5S_hyper_span_t *tmp_span; /* Temporary pointer to new span */ + /* Check if span 'a' is completely before span 'b' */ /* AAAAAAA */ /* <-----------------------------------> */ @@ -6758,11 +7361,12 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Copy span 'a' and add to a_not_b list */ /* Merge/add span 'a' with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b, a_not_b, span_a->low, span_a->high, span_a->down, NULL) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_not_b) + if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_a->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Advance span 'a', leave span 'b' */ - H5S__hyper_recover_span(&recover_a, &span_a, span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); } /* end if */ /* Check if span 'a' overlaps only the lower bound */ /* of span 'b' , up to the upper bound of span 'b' */ @@ -6773,8 +7377,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Split span 'a' into two parts at the low bound of span 'b' */ /* Merge/add lower part of span 'a' with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b, a_not_b, span_a->low, span_b->low - 1, span_a->down, NULL) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_not_b) + if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_b->low - 1, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Check for overlaps between upper part of span 'a' and lower part of span 'b' */ @@ -6784,8 +7389,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* If there are no down spans, just add the overlapping area to the a_and_b list */ if(span_a->down == NULL) { /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b, a_and_b, span_b->low, span_a->high, NULL, NULL) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_and_b) + if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_a->high, NULL) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") } /* end if */ /* If there are down spans, check for the overlap in them and add to each appropriate list */ else { @@ -6795,14 +7401,20 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s down_b_not_a = NULL; /* Check for overlaps in the 'down spans' of span 'a' & 'b' */ - if(H5S__hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0) + /** Note: since the bound box of remaining dimensions + * has been updated in the following clip function (via + * all_clips_bounds), there's no need updating the bound box + * after each append call in the following codes */ + if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") /* Check for additions to the a_not_b list */ if(down_a_not_b) { + HDassert(need_a_not_b == TRUE); + /* Merge/add overlapped part with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b,a_not_b,span_b->low,span_a->high,down_a_not_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_not_b, ndims, span_b->low, span_a->high, down_a_not_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_not_b); @@ -6810,9 +7422,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Check for additions to the a_and_b list */ if(down_a_and_b) { + HDassert(need_a_and_b == TRUE); + /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_a->high,down_a_and_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_a->high, down_a_and_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_and_b); @@ -6820,9 +7434,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Check for additions to the b_not_a list */ if(down_b_not_a) { + HDassert(need_b_not_a == TRUE); + /* Merge/add overlapped part with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_a->high,down_b_not_a,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_a->high, down_b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_b_not_a); @@ -6838,17 +7454,17 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s HGOTO_ERROR(H5E_DATASPACE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span") /* Advance span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); /* Make upper part of span 'b' into new span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,tmp_span); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span); recover_b = TRUE; } /* end if */ /* No upper part of span 'b' to split */ else { /* Advance both 'a' and 'b' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end else */ } /* end if */ /* Check if span 'a' overlaps the lower & upper bound */ @@ -6860,8 +7476,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Split off lower part of span 'a' at lower span of span 'b' */ /* Merge/add lower part of span 'a' with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_not_b) + if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_b->low - 1, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Check for overlaps between middle part of span 'a' and span 'b' */ @@ -6871,8 +7488,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* If there are no down spans, just add the overlapping area to the a_and_b list */ if(span_a->down == NULL) { /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_b->high,NULL,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_and_b) + if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_b->high, NULL) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") } /* end if */ /* If there are down spans, check for the overlap in them and add to each appropriate list */ else { @@ -6882,14 +7500,16 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s down_b_not_a = NULL; /* Check for overlaps in the 'down spans' of span 'a' & 'b' */ - if(H5S__hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0) + if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") /* Check for additions to the a_not_b list */ if(down_a_not_b) { + HDassert(need_a_not_b == TRUE); + /* Merge/add overlapped part with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b,a_not_b,span_b->low,span_b->high,down_a_not_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_not_b, ndims, span_b->low, span_b->high, down_a_not_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_not_b); @@ -6897,9 +7517,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Check for additions to the a_and_b list */ if(down_a_and_b) { + HDassert(need_a_and_b == TRUE); + /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_b->low,span_b->high,down_a_and_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_and_b, ndims, span_b->low, span_b->high, down_a_and_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_and_b); @@ -6907,9 +7529,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Check for additions to the b_not_a list */ if(down_b_not_a) { + HDassert(need_b_not_a == TRUE); + /* Merge/add overlapped part with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_b->high,down_b_not_a,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_b->high, down_b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_b_not_a); @@ -6923,11 +7547,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s HGOTO_ERROR(H5E_DATASPACE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span") /* Make upper part of span 'a' the new span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,tmp_span); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span); recover_a = TRUE; /* Advance span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end if */ /* Check if span 'a' is entirely within span 'b' */ /* AAAAA */ @@ -6939,8 +7563,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Check if there is actually a lower part of span 'b' to split off */ if(span_a->low > span_b->low) { /* Merge/add lower part of span 'b' with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_b_not_a) + if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_a->low - 1, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") } /* end if */ else { /* Keep going, nothing to split off */ @@ -6954,8 +7579,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* If there are no down spans, just add the overlapping area to the a_and_b list */ if(span_a->down == NULL) { /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_a->high,NULL,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_and_b) + if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_a->high, NULL) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") } /* end if */ /* If there are down spans, check for the overlap in them and add to each appropriate list */ else { @@ -6965,34 +7591,40 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s down_b_not_a = NULL; /* Check for overlaps in the 'down spans' of span 'a' & 'b' */ - if(H5S__hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0) + if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") /* Check for additions to the a_not_b list */ if(down_a_not_b) { + HDassert(need_a_not_b == TRUE); + /* Merge/add overlapped part with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_a->high,down_a_not_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_a->high, down_a_not_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_not_b); } /* end if */ /* Check for additions to the a_and_b list */ - if(down_a_and_b!=NULL) { + if(down_a_and_b) { + HDassert(need_a_and_b == TRUE); + /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_a->high,down_a_and_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_a->high, down_a_and_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_and_b); } /* end if */ /* Check for additions to the b_not_a list */ - if(down_b_not_a!=NULL) { + if(down_b_not_a) { + HDassert(need_b_not_a == TRUE); + /* Merge/add overlapped part with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_a->low,span_a->high,down_b_not_a,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(b_not_a, ndims, span_a->low, span_a->high, down_b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_b_not_a); @@ -7008,16 +7640,16 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") /* And advance span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); /* Make upper part of span 'b' the new span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,tmp_span); - recover_b=1; + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span); + recover_b = TRUE; } /* end if */ else { /* Advance both span 'a' & span 'b' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end else */ } /* end if */ /* Check if span 'a' overlaps only the upper bound */ @@ -7031,8 +7663,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Split off lower part of span 'b' at lower span of span 'a' */ /* Merge/add lower part of span 'b' with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_b_not_a) + if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_a->low - 1, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") } /* end if */ else { /* Keep going, nothing to split off */ @@ -7046,8 +7679,9 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* If there are no down spans, just add the overlapping area to the a_and_b list */ if(span_a->down == NULL) { /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_b->high,NULL,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_a_and_b) + if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_b->high, NULL) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") } /* end if */ /* If there are down spans, check for the overlap in them and add to each appropriate list */ else { @@ -7057,24 +7691,28 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s down_b_not_a = NULL; /* Check for overlaps in the 'down spans' of span 'a' & 'b' */ - if(H5S__hyper_clip_spans(span_a->down,span_b->down,&down_a_not_b,&down_a_and_b,&down_b_not_a)<0) + if(H5S__hyper_clip_spans(span_a->down, span_b->down, selector, ndims - 1, &down_a_not_b, &down_a_and_b, &down_b_not_a) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") /* Check for additions to the a_not_b list */ if(down_a_not_b) { + HDassert(need_a_not_b == TRUE); + /* Merge/add overlapped part with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_b->high,down_a_not_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_b->high, down_a_not_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_not_b); } /* end if */ /* Check for additions to the a_and_b list */ - if(down_a_and_b!=NULL) { + if(down_a_and_b) { + HDassert(need_a_and_b == TRUE); + /* Merge/add overlapped part with/to a_and_b list */ - if(H5S__hyper_append_span(&last_a_and_b,a_and_b,span_a->low,span_b->high,down_a_and_b,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(a_and_b, ndims, span_a->low, span_b->high, down_a_and_b) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_a_and_b); @@ -7082,9 +7720,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Check for additions to the b_not_a list */ if(down_b_not_a) { + HDassert(need_b_not_a == TRUE); + /* Merge/add overlapped part with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_a->low,span_b->high,down_b_not_a,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(b_not_a, ndims, span_a->low, span_b->high, down_b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Release the down span tree generated */ H5S__hyper_free_span_info(down_b_not_a); @@ -7098,11 +7738,11 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") /* Make upper part of span 'a' into new span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,tmp_span); - recover_a=1; + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span); + recover_a = TRUE; /* Advance span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end if */ /* span 'a' must be entirely above span 'b' */ /* AAAAA */ @@ -7112,40 +7752,70 @@ H5S__hyper_clip_spans(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_s /* Copy span 'b' and add to b_not_a list */ /* Merge/add span 'b' with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_b->high,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + if(need_b_not_a) + if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_b->high, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Advance span 'b', leave span 'a' */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end else */ } /* end while */ /* Clean up 'a' spans which haven't been covered yet */ if(span_a != NULL && span_b == NULL) { - while(span_a != NULL) { - /* Copy span 'a' and add to a_not_b list */ - - /* Merge/add span 'a' with/to a_not_b list */ - if(H5S__hyper_append_span(&last_a_not_b,a_not_b,span_a->low,span_a->high,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + /* Check if need to merge/add 'a' spans with/to a_not_b list */ + if(need_a_not_b) { + /* (This loop, and the similar one below for 'b' spans, + * could be replaced with an optimized routine that quickly + * appended the remaining spans to the 'not' list, but + * until it looks like it's taking a lot of time for an + * important use case, it's been left generic, and similar + * to other code above. -QAK, 2019/02/01) + */ + while(span_a != NULL) { + /* Copy span 'a' and add to a_not_b list */ + if(H5S__hyper_append_span(a_not_b, ndims, span_a->low, span_a->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") - /* Advance to the next 'a' span */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); - } /* end while */ + /* Advance to the next 'a' span */ + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); + } /* end while */ + } /* end if */ + else { + /* Free the span, if it's generated */ + if(recover_a) + H5S__hyper_free_span(span_a); + } /* end else */ } /* end if */ /* Clean up 'b' spans which haven't been covered yet */ else if(span_a == NULL && span_b != NULL) { - while(span_b != NULL) { - /* Copy span 'b' and add to b_not_a list */ - - /* Merge/add span 'b' with/to b_not_a list */ - if(H5S__hyper_append_span(&last_b_not_a,b_not_a,span_b->low,span_b->high,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") + /* Check if need to merge/add 'b' spans with/to b_not_a list */ + if(need_b_not_a) { + /* (This loop, and the similar one above for 'a' spans, + * could be replaced with an optimized routine that quickly + * appended the remaining spans to the 'not' list, but + * until it looks like it's taking a lot of time for an + * important use case, it's been left generic, and similar + * to other code above. -QAK, 2019/02/01) + */ + while(span_b != NULL) { + /* Copy span 'b' and add to b_not_a list */ + if(H5S__hyper_append_span(b_not_a, ndims, span_b->low, span_b->high, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") - /* Advance to the next 'b' span */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); - } /* end while */ + /* Advance to the next 'b' span */ + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); + } /* end while */ + } /* end if */ + else { + /* Free the span, if it's generated */ + if(recover_b) + H5S__hyper_free_span(span_b); + } /* end else */ } /* end if */ + else + /* Sanity check */ + HDassert(span_a == NULL && span_b == NULL); } /* end else */ } /* end else */ @@ -7165,6 +7835,7 @@ done: together H5S_hyper_span_info_t *b_spans; IN: Second hyperslab spans to merge together + unsigned ndims; IN: Number of dimensions of this span tree RETURNS Pointer to span tree containing the merged spans on success, NULL on failure DESCRIPTION @@ -7172,11 +7843,13 @@ done: the merged set. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS + Handles merging span trees that overlap. EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ static H5S_hyper_span_info_t * -H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans) +H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_info_t *b_spans, + unsigned ndims) { H5S_hyper_span_info_t *merged_spans = NULL; /* Pointer to the merged span tree */ H5S_hyper_span_info_t *ret_value = NULL; /* Return value */ @@ -7192,23 +7865,19 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf merged_spans = NULL; else { /* Copy one of the span trees to return */ - if(NULL == (merged_spans = H5S__hyper_copy_span(a_spans))) + if(NULL == (merged_spans = H5S__hyper_copy_span(a_spans, ndims))) HGOTO_ERROR(H5E_INTERNAL, H5E_CANTCOPY, NULL, "can't copy hyperslab span tree") } /* end else */ } /* end if */ else { H5S_hyper_span_t *span_a; /* Pointer to current span 'a' working on */ H5S_hyper_span_t *span_b; /* Pointer to current span 'b' working on */ - H5S_hyper_span_t *prev_span_merge; /* Pointer to previous merged span */ hbool_t recover_a, recover_b; /* Flags to indicate when to recover temporary spans */ /* Get the pointers to the 'a' and 'b' span lists */ span_a = a_spans->head; span_b = b_spans->head; - /* Set the pointer to the previous spans */ - prev_span_merge = NULL; - /* No spans to recover yet */ recover_a = recover_b = FALSE; @@ -7223,11 +7892,11 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* BBBBBBBBBB */ if(span_a->high < span_b->low) { /* Merge/add span 'a' with/to the merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Advance span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); } /* end if */ /* Check if span 'a' overlaps only the lower bound */ /* of span 'b', up to the upper bound of span 'b' */ @@ -7238,20 +7907,20 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* Check if span 'a' and span 'b' down spans are equal */ if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) { /* Merge/add copy of span 'a' with/to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") } /* end if */ else { /* Merge/add lower part of span 'a' with/to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->low - 1, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Get merged span tree for overlapped section */ - tmp_spans = H5S__hyper_merge_spans_helper(span_a->down,span_b->down); + tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1); /* Merge/add overlapped section to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->high,tmp_spans,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->high, tmp_spans) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Release merged span tree for overlapped section */ H5S__hyper_free_span_info(tmp_spans); @@ -7262,20 +7931,20 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* Copy upper part of span 'b' as new span 'b' */ /* Allocate new span node to append to list */ - if((tmp_span = H5S__hyper_new_span(span_a->high+1,span_b->high,span_b->down,span_b->next))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, NULL, "can't allocate hyperslab span") + if(NULL == (tmp_span = H5S__hyper_new_span(span_a->high + 1, span_b->high, span_b->down, span_b->next))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Advance span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); /* Set new span 'b' to tmp_span */ - H5S__hyper_recover_span(&recover_b,&span_b,tmp_span); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span); recover_b = TRUE; } /* end if */ else { /* Advance both span 'a' & 'b' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end else */ } /* end if */ /* Check if span 'a' overlaps the lower & upper bound */ @@ -7287,20 +7956,20 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* Check if span 'a' and span 'b' down spans are equal */ if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) { /* Merge/add copy of lower & middle parts of span 'a' to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->high,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") } /* end if */ else { /* Merge/add lower part of span 'a' to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->low-1,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->low - 1, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Get merged span tree for overlapped section */ - tmp_spans = H5S__hyper_merge_spans_helper(span_a->down,span_b->down); + tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1); /* Merge/add overlapped section to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,tmp_spans,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, tmp_spans) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Release merged span tree for overlapped section */ H5S__hyper_free_span_info(tmp_spans); @@ -7313,11 +7982,11 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Set new span 'a' to tmp_span */ - H5S__hyper_recover_span(&recover_a,&span_a,tmp_span); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span); recover_a = TRUE; /* Advance span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end if */ /* Check if span 'a' is entirely within span 'b' */ /* AAAAA */ @@ -7327,26 +7996,26 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* Check if span 'a' and span 'b' down spans are equal */ if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) { /* Merge/add copy of lower & middle parts of span 'b' to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->high,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") } /* end if */ else { /* Check if there is a lower part of span 'b' */ if(span_a->low > span_b->low) { /* Merge/add lower part of span 'b' to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->low - 1, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") } /* end if */ else { /* No lower part of span 'b' , keep going... */ } /* end else */ /* Get merged span tree for overlapped section */ - tmp_spans = H5S__hyper_merge_spans_helper(span_a->down,span_b->down); + tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1); /* Merge/add overlapped section to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,tmp_spans,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, tmp_spans) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Release merged span tree for overlapped section */ H5S__hyper_free_span_info(tmp_spans); @@ -7361,16 +8030,16 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Advance span 'a' */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); /* Set new span 'b' to tmp_span */ - H5S__hyper_recover_span(&recover_b,&span_b,tmp_span); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, tmp_span); recover_b = TRUE; } /* end if */ else { /* Advance both spans */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end else */ } /* end if */ /* Check if span 'a' overlaps only the upper bound */ @@ -7382,26 +8051,26 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* Check if span 'a' and span 'b' down spans are equal */ if(H5S__hyper_cmp_spans(span_a->down, span_b->down)) { /* Merge/add copy of span 'b' to merged spans if so */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") } /* end if */ else { /* Check if there is a lower part of span 'b' */ if(span_a->low > span_b->low) { /* Merge/add lower part of span 'b' to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_a->low-1,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_a->low - 1, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") } /* end if */ else { /* No lower part of span 'b' , keep going... */ } /* end else */ /* Get merged span tree for overlapped section */ - tmp_spans = H5S__hyper_merge_spans_helper(span_a->down,span_b->down); + tmp_spans = H5S__hyper_merge_spans_helper(span_a->down, span_b->down, ndims - 1); /* Merge/add overlapped section to merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_b->high,tmp_spans,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_b->high, tmp_spans) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Release merged span tree for overlapped section */ H5S__hyper_free_span_info(tmp_spans); @@ -7414,11 +8083,11 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Set new span 'a' to tmp_span */ - H5S__hyper_recover_span(&recover_a,&span_a,tmp_span); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, tmp_span); recover_a = TRUE; /* Advance span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end if */ /* Span 'a' must be entirely above span 'b' */ /* AAAAA */ @@ -7426,11 +8095,11 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf /* BBBBBBBBBB */ else { /* Merge/add span 'b' with the merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Advance span 'b' */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end else */ } /* end while */ @@ -7438,11 +8107,11 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf if(span_a != NULL && span_b == NULL) { while(span_a != NULL) { /* Merge/add all 'a' spans into the merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_a->low,span_a->high,span_a->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_a->low, span_a->high, span_a->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Advance to next 'a' span, until all processed */ - H5S__hyper_recover_span(&recover_a,&span_a,span_a->next); + H5S_HYPER_ADVANCE_SPAN(recover_a, span_a, span_a->next); } /* end while */ } /* end if */ @@ -7450,11 +8119,11 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf if(span_a == NULL && span_b != NULL) { while(span_b != NULL) { /* Merge/add all 'b' spans into the merged spans */ - if(H5S__hyper_append_span(&prev_span_merge,&merged_spans,span_b->low,span_b->high,span_b->down,NULL)==FAIL) - HGOTO_ERROR(H5E_RESOURCE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") + if(H5S__hyper_append_span(&merged_spans, ndims, span_b->low, span_b->high, span_b->down) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, NULL, "can't allocate hyperslab span") /* Advance to next 'b' span, until all processed */ - H5S__hyper_recover_span(&recover_b,&span_b,span_b->next); + H5S_HYPER_ADVANCE_SPAN(recover_b, span_b, span_b->next); } /* end while */ } /* end if */ } /* end else */ @@ -7464,8 +8133,8 @@ H5S__hyper_merge_spans_helper(H5S_hyper_span_info_t *a_spans, H5S_hyper_span_inf done: if(ret_value == NULL) - if(merged_spans && H5S__hyper_free_span_info(merged_spans) < 0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, NULL, "failed to release merged hyperslab spans") + if(merged_spans) + H5S__hyper_free_span_info(merged_spans); FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_merge_spans_helper() */ @@ -7482,44 +8151,37 @@ done: selection. H5S_hyper_span_t *new_spans; IN: Span tree of new spans to add to hyperslab selection - hbool_t can_own; IN: Flag to indicate that it is OK to point - directly to the new spans, instead of - copying them. RETURNS non-negative on success, negative on failure DESCRIPTION - Add a set of hyperslab spans to an existing hyperslab selection. The - new spans are required to be non-overlapping with the existing spans in - the dataspace's current hyperslab selection. + Add a set of hyperslab spans to an existing hyperslab selection. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ static herr_t -H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans, hbool_t can_own) +H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans) { - FUNC_ENTER_STATIC_NOERR + herr_t ret_value = SUCCEED; /* Return value */ - /* Check args */ + FUNC_ENTER_STATIC + + /* Sanity checks */ HDassert(space); HDassert(new_spans); /* If this is the first span tree in the hyperslab selection, just use it */ if(space->select.sel_info.hslab->span_lst == NULL) { - if(can_own) - space->select.sel_info.hslab->span_lst = new_spans; - else - space->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(new_spans); + space->select.sel_info.hslab->span_lst = new_spans; + space->select.sel_info.hslab->span_lst->count++; } /* end if */ else { H5S_hyper_span_info_t *merged_spans; /* Get the merged spans */ - merged_spans = H5S__hyper_merge_spans_helper(space->select.sel_info.hslab->span_lst, new_spans); - - /* Sanity checking since we started with some spans, we should still have some after the merge */ - HDassert(merged_spans); + if(NULL == (merged_spans = H5S__hyper_merge_spans_helper(space->select.sel_info.hslab->span_lst, new_spans, space->extent.rank))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTMERGE, FAIL, "can't merge hyperslab spans") /* Free the previous spans */ H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst); @@ -7528,18 +8190,20 @@ H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans, hbool_t c space->select.sel_info.hslab->span_lst = merged_spans; } /* end else */ - FUNC_LEAVE_NOAPI(SUCCEED) +done: + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_merge_spans() */ /*-------------------------------------------------------------------------- NAME - H5S__hyper_spans_nelem + H5S__hyper_spans_nelem_helper PURPOSE Count the number of elements in a span tree USAGE - hsize_t H5S__hyper_spans_nelem(spans) + hsize_t H5S__hyper_spans_nelem_helper(spans, op_gen) const H5S_hyper_span_info_t *spans; IN: Hyperslan span tree to count elements of + uint64_t op_gen; IN: Operation generation RETURNS Number of elements in span tree on success; negative on failure DESCRIPTION @@ -7550,36 +8214,147 @@ H5S__hyper_merge_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans, hbool_t c REVISION LOG --------------------------------------------------------------------------*/ static hsize_t -H5S__hyper_spans_nelem(const H5S_hyper_span_info_t *spans) +H5S__hyper_spans_nelem_helper(H5S_hyper_span_info_t *spans, uint64_t op_gen) { hsize_t ret_value = 0; /* Return value */ FUNC_ENTER_STATIC_NOERR - /* Count the number of elements in the span tree */ - if(spans != NULL) { + /* Sanity check */ + HDassert(spans); + + /* Check if the span tree was already counted */ + if(spans->op_gen == op_gen) + /* Just return the # of elements in the already counted span tree */ + ret_value = spans->u.nelmts; + else { /* Count the number of elements in the span tree */ const H5S_hyper_span_t *span; /* Hyperslab span */ span = spans->head; - while(span != NULL) { - /* If there are down spans, multiply the size of this span by the total down span elements */ - if(span->down != NULL) - ret_value += span->nelem * H5S__hyper_spans_nelem(span->down); - /* If there are no down spans, just count the elements in this span */ - else - ret_value += span->nelem; + if(NULL == span->down) { + while(span != NULL) { + /* Compute # of elements covered */ + ret_value += (span->high - span->low) + 1; - /* Advance to next span */ - span = span->next; - } /* end while */ + /* Advance to next span */ + span = span->next; + } /* end while */ + } /* end if */ + else { + while(span != NULL) { + hsize_t nelmts; /* # of elements covered by current span */ + + /* Compute # of elements covered */ + nelmts = (span->high - span->low) + 1; + + /* Multiply the size of this span by the total down span elements */ + ret_value += nelmts * H5S__hyper_spans_nelem_helper(span->down, op_gen); + + /* Advance to next span */ + span = span->next; + } /* end while */ + } /* end else */ + + /* Set the operation generation for this span tree, to avoid re-computing */ + spans->op_gen = op_gen; + + /* Hold a copy of the # of elements */ + spans->u.nelmts = ret_value; } /* end else */ FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_spans_nelem_helper() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__hyper_spans_nelem + PURPOSE + Count the number of elements in a span tree + USAGE + hsize_t H5S__hyper_spans_nelem(spans) + const H5S_hyper_span_info_t *spans; IN: Hyperslan span tree to count elements of + RETURNS + Number of elements in span tree on success; negative on failure + DESCRIPTION + Counts the number of elements described by the spans in a span tree. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static hsize_t +H5S__hyper_spans_nelem(H5S_hyper_span_info_t *spans) +{ + uint64_t op_gen; /* Operation generation value */ + hsize_t ret_value = 0; /* Return value */ + + FUNC_ENTER_STATIC_NOERR + + /* Sanity check */ + HDassert(spans); + + /* Acquire an operation generation value for this operation */ + op_gen = H5S__hyper_get_op_gen(); + + /* Count the number of elements in the span tree */ + ret_value = H5S__hyper_spans_nelem_helper(spans, op_gen); + + FUNC_LEAVE_NOAPI(ret_value) } /* end H5S__hyper_spans_nelem() */ /*-------------------------------------------------------------------------- NAME + H5S__hyper_add_disjoint_spans + PURPOSE + Add new hyperslab spans to existing hyperslab selection in the case the + new hyperslab spans don't overlap with the existing hyperslab selection + USAGE + herr_t H5S__hyper_add_disjoint_spans(space, new_spans) + H5S_t *space; IN: Dataspace to add new spans to hyperslab + selection. + H5S_hyper_span_t *new_spans; IN: Span tree of new spans to add to + hyperslab selection + RETURNS + Non-negative on success, negative on failure + DESCRIPTION + Add a set of hyperslab spans to an existing hyperslab selection. The + new spans are required not to overlap with the existing spans in the + dataspace's current hyperslab selection in terms of bound box. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_add_disjoint_spans(H5S_t *space, H5S_hyper_span_info_t *new_spans) +{ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_STATIC + + /* Check args */ + HDassert(space); + HDassert(new_spans); + + /* Update the number of elements in the selection */ + space->select.num_elem += H5S__hyper_spans_nelem(new_spans); + + /* Add the new spans to the existing selection in the dataspace */ + if(H5S__hyper_merge_spans(space, new_spans) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't merge hyperslabs") + + /* Free the memory space for new spans */ + H5S__hyper_free_span_info(new_spans); + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_add_disjoint_spans */ + + +/*-------------------------------------------------------------------------- + NAME H5S__hyper_make_spans PURPOSE Create a span tree @@ -7610,9 +8385,7 @@ H5S__hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride H5S_hyper_span_info_t *down = NULL; /* Pointer to spans in next dimension down */ H5S_hyper_span_t *last_span; /* Current position in hyperslab span list */ H5S_hyper_span_t *head = NULL; /* Head of new hyperslab span list */ - hsize_t stride_iter; /* Iterator over the stride values */ int i; /* Counters */ - unsigned u; /* Counters */ H5S_hyper_span_info_t *ret_value = NULL; /* Return value */ FUNC_ENTER_STATIC @@ -7626,6 +8399,9 @@ H5S__hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride /* Start creating spans in fastest changing dimension */ for(i = (int)(rank - 1); i >= 0; i--) { + hsize_t curr_low, curr_high; /* Current low & high values */ + hsize_t dim_stride; /* Current dim's stride */ + unsigned u; /* Local index variable */ /* Sanity check */ if(0 == count[i]) @@ -7636,8 +8412,10 @@ H5S__hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride last_span = NULL; /* Generate all the span segments for this dimension */ - for(u = 0, stride_iter = 0; u < count[i]; u++, stride_iter += stride[i]) - { + curr_low = start[i]; + curr_high = start[i] + (block[i] - 1); + dim_stride = stride[i]; + for(u = 0; u < count[i]; u++, curr_low += dim_stride, curr_high += dim_stride) { H5S_hyper_span_t *span; /* New hyperslab span */ /* Allocate a span node */ @@ -7645,12 +8423,14 @@ H5S__hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Set the span's basic information */ - span->low = start[i] + stride_iter; - span->high = span->low + (block[i] - 1); - span->nelem = block[i]; - span->pstride = stride[i]; + span->low = curr_low; + span->high = curr_high; span->next = NULL; + /* Set the information for the next dimension down's spans */ + /* (Will be NULL for fastest changing dimension) */ + span->down = down; + /* Append to the list of spans in this dimension */ if(head == NULL) head = span; @@ -7659,23 +8439,32 @@ H5S__hyper_make_spans(unsigned rank, const hsize_t *start, const hsize_t *stride /* Move current pointer */ last_span = span; - - /* Set the information for the next dimension down's spans, if appropriate */ - if(down != NULL) { - span->down = down; - down->count++; /* Increment reference count for shared span */ - } /* end if */ - else - span->down = NULL; } /* end for */ + /* Increment ref. count of shared span */ + if(down != NULL) + down->count = (unsigned)count[i]; + /* Allocate a span info node */ - if(NULL == (down = H5FL_CALLOC(H5S_hyper_span_info_t))) + if(NULL == (down = H5S__hyper_new_span_info(rank))) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, NULL, "can't allocate hyperslab span") /* Keep the pointer to the next dimension down's completed list */ down->head = head; + /* Keep the tail pointer to the next dimension down's completed list */ + down->tail = last_span; + + /* Set the low & high bounds for this dimension */ + down->low_bounds[0] = down->head->low; + down->high_bounds[0] = down->tail->high; + + /* Copy bounds from lower dimensions */ + /* (head & tail pointers share lower dimensions, so using either is OK) */ + if(head->down) { + H5MM_memcpy(&down->low_bounds[1], &head->down->low_bounds[0], sizeof(hsize_t) * ((rank - 1) - (unsigned)i)); + H5MM_memcpy(&down->high_bounds[1], &head->down->high_bounds[0], sizeof(hsize_t) * ((rank - 1) - (unsigned)i)); + } /* end if */ } /* end for */ /* Indicate that there is a pointer to this tree */ @@ -7696,7 +8485,7 @@ done: do { if(down) { head = down->head; - down = H5FL_FREE(H5S_hyper_span_info_t, down); + down = (H5S_hyper_span_info_t *)H5FL_ARR_FREE(hbounds_t, down); } /* end if */ down = head->down; @@ -7715,6 +8504,224 @@ done: /*-------------------------------------------------------------------------- NAME + H5S__hyper_update_diminfo + PURPOSE + Attempt to update optimized hyperslab information quickly. (It can be + recovered with regular selection). If this algorithm cannot determine + the optimized dimension info quickly, this function will simply mark it + as invalid and unknown if it can be built (H5S_DIMINFO_VALID_NO), so + H5S__hyper_rebuild can be run later to determine for sure. + USAGE + herr_t H5S__hyper_update_diminfo(space, op, new_hyper_diminfo) + H5S_t *space; IN: Dataspace to check + H5S_seloper_t op; IN: The operation being performed on the + selection + const H5S_hyper_dim_t new_hyper_diminfo; IN: The new selection that + is being combined with + the current + RETURNS + >=0 on success, <0 on failure + DESCRIPTION + Examine the span tree for a hyperslab selection and rebuild + the start/stride/count/block information for the selection, if possible. + + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__hyper_update_diminfo(H5S_t *space, H5S_seloper_t op, + const H5S_hyper_dim_t *new_hyper_diminfo) +{ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_STATIC_NOERR + + /* Check args */ + HDassert(space); + HDassert(new_hyper_diminfo); + + /* Check for conditions that prevent us from using the fast algorithm here */ + /* (and instead require H5S__hyper_rebuild) */ + if(!((op == H5S_SELECT_OR) || (op == H5S_SELECT_XOR)) + || space->select.sel_info.hslab->diminfo_valid != H5S_DIMINFO_VALID_YES + || !space->select.sel_info.hslab->span_lst->head) + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + else { + H5S_hyper_dim_t tmp_diminfo[H5S_MAX_RANK]; /* Temporary dimension info */ + hbool_t found_nonidentical_dim = FALSE; + unsigned curr_dim; + + /* Copy current diminfo.opt values */ + H5MM_memcpy(tmp_diminfo, space->select.sel_info.hslab->diminfo.opt, sizeof(tmp_diminfo)); + + /* Loop over dimensions */ + for(curr_dim = 0; curr_dim < space->extent.rank; curr_dim++) { + /* Check for this being identical */ + if((tmp_diminfo[curr_dim].start != new_hyper_diminfo[curr_dim].start) + || (tmp_diminfo[curr_dim].stride != new_hyper_diminfo[curr_dim].stride) + || (tmp_diminfo[curr_dim].count != new_hyper_diminfo[curr_dim].count) + || (tmp_diminfo[curr_dim].block != new_hyper_diminfo[curr_dim].block)) { + hsize_t high_start, high_count, high_block; /* The start, count & block values for the higher block */ + + /* Dimension is not identical */ + /* Check if we already found a nonidentical dim - only one is + * allowed */ + if(found_nonidentical_dim) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* Check that strides are the same, or count is 1 for one of the + * slabs */ + if((tmp_diminfo[curr_dim].stride != new_hyper_diminfo[curr_dim].stride) + && (tmp_diminfo[curr_dim].count > 1) + && (new_hyper_diminfo[curr_dim].count > 1)) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* Patch tmp_diminfo.stride if its count is 1 */ + if((tmp_diminfo[curr_dim].count == 1) + && (new_hyper_diminfo[curr_dim].count > 1)) + tmp_diminfo[curr_dim].stride = new_hyper_diminfo[curr_dim].stride; + + /* Determine lowest start, and set tmp_diminfo.start, count and + * block to use the lowest, and high_start, high_count and + * high_block to use the highest + */ + if(tmp_diminfo[curr_dim].start < new_hyper_diminfo[curr_dim].start) { + high_start = new_hyper_diminfo[curr_dim].start; + high_count = new_hyper_diminfo[curr_dim].count; + high_block = new_hyper_diminfo[curr_dim].block; + } /* end if */ + else { + high_start = tmp_diminfo[curr_dim].start; + tmp_diminfo[curr_dim].start = new_hyper_diminfo[curr_dim].start; + high_count = tmp_diminfo[curr_dim].count; + tmp_diminfo[curr_dim].count = new_hyper_diminfo[curr_dim].count; + high_block = tmp_diminfo[curr_dim].block; + tmp_diminfo[curr_dim].block = new_hyper_diminfo[curr_dim].block; + } /* end else */ + + /* If count is 1 for both slabs, take different actions */ + if((tmp_diminfo[curr_dim].count == 1) && (high_count == 1)) { + /* Check for overlap */ + if((tmp_diminfo[curr_dim].start + tmp_diminfo[curr_dim].block) + > high_start) { + /* Check operation type */ + if(op == H5S_SELECT_OR) + /* Merge blocks */ + tmp_diminfo[curr_dim].block = ((high_start + high_block) + >= (tmp_diminfo[curr_dim].start + tmp_diminfo[curr_dim].block)) + ? (high_start + high_block - tmp_diminfo[curr_dim].start) + : tmp_diminfo[curr_dim].block; + else { + /* Block values must be the same */ + if(tmp_diminfo[curr_dim].block != high_block) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* XOR - overlap creates 2 blocks */ + tmp_diminfo[curr_dim].stride = high_block; + tmp_diminfo[curr_dim].count = 2; + tmp_diminfo[curr_dim].block = high_start - tmp_diminfo[curr_dim].start; + } /* end else */ + } /* end if */ + else if((tmp_diminfo[curr_dim].start + tmp_diminfo[curr_dim].block) + == high_start) + /* Blocks border, merge them */ + tmp_diminfo[curr_dim].block += high_block; + else { + /* Distinct blocks */ + /* Block values must be the same */ + if(tmp_diminfo[curr_dim].block != high_block) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* Create strided selection */ + tmp_diminfo[curr_dim].stride = high_start - tmp_diminfo[curr_dim].start; + tmp_diminfo[curr_dim].count = 2; + } /* end else */ + } /* end if */ + else { + /* Check if block values are the same */ + if(tmp_diminfo[curr_dim].block != new_hyper_diminfo[curr_dim].block) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* Check phase of strides */ + if((tmp_diminfo[curr_dim].start % tmp_diminfo[curr_dim].stride) + != (new_hyper_diminfo[curr_dim].start % tmp_diminfo[curr_dim].stride)) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* Check operation type */ + if(op == H5S_SELECT_OR) { + /* Make sure the slabs border or overlap */ + if(high_start > (tmp_diminfo[curr_dim].start + + (tmp_diminfo[curr_dim].count + * tmp_diminfo[curr_dim].stride))) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + } /* end if */ + else + /* XOR: Make sure the slabs border */ + if(high_start != (tmp_diminfo[curr_dim].start + + (tmp_diminfo[curr_dim].count + * tmp_diminfo[curr_dim].stride))) { + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + break; + } /* end if */ + + /* Set count for combined selection */ + tmp_diminfo[curr_dim].count = ((high_start + - tmp_diminfo[curr_dim].start) + / tmp_diminfo[curr_dim].stride) + high_count; + } /* end else */ + + /* Indicate that we found a nonidentical dim */ + found_nonidentical_dim = TRUE; + } /* end if */ + } /* end for */ + + /* Check if we succeeded, if so, set the new diminfo values */ + if(space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) + for(curr_dim = 0; curr_dim < space->extent.rank; curr_dim++) { + hsize_t tmp_high_bound; + + /* Set the new diminfo values */ + space->select.sel_info.hslab->diminfo.app[curr_dim].start = space->select.sel_info.hslab->diminfo.opt[curr_dim].start = tmp_diminfo[curr_dim].start; + HDassert(tmp_diminfo[curr_dim].stride > 0); + space->select.sel_info.hslab->diminfo.app[curr_dim].stride = space->select.sel_info.hslab->diminfo.opt[curr_dim].stride = tmp_diminfo[curr_dim].stride; + HDassert(tmp_diminfo[curr_dim].count > 0); + space->select.sel_info.hslab->diminfo.app[curr_dim].count = space->select.sel_info.hslab->diminfo.opt[curr_dim].count = tmp_diminfo[curr_dim].count; + HDassert(tmp_diminfo[curr_dim].block > 0); + space->select.sel_info.hslab->diminfo.app[curr_dim].block = space->select.sel_info.hslab->diminfo.opt[curr_dim].block = tmp_diminfo[curr_dim].block; + + /* Check for updating the low & high bounds */ + if(tmp_diminfo[curr_dim].start < space->select.sel_info.hslab->diminfo.low_bounds[curr_dim]) + space->select.sel_info.hslab->diminfo.low_bounds[curr_dim] = tmp_diminfo[curr_dim].start; + tmp_high_bound = tmp_diminfo[curr_dim].start + + (tmp_diminfo[curr_dim].block - 1) + + (tmp_diminfo[curr_dim].stride * (tmp_diminfo[curr_dim].count - 1)); + if(tmp_high_bound > space->select.sel_info.hslab->diminfo.low_bounds[curr_dim]) + space->select.sel_info.hslab->diminfo.high_bounds[curr_dim] = tmp_high_bound; + } /* end for */ + } /* end else */ + + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__hyper_update_diminfo() */ + + +/*-------------------------------------------------------------------------- + NAME H5S__hyper_rebuild_helper PURPOSE Helper routine to rebuild optimized hyperslab information if possible. @@ -7724,6 +8731,7 @@ done: const H5S_hyper_span_t *span; IN: Portion of span tree to check H5S_hyper_dim_t span_slab[]; OUT: Rebuilt section of hyperslab description unsigned rank; IN: Current dimension to work on + uint64_t op_gen; IN: Operation generation RETURNS TRUE/FALSE for hyperslab selection rebuilt DESCRIPTION @@ -7738,108 +8746,85 @@ done: KY, 2005/9/22 --------------------------------------------------------------------------*/ static hbool_t -H5S__hyper_rebuild_helper(const H5S_hyper_span_t *span, H5S_hyper_dim_t span_slab_info[], - unsigned rank) +H5S__hyper_rebuild_helper(const H5S_hyper_span_info_t *spans, H5S_hyper_dim_t span_slab_info[]) { + const H5S_hyper_span_t *span; /* Hyperslab span */ + const H5S_hyper_span_t *prev_span; /* Previous span in list */ + hsize_t start; /* Starting element for this dimension */ + hsize_t stride; /* Stride for this dimension */ + hsize_t block; /* Block size for this dimension */ + hsize_t prev_low; /* Low bound for previous span */ + size_t spancount; /* Number of spans encountered in this dimension */ hbool_t ret_value = TRUE; /* Return value */ FUNC_ENTER_STATIC_NOERR - if(span) { - const H5S_hyper_span_t *prev_span = NULL; /* Previous span in list */ - H5S_hyper_dim_t canon_down_span_slab_info[H5S_MAX_RANK]; - hsize_t curr_stride; - hsize_t curr_block; - hsize_t curr_start; - hsize_t curr_low; - size_t outcount; /* Number of spans encountered in this dimension */ - - /* Initialization */ - curr_stride = 1; - curr_low = 0; - outcount = 0; - - /* Get "canonical" down span information */ - if(span->down) { - HDassert(span->down->head); - - /* Go to the next down span and check whether the selection can be rebuilt */ - if(!H5S__hyper_rebuild_helper(span->down->head, span_slab_info, rank - 1)) - HGOTO_DONE(FALSE) - - H5MM_memcpy(canon_down_span_slab_info, span_slab_info, sizeof(H5S_hyper_dim_t) * rank); - } /* end if */ + /* Sanity check */ + HDassert(spans); - /* Assign the initial starting point & block size */ - curr_start = span->low; - curr_block = (span->high - span->low) + 1; + /* Initialization */ + span = spans->head; + stride = 1; + prev_low = 0; + spancount = 0; - /* Loop the spans */ - while(span) { - if(outcount > 0) { - hsize_t next_stride; /* Stride from previous span */ - hsize_t next_block; /* Block size of current span */ + /* Get "canonical" down span information */ + if(span->down) + /* Go to the next down span and check whether the selection can be rebuilt */ + if(!H5S__hyper_rebuild_helper(span->down, &span_slab_info[1])) + HGOTO_DONE(FALSE) - /* Check that down spans match current slab info */ - /* (Can skip check if previous span's down pointer is same as current one) */ - if(span->down && (NULL == prev_span || prev_span->down != span->down)) { - H5S_hyper_dim_t *curr_down_span_slab_info; - unsigned u; /* Local index variable */ + /* Assign the initial starting point & block size for this dimension */ + start = span->low; + block = (span->high - span->low) + 1; - HDassert(span->down->head); + /* Loop the spans */ + prev_span = NULL; + while(span) { + if(spancount > 0) { + hsize_t curr_stride; /* Current stride from previous span */ + hsize_t curr_block; /* Block size of current span */ - /* Go to the next down span and check whether the selection can be rebuilt.*/ - if(!H5S__hyper_rebuild_helper(span->down->head, span_slab_info, rank - 1)) - HGOTO_DONE(FALSE) + /* Sanity check */ + HDassert(prev_span); - /* Compare the slab information of the adjacent spans in the down span tree. - We have to compare all the sub-tree slab information with the canon_down_span_slab_info.*/ - for(u = 0; u < rank - 1; u++) { - curr_down_span_slab_info = &span_slab_info[u]; - - if(curr_down_span_slab_info->count > 0 && canon_down_span_slab_info[u].count > 0) { - if(curr_down_span_slab_info->start != canon_down_span_slab_info[u].start - || curr_down_span_slab_info->stride != canon_down_span_slab_info[u].stride - || curr_down_span_slab_info->block != canon_down_span_slab_info[u].block - || curr_down_span_slab_info->count != canon_down_span_slab_info[u].count) - HGOTO_DONE(FALSE) - } /* end if */ - else if(!((curr_down_span_slab_info->count == 0) && (canon_down_span_slab_info[u].count == 0))) - HGOTO_DONE(FALSE) - } /* end for */ - } /* end if */ + /* Check that down spans match current slab info */ + /* (Can skip check if previous span's down pointer is same as current one) */ + if(span->down && prev_span->down != span->down) + if(!H5S__hyper_cmp_spans(span->down, prev_span->down)) + HGOTO_DONE(FALSE) - /* Obtain values for stride and block */ - next_stride = span->low - curr_low; - next_block = (span->high - span->low) + 1; + /* Obtain values for stride and block */ + curr_stride = span->low - prev_low; + curr_block = (span->high - span->low) + 1; - /* Compare stride and block in this span, to compare stride, - * three spans are needed. Account for the first two spans. - */ - if(next_block != curr_block) - HGOTO_DONE(FALSE) - if(outcount > 1 && curr_stride != next_stride) + /* Compare stride and block for this span. To compare stride, + * three spans are needed. Account for the first two spans. + */ + if(curr_block != block) + HGOTO_DONE(FALSE) + if(spancount > 1) { + if(stride != curr_stride) HGOTO_DONE(FALSE) - - /* Keep the isolated stride to be 1 */ - curr_stride = next_stride; } /* end if */ + else + stride = curr_stride; + } /* end if */ - /* Keep current starting point */ - curr_low = span->low; + /* Keep current starting point */ + prev_low = span->low; - /* Advance to next span */ - prev_span = span; - span = span->next; - outcount++; - } /* end while */ + /* Advance to next span */ + prev_span = span; + span = span->next; + spancount++; + } /* end while */ - /* Save the span information. */ - span_slab_info[rank - 1].start = curr_start; - span_slab_info[rank - 1].count = outcount; - span_slab_info[rank - 1].block = curr_block; - span_slab_info[rank - 1].stride = curr_stride; - } /* end if */ + /* Save the span information. */ + span_slab_info[0].start = start; + span_slab_info[0].count = spancount; + span_slab_info[0].block = block; + span_slab_info[0].stride = stride; done: FUNC_LEAVE_NOAPI(ret_value) @@ -7853,65 +8838,46 @@ done: Rebuild optimized hyperslab information if possible. (It can be recovered with regular selection) USAGE - hbool_t H5S__hyper_rebuild(space) - const H5S_t *space; IN: Dataspace to check + void H5S__hyper_rebuild(space) + H5S_t *space; IN: Dataspace to check RETURNS - TRUE/FALSE for hyperslab selection rebuilt + None DESCRIPTION - Examine the span tree for a hyperslab selection and rebuild - the start/stride/count/block information for the selection, if possible. + Examine the span tree for a hyperslab selection and rebuild a regular + start/stride/count/block hyperslab selection, if possible. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS To be able to recover the optimized information, the span tree must conform to span tree able to be generated from a single H5S_SELECT_SET operation. EXAMPLES REVISION LOG - This routine is the optimization of the old version. The previous version - can only detect a singluar selection. This version is general enough to - detect any regular selection. - KY, 2005/9/22 --------------------------------------------------------------------------*/ -static hbool_t +void H5S__hyper_rebuild(H5S_t *space) { - H5S_hyper_dim_t top_span_slab_info[H5S_MAX_RANK]; - unsigned rank, curr_dim; - hbool_t ret_value = TRUE; /* Return value */ + H5S_hyper_dim_t rebuilt_slab_info[H5S_MAX_RANK]; - FUNC_ENTER_STATIC_NOERR + FUNC_ENTER_PACKAGE_NOERR /* Check args */ HDassert(space); HDassert(space->select.sel_info.hslab->span_lst); - /* Check the rank of space */ - rank = space->extent.rank; - - /* Check whether the slab can be rebuilt. Only regular selection can be rebuilt. If yes, fill in correct values.*/ - if(!H5S__hyper_rebuild_helper(space->select.sel_info.hslab->span_lst->head, top_span_slab_info, rank)) { - HGOTO_DONE(FALSE) - } /* end if */ + /* Check whether the slab can be rebuilt */ + /* (Only regular selection can be rebuilt. If yes, fill in correct values) */ + if(FALSE == H5S__hyper_rebuild_helper(space->select.sel_info.hslab->span_lst, rebuilt_slab_info)) + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_IMPOSSIBLE; else { - H5S_hyper_dim_t *diminfo; - H5S_hyper_dim_t *app_diminfo; - - diminfo = space->select.sel_info.hslab->opt_diminfo; - app_diminfo = space->select.sel_info.hslab->app_diminfo; - - for(curr_dim = 0; curr_dim < rank; curr_dim++) { - - app_diminfo[(rank - curr_dim) - 1].start = diminfo[(rank - curr_dim) - 1].start = top_span_slab_info[curr_dim].start; - app_diminfo[(rank - curr_dim) - 1].stride = diminfo[(rank - curr_dim) - 1].stride = top_span_slab_info[curr_dim].stride; - app_diminfo[(rank - curr_dim) - 1].count = diminfo[(rank - curr_dim) - 1].count = top_span_slab_info[curr_dim].count; - app_diminfo[(rank - curr_dim) - 1].block = diminfo[(rank - curr_dim) - 1].block = top_span_slab_info[curr_dim].block; + /* Set the dimension info & bounds for the dataspace, from the rebuilt info */ + H5MM_memcpy(space->select.sel_info.hslab->diminfo.app, rebuilt_slab_info, sizeof(rebuilt_slab_info)); + H5MM_memcpy(space->select.sel_info.hslab->diminfo.opt, rebuilt_slab_info, sizeof(rebuilt_slab_info)); + H5MM_memcpy(space->select.sel_info.hslab->diminfo.low_bounds, space->select.sel_info.hslab->span_lst->low_bounds, sizeof(hsize_t) * space->extent.rank); + H5MM_memcpy(space->select.sel_info.hslab->diminfo.high_bounds, space->select.sel_info.hslab->span_lst->high_bounds, sizeof(hsize_t) * space->extent.rank); - } /* end for */ - - space->select.sel_info.hslab->diminfo_valid = TRUE; + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_YES; } /* end else */ -done: - FUNC_LEAVE_NOAPI(ret_value) + FUNC_LEAVE_NOAPI_VOID } /* end H5S__hyper_rebuild() */ @@ -7954,15 +8920,15 @@ H5S__hyper_generate_spans(H5S_t *space) /* These should be able to be converted to assertions once everything * that calls this function checks for unlimited selections first * (especially the new hyperslab API) -NAF */ - if(space->select.sel_info.hslab->opt_diminfo[u].count == H5S_UNLIMITED) + if(space->select.sel_info.hslab->diminfo.opt[u].count == H5S_UNLIMITED) HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "can't generate spans with unlimited count") - if(space->select.sel_info.hslab->opt_diminfo[u].block == H5S_UNLIMITED) + if(space->select.sel_info.hslab->diminfo.opt[u].block == H5S_UNLIMITED) HGOTO_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "can't generate spans with unlimited block") - tmp_start[u]=space->select.sel_info.hslab->opt_diminfo[u].start; - tmp_stride[u]=space->select.sel_info.hslab->opt_diminfo[u].stride; - tmp_count[u]=space->select.sel_info.hslab->opt_diminfo[u].count; - tmp_block[u]=space->select.sel_info.hslab->opt_diminfo[u].block; + tmp_start[u] = space->select.sel_info.hslab->diminfo.opt[u].start; + tmp_stride[u] = space->select.sel_info.hslab->diminfo.opt[u].stride; + tmp_count[u] = space->select.sel_info.hslab->diminfo.opt[u].count; + tmp_block[u] = space->select.sel_info.hslab->diminfo.opt[u].block; } /* end for */ /* Build the hyperslab information also */ @@ -7974,6 +8940,386 @@ done: } /* end H5S__hyper_generate_spans() */ +/*-------------------------------------------------------------------------- + NAME + H5S__check_spans_overlap + PURPOSE + Check if two selections' bounds overlap. + USAGE + hbool_t H5S__check_spans_overlap(spans1, spans2) + const H5S_hyper_span_info_t *spans1; IN: Second span list + const H5S_hyper_span_info_t *spans2; IN: Second span list + RETURNS + TRUE for overlap, FALSE for no overlap + PROGRAMMER + Quincey Koziol - January 24, 2019 + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static H5_ATTR_PURE hbool_t +H5S__check_spans_overlap(const H5S_hyper_span_info_t *spans1, + const H5S_hyper_span_info_t *spans2) +{ + hbool_t ret_value = FALSE; /* Return value */ + + FUNC_ENTER_STATIC_NOERR + + /* Sanity checks */ + HDassert(spans1); + HDassert(spans2); + + /* Use low & high bounds to try to avoid spinning through the span lists */ + if(H5S_RANGE_OVERLAP(spans1->low_bounds[0], spans1->high_bounds[0], + spans2->low_bounds[0], spans2->high_bounds[0])) { + H5S_hyper_span_t *span1, *span2; /* Hyperslab spans */ + + /* Walk over spans, comparing them for overlap */ + span1 = spans1->head; + span2 = spans2->head; + while(span1 && span2) { + /* Check current two spans for overlap */ + if(H5S_RANGE_OVERLAP(span1->low, span1->high, span2->low, span2->high)) { + /* Check for spans in lowest dimension already */ + if(span1->down) { + /* Sanity check */ + HDassert(span2->down); + + /* Check lower dimensions for overlap */ + if(H5S__check_spans_overlap(span1->down, span2->down)) + HGOTO_DONE(TRUE); + } /* end if */ + else + HGOTO_DONE(TRUE); + } /* end if */ + + /* Advance one of the spans */ + if(span1->high <= span2->high) { + /* Advance span1, unless it would be off the list and span2 has more nodes */ + if(NULL == span1->next && NULL != span2->next) + span2 = span2->next; + else + span1 = span1->next; + } /* end if */ + else { + /* Advance span2, unless it would be off the list and span1 has more nodes */ + if(NULL == span2->next && NULL != span1->next) + span1 = span1->next; + else + span2 = span2->next; + } /* end else */ + } /* end while */ + + /* Make certain we've exhausted our comparisons */ + HDassert((NULL == span1 && (NULL != span2 && NULL == span2->next)) || + ((NULL != span1 && NULL == span1->next) && NULL == span2)); + } /* end of */ + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__check_spans_overlap() */ + + +/*-------------------------------------------------------------------------- + NAME + H5S__fill_in_new_space + PURPOSE + Combine two span lists, one from an existing dataspace and the + other from input arguments, into a new selection depending on the + selection operator. The new selection is put into a resulting dataspace + which could be allocated inside the function. + USAGE + herr_t H5S__fill_in_new_space(space1, op, space2_span_lst, can_own_span2, + span2_owned, result) + H5S_t *space1; IN: Dataspace containing the first span list + H5S_seloper_t op; IN: Selection operation + H5S_hyper_span_info_t *space2_span_lst; IN: Second span list + hbool_t can_own_span2; IN: Indicates whether the 2nd span list could be + owned by the result. If not, the 2nd span list + has to be copied. + hbool_t *span2_owned; OUT: Indicates if the 2nd span list is actually owned + H5S_t **result; OUT: The dataspace containing the the new selection. It + could be same with the 1st dataspace. + RETURNS + Non-negative on success, negative on failure + PROGRAMMER + Chao Mei July 8, 2011 + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +static herr_t +H5S__fill_in_new_space(H5S_t *space1, H5S_seloper_t op, + H5S_hyper_span_info_t *space2_span_lst, hbool_t can_own_span2, + hbool_t *span2_owned, hbool_t *updated_spans, H5S_t **result) +{ + H5S_hyper_span_info_t *a_not_b = NULL; /* Span tree for hyperslab spans in old span tree and not in new span tree */ + H5S_hyper_span_info_t *a_and_b = NULL; /* Span tree for hyperslab spans in both old and new span trees */ + H5S_hyper_span_info_t *b_not_a = NULL; /* Span tree for hyperslab spans in new span tree and not in old span tree */ + hbool_t overlapped = FALSE; /* Whether selections overlap */ + hbool_t is_result_new = FALSE; + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_STATIC + + HDassert(space1); + HDassert(space2_span_lst); + HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA); + /* The result is either a to-be-created space or an empty one */ + HDassert(*result == NULL || *result == space1); + HDassert(space1->select.sel_info.hslab->span_lst); + HDassert(span2_owned); + + /* Reset flags to return */ + *span2_owned = FALSE; + *updated_spans = FALSE; + + /* The result shares the same info from space1 */ + if(*result == NULL) { + if(NULL == ((*result) = H5S_copy(space1, TRUE, TRUE))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace") + space1->select.sel_info.hslab->span_lst->count--; + (*result)->select.sel_info.hslab->span_lst = NULL; + is_result_new = TRUE; + } /* end if */ + + /* Check both spaces to see if they overlap */ + overlapped = H5S__check_spans_overlap(space1->select.sel_info.hslab->span_lst, space2_span_lst); + + if(!overlapped) { + switch(op) { + case H5S_SELECT_OR: + case H5S_SELECT_XOR: + /* Add the new disjoint spans to the space */ + /* Copy of space1's spans to *result, and another copy of space2's spans */ + if(is_result_new) + (*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space1->select.sel_info.hslab->span_lst, space1->extent.rank); + if(!can_own_span2) { + b_not_a = H5S__hyper_copy_span(space2_span_lst, space1->extent.rank); + if(H5S__hyper_add_disjoint_spans(*result, b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't append hyperslabs") + + /* The new_spans are now owned by 'space', so they should not be released */ + b_not_a = NULL; + } /* end if */ + else { + if(H5S__hyper_add_disjoint_spans(*result, space2_span_lst) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't append hyperslabs") + *span2_owned = TRUE; + } /* end else */ + + /* Indicate that the spans changed */ + *updated_spans = TRUE; + break; + + case H5S_SELECT_AND: + /* Convert *result to "none" selection */ + if(H5S_select_none(*result) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") + HGOTO_DONE(SUCCEED); + + case H5S_SELECT_NOTB: + /* Copy space1's spans to *result */ + if(is_result_new) + (*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space1->select.sel_info.hslab->span_lst, space1->extent.rank); + + /* Indicate that the spans changed */ + *updated_spans = TRUE; + break; + + case H5S_SELECT_NOTA: + if(!is_result_new) { + HDassert(space1 == *result); + + /* Free the current selection */ + H5S__hyper_free_span_info(space1->select.sel_info.hslab->span_lst); + space1->select.sel_info.hslab->span_lst = NULL; + } /* end if */ + + /* Copy space2's spans to *result */ + if(!can_own_span2) + (*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space2_span_lst, space1->extent.rank); + else { + (*result)->select.sel_info.hslab->span_lst = space2_span_lst; + *span2_owned = TRUE; + } /* end else */ + + /* Reset the number of items in selection */ + (*result)->select.num_elem = H5S__hyper_spans_nelem(space2_span_lst); + + /* Indicate that the spans changed */ + *updated_spans = TRUE; + break; + + case H5S_SELECT_NOOP: + case H5S_SELECT_SET: + case H5S_SELECT_APPEND: + case H5S_SELECT_PREPEND: + case H5S_SELECT_INVALID: + default: + HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") + } /* end switch */ + } /* end if */ + else { + unsigned selector = 0; /* Select which clipping spans to generate */ + + /* Generate mask for clip operation depending on the op */ + switch(op) { + case H5S_SELECT_OR: /* a + b_not_a */ + selector = H5S_HYPER_COMPUTE_B_NOT_A; + break; + + case H5S_SELECT_XOR: /* a_not_b + b_not_a */ + selector = H5S_HYPER_COMPUTE_A_NOT_B | H5S_HYPER_COMPUTE_B_NOT_A; + break; + + case H5S_SELECT_AND: /* a_and_b */ + selector = H5S_HYPER_COMPUTE_A_AND_B; + break; + + case H5S_SELECT_NOTB: /* a_not_b */ + selector = H5S_HYPER_COMPUTE_A_NOT_B; + break; + + case H5S_SELECT_NOTA: /* b_not_a */ + selector = H5S_HYPER_COMPUTE_B_NOT_A; + break; + + case H5S_SELECT_NOOP: + case H5S_SELECT_SET: + case H5S_SELECT_APPEND: + case H5S_SELECT_PREPEND: + case H5S_SELECT_INVALID: + default: + HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") + } /* end switch */ + + /* Generate lists of spans which overlap and don't overlap */ + if(H5S__hyper_clip_spans(space1->select.sel_info.hslab->span_lst, + space2_span_lst, selector, space1->extent.rank, + &a_not_b, &a_and_b, &b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") + switch(op) { + case H5S_SELECT_OR: + if(is_result_new) + (*result)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(space1->select.sel_info.hslab->span_lst, space1->extent.rank); + break; + + case H5S_SELECT_AND: + case H5S_SELECT_XOR: + case H5S_SELECT_NOTB: + case H5S_SELECT_NOTA: + if(!is_result_new) { + HDassert(space1 == *result); + + /* Free the current selection */ + H5S__hyper_free_span_info(space1->select.sel_info.hslab->span_lst); + space1->select.sel_info.hslab->span_lst = NULL; + } /* end if */ + + /* Reset the number of items in selection */ + /* (Will be set below) */ + (*result)->select.num_elem = 0; + break; + + case H5S_SELECT_NOOP: + case H5S_SELECT_SET: + case H5S_SELECT_APPEND: + case H5S_SELECT_PREPEND: + case H5S_SELECT_INVALID: + default: + HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") + } /* end switch */ + + /* Check if there are any non-overlapped selections */ + if(a_not_b) { + /* Other than OR, the span_lst is set to NULL. And in OR, + * a_not_b is not needed + */ + HDassert(NULL == (*result)->select.sel_info.hslab->span_lst); + + /* The results dataspace takes ownership of the spans */ + /* (Since it must be NULL) */ + (*result)->select.sel_info.hslab->span_lst = a_not_b; + + /* Update the number of elements in current selection */ + (*result)->select.num_elem = H5S__hyper_spans_nelem(a_not_b); + + /* Indicate that the spans were updated */ + *updated_spans = TRUE; + + /* Indicate that the a_not_b spans are owned */ + a_not_b = NULL; + } /* end if */ + + if(a_and_b) { + /** + * 1. Other than OR, the span_lst is set to NULL. And in OR, + * a_and_b is not needed + * 2. a_not_b will never be computed together with a_and_b + * because merging these two equals to a. + */ + HDassert(NULL == (*result)->select.sel_info.hslab->span_lst); + + /* The results dataspace takes ownership of the spans */ + /* (Since it must be NULL) */ + (*result)->select.sel_info.hslab->span_lst = a_and_b; + + /* Update the number of elements in current selection */ + (*result)->select.num_elem = H5S__hyper_spans_nelem(a_and_b); + + /* Indicate that the spans were updated */ + *updated_spans = TRUE; + + /* Indicate that the a_and_b spans are owned */ + a_and_b = NULL; + } /* end if */ + + if(b_not_a) { + /* Merge the b_not_a spans into the result dataspace */ + if(H5S__hyper_merge_spans(*result, b_not_a) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + + /* Update the number of elements in current selection */ + (*result)->select.num_elem += H5S__hyper_spans_nelem(b_not_a); + + /* Indicate that the spans were updated */ + *updated_spans = TRUE; + } /* end if */ + } /* end else for the case the new span overlaps with the old (i.e. space) */ + + /* Check if the spans weren't updated, and reset selection if so */ + if(!*updated_spans) { + /* If updated_spans remains FALSE as in this branch, it means the + * result has been cleared in XOR / AND / NOTB / NOTA cases, and the + * result is a copy of the dataspace in the OR case. + * + * If two dataspaces have generated any of the three clipped + * span trees (i.e. a_not_b, a_and_b, and b_not_a), the + * updated_spans must be TRUE. + */ + if(H5S_SELECT_OR != op) { + /* Convert *result to "none" selection */ + if(H5S_select_none(*result) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") + } /* end else */ + } /* end if */ + +done: + /* Free resources */ + if(a_not_b) + H5S__hyper_free_span_info(a_not_b); + if(a_and_b) + H5S__hyper_free_span_info(a_and_b); + if(b_not_a) + H5S__hyper_free_span_info(b_not_a); + + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__fill_in_new_space() */ + + /*------------------------------------------------------------------------- * Function: H5S__generate_hyperlab * @@ -7990,10 +9336,7 @@ static herr_t H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], const hsize_t stride[], const hsize_t count[], const hsize_t block[]) { - H5S_hyper_span_info_t *new_spans=NULL; /* Span tree for new hyperslab */ - H5S_hyper_span_info_t *a_not_b = NULL; /* Span tree for hyperslab spans in old span tree and not in new span tree */ - H5S_hyper_span_info_t *a_and_b = NULL; /* Span tree for hyperslab spans in both old and new span trees */ - H5S_hyper_span_info_t *b_not_a = NULL; /* Span tree for hyperslab spans in new span tree and not in old span tree */ + H5S_hyper_span_info_t *new_spans = NULL; /* Span tree for new hyperslab */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_STATIC @@ -8011,10 +9354,13 @@ H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information") /* Generate list of blocks to add/remove based on selection operation */ - if(op==H5S_SELECT_SET) { - /* Add new spans to current selection */ - if(H5S__hyper_merge_spans(space,new_spans,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + if(op == H5S_SELECT_SET) { + /* Free current selection */ + if(NULL != space->select.sel_info.hslab->span_lst) + H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst); + + /* Set the hyperslab selection to the new span tree */ + space->select.sel_info.hslab->span_lst = new_spans; /* Set the number of elements in current selection */ space->select.num_elem = H5S__hyper_spans_nelem(new_spans); @@ -8023,194 +9369,375 @@ H5S__generate_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], new_spans = NULL; } /* end if */ else { - hbool_t updated_spans = FALSE; /* Whether the spans in the selection were modified */ + hbool_t new_spans_owned = FALSE; + hbool_t updated_spans = FALSE; - /* Generate lists of spans which overlap and don't overlap */ - if(H5S__hyper_clip_spans(space->select.sel_info.hslab->span_lst,new_spans,&a_not_b,&a_and_b,&b_not_a)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") + /* Generate new spans for space */ + if(H5S__fill_in_new_space(space, op, new_spans, TRUE, &new_spans_owned, &updated_spans, &space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't generate the specified hyperslab") - switch(op) { - case H5S_SELECT_OR: - /* Add any new spans from b_not_a to current selection */ - if(b_not_a!=NULL) { - if(H5S__hyper_merge_spans(space,b_not_a,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + /* Check if the spans were updated by H5S__fill_in_new_space */ + if(updated_spans) { + H5S_hyper_dim_t new_hyper_diminfo[H5S_MAX_RANK]; + unsigned u; /* Local index variable */ - /* Update the number of elements in current selection */ - space->select.num_elem += H5S__hyper_spans_nelem(b_not_a); + /* Sanity check */ + HDassert(space->select.sel_info.hslab->span_lst->head); + + /* Build diminfo struct */ + for(u = 0; u <space->extent.rank; u++) { + new_hyper_diminfo[u].start = start[u]; + new_hyper_diminfo[u].stride = stride[u]; + new_hyper_diminfo[u].count = count[u]; + new_hyper_diminfo[u].block = block[u]; + } /* end for */ - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; + /* Update space's dim info */ + if(H5S__hyper_update_diminfo(space, op, new_hyper_diminfo) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't update hyperslab info") + } /* end if */ - case H5S_SELECT_AND: - /* Free the current selection */ - if(H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans") - space->select.sel_info.hslab->span_lst=NULL; + /* Indicate that the new_spans are owned, there's no need to free */ + if(new_spans_owned) + new_spans = NULL; + } /* end else */ - /* Reset the number of items in selection */ - space->select.num_elem=0; +done: + if(new_spans) + H5S__hyper_free_span_info(new_spans); - /* Check if there are any overlapped selections */ - if(a_and_b!=NULL) { - if(H5S__hyper_merge_spans(space,a_and_b,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__generate_hyperslab() */ - /* Update the number of elements in current selection */ - space->select.num_elem = H5S__hyper_spans_nelem(a_and_b); + +/*------------------------------------------------------------------------- + * Function: H5S__set_regular_hyperslab + * + * Purpose: Set a regular hyperslab + * + * Return: Non-negative on success/Negative on failure + * + * Programmer: Quincey Koziol + * Thursday, October 2, 2014 + * + *------------------------------------------------------------------------- + */ +herr_t +H5S__set_regular_hyperslab(H5S_t *space, const hsize_t start[], + const hsize_t *app_stride, const hsize_t app_count[], const hsize_t *app_block, + const hsize_t *opt_stride, const hsize_t opt_count[], const hsize_t *opt_block) +{ + unsigned u; /* Local index variable */ + herr_t ret_value = SUCCEED; /* Return value */ - /* Indicate that the a_and_b spans are owned */ - a_and_b=NULL; + FUNC_ENTER_STATIC - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; + /* Check args */ + HDassert(space); + HDassert(start); + HDassert(app_stride); + HDassert(app_count); + HDassert(app_block); + HDassert(opt_stride); + HDassert(opt_count); + HDassert(opt_block); + + /* If we are setting a new selection, remove current selection first */ + if(H5S_SELECT_RELEASE(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") - case H5S_SELECT_XOR: - /* Free the current selection */ - if(H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans") - space->select.sel_info.hslab->span_lst=NULL; + /* Allocate space for the hyperslab selection information */ + if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab info") - /* Reset the number of items in selection */ - space->select.num_elem=0; + /* Set the diminfo */ + space->select.num_elem = 1; + space->select.sel_info.hslab->unlim_dim = -1; + for(u = 0; u < space->extent.rank; u++) { + /* Set application and optimized hyperslab info */ + space->select.sel_info.hslab->diminfo.app[u].start = start[u]; + space->select.sel_info.hslab->diminfo.app[u].stride = app_stride[u]; + space->select.sel_info.hslab->diminfo.app[u].count = app_count[u]; + space->select.sel_info.hslab->diminfo.app[u].block = app_block[u]; + + space->select.sel_info.hslab->diminfo.opt[u].start = start[u]; + space->select.sel_info.hslab->diminfo.opt[u].stride = opt_stride[u]; + space->select.sel_info.hslab->diminfo.opt[u].count = opt_count[u]; + space->select.sel_info.hslab->diminfo.opt[u].block = opt_block[u]; + + /* Update # of elements selected */ + space->select.num_elem *= (opt_count[u] * opt_block[u]); + + /* Set low bound of bounding box for the hyperslab selection */ + space->select.sel_info.hslab->diminfo.low_bounds[u] = start[u]; + + /* Check for unlimited dimension & set high bound */ + if((app_count[u] == H5S_UNLIMITED) || (app_block[u] == H5S_UNLIMITED)) { + space->select.sel_info.hslab->unlim_dim = (int)u; + space->select.sel_info.hslab->diminfo.high_bounds[u] = H5S_UNLIMITED; + } /* end if */ + else + space->select.sel_info.hslab->diminfo.high_bounds[u] = start[u] + opt_stride[u] * (opt_count[u] - 1) + (opt_block[u] - 1); + } /* end for */ - /* Check if there are any non-overlapped selections */ - if(a_not_b!=NULL) { - if(H5S__hyper_merge_spans(space,a_not_b,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + /* Handle unlimited selections */ + if(space->select.sel_info.hslab->unlim_dim >= 0) { + /* Calculate num_elem_non_unlim */ + space->select.sel_info.hslab->num_elem_non_unlim = (hsize_t)1; + for(u = 0; u < space->extent.rank; u++) + if((int)u != space->select.sel_info.hslab->unlim_dim) + space->select.sel_info.hslab->num_elem_non_unlim *= (opt_count[u] * opt_block[u]); - /* Update the number of elements in current selection */ - space->select.num_elem = H5S__hyper_spans_nelem(a_not_b); + /* Update num_elem */ + space->select.num_elem = H5S_UNLIMITED; + } /* end if */ - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - if(b_not_a!=NULL) { - if(H5S__hyper_merge_spans(space,b_not_a,FALSE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + /* Indicate that the dimension information is valid */ + space->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_YES; - /* Update the number of elements in current selection */ - space->select.num_elem += H5S__hyper_spans_nelem(b_not_a); + /* Indicate that there's no slab information */ + space->select.sel_info.hslab->span_lst = NULL; - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ - break; + /* Set selection type */ + space->select.type = H5S_sel_hyper; - case H5S_SELECT_NOTB: - /* Free the current selection */ - if(H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans") - space->select.sel_info.hslab->span_lst=NULL; +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__set_regular_hyperslab() */ - /* Reset the number of items in selection */ - space->select.num_elem=0; + +/*------------------------------------------------------------------------- + * Function: H5S__hyper_regular_and_single_block + * + * Purpose: Optimized routine to perform "AND" operation of a single + * block against a regular hyperslab selection. + * + * Note: This algorithm is invoked when constructing the chunk map + * and a regular hyperslab is selected in the file's dataspace. + * + * Return: Non-negative on success / Negative on failure + * + * Programmer: Quincey Koziol + * Saturday, February 9, 2019 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S__hyper_regular_and_single_block(H5S_t *space, const hsize_t start[], + const hsize_t block[]) +{ + hsize_t select_end, block_end; /* End of block & selection */ + hbool_t single_block; /* Whether the selection is a single block */ + hbool_t overlap; /* Whether block & selection overlap */ + unsigned u; /* Local index variable */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI(FAIL) + + /* Check args */ + HDassert(space); + HDassert(start); + HDassert(block); - /* Check if there are any non-overlapped selections */ - if(a_not_b!=NULL) { - if(H5S__hyper_merge_spans(space,a_not_b,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + /* Check for single block selection in dataspace */ + single_block = TRUE; + for(u = 0; u < space->extent.rank; u++) + if(1 != space->select.sel_info.hslab->diminfo.opt[u].count) { + single_block = FALSE; + break; + } /* end if */ - /* Update the number of elements in current selection */ - space->select.num_elem = H5S__hyper_spans_nelem(a_not_b); + /* Perform different optimizations, based on type of regular selection */ + if(single_block) { + hsize_t new_start[H5S_MAX_RANK]; /* New starting coordinate */ + hsize_t new_block[H5S_MAX_RANK]; /* New block size */ - /* Indicate that the a_not_b are owned */ - a_not_b=NULL; + /* Check for overlap and compute new start offset & block sizes */ + overlap = TRUE; + for(u = 0; u < space->extent.rank; u++) { + /* Compute the end of the selection & block in this dimension */ + select_end = space->select.sel_info.hslab->diminfo.high_bounds[u]; + block_end = (start[u] + block[u]) - 1; - /* Indicate that the spans were updated */ - updated_spans = TRUE; - } /* end if */ + /* Check for overlap */ + if(!H5S_RANGE_OVERLAP(space->select.sel_info.hslab->diminfo.opt[u].start, select_end, start[u], block_end)) { + overlap = FALSE; + break; + } /* end if */ + + /* Set new start & block size in this dimension */ + new_start[u] = MAX(space->select.sel_info.hslab->diminfo.opt[u].start, start[u]); + new_block[u] = (MIN(select_end, block_end) - new_start[u]) + 1; + } /* end for */ + + /* Check for overlap of selection & block */ + if(overlap) { + /* Set selection to regular hyperslab */ + if(H5S__set_regular_hyperslab(space, new_start, H5S_hyper_ones_g, H5S_hyper_ones_g, new_block, + H5S_hyper_ones_g, H5S_hyper_ones_g, new_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular hyperslab selection") + } /* end if */ + else + /* Selection & block don't overlap, set to "none" selection */ + if(H5S_select_none(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") + } /* end if */ + else { + hsize_t new_start[H5S_MAX_RANK]; /* New start for hyperslab selection */ + hsize_t new_count[H5S_MAX_RANK]; /* New count for hyperslab selection */ + hsize_t stride[H5S_MAX_RANK]; /* Stride for hyperslab selection */ + hsize_t new_block[H5S_MAX_RANK]; /* New block for hyperslab selection */ + hbool_t partial_first_span; /* Whether first span in intersection is partial */ + hbool_t partial_last_span; /* Whether last span in intersection is partial */ + + /* Iterate over selection, checking for overlap and computing first / last + * span that intersects with the block. + */ + overlap = TRUE; + partial_first_span = FALSE; + partial_last_span = FALSE; + for(u = 0; u < space->extent.rank; u++) { + hsize_t first_span_start, first_span_end; /* Start / end of first span */ + hsize_t last_span_start, last_span_end; /* Start / end of last span */ + hsize_t nstride; /* Number of strides into the selection */ + + /* Compute the end of the selection & block in this dimension */ + select_end = space->select.sel_info.hslab->diminfo.high_bounds[u]; + block_end = (start[u] + block[u]) - 1; + + /* Check for overlap */ + if(!H5S_RANGE_OVERLAP(space->select.sel_info.hslab->diminfo.opt[u].start, select_end, start[u], block_end)) { + overlap = FALSE; break; + } /* end if */ - case H5S_SELECT_NOTA: - /* Free the current selection */ - if(H5S__hyper_free_span_info(space->select.sel_info.hslab->span_lst)<0) - HGOTO_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release hyperslab spans") - space->select.sel_info.hslab->span_lst=NULL; + /* Find first span that is before or overlaps with start of block */ + if(space->select.sel_info.hslab->diminfo.opt[u].start >= start[u]) { + /* Calculate start & end of first span */ + first_span_start = space->select.sel_info.hslab->diminfo.opt[u].start; + first_span_end = (first_span_start + + space->select.sel_info.hslab->diminfo.opt[u].block) - 1; - /* Reset the number of items in selection */ - space->select.num_elem=0; + /* Check if first span overlaps _end_ of block */ + if(block_end >= first_span_start && block_end <= first_span_end) + partial_first_span = TRUE; + } /* end if */ + else { + hsize_t adj_start; /* Start coord, adjusted for hyperslab selection parameters */ - /* Check if there are any non-overlapped selections */ - if(b_not_a!=NULL) { - if(H5S__hyper_merge_spans(space,b_not_a,TRUE)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't insert hyperslabs") + /* Adjust start coord for selection's 'start' offset */ + adj_start = start[u] - space->select.sel_info.hslab->diminfo.opt[u].start; + + /* Compute # of strides into the selection */ + if(space->select.sel_info.hslab->diminfo.opt[u].count > 1) + nstride = adj_start / space->select.sel_info.hslab->diminfo.opt[u].stride; + else + nstride = 0; - /* Update the number of elements in current selection */ - space->select.num_elem = H5S__hyper_spans_nelem(b_not_a); + /* Calculate start & end of first span */ + first_span_start = space->select.sel_info.hslab->diminfo.opt[u].start + + (nstride * space->select.sel_info.hslab->diminfo.opt[u].stride); + first_span_end = (first_span_start + + space->select.sel_info.hslab->diminfo.opt[u].block) - 1; - /* Indicate that the b_not_a are owned */ - b_not_a=NULL; + /* Check if first span overlaps start of block */ + if(first_span_start < start[u] && first_span_end >= start[u]) + partial_first_span = TRUE; - /* Indicate that the spans were updated */ - updated_spans = TRUE; + /* Advance first span to start higher than block's start, + * if it's not partial. + */ + if(first_span_end < start[u]) { + first_span_start += space->select.sel_info.hslab->diminfo.opt[u].stride; + first_span_end += space->select.sel_info.hslab->diminfo.opt[u].stride; } /* end if */ - break; + } /* end else */ - case H5S_SELECT_NOOP: - case H5S_SELECT_SET: - case H5S_SELECT_APPEND: - case H5S_SELECT_PREPEND: - case H5S_SELECT_INVALID: - default: - HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") - } /* end switch */ + /* Find last span that is before or overlaps with end of block */ + if(select_end < block_end) { + /* Calculate start & end of last span */ + last_span_start = (select_end - + space->select.sel_info.hslab->diminfo.opt[u].block) + 1; + last_span_end = select_end; + + /* Check if last span overlaps _start_ of block */ + if(start[u] >= last_span_start && start[u] <= last_span_end) + partial_last_span = TRUE; + } /* end if */ + else { + hsize_t adj_end; /* End coord, adjusted for hyperslab selection parameters */ - /* Check if the resulting hyperslab span tree is empty */ - if(space->select.sel_info.hslab->span_lst==NULL) { - H5S_hyper_span_info_t *spans; /* Empty hyperslab span tree */ + /* Adjust end coord for selection's 'start' offset */ + adj_end = block_end - space->select.sel_info.hslab->diminfo.opt[u].start; + + /* Compute # of strides into the selection */ + if(space->select.sel_info.hslab->diminfo.opt[u].count > 1) + nstride = adj_end / space->select.sel_info.hslab->diminfo.opt[u].stride; + else + nstride = 0; + + /* Calculate start & end of last span */ + last_span_start = space->select.sel_info.hslab->diminfo.opt[u].start + + (nstride * space->select.sel_info.hslab->diminfo.opt[u].stride); + last_span_end = (last_span_start + + space->select.sel_info.hslab->diminfo.opt[u].block) - 1; + + /* Check if last span overlaps end of block */ + if(block_end >= last_span_start && block_end <= last_span_end) + partial_last_span = TRUE; + } /* end else */ + + /* Check if no spans are inside block */ + /* (Can happen when block falls in "gap" between spans) */ + if(last_span_end < start[u]) { + overlap = FALSE; + break; + } /* end if */ /* Sanity check */ - HDassert(space->select.num_elem == 0); + HDassert(first_span_start <= last_span_start); - /* Allocate a span info node */ - if((spans = H5FL_MALLOC(H5S_hyper_span_info_t))==NULL) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab span") + /* Compute new start / count / block values */ + new_start[u] = first_span_start; + if(last_span_start != first_span_start) + new_count[u] = ((last_span_start - first_span_start) / + space->select.sel_info.hslab->diminfo.opt[u].stride) + 1; + else + new_count[u] = 1; + new_block[u] = space->select.sel_info.hslab->diminfo.opt[u].block; - /* Set the reference count */ - spans->count=1; + /* Keep same stride */ + stride[u] = space->select.sel_info.hslab->diminfo.opt[u].stride; + } /* end for */ - /* Reset the scratch pad space */ - spans->scratch=0; + /* Check for overlap of selection & block */ + if(overlap) { + /* Set selection to regular hyperslab */ + if(H5S__set_regular_hyperslab(space, new_start, stride, new_count, new_block, + stride, new_count, new_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular hyperslab selection") - /* Set to empty tree */ - spans->head=NULL; + /* If there's a partial first or last span, have to 'AND' against selection */ + if(partial_first_span || partial_last_span) { + /* Generate span tree for regular selection */ + if(H5S__hyper_generate_spans(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - /* Set pointer to empty span tree */ - space->select.sel_info.hslab->span_lst=spans; + /* 'AND' against block */ + if(H5S__generate_hyperslab(space, H5S_SELECT_AND, start, H5S_hyper_ones_g, H5S_hyper_ones_g, block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs") + } /* end if */ } /* end if */ else { - /* Check if we updated the spans */ - if(updated_spans) { - /* Attempt to rebuild "optimized" start/stride/count/block information. - * from resulting hyperslab span tree - */ - H5S__hyper_rebuild(space); - } /* end if */ + /* Selection & block don't overlap, set to "none" selection */ + if(H5S_select_none(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") } /* end else */ } /* end else */ done: - /* Free resources */ - if(a_not_b) - if(H5S__hyper_free_span_info(a_not_b) < 0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans") - if(a_and_b) - if(H5S__hyper_free_span_info(a_and_b) < 0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans") - if(b_not_a) - if(H5S__hyper_free_span_info(b_not_a) < 0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans") - if(new_spans) - if(H5S__hyper_free_span_info(new_spans) < 0) - HDONE_ERROR(H5E_INTERNAL, H5E_CANTFREE, FAIL, "failed to release temporary hyperslab spans") - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__generate_hyperslab() */ +} /* end H5S__hyper_regular_and_single_block() */ /*------------------------------------------------------------------------- @@ -8449,56 +9976,13 @@ H5S_select_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], } /* end switch */ if(op == H5S_SELECT_SET) { - /* If we are setting a new selection, remove current selection first */ - if(H5S_SELECT_RELEASE(space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") - - /* Allocate space for the hyperslab selection information */ - if(NULL == (space->select.sel_info.hslab = H5FL_MALLOC(H5S_hyper_sel_t))) - HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") - - /* Save the diminfo */ - space->select.num_elem = 1; - for(u = 0; u < space->extent.rank; u++) { - space->select.sel_info.hslab->app_diminfo[u].start = start[u]; - space->select.sel_info.hslab->app_diminfo[u].stride = stride[u]; - space->select.sel_info.hslab->app_diminfo[u].count = count[u]; - space->select.sel_info.hslab->app_diminfo[u].block = block[u]; - - space->select.sel_info.hslab->opt_diminfo[u].start = start[u]; - space->select.sel_info.hslab->opt_diminfo[u].stride = opt_stride[u]; - space->select.sel_info.hslab->opt_diminfo[u].count = opt_count[u]; - space->select.sel_info.hslab->opt_diminfo[u].block = opt_block[u]; - - space->select.num_elem *= (opt_count[u] * opt_block[u]); - } /* end for */ - - /* Save unlim_dim */ - space->select.sel_info.hslab->unlim_dim = unlim_dim; - - /* Indicate that the dimension information is valid */ - space->select.sel_info.hslab->diminfo_valid = TRUE; - - /* Indicate that there's no slab information */ - space->select.sel_info.hslab->span_lst = NULL; - - /* Handle unlimited selections */ - if(unlim_dim >= 0) { - /* Calculate num_elem_non_unlim */ - space->select.sel_info.hslab->num_elem_non_unlim = (hsize_t)1; - for(u = 0; u < space->extent.rank; u++) - if((int)u != unlim_dim) - space->select.sel_info.hslab->num_elem_non_unlim *= (opt_count[u] * opt_block[u]); - - /* Set num_elem */ - if(space->select.num_elem != (hsize_t)0) - space->select.num_elem = H5S_UNLIMITED; - } /* end if */ - - /* Set selection type */ - space->select.type = H5S_sel_hyper; + /* Set selection to regular hyperslab */ + if(H5S__set_regular_hyperslab(space, start, stride, count, block, opt_stride, opt_count, opt_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular hyperslab selection") } /* end if */ else if(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA) { + hbool_t single_block; /* Whether the selection is a single block */ + /* Sanity check */ HDassert(H5S_GET_SELECT_TYPE(space) == H5S_SEL_HYPERSLABS); @@ -8535,21 +10019,35 @@ H5S_select_hyperslab(H5S_t *space, H5S_seloper_t op, const hsize_t start[], } /* end if */ } /* end if */ - /* Check if there's no hyperslab span information currently */ - if(NULL == space->select.sel_info.hslab->span_lst) - if(H5S__hyper_generate_spans(space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") + /* Check for a single block selected */ + single_block = TRUE; + for(u = 0; u < space->extent.rank; u++) + if(1 != opt_count[u]) { + single_block = FALSE; + break; + } /* end if */ - /* Indicate that the regular dimensions are no longer valid */ - space->select.sel_info.hslab->diminfo_valid = FALSE; + /* Check for single block "AND" operation on a regular hyperslab, which + * is used for constructing chunk maps and can be optimized for. + */ + if(H5S_SELECT_AND == op && single_block && + space->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + if(H5S__hyper_regular_and_single_block(space, start, opt_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTOPERATE, FAIL, "can't 'AND' single block against regular hyperslab") + } /* end if */ + else { + /* Check if there's no hyperslab span information currently */ + if(NULL == space->select.sel_info.hslab->span_lst) + if(H5S__hyper_generate_spans(space) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - /* Set selection type */ - /* (Could be overridden by resetting selection to 'none', below) */ - space->select.type = H5S_sel_hyper; + /* Set selection type */ + space->select.type = H5S_sel_hyper; - /* Add in the new hyperslab information */ - if(H5S__generate_hyperslab(space, op, start, opt_stride, opt_count, opt_block) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs") + /* Add in the new hyperslab information */ + if(H5S__generate_hyperslab(space, op, start, opt_stride, opt_count, opt_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs") + } /* end else */ } /* end if */ else HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") @@ -8625,6 +10123,325 @@ done: /*-------------------------------------------------------------------------- NAME + H5S_combine_hyperslab + PURPOSE + Specify a hyperslab to combine with the current hyperslab selection, and + store the result in the new hyperslab selection. + USAGE + herr_t H5S_combine_hyperslab(new_space, old_space, op, start, stride, count, block) + H5S_t *old_space; IN: The old space the selection is performed on + H5S_seloper_t op; IN: Operation to perform on current selection + const hsize_t start[]; IN: Offset of start of hyperslab + const hsize_t *stride; IN: Hyperslab stride + const hsize_t count[]; IN: Number of blocks included in hyperslab + const hsize_t *block; IN: Size of block in hyperslab + H5S_t **new_space; OUT: The new dataspace to store the selection result + RETURNS + Non-negative on success/Negative on failure + DESCRIPTION + Combines a hyperslab selection with the current selection for a dataspace. + If STRIDE or BLOCK is NULL, they are assumed to be set to all '1'. + GLOBAL VARIABLES + COMMENTS, BUGS, ASSUMPTIONS + In some cases, copying the whole span tree from old_space to new_space + can be avoided. Deal with such cases directly, otherwise this function + is equivalent to: + 1. Copy the whole span tree from old_space into new_space + 2. Call H5S_select_hyperslab with the new_space. + EXAMPLES + REVISION LOG +--------------------------------------------------------------------------*/ +herr_t +H5S_combine_hyperslab(H5S_t *old_space, H5S_seloper_t op, const hsize_t start[], + const hsize_t *stride, const hsize_t count[], const hsize_t *block, + H5S_t **new_space) +{ + unsigned u; /* Local index variable */ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_NOAPI(FAIL) + + /* Check args */ + HDassert(old_space); + HDassert(start); + HDassert(count); + HDassert(op >= H5S_SELECT_SET && op <= H5S_SELECT_NOTA); + HDassert(new_space); + HDassert(*new_space == NULL); + + /* Point to the correct stride values */ + if(stride == NULL) + stride = H5S_hyper_ones_g; + + /* Point to the correct block values */ + if(block == NULL) + block = H5S_hyper_ones_g; + + /* Check new selection. */ + for(u = 0; u < old_space->extent.rank; u++) { + /* Check for overlapping hyperslab blocks in new selection. */ + if(count[u] > 1 && stride[u] < block[u]) + HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "hyperslab blocks overlap") + + /* Detect zero-sized hyperslabs in new selection */ + if(count[u] == 0 || block[u] == 0) { + switch(op) { + case H5S_SELECT_AND: /* Binary "and" operation for hyperslabs */ + case H5S_SELECT_NOTA: /* Binary "B not A" operation for hyperslabs */ + /* Convert to "none" selection */ + /* Copy the first dataspace without sharing the list of spans */ + if(NULL == ((*new_space) = H5S_copy(old_space, TRUE, TRUE))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace") + if(H5S_select_none((*new_space)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") + HGOTO_DONE(SUCCEED); + + case H5S_SELECT_OR: /* Binary "or" operation for hyperslabs */ + case H5S_SELECT_XOR: /* Binary "xor" operation for hyperslabs */ + case H5S_SELECT_NOTB: /* Binary "A not B" operation for hyperslabs */ + /* Copy the first dataspace with sharing the list of spans */ + if(NULL == ((*new_space) = H5S_copy(old_space, FALSE, TRUE))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace") + HGOTO_DONE(SUCCEED); /* Selection stays same */ + + case H5S_SELECT_NOOP: + case H5S_SELECT_SET: + case H5S_SELECT_APPEND: + case H5S_SELECT_PREPEND: + case H5S_SELECT_INVALID: + default: + HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") + } /* end switch */ + } /* end if */ + } /* end for */ + + if(H5S_GET_SELECT_TYPE(old_space) == H5S_SEL_HYPERSLABS) { + hsize_t *old_low_bounds; /* Pointer to old space's low & high bounds */ + hsize_t *old_high_bounds; + hsize_t new_low_bounds[H5S_MAX_RANK]; /* New space's low & high bounds */ + hsize_t new_high_bounds[H5S_MAX_RANK]; + hbool_t overlapped = FALSE; + + /* Set up old space's low & high bounds */ + if(old_space->select.sel_info.hslab->span_lst) { + old_low_bounds = old_space->select.sel_info.hslab->span_lst->low_bounds; + old_high_bounds = old_space->select.sel_info.hslab->span_lst->high_bounds; + } /* end if */ + else { + old_low_bounds = old_space->select.sel_info.hslab->diminfo.low_bounds; + old_high_bounds = old_space->select.sel_info.hslab->diminfo.high_bounds; + } /* end else */ + + /* Generate bounding box for hyperslab parameters */ + for(u = 0; u < old_space->extent.rank; u++) { + new_low_bounds[u] = start[u]; + new_high_bounds[u] = start[u] + stride[u] * (count[u] - 1) + (block[u] - 1); + } /* end for */ + + /* Check bound box of both spaces to see if they overlap */ + if(H5S_RANGE_OVERLAP(old_low_bounds[0], old_high_bounds[0], + new_low_bounds[0], new_high_bounds[0])) + overlapped = TRUE; + + /* Non-overlapping situations can be handled in special ways */ + if(!overlapped) { + H5S_hyper_span_info_t *new_spans = NULL; + H5S_hyper_dim_t new_hyper_diminfo[H5S_MAX_RANK]; + + if(NULL == ((*new_space) = H5S_copy(old_space, TRUE, TRUE))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy dataspace") + if(NULL != (*new_space)->select.sel_info.hslab->span_lst) { + old_space->select.sel_info.hslab->span_lst->count--; + (*new_space)->select.sel_info.hslab->span_lst = NULL; + } /* end if */ + + /* Generate hyperslab info for new space */ + switch(op) { + case H5S_SELECT_OR: + case H5S_SELECT_XOR: + /* Add the new space to the space */ + if(NULL == (new_spans = H5S__hyper_make_spans(old_space->extent.rank, start, stride, count, block))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't create hyperslab information") + if(NULL != old_space->select.sel_info.hslab->span_lst) + (*new_space)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(old_space->select.sel_info.hslab->span_lst, old_space->extent.rank); + if(H5S__hyper_add_disjoint_spans(*new_space, new_spans) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't append hyperslabs") + + /* Build diminfo struct */ + for(u = 0; u < (*new_space)->extent.rank; u++) { + new_hyper_diminfo[u].start = start[u]; + new_hyper_diminfo[u].stride = stride[u]; + new_hyper_diminfo[u].count = count[u]; + new_hyper_diminfo[u].block = block[u]; + } /* end for */ + + /* Update space's dim info */ + if(H5S__hyper_update_diminfo(*new_space, op, new_hyper_diminfo) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't update hyperslab info") + break; + + case H5S_SELECT_AND: + if(H5S_select_none((*new_space)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") + break; + + case H5S_SELECT_NOTB: + if(NULL != old_space->select.sel_info.hslab->span_lst) { + if(NULL == ((*new_space)->select.sel_info.hslab->span_lst = H5S__hyper_copy_span(old_space->select.sel_info.hslab->span_lst, old_space->extent.rank))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOPY, FAIL, "unable to copy dataspace") + } /* end if */ + else { + if(H5S_select_none((*new_space)) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't convert selection") + } /* end else */ + break; + + case H5S_SELECT_NOTA: + if(H5S__set_regular_hyperslab(*new_space, start, stride, count, block, stride, count, block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSET, FAIL, "can't set regular selection") + break; + + case H5S_SELECT_NOOP: + case H5S_SELECT_SET: + case H5S_SELECT_APPEND: + case H5S_SELECT_PREPEND: + case H5S_SELECT_INVALID: + default: + HGOTO_ERROR(H5E_ARGS, H5E_UNSUPPORTED, FAIL, "invalid selection operation") + } /* end switch */ + + HGOTO_DONE(SUCCEED); + } /* end if(!overlapped) */ + } /* end if the selection of old space is H5S_SEL_HYPERSLABS */ + + /* Copy the first dataspace with sharing the list of spans */ + if(NULL == ((*new_space) = H5S_copy(old_space, TRUE, TRUE))) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy dataspace") + + /* Note: a little overhead in calling the function as some conditions are checked again */ + if(H5S_select_hyperslab(*new_space, op, start, stride, count, block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection") + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S_combine_hyperslab() */ + + +/*------------------------------------------------------------------------- + * Function: H5S__fill_in_select + * + * Purpose: Combines two hyperslabs with an operation, putting the + * result into a third hyperslab selection + * + * Return: Non-negative on success/negative on failure + * + * Programmer: Chao Mei + * Tuesday, July 5, 2011 + * + *------------------------------------------------------------------------- + */ +static herr_t +H5S__fill_in_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2, H5S_t **result) +{ + hbool_t span2_owned; + hbool_t updated_spans; + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_STATIC + + /* Sanity check */ + HDassert(space1); + HDassert(space2); + HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA); + HDassert(space1->extent.rank == space2->extent.rank); + /* The result is either a to-be-created space or an empty one */ + HDassert(NULL == *result || *result == space1); + HDassert(space1->select.sel_info.hslab->span_lst); + HDassert(space2->select.sel_info.hslab->span_lst); + + /* Note: the offset of space2 is not considered here for bounding box */ + if(H5S__fill_in_new_space(space1, op, space2->select.sel_info.hslab->span_lst, FALSE, &span2_owned, &updated_spans, result) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTSELECT, FAIL, "can't create the specified selection") + + /* Update diminfo if space2's diminfo was valid, otherwise just mark it as + * invalid if the spans were updated */ + HDassert(result); + if(updated_spans) { + if(space2->select.sel_info.hslab->diminfo_valid == H5S_DIMINFO_VALID_YES) { + if(H5S__hyper_update_diminfo(*result, op, space2->select.sel_info.hslab->diminfo.opt) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCOUNT, FAIL, "can't update hyperslab info") + } /* end if */ + else + (*result)->select.sel_info.hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; + } /* end if */ + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__fill_in_select() */ + + +/*------------------------------------------------------------------------- + * Function: H5S__modify_select + * + * Purpose: Internal version of H5Smodify_select(). + * + * Return: New dataspace on success/NULL on failure + * + * Programmer: Quincey Koziol + * Tuesday, October 30, 2001 + * + *------------------------------------------------------------------------- + */ +herr_t +H5S__modify_select(H5S_t *space1, H5S_seloper_t op, H5S_t *space2) +{ + herr_t ret_value = SUCCEED; /* Return value */ + + FUNC_ENTER_PACKAGE + + /* Check args */ + HDassert(space1); + HDassert(space2); + HDassert(op >= H5S_SELECT_OR && op <= H5S_SELECT_NOTA); + + /* Check that the space selections both have span trees */ + if(NULL == space1->select.sel_info.hslab->span_lst) + if(H5S__hyper_generate_spans(space1) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") + + /* Set unlim_dim */ + space1->select.sel_info.hslab->unlim_dim = -1; + + if(NULL == space2->select.sel_info.hslab->span_lst) { + hsize_t tmp_start[H5S_MAX_RANK]; + hsize_t tmp_stride[H5S_MAX_RANK]; + hsize_t tmp_count[H5S_MAX_RANK]; + hsize_t tmp_block[H5S_MAX_RANK]; + unsigned u; + + for(u = 0; u < space2->extent.rank; u++) { + tmp_start[u] = space2->select.sel_info.hslab->diminfo.opt[u].start; + tmp_stride[u] = space2->select.sel_info.hslab->diminfo.opt[u].stride; + tmp_count[u] = space2->select.sel_info.hslab->diminfo.opt[u].count; + tmp_block[u] = space2->select.sel_info.hslab->diminfo.opt[u].block; + } /* end for */ + + /* Call H5S_select_hyperslab directly */ + if(H5S_select_hyperslab(space1, op, tmp_start, tmp_stride, tmp_count, tmp_block) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to set hyperslab selection") + } /* end if */ + else + /* Combine spans from space1 & spans from space2, with the result in space1 */ + if(H5S__fill_in_select(space1, op, space2, &space1) < 0) + HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't perform operation on two selections") + +done: + FUNC_LEAVE_NOAPI(ret_value) +} /* end H5S__modify_select() */ + + +/*-------------------------------------------------------------------------- + NAME H5S__hyper_project_intersection PURPOSE Projects the intersection of of the selections of src_space and @@ -8660,15 +10477,15 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, size_t ss_nelem; /* Number of elements for src_space */ size_t ss_i = (size_t)0; /* Index into offset/length arrays for src_space */ hbool_t advance_ss = FALSE; /* Whether to advance ss_i on the next iteration */ - H5S_sel_iter_t *ss_iter = NULL; /* Selection iterator for src_space */ + H5S_sel_iter_t *ss_iter = NULL; /* Selection iterator for src_space */ hbool_t ss_iter_init = FALSE; /* Whether ss_iter is initialized */ hsize_t ss_sel_off = (hsize_t)0; /* Offset within src_space selection */ hsize_t ds_off[H5S_PROJECT_INTERSECT_NSEQS]; /* Offset array for dst_space */ size_t ds_len[H5S_PROJECT_INTERSECT_NSEQS]; /* Length array for dst_space */ size_t ds_nseq; /* Number of sequences for dst_space */ size_t ds_nelem; /* Number of elements for dst_space */ - size_t ds_i = (size_t)0; /* Index into offset/length arrays for dst_space */ - H5S_sel_iter_t *ds_iter = NULL; /* Selection iterator for dst_space */ + size_t ds_i = (size_t)0; /* Index into offset/length arrays for dst_space */ + H5S_sel_iter_t *ds_iter = NULL; /* Selection iterator for dst_space */ hbool_t ds_iter_init = FALSE; /* Whether ds_iter is initialized */ hsize_t ds_sel_off = (hsize_t)0; /* Offset within dst_space selection */ hsize_t sis_off[H5S_PROJECT_INTERSECT_NSEQS]; /* Offset array for src_intersect_space */ @@ -8677,7 +10494,7 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, size_t sis_nelem; /* Number of elements for src_intersect_space */ size_t sis_i = (size_t)0; /* Index into offset/length arrays for src_intersect_space */ hbool_t advance_sis = FALSE; /* Whether to advance sis_i on the next iteration */ - H5S_sel_iter_t *sis_iter = NULL; /* Selection iterator for src_intersect_space */ + H5S_sel_iter_t *sis_iter = NULL; /* Selection iterator for src_intersect_space */ hbool_t sis_iter_init = FALSE; /* Whether sis_iter is initialized */ hsize_t int_sel_off; /* Offset within intersected selections (ss/sis and ds/ps) */ size_t int_len; /* Length of segment in intersected selections */ @@ -8686,14 +10503,11 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, size_t proj_len_rem; /* Remaining length in proj_space for segment */ hsize_t proj_down_dims[H5S_MAX_RANK]; /* "Down" dimensions in proj_space */ H5S_hyper_span_info_t *curr_span_tree[H5S_MAX_RANK]; /* Current span tree being built (in each dimension) */ - H5S_hyper_span_t *prev_span[H5S_MAX_RANK]; /* Previous span in tree (in each dimension) */ hsize_t curr_span_up_dim[H5S_MAX_RANK]; /* "Up" dimensions for current span */ unsigned proj_rank; /* Rank of proj_space */ hsize_t low; /* Low value of span */ - hsize_t high; /* High value of span */ - size_t span_len; /* Length of span */ size_t nelem; /* Number of elements returned for get_seq_list op */ - unsigned i; /* Local index variable */ + unsigned u; /* Local index variable */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_PACKAGE @@ -8715,7 +10529,6 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, /* Initialize prev_space, curr_span_tree, and curr_span_up_dim */ HDmemset(curr_span_tree, 0, sizeof(curr_span_tree)); - HDmemset(prev_span, 0, sizeof(prev_span)); HDmemset(curr_span_up_dim, 0, sizeof(curr_span_up_dim)); /* Save rank of projected space */ @@ -8756,12 +10569,12 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate source selection iterator") /* Initialize source space iterator */ - if(H5S_select_iter_init(ss_iter, src_space, (size_t)1) < 0) + if(H5S_select_iter_init(ss_iter, src_space, (size_t)1, 0) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") ss_iter_init = TRUE; /* Get sequence list for source space */ - if(H5S_SELECT_GET_SEQ_LIST(src_space, 0u, ss_iter, H5S_PROJECT_INTERSECT_NSEQS, ss_nelem, &ss_nseq, &nelem, ss_off, ss_len) < 0) + if(H5S_SELECT_ITER_GET_SEQ_LIST(ss_iter, H5S_PROJECT_INTERSECT_NSEQS, ss_nelem, &ss_nseq, &nelem, ss_off, ss_len) < 0) HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") ss_nelem -= nelem; HDassert(ss_nseq > 0); @@ -8771,12 +10584,12 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate destination selection iterator") /* Initialize destination space iterator */ - if(H5S_select_iter_init(ds_iter, dst_space, (size_t)1) < 0) + if(H5S_select_iter_init(ds_iter, dst_space, (size_t)1, 0) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") ds_iter_init = TRUE; /* Get sequence list for destination space */ - if(H5S_SELECT_GET_SEQ_LIST(dst_space, 0u, ds_iter, H5S_PROJECT_INTERSECT_NSEQS, ds_nelem, &ds_nseq, &nelem, ds_off, ds_len) < 0) + if(H5S_SELECT_ITER_GET_SEQ_LIST(ds_iter, H5S_PROJECT_INTERSECT_NSEQS, ds_nelem, &ds_nseq, &nelem, ds_off, ds_len) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") ds_nelem -= nelem; HDassert(ds_nseq > 0); @@ -8786,12 +10599,12 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate source intersect space iterator") /* Initialize source intersect space iterator */ - if(H5S_select_iter_init(sis_iter, src_intersect_space, (size_t)1) < 0) + if(H5S_select_iter_init(sis_iter, src_intersect_space, (size_t)1, 0) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to initialize selection iterator") sis_iter_init = TRUE; /* Get sequence list for source intersect space */ - if(H5S_SELECT_GET_SEQ_LIST(src_intersect_space, 0u, sis_iter, H5S_PROJECT_INTERSECT_NSEQS, sis_nelem, &sis_nseq, &nelem, sis_off, sis_len) < 0) + if(H5S_SELECT_ITER_GET_SEQ_LIST(sis_iter, H5S_PROJECT_INTERSECT_NSEQS, sis_nelem, &sis_nseq, &nelem, sis_off, sis_len) < 0) HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") sis_nelem -= nelem; HDassert(sis_nseq > 0); @@ -8806,7 +10619,7 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, if(++ss_i == ss_nseq) { if(ss_nelem > 0) { /* Try to grab more sequences from src_space */ - if(H5S_SELECT_GET_SEQ_LIST(src_space, 0u, ss_iter, H5S_PROJECT_INTERSECT_NSEQS, ss_nelem, &ss_nseq, &nelem, ss_off, ss_len) < 0) + if(H5S_SELECT_ITER_GET_SEQ_LIST(ss_iter, H5S_PROJECT_INTERSECT_NSEQS, ss_nelem, &ss_nseq, &nelem, ss_off, ss_len) < 0) HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") HDassert(ss_len[0] > 0); @@ -8837,7 +10650,7 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, if(sis_nelem > 0) { /* Try to grab more sequences from src_intersect_space */ - if(H5S_SELECT_GET_SEQ_LIST(src_intersect_space, 0u, sis_iter, H5S_PROJECT_INTERSECT_NSEQS, sis_nelem, &sis_nseq, &nelem, sis_off, sis_len) < 0) + if(H5S_SELECT_ITER_GET_SEQ_LIST(sis_iter, H5S_PROJECT_INTERSECT_NSEQS, sis_nelem, &sis_nseq, &nelem, sis_off, sis_len) < 0) HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") HDassert(sis_len[0] > 0); @@ -8889,7 +10702,7 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, HDassert(ds_nelem > 0); /* Try to grab more sequences from dst_space */ - if(H5S_SELECT_GET_SEQ_LIST(dst_space, 0u, ds_iter, H5S_PROJECT_INTERSECT_NSEQS, ds_nelem, &ds_nseq, &nelem, ds_off, ds_len) < 0) + if(H5S_SELECT_ITER_GET_SEQ_LIST(ds_iter, H5S_PROJECT_INTERSECT_NSEQS, ds_nelem, &ds_nseq, &nelem, ds_off, ds_len) < 0) HGOTO_ERROR(H5E_INTERNAL, H5E_UNSUPPORTED, FAIL, "sequence length generation failed") HDassert(ds_len[0] > 0); @@ -8911,34 +10724,33 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, /* Add to span tree */ while(proj_len_rem > (size_t)0) { - /* Check for more than one full row (in every dim) and - * append multiple spans at once? -NAF */ + hsize_t high; /* High value of span */ + size_t span_len; /* Length of span */ + /* Append spans in higher dimensions if we're going ouside * the plane of the span currently being built (i.e. it's * finished being built) */ - for(i = proj_rank - 1; ((i > 0) - && ((proj_off / proj_down_dims[i - 1]) - != curr_span_up_dim[i - 1])); i--) { - if(curr_span_tree[i]) { - HDassert(prev_span[i]); - + /* Check for more than one full row (in every dim) and + * append multiple spans at once? -NAF */ + for(u = proj_rank - 1; ((u > 0) + && ((proj_off / proj_down_dims[u - 1]) + != curr_span_up_dim[u - 1])); u--) { + if(curr_span_tree[u]) { /* Append complete lower dimension span tree to * current dimension */ - low = curr_span_up_dim[i - 1] % proj_space->extent.size[i - 1]; - if(H5S__hyper_append_span(&prev_span[i - 1], &curr_span_tree[i - 1], low, low, curr_span_tree[i], NULL) < 0) + low = curr_span_up_dim[u - 1] % proj_space->extent.size[u - 1]; + if(H5S__hyper_append_span(&curr_span_tree[u - 1], (proj_rank - u) + 1, low, low, curr_span_tree[u]) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Reset lower dimension's span tree and previous * span since we just committed it and will start * over with a new one */ - if(H5S__hyper_free_span_info(curr_span_tree[i]) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "can't free span info") - curr_span_tree[i] = NULL; - prev_span[i] = NULL; + H5S__hyper_free_span_info(curr_span_tree[u]); + curr_span_tree[u] = NULL; } /* end if */ /* Update curr_span_up_dim */ - curr_span_up_dim[i - 1] = proj_off / proj_down_dims[i - 1]; + curr_span_up_dim[u - 1] = proj_off / proj_down_dims[u - 1]; } /* end for */ /* Compute bounds for new span in lowest dimension */ @@ -8950,7 +10762,7 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, high = (low + (hsize_t)span_len) - (hsize_t)1; /* Append span in lowest dimension */ - if(H5S__hyper_append_span(&prev_span[proj_rank - 1], &curr_span_tree[proj_rank - 1], low, high, NULL, NULL) < 0) + if(H5S__hyper_append_span(&curr_span_tree[proj_rank - 1], 1, low, high, NULL) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Update remaining offset and length */ @@ -8967,19 +10779,16 @@ H5S__hyper_project_intersection(const H5S_t *src_space, const H5S_t *dst_space, loop_end: /* Add remaining spans to span tree */ - for(i = proj_rank - 1; i > 0; i--) - if(curr_span_tree[i]) { - HDassert(prev_span[i]); - + for(u = proj_rank - 1; u > 0; u--) + if(curr_span_tree[u]) { /* Append remaining span tree to higher dimension */ - low = curr_span_up_dim[i - 1] % proj_space->extent.size[i - 1]; - if(H5S__hyper_append_span(&prev_span[i - 1], &curr_span_tree[i - 1], low, low, curr_span_tree[i], NULL) < 0) + low = curr_span_up_dim[u - 1] % proj_space->extent.size[u - 1]; + if(H5S__hyper_append_span(&curr_span_tree[u - 1], (proj_rank - u) + 1, low, low, curr_span_tree[u]) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTAPPEND, FAIL, "can't allocate hyperslab span") /* Reset span tree */ - if(H5S__hyper_free_span_info(curr_span_tree[i]) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "can't free span info") - curr_span_tree[i] = NULL; + H5S__hyper_free_span_info(curr_span_tree[u]); + curr_span_tree[u] = NULL; } /* end if */ /* Add span tree to proj_space */ @@ -9026,12 +10835,9 @@ done: HDONE_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") /* Free span trees */ - for(i = 0; i < proj_rank; i++) - if(curr_span_tree[i]) { - if(H5S__hyper_free_span_info(curr_span_tree[i]) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTFREE, FAIL, "can't free span info") - curr_span_tree[i] = NULL; - } /* end if */ + for(u = 0; u < proj_rank; u++) + if(curr_span_tree[u]) + H5S__hyper_free_span_info(curr_span_tree[u]); } /* end if */ FUNC_LEAVE_NOAPI(ret_value) @@ -9040,118 +10846,6 @@ done: /*-------------------------------------------------------------------------- NAME - H5S__hyper_subtract - PURPOSE - Subtract one hyperslab selection from another - USAGE - herr_t H5S__hyper_subtract(space,subtract_space) - H5S_t *space; IN/OUT: Selection to be operated on - H5S_t *subtract_space; IN: Selection that will be subtracted from space - RETURNS - Non-negative on success/Negative on failure. - DESCRIPTION - Removes any and all portions of space that are also present in - subtract_space. In essence, performs an A_NOT_B operation with the - two selections. - - Note this function basically duplicates a subset of the functionality - of H5S_select_select(). It should probably be removed when that - function is enabled. - GLOBAL VARIABLES - COMMENTS, BUGS, ASSUMPTIONS - EXAMPLES - REVISION LOG ---------------------------------------------------------------------------*/ -herr_t -H5S__hyper_subtract(H5S_t *space, H5S_t *subtract_space) -{ - H5S_hyper_span_info_t *a_not_b = NULL; /* Span tree for hyperslab spans in old span tree and not in new span tree */ - H5S_hyper_span_info_t *a_and_b = NULL; /* Span tree for hyperslab spans in both old and new span trees */ - H5S_hyper_span_info_t *b_not_a = NULL; /* Span tree for hyperslab spans in new span tree and not in old span tree */ - herr_t ret_value = SUCCEED; /* Return value */ - - FUNC_ENTER_NOAPI_NOINIT - - /* Check args */ - HDassert(space); - HDassert(subtract_space); - - /* Check that the space selections both have span trees */ - if(space->select.sel_info.hslab->span_lst == NULL) - if(H5S__hyper_generate_spans(space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - if(subtract_space->select.sel_info.hslab->span_lst == NULL) - if(H5S__hyper_generate_spans(subtract_space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_UNINITIALIZED, FAIL, "dataspace does not have span tree") - - /* Generate lists of spans which overlap and don't overlap */ - if(H5S__hyper_clip_spans(space->select.sel_info.hslab->span_lst, subtract_space->select.sel_info.hslab->span_lst, &a_not_b, &a_and_b, &b_not_a)<0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTCLIP, FAIL, "can't clip hyperslab information") - - /* Reset the other dataspace selection information */ - if(H5S_SELECT_RELEASE(space) < 0) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTDELETE, FAIL, "can't release selection") - - /* Allocate space for the hyperslab selection information */ - if((space->select.sel_info.hslab = H5FL_CALLOC(H5S_hyper_sel_t)) == NULL) - HGOTO_ERROR(H5E_DATASPACE, H5E_NOSPACE, FAIL, "can't allocate hyperslab info") - - /* Set unlim_dim */ - space->select.sel_info.hslab->unlim_dim = -1; - - /* Check for anything returned in a_not_b */ - if(a_not_b) { - /* Update spans in space */ - space->select.sel_info.hslab->span_lst = a_not_b; - a_not_b = NULL; - - /* Update number of elements */ - space->select.num_elem = H5S__hyper_spans_nelem(space->select.sel_info.hslab->span_lst); - - /* Attempt to rebuild "optimized" start/stride/count/block information. - * from resulting hyperslab span tree */ - H5S__hyper_rebuild(space); - } /* end if */ - else { - H5S_hyper_span_info_t *spans; /* Empty hyperslab span tree */ - - /* Set number of elements */ - space->select.num_elem = 0; - - /* Allocate a span info node */ - if(NULL == (spans = H5FL_MALLOC(H5S_hyper_span_info_t))) - HGOTO_ERROR(H5E_DATASPACE, H5E_CANTALLOC, FAIL, "can't allocate hyperslab span") - - /* Set the reference count */ - spans->count = 1; - - /* Reset the scratch pad space */ - spans->scratch = 0; - - /* Set to empty tree */ - spans->head = NULL; - - /* Set pointer to empty span tree */ - space->select.sel_info.hslab->span_lst = spans; - } /* end if */ - -done: - /* Free span trees */ - if(a_and_b) - H5S__hyper_free_span_info(a_and_b); - if(b_not_a) - H5S__hyper_free_span_info(b_not_a); - if(a_not_b) { - HDassert(ret_value < 0); - H5S__hyper_free_span_info(b_not_a); - } /* end if */ - - FUNC_LEAVE_NOAPI(ret_value) -} /* end H5S__hyper_subtract() */ - - -/*-------------------------------------------------------------------------- - NAME H5S__hyper_get_clip_diminfo PURPOSE Calculates the count and block required to clip the specified @@ -9218,7 +10912,7 @@ H5S__hyper_get_clip_diminfo(hsize_t start, hsize_t stride, hsize_t *count, RETURNS Non-negative on success/Negative on failure. DESCRIPTION - This function changes the unlimited selection into a limited selection + This function changes the unlimited selection into a fixed-dimension selection with the extent of the formerly unlimited dimension specified by clip_size. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS @@ -9232,7 +10926,7 @@ H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size) H5S_hyper_sel_t *hslab; /* Convenience pointer to hyperslab info */ hsize_t orig_count; /* Original count in unlimited dimension */ int orig_unlim_dim; /* Original unliminted dimension */ - H5S_hyper_dim_t *diminfo; /* Convenience pointer to opt_diminfo in unlimited dimension */ + H5S_hyper_dim_t *diminfo; /* Convenience pointer to diminfo.opt in unlimited dimension */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) @@ -9247,7 +10941,8 @@ H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size) /* Save original unlimited dimension */ orig_unlim_dim = hslab->unlim_dim; - diminfo = &hslab->opt_diminfo[orig_unlim_dim]; + /* Set up convenience pointer */ + diminfo = &hslab->diminfo.opt[orig_unlim_dim]; /* Save original count in unlimited dimension */ orig_count = diminfo->count; @@ -9269,8 +10964,8 @@ H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size) /* Calculate number of elements */ space->select.num_elem = diminfo->block * hslab->num_elem_non_unlim; - /* Mark that opt_diminfo is valid */ - hslab->diminfo_valid = TRUE; + /* Mark that diminfo.opt is valid */ + hslab->diminfo_valid = H5S_DIMINFO_VALID_YES; } /* end if */ else { /* Calculate number of elements */ @@ -9283,7 +10978,7 @@ H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size) > (clip_size - diminfo->start)) { hsize_t start[H5S_MAX_RANK]; hsize_t block[H5S_MAX_RANK]; - unsigned i; + unsigned u; /* Last block is partial, need to construct compound selection */ /* Fill start with zeros */ @@ -9291,11 +10986,11 @@ H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size) /* Set block to clip_size in unlimited dimension, H5S_MAX_SIZE in * others so only unlimited dimension is clipped */ - for(i = 0; i < space->extent.rank; i++) - if((int)i == orig_unlim_dim) - block[i] = clip_size; + for(u = 0; u < space->extent.rank; u++) + if((int)u == orig_unlim_dim) + block[u] = clip_size; else - block[i] = H5S_MAX_SIZE; + block[u] = H5S_MAX_SIZE; /* Generate span tree in selection */ if(!hslab->span_lst) @@ -9303,17 +10998,24 @@ H5S_hyper_clip_unlim(H5S_t *space, hsize_t clip_size) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to generate span tree") /* Indicate that the regular dimensions are no longer valid */ - hslab->diminfo_valid = FALSE; + hslab->diminfo_valid = H5S_DIMINFO_VALID_NO; /* "And" selection with calculated block to perform clip operation */ if(H5S__generate_hyperslab(space, H5S_SELECT_AND, start, H5S_hyper_ones_g, H5S_hyper_ones_g, block) < 0) HGOTO_ERROR(H5E_DATASPACE, H5E_CANTINSERT, FAIL, "can't generate hyperslabs") } /* end if */ else - /* Last block is complete, simply mark that opt_diminfo is valid */ - hslab->diminfo_valid = TRUE; + /* Last block is complete, simply mark that diminfo.opt is valid */ + hslab->diminfo_valid = H5S_DIMINFO_VALID_YES; } /* end else */ + /* Update the upper bound, if the diminfo is valid */ + if(H5S_DIMINFO_VALID_YES == hslab->diminfo_valid) + hslab->diminfo.high_bounds[orig_unlim_dim] = + hslab->diminfo.opt[orig_unlim_dim].start + + hslab->diminfo.opt[orig_unlim_dim].stride * (hslab->diminfo.opt[orig_unlim_dim].count - 1) + + (hslab->diminfo.opt[orig_unlim_dim].block - 1); + done: FUNC_LEAVE_NOAPI(ret_value) } /* end H5S_hyper_clip_unlim() */ @@ -9362,7 +11064,7 @@ H5S__hyper_get_clip_extent_real(const H5S_t *clip_space, hsize_t num_slices, HDassert(clip_space->select.sel_info.hslab); HDassert(clip_space->select.sel_info.hslab->unlim_dim >= 0); - diminfo = &clip_space->select.sel_info.hslab->opt_diminfo[clip_space->select.sel_info.hslab->unlim_dim]; + diminfo = &clip_space->select.sel_info.hslab->diminfo.opt[clip_space->select.sel_info.hslab->unlim_dim]; if(num_slices == 0) ret_value = incl_trail ? diminfo->start : 0; @@ -9516,7 +11218,7 @@ H5S_hyper_get_clip_extent_match(const H5S_t *clip_space, HDassert(clip_space->select.sel_info.hslab->num_elem_non_unlim == match_space->select.sel_info.hslab->num_elem_non_unlim); - match_diminfo = &match_space->select.sel_info.hslab->opt_diminfo[match_space->select.sel_info.hslab->unlim_dim]; + match_diminfo = &match_space->select.sel_info.hslab->diminfo.opt[match_space->select.sel_info.hslab->unlim_dim]; /* Get initial count and block */ count = match_diminfo->count; @@ -9580,13 +11282,13 @@ H5S_t * H5S_hyper_get_unlim_block(const H5S_t *space, hsize_t block_index) { H5S_hyper_sel_t *hslab; /* Convenience pointer to hyperslab info */ - H5S_t *space_out = NULL; - hsize_t start[H5S_MAX_RANK]; + H5S_t *space_out = NULL; /* Dataspace to return */ + hsize_t start[H5S_MAX_RANK];/* Hyperslab selection info for unlim. selection */ hsize_t stride[H5S_MAX_RANK]; hsize_t count[H5S_MAX_RANK]; hsize_t block[H5S_MAX_RANK]; - unsigned i; - H5S_t *ret_value = NULL; + unsigned u; /* Local index variable */ + H5S_t *ret_value = NULL; /* Return value */ FUNC_ENTER_NOAPI(NULL) @@ -9595,23 +11297,23 @@ H5S_hyper_get_unlim_block(const H5S_t *space, hsize_t block_index) hslab = space->select.sel_info.hslab; HDassert(hslab); HDassert(hslab->unlim_dim >= 0); - HDassert(hslab->opt_diminfo[hslab->unlim_dim].count == H5S_UNLIMITED); + HDassert(hslab->diminfo.opt[hslab->unlim_dim].count == H5S_UNLIMITED); /* Set start to select block_indexth block in unlimited dimension and set * count to 1 in that dimension to only select that block. Copy all other * diminfo parameters. */ - for(i = 0; i < space->extent.rank; i++) { - if((int)i == hslab->unlim_dim){ - start[i] = hslab->opt_diminfo[i].start + (block_index - * hslab->opt_diminfo[i].stride); - count[i] = (hsize_t)1; + for(u = 0; u < space->extent.rank; u++) { + if((int)u == hslab->unlim_dim){ + start[u] = hslab->diminfo.opt[u].start + (block_index + * hslab->diminfo.opt[u].stride); + count[u] = (hsize_t)1; } /* end if */ else { - start[i] = hslab->opt_diminfo[i].start; - count[i] = hslab->opt_diminfo[i].count; + start[u] = hslab->diminfo.opt[u].start; + count[u] = hslab->diminfo.opt[u].count; } /* end else */ - stride[i] = hslab->opt_diminfo[i].stride; - block[i] = hslab->opt_diminfo[i].block; + stride[u] = hslab->diminfo.opt[u].stride; + block[u] = hslab->diminfo.opt[u].block; } /* end for */ /* Create output space, copy extent */ @@ -9666,7 +11368,7 @@ H5S_hyper_get_first_inc_block(const H5S_t *space, hsize_t clip_size, hbool_t *partial) { H5S_hyper_sel_t *hslab; /* Convenience pointer to hyperslab info */ - H5S_hyper_dim_t *diminfo; /* Convenience pointer to opt_diminfo in unlimited dimension */ + H5S_hyper_dim_t *diminfo; /* Convenience pointer to diminfo.opt in unlimited dimension */ hsize_t ret_value = 0; FUNC_ENTER_NOAPI(0) @@ -9676,9 +11378,9 @@ H5S_hyper_get_first_inc_block(const H5S_t *space, hsize_t clip_size, hslab = space->select.sel_info.hslab; HDassert(hslab); HDassert(hslab->unlim_dim >= 0); - HDassert(hslab->opt_diminfo[hslab->unlim_dim].count == H5S_UNLIMITED); + HDassert(hslab->diminfo.opt[hslab->unlim_dim].count == H5S_UNLIMITED); - diminfo = &hslab->opt_diminfo[hslab->unlim_dim]; + diminfo = &hslab->diminfo.opt[hslab->unlim_dim]; /* Check for selection outside of clip_size */ if(diminfo->start >= clip_size) { @@ -9795,16 +11497,16 @@ H5Sget_regular_hyperslab(hid_t spaceid, hsize_t start[], hsize_t stride[], /* Retrieve hyperslab parameters */ if(start) for(u = 0; u < space->extent.rank; u++) - start[u] = space->select.sel_info.hslab->app_diminfo[u].start; + start[u] = space->select.sel_info.hslab->diminfo.app[u].start; if(stride) for(u = 0; u < space->extent.rank; u++) - stride[u] = space->select.sel_info.hslab->app_diminfo[u].stride; + stride[u] = space->select.sel_info.hslab->diminfo.app[u].stride; if(count) for(u = 0; u < space->extent.rank; u++) - count[u] = space->select.sel_info.hslab->app_diminfo[u].count; + count[u] = space->select.sel_info.hslab->diminfo.app[u].count; if(block) for(u = 0; u < space->extent.rank; u++) - block[u] = space->select.sel_info.hslab->app_diminfo[u].block; + block[u] = space->select.sel_info.hslab->diminfo.app[u].block; done: FUNC_LEAVE_API(ret_value) |