diff options
Diffstat (limited to 'test/API/tselect.c')
-rw-r--r-- | test/API/tselect.c | 16314 |
1 files changed, 16314 insertions, 0 deletions
diff --git a/test/API/tselect.c b/test/API/tselect.c new file mode 100644 index 0000000..a2f377d --- /dev/null +++ b/test/API/tselect.c @@ -0,0 +1,16314 @@ +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * Copyright by The HDF Group. * + * All rights reserved. * + * * + * This file is part of HDF5. The full HDF5 copyright notice, including * + * terms governing use, modification, and redistribution, is contained in * + * the COPYING file, which can be found at the root of the source code * + * distribution tree, or in https://www.hdfgroup.org/licenses. * + * If you do not have access to either file, you may request a copy from * + * help@hdfgroup.org. * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +/*********************************************************** + * + * Test program: tselect + * + * Test the Dataspace selection functionality + * + *************************************************************/ + +#define H5S_FRIEND /*suppress error about including H5Spkg */ + +/* Define this macro to indicate that the testing APIs should be available */ +#define H5S_TESTING + +#include "testhdf5.h" +#include "hdf5.h" +/* #include "H5Spkg.h" */ /* Dataspaces */ + +#define FILENAME "tselect.h5" + +/* 3-D dataset with fixed dimensions */ +#define SPACE1_NAME "Space1" +#define SPACE1_RANK 3 +#define SPACE1_DIM1 3 +#define SPACE1_DIM2 15 +#define SPACE1_DIM3 13 + +/* 2-D dataset with fixed dimensions */ +#define SPACE2_NAME "Space2" +#define SPACE2_RANK 2 +#define SPACE2_DIM1 30 +#define SPACE2_DIM2 26 +#define SPACE2A_RANK 1 +#define SPACE2A_DIM1 (SPACE2_DIM1 * SPACE2_DIM2) + +/* 2-D dataset with fixed dimensions */ +#define SPACE3_NAME "Space3" +#define SPACE3_RANK 2 +#define SPACE3_DIM1 15 +#define SPACE3_DIM2 26 + +/* 3-D dataset with fixed dimensions */ +#define SPACE4_NAME "Space4" +#define SPACE4_RANK 3 +#define SPACE4_DIM1 11 +#define SPACE4_DIM2 13 +#define SPACE4_DIM3 17 + +/* Number of random hyperslabs to test */ +#define NHYPERSLABS 10 + +/* Number of random hyperslab tests performed */ +#define NRAND_HYPER 100 + +/* 5-D dataset with fixed dimensions */ +#define SPACE5_NAME "Space5" +#define SPACE5_RANK 5 +#define SPACE5_DIM1 10 +#define SPACE5_DIM2 10 +#define SPACE5_DIM3 10 +#define SPACE5_DIM4 10 +#define SPACE5_DIM5 10 + +/* 1-D dataset with same size as 5-D dataset */ +#define SPACE6_RANK 1 +#define SPACE6_DIM1 (SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5) + +/* 2-D dataset with easy dimension sizes */ +#define SPACE7_NAME "Space7" +#define SPACE7_RANK 2 +#define SPACE7_DIM1 10 +#define SPACE7_DIM2 10 +#define SPACE7_FILL 254 +#define SPACE7_CHUNK_DIM1 5 +#define SPACE7_CHUNK_DIM2 5 +#define SPACE7_NPOINTS 8 + +/* 4-D dataset with fixed dimensions */ +#define SPACE8_NAME "Space8" +#define SPACE8_RANK 4 +#define SPACE8_DIM1 11 +#define SPACE8_DIM2 13 +#define SPACE8_DIM3 17 +#define SPACE8_DIM4 19 + +/* Another 2-D dataset with easy dimension sizes */ +#define SPACE9_RANK 2 +#define SPACE9_DIM1 12 +#define SPACE9_DIM2 12 + +/* Element selection information */ +#define POINT1_NPOINTS 10 + +/* Chunked dataset information */ +#define DATASETNAME "ChunkArray" +#define NX_SUB 87 /* hyperslab dimensions */ +#define NY_SUB 61 +#define NZ_SUB 181 +#define NX 87 /* output buffer dimensions */ +#define NY 61 +#define NZ 181 +#define RANK_F 3 /* File dataspace rank */ +#define RANK_M 3 /* Memory dataspace rank */ +#define X 87 /* dataset dimensions */ +#define Y 61 +#define Z 181 +#define CHUNK_X 87 /* chunk dimensions */ +#define CHUNK_Y 61 +#define CHUNK_Z 181 + +/* Basic chunk size */ +#define SPACE10_DIM1 180 +#define SPACE10_CHUNK_SIZE 12 + +/* Information for bounds checking test */ +#define SPACE11_RANK 2 +#define SPACE11_DIM1 100 +#define SPACE11_DIM2 100 +#define SPACE11_NPOINTS 4 + +/* Information for offsets w/chunks test #2 */ +#define SPACE12_RANK 1 +#define SPACE12_DIM0 25 +#define SPACE12_CHUNK_DIM0 5 + +/* Information for Space rebuild test */ +#define SPACERE1_RANK 1 +#define SPACERE1_DIM0 20 +#define SPACERE2_RANK 2 +#define SPACERE2_DIM0 8 +#define SPACERE2_DIM1 12 +#define SPACERE3_RANK 3 +#define SPACERE3_DIM0 8 +#define SPACERE3_DIM1 12 +#define SPACERE3_DIM2 8 +#define SPACERE4_RANK 4 +#define SPACERE4_DIM0 8 +#define SPACERE4_DIM1 12 +#define SPACERE4_DIM2 8 +#define SPACERE4_DIM3 12 +#define SPACERE5_RANK 5 +#define SPACERE5_DIM0 8 +#define SPACERE5_DIM1 12 +#define SPACERE5_DIM2 8 +#define SPACERE5_DIM3 12 +#define SPACERE5_DIM4 8 + +/* Information for Space update diminfo test */ +#define SPACEUD1_DIM0 20 +#define SPACEUD3_DIM0 9 +#define SPACEUD3_DIM1 12 +#define SPACEUD3_DIM2 13 + +/* #defines for shape same / different rank tests */ +#define SS_DR_MAX_RANK 5 + +/* Information for regular hyperslab query test */ +#define SPACE13_RANK 3 +#define SPACE13_DIM1 50 +#define SPACE13_DIM2 50 +#define SPACE13_DIM3 50 +#define SPACE13_NPOINTS 4 + +/* Information for testing selection iterators */ +#define SEL_ITER_MAX_SEQ 256 + +/* Defines for test_hyper_io_1d() */ +#define DNAME "DSET_1D" +#define RANK 1 +#define NUMCHUNKS 3 +#define CHUNKSZ 20 +#define NUM_ELEMENTS NUMCHUNKS *CHUNKSZ + +/* Location comparison function */ +static int compare_size_t(const void *s1, const void *s2); + +static herr_t test_select_hyper_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, + void *operator_data); +static herr_t test_select_point_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, + void *operator_data); +static herr_t test_select_all_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, + void *operator_data); +static herr_t test_select_none_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, + void *operator_data); +static herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point, + void *_operator_data); +static herr_t test_select_hyper_iter3(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, + void *operator_data); + +/**************************************************************** +** +** test_select_hyper_iter1(): Iterator for checking hyperslab iteration +** +****************************************************************/ +static herr_t +test_select_hyper_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, + const hsize_t H5_ATTR_UNUSED *point, void *_operator_data) +{ + uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */ + **tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */ + + if (*tbuf != **tbuf2) + return (-1); + else { + (*tbuf2)++; + return (0); + } +} /* end test_select_hyper_iter1() */ + +/**************************************************************** +** +** test_select_hyper(): Test basic H5S (dataspace) selection code. +** Tests hyperslabs of various sizes and dimensionalities. +** +****************************************************************/ +static void +test_select_hyper(hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + H5S_class_t ext_type; /* Extent type */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Verify extent type */ + ext_type = H5Sget_simple_extent_type(sid1); + VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); + + /* Test selecting stride==0 to verify failure */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 0; + stride[1] = 0; + stride[2] = 0; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + H5E_BEGIN_TRY + { + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + + /* Test selecting stride<block to verify failure */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 2; + block[1] = 2; + block[2] = 2; + H5E_BEGIN_TRY + { + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 15x26 hyperslab for memory dataset */ + start[0] = 15; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Exercise checks for NULL buffer and valid selection */ + H5E_BEGIN_TRY + { + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Dwrite"); + H5E_BEGIN_TRY + { + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 0x26 hyperslab to OR into current selection (should be a NOOP) */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 0; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Exercise checks for NULL buffer and valid selection */ + H5E_BEGIN_TRY + { + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Dread"); + H5E_BEGIN_TRY + { + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Dread"); + + /* Check that the values match with a dataset iterator */ + tbuf = wbuf + (15 * SPACE2_DIM2); + ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_hyper_iter1, &tbuf); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper() */ + +struct pnt_iter { + hsize_t coord[POINT1_NPOINTS * 2][SPACE2_RANK]; /* Coordinates for point selection */ + uint8_t *buf; /* Buffer the points are in */ + int offset; /* Which point we are looking at */ +}; + +/**************************************************************** +** +** test_select_point_iter1(): Iterator for checking point iteration +** (This is really ugly code, not a very good example of correct usage - QAK) +** +****************************************************************/ +static herr_t +test_select_point_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, + const hsize_t H5_ATTR_UNUSED *point, void *_operator_data) +{ + uint8_t *elem = (uint8_t *)_elem; /* Pointer to the element to examine */ + uint8_t *tmp; /* temporary ptr to element in operator data */ + struct pnt_iter *pnt_info = (struct pnt_iter *)_operator_data; + + tmp = pnt_info->buf + (pnt_info->coord[pnt_info->offset][0] * SPACE2_DIM2) + + pnt_info->coord[pnt_info->offset][1]; + if (*elem != *tmp) + return (-1); + else { + pnt_info->offset++; + return (0); + } +} /* end test_select_point_iter1() */ + +/**************************************************************** +** +** test_select_point(): Test basic H5S (dataspace) selection code. +** Tests element selections between dataspaces of various sizes +** and dimensionalities. +** +****************************************************************/ +static void +test_select_point(hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ + hsize_t temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ + hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ + hsize_t temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ + hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ + hsize_t temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + struct pnt_iter pi; /* Custom Pointer iterator struct */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Element Selection Functions\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for write buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for disk dataset */ + coord1[0][0] = 0; + coord1[0][1] = 10; + coord1[0][2] = 5; + coord1[1][0] = 1; + coord1[1][1] = 2; + coord1[1][2] = 7; + coord1[2][0] = 2; + coord1[2][1] = 4; + coord1[2][2] = 9; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[3][2] = 11; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[4][2] = 13; + coord1[5][0] = 2; + coord1[5][1] = 12; + coord1[5][2] = 0; + coord1[6][0] = 0; + coord1[6][1] = 14; + coord1[6][2] = 2; + coord1[7][0] = 1; + coord1[7][1] = 0; + coord1[7][2] = 4; + coord1[8][0] = 2; + coord1[8][1] = 1; + coord1[8][2] = 6; + coord1[9][0] = 0; + coord1[9][1] = 3; + coord1[9][2] = 8; + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Verify correct elements selected */ + H5Sget_select_elem_pointlist(sid1, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord1); + for (i = 0; i < POINT1_NPOINTS; i++) { + VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist"); + } /* end for */ + + ret = (int)H5Sget_select_npoints(sid1); + VERIFY(ret, 10, "H5Sget_select_npoints"); + + /* Append another sequence of ten points to disk dataset */ + coord1[0][0] = 0; + coord1[0][1] = 2; + coord1[0][2] = 0; + coord1[1][0] = 1; + coord1[1][1] = 10; + coord1[1][2] = 8; + coord1[2][0] = 2; + coord1[2][1] = 8; + coord1[2][2] = 10; + coord1[3][0] = 0; + coord1[3][1] = 7; + coord1[3][2] = 12; + coord1[4][0] = 1; + coord1[4][1] = 3; + coord1[4][2] = 11; + coord1[5][0] = 2; + coord1[5][1] = 1; + coord1[5][2] = 1; + coord1[6][0] = 0; + coord1[6][1] = 13; + coord1[6][2] = 7; + coord1[7][0] = 1; + coord1[7][1] = 14; + coord1[7][2] = 6; + coord1[8][0] = 2; + coord1[8][1] = 2; + coord1[8][2] = 5; + coord1[9][0] = 0; + coord1[9][1] = 6; + coord1[9][2] = 13; + ret = H5Sselect_elements(sid1, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Verify correct elements selected */ + H5Sget_select_elem_pointlist(sid1, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS, + (hsize_t *)temp_coord1); + for (i = 0; i < POINT1_NPOINTS; i++) { + VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist"); + } /* end for */ + + ret = (int)H5Sget_select_npoints(sid1); + VERIFY(ret, 20, "H5Sget_select_npoints"); + + /* Select sequence of ten points for memory dataset */ + coord2[0][0] = 12; + coord2[0][1] = 3; + coord2[1][0] = 15; + coord2[1][1] = 13; + coord2[2][0] = 7; + coord2[2][1] = 25; + coord2[3][0] = 0; + coord2[3][1] = 6; + coord2[4][0] = 13; + coord2[4][1] = 0; + coord2[5][0] = 24; + coord2[5][1] = 11; + coord2[6][0] = 12; + coord2[6][1] = 21; + coord2[7][0] = 29; + coord2[7][1] = 4; + coord2[8][0] = 8; + coord2[8][1] = 8; + coord2[9][0] = 19; + coord2[9][1] = 17; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Verify correct elements selected */ + H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2); + for (i = 0; i < POINT1_NPOINTS; i++) { + VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist"); + } /* end for */ + + /* Save points for later iteration */ + /* (these are in the second half of the buffer, because we are prepending */ + /* the next list of points to the beginning of the point selection list) */ + HDmemcpy(((char *)pi.coord) + sizeof(coord2), coord2, sizeof(coord2)); + + ret = (int)H5Sget_select_npoints(sid2); + VERIFY(ret, 10, "H5Sget_select_npoints"); + + /* Append another sequence of ten points to memory dataset */ + coord2[0][0] = 24; + coord2[0][1] = 0; + coord2[1][0] = 2; + coord2[1][1] = 25; + coord2[2][0] = 13; + coord2[2][1] = 17; + coord2[3][0] = 8; + coord2[3][1] = 3; + coord2[4][0] = 29; + coord2[4][1] = 4; + coord2[5][0] = 11; + coord2[5][1] = 14; + coord2[6][0] = 5; + coord2[6][1] = 22; + coord2[7][0] = 12; + coord2[7][1] = 2; + coord2[8][0] = 21; + coord2[8][1] = 12; + coord2[9][0] = 9; + coord2[9][1] = 18; + ret = H5Sselect_elements(sid2, H5S_SELECT_PREPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Verify correct elements selected */ + H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2); + for (i = 0; i < POINT1_NPOINTS; i++) { + VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist"); + } /* end for */ + + ret = (int)H5Sget_select_npoints(sid2); + VERIFY(ret, 20, "H5Sget_select_npoints"); + + /* Save points for later iteration */ + HDmemcpy(pi.coord, coord2, sizeof(coord2)); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of points for read dataset */ + coord3[0][0] = 0; + coord3[0][1] = 2; + coord3[1][0] = 4; + coord3[1][1] = 8; + coord3[2][0] = 13; + coord3[2][1] = 13; + coord3[3][0] = 14; + coord3[3][1] = 20; + coord3[4][0] = 7; + coord3[4][1] = 9; + coord3[5][0] = 2; + coord3[5][1] = 0; + coord3[6][0] = 9; + coord3[6][1] = 19; + coord3[7][0] = 1; + coord3[7][1] = 22; + coord3[8][0] = 12; + coord3[8][1] = 21; + coord3[9][0] = 11; + coord3[9][1] = 6; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Verify correct elements selected */ + H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord3); + for (i = 0; i < POINT1_NPOINTS; i++) { + VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist"); + } /* end for */ + + ret = (int)H5Sget_select_npoints(sid2); + VERIFY(ret, 10, "H5Sget_select_npoints"); + + /* Append another sequence of ten points to disk dataset */ + coord3[0][0] = 14; + coord3[0][1] = 25; + coord3[1][0] = 0; + coord3[1][1] = 0; + coord3[2][0] = 11; + coord3[2][1] = 11; + coord3[3][0] = 5; + coord3[3][1] = 14; + coord3[4][0] = 3; + coord3[4][1] = 5; + coord3[5][0] = 2; + coord3[5][1] = 2; + coord3[6][0] = 7; + coord3[6][1] = 13; + coord3[7][0] = 9; + coord3[7][1] = 16; + coord3[8][0] = 12; + coord3[8][1] = 22; + coord3[9][0] = 13; + coord3[9][1] = 9; + ret = H5Sselect_elements(sid2, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Verify correct elements selected */ + H5Sget_select_elem_pointlist(sid2, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS, + (hsize_t *)temp_coord3); + for (i = 0; i < POINT1_NPOINTS; i++) { + VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist"); + VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist"); + } /* end for */ + ret = (int)H5Sget_select_npoints(sid2); + VERIFY(ret, 20, "H5Sget_select_npoints"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the values match with a dataset iterator */ + pi.buf = wbuf; + pi.offset = 0; + ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_point_iter1, &pi); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_point() */ + +/**************************************************************** +** +** test_select_all_iter1(): Iterator for checking all iteration +** +** +****************************************************************/ +static herr_t +test_select_all_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, + const hsize_t H5_ATTR_UNUSED *point, void *_operator_data) +{ + uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */ + **tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */ + + if (*tbuf != **tbuf2) + return (-1); + else { + (*tbuf2)++; + return (0); + } +} /* end test_select_all_iter1() */ + +/**************************************************************** +** +** test_select_none_iter1(): Iterator for checking none iteration +** (This is never supposed to be called, so it always returns -1) +** +****************************************************************/ +static herr_t +test_select_none_iter1(void H5_ATTR_UNUSED *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, + const hsize_t H5_ATTR_UNUSED *point, void H5_ATTR_UNUSED *_operator_data) +{ + return (-1); +} /* end test_select_none_iter1() */ + +/**************************************************************** +** +** test_select_all(): Test basic H5S (dataspace) selection code. +** Tests "all" selections. +** +****************************************************************/ +static void +test_select_all(hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1; /* Dataspace ID */ + hsize_t dims1[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3}; + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j, k; /* Counters */ + herr_t ret; /* Generic return value */ + H5S_class_t ext_type; /* Extent type */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing 'All' Selection Functions\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++) + for (j = 0; j < SPACE4_DIM2; j++) + for (k = 0; k < SPACE4_DIM3; k++) + *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE4_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Verify extent type */ + ext_type = H5Sget_simple_extent_type(sid1); + VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the values match with a dataset iterator */ + tbuf = wbuf; + ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid1, test_select_all_iter1, &tbuf); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_all() */ + +/**************************************************************** +** +** test_select_all_hyper(): Test basic H5S (dataspace) selection code. +** Tests "all" and hyperslab selections. +** +****************************************************************/ +static void +test_select_all_hyper(hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + H5S_class_t ext_type; /* Extent type */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing 'All' Selection Functions\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE3_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Verify extent type */ + ext_type = H5Sget_simple_extent_type(sid1); + VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); + + /* Select entire 15x26 extent for disk dataset */ + ret = H5Sselect_all(sid1); + CHECK(ret, FAIL, "H5Sselect_all"); + + /* Select 15x26 hyperslab for memory dataset */ + start[0] = 15; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select no extent for disk dataset */ + ret = H5Sselect_none(sid1); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Read selection from disk (should fail with no selection defined) */ + H5E_BEGIN_TRY + { + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Dread"); + + /* Select entire 15x26 extent for disk dataset */ + ret = H5Sselect_all(sid1); + CHECK(ret, FAIL, "H5Sselect_all"); + + /* Read selection from disk (should work now) */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the values match with a dataset iterator */ + tbuf = wbuf + (15 * SPACE2_DIM2); + ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_all_iter1, &tbuf); + CHECK(ret, FAIL, "H5Diterate"); + + /* A quick check to make certain that iterating through a "none" selection works */ + ret = H5Sselect_none(sid2); + CHECK(ret, FAIL, "H5Sselect_none"); + ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_none_iter1, &tbuf); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_all_hyper() */ + +/**************************************************************** +** +** test_select_combo(): Test basic H5S (dataspace) selection code. +** Tests combinations of element and hyperslab selections between +** dataspaces of various sizes and dimensionalities. +** +****************************************************************/ +static void +test_select_combo(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Combination of Hyperslab & Element Selection Functions\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for write buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for disk dataset */ + coord1[0][0] = 0; + coord1[0][1] = 10; + coord1[0][2] = 5; + coord1[1][0] = 1; + coord1[1][1] = 2; + coord1[1][2] = 7; + coord1[2][0] = 2; + coord1[2][1] = 4; + coord1[2][2] = 9; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[3][2] = 11; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[4][2] = 13; + coord1[5][0] = 2; + coord1[5][1] = 12; + coord1[5][2] = 0; + coord1[6][0] = 0; + coord1[6][1] = 14; + coord1[6][2] = 2; + coord1[7][0] = 1; + coord1[7][1] = 0; + coord1[7][2] = 4; + coord1[8][0] = 2; + coord1[8][1] = 1; + coord1[8][2] = 6; + coord1[9][0] = 0; + coord1[9][1] = 3; + coord1[9][2] = 8; + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Select 1x10 hyperslab for writing memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 10x1 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < POINT1_NPOINTS; i++) { + tbuf = wbuf + i; + tbuf2 = rbuf + (i * SPACE3_DIM2); + if (*tbuf != *tbuf2) + TestErrPrintf("element values don't match!, i=%d\n", i); + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_combo() */ + +static int +compare_size_t(const void *s1, const void *s2) +{ + if (*(const size_t *)s1 < *(const size_t *)s2) + return (-1); + else if (*(const size_t *)s1 > *(const size_t *)s2) + return (1); + else + return (0); +} + +/**************************************************************** +** +** test_select_hyper_stride(): Test H5S (dataspace) selection code. +** Tests strided hyperslabs of various sizes and dimensionalities. +** +****************************************************************/ +static void +test_select_hyper_stride(hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + uint16_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + size_t loc1[72] = { + /* Gruesomely ugly way to make certain hyperslab locations are checked correctly */ + 27, 28, 29, 53, 54, 55, 79, 80, 81, /* Block #1 */ + 32, 33, 34, 58, 59, 60, 84, 85, 86, /* Block #2 */ + 157, 158, 159, 183, 184, 185, 209, 210, 211, /* Block #3 */ + 162, 163, 164, 188, 189, 190, 214, 215, 216, /* Block #4 */ + 287, 288, 289, 313, 314, 315, 339, 340, 341, /* Block #5 */ + 292, 293, 294, 318, 319, 320, 344, 345, 346, /* Block #6 */ + 417, 418, 419, 443, 444, 445, 469, 470, 471, /* Block #7 */ + 422, 423, 424, 448, 449, 450, 474, 475, 476, /* Block #8 */ + }; + size_t loc2[72] = { + 0, 1, 2, 26, 27, 28, /* Block #1 */ + 4, 5, 6, 30, 31, 32, /* Block #2 */ + 8, 9, 10, 34, 35, 36, /* Block #3 */ + 12, 13, 14, 38, 39, 40, /* Block #4 */ + 104, 105, 106, 130, 131, 132, /* Block #5 */ + 108, 109, 110, 134, 135, 136, /* Block #6 */ + 112, 113, 114, 138, 139, 140, /* Block #7 */ + 116, 117, 118, 142, 143, 144, /* Block #8 */ + 208, 209, 210, 234, 235, 236, /* Block #9 */ + 212, 213, 214, 238, 239, 240, /* Block #10 */ + 216, 217, 218, 242, 243, 244, /* Block #11 */ + 220, 221, 222, 246, 247, 248, /* Block #12 */ + }; + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); + + /* Allocate write & read buffers */ + wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + stride[0] = 2; + stride[1] = 4; + stride[2] = 3; + count[0] = 2; + count[1] = 3; + count[2] = 3; + block[0] = 1; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */ + start[0] = 1; + start[1] = 1; + stride[0] = 5; + stride[1] = 5; + count[0] = 4; + count[1] = 2; + block[0] = 3; + block[1] = 3; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 4; + stride[1] = 4; + count[0] = 3; + count[1] = 4; + block[0] = 2; + block[1] = 3; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Sort the locations into the proper order */ + HDqsort(loc1, (size_t)72, sizeof(size_t), compare_size_t); + HDqsort(loc2, (size_t)72, sizeof(size_t), compare_size_t); + /* Compare data read with data written out */ + for (i = 0; i < 72; i++) { + tbuf = wbuf + loc1[i]; + tbuf2 = rbuf + loc2[i]; + if (*tbuf != *tbuf2) { + HDprintf("%d: hyperslab values don't match!, loc1[%d]=%d, loc2[%d]=%d\n", __LINE__, i, + (int)loc1[i], i, (int)loc2[i]); + HDprintf("wbuf=%p, tbuf=%p, rbuf=%p, tbuf2=%p\n", (void *)wbuf, (void *)tbuf, (void *)rbuf, + (void *)tbuf2); + TestErrPrintf("*tbuf=%u, *tbuf2=%u\n", (unsigned)*tbuf, (unsigned)*tbuf2); + } /* end if */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_stride() */ + +/**************************************************************** +** +** test_select_hyper_contig(): Test H5S (dataspace) selection code. +** Tests contiguous hyperslabs of various sizes and dimensionalities. +** +****************************************************************/ +static void +test_select_hyper_contig(hid_t dset_type, hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims2[] = {SPACE2_DIM2, SPACE2_DIM1}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + uint16_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Contiguous Hyperslabs Functionality\n")); + + /* Allocate write & read buffers */ + wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 12x10 count with a stride of 1x3 & 3x3 block hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 3; + count[0] = 12; + count[1] = 10; + block[0] = 1; + block[1] = 3; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 4x5 count with a stride of 3x6 & 3x6 block hyperslab for memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 3; + stride[1] = 6; + count[0] = 4; + count[1] = 5; + block[0] = 3; + block[1] = 6; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 6x5 count with a stride of 2x6 & 2x6 block hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 2; + stride[1] = 6; + count[0] = 6; + count[1] = 5; + block[0] = 2; + block[1] = 6; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 3x15 count with a stride of 4x2 & 4x2 block hyperslab for memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 4; + stride[1] = 2; + count[0] = 3; + count[1] = 15; + block[0] = 4; + block[1] = 2; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + if (HDmemcmp(rbuf, wbuf, sizeof(uint16_t) * 30 * 12) != 0) + TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_contig() */ + +/**************************************************************** +** +** test_select_hyper_contig2(): Test H5S (dataspace) selection code. +** Tests more contiguous hyperslabs of various sizes and dimensionalities. +** +****************************************************************/ +static void +test_select_hyper_contig2(hid_t dset_type, hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1}; + hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */ + hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */ + uint16_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j, k, l; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing More Contiguous Hyperslabs Functionality\n")); + + /* Allocate write & read buffers */ + wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), + (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE8_DIM1; i++) + for (j = 0; j < SPACE8_DIM2; j++) + for (k = 0; k < SPACE8_DIM3; k++) + for (l = 0; l < SPACE8_DIM4; l++) + *tbuf++ = (uint16_t)((i * SPACE8_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select contiguous hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select contiguous hyperslab in memory */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select contiguous hyperslab in memory */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select contiguous hyperslab in memory */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + if (HDmemcmp(rbuf, wbuf, sizeof(uint16_t) * 2 * SPACE8_DIM3 * SPACE8_DIM2 * SPACE8_DIM1) != 0) + TestErrPrintf("Error: hyperslab values don't match!\n"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_contig2() */ + +/**************************************************************** +** +** test_select_hyper_contig3(): Test H5S (dataspace) selection code. +** Tests contiguous hyperslabs of various sizes and dimensionalities. +** This test uses a hyperslab that is contiguous in the lowest dimension, +** not contiguous in a dimension, then has a selection across the entire next +** dimension (which should be "flattened" out also). +** +****************************************************************/ +static void +test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1}; + hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */ + hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */ + uint16_t *wbuf, /* Buffer to write to disk */ + *rbuf, /* Buffer read from disk */ + *tbuf, *tbuf2; /* Temporary buffer pointers */ + unsigned i, j, k, l; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Yet More Contiguous Hyperslabs Functionality\n")); + + /* Allocate write & read buffers */ + wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), + (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE8_DIM4; i++) + for (j = 0; j < SPACE8_DIM3; j++) + for (k = 0; k < SPACE8_DIM2; k++) + for (l = 0; l < SPACE8_DIM1; l++) + *tbuf++ = (uint16_t)((k * SPACE8_DIM2) + l); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select semi-contiguous hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + start[2] = SPACE8_DIM2 / 2; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2 / 2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select semi-contiguous hyperslab in memory */ + start[0] = 0; + start[1] = 0; + start[2] = SPACE8_DIM2 / 2; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2 / 2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select semi-contiguous hyperslab in memory */ + start[0] = 0; + start[1] = 0; + start[2] = SPACE8_DIM2 / 2; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2 / 2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select semi-contiguous hyperslab in memory */ + start[0] = 0; + start[1] = 0; + start[2] = SPACE8_DIM2 / 2; + start[3] = 0; + count[0] = 2; + count[1] = SPACE8_DIM3; + count[2] = SPACE8_DIM2 / 2; + count[3] = SPACE8_DIM1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0, tbuf = wbuf, tbuf2 = rbuf; i < SPACE8_DIM4; i++) + for (j = 0; j < SPACE8_DIM3; j++) + for (k = 0; k < SPACE8_DIM2; k++) + for (l = 0; l < SPACE8_DIM1; l++, tbuf++, tbuf2++) + if ((i >= start[0] && i < (start[0] + count[0])) && + (j >= start[1] && j < (start[1] + count[1])) && + (k >= start[2] && k < (start[2] + count[2])) && + (l >= start[3] && l < (start[3] + count[3]))) { + if (*tbuf != *tbuf2) { + HDprintf("Error: hyperslab values don't match!\n"); + TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__, + i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2); + } /* end if */ + } /* end if */ + else { + if (*tbuf2 != 0) { + HDprintf("Error: invalid data in read buffer!\n"); + TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__, + i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2); + } /* end if */ + } /* end else */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_contig3() */ + +#if 0 +/**************************************************************** +** +** verify_select_hyper_contig_dr__run_test(): Verify data from +** test_select_hyper_contig_dr__run_test() +** +****************************************************************/ +static void +verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, size_t cube_size, + unsigned edge_size, unsigned cube_rank) +{ + const uint16_t *cube_ptr; /* Pointer into the cube buffer */ + uint16_t expected_value; /* Expected value in dataset */ + unsigned i, j, k, l, m; /* Local index variables */ + size_t s; /* Local index variable */ + hbool_t mis_match; /* Flag to indicate mismatch in expected value */ + + HDassert(cube_buf); + HDassert(cube_size > 0); + + expected_value = 0; + mis_match = FALSE; + cube_ptr = cube_buf; + s = 0; + i = 0; + do { + j = 0; + do { + k = 0; + do { + l = 0; + do { + m = 0; + do { + /* Sanity check */ + HDassert(s < cube_size); + + /* Check for correct value */ + if (*cube_ptr != expected_value) + mis_match = TRUE; + + /* Advance to next element */ + cube_ptr++; + expected_value++; + s++; + m++; + } while ((cube_rank > 0) && (m < edge_size)); + l++; + } while ((cube_rank > 1) && (l < edge_size)); + k++; + } while ((cube_rank > 2) && (k < edge_size)); + j++; + } while ((cube_rank > 3) && (j < edge_size)); + i++; + } while ((cube_rank > 4) && (i < edge_size)); + if (mis_match) + TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__); +} /* verify_select_hyper_contig_dr__run_test() */ +#endif +#if 0 + +/**************************************************************** +** +** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace) +** selection code with contiguous source and target having +** different ranks but the same shape. We have already +** tested H5Sselect_shape_same in isolation, so now we try to do +** I/O. +** +****************************************************************/ +static void +test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf, + unsigned edge_size, unsigned chunk_edge_size, unsigned small_rank, + unsigned large_rank, hid_t dset_type, hid_t xfer_plist) +{ + hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */ + hid_t fapl; /* File access property list */ + hid_t fid1; /* File ID */ + hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */ + hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */ + hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */ + hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ + hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ + hid_t small_cube_dataset; /* Dataset ID */ + hid_t large_cube_dataset; /* Dataset ID */ + size_t start_index; /* Offset within buffer to begin inspecting */ + size_t stop_index; /* Offset within buffer to end inspecting */ + uint16_t expected_value; /* Expected value in dataset */ + uint16_t *small_cube_buf_1; /* Buffer for small cube data */ + uint16_t *large_cube_buf_1; /* Buffer for large cube data */ + uint16_t *ptr_1; /* Temporary pointer into cube data */ + hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */ + hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */ + hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */ + hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */ + hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */ + hsize_t *start_ptr; /* Actual hyperslab start offset */ + hsize_t *stride_ptr; /* Actual hyperslab stride */ + hsize_t *count_ptr; /* Actual hyperslab count */ + hsize_t *block_ptr; /* Actual hyperslab block size */ + size_t small_cube_size; /* Number of elements in small cube */ + size_t large_cube_size; /* Number of elements in large cube */ + unsigned u, v, w, x; /* Local index variables */ + size_t s; /* Local index variable */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); + MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size, + chunk_edge_size)); + + HDassert(edge_size >= 6); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(small_rank > 0); + HDassert(small_rank < large_rank); + HDassert(large_rank <= SS_DR_MAX_RANK); + + /* Compute cube sizes */ + small_cube_size = large_cube_size = (size_t)1; + for (u = 0; u < large_rank; u++) { + if (u < small_rank) + small_cube_size *= (size_t)edge_size; + + large_cube_size *= (size_t)edge_size; + } /* end for */ + + HDassert(large_cube_size < (size_t)UINT_MAX); + + /* set up the start, stride, count, and block pointers */ + start_ptr = &(start[SS_DR_MAX_RANK - large_rank]); + stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]); + count_ptr = &(count[SS_DR_MAX_RANK - large_rank]); + block_ptr = &(block[SS_DR_MAX_RANK - large_rank]); + + /* Allocate buffers */ + small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); + CHECK_PTR(small_cube_buf_1, "HDcalloc"); + large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); + CHECK_PTR(large_cube_buf_1, "HDcalloc"); + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Use the 'core' VFD for this test */ + ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); + CHECK(ret, FAIL, "H5Pset_fapl_core"); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + /* setup dims: */ + dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size; + + /* Create small cube dataspaces */ + small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(small_cube_sid, FAIL, "H5Screate_simple"); + + /* Create large cube dataspace */ + mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); + file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if (chunk_edge_size > 0) { + hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */ + + chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = + (hsize_t)chunk_edge_size; + + small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + } /* end if */ + + /* create the small cube dataset */ + small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, small_cube_sid, H5P_DEFAULT, + small_cube_dcpl_id, H5P_DEFAULT); + CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default small dataset DCPL */ + if (small_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(small_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* create the large cube dataset */ + large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT, + large_cube_dcpl_id, H5P_DEFAULT); + CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default large dataset DCPL */ + if (large_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(large_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* write initial data to the on disk datasets */ + ret = + H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* read initial data from disk and verify that it is as expected. */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank); + + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank); + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5Sselect_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D slice from the on disk large cube, and + * verifying that the data read is correct. Verify that H5Sselect_shape_same() + * returns true on the memory and file selections. + */ + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for (u = 0; u < SS_DR_MAX_RANK; u++) { + start[u] = 0; + stride[u] = 1; + count[u] = 1; + if ((SS_DR_MAX_RANK - u) > small_rank) + block[u] = 1; + else + block[u] = (hsize_t)edge_size; + } /* end for */ + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, + count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* verify that H5Sselect_shape_same() reports the two + * selections as having the same shape. + */ + check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Read selection from disk */ + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid, + xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that expected data is retrieved */ + mis_match = FALSE; + ptr_1 = small_cube_buf_1; + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + (x * edge_size)); + for (s = 0; s < small_cube_size; s++) { + if (*ptr_1 != expected_value) + mis_match = TRUE; + ptr_1++; + expected_value++; + } /* end for */ + if (mis_match) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + /* similarly, read the on disk small cube into slices through the in memory + * large cube, and verify that the correct data (and only the correct data) + * is read. + */ + + /* zero out the in-memory large cube */ + HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t)); + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, + count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* verify that H5Sselect_shape_same() reports the two + * selections as having the same shape. + */ + check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Read selection from disk */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid, + xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that the expected data and only the + * expected data was read. + */ + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + mis_match = FALSE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + for (s = 0; s < start_index; s++) { + if (*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + for (; s <= stop_index; s++) { + if (*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + for (; s < large_cube_size; s++) { + if (*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + if (mis_match) + TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__); + + /* Zero out the buffer for the next pass */ + HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t)); + + x++; + } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5Sselect_shape_same() views as being of the same shape. + * + * Start by writing small_rank D slices from the in memory large cube, to + * the the on disk small cube dataset. After each write, read the small + * cube dataset back from disk, and verify that it contains the expected + * data. Verify that H5Sselect_shape_same() returns true on the + * memory and file selections. + */ + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, + xfer_plist, zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* select the portion of the in memory large cube from which we + * are going to write data. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, + count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* verify that H5Sselect_shape_same() reports the in + * memory slice through the cube selection and the + * on disk full small cube selections as having the same shape. + */ + check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* write the slice from the in memory large cube to the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid, + xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* read the on disk small cube into memory */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, + xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that expected data is retrieved */ + mis_match = FALSE; + ptr_1 = small_cube_buf_1; + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + (x * edge_size)); + for (s = 0; s < small_cube_size; s++) { + if (*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + if (mis_match) + TestErrPrintf("small cube data don't match! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + /* Now write the contents of the in memory small cube to slices of + * the on disk cube. After each write, read the on disk cube + * into memory, and verify that it contains the expected + * data. Verify that H5Sselect_shape_same() returns true on + * the memory and file selections. + */ + + /* select the entire memory and file cube dataspaces */ + ret = H5Sselect_all(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + ret = H5Sselect_all(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out the on disk cube */ + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, mem_large_cube_sid, + file_large_cube_sid, xfer_plist, zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* select the portion of the in memory large cube to which we + * are going to write data. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, + count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* verify that H5Sselect_shape_same() reports the in + * memory full selection of the small cube and the + * on disk slice through the large cube selection + * as having the same shape. + */ + check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* write the cube from memory to the target slice of the disk cube */ + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid, + xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* read the on disk cube into memory */ + ret = H5Sselect_all(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_large_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that the expected data and only the + * expected data was read. + */ + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + mis_match = FALSE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + for (s = 0; s < start_index; s++) { + if (*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + for (; s <= stop_index; s++) { + if (*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + for (; s < large_cube_size; s++) { + if (*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + if (mis_match) + TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + /* Close memory dataspaces */ + ret = H5Sclose(small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Datasets */ + ret = H5Dclose(small_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + ret = H5Dclose(large_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(small_cube_buf_1); + HDfree(large_cube_buf_1); + +} /* test_select_hyper_contig_dr__run_test() */ +#endif +#if 0 +/**************************************************************** +** +** test_select_hyper_contig_dr(): Test H5S (dataspace) +** selection code with contiguous source and target having +** different ranks but the same shape. We have already +** tested H5Sselect_shape_same in isolation, so now we try to do +** I/O. +** +****************************************************************/ +static void +test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist) +{ + int test_num = 0; + unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ + unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ + unsigned small_rank; /* Current rank of small dataset */ + unsigned large_rank; /* Current rank of large dataset */ + uint16_t *cube_buf; /* Buffer for writing cube data */ + uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ + uint16_t *cube_ptr; /* Temporary pointer into cube data */ + unsigned max_rank = 5; /* Max. rank to use */ + size_t max_cube_size; /* Max. number of elements in largest cube */ + size_t s; /* Local index variable */ + unsigned u; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n")); + + /* Compute max. cube size */ + max_cube_size = (size_t)1; + for (u = 0; u < max_rank; u++) + max_cube_size *= (size_t)edge_size; + + /* Allocate cube buffer for writing values */ + cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); + CHECK_PTR(cube_buf, "HDmalloc"); + + /* Initialize the cube buffer */ + cube_ptr = cube_buf; + for (s = 0; s < max_cube_size; s++) + *cube_ptr++ = (uint16_t)s; + + /* Allocate cube buffer for zeroing values on disk */ + zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); + CHECK_PTR(zero_buf, "HDcalloc"); + + for (large_rank = 1; large_rank <= max_rank; large_rank++) { + for (small_rank = 1; small_rank < large_rank; small_rank++) { + chunk_edge_size = 0; + test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size, + small_rank, large_rank, dset_type, xfer_plist); + test_num++; + + chunk_edge_size = 3; + test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size, + small_rank, large_rank, dset_type, xfer_plist); + test_num++; + } /* for loop on small rank */ + } /* for loop on large rank */ + + HDfree(cube_buf); + HDfree(zero_buf); + +} /* test_select_hyper_contig_dr() */ +#endif +/**************************************************************** +** +** test_select_hyper_checker_board_dr__select_checker_board(): +** Given an n-cube dataspace with each edge of length +** edge_size, and a checker_edge_size either select a checker +** board selection of the entire cube(if sel_rank == n), +** or select a checker board selection of a +** sel_rank dimensional slice through n-cube parallel to the +** sel_rank fastest changing indices, with origin (in the +** higher indices) as indicated by the start array. +** +** Note that this function, like all its relatives, is +** hard coded to presume a maximum n-cube rank of 5. +** While this maximum is declared as a constant, increasing +** it will require extensive coding in addition to changing +** the value of the constant. +** +** JRM -- 9/9/09 +** +****************************************************************/ +#if 0 +static void +test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, unsigned tgt_n_cube_rank, + unsigned edge_size, unsigned checker_edge_size, + unsigned sel_rank, const hsize_t sel_start[]) +{ + hbool_t first_selection = TRUE; + unsigned n_cube_offset; + unsigned sel_offset; + hsize_t base_count; + hsize_t offset_count; + hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */ + hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */ + hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */ + hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */ + unsigned i, j, k, l, m; /* Local index variable */ + unsigned u; /* Local index variables */ + herr_t ret; /* Generic return value */ + + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(0 < sel_rank); + HDassert(sel_rank <= tgt_n_cube_rank); + HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK); + + sel_offset = SS_DR_MAX_RANK - sel_rank; + n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank; + HDassert(n_cube_offset <= sel_offset); + + /* First, compute the base count (which assumes start == 0 + * for the associated offset) and offset_count (which + * assumes start == checker_edge_size for the associated + * offset). + */ + base_count = edge_size / (checker_edge_size * 2); + if ((edge_size % (checker_edge_size * 2)) > 0) + base_count++; + + offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2); + if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) + offset_count++; + + /* Now set up the stride and block arrays, and portions of the start + * and count arrays that will not be altered during the selection of + * the checker board. + */ + u = 0; + while (u < n_cube_offset) { + /* these values should never be used */ + start[u] = 0; + stride[u] = 0; + count[u] = 0; + block[u] = 0; + + u++; + } /* end while */ + + while (u < sel_offset) { + start[u] = sel_start[u]; + stride[u] = 2 * edge_size; + count[u] = 1; + block[u] = 1; + + u++; + } /* end while */ + + while (u < SS_DR_MAX_RANK) { + stride[u] = 2 * checker_edge_size; + block[u] = checker_edge_size; + + u++; + } /* end while */ + + i = 0; + do { + if (0 >= sel_offset) { + if (i == 0) { + start[0] = 0; + count[0] = base_count; + } /* end if */ + else { + start[0] = checker_edge_size; + count[0] = offset_count; + } /* end else */ + } /* end if */ + + j = 0; + do { + if (1 >= sel_offset) { + if (j == 0) { + start[1] = 0; + count[1] = base_count; + } /* end if */ + else { + start[1] = checker_edge_size; + count[1] = offset_count; + } /* end else */ + } /* end if */ + + k = 0; + do { + if (2 >= sel_offset) { + if (k == 0) { + start[2] = 0; + count[2] = base_count; + } /* end if */ + else { + start[2] = checker_edge_size; + count[2] = offset_count; + } /* end else */ + } /* end if */ + + l = 0; + do { + if (3 >= sel_offset) { + if (l == 0) { + start[3] = 0; + count[3] = base_count; + } /* end if */ + else { + start[3] = checker_edge_size; + count[3] = offset_count; + } /* end else */ + } /* end if */ + + m = 0; + do { + if (4 >= sel_offset) { + if (m == 0) { + start[4] = 0; + count[4] = base_count; + } /* end if */ + else { + start[4] = checker_edge_size; + count[4] = offset_count; + } /* end else */ + } /* end if */ + + if (((i + j + k + l + m) % 2) == 0) { + if (first_selection) { + first_selection = FALSE; + + ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_SET, + &(start[n_cube_offset]), &(stride[n_cube_offset]), + &(count[n_cube_offset]), &(block[n_cube_offset])); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + else { + ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_OR, + &(start[n_cube_offset]), &(stride[n_cube_offset]), + &(count[n_cube_offset]), &(block[n_cube_offset])); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end else */ + } /* end if */ + + m++; + } while ((m <= 1) && (4 >= sel_offset)); + l++; + } while ((l <= 1) && (3 >= sel_offset)); + k++; + } while ((k <= 1) && (2 >= sel_offset)); + j++; + } while ((j <= 1) && (1 >= sel_offset)); + i++; + } while ((i <= 1) && (0 >= sel_offset)); + + /* Weirdness alert: + * + * Some how, it seems that selections can extend beyond the + * boundaries of the target dataspace -- hence the following + * code to manually clip the selection back to the dataspace + * proper. + */ + for (u = 0; u < SS_DR_MAX_RANK; u++) { + start[u] = 0; + stride[u] = edge_size; + count[u] = 1; + block[u] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +} /* test_select_hyper_checker_board_dr__select_checker_board() */ +#endif + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__verify_data(): +** +** Examine the supplied buffer to see if it contains the +** expected data. Return TRUE if it does, and FALSE +** otherwise. +** +** The supplied buffer is presumed to contain the results +** of read or writing a checkerboard selection of an +** n-cube, or a checkerboard selection of an m (1 <= m < n) +** dimensional slice through an n-cube parallel to the +** fastest changing indices. +** +** It is further presumed that the buffer was zeroed before +** the read, and that the n-cube was initialize with the +** natural numbers listed in order from the origin along +** the fastest changing axis. +** +** Thus for a 10x10x10 3-cube, the value stored in location +** (x, y, z) (assuming that z is the fastest changing index +** and x the slowest) is assumed to be: +** +** (10 * 10 * x) + (10 * y) + z +** +** Thus, if the buffer contains the result of reading a +** checker board selection of a 10x10x10 3-cube, location +** (x, y, z) will contain zero if it is not in a checker, +** and 100x + 10y + z if (x, y, z) is in a checker. +** +** If the buffer contains the result of reading a 3 +** dimensional slice (parallel to the three fastest changing +** indices) through an n cube (n > 3), then the expected +** values in the buffer will be the same, save that we will +** add a constant determined by the origin of the 3-cube +** in the n-cube. +** +** Finally, the function presumes that the first element +** of the buffer resides either at the origin of either +** a selected or an unselected checker. +** +****************************************************************/ +#if 0 +H5_ATTR_PURE static hbool_t +test_select_hyper_checker_board_dr__verify_data(uint16_t *buf_ptr, unsigned rank, unsigned edge_size, + unsigned checker_edge_size, uint16_t first_expected_val, + hbool_t buf_starts_in_checker) +{ + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint16_t expected_value; + uint16_t *val_ptr; + unsigned i, j, k, l, m; /* to track position in n-cube */ + unsigned v, w, x, y, z; /* to track position in checker */ + const unsigned test_max_rank = 5; /* code changes needed if this is increased */ + + HDassert(buf_ptr != NULL); + HDassert(0 < rank); + HDassert(rank <= test_max_rank); + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(test_max_rank <= SS_DR_MAX_RANK); + + val_ptr = buf_ptr; + expected_value = first_expected_val; + + i = 0; + v = 0; + start_in_checker[0] = buf_starts_in_checker; + do { + if (v >= checker_edge_size) { + start_in_checker[0] = !start_in_checker[0]; + v = 0; + } /* end if */ + + j = 0; + w = 0; + start_in_checker[1] = start_in_checker[0]; + do { + if (w >= checker_edge_size) { + start_in_checker[1] = !start_in_checker[1]; + w = 0; + } /* end if */ + + k = 0; + x = 0; + start_in_checker[2] = start_in_checker[1]; + do { + if (x >= checker_edge_size) { + start_in_checker[2] = !start_in_checker[2]; + x = 0; + } /* end if */ + + l = 0; + y = 0; + start_in_checker[3] = start_in_checker[2]; + do { + if (y >= checker_edge_size) { + start_in_checker[3] = !start_in_checker[3]; + y = 0; + } /* end if */ + + m = 0; + z = 0; + in_checker = start_in_checker[3]; + do { + if (z >= checker_edge_size) { + in_checker = !in_checker; + z = 0; + } /* end if */ + + if (in_checker) { + if (*val_ptr != expected_value) + good_data = FALSE; + } /* end if */ + else { + if (*val_ptr != 0) + good_data = FALSE; + } /* end else */ + + val_ptr++; + expected_value++; + + m++; + z++; + } while ((rank >= (test_max_rank - 4)) && (m < edge_size)); + l++; + y++; + } while ((rank >= (test_max_rank - 3)) && (l < edge_size)); + k++; + x++; + } while ((rank >= (test_max_rank - 2)) && (k < edge_size)); + j++; + w++; + } while ((rank >= (test_max_rank - 1)) && (j < edge_size)); + i++; + v++; + } while ((rank >= test_max_rank) && (i < edge_size)); + + return (good_data); +} /* test_select_hyper_checker_board_dr__verify_data() */ +#endif + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__run_test(): Test H5S +** (dataspace) selection code with checker board source and +** target selections having different ranks but the same +** shape. We have already tested H5Sselect_shape_same in +** isolation, so now we try to do I/O. +** +****************************************************************/ +#if 0 +static void +test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf, + unsigned edge_size, unsigned checker_edge_size, + unsigned chunk_edge_size, unsigned small_rank, + unsigned large_rank, hid_t dset_type, hid_t xfer_plist) +{ + hbool_t data_ok; + hid_t fapl; /* File access property list */ + hid_t fid; /* HDF5 File IDs */ + hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */ + hid_t mem_small_cube_sid; + hid_t file_small_cube_sid; + hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */ + hid_t mem_large_cube_sid; + hid_t file_large_cube_sid; + hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ + hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ + hid_t small_cube_dataset; /* Dataset ID */ + hid_t large_cube_dataset; /* Dataset ID */ + unsigned small_rank_offset; /* Rank offset of slice */ + const unsigned test_max_rank = 5; /* must update code if this changes */ + size_t start_index; /* Offset within buffer to begin inspecting */ + size_t stop_index; /* Offset within buffer to end inspecting */ + uint16_t expected_value; + uint16_t *small_cube_buf_1; + uint16_t *large_cube_buf_1; + uint16_t *ptr_1; + size_t small_cube_size; /* Number of elements in small cube */ + size_t large_cube_size; /* Number of elements in large cube */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t chunk_dims[SS_DR_MAX_RANK]; + hsize_t sel_start[SS_DR_MAX_RANK]; + unsigned u, v, w, x; /* Local index variables */ + size_t s; /* Local index variable */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); + MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n", + small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size)); + + HDassert(edge_size >= 6); + HDassert(checker_edge_size > 0); + HDassert(checker_edge_size <= edge_size); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(small_rank > 0); + HDassert(small_rank < large_rank); + HDassert(large_rank <= test_max_rank); + HDassert(test_max_rank <= SS_DR_MAX_RANK); + + /* Compute cube sizes */ + small_cube_size = large_cube_size = (size_t)1; + for (u = 0; u < large_rank; u++) { + if (u < small_rank) + small_cube_size *= (size_t)edge_size; + + large_cube_size *= (size_t)edge_size; + } /* end for */ + HDassert(large_cube_size < (size_t)(UINT_MAX)); + + small_rank_offset = test_max_rank - small_rank; + HDassert(small_rank_offset >= 1); + + /* also, at present, we use 16 bit values in this test -- + * hence the following assertion. Delete it if we convert + * to 32 bit values. + */ + HDassert(large_cube_size < (size_t)(64 * 1024)); + + /* Allocate & initialize buffers */ + small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); + CHECK_PTR(small_cube_buf_1, "HDcalloc"); + large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); + CHECK_PTR(large_cube_buf_1, "HDcalloc"); + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Use the 'core' VFD for this test */ + ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); + CHECK(ret, FAIL, "H5Pset_fapl_core"); + + /* Create file */ + fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + CHECK(fid, FAIL, "H5Fcreate"); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + /* setup dims: */ + dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size; + + /* Create small cube dataspaces */ + full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(full_small_cube_sid, FAIL, "H5Screate_simple"); + + mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple"); + + file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(file_small_cube_sid, FAIL, "H5Screate_simple"); + + /* Create large cube dataspace */ + full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(full_large_cube_sid, FAIL, "H5Screate_simple"); + + mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); + + file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if (chunk_edge_size > 0) { + chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size; + + small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + } /* end if */ + + /* create the small cube dataset */ + small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, file_small_cube_sid, H5P_DEFAULT, + small_cube_dcpl_id, H5P_DEFAULT); + CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default small dataset DCPL */ + if (small_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(small_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* create the large cube dataset */ + large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT, + large_cube_dcpl_id, H5P_DEFAULT); + CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default large dataset DCPL */ + if (large_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(large_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* write initial data to the on disk datasets */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, + xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, + xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* read initial small cube data from disk and verify that it is as expected. */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank); + + /* read initial large cube data from disk and verify that it is as expected. */ + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank); + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5Sselect_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D slice from the on disk large cube, and + * verifying that the data read is correct. Verify that H5Sselect_shape_same() + * returns true on the memory and file selections. + * + * The first step is to set up the needed checker board selection in the + * in memory small small cube + */ + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + + test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size, + checker_edge_size, small_rank, sel_start); + + /* now read slices from the large, on-disk cube into the small cube. + * Note how we adjust sel_start only in the dimensions peculiar to the + * large cube. + */ + + u = 0; + do { + if (small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if (small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if (small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if (small_rank_offset > 3) + sel_start[3] = x; + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board( + file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); + + /* verify that H5Sselect_shape_same() reports the two + * selections as having the same shape. + */ + check = H5Sselect_shape_same(mem_small_cube_sid, file_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* zero the buffer that we will be using for reading */ + HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); + + /* Read selection from disk */ + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid, + file_large_cube_sid, xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + (x * edge_size)); + + data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank, + edge_size, checker_edge_size, + expected_value, (hbool_t)TRUE); + if (!data_ok) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && + (x < edge_size)); + w++; + } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && + (w < edge_size)); + v++; + } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && + (v < edge_size)); + u++; + } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + /* similarly, read the on disk small cube into slices through the in memory + * large cube, and verify that the correct data (and only the correct data) + * is read. + */ + + /* select a checker board in the file small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size, + checker_edge_size, small_rank, sel_start); + + u = 0; + do { + if (0 < small_rank_offset) + sel_start[0] = u; + + v = 0; + do { + if (1 < small_rank_offset) + sel_start[1] = v; + + w = 0; + do { + if (2 < small_rank_offset) + sel_start[2] = w; + + x = 0; + do { + if (3 < small_rank_offset) + sel_start[3] = x; + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board( + mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); + + /* verify that H5Sselect_shape_same() reports the two + * selections as having the same shape. + */ + check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* zero out the in memory large cube */ + HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); + + /* Read selection from disk */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_small_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that the expected data and only the + * expected data was read. + */ + data_ok = TRUE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + /* verify that the large cube contains only zeros before the slice */ + for (s = 0; s < start_index; s++) { + if (*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + HDassert(s == start_index); + + data_ok &= test_select_hyper_checker_board_dr__verify_data( + ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE); + + ptr_1 += small_cube_size; + s += small_cube_size; + + HDassert(s == stop_index + 1); + + /* verify that the large cube contains only zeros after the slice */ + for (s = stop_index + 1; s < large_cube_size; s++) { + if (*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + if (!data_ok) + TestErrPrintf("large cube read from small cube has bad data! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && + (x < edge_size)); + w++; + } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && + (w < edge_size)); + v++; + } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && + (v < edge_size)); + u++; + } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5Sselect_shape_same() views as being of the same shape. + * + * Start by writing small_rank D slices from the in memory large cube, to + * the the on disk small cube dataset. After each write, read the small + * cube dataset back from disk, and verify that it contains the expected + * data. Verify that H5Sselect_shape_same() returns true on the + * memory and file selections. + */ + + /* select a checker board in the file small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size, + checker_edge_size, small_rank, sel_start); + + u = 0; + do { + if (small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if (small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if (small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if (small_rank_offset > 3) + sel_start[3] = x; + + /* zero out the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, + full_small_cube_sid, xfer_plist, zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board( + mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); + + /* verify that H5Sselect_shape_same() reports the two + * selections as having the same shape. + */ + check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* write the slice from the in memory large cube to the + * on disk small cube + */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_small_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* zero the buffer that we will be using for reading */ + HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); + + /* read the on disk small cube into memory */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, + full_small_cube_sid, xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + (x * edge_size)); + + data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank, + edge_size, checker_edge_size, + expected_value, (hbool_t)TRUE); + if (!data_ok) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && + (x < edge_size)); + w++; + } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && + (w < edge_size)); + v++; + } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && + (v < edge_size)); + u++; + } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + /* Now write checker board selections of the entries in memory + * small cube to slices of the on disk cube. After each write, + * read the on disk large cube * into memory, and verify that + * it contains the expected * data. Verify that + * H5Sselect_shape_same() returns true on the memory and file + * selections. + */ + + /* select a checker board in the in memory small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size, + checker_edge_size, small_rank, sel_start); + + u = 0; + do { + if (small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if (small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if (small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if (small_rank_offset > 3) + sel_start[3] = x; + + /* zero out the on disk cube */ + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, full_large_cube_sid, + full_large_cube_sid, xfer_plist, zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board( + file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); + + /* verify that H5Sselect_shape_same() reports the two + * selections as having the same shape. + */ + check = H5Sselect_shape_same(file_large_cube_sid, mem_small_cube_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* write the checker board selection of the in memory + * small cube to a slice through the on disk large + * cube. + */ + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid, + file_large_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* zero out the in memory large cube */ + HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); + + /* read the on disk large cube into memory */ + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, + full_large_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that the expected data and only the + * expected data was written to the on disk large + * cube. + */ + data_ok = TRUE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + /* verify that the large cube contains only zeros before the slice */ + for (s = 0; s < start_index; s++) { + if (*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + HDassert(s == start_index); + + /* verify that the slice contains the expected data */ + data_ok &= test_select_hyper_checker_board_dr__verify_data( + ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE); + + ptr_1 += small_cube_size; + s += small_cube_size; + + HDassert(s == stop_index + 1); + + /* verify that the large cube contains only zeros after the slice */ + for (s = stop_index + 1; s < large_cube_size; s++) { + if (*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + if (!data_ok) + TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); + + x++; + } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && + (x < edge_size)); + w++; + } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && + (w < edge_size)); + v++; + } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && + (v < edge_size)); + u++; + } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + /* Close memory dataspaces */ + ret = H5Sclose(full_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(full_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(file_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Datasets */ + ret = H5Dclose(small_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + ret = H5Dclose(large_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(small_cube_buf_1); + HDfree(large_cube_buf_1); + +} /* test_select_hyper_checker_board_dr__run_test() */ +#endif +/**************************************************************** +** +** test_select_hyper_checker_board_dr(): Test H5S (dataspace) +** selection code with checkerboard source and target having +** different ranks but the same shape. We have already +** tested H5Sselect_shape_same in isolation, so now we try to do +** I/O. +** +** This is just an initial smoke check, so we will work +** with a slice through a cube only. +** +****************************************************************/ +#if 0 +static void +test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist) +{ + uint16_t *cube_buf; /* Buffer for writing cube data */ + uint16_t *cube_ptr; /* Temporary pointer into cube data */ + uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ + int test_num = 0; + unsigned checker_edge_size = 2; /* Size of checkerboard dimension */ + unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ + unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ + unsigned small_rank; /* Current rank of small dataset */ + unsigned large_rank; /* Current rank of large dataset */ + unsigned max_rank = 5; /* Max. rank to use */ + size_t max_cube_size; /* Max. number of elements in largest cube */ + size_t s; /* Local index variable */ + unsigned u; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n")); + + /* Compute max. cube size */ + max_cube_size = (size_t)1; + for (u = 0; u < max_rank; u++) + max_cube_size *= (size_t)(edge_size + 1); + + /* Allocate cube buffer for writing values */ + cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); + CHECK_PTR(cube_buf, "HDmalloc"); + + /* Initialize the cube buffer */ + cube_ptr = cube_buf; + for (s = 0; s < max_cube_size; s++) + *cube_ptr++ = (uint16_t)s; + + /* Allocate cube buffer for zeroing values on disk */ + zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); + CHECK_PTR(zero_buf, "HDcalloc"); + + for (large_rank = 1; large_rank <= max_rank; large_rank++) { + for (small_rank = 1; small_rank < large_rank; small_rank++) { + chunk_edge_size = 0; + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size, + checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1, + checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + chunk_edge_size = 3; + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size, + checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1, + checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + } /* for loop on small rank */ + } /* for loop on large rank */ + + HDfree(cube_buf); + HDfree(zero_buf); + +} /* test_select_hyper_checker_board_dr() */ +#endif +/**************************************************************** +** +** test_select_hyper_copy(): Test H5S (dataspace) selection code. +** Tests copying hyperslab selections +** +****************************************************************/ +static void +test_select_hyper_copy(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t data1, data2; /* Dataset IDs */ + hid_t sid1, sid2, sid3; /* Dataspace IDs */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + uint16_t *wbuf, /* buffer to write to disk */ + *rbuf, /* 1st buffer read from disk */ + *rbuf2, /* 2nd buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); + + /* Allocate write & read buffers */ + wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf2, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + stride[0] = 2; + stride[1] = 4; + stride[2] = 3; + count[0] = 2; + count[1] = 3; + count[2] = 3; + block[0] = 1; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */ + start[0] = 1; + start[1] = 1; + stride[0] = 5; + stride[1] = 5; + count[0] = 4; + count[1] = 2; + block[0] = 3; + block[1] = 3; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Make a copy of the dataspace to write */ + sid3 = H5Scopy(sid2); + CHECK(sid3, FAIL, "H5Scopy"); + + /* Create a dataset */ + data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(data1, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create another dataset */ + data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(data2, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid3); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 4; + stride[1] = 4; + count[0] = 3; + count[1] = 4; + block[0] = 2; + block[1] = 3; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Make a copy of the dataspace to read */ + sid3 = H5Scopy(sid2); + CHECK(sid3, FAIL, "H5Scopy"); + + /* Read selection from disk */ + ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Read selection from disk */ + ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + if (HDmemcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0) + TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close 2nd memory dataspace */ + ret = H5Sclose(sid3); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(data1); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close Dataset */ + ret = H5Dclose(data2); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); + HDfree(rbuf2); +} /* test_select_hyper_copy() */ + +/**************************************************************** +** +** test_select_point_copy(): Test H5S (dataspace) selection code. +** Tests copying point selections +** +****************************************************************/ +static void +test_select_point_copy(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t data1, data2; /* Dataset IDs */ + hid_t sid1, sid2, sid3; /* Dataspace IDs */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ + hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ + hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ + uint16_t *wbuf, /* buffer to write to disk */ + *rbuf, /* 1st buffer read from disk */ + *rbuf2, /* 2nd buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); + + /* Allocate write & read buffers */ + wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf2, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for disk dataset */ + coord1[0][0] = 0; + coord1[0][1] = 10; + coord1[0][2] = 5; + coord1[1][0] = 1; + coord1[1][1] = 2; + coord1[1][2] = 7; + coord1[2][0] = 2; + coord1[2][1] = 4; + coord1[2][2] = 9; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[3][2] = 11; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[4][2] = 13; + coord1[5][0] = 2; + coord1[5][1] = 12; + coord1[5][2] = 0; + coord1[6][0] = 0; + coord1[6][1] = 14; + coord1[6][2] = 2; + coord1[7][0] = 1; + coord1[7][1] = 0; + coord1[7][2] = 4; + coord1[8][0] = 2; + coord1[8][1] = 1; + coord1[8][2] = 6; + coord1[9][0] = 0; + coord1[9][1] = 3; + coord1[9][2] = 8; + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Select sequence of ten points for write dataset */ + coord2[0][0] = 12; + coord2[0][1] = 3; + coord2[1][0] = 15; + coord2[1][1] = 13; + coord2[2][0] = 7; + coord2[2][1] = 25; + coord2[3][0] = 0; + coord2[3][1] = 6; + coord2[4][0] = 13; + coord2[4][1] = 0; + coord2[5][0] = 24; + coord2[5][1] = 11; + coord2[6][0] = 12; + coord2[6][1] = 21; + coord2[7][0] = 29; + coord2[7][1] = 4; + coord2[8][0] = 8; + coord2[8][1] = 8; + coord2[9][0] = 19; + coord2[9][1] = 17; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Make a copy of the dataspace to write */ + sid3 = H5Scopy(sid2); + CHECK(sid3, FAIL, "H5Scopy"); + + /* Create a dataset */ + data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(data1, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create another dataset */ + data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(data2, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid3); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of points for read dataset */ + coord3[0][0] = 0; + coord3[0][1] = 2; + coord3[1][0] = 4; + coord3[1][1] = 8; + coord3[2][0] = 13; + coord3[2][1] = 13; + coord3[3][0] = 14; + coord3[3][1] = 25; + coord3[4][0] = 7; + coord3[4][1] = 9; + coord3[5][0] = 2; + coord3[5][1] = 0; + coord3[6][0] = 9; + coord3[6][1] = 19; + coord3[7][0] = 1; + coord3[7][1] = 22; + coord3[8][0] = 12; + coord3[8][1] = 21; + coord3[9][0] = 11; + coord3[9][1] = 6; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Make a copy of the dataspace to read */ + sid3 = H5Scopy(sid2); + CHECK(sid3, FAIL, "H5Scopy"); + + /* Read selection from disk */ + ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Read selection from disk */ + ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + if (HDmemcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0) + TestErrPrintf("point values don't match!\n"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close 2nd memory dataspace */ + ret = H5Sclose(sid3); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(data1); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close Dataset */ + ret = H5Dclose(data2); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); + HDfree(rbuf2); +} /* test_select_point_copy() */ + +/**************************************************************** +** +** test_select_hyper_offset(): Test basic H5S (dataspace) selection code. +** Tests hyperslabs of various sizes and dimensionalities with selection +** offsets. +** +****************************************************************/ +static void +test_select_hyper_offset(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + hssize_t offset[SPACE1_RANK]; /* Offset of selection */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + htri_t valid; /* Generic boolean return value */ + H5S_class_t ext_type; /* Extent type */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with Offsets\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Verify extent type */ + ext_type = H5Sget_simple_extent_type(sid1); + VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Check a valid offset */ + offset[0] = -1; + offset[1] = 0; + offset[2] = 0; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Check an invalid offset */ + offset[0] = 10; + offset[1] = 0; + offset[2] = 0; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, FALSE, "H5Sselect_valid"); + + /* Reset offset */ + offset[0] = 0; + offset[1] = 0; + offset[2] = 0; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Select 15x26 hyperslab for memory dataset */ + start[0] = 15; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Choose a valid offset for the memory dataspace */ + offset[0] = -10; + offset[1] = 0; + ret = H5Soffset_simple(sid2, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid2); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < SPACE3_DIM1; i++) { + tbuf = wbuf + ((i + 5) * SPACE2_DIM2); + tbuf2 = rbuf + (i * SPACE3_DIM2); + for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n", + __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_offset() */ + +/**************************************************************** +** +** test_select_hyper_offset2(): Test basic H5S (dataspace) selection code. +** Tests optimized hyperslab I/O with selection offsets. +** +****************************************************************/ +static void +test_select_hyper_offset2(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; + hsize_t start[SPACE7_RANK]; /* Starting location of hyperslab */ + hsize_t count[SPACE7_RANK]; /* Element count of hyperslab */ + hssize_t offset[SPACE7_RANK]; /* Offset of selection */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + htri_t valid; /* Generic boolean return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing More Hyperslab Selection Functions with Offsets\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE7_DIM1 * SPACE7_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++) + for (j = 0; j < SPACE7_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 4x10 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + count[0] = 4; + count[1] = 10; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Set offset */ + offset[0] = 1; + offset[1] = 0; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Select 4x10 hyperslab for memory dataset */ + start[0] = 1; + start[1] = 0; + count[0] = 4; + count[1] = 10; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Choose a valid offset for the memory dataspace */ + offset[0] = 2; + offset[1] = 0; + ret = H5Soffset_simple(sid2, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid2); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE7_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < 4; i++) { + tbuf = wbuf + ((i + 3) * SPACE7_DIM2); + tbuf2 = rbuf + ((i + 3) * SPACE7_DIM2); + for (j = 0; j < SPACE7_DIM2; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n", + __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_offset2() */ + +/**************************************************************** +** +** test_select_point_offset(): Test basic H5S (dataspace) selection code. +** Tests element selections between dataspaces of various sizes +** and dimensionalities with selection offsets. +** +****************************************************************/ +static void +test_select_point_offset(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ + hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ + hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ + hssize_t offset[SPACE1_RANK]; /* Offset of selection */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + htri_t valid; /* Generic boolean return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Element Selection Functions\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for write buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for disk dataset */ + coord1[0][0] = 0; + coord1[0][1] = 10; + coord1[0][2] = 5; + coord1[1][0] = 1; + coord1[1][1] = 2; + coord1[1][2] = 7; + coord1[2][0] = 2; + coord1[2][1] = 4; + coord1[2][2] = 9; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[3][2] = 11; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[4][2] = 12; + coord1[5][0] = 2; + coord1[5][1] = 12; + coord1[5][2] = 0; + coord1[6][0] = 0; + coord1[6][1] = 14; + coord1[6][2] = 2; + coord1[7][0] = 1; + coord1[7][1] = 0; + coord1[7][2] = 4; + coord1[8][0] = 2; + coord1[8][1] = 1; + coord1[8][2] = 6; + coord1[9][0] = 0; + coord1[9][1] = 3; + coord1[9][2] = 8; + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Check a valid offset */ + offset[0] = 0; + offset[1] = 0; + offset[2] = 1; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Check an invalid offset */ + offset[0] = 10; + offset[1] = 0; + offset[2] = 0; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, FALSE, "H5Sselect_valid"); + + /* Reset offset */ + offset[0] = 0; + offset[1] = 0; + offset[2] = 0; + ret = H5Soffset_simple(sid1, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid1); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Select sequence of ten points for write dataset */ + coord2[0][0] = 12; + coord2[0][1] = 3; + coord2[1][0] = 15; + coord2[1][1] = 13; + coord2[2][0] = 7; + coord2[2][1] = 24; + coord2[3][0] = 0; + coord2[3][1] = 6; + coord2[4][0] = 13; + coord2[4][1] = 0; + coord2[5][0] = 24; + coord2[5][1] = 11; + coord2[6][0] = 12; + coord2[6][1] = 21; + coord2[7][0] = 23; + coord2[7][1] = 4; + coord2[8][0] = 8; + coord2[8][1] = 8; + coord2[9][0] = 19; + coord2[9][1] = 17; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Choose a valid offset for the memory dataspace */ + offset[0] = 5; + offset[1] = 1; + ret = H5Soffset_simple(sid2, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + valid = H5Sselect_valid(sid2); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select sequence of points for read dataset */ + coord3[0][0] = 0; + coord3[0][1] = 2; + coord3[1][0] = 4; + coord3[1][1] = 8; + coord3[2][0] = 13; + coord3[2][1] = 13; + coord3[3][0] = 14; + coord3[3][1] = 25; + coord3[4][0] = 7; + coord3[4][1] = 9; + coord3[5][0] = 2; + coord3[5][1] = 0; + coord3[6][0] = 9; + coord3[6][1] = 19; + coord3[7][0] = 1; + coord3[7][1] = 22; + coord3[8][0] = 12; + coord3[8][1] = 21; + coord3[9][0] = 11; + coord3[9][1] = 6; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < POINT1_NPOINTS; i++) { + tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1]; + tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1]; + if (*tbuf != *tbuf2) + TestErrPrintf("element values don't match!, i=%d\n", i); + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_point_offset() */ + +/**************************************************************** +** +** test_select_hyper_union(): Test basic H5S (dataspace) selection code. +** Tests unions of hyperslabs of various sizes and dimensionalities. +** +****************************************************************/ +static void +test_select_hyper_union(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hid_t xfer; /* Dataset Transfer Property List ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + size_t begin[SPACE2_DIM1] = /* Offset within irregular block */ + {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* First ten rows start at offset 0 */ + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; /* Next eighteen rows start at offset 5 */ + size_t len[SPACE2_DIM1] = /* Len of each row within irregular block */ + {10, 10, 10, 10, 10, 10, 10, 10, /* First eight rows are 10 long */ + 20, 20, /* Next two rows are 20 long */ + 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; /* Next eighteen rows are 15 long */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + hssize_t npoints; /* Number of elements in selection */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Test simple case of one block overlapping another */ + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid1); + VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints"); + + /* Select 8x26 hyperslab for memory dataset */ + start[0] = 15; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 8; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union overlapping 8x26 hyperslab for memory dataset (to form a 15x26 selection) */ + start[0] = 22; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 8; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < SPACE3_DIM1; i++) { + tbuf = wbuf + ((i + 15) * SPACE2_DIM2); + tbuf2 = rbuf + (i * SPACE3_DIM2); + for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Test simple case of several block overlapping another */ + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 8x15 hyperslab for memory dataset */ + start[0] = 15; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 8; + count[1] = 15; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union overlapping 8x15 hyperslab for memory dataset (to form a 15x15 selection) */ + start[0] = 22; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 8; + count[1] = 15; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union overlapping 15x15 hyperslab for memory dataset (to form a 15x26 selection) */ + start[0] = 15; + start[1] = 11; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 15; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < SPACE3_DIM1; i++) { + tbuf = wbuf + ((i + 15) * SPACE2_DIM2); + tbuf2 = rbuf + (i * SPACE3_DIM2); + for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Test disjoint case of two non-overlapping blocks */ + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 7x26 hyperslab for memory dataset */ + start[0] = 1; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 7; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */ + start[0] = 22; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 8; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0; i < SPACE3_DIM1; i++) { + /* Jump over gap in middle */ + if (i < 7) + tbuf = wbuf + ((i + 1) * SPACE2_DIM2); + else + tbuf = wbuf + ((i + 15) * SPACE2_DIM2); + tbuf2 = rbuf + (i * SPACE3_DIM2); + for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Test disjoint case of two non-overlapping blocks with hyperslab caching turned off */ + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 7x26 hyperslab for memory dataset */ + start[0] = 1; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 7; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */ + start[0] = 22; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 8; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + xfer = H5Pcreate(H5P_DATASET_XFER); + CHECK(xfer, FAIL, "H5Pcreate"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Close transfer property list */ + ret = H5Pclose(xfer); + CHECK(ret, FAIL, "H5Pclose"); + + /* Compare data read with data written out */ + for (i = 0; i < SPACE3_DIM1; i++) { + /* Jump over gap in middle */ + if (i < 7) + tbuf = wbuf + ((i + 1) * SPACE2_DIM2); + else + tbuf = wbuf + ((i + 15) * SPACE2_DIM2); + tbuf2 = rbuf + (i * SPACE3_DIM2); + for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Test case of two blocks which overlap corners and must be split */ + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 10x10 hyperslab for memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */ + start[0] = 8; + start[1] = 5; + stride[0] = 1; + stride[1] = 1; + count[0] = 20; + count[1] = 15; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0, tbuf2 = rbuf; i < SPACE2_DIM1; i++) { + tbuf = wbuf + (i * SPACE2_DIM2) + begin[i]; + for (j = 0; j < (int)len[i]; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_union() */ + +/**************************************************************** +** +** test_select_hyper_union_stagger(): Test basic H5S (dataspace) selection code. +** Tests unions of staggered hyperslabs. (Uses H5Scombine_hyperslab +** and H5Smodify_select instead of H5Sselect_hyperslab) +** +****************************************************************/ +static void +test_select_hyper_union_stagger(void) +{ + hid_t file_id; /* File ID */ + hid_t dset_id; /* Dataset ID */ + hid_t dataspace; /* File dataspace ID */ + hid_t memspace; /* Memory dataspace ID */ + hid_t tmp_space; /* Temporary dataspace ID */ + hid_t tmp2_space; /* Another emporary dataspace ID */ + hsize_t dimsm[2] = {7, 7}; /* Memory array dimensions */ + hsize_t dimsf[2] = {6, 5}; /* File array dimensions */ + hsize_t count[2] = {3, 1}; /* 1st Hyperslab size */ + hsize_t count2[2] = {3, 1}; /* 2nd Hyperslab size */ + hsize_t count3[2] = {2, 1}; /* 3rd Hyperslab size */ + hsize_t start[2] = {0, 0}; /* 1st Hyperslab offset */ + hsize_t start2[2] = {2, 1}; /* 2nd Hyperslab offset */ + hsize_t start3[2] = {4, 2}; /* 3rd Hyperslab offset */ + hsize_t count_out[2] = {4, 2}; /* Hyperslab size in memory */ + hsize_t start_out[2] = {0, 3}; /* Hyperslab offset in memory */ + int data[6][5]; /* Data to write */ + int data_out[7][7]; /* Data read in */ + int input_loc[8][2] = {{0, 0}, {1, 0}, {2, 0}, {2, 1}, {3, 1}, {4, 1}, {4, 2}, {5, 2}}; + int output_loc[8][2] = {{0, 3}, {0, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 3}, {3, 4}}; + int dsetrank = 2; /* File Dataset rank */ + int memrank = 2; /* Memory Dataset rank */ + int i, j; /* Local counting variables */ + herr_t error; + hsize_t stride[2] = {1, 1}; + hsize_t block[2] = {1, 1}; + + /* Initialize data to write */ + for (i = 0; i < 6; i++) + for (j = 0; j < 5; j++) + data[i][j] = j * 10 + i; + + /* Create file */ + file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(file_id, FAIL, "H5Fcreate"); + + /* Create File Dataspace */ + dataspace = H5Screate_simple(dsetrank, dimsf, NULL); + CHECK(dataspace, FAIL, "H5Screate_simple"); + + /* Create File Dataset */ + dset_id = + H5Dcreate2(file_id, "IntArray", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dset_id, FAIL, "H5Dcreate2"); + + /* Write File Dataset */ + error = H5Dwrite(dset_id, H5T_NATIVE_INT, dataspace, dataspace, H5P_DEFAULT, data); + CHECK(error, FAIL, "H5Dwrite"); + + /* Close things */ + error = H5Sclose(dataspace); + CHECK(error, FAIL, "H5Sclose"); + error = H5Dclose(dset_id); + CHECK(error, FAIL, "H5Dclose"); + error = H5Fclose(file_id); + CHECK(error, FAIL, "H5Fclose"); + + /* Initialize input buffer */ + HDmemset(data_out, 0, 7 * 7 * sizeof(int)); + + /* Open file */ + file_id = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT); + CHECK(file_id, FAIL, "H5Fopen"); + + /* Open dataset */ + dset_id = H5Dopen2(file_id, "IntArray", H5P_DEFAULT); + CHECK(dset_id, FAIL, "H5Dopen2"); + + /* Get the dataspace */ + dataspace = H5Dget_space(dset_id); + CHECK(dataspace, FAIL, "H5Dget_space"); + + /* Select the hyperslabs */ + error = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + tmp_space = H5Scombine_hyperslab(dataspace, H5S_SELECT_OR, start2, stride, count2, block); + CHECK(tmp_space, FAIL, "H5Scombine_hyperslab"); + + /* Copy the file dataspace and select hyperslab */ + tmp2_space = H5Scopy(dataspace); + CHECK(tmp2_space, FAIL, "H5Scopy"); + error = H5Sselect_hyperslab(tmp2_space, H5S_SELECT_SET, start3, stride, count3, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Combine the copied dataspace with the temporary dataspace */ + error = H5Smodify_select(tmp_space, H5S_SELECT_OR, tmp2_space); + CHECK(error, FAIL, "H5Smodify_select"); + + /* Create Memory Dataspace */ + memspace = H5Screate_simple(memrank, dimsm, NULL); + CHECK(memspace, FAIL, "H5Screate_simple"); + + /* Select hyperslab in memory */ + error = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, start_out, stride, count_out, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Read File Dataset */ + error = H5Dread(dset_id, H5T_NATIVE_INT, memspace, tmp_space, H5P_DEFAULT, data_out); + CHECK(error, FAIL, "H5Dread"); + + /* Verify input data */ + for (i = 0; i < 8; i++) { + if (data[input_loc[i][0]][input_loc[i][1]] != data_out[output_loc[i][0]][output_loc[i][1]]) { + HDprintf("input data #%d is wrong!\n", i); + HDprintf("input_loc=[%d][%d]\n", input_loc[i][0], input_loc[i][1]); + HDprintf("output_loc=[%d][%d]\n", output_loc[i][0], output_loc[i][1]); + HDprintf("data=%d\n", data[input_loc[i][0]][input_loc[i][1]]); + TestErrPrintf("data_out=%d\n", data_out[output_loc[i][0]][output_loc[i][1]]); + } /* end if */ + } /* end for */ + + /* Close things */ + error = H5Sclose(tmp2_space); + CHECK(error, FAIL, "H5Sclose"); + error = H5Sclose(tmp_space); + CHECK(error, FAIL, "H5Sclose"); + error = H5Sclose(dataspace); + CHECK(error, FAIL, "H5Sclose"); + error = H5Sclose(memspace); + CHECK(error, FAIL, "H5Sclose"); + error = H5Dclose(dset_id); + CHECK(error, FAIL, "H5Dclose"); + error = H5Fclose(file_id); + CHECK(error, FAIL, "H5Fclose"); +} + +/**************************************************************** +** +** test_select_hyper_union_3d(): Test basic H5S (dataspace) selection code. +** Tests unions of hyperslabs in 3-D (Uses H5Scombine_hyperslab +** and H5Scombine_select instead of H5Sselect_hyperslab) +** +****************************************************************/ +static void +test_select_hyper_union_3d(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hid_t tmp_space; /* Temporary Dataspace ID */ + hid_t tmp2_space; /* Another temporary Dataspace ID */ + hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; + hsize_t dims2[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3}; + hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; + hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ + struct row_list { + size_t z; + size_t y; + size_t x; + size_t l; + } rows[] = { + /* Array of x,y,z coordinates & length for each row written from memory */ + {0, 0, 0, 6}, /* 1st face of 3-D object */ + {0, 1, 0, 6}, {0, 2, 0, 6}, {0, 3, 0, 6}, {0, 4, 0, 6}, {1, 0, 0, 6}, /* 2nd face of 3-D object */ + {1, 1, 0, 6}, {1, 2, 0, 6}, {1, 3, 0, 6}, {1, 4, 0, 6}, {2, 0, 0, 6}, /* 3rd face of 3-D object */ + {2, 1, 0, 10}, {2, 2, 0, 10}, {2, 3, 0, 10}, {2, 4, 0, 10}, {2, 5, 2, 8}, + {2, 6, 2, 8}, {3, 0, 0, 6}, /* 4th face of 3-D object */ + {3, 1, 0, 10}, {3, 2, 0, 10}, {3, 3, 0, 10}, {3, 4, 0, 10}, {3, 5, 2, 8}, + {3, 6, 2, 8}, {4, 0, 0, 6}, /* 5th face of 3-D object */ + {4, 1, 0, 10}, {4, 2, 0, 10}, {4, 3, 0, 10}, {4, 4, 0, 10}, {4, 5, 2, 8}, + {4, 6, 2, 8}, {5, 1, 2, 8}, /* 6th face of 3-D object */ + {5, 2, 2, 8}, {5, 3, 2, 8}, {5, 4, 2, 8}, {5, 5, 2, 8}, {5, 6, 2, 8}, + {6, 1, 2, 8}, /* 7th face of 3-D object */ + {6, 2, 2, 8}, {6, 3, 2, 8}, {6, 4, 2, 8}, {6, 5, 2, 8}, {6, 6, 2, 8}, + {7, 1, 2, 8}, /* 8th face of 3-D object */ + {7, 2, 2, 8}, {7, 3, 2, 8}, {7, 4, 2, 8}, {7, 5, 2, 8}, {7, 6, 2, 8}}; + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j, k; /* Counters */ + herr_t ret; /* Generic return value */ + hsize_t npoints; /* Number of elements in selection */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of 3-D hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE3_DIM1 * SPACE3_DIM2); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++) + for (j = 0; j < SPACE4_DIM2; j++) + for (k = 0; k < SPACE4_DIM3; k++) + *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Test case of two blocks which overlap corners and must be split */ + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE4_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 2x15x13 hyperslab for disk dataset */ + start[0] = 1; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 2; + count[1] = 15; + count[2] = 13; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select 5x5x6 hyperslab for memory dataset */ + start[0] = 0; + start[1] = 0; + start[2] = 0; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 5; + count[1] = 5; + count[2] = 6; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */ + start[0] = 2; + start[1] = 1; + start[2] = 2; + stride[0] = 1; + stride[1] = 1; + stride[2] = 1; + count[0] = 6; + count[1] = 6; + count[2] = 8; + block[0] = 1; + block[1] = 1; + block[2] = 1; + tmp_space = H5Scombine_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(tmp_space, FAIL, "H5Sselect_hyperslab"); + + /* Combine dataspaces and create new dataspace */ + tmp2_space = H5Scombine_select(sid2, H5S_SELECT_OR, tmp_space); + CHECK(tmp2_space, FAIL, "H5Scombin_select"); + + npoints = (hsize_t)H5Sget_select_npoints(tmp2_space); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, tmp2_space, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close temporary dataspaces */ + ret = H5Sclose(tmp_space); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(tmp2_space); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 15x26 hyperslab for reading memory dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 15; + count[1] = 26; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Compare data read with data written out */ + for (i = 0, tbuf2 = rbuf; i < (int)(sizeof(rows) / sizeof(struct row_list)); i++) { + tbuf = wbuf + (rows[i].z * SPACE4_DIM3 * SPACE4_DIM2) + (rows[i].y * SPACE4_DIM3) + rows[i].x; + for (j = 0; j < (int)rows[i].l; j++, tbuf++, tbuf2++) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + } /* end for */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_union_3d() */ + +/**************************************************************** +** +** test_select_hyper_valid_combination(): Tests invalid and valid +** combinations of selections on dataspace for H5Scombine_select +** and H5Smodify_select. +** +****************************************************************/ +static void +test_select_hyper_valid_combination(void) +{ + hid_t single_pt_sid; /* Dataspace ID with single point selection */ + hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */ + hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */ + hid_t non_existent_sid = -1; /* A non-existent space id */ + hid_t tmp_sid; /* Temporary dataspace ID */ + hsize_t dims2D[] = {SPACE9_DIM1, SPACE9_DIM2}; + hsize_t dims3D[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3}; + + hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */ + hsize_t start[SPACE4_RANK]; /* Hyperslab start */ + hsize_t stride[SPACE4_RANK]; /* Hyperslab stride */ + hsize_t count[SPACE4_RANK]; /* Hyperslab block count */ + hsize_t block[SPACE4_RANK]; /* Hyperslab block size */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Selection Combination Validity\n")); + HDassert(SPACE9_DIM2 >= POINT1_NPOINTS); + + /* Create dataspace for single point selection */ + single_pt_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL); + CHECK(single_pt_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for multiple point selection */ + coord1[0][0] = 2; + coord1[0][1] = 2; + ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create dataspace for single hyperslab selection */ + single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL); + CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for single hyperslab selection */ + start[0] = 1; + start[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = (SPACE9_DIM1 - 2); + block[1] = (SPACE9_DIM2 - 2); + ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for regular hyperslab selection */ + regular_hyper_sid = H5Screate_simple(SPACE4_RANK, dims3D, NULL); + CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); + + /* Select regular, strided hyperslab selection */ + start[0] = 2; + start[1] = 2; + start[2] = 2; + stride[0] = 2; + stride[1] = 2; + stride[2] = 2; + count[0] = 5; + count[1] = 2; + count[2] = 5; + block[0] = 1; + block[1] = 1; + block[2] = 1; + ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Test all the selections created */ + + /* Test the invalid combinations between point and hyperslab */ + H5E_BEGIN_TRY + { + tmp_sid = H5Scombine_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Scombine_select"); + + H5E_BEGIN_TRY + { + tmp_sid = H5Smodify_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Smodify_select"); + + /* Test the invalid combination between two hyperslab but of different dimension size */ + H5E_BEGIN_TRY + { + tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Scombine_select"); + + H5E_BEGIN_TRY + { + tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Smodify_select"); + + /* Test invalid operation inputs to the two functions */ + H5E_BEGIN_TRY + { + tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Scombine_select"); + + H5E_BEGIN_TRY + { + tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Smodify_select"); + + /* Test inputs in case of non-existent space ids */ + H5E_BEGIN_TRY + { + tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Scombine_select"); + + H5E_BEGIN_TRY + { + tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid); + } + H5E_END_TRY; + VERIFY(tmp_sid, FAIL, "H5Smodify_select"); + + /* Close dataspaces */ + ret = H5Sclose(single_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(regular_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_select_hyper_valid_combination() */ + +/**************************************************************** +** +** test_select_hyper_and_2d(): Test basic H5S (dataspace) selection code. +** Tests 'and' of hyperslabs in 2-D +** +****************************************************************/ +static void +test_select_hyper_and_2d(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims2[] = {SPACE2A_DIM1}; + hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + hssize_t npoints; /* Number of elements in selection */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Intersect overlapping 10x10 hyperslab */ + start[0] = 5; + start[1] = 5; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid1); + VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); + + /* Select 25 hyperslab for memory dataset */ + start[0] = 0; + stride[0] = 1; + count[0] = 25; + block[0] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read entire dataset from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Initialize write buffer */ + for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { + if ((i >= 5 && i <= 9) && (j >= 5 && j <= 9)) { + if (*tbuf != *tbuf2) + HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, + i, j, (int)*tbuf, (int)*tbuf2); + tbuf2++; + } /* end if */ + else { + if (*tbuf != 0) + HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, + (int)*tbuf); + } /* end else */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_and_2d() */ + +/**************************************************************** +** +** test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code. +** Tests 'xor' of hyperslabs in 2-D +** +****************************************************************/ +static void +test_select_hyper_xor_2d(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims2[] = {SPACE2A_DIM1}; + hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + hssize_t npoints; /* Number of elements in selection */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Intersect overlapping 10x10 hyperslab */ + start[0] = 5; + start[1] = 5; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_XOR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid1); + VERIFY(npoints, 150, "H5Sget_select_npoints"); + + /* Select 25 hyperslab for memory dataset */ + start[0] = 0; + stride[0] = 1; + count[0] = 150; + block[0] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 150, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read entire dataset from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Initialize write buffer */ + for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { + if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || + ((i >= 5 && i <= 9) && ((j >= 0 && j <= 4) || (j >= 10 && j <= 14))) || + ((i >= 10 && i <= 14) && (j >= 5 && j <= 14))) { + if (*tbuf != *tbuf2) + HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, + i, j, (int)*tbuf, (int)*tbuf2); + tbuf2++; + } /* end if */ + else { + if (*tbuf != 0) + HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, + (int)*tbuf); + } /* end else */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_xor_2d() */ + +/**************************************************************** +** +** test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code. +** Tests 'notb' of hyperslabs in 2-D +** +****************************************************************/ +static void +test_select_hyper_notb_2d(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims2[] = {SPACE2A_DIM1}; + hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + hssize_t npoints; /* Number of elements in selection */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Intersect overlapping 10x10 hyperslab */ + start[0] = 5; + start[1] = 5; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTB, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid1); + VERIFY(npoints, 75, "H5Sget_select_npoints"); + + /* Select 75 hyperslab for memory dataset */ + start[0] = 0; + stride[0] = 1; + count[0] = 75; + block[0] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 75, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read entire dataset from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Initialize write buffer */ + for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { + if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || ((i >= 5 && i <= 9) && (j >= 0 && j <= 4))) { + if (*tbuf != *tbuf2) + HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, + i, j, (int)*tbuf, (int)*tbuf2); + tbuf2++; + } /* end if */ + else { + if (*tbuf != 0) + HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, + (int)*tbuf); + } /* end else */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_notb_2d() */ + +/**************************************************************** +** +** test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code. +** Tests 'nota' of hyperslabs in 2-D +** +****************************************************************/ +static void +test_select_hyper_nota_2d(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; + hsize_t dims2[] = {SPACE2A_DIM1}; + hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ + hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ + hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ + hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf, /* temporary buffer pointer */ + *tbuf2; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + hssize_t npoints; /* Number of elements in selection */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for disk dataset */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Intersect overlapping 10x10 hyperslab */ + start[0] = 5; + start[1] = 5; + stride[0] = 1; + stride[1] = 1; + count[0] = 10; + count[1] = 10; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTA, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid1); + VERIFY(npoints, 75, "H5Sget_select_npoints"); + + /* Select 75 hyperslab for memory dataset */ + start[0] = 0; + stride[0] = 1; + count[0] = 75; + block[0] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints = H5Sget_select_npoints(sid2); + VERIFY(npoints, 75, "H5Sget_select_npoints"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write selection to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read entire dataset from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Initialize write buffer */ + for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) + for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { + if (((i >= 10 && i <= 14) && (j >= 5 && j <= 14)) || + ((i >= 5 && i <= 9) && (j >= 10 && j <= 14))) { + if (*tbuf != *tbuf2) + TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", + __LINE__, i, j, (int)*tbuf, (int)*tbuf2); + tbuf2++; + } /* end if */ + else { + if (*tbuf != 0) + TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, + i, j, (int)*tbuf); + } /* end else */ + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_nota_2d() */ + +/**************************************************************** +** +** test_select_hyper_iter2(): Iterator for checking hyperslab iteration +** +****************************************************************/ +static herr_t +test_select_hyper_iter2(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point, + void *_operator_data) +{ + int *tbuf = (int *)_elem, /* temporary buffer pointer */ + **tbuf2 = (int **)_operator_data; /* temporary buffer handle */ + unsigned u; /* Local counting variable */ + + if (*tbuf != **tbuf2) { + TestErrPrintf("Error in hyperslab iteration!\n"); + HDprintf("location: { "); + for (u = 0; u < ndim; u++) { + HDprintf("%2d", (int)point[u]); + if (u < (ndim - 1)) + HDprintf(", "); + } /* end for */ + HDprintf("}\n"); + HDprintf("*tbuf=%d, **tbuf2=%d\n", *tbuf, **tbuf2); + return (-1); + } /* end if */ + else { + (*tbuf2)++; + return (0); + } +} /* end test_select_hyper_iter2() */ + +/**************************************************************** +** +** test_select_hyper_union_random_5d(): Test basic H5S (dataspace) selection code. +** Tests random unions of 5-D hyperslabs +** +****************************************************************/ +static void +test_select_hyper_union_random_5d(hid_t read_plist) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE5_DIM1, SPACE5_DIM2, SPACE5_DIM3, SPACE5_DIM4, SPACE5_DIM5}; + hsize_t dims2[] = {SPACE6_DIM1}; + hsize_t start[SPACE5_RANK]; /* Starting location of hyperslab */ + hsize_t count[SPACE5_RANK]; /* Element count of hyperslab */ + int *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j, k, l, m; /* Counters */ + herr_t ret; /* Generic return value */ + hssize_t npoints, /* Number of elements in file selection */ + npoints2; /* Number of elements in memory selection */ + unsigned seed; /* Random number seed for each test */ + unsigned test_num; /* Count of tests being executed */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab Selection Functions with random unions of 5-D hyperslabs\n")); + + /* Allocate write & read buffers */ + wbuf = (int *)HDmalloc(sizeof(int) * SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (int *)HDcalloc(sizeof(int), + (size_t)(SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5)); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE5_DIM1; i++) + for (j = 0; j < SPACE5_DIM2; j++) + for (k = 0; k < SPACE5_DIM3; k++) + for (l = 0; l < SPACE5_DIM4; l++) + for (m = 0; m < SPACE5_DIM5; m++) + *tbuf++ = (int)(((((((i * SPACE5_DIM2) + j) * SPACE5_DIM3) + k) * SPACE5_DIM4) + l) * + SPACE5_DIM5) + + m; + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE5_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Write entire dataset to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Create dataspace for reading buffer */ + sid2 = H5Screate_simple(SPACE6_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Get initial random # seed */ + seed = (unsigned)HDtime(NULL) + (unsigned)HDclock(); + + /* Crunch through a bunch of random hyperslab reads from the file dataset */ + for (test_num = 0; test_num < NRAND_HYPER; test_num++) { + /* Save random # seed for later use */ + /* (Used in case of errors, to regenerate the hyperslab sequence) */ + seed += (unsigned)HDclock(); + HDsrandom(seed); + + for (i = 0; i < NHYPERSLABS; i++) { + /* Select random hyperslab location & size for selection */ + for (j = 0; j < SPACE5_RANK; j++) { + start[j] = ((hsize_t)HDrandom() % dims1[j]); + count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1); + } /* end for */ + + /* Select hyperslab */ + ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count, + NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + if (ret < 0) { + TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed); + break; + } /* end if */ + } /* end for */ + + /* Get the number of elements selected */ + npoints = H5Sget_select_npoints(sid1); + CHECK(npoints, 0, "H5Sget_select_npoints"); + + /* Select linear 1-D hyperslab for memory dataset */ + start[0] = 0; + count[0] = (hsize_t)npoints; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + npoints2 = H5Sget_select_npoints(sid2); + VERIFY(npoints, npoints2, "H5Sget_select_npoints"); + + /* Read selection from disk */ + ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, read_plist, rbuf); + CHECK(ret, FAIL, "H5Dread"); + if (ret < 0) { + TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed); + break; + } /* end if */ + + /* Compare data read with data written out */ + tbuf = rbuf; + ret = H5Diterate(wbuf, H5T_NATIVE_INT, sid1, test_select_hyper_iter2, &tbuf); + if (ret < 0) { + TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed); + break; + } /* end if */ + + /* Set the read buffer back to all zeroes */ + HDmemset(rbuf, 0, (size_t)SPACE6_DIM1); + } /* end for */ + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_union_random_5d() */ + +/**************************************************************** +** +** test_select_hyper_chunk(): Test basic H5S (dataspace) selection code. +** Tests large hyperslab selection in chunked dataset +** +****************************************************************/ +static void +test_select_hyper_chunk(hid_t fapl_plist, hid_t xfer_plist) +{ + hsize_t dimsf[3]; /* dataset dimensions */ + hsize_t chunk_dimsf[3] = {CHUNK_X, CHUNK_Y, CHUNK_Z}; /* chunk sizes */ + short *data; /* data to write */ + short *tmpdata; /* data to write */ + + /* + * Data and output buffer initialization. + */ + hid_t file, dataset; /* handles */ + hid_t dataspace; + hid_t memspace; + hid_t plist; + hsize_t dimsm[3]; /* memory space dimensions */ + hsize_t dims_out[3]; /* dataset dimensions */ + herr_t status; + + short *data_out; /* output buffer */ + short *tmpdata_out; /* output buffer */ + + hsize_t count[3]; /* size of the hyperslab in the file */ + hsize_t offset[3]; /* hyperslab offset in the file */ + hsize_t count_out[3]; /* size of the hyperslab in memory */ + hsize_t offset_out[3]; /* hyperslab offset in memory */ + int i, j, k, status_n, rank; + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Hyperslab I/O on Large Chunks\n")); + + /* Allocate the transfer buffers */ + data = (short *)HDmalloc(sizeof(short) * X * Y * Z); + CHECK_PTR(data, "HDmalloc"); + data_out = (short *)HDcalloc((size_t)(NX * NY * NZ), sizeof(short)); + CHECK_PTR(data_out, "HDcalloc"); + + /* + * Data buffer initialization. + */ + tmpdata = data; + for (j = 0; j < X; j++) + for (i = 0; i < Y; i++) + for (k = 0; k < Z; k++) + *tmpdata++ = (short)((k + 1) % 256); + + /* + * Create a new file using H5F_ACC_TRUNC access, + * the default file creation properties, and the default file + * access properties. + */ + file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_plist); + CHECK(file, FAIL, "H5Fcreate"); + + /* + * Describe the size of the array and create the dataspace for fixed + * size dataset. + */ + dimsf[0] = X; + dimsf[1] = Y; + dimsf[2] = Z; + dataspace = H5Screate_simple(RANK_F, dimsf, NULL); + CHECK(dataspace, FAIL, "H5Screate_simple"); + + /* + * Create a new dataset within the file using defined dataspace and + * chunking properties. + */ + plist = H5Pcreate(H5P_DATASET_CREATE); + CHECK(plist, FAIL, "H5Pcreate"); + status = H5Pset_chunk(plist, RANK_F, chunk_dimsf); + CHECK(status, FAIL, "H5Pset_chunk"); + dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* + * Define hyperslab in the dataset. + */ + offset[0] = 0; + offset[1] = 0; + offset[2] = 0; + count[0] = NX_SUB; + count[1] = NY_SUB; + count[2] = NZ_SUB; + status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL); + CHECK(status, FAIL, "H5Sselect_hyperslab"); + + /* + * Define the memory dataspace. + */ + dimsm[0] = NX; + dimsm[1] = NY; + dimsm[2] = NZ; + memspace = H5Screate_simple(RANK_M, dimsm, NULL); + CHECK(memspace, FAIL, "H5Screate_simple"); + + /* + * Define memory hyperslab. + */ + offset_out[0] = 0; + offset_out[1] = 0; + offset_out[2] = 0; + count_out[0] = NX_SUB; + count_out[1] = NY_SUB; + count_out[2] = NZ_SUB; + status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL); + CHECK(status, FAIL, "H5Sselect_hyperslab"); + + /* + * Write the data to the dataset using hyperslabs + */ + status = H5Dwrite(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data); + CHECK(status, FAIL, "H5Dwrite"); + + /* + * Close/release resources. + */ + status = H5Pclose(plist); + CHECK(status, FAIL, "H5Pclose"); + status = H5Sclose(dataspace); + CHECK(status, FAIL, "H5Sclose"); + status = H5Sclose(memspace); + CHECK(status, FAIL, "H5Sclose"); + status = H5Dclose(dataset); + CHECK(status, FAIL, "H5Dclose"); + status = H5Fclose(file); + CHECK(status, FAIL, "H5Fclose"); + + /************************************************************* + + This reads the hyperslab from the test.h5 file just + created, into a 3-dimensional plane of the 3-dimensional + array. + + ************************************************************/ + + /* + * Open the file and the dataset. + */ + file = H5Fopen(FILENAME, H5F_ACC_RDONLY, fapl_plist); + CHECK(file, FAIL, "H5Fopen"); + dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dopen2"); + + dataspace = H5Dget_space(dataset); /* dataspace handle */ + CHECK(dataspace, FAIL, "H5Dget_space"); + rank = H5Sget_simple_extent_ndims(dataspace); + VERIFY(rank, 3, "H5Sget_simple_extent_ndims"); + status_n = H5Sget_simple_extent_dims(dataspace, dims_out, NULL); + CHECK(status_n, FAIL, "H5Sget_simple_extent_dims"); + VERIFY(dims_out[0], dimsf[0], "Dataset dimensions"); + VERIFY(dims_out[1], dimsf[1], "Dataset dimensions"); + VERIFY(dims_out[2], dimsf[2], "Dataset dimensions"); + + /* + * Define hyperslab in the dataset. + */ + offset[0] = 0; + offset[1] = 0; + offset[2] = 0; + count[0] = NX_SUB; + count[1] = NY_SUB; + count[2] = NZ_SUB; + status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL); + CHECK(status, FAIL, "H5Sselect_hyperslab"); + + /* + * Define the memory dataspace. + */ + dimsm[0] = NX; + dimsm[1] = NY; + dimsm[2] = NZ; + memspace = H5Screate_simple(RANK_M, dimsm, NULL); + CHECK(memspace, FAIL, "H5Screate_simple"); + + /* + * Define memory hyperslab. + */ + offset_out[0] = 0; + offset_out[1] = 0; + offset_out[2] = 0; + count_out[0] = NX_SUB; + count_out[1] = NY_SUB; + count_out[2] = NZ_SUB; + status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL); + CHECK(status, FAIL, "H5Sselect_hyperslab"); + + /* + * Read data from hyperslab in the file into the hyperslab in + * memory and display. + */ + status = H5Dread(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data_out); + CHECK(status, FAIL, "H5Dread"); + + /* Compare data written with data read in */ + tmpdata = data; + tmpdata_out = data_out; + for (j = 0; j < X; j++) + for (i = 0; i < Y; i++) + for (k = 0; k < Z; k++, tmpdata++, tmpdata_out++) { + if (*tmpdata != *tmpdata_out) + TestErrPrintf("Line %d: Error! j=%d, i=%d, k=%d, *tmpdata=%x, *tmpdata_out=%x\n", + __LINE__, j, i, k, (unsigned)*tmpdata, (unsigned)*tmpdata_out); + } /* end for */ + + /* + * Close and release resources. + */ + status = H5Dclose(dataset); + CHECK(status, FAIL, "H5Dclose"); + status = H5Sclose(dataspace); + CHECK(status, FAIL, "H5Sclose"); + status = H5Sclose(memspace); + CHECK(status, FAIL, "H5Sclose"); + status = H5Fclose(file); + CHECK(status, FAIL, "H5Fclose"); + HDfree(data); + HDfree(data_out); +} /* test_select_hyper_chunk() */ + +/**************************************************************** +** +** test_select_point_chunk(): Test basic H5S (dataspace) selection code. +** Tests combinations of hyperslab and point selections on +** chunked datasets. +** +****************************************************************/ +static void +test_select_point_chunk(void) +{ + hsize_t dimsf[SPACE7_RANK]; /* dataset dimensions */ + hsize_t chunk_dimsf[SPACE7_RANK] = {SPACE7_CHUNK_DIM1, SPACE7_CHUNK_DIM2}; /* chunk sizes */ + unsigned *data; /* data to write */ + unsigned *tmpdata; /* data to write */ + + /* + * Data and output buffer initialization. + */ + hid_t file, dataset; /* handles */ + hid_t dataspace; + hid_t pnt1_space; /* Dataspace to hold 1st point selection */ + hid_t pnt2_space; /* Dataspace to hold 2nd point selection */ + hid_t hyp1_space; /* Dataspace to hold 1st hyperslab selection */ + hid_t hyp2_space; /* Dataspace to hold 2nd hyperslab selection */ + hid_t dcpl; + herr_t ret; /* Generic return value */ + + unsigned *data_out; /* output buffer */ + + hsize_t start[SPACE7_RANK]; /* hyperslab offset */ + hsize_t count[SPACE7_RANK]; /* size of the hyperslab */ + hsize_t points[SPACE7_NPOINTS][SPACE7_RANK]; /* points for selection */ + unsigned i, j; /* Local index variables */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Point Selections on Chunked Datasets\n")); + + /* Allocate the transfer buffers */ + data = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(data, "HDmalloc"); + data_out = (unsigned *)HDcalloc((size_t)(SPACE7_DIM1 * SPACE7_DIM2), sizeof(unsigned)); + CHECK_PTR(data_out, "HDcalloc"); + + /* + * Data buffer initialization. + */ + tmpdata = data; + for (i = 0; i < SPACE7_DIM1; i++) + for (j = 0; j < SPACE7_DIM1; j++) + *tmpdata++ = ((i * SPACE7_DIM2) + j) % 256; + + /* + * Create a new file using H5F_ACC_TRUNC access, + * the default file creation properties and file + * access properties. + */ + file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(file, FAIL, "H5Fcreate"); + + /* Create file dataspace */ + dimsf[0] = SPACE7_DIM1; + dimsf[1] = SPACE7_DIM2; + dataspace = H5Screate_simple(SPACE7_RANK, dimsf, NULL); + CHECK(dataspace, FAIL, "H5Screate_simple"); + + /* + * Create a new dataset within the file using defined dataspace and + * chunking properties. + */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + CHECK(dcpl, FAIL, "H5Pcreate"); + ret = H5Pset_chunk(dcpl, SPACE7_RANK, chunk_dimsf); + CHECK(ret, FAIL, "H5Pset_chunk"); + dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Create 1st point selection */ + pnt1_space = H5Scopy(dataspace); + CHECK(pnt1_space, FAIL, "H5Scopy"); + + points[0][0] = 3; + points[0][1] = 3; + points[1][0] = 3; + points[1][1] = 8; + points[2][0] = 8; + points[2][1] = 3; + points[3][0] = 8; + points[3][1] = 8; + points[4][0] = 1; /* In same chunk as point #0, but "earlier" in chunk */ + points[4][1] = 1; + points[5][0] = 1; /* In same chunk as point #1, but "earlier" in chunk */ + points[5][1] = 6; + points[6][0] = 6; /* In same chunk as point #2, but "earlier" in chunk */ + points[6][1] = 1; + points[7][0] = 6; /* In same chunk as point #3, but "earlier" in chunk */ + points[7][1] = 6; + ret = H5Sselect_elements(pnt1_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create 1st hyperslab selection */ + hyp1_space = H5Scopy(dataspace); + CHECK(hyp1_space, FAIL, "H5Scopy"); + + start[0] = 2; + start[1] = 2; + count[0] = 4; + count[1] = 2; + ret = H5Sselect_hyperslab(hyp1_space, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Write out data using 1st point selection for file & hyperslab for memory */ + ret = H5Dwrite(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Create 2nd point selection */ + pnt2_space = H5Scopy(dataspace); + CHECK(pnt2_space, FAIL, "H5Scopy"); + + points[0][0] = 4; + points[0][1] = 4; + points[1][0] = 4; + points[1][1] = 9; + points[2][0] = 9; + points[2][1] = 4; + points[3][0] = 9; + points[3][1] = 9; + points[4][0] = 2; /* In same chunk as point #0, but "earlier" in chunk */ + points[4][1] = 2; + points[5][0] = 2; /* In same chunk as point #1, but "earlier" in chunk */ + points[5][1] = 7; + points[6][0] = 7; /* In same chunk as point #2, but "earlier" in chunk */ + points[6][1] = 2; + points[7][0] = 7; /* In same chunk as point #3, but "earlier" in chunk */ + points[7][1] = 7; + ret = H5Sselect_elements(pnt2_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create 2nd hyperslab selection */ + hyp2_space = H5Scopy(dataspace); + CHECK(hyp2_space, FAIL, "H5Scopy"); + + start[0] = 2; + start[1] = 4; + count[0] = 4; + count[1] = 2; + ret = H5Sselect_hyperslab(hyp2_space, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Write out data using 2nd hyperslab selection for file & point for memory */ + ret = H5Dwrite(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close everything (except selections) */ + ret = H5Pclose(dcpl); + CHECK(ret, FAIL, "H5Pclose"); + ret = H5Sclose(dataspace); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + ret = H5Fclose(file); + CHECK(ret, FAIL, "H5Fclose"); + + /* Re-open file & dataset */ + file = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT); + CHECK(file, FAIL, "H5Fopen"); + dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dopen2"); + + /* Read data using 1st point selection for file and hyperslab for memory */ + ret = H5Dread(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data_out); + CHECK(ret, FAIL, "H5Dread"); + + /* Verify data (later) */ + + /* Read data using 2nd hyperslab selection for file and point for memory */ + ret = H5Dread(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data_out); + CHECK(ret, FAIL, "H5Dread"); + + /* Verify data (later) */ + + /* Close everything (including selections) */ + ret = H5Sclose(pnt1_space); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(pnt2_space); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(hyp1_space); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(hyp2_space); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + ret = H5Fclose(file); + CHECK(ret, FAIL, "H5Fclose"); + + HDfree(data); + HDfree(data_out); +} /* test_select_point_chunk() */ + +/**************************************************************** +** +** test_select_sclar_chunk(): Test basic H5S (dataspace) selection code. +** Tests using a scalar dataspace (in memory) to access chunked datasets. +** +****************************************************************/ +static void +test_select_scalar_chunk(void) +{ + hid_t file_id; /* File ID */ + hid_t dcpl; /* Dataset creation property list */ + hid_t dsid; /* Dataset ID */ + hid_t sid; /* Dataspace ID */ + hid_t m_sid; /* Memory dataspace */ + hsize_t dims[] = {2}; /* Dataset dimensions */ + hsize_t maxdims[] = {H5S_UNLIMITED}; /* Dataset maximum dimensions */ + hsize_t offset[] = {0}; /* Hyperslab start */ + hsize_t count[] = {1}; /* Hyperslab count */ + unsigned data = 2; /* Data to write */ + herr_t ret; + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Scalar Dataspaces and Chunked Datasets\n")); + + file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(file_id, FAIL, "H5Fcreate"); + + dcpl = H5Pcreate(H5P_DATASET_CREATE); + CHECK(dcpl, FAIL, "H5Pcreate"); + + dims[0] = 1024U; + ret = H5Pset_chunk(dcpl, 1, dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + /* Create 1-D dataspace */ + sid = H5Screate_simple(1, dims, maxdims); + CHECK(sid, FAIL, "H5Screate_simple"); + + dsid = H5Dcreate2(file_id, "dset", H5T_NATIVE_UINT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + CHECK(dsid, FAIL, "H5Dcreate2"); + + /* Select scalar area (offset 0, count 1) */ + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create scalar memory dataspace */ + m_sid = H5Screate(H5S_SCALAR); + CHECK(m_sid, FAIL, "H5Screate"); + + /* Write out data using scalar dataspace for memory dataspace */ + ret = H5Dwrite(dsid, H5T_NATIVE_UINT, m_sid, sid, H5P_DEFAULT, &data); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close resources */ + ret = H5Sclose(m_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Dclose(dsid); + CHECK(ret, FAIL, "H5Dclose"); + ret = H5Pclose(dcpl); + CHECK(ret, FAIL, "H5Pclose"); + ret = H5Fclose(file_id); + CHECK(ret, FAIL, "H5Fclose"); +} /* test_select_scalar_chunk() */ + +/**************************************************************** +** +** test_select_valid(): Test basic H5S (dataspace) selection code. +** Tests selection validity +** +****************************************************************/ +static void +test_select_valid(void) +{ + herr_t error; + htri_t valid; + hid_t main_space, sub_space; + hsize_t safe_start[2] = {1, 1}; + hsize_t safe_count[2] = {1, 1}; + hsize_t start[2]; + hsize_t dims[2], maxdims[2], size[2], count[2]; + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Selection Validity\n")); + + MESSAGE(8, ("Case 1 : sub_space is not a valid dataspace\n")); + dims[0] = dims[1] = H5S_UNLIMITED; + + H5E_BEGIN_TRY + { + sub_space = H5Screate_simple(2, dims, NULL); + } + H5E_END_TRY; + VERIFY(sub_space, FAIL, "H5Screate_simple"); + + H5E_BEGIN_TRY + { + valid = H5Sselect_valid(sub_space); + } + H5E_END_TRY; + VERIFY(valid, FAIL, "H5Sselect_valid"); + + /* Set arrays and dataspace for the rest of the cases */ + count[0] = count[1] = 1; + dims[0] = dims[1] = maxdims[0] = maxdims[1] = 10; + + main_space = H5Screate_simple(2, dims, maxdims); + CHECK(main_space, FAIL, "H5Screate_simple"); + + MESSAGE(8, ("Case 2 : sub_space is a valid but closed dataspace\n")); + sub_space = H5Scopy(main_space); + CHECK(sub_space, FAIL, "H5Scopy"); + + error = H5Sclose(sub_space); + CHECK(error, FAIL, "H5Sclose"); + + H5E_BEGIN_TRY + { + valid = H5Sselect_valid(sub_space); + } + H5E_END_TRY; + VERIFY(valid, FAIL, "H5Sselect_valid"); + + MESSAGE(8, ("Case 3 : in the dimensions\nTry offset (4,4) and size(6,6), the original space is of size " + "(10,10)\n")); + start[0] = start[1] = 4; + size[0] = size[1] = 6; + + sub_space = H5Scopy(main_space); + CHECK(sub_space, FAIL, "H5Scopy"); + + error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + valid = H5Sselect_valid(sub_space); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + valid = H5Sselect_valid(sub_space); + VERIFY(valid, TRUE, "H5Sselect_valid"); + + error = H5Sclose(sub_space); + CHECK(error, FAIL, "H5Sclose"); + + MESSAGE(8, ("Case 4 : exceed dimensions by 1\nTry offset (5,5) and size(6,6), the original space is of " + "size (10,10)\n")); + start[0] = start[1] = 5; + size[0] = size[1] = 6; + + sub_space = H5Scopy(main_space); + CHECK(sub_space, FAIL, "H5Scopy"); + + error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + valid = H5Sselect_valid(sub_space); + VERIFY(valid, FALSE, "H5Sselect_valid"); + + error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + valid = H5Sselect_valid(sub_space); + VERIFY(valid, FALSE, "H5Sselect_valid"); + + error = H5Sclose(sub_space); + CHECK(error, FAIL, "H5Sclose"); + + MESSAGE(8, ("Case 5 : exceed dimensions by 2\nTry offset (6,6) and size(6,6), the original space is of " + "size (10,10)\n")); + start[0] = start[1] = 6; + size[0] = size[1] = 6; + + sub_space = H5Scopy(main_space); + CHECK(sub_space, FAIL, "H5Scopy"); + + error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + valid = H5Sselect_valid(sub_space); + VERIFY(valid, FALSE, "H5Sselect_valid"); + + error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + valid = H5Sselect_valid(sub_space); + VERIFY(valid, FALSE, "H5Sselect_valid"); + + error = H5Sclose(sub_space); + CHECK(error, FAIL, "H5Sclose"); + error = H5Sclose(main_space); + CHECK(error, FAIL, "H5Sclose"); +} /* test_select_valid() */ + +/**************************************************************** +** +** test_select_combine(): Test basic H5S (dataspace) selection code. +** Tests combining "all" and "none" selections with hyperslab +** operations. +** +****************************************************************/ +static void +test_select_combine(void) +{ + hid_t base_id; /* Base dataspace for test */ + hid_t all_id; /* Dataspace for "all" selection */ + hid_t none_id; /* Dataspace for "none" selection */ + hid_t space1; /* Temporary dataspace #1 */ + hsize_t start[SPACE7_RANK]; /* Hyperslab start */ + hsize_t stride[SPACE7_RANK]; /* Hyperslab stride */ + hsize_t count[SPACE7_RANK]; /* Hyperslab count */ + hsize_t block[SPACE7_RANK]; /* Hyperslab block */ + hsize_t dims[SPACE7_RANK] = {SPACE7_DIM1, SPACE7_DIM2}; /* Dimensions of dataspace */ + H5S_sel_type sel_type; /* Selection type */ + hssize_t nblocks; /* Number of hyperslab blocks */ + hsize_t blocks[16][2][SPACE7_RANK]; /* List of blocks */ + herr_t error; + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Selection Combinations\n")); + + /* Create dataspace for dataset on disk */ + base_id = H5Screate_simple(SPACE7_RANK, dims, NULL); + CHECK(base_id, FAIL, "H5Screate_simple"); + + /* Copy base dataspace and set selection to "all" */ + all_id = H5Scopy(base_id); + CHECK(all_id, FAIL, "H5Scopy"); + error = H5Sselect_all(all_id); + CHECK(error, FAIL, "H5Sselect_all"); + sel_type = H5Sget_select_type(all_id); + VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); + + /* Copy base dataspace and set selection to "none" */ + none_id = H5Scopy(base_id); + CHECK(none_id, FAIL, "H5Scopy"); + error = H5Sselect_none(none_id); + CHECK(error, FAIL, "H5Sselect_none"); + sel_type = H5Sget_select_type(none_id); + VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); + + /* Copy "all" selection & space */ + space1 = H5Scopy(all_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'OR' "all" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that it's still "all" selection */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "all" selection & space */ + space1 = H5Scopy(all_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'AND' "all" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the same at the original block */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); + + /* Verify that there is only one block */ + nblocks = H5Sget_select_hyper_nblocks(space1); + VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); + + /* Retrieve the block defined */ + HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */ + error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); + CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify that the correct block is defined */ + VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "all" selection & space */ + space1 = H5Scopy(all_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'XOR' "all" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is an inversion of the original block */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); + + /* Verify that there are two blocks */ + nblocks = H5Sget_select_hyper_nblocks(space1); + VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks"); + + /* Retrieve the block defined */ + HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */ + error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); + CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify that the correct block is defined */ + VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "all" selection & space */ + space1 = H5Scopy(all_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'NOTB' "all" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is an inversion of the original block */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); + + /* Verify that there are two blocks */ + nblocks = H5Sget_select_hyper_nblocks(space1); + VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks"); + + /* Retrieve the block defined */ + HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */ + error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); + CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify that the correct block is defined */ + VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "all" selection & space */ + space1 = H5Scopy(all_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'NOTA' "all" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the "none" selection */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "none" selection & space */ + space1 = H5Scopy(none_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'OR' "none" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the same as the original hyperslab */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); + + /* Verify that there is only one block */ + nblocks = H5Sget_select_hyper_nblocks(space1); + VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); + + /* Retrieve the block defined */ + HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */ + error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); + CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify that the correct block is defined */ + VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "none" selection & space */ + space1 = H5Scopy(none_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'AND' "none" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the "none" selection */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "none" selection & space */ + space1 = H5Scopy(none_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'XOR' "none" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the same as the original hyperslab */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); + + /* Verify that there is only one block */ + nblocks = H5Sget_select_hyper_nblocks(space1); + VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); + + /* Retrieve the block defined */ + HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */ + error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); + CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify that the correct block is defined */ + VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "none" selection & space */ + space1 = H5Scopy(none_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'NOTB' "none" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the "none" selection */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Copy "none" selection & space */ + space1 = H5Scopy(none_id); + CHECK(space1, FAIL, "H5Scopy"); + + /* 'NOTA' "none" selection with another hyperslab */ + start[0] = start[1] = 0; + stride[0] = stride[1] = 1; + count[0] = count[1] = 1; + block[0] = block[1] = 5; + error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block); + CHECK(error, FAIL, "H5Sselect_hyperslab"); + + /* Verify that the new selection is the same as the original hyperslab */ + sel_type = H5Sget_select_type(space1); + VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); + + /* Verify that there is only one block */ + nblocks = H5Sget_select_hyper_nblocks(space1); + VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); + + /* Retrieve the block defined */ + HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */ + error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); + CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify that the correct block is defined */ + VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); + VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); + + /* Close temporary dataspace */ + error = H5Sclose(space1); + CHECK(error, FAIL, "H5Sclose"); + + /* Close dataspaces */ + error = H5Sclose(base_id); + CHECK(error, FAIL, "H5Sclose"); + + error = H5Sclose(all_id); + CHECK(error, FAIL, "H5Sclose"); + + error = H5Sclose(none_id); + CHECK(error, FAIL, "H5Sclose"); +} /* test_select_combine() */ + +/* + * Typedef for iteration structure used in the fill value tests + */ +typedef struct { + unsigned short fill_value; /* The fill value to check */ + size_t curr_coord; /* Current coordinate to examine */ + hsize_t *coords; /* Pointer to selection's coordinates */ +} fill_iter_info; + +/**************************************************************** +** +** test_select_hyper_iter3(): Iterator for checking hyperslab iteration +** +****************************************************************/ +static herr_t +test_select_hyper_iter3(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point, + void *_operator_data) +{ + unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */ + fill_iter_info *iter_info = + (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */ + hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/ + + /* Check value in current buffer location */ + if (*tbuf != iter_info->fill_value) + return (-1); + else { + /* Check number of dimensions */ + if (ndim != SPACE7_RANK) + return (-1); + else { + /* Check Coordinates */ + coord_ptr = iter_info->coords + (2 * iter_info->curr_coord); + iter_info->curr_coord++; + if (coord_ptr[0] != point[0]) + return (-1); + else if (coord_ptr[1] != point[1]) + return (-1); + else + return (0); + } /* end else */ + } /* end else */ +} /* end test_select_hyper_iter3() */ + +/**************************************************************** +** +** test_select_fill_all(): Test basic H5S (dataspace) selection code. +** Tests filling "all" selections +** +****************************************************************/ +static void +test_select_fill_all(void) +{ + hid_t sid1; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + unsigned fill_value; /* Fill value */ + fill_iter_info iter_info; /* Iterator information structure */ + hsize_t points[SPACE7_DIM1 * SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */ + unsigned *wbuf, /* buffer to write to disk */ + *tbuf; /* temporary buffer pointer */ + unsigned u, v; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Filling 'all' Selections\n")); + + /* Allocate memory buffer */ + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + + /* Initialize memory buffer */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Space defaults to "all" selection */ + + /* Set fill value */ + fill_value = SPACE7_FILL; + + /* Fill selection in memory */ + ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1); + CHECK(ret, FAIL, "H5Dfill"); + + /* Verify memory buffer the hard way... */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) + if (*tbuf != fill_value) + TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value); + + /* Set the coordinates of the selection */ + for (u = 0; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) { + points[(u * SPACE7_DIM2) + v][0] = u; + points[(u * SPACE7_DIM2) + v][1] = v; + } /* end for */ + + /* Initialize the iterator structure */ + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; + + /* Iterate through selection, verifying correct data */ + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Free memory buffers */ + HDfree(wbuf); +} /* test_select_fill_all() */ + +/**************************************************************** +** +** test_select_fill_point(): Test basic H5S (dataspace) selection code. +** Tests filling "point" selections +** +****************************************************************/ +static void +test_select_fill_point(hssize_t *offset) +{ + hid_t sid1; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ + hsize_t points[5][SPACE7_RANK] = {{2, 4}, {3, 8}, {8, 4}, {7, 5}, {7, 7}}; + size_t num_points = 5; /* Number of points selected */ + int fill_value; /* Fill value */ + fill_iter_info iter_info; /* Iterator information structure */ + unsigned *wbuf, /* buffer to write to disk */ + *tbuf; /* temporary buffer pointer */ + unsigned u, v, w; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Filling 'point' Selections\n")); + + /* Allocate memory buffer */ + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + + /* Initialize memory buffer */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Select "point" selection */ + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points); + CHECK(ret, FAIL, "H5Sselect_elements"); + + if (offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); + + /* Set offset, if provided */ + ret = H5Soffset_simple(sid1, real_offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + } /* end if */ + else + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); + + /* Set fill value */ + fill_value = SPACE7_FILL; + + /* Fill selection in memory */ + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); + CHECK(ret, FAIL, "H5Dfill"); + + /* Verify memory buffer the hard way... */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for (w = 0; w < (unsigned)num_points; w++) { + if (u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) && + v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) { + if (*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, + (unsigned)fill_value); + break; + } /* end if */ + } /* end for */ + if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, + ((u * SPACE7_DIM2) + v)); + } /* end for */ + + /* Initialize the iterator structure */ + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; + + /* Add in the offset */ + for (u = 0; u < (unsigned)num_points; u++) { + points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]); + points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]); + } /* end for */ + + /* Iterate through selection, verifying correct data */ + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Free memory buffers */ + HDfree(wbuf); +} /* test_select_fill_point() */ + +/**************************************************************** +** +** test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code. +** Tests filling "simple" (i.e. one block) hyperslab selections +** +****************************************************************/ +static void +test_select_fill_hyper_simple(hssize_t *offset) +{ + hid_t sid1; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ + hsize_t start[SPACE7_RANK]; /* Hyperslab start */ + hsize_t count[SPACE7_RANK]; /* Hyperslab block size */ + size_t num_points; /* Number of points in selection */ + hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */ + int fill_value; /* Fill value */ + fill_iter_info iter_info; /* Iterator information structure */ + unsigned *wbuf, /* buffer to write to disk */ + *tbuf; /* temporary buffer pointer */ + unsigned u, v; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n")); + + /* Allocate memory buffer */ + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + + /* Initialize memory buffer */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Select "hyperslab" selection */ + start[0] = 3; + start[1] = 3; + count[0] = 4; + count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + if (offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); + + /* Set offset, if provided */ + ret = H5Soffset_simple(sid1, real_offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + } /* end if */ + else + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); + + /* Set fill value */ + fill_value = SPACE7_FILL; + + /* Fill selection in memory */ + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); + CHECK(ret, FAIL, "H5Dfill"); + + /* Verify memory buffer the hard way... */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { + if ((u >= (unsigned)((hssize_t)start[0] + real_offset[0]) && + u < (unsigned)((hssize_t)(start[0] + count[0]) + real_offset[0])) && + (v >= (unsigned)((hssize_t)start[1] + real_offset[1]) && + v < (unsigned)((hssize_t)(start[1] + count[1]) + real_offset[1]))) { + if (*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, + (unsigned)fill_value); + } /* end if */ + else { + if (*tbuf != ((unsigned)(u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, + ((u * SPACE7_DIM2) + v)); + } /* end else */ + } /* end for */ + + /* Initialize the iterator structure */ + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; + + /* Set the coordinates of the selection (with the offset) */ + for (u = 0, num_points = 0; u < (unsigned)count[0]; u++) + for (v = 0; v < (unsigned)count[1]; v++, num_points++) { + points[num_points][0] = (hsize_t)((hssize_t)(u + start[0]) + real_offset[0]); + points[num_points][1] = (hsize_t)((hssize_t)(v + start[1]) + real_offset[1]); + } /* end for */ + + /* Iterate through selection, verifying correct data */ + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Free memory buffers */ + HDfree(wbuf); +} /* test_select_fill_hyper_simple() */ + +/**************************************************************** +** +** test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code. +** Tests filling "regular" (i.e. strided block) hyperslab selections +** +****************************************************************/ +static void +test_select_fill_hyper_regular(hssize_t *offset) +{ + hid_t sid1; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ + hsize_t start[SPACE7_RANK]; /* Hyperslab start */ + hsize_t stride[SPACE7_RANK]; /* Hyperslab stride size */ + hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ + hsize_t block[SPACE7_RANK]; /* Hyperslab block size */ + hsize_t points[16][SPACE7_RANK] = { + {2, 2}, {2, 3}, {2, 6}, {2, 7}, {3, 2}, {3, 3}, {3, 6}, {3, 7}, + {6, 2}, {6, 3}, {6, 6}, {6, 7}, {7, 2}, {7, 3}, {7, 6}, {7, 7}, + }; + size_t num_points = 16; /* Number of points selected */ + int fill_value; /* Fill value */ + fill_iter_info iter_info; /* Iterator information structure */ + unsigned *wbuf, /* buffer to write to disk */ + *tbuf; /* temporary buffer pointer */ + unsigned u, v, w; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n")); + + /* Allocate memory buffer */ + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + + /* Initialize memory buffer */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Select "hyperslab" selection */ + start[0] = 2; + start[1] = 2; + stride[0] = 4; + stride[1] = 4; + count[0] = 2; + count[1] = 2; + block[0] = 2; + block[1] = 2; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + if (offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); + + /* Set offset, if provided */ + ret = H5Soffset_simple(sid1, real_offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + } /* end if */ + else + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); + + /* Set fill value */ + fill_value = SPACE7_FILL; + + /* Fill selection in memory */ + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); + CHECK(ret, FAIL, "H5Dfill"); + + /* Verify memory buffer the hard way... */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for (w = 0; w < (unsigned)num_points; w++) { + if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) && + v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) { + if (*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, + (unsigned)fill_value); + break; + } /* end if */ + } /* end for */ + if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, + ((u * SPACE7_DIM2) + v)); + } /* end for */ + + /* Initialize the iterator structure */ + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; + + /* Add in the offset */ + for (u = 0; u < (unsigned)num_points; u++) { + points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]); + points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]); + } /* end for */ + + /* Iterate through selection, verifying correct data */ + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Free memory buffers */ + HDfree(wbuf); +} /* test_select_fill_hyper_regular() */ + +/**************************************************************** +** +** test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code. +** Tests filling "irregular" (i.e. combined blocks) hyperslab selections +** +****************************************************************/ +static void +test_select_fill_hyper_irregular(hssize_t *offset) +{ + hid_t sid1; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ + hsize_t start[SPACE7_RANK]; /* Hyperslab start */ + hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ + hsize_t points[32][SPACE7_RANK] = { + /* Yes, some of the are duplicated.. */ + {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 4}, + {4, 5}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 4}, {5, 5}, + {5, 6}, {5, 7}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7}, + }; + hsize_t iter_points[28][SPACE7_RANK] = { + /* Coordinates, as iterated through */ + {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, + {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {5, 7}, + {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7}, + }; + size_t num_points = 32; /* Number of points selected */ + size_t num_iter_points = 28; /* Number of resulting points */ + int fill_value; /* Fill value */ + fill_iter_info iter_info; /* Iterator information structure */ + unsigned *wbuf, /* buffer to write to disk */ + *tbuf; /* temporary buffer pointer */ + unsigned u, v, w; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n")); + + /* Allocate memory buffer */ + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + + /* Initialize memory buffer */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; + + /* Create dataspace for dataset on disk */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Select first "hyperslab" selection */ + start[0] = 2; + start[1] = 2; + count[0] = 4; + count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Combine with second "hyperslab" selection */ + start[0] = 4; + start[1] = 4; + count[0] = 4; + count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + if (offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); + + /* Set offset, if provided */ + ret = H5Soffset_simple(sid1, real_offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + } /* end if */ + else + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); + + /* Set fill value */ + fill_value = SPACE7_FILL; + + /* Fill selection in memory */ + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); + CHECK(ret, FAIL, "H5Dfill"); + + /* Verify memory buffer the hard way... */ + for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for (w = 0; w < (unsigned)num_points; w++) { + if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) && + v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) { + if (*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, + (unsigned)fill_value); + break; + } /* end if */ + } /* end for */ + if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, + ((u * SPACE7_DIM2) + v)); + } /* end for */ + + /* Initialize the iterator structure */ + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)iter_points; + + /* Add in the offset */ + for (u = 0; u < (unsigned)num_iter_points; u++) { + iter_points[u][0] = (hsize_t)((hssize_t)iter_points[u][0] + real_offset[0]); + iter_points[u][1] = (hsize_t)((hssize_t)iter_points[u][1] + real_offset[1]); + } /* end for */ + + /* Iterate through selection, verifying correct data */ + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); + CHECK(ret, FAIL, "H5Diterate"); + + /* Close dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Free memory buffers */ + HDfree(wbuf); +} /* test_select_fill_hyper_irregular() */ + +/**************************************************************** +** +** test_select_none(): Test basic H5S (dataspace) selection code. +** Tests I/O on 0-sized point selections +** +****************************************************************/ +static void +test_select_none(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; + hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; + uint8_t *wbuf, /* buffer to write to disk */ + *rbuf, /* buffer to read from disk */ + *tbuf; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing I/O on 0-sized Selections\n")); + + /* Allocate write & read buffers */ + wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize write buffer */ + for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++) + for (j = 0; j < SPACE7_DIM2; j++) + *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Make "none" selection in both disk and memory datasets */ + ret = H5Sselect_none(sid1); + CHECK(ret, FAIL, "H5Sselect_none"); + + ret = H5Sselect_none(sid2); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Attempt to read "nothing" from disk (before space is allocated) */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Write "nothing" to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Write "nothing" to disk (with a datatype conversion :-) */ + ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Write "nothing" to disk (with NULL buffer argument) */ + ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read "nothing" from disk (with NULL buffer argument) */ + ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL); + CHECK(ret, FAIL, "H5Dread"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_none() */ + +/**************************************************************** +** +** test_scalar_select(): Test basic H5S (dataspace) selection code. +** Tests selections on scalar dataspaces +** +****************************************************************/ +static void +test_scalar_select(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; + hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */ + hsize_t start[SPACE7_RANK]; /* Hyperslab start */ + hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ + uint8_t *wbuf_uint8, /* buffer to write to disk */ + rval_uint8, /* value read back in */ + *tbuf_uint8; /* temporary buffer pointer */ + unsigned short *wbuf_ushort, /* another buffer to write to disk */ + rval_ushort, /* value read back in */ + *tbuf_ushort; /* temporary buffer pointer */ + int i, j; /* Counters */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces\n")); + + /* Allocate write & read buffers */ + wbuf_uint8 = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf_uint8, "HDmalloc"); + wbuf_ushort = (unsigned short *)HDmalloc(sizeof(unsigned short) * SPACE7_DIM1 * SPACE7_DIM2); + CHECK_PTR(wbuf_ushort, "HDmalloc"); + + /* Initialize write buffers */ + for (i = 0, tbuf_uint8 = wbuf_uint8, tbuf_ushort = wbuf_ushort; i < SPACE7_DIM1; i++) + for (j = 0; j < SPACE7_DIM2; j++) { + *tbuf_uint8++ = (uint8_t)((i * SPACE7_DIM2) + j); + *tbuf_ushort++ = (unsigned short)((j * SPACE7_DIM2) + i); + } /* end for */ + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate(H5S_SCALAR); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Select one element in memory with a point selection */ + coord1[0] = 0; + coord1[1] = 2; + ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Write single point to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_uint8 != *(wbuf_uint8 + 2)) + TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_uint8, + (unsigned)*(wbuf_uint8 + 2)); + + /* Write single point to disk (with a datatype conversion) */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_ushort != *(wbuf_ushort + 2)) + TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_ushort, + (unsigned)*(wbuf_ushort + 2)); + + /* Select one element in memory with a hyperslab selection */ + start[0] = 4; + start[1] = 3; + count[0] = 1; + count[1] = 1; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Write single hyperslab element to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_uint8 != *(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3)) + TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_uint8, + (unsigned)*(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3)); + + /* Write single hyperslab element to disk (with a datatype conversion) */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_ushort != *(wbuf_ushort + (SPACE7_DIM2 * 4) + 3)) + TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_ushort, + (unsigned)*(wbuf_ushort + (SPACE7_DIM2 * 4) + 3)); + + /* Select no elements in memory & file with "none" selections */ + ret = H5Sselect_none(sid1); + CHECK(ret, FAIL, "H5Sselect_none"); + + ret = H5Sselect_none(sid2); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Write no data to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Write no data to disk (with a datatype conversion) */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(wbuf_uint8); + HDfree(wbuf_ushort); +} /* test_scalar_select() */ + +/**************************************************************** +** +** test_scalar_select2(): Tests selections on scalar dataspace, +** verify H5Sselect_hyperslab and H5Sselect_elements fails for +** scalar dataspace. +** +****************************************************************/ +static void +test_scalar_select2(void) +{ + hid_t sid; /* Dataspace ID */ + hsize_t coord1[1]; /* Coordinates for point selection */ + hsize_t start[1]; /* Hyperslab start */ + hsize_t count[1]; /* Hyperslab block count */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Selections in Scalar Dataspaces\n")); + + /* Create dataspace for dataset */ + sid = H5Screate(H5S_SCALAR); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Select one element in memory with a point selection */ + coord1[0] = 0; + H5E_BEGIN_TRY + { + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sselect_elements"); + + /* Select one element in memory with a hyperslab selection */ + start[0] = 0; + count[0] = 0; + H5E_BEGIN_TRY + { + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select no elements in memory & file with "none" selection */ + ret = H5Sselect_none(sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Select all elements in memory & file with "all" selection */ + ret = H5Sselect_all(sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + /* Close disk dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_scalar_select2() */ + +/**************************************************************** +** +** test_scalar_select3(): Test basic H5S (dataspace) selection code. +** Tests selections on scalar dataspaces in memory +** +****************************************************************/ +static void +test_scalar_select3(void) +{ + hid_t fid1; /* HDF5 File IDs */ + hid_t dataset; /* Dataset ID */ + hid_t sid1, sid2; /* Dataspace ID */ + hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; + hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */ + hsize_t start[SPACE7_RANK]; /* Hyperslab start */ + hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ + uint8_t wval_uint8, /* Value written out */ + rval_uint8; /* Value read in */ + unsigned short wval_ushort, /* Another value written out */ + rval_ushort; /* Another value read in */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces in Memory\n")); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid1 = H5Screate_simple(SPACE7_RANK, dims2, NULL); + CHECK(sid1, FAIL, "H5Screate_simple"); + + /* Create dataspace for writing buffer */ + sid2 = H5Screate(H5S_SCALAR); + CHECK(sid2, FAIL, "H5Screate_simple"); + + /* Create a dataset */ + dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Select one element in file with a point selection */ + coord1[0] = 0; + coord1[1] = 2; + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Write single point to disk */ + wval_uint8 = 12; + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + rval_uint8 = 0; + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_uint8 != wval_uint8) + TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8, + (unsigned)wval_uint8); + + /* Write single point to disk (with a datatype conversion) */ + wval_ushort = 23; + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + rval_ushort = 0; + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_ushort != wval_ushort) + TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort, + (unsigned)wval_ushort); + + /* Select one element in file with a hyperslab selection */ + start[0] = 4; + start[1] = 3; + count[0] = 1; + count[1] = 1; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Write single hyperslab element to disk */ + wval_uint8 = 92; + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + rval_uint8 = 0; + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_uint8 != wval_uint8) + TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8, + (unsigned)wval_uint8); + + /* Write single hyperslab element to disk (with a datatype conversion) */ + wval_ushort = 107; + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Read scalar element from disk */ + rval_ushort = 0; + ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort); + CHECK(ret, FAIL, "H5Dread"); + + /* Check value read back in */ + if (rval_ushort != wval_ushort) + TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort, + (unsigned)wval_ushort); + + /* Select no elements in memory & file with "none" selections */ + ret = H5Sselect_none(sid1); + CHECK(ret, FAIL, "H5Sselect_none"); + + ret = H5Sselect_none(sid2); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Write no data to disk */ + ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Write no data to disk (with a datatype conversion) */ + ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close memory dataspace */ + ret = H5Sclose(sid2); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close disk dataspace */ + ret = H5Sclose(sid1); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Dataset */ + ret = H5Dclose(dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); +} /* test_scalar_select3() */ + +/**************************************************************** +** +** test_shape_same(): Tests selections on dataspace, verify that +** "shape same" routine is working correctly. +** +****************************************************************/ +static void +test_shape_same(void) +{ + hid_t all_sid; /* Dataspace ID with "all" selection */ + hid_t none_sid; /* Dataspace ID with "none" selection */ + hid_t single_pt_sid; /* Dataspace ID with single point selection */ + hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */ + hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */ + hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab + * selection that is the entire dataspace + */ + hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab + * selection that is the same as the single + * point selection + */ + hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */ + hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */ + hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */ + hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */ + hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */ + hid_t tmp_sid; /* Temporary dataspace ID */ + hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2}; + hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */ + hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */ + hsize_t start[SPACE9_RANK]; /* Hyperslab start */ + hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */ + hsize_t count[SPACE9_RANK]; /* Hyperslab block count */ + hsize_t block[SPACE9_RANK]; /* Hyperslab block size */ + unsigned u, v; /* Local index variables */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Same Shape Comparisons\n")); + HDassert(SPACE9_DIM2 >= POINT1_NPOINTS); + + /* Create dataspace for "all" selection */ + all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(all_sid, FAIL, "H5Screate_simple"); + + /* Select entire extent for dataspace */ + ret = H5Sselect_all(all_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + /* Create dataspace for "none" selection */ + none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(none_sid, FAIL, "H5Screate_simple"); + + /* Un-Select entire extent for dataspace */ + ret = H5Sselect_none(none_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Create dataspace for single point selection */ + single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_pt_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for multiple point selection */ + coord1[0][0] = 2; + coord1[0][1] = 2; + ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create dataspace for multiple point selection */ + mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(mult_pt_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for multiple point selection */ + coord2[0][0] = 2; + coord2[0][1] = 2; + coord2[1][0] = 7; + coord2[1][1] = 2; + coord2[2][0] = 1; + coord2[2][1] = 4; + coord2[3][0] = 2; + coord2[3][1] = 6; + coord2[4][0] = 0; + coord2[4][1] = 8; + coord2[5][0] = 3; + coord2[5][1] = 2; + coord2[6][0] = 4; + coord2[6][1] = 4; + coord2[7][0] = 1; + coord2[7][1] = 0; + coord2[8][0] = 5; + coord2[8][1] = 1; + coord2[9][0] = 9; + coord2[9][1] = 3; + ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create dataspace for single hyperslab selection */ + single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for single hyperslab selection */ + start[0] = 1; + start[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = (SPACE9_DIM1 - 2); + block[1] = (SPACE9_DIM2 - 2); + ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for single hyperslab selection with entire extent selected */ + single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple"); + + /* Select entire extent for hyperslab selection */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = SPACE9_DIM1; + block[1] = SPACE9_DIM2; + ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for single hyperslab selection with single point selected */ + single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple"); + + /* Select entire extent for hyperslab selection */ + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for regular hyperslab selection */ + regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); + + /* Select regular, strided hyperslab selection */ + start[0] = 2; + start[1] = 2; + stride[0] = 2; + stride[1] = 2; + count[0] = 5; + count[1] = 2; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for irregular hyperslab selection */ + irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple"); + + /* Create irregular hyperslab selection by OR'ing two blocks together */ + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + start[1] = 4; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 3; + block[1] = 3; + ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for "no" hyperslab selection */ + none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(none_hyper_sid, FAIL, "H5Screate_simple"); + + /* Create "no" hyperslab selection by XOR'ing same blocks together */ + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create scalar dataspace for "all" selection */ + scalar_all_sid = H5Screate(H5S_SCALAR); + CHECK(scalar_all_sid, FAIL, "H5Screate"); + + /* Create scalar dataspace for "none" selection */ + scalar_none_sid = H5Screate(H5S_SCALAR); + CHECK(scalar_none_sid, FAIL, "H5Screate"); + + /* Un-Select entire extent for dataspace */ + ret = H5Sselect_none(scalar_none_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Compare "all" selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(all_sid, all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(all_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(all_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(all_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(all_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(all_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(all_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(all_sid, single_hyper_all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(all_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(all_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(all_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(all_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(all_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(all_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare "none" selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(none_sid, none_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(none_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(none_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(none_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(none_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(none_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(none_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(none_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(none_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(none_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(none_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(none_sid, none_hyper_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(none_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(none_sid, scalar_none_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare single point selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(single_pt_sid, single_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(single_pt_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(single_pt_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(single_pt_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(single_pt_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(single_pt_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, single_hyper_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, scalar_all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(single_pt_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare multiple point selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(mult_pt_sid, mult_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(mult_pt_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(mult_pt_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(mult_pt_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(mult_pt_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(mult_pt_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(mult_pt_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare single "normal" hyperslab selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(single_hyper_sid, single_hyper_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(single_hyper_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(single_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(single_hyper_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(single_hyper_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(single_hyper_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(single_hyper_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + +#ifdef NOT_YET + /* In theory, these two selections are the same shape, but the + * H5Sselect_shape_same() routine is just not this sophisticated yet and it + * would take too much effort to make this work. The worst case is that the + * non-optimized chunk mapping routines will be invoked instead of the more + * optimized routines, so this only hurts performance, not correctness + */ + /* Construct point selection which matches "plain" hyperslab selection */ + /* Create dataspace for point selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of points for point selection */ + for (u = 1; u < (SPACE9_DIM1 - 1); u++) { + for (v = 1; v < (SPACE9_DIM2 - 1); v++) { + coord2[v - 1][0] = u; + coord2[v - 1][1] = v; + } /* end for */ + + ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (SPACE9_DIM2 - 2), coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); +#endif /* NOT_YET */ + + /* Construct hyperslab selection which matches "plain" hyperslab selection */ + /* Create dataspace for hyperslab selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Un-select entire extent */ + ret = H5Sselect_none(tmp_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Select sequence of rows for hyperslab selection */ + for (u = 1; u < (SPACE9_DIM1 - 1); u++) { + start[0] = u; + start[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = (SPACE9_DIM2 - 2); + ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare single "all" hyperslab selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(single_hyper_all_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + +#ifdef NOT_YET + /* In theory, these two selections are the same shape, but the + * H5S_select_shape_same() routine is just not this sophisticated yet and it + * would take too much effort to make this work. The worst case is that the + * non-optimized chunk mapping routines will be invoked instead of the more + * optimized routines, so this only hurts performance, not correctness + */ + /* Construct point selection which matches "all" hyperslab selection */ + /* Create dataspace for point selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of points for point selection */ + for (u = 0; u < SPACE9_DIM1; u++) { + for (v = 0; v < SPACE9_DIM2; v++) { + coord2[v][0] = u; + coord2[v][1] = v; + } /* end for */ + ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, SPACE9_DIM2, coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); +#endif /* NOT_YET */ + + /* Construct hyperslab selection which matches "all" hyperslab selection */ + /* Create dataspace for hyperslab selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Un-select entire extent */ + ret = H5Sselect_none(tmp_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Select sequence of rows for hyperslab selection */ + for (u = 0; u < SPACE9_DIM2; u++) { + start[0] = u; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = SPACE9_DIM2; + ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_all_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare single "point" hyperslab selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(single_hyper_pt_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(single_hyper_pt_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, single_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare regular, strided hyperslab selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(regular_hyper_sid, regular_hyper_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(regular_hyper_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(regular_hyper_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(regular_hyper_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(regular_hyper_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(regular_hyper_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Construct point selection which matches regular, strided hyperslab selection */ + /* Create dataspace for point selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of points for point selection */ + for (u = 2; u < 11; u += 2) { + for (v = 0; v < 2; v++) { + coord2[v][0] = u; + coord2[v][1] = (v * 2) + 2; + } /* end for */ + ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (size_t)2, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Construct hyperslab selection which matches regular, strided hyperslab selection */ + /* Create dataspace for hyperslab selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Un-select entire extent */ + ret = H5Sselect_none(tmp_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Select sequence of rows for hyperslab selection */ + for (u = 2; u < 11; u += 2) { + start[0] = u; + start[1] = 3; + stride[0] = 1; + stride[1] = 2; + count[0] = 1; + count[1] = 2; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Construct regular hyperslab selection with an offset which matches regular, strided hyperslab selection + */ + /* Create dataspace for hyperslab selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + /* Select regular, strided hyperslab selection at an offset */ + start[0] = 1; + start[1] = 1; + stride[0] = 2; + stride[1] = 2; + count[0] = 5; + count[1] = 2; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(regular_hyper_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare irregular hyperslab selection to all the selections created */ + /* Compare against itself */ + check = H5Sselect_shape_same(irreg_hyper_sid, irreg_hyper_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(irreg_hyper_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Construct hyperslab selection which matches irregular hyperslab selection */ + /* Create dataspace for hyperslab selection */ + tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(tmp_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Select sequence of columns for hyperslab selection */ + for (u = 0; u < 3; u++) { + start[0] = 4; + start[1] = u + 4; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 3; + block[1] = 1; + ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* Compare against hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(irreg_hyper_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare scalar "all" dataspace with all selections created */ + + /* Compare against itself */ + check = H5Sselect_shape_same(scalar_all_sid, scalar_all_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(scalar_all_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(scalar_all_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(scalar_all_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(scalar_all_sid, none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(scalar_all_sid, single_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(scalar_all_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, single_hyper_pt_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, none_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against scalar "none" hyperslab selection */ + check = H5Sselect_shape_same(scalar_all_sid, scalar_none_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare scalar "none" dataspace with all selections created */ + + /* Compare against itself */ + check = H5Sselect_shape_same(scalar_none_sid, scalar_none_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against copy of itself */ + tmp_sid = H5Scopy(scalar_none_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); + + check = H5Sselect_shape_same(scalar_none_sid, tmp_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Compare against "all" selection */ + check = H5Sselect_shape_same(scalar_none_sid, all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "none" selection */ + check = H5Sselect_shape_same(scalar_none_sid, none_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against single point selection */ + check = H5Sselect_shape_same(scalar_none_sid, single_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against multiple point selection */ + check = H5Sselect_shape_same(scalar_none_sid, mult_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "plain" single hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, single_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "all" single hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, single_hyper_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "single point" single hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, single_hyper_pt_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against regular, strided hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, regular_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against irregular hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, irreg_hyper_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "no" hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, none_hyper_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Compare against scalar "all" hyperslab selection */ + check = H5Sselect_shape_same(scalar_none_sid, scalar_all_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(all_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(none_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(mult_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_all_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(regular_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(irreg_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(none_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(scalar_all_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(scalar_none_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_shape_same() */ + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_1(): +** +** Create a square, 2-D dataspace (10 X 10), and select +** all of it. +** +** Similarly, create nine, 3-D dataspaces (10 X 10 X 10), +** and select (10 X 10 X 1) hyperslabs in each, three with +** the slab parallel to the xy plane, three parallel to the +** xz plane, and three parallel to the yz plane. +** +** Assuming that z is the fastest changing dimension, +** H5Sselect_shape_same() should return TRUE when comparing +** the full 2-D space against any hyperslab parallel to the +** yz plane in the 3-D space, and FALSE when comparing the +** full 2-D space against the other two hyperslabs. +** +** Also create two additional 3-D dataspaces (10 X 10 X 10), +** and select a (10 X 10 X 2) hyperslab parallel to the yz +** axis in one of them, and two parallel (10 X 10 X 1) hyper +** slabs parallel to the yz axis in the other. +** H5Sselect_shape_same() should return FALSE when comparing +** each to the 2-D selection. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_1(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hid_t small_cube_yz_slice_3_sid; + hid_t small_cube_yz_slice_4_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 1: Slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous plane, but include it anyway, with values large enough */ + /* to ensure that we will only get the single block selected. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 10; /* x */ + block[1] = 10; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 5; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous chunk, but include it anyway, with values large enough */ + /* to ensure that we will only get the single chunk. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 10; /* x */ + block[1] = 1; /* y */ + block[2] = 10; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 4; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous chunk, but include it anyway, with values large enough */ + /* to ensure that we will only get the single chunk. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 10; /* y */ + block[2] = 10; /* z */ + + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + block[0] = 2; + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + block[0] = 1; + ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 6; + ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "xz" selection */ + check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "yz" selection */ + check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_4_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_4_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_1() */ + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_2(): +** +** Create a square, 2-D dataspace (10 X 10), and select +** a "checker board" hyperslab as follows: +** +** * * - - * * - - * * +** * * - - * * - - * * +** - - * * - - * * - - +** - - * * - - * * - - +** * * - - * * - - * * +** * * - - * * - - * * +** - - * * - - * * - - +** - - * * - - * * - - +** * * - - * * - - * * +** * * - - * * - - * * +** +** where asterisks indicate selected elements, and dashes +** indicate unselected elements. +** +** Similarly, create nine, 3-D dataspaces (10 X 10 X 10), +** and select similar (10 X 10 X 1) checker board hyper +** slabs in each, three with the slab parallel to the xy +** plane, three parallel to the xz plane, and three parallel +** to the yz plane. +** +** Assuming that z is the fastest changing dimension, +** H5Sselect_shape_same() should return TRUE when comparing +** the 2-D space checker board selection against a checker +** board hyperslab parallel to the yz plane in the 3-D +** space, and FALSE when comparing the 2-D checkerboard +** selection against two hyperslabs parallel to the xy +** or xz planes. +** +** Also create an additional 3-D dataspaces (10 X 10 X 10), +** and select a checker board parallel with the yz axis, +** save with some squares being on different planes. +** H5Sselect_shape_same() should return FALSE when +** comparing this selection to the 2-D selection. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_2(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hid_t small_cube_yz_slice_3_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + + count[0] = 3; /* x */ + count[1] = 3; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 2; /* y */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + + count[0] = 2; /* x */ + count[1] = 2; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + stride[2] = 20; /* z -- large enough that there will only be one slice */ + + count[0] = 3; /* x */ + count[1] = 3; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 3; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 2; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + stride[2] = 20; /* z -- large enough that there will only be one slice */ + + count[0] = 2; /* x */ + count[1] = 2; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 3; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 20; /* y -- large enough that there will only be one slice */ + stride[2] = 4; /* z */ + + count[0] = 3; /* x */ + count[1] = 1; /* y */ + count[2] = 3; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 5; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 0; /* y */ + start[2] = 2; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 20; /* y -- large enough that there will only be one slice */ + stride[2] = 4; /* z */ + + count[0] = 2; /* x */ + count[1] = 1; /* y */ + count[2] = 2; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 5; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 4; /* y */ + stride[2] = 4; /* z */ + + count[0] = 1; /* x */ + count[1] = 3; /* y */ + count[2] = 3; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 0; /* x */ + start[1] = 2; /* y */ + start[2] = 2; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 4; /* y */ + stride[2] = 4; /* z */ + + count[0] = 1; /* x */ + count[1] = 2; /* y */ + count[2] = 2; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + /* This test gets the right answer, but it fails the shape same + * test in an unexpected point. Bring this up with Quincey, as + * the oddness looks like it is not related to my code. + * -- JRM + */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "xz" selection */ + check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "yz" selection */ + check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_2() */ + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_3(): +** +** Create a square, 2-D dataspace (10 X 10), and select an +** irregular hyperslab as follows: +** +** y +** 9 - - - - - - - - - - +** 8 - - - - - - - - - - +** 7 - - - * * * * - - - +** 6 - - * * * * * - - - +** 5 - - * * - - - - - - +** 4 - - * * - * * - - - +** 3 - - * * - * * - - - +** 2 - - - - - - - - - - +** 1 - - - - - - - - - - +** 0 - - - - - - - - - - +** 0 1 2 3 4 5 6 7 8 9 x +** +** where asterisks indicate selected elements, and dashes +** indicate unselected elements. +** +** Similarly, create nine, 3-D dataspaces (10 X 10 X 10), +** and select similar irregular hyperslabs in each, three +** with the slab parallel to the xy plane, three parallel +** to the xz plane, and three parallel to the yz plane. +** Further, translate the irregular slab in 2/3rds of the +** cases. +** +** Assuming that z is the fastest changing dimension, +** H5Sselect_shape_same() should return TRUE when +** comparing the 2-D irregular hyperslab selection +** against the irregular hyperslab selections parallel +** to the yz plane in the 3-D space, and FALSE when +** comparing it against the irregular hyperslabs +** selections parallel to the xy or xz planes. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_3(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 3; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 2; /* x */ + block[1] = 4; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 6; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 4; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 3; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 3; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 4; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 6; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 4; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 3; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 4; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 5; /* y */ + start[2] = 6; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 4; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* QAK: Start here. + */ + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 8; /* x */ + start[1] = 2; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 4; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; /* x */ + start[1] = 3; /* y */ + start[2] = 6; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 4; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "xz" selection */ + check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Compare against "yz" selection */ + check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_shape_same_dr__smoke_check_3() */ + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_4(): +** +** Create a square, 2-D dataspace (10 X 10), and select +** the entire space. +** +** Similarly, create 3-D and 4-D dataspaces: +** +** (1 X 10 X 10) +** (10 X 1 X 10) +** (10 X 10 X 1) +** (10 X 10 X 10) +** +** (1 X 1 X 10 X 10) +** (1 X 10 X 1 X 10) +** (1 X 10 X 10 X 1) +** (10 X 1 X 1 X 10) +** (10 X 1 X 10 X 1) +** (10 X 10 X 1 X 1) +** (10 X 1 X 10 X 10) +** +** And select these entire spaces as well. +** +** Compare the 2-D space against all the other spaces +** with H5Sselect_shape_same(). The (1 X 10 X 10) & +** (1 X 1 X 10 X 10) should return TRUE. All others +** should return FALSE. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_4(void) +{ + hid_t square_sid; + hid_t three_d_space_0_sid; + hid_t three_d_space_1_sid; + hid_t three_d_space_2_sid; + hid_t three_d_space_3_sid; + hid_t four_d_space_0_sid; + hid_t four_d_space_1_sid; + hid_t four_d_space_2_sid; + hid_t four_d_space_3_sid; + hid_t four_d_space_4_sid; + hid_t four_d_space_5_sid; + hid_t four_d_space_6_sid; + hsize_t dims[] = {10, 10, 10, 10}; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n")); + + /* Create the 10 x 10 dataspace */ + square_sid = H5Screate_simple(2, dims, NULL); + CHECK(square_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 10) dataspace */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 10; + three_d_space_0_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10) dataspace */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + three_d_space_1_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 1) dataspace */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 1; + three_d_space_2_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 10) dataspace */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 10; + three_d_space_3_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 1 X 10 X 10) dataspace */ + dims[0] = 1; + dims[1] = 1; + dims[2] = 10; + dims[3] = 10; + four_d_space_0_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 1 X 10) dataspace */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 1; + dims[3] = 10; + four_d_space_1_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 10 X 1) dataspace */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 10; + dims[3] = 1; + four_d_space_2_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 1 X 10) dataspace */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 1; + dims[3] = 10; + four_d_space_3_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10 X 1) dataspace */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + dims[3] = 1; + four_d_space_4_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 1 X 1) dataspace */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 1; + dims[3] = 1; + four_d_space_5_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10 X 10) dataspace */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + dims[3] = 10; + four_d_space_6_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple"); + + /* setup is done -- run the tests: */ + + check = H5Sselect_shape_same(three_d_space_0_sid, square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(three_d_space_1_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(three_d_space_2_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(three_d_space_3_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_0_sid, square_sid); + VERIFY(check, TRUE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_1_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_2_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_3_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_4_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_5_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + check = H5Sselect_shape_same(four_d_space_6_sid, square_sid); + VERIFY(check, FALSE, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_4_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_5_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_6_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_shape_same_dr__smoke_check_4() */ + +/**************************************************************** +** +** test_shape_same_dr__full_space_vs_slice(): Tests selection +** of a full n-cube dataspace vs an n-dimensional slice of +** of an m-cube (m > n) in a call to H5Sselect_shape_same(). +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5Sselect_shape_same() should always return FALSE if +** they don't). +** +** Per Quincey's suggestion, only test up to 5 dimensional +** spaces. +** +****************************************************************/ +static void +test_shape_same_dr__full_space_vs_slice(int test_num, int small_rank, int large_rank, int offset, + hsize_t edge_size, hbool_t dim_selected[], hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[256]; + int i; + hid_t n_cube_0_sid; /* the fully selected hyper cube */ + hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t start[SS_DR_MAX_RANK]; + hsize_t *start_ptr; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t *stride_ptr; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t *count_ptr; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t *block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert(0 < small_rank); + HDassert(small_rank <= large_rank); + HDassert(large_rank <= SS_DR_MAX_RANK); + HDassert(0 <= offset); + HDassert(offset < large_rank); + HDassert(edge_size > 0); + HDassert(edge_size <= 1000); + + HDsnprintf(test_desc_0, sizeof(test_desc_0), "\tn-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, ("%s", test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + HDsnprintf(test_desc_1, sizeof(test_desc_1), + "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", small_rank, large_rank, offset, + (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], + (int)dim_selected[4]); + MESSAGE(7, ("%s", test_desc_1)); + + /* copy the edge size into the dims array */ + for (i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* set up start, stride, count, and block for the hyperslab selection */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + stride[i] = 2 * edge_size; /* a bit silly in this case */ + count[i] = 1; + if (dim_selected[i]) { + start[i] = 0; + block[i] = edge_size; + } + else { + start[i] = (hsize_t)offset; + block[i] = 1; + } + } + + /* since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert(i >= 0); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + /* select the hyperslab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the test: */ + check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_shape_same_dr__full_space_vs_slice() */ + +/**************************************************************** +** +** test_shape_same_dr__run_full_space_vs_slice_tests(): +** +** Run the test_shape_same_dr__full_space_vs_slice() test +** over a variety of ranks and offsets. +** +** At present, we test H5Sselect_shape_same() with +** fully selected 1, 2, 3, and 4 cubes as one parameter, and +** 1, 2, 3, and 4 dimensional slices through a n-cube of rank +** no more than 5 (and at least the rank of the slice). +** We stop at rank 5, as Quincey suggested that it would be +** sufficient. +** +** All the n-cubes will have lengths of the same size, so +** H5Sselect_shape_same() should return true iff: +** +** 1) the rank for the fully selected n cube equals the +** number of dimensions selected in the slice through the +** m-cube (m >= n). +** +** 2) The dimensions selected in the slice through the m-cube +** are the dimensions with the most quickly changing +** indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_full_space_vs_slice_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + hsize_t edge_size = 10; + + for (large_rank = 1; large_rank <= 5; large_rank++) { + for (small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if (v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if (w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if (x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if (y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if (z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while ((i < small_rank) && expected_result) { + if (!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } + + while ((i < large_rank) && expected_result) { + if (dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } + + /* everything is set up -- run the tests */ + + test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, 0, + edge_size, dim_selected, + expected_result); + + test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, + large_rank / 2, edge_size, + dim_selected, expected_result); + + test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, + large_rank - 1, edge_size, + dim_selected, expected_result); + + z++; + } while ((z < 2) && (large_rank >= 1)); + + y++; + } while ((y < 2) && (large_rank >= 2)); + + x++; + } while ((x < 2) && (large_rank >= 3)); + + w++; + } while ((w < 2) && (large_rank >= 4)); + + v++; + } while ((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ +} /* test_shape_same_dr__run_full_space_vs_slice_tests() */ + +/**************************************************************** +** +** test_shape_same_dr__checkerboard(): Tests selection of a +** "checker board" subset of a full n-cube dataspace vs +** a "checker board" n-dimensional slice of an m-cube (m > n). +** in a call to H5Sselect_shape_same(). +** +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5Sselect_shape_same() should always return FALSE if +** they don't). +** +** Per Quincey's suggestion, only test up to 5 dimensional +** spaces. +** +****************************************************************/ +static void +test_shape_same_dr__checkerboard(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size, + hsize_t checker_size, hbool_t dim_selected[], hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[256]; + int i; + int dims_selected = 0; + hid_t n_cube_0_sid; /* the checker board selected + * hyper cube + */ + hid_t n_cube_1_sid; /* the hyper cube in which a + * checkerboard slice is selected + */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t base_start[2]; + hsize_t start[SS_DR_MAX_RANK]; + hsize_t *start_ptr; + hsize_t base_stride[2]; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t *stride_ptr; + hsize_t base_count[2]; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t *count_ptr; + hsize_t base_block[2]; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t *block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert(0 < small_rank); + HDassert(small_rank <= large_rank); + HDassert(large_rank <= SS_DR_MAX_RANK); + HDassert(0 < checker_size); + HDassert(checker_size <= edge_size); + HDassert(edge_size <= 1000); + HDassert(0 <= offset); + HDassert(offset < (int)edge_size); + + for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) + if (dim_selected[i] == TRUE) + dims_selected++; + + HDassert(dims_selected >= 0); + HDassert(dims_selected <= large_rank); + + HDsnprintf(test_desc_0, sizeof(test_desc_0), + "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", test_num); + MESSAGE(7, ("%s", test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + HDsnprintf(test_desc_1, sizeof(test_desc_1), + "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n", + small_rank, large_rank, (int)edge_size, (int)checker_size, offset, (int)dim_selected[0], + (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4], + dims_selected); + MESSAGE(7, ("%s", test_desc_1)); + + /* copy the edge size into the dims array */ + for (i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Select a "checkerboard" pattern in the small n-cube. + * + * In the 1-D case, the "checkerboard" would look like this: + * + * * * - - * * - - * * + * + * and in the 2-D case, it would look like this: + * + * * * - - * * - - * * + * * * - - * * - - * * + * - - * * - - * * - - + * - - * * - - * * - - + * * * - - * * - - * * + * * * - - * * - - * * + * - - * * - - * * - - + * - - * * - - * * - - + * * * - - * * - - * * + * * * - - * * - - * * + * + * In both cases, asterisks indicate selected elements, + * and dashes indicate unselected elements. + * + * 3-D and 4-D ascii art is somewhat painful, so I'll + * leave those selections to your imagination. :-) + * + * Note, that since the edge_size and checker_size are + * parameters that are passed in, the selection need + * not look exactly like the selection shown above. + * At present, the function allows checker sizes that + * are not even divisors of the edge size -- thus + * something like the following is also possible: + * + * * * * - - - * * * - + * * * * - - - * * * - + * * * * - - - * * * - + * - - - * * * - - - * + * - - - * * * - - - * + * - - - * * * - - - * + * * * * - - - * * * - + * * * * - - - * * * - + * * * * - - - * * * - + * - - - * * * - - - * + * + * As the above pattern can't be selected in one + * call to H5Sselect_hyperslab(), and since the + * values in the start, stride, count, and block + * arrays will be repeated over all entries in + * the selected space case, and over all selected + * dimensions in the selected hyperslab case, we + * compute these values first and store them in + * in the base_start, base_stride, base_count, + * and base_block arrays. + */ + + base_start[0] = 0; + base_start[1] = checker_size; + + base_stride[0] = 2 * checker_size; + base_stride[1] = 2 * checker_size; + + /* Note that the following computation depends on the C99 + * requirement that integer division discard any fraction + * (truncation towards zero) to function correctly. As we + * now require C99, this shouldn't be a problem, but noting + * it may save us some pain if we are ever obliged to support + * pre-C99 compilers again. + */ + + base_count[0] = edge_size / (checker_size * 2); + if ((edge_size % (checker_size * 2)) > 0) + base_count[0]++; + + base_count[1] = (edge_size - checker_size) / (checker_size * 2); + if (((edge_size - checker_size) % (checker_size * 2)) > 0) + base_count[1]++; + + base_block[0] = checker_size; + base_block[1] = checker_size; + + /* now setup start, stride, count, and block arrays for + * the first call to H5Sselect_hyperslab(). + */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = base_start[0]; + stride[i] = base_stride[0]; + count[i] = base_count[0]; + block[i] = base_block[0]; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* if small_rank == 1, or if edge_size == checker_size, we + * are done, as either there is no added dimension in which + * to place offset selected "checkers". + * + * Otherwise, set up start, stride, count and block, and + * make the additional selection. + */ + + if ((small_rank > 1) && (checker_size < edge_size)) { + for (i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = base_start[1]; + stride[i] = base_stride[1]; + count[i] = base_count[1]; + block[i] = base_block[1]; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + + /* Weirdness alert: + * + * Some how, it seems that selections can extend beyond the + * boundaries of the target dataspace -- hence the following + * code to manually clip the selection back to the dataspace + * proper. + */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* Now select the checkerboard selection in the (possibly larger) n-cube. + * + * Since we have already calculated the base start, stride, count, + * and block, re-use the values in setting up start, stride, count, + * and block. + */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + if (dim_selected[i]) { + start[i] = base_start[0]; + stride[i] = base_stride[0]; + count[i] = base_count[0]; + block[i] = base_block[0]; + } /* end if */ + else { + start[i] = (hsize_t)offset; + stride[i] = (hsize_t)(2 * edge_size); + count[i] = 1; + block[i] = 1; + } /* end else */ + } /* end for */ + + /* Since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert(i >= 0); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + /* select the hyperslab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* As before, if the number of dimensions selected is less than or + * equal to 1, or if edge_size == checker_size, we are done, as + * either there is no added dimension in which to place offset selected + * "checkers", or the hyperslab is completely occupied by one + * "checker". + * + * Otherwise, set up start, stride, count and block, and + * make the additional selection. + */ + if ((dims_selected > 1) && (checker_size < edge_size)) { + for (i = 0; i < SS_DR_MAX_RANK; i++) { + if (dim_selected[i]) { + start[i] = base_start[1]; + stride[i] = base_stride[1]; + count[i] = base_count[1]; + block[i] = base_block[1]; + } /* end if */ + else { + start[i] = (hsize_t)offset; + stride[i] = (hsize_t)(2 * edge_size); + count[i] = 1; + block[i] = 1; + } /* end else */ + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + + /* Weirdness alert: + * + * Again, it seems that selections can extend beyond the + * boundaries of the target dataspace -- hence the following + * code to manually clip the selection back to the dataspace + * proper. + */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the test: */ + check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_shape_same_dr__checkerboard() */ + +/**************************************************************** +** +** test_shape_same_dr__run_checkerboard_tests(): +** +** In this set of tests, we test H5Sselect_shape_same() +** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as +** one parameter, and 1, 2, 3, and 4 dimensional checkerboard +** slices through a n-cube of rank no more than 5 (and at +** least the rank of the slice). +** +** All the n-cubes will have lengths of the same size, so +** H5Sselect_shape_same() should return true iff: +** +** 1) the rank of the n cube equals the number of dimensions +** selected in the checker board slice through the m-cube +** (m >= n). +** +** 2) The dimensions selected in the checkerboard slice +** through the m-cube are the dimensions with the most +** quickly changing indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_checkerboard_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + + for (large_rank = 1; large_rank <= 5; large_rank++) { + for (small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if (v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if (w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if (x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if (y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if (z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while ((i < small_rank) && expected_result) { + if (!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while ((i < large_rank) && expected_result) { + if (dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + /* everything is set up -- run the tests */ + + /* run test with edge size 16, checker + * size 1, and a variety of offsets + */ + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 0, + /* edge_size */ 16, + /* checker_size */ 1, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 5, + /* edge_size */ 16, + /* checker_size */ 1, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 15, + /* edge_size */ 16, + /* checker_size */ 1, dim_selected, + expected_result); + + /* run test with edge size 10, checker + * size 2, and a variety of offsets + */ + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 0, + /* edge_size */ 10, + /* checker_size */ 2, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 5, + /* edge_size */ 10, + /* checker_size */ 2, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 9, + /* edge_size */ 10, + /* checker_size */ 2, dim_selected, + expected_result); + + /* run test with edge size 10, checker + * size 3, and a variety of offsets + */ + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 0, + /* edge_size */ 10, + /* checker_size */ 3, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 5, + /* edge_size */ 10, + /* checker_size */ 3, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 9, + /* edge_size */ 10, + /* checker_size */ 3, dim_selected, + expected_result); + + /* run test with edge size 8, checker + * size 8, and a variety of offsets + */ + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 0, + /* edge_size */ 8, + /* checker_size */ 8, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 4, + /* edge_size */ 8, + /* checker_size */ 8, dim_selected, + expected_result); + + test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, + /* offset */ 7, + /* edge_size */ 8, + /* checker_size */ 8, dim_selected, + expected_result); + + z++; + } while ((z < 2) && (large_rank >= 1)); + + y++; + } while ((y < 2) && (large_rank >= 2)); + + x++; + } while ((x < 2) && (large_rank >= 3)); + + w++; + } while ((w < 2) && (large_rank >= 4)); + + v++; + } while ((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ +} /* test_shape_same_dr__run_checkerboard_tests() */ + +/**************************************************************** +** +** test_shape_same_dr__irregular(): +** +** Tests selection of an "irregular" subset of a full +** n-cube dataspace vs an identical "irregular" subset +** of an n-dimensional slice of an m-cube (m > n). +** in a call to H5Sselect_shape_same(). +** +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5Sselect_shape_same() should always return FALSE if +** they don't). +** +****************************************************************/ +static void +test_shape_same_dr__irregular(int test_num, int small_rank, int large_rank, int pattern_offset, + int slice_offset, hbool_t dim_selected[], hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[256]; + int edge_size = 10; + int i; + int j; + int k; + int dims_selected = 0; + hid_t n_cube_0_sid; /* the hyper cube containing + * an irregular selection + */ + hid_t n_cube_1_sid; /* the hyper cube in which a + * slice contains an irregular + * selection. + */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t start_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 5}; + hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_0[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; + hsize_t block_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 3}; + + hsize_t start_1[SS_DR_MAX_RANK] = {2, 2, 2, 5, 2}; + hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_1[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; + hsize_t block_1[SS_DR_MAX_RANK] = {2, 2, 2, 3, 2}; + + hsize_t start_2[SS_DR_MAX_RANK] = {2, 2, 5, 2, 2}; + hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_2[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; + hsize_t block_2[SS_DR_MAX_RANK] = {2, 2, 3, 2, 2}; + + hsize_t start_3[SS_DR_MAX_RANK] = {2, 5, 2, 2, 2}; + hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_3[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; + hsize_t block_3[SS_DR_MAX_RANK] = {2, 3, 2, 2, 2}; + + hsize_t start_4[SS_DR_MAX_RANK] = {5, 2, 2, 2, 2}; + hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_4[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; + hsize_t block_4[SS_DR_MAX_RANK] = {3, 2, 2, 2, 2}; + + hsize_t clip_start[SS_DR_MAX_RANK] = {0, 0, 0, 0, 0}; + hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t clip_count[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; + hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + + hsize_t *(starts[SS_DR_MAX_RANK]) = {start_0, start_1, start_2, start_3, start_4}; + hsize_t *(strides[SS_DR_MAX_RANK]) = {stride_0, stride_1, stride_2, stride_3, stride_4}; + hsize_t *(counts[SS_DR_MAX_RANK]) = {count_0, count_1, count_2, count_3, count_4}; + hsize_t *(blocks[SS_DR_MAX_RANK]) = {block_0, block_1, block_2, block_3, block_4}; + + hsize_t start[SS_DR_MAX_RANK]; + hsize_t *start_ptr; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t *stride_ptr; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t *count_ptr; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t *block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert(0 < small_rank); + HDassert(small_rank <= large_rank); + HDassert(large_rank <= SS_DR_MAX_RANK); + HDassert(9 <= edge_size); + HDassert(edge_size <= 1000); + HDassert(0 <= slice_offset); + HDassert(slice_offset < edge_size); + HDassert(-2 <= pattern_offset); + HDassert(pattern_offset <= 2); + + for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) + if (dim_selected[i] == TRUE) + dims_selected++; + + HDassert(dims_selected >= 0); + HDassert(dims_selected <= large_rank); + + HDsnprintf(test_desc_0, sizeof(test_desc_0), + "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", test_num); + MESSAGE(7, ("%s", test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + HDsnprintf(test_desc_1, sizeof(test_desc_1), + "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank, + large_rank, edge_size, slice_offset, pattern_offset, (int)dim_selected[0], + (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4], + dims_selected); + MESSAGE(7, ("%s", test_desc_1)); + + /* copy the edge size into the dims array */ + for (i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = (hsize_t)edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Select an "irregular" pattern in the small n-cube. This + * pattern can be though of a set of four 3 x 2 x 2 X 2 + * four dimensional prisims, each parallel to one of the + * axies and none of them intersecting with the other. + * + * In the lesser dimensional cases, this 4D pattern is + * projected onto the lower dimensional space. + * + * In the 1-D case, the projection of the pattern looks + * like this: + * + * - - * * - * * * - - + * 0 1 2 3 4 5 6 7 8 9 x + * + * and in the 2-D case, it would look like this: + * + * + * y + * 9 - - - - - - - - - - + * 8 - - - - - - - - - - + * 7 - - * * - - - - - - + * 6 - - * * - - - - - - + * 5 - - * * - - - - - - + * 4 - - - - - - - - - - + * 3 - - * * - * * * - - + * 2 - - * * - * * * - - + * 1 - - - - - - - - - - + * 0 - - - - - - - - - - + * 0 1 2 3 4 5 6 7 8 9 x + * + * In both cases, asterisks indicate selected elements, + * and dashes indicate unselected elements. + * + * Note that is this case, since the edge size is fixed, + * the pattern does not change. However, we do use the + * displacement parameter to allow it to be moved around + * within the n-cube or hyperslab. + */ + + /* first, ensure that the small n-cube has no selection */ + ret = H5Sselect_none(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* now, select the irregular pattern */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, starts[i], strides[i], counts[i], blocks[i]); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* finally, clip the selection to ensure that it lies fully + * within the n-cube. + */ + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* Ensure that the large n-cube has no selection */ + H5Sselect_none(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert(i >= 0); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + /* Now select the irregular selection in the (possibly larger) n-cube. + * + * Basic idea is to project the pattern used in the smaller n-cube + * onto the dimensions selected in the larger n-cube, with the displacement + * specified. + */ + for (i = 0; i < SS_DR_MAX_RANK; i++) { + j = 0; + for (k = 0; k < SS_DR_MAX_RANK; k++) { + if (dim_selected[k]) { + start[k] = (starts[i])[j] + (hsize_t)pattern_offset; + stride[k] = (strides[i])[j]; + count[k] = (counts[i])[j]; + block[k] = (blocks[i])[j]; + j++; + } /* end if */ + else { + start[k] = (hsize_t)slice_offset; + stride[k] = (hsize_t)(2 * edge_size); + count[k] = 1; + block[k] = 1; + } /* end else */ + } /* end for */ + + /* select the hyperslab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* it is possible that the selection extends beyond the dataspace. + * clip the selection to ensure that it doesn't. + */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the test: */ + check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "H5Sselect_shape_same"); + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_shape_same_dr__irregular() */ + +/**************************************************************** +** +** test_shape_same_dr__run_irregular_tests(): +** +** In this set of tests, we test H5Sselect_shape_same() +** with an "irregular" subselection of 1, 2, 3, and 4 cubes as +** one parameter, and irregular subselections of 1, 2, 3, +** and 4 dimensional slices through a n-cube of rank no more +** than 5 (and at least the rank of the slice) as the other. +** Note that the "irregular" selection may be offset between +** the n-cube and the slice. +** +** All the irregular selections will be identical (modulo rank) +** so H5Sselect_shape_same() should return true iff: +** +** 1) the rank of the n cube equals the number of dimensions +** selected in the irregular slice through the m-cube +** (m >= n). +** +** 2) The dimensions selected in the irregular slice +** through the m-cube are the dimensions with the most +** quickly changing indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_irregular_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + + for (large_rank = 1; large_rank <= 5; large_rank++) { + for (small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if (v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if (w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if (x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if (y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if (z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while ((i < small_rank) && expected_result) { + if (!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while ((i < large_rank) && expected_result) { + if (dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + /* everything is set up -- run the tests */ + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 0, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 4, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 9, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 0, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 6, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 9, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 0, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 5, dim_selected, + expected_result); + + test_shape_same_dr__irregular(test_num++, small_rank, large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 9, dim_selected, + expected_result); + + z++; + } while ((z < 2) && (large_rank >= 1)); + + y++; + } while ((y < 2) && (large_rank >= 2)); + + x++; + } while ((x < 2) && (large_rank >= 3)); + + w++; + } while ((w < 2) && (large_rank >= 4)); + + v++; + } while ((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ +} /* test_shape_same_dr__run_irregular_tests() */ + +/**************************************************************** +** +** test_shape_same_dr(): Tests selections on dataspace with +** different ranks, to verify that "shape same" routine +** is now handling this case correctly. +** +****************************************************************/ +static void +test_shape_same_dr(void) +{ + /* Output message about test being performed */ + MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n")); + + /* first run some smoke checks */ + test_shape_same_dr__smoke_check_1(); + test_shape_same_dr__smoke_check_2(); + test_shape_same_dr__smoke_check_3(); + test_shape_same_dr__smoke_check_4(); + + /* now run more intensive tests. */ + test_shape_same_dr__run_full_space_vs_slice_tests(); + test_shape_same_dr__run_checkerboard_tests(); + test_shape_same_dr__run_irregular_tests(); +} /* test_shape_same_dr() */ + +/**************************************************************** +** +** test_space_rebuild(): Tests selection rebuild routine, +** We will test whether selection in span-tree form can be rebuilt +** into a regular selection. +** +** +****************************************************************/ +static void +test_space_rebuild(void) +{ + /* regular space IDs in span-tree form */ + hid_t sid_reg1, sid_reg2, sid_reg3, sid_reg4, sid_reg5; + + /* Original regular Space IDs */ + hid_t sid_reg_ori1, sid_reg_ori2, sid_reg_ori3, sid_reg_ori4, sid_reg_ori5; + + /* Irregular space IDs */ + hid_t sid_irreg1, sid_irreg2, sid_irreg3, sid_irreg4, sid_irreg5; + + /* rebuild status state */ +#if 0 + H5S_diminfo_valid_t rebuild_stat1, rebuild_stat2; + htri_t rebuild_check; +#endif + herr_t ret; + + /* dimensions of rank 1 to rank 5 */ + hsize_t dims1[] = {SPACERE1_DIM0}; + hsize_t dims2[] = {SPACERE2_DIM0, SPACERE2_DIM1}; + hsize_t dims3[] = {SPACERE3_DIM0, SPACERE3_DIM1, SPACERE3_DIM2}; + hsize_t dims4[] = {SPACERE4_DIM0, SPACERE4_DIM1, SPACERE4_DIM2, SPACERE4_DIM3}; + hsize_t dims5[] = {SPACERE5_DIM0, SPACERE5_DIM1, SPACERE5_DIM2, SPACERE5_DIM3, SPACERE5_DIM4}; + + /* The start of the hyperslab */ + hsize_t start1[SPACERE1_RANK], start2[SPACERE2_RANK], start3[SPACERE3_RANK], start4[SPACERE4_RANK], + start5[SPACERE5_RANK]; + + /* The stride of the hyperslab */ + hsize_t stride1[SPACERE1_RANK], stride2[SPACERE2_RANK], stride3[SPACERE3_RANK], stride4[SPACERE4_RANK], + stride5[SPACERE5_RANK]; + + /* The number of blocks for the hyperslab */ + hsize_t count1[SPACERE1_RANK], count2[SPACERE2_RANK], count3[SPACERE3_RANK], count4[SPACERE4_RANK], + count5[SPACERE5_RANK]; + + /* The size of each block for the hyperslab */ + hsize_t block1[SPACERE1_RANK], block2[SPACERE2_RANK], block3[SPACERE3_RANK], block4[SPACERE4_RANK], + block5[SPACERE5_RANK]; + + /* Declarations for special test of rebuild */ + hid_t sid_spec; + + /* Output message about test being performed */ + MESSAGE(6, ("Testing functionality to rebuild regular hyperslab selection\n")); + + MESSAGE(7, ("Testing functionality to rebuild 1-D hyperslab selection\n")); + + /* Create 1-D dataspace */ + sid_reg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL); + sid_reg_ori1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL); + + /* Build up the original one dimensional regular selection */ + start1[0] = 1; + count1[0] = 3; + stride1[0] = 5; + block1[0] = 4; + ret = H5Sselect_hyperslab(sid_reg_ori1, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Build up one dimensional regular selection with H5_SELECT_OR, + inside HDF5, it will be treated as an irregular selection. */ + + start1[0] = 1; + count1[0] = 2; + stride1[0] = 5; + block1[0] = 4; + ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start1[0] = 11; + count1[0] = 1; + stride1[0] = 5; + block1[0] = 4; + ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_reg1, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 and rebuild_stat2 should be + * H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (ret != FAIL) { + /* In this case, rebuild_check should be TRUE. */ + rebuild_check = H5Sselect_shape_same(sid_reg1, sid_reg_ori1); + CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); + } +#endif + /* For irregular hyperslab */ + sid_irreg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL); + + /* Build up one dimensional irregular selection with H5_SELECT_OR */ + start1[0] = 1; + count1[0] = 2; + stride1[0] = 5; + block1[0] = 4; + ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start1[0] = 12; /* Just one position switch */ + count1[0] = 1; + stride1[0] = 5; + block1[0] = 4; + ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_irreg1, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + MESSAGE(7, ("Testing functionality to rebuild 2-D hyperslab selection\n")); + /* Create 2-D dataspace */ + sid_reg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL); + sid_reg_ori2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL); + + /* Build up the original two dimensional regular selection */ + start2[0] = 2; + count2[0] = 2; + stride2[0] = 7; + block2[0] = 5; + start2[1] = 1; + count2[1] = 3; + stride2[1] = 3; + block2[1] = 2; + + ret = H5Sselect_hyperslab(sid_reg_ori2, H5S_SELECT_SET, start2, stride2, count2, block2); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Build up two dimensional regular selection with H5_SELECT_OR, inside HDF5, + it will be treated as an irregular selection. */ + + start2[1] = 1; + count2[1] = 2; + stride2[1] = 3; + block2[1] = 2; + + ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_SET, start2, stride2, count2, block2); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start2[1] = 7; /* 7 = start(1) + count(2) * stride(3) */ + count2[1] = 1; + stride2[1] = 3; + block2[1] = 2; + + ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_OR, start2, stride2, count2, block2); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_reg2, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 and rebuild_stat2 should be + * H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } /* end if */ + if (ret != FAIL) { + /* In this case, rebuild_check should be TRUE. */ + rebuild_check = H5Sselect_shape_same(sid_reg2, sid_reg_ori2); + CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); + } +#endif + /* 2-D irregular case */ + sid_irreg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL); + /* Build up two dimensional irregular selection with H5_SELECT_OR */ + + start2[0] = 2; + count2[0] = 2; + stride2[0] = 7; + block2[0] = 5; + start2[1] = 1; + count2[1] = 1; + stride2[1] = 3; + block2[1] = 2; + ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_SET, start2, stride2, count2, block2); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start2[1] = 4; + count2[1] = 2; + stride2[1] = 4; + block2[1] = 3; /* Just add one element for the block */ + + ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_OR, start2, stride2, count2, block2); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_irreg2, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + MESSAGE(7, ("Testing functionality to rebuild 3-D hyperslab selection\n")); + + /* Create 3-D dataspace */ + sid_reg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL); + sid_reg_ori3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL); + + /* Build up the original three dimensional regular selection */ + start3[0] = 2; + count3[0] = 2; + stride3[0] = 3; + block3[0] = 2; + start3[1] = 1; + count3[1] = 3; + stride3[1] = 3; + block3[1] = 2; + + start3[2] = 1; + count3[2] = 2; + stride3[2] = 4; + block3[2] = 2; + + ret = H5Sselect_hyperslab(sid_reg_ori3, H5S_SELECT_SET, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Build up three dimensional regular selection with H5_SELECT_OR, inside HDF5, + it will be treated as an irregular selection. */ + start3[2] = 1; + count3[2] = 1; + stride3[2] = 4; + block3[2] = 2; + + ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_SET, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start3[2] = 5; + count3[2] = 1; + stride3[2] = 4; + block3[2] = 2; + + ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_OR, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_reg3, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 and rebuild_stat2 should be + * H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (ret != FAIL) { + /* In this case, rebuild_check should be TRUE. */ + rebuild_check = H5Sselect_shape_same(sid_reg3, sid_reg_ori3); + CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); + } +#endif + + sid_irreg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL); + + /* Build up three dimensional irregular selection with H5_SELECT_OR */ + start3[0] = 2; + count3[0] = 2; + stride3[0] = 3; + block3[0] = 2; + start3[1] = 1; + count3[1] = 3; + stride3[1] = 3; + block3[1] = 2; + + start3[2] = 1; + count3[2] = 2; + stride3[2] = 2; + block3[2] = 1; + + ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_SET, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start3[2] = 3; + count3[2] = 2; + stride3[2] = 3; /* Just add one element for the stride */ + block3[2] = 1; + + ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_OR, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_irreg3, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + MESSAGE(7, ("Testing functionality to rebuild 4-D hyperslab selection\n")); + + /* Create 4-D dataspace */ + sid_reg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL); + sid_reg_ori4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL); + + /* Build up the original four dimensional regular selection */ + start4[0] = 2; + count4[0] = 2; + stride4[0] = 3; + block4[0] = 2; + + start4[1] = 1; + count4[1] = 3; + stride4[1] = 3; + block4[1] = 2; + + start4[2] = 1; + count4[2] = 2; + stride4[2] = 4; + block4[2] = 2; + + start4[3] = 1; + count4[3] = 2; + stride4[3] = 4; + block4[3] = 2; + + ret = H5Sselect_hyperslab(sid_reg_ori4, H5S_SELECT_SET, start4, stride4, count4, block4); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5, + it will be treated as an irregular selection. */ + start4[3] = 1; + count4[3] = 1; + stride4[3] = 4; + block4[3] = 2; + + ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_SET, start4, stride4, count4, block4); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start4[3] = 5; + count4[3] = 1; + stride4[3] = 4; + block4[3] = 2; + + ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_OR, start4, stride4, count4, block4); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + +#if 0 + ret = H5S__get_rebuild_status_test(sid_reg4, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 and rebuild_stat2 should be + * H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (ret != FAIL) { + /* In this case, rebuild_check should be TRUE. */ + rebuild_check = H5Sselect_shape_same(sid_reg4, sid_reg_ori4); + CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); + } +#endif + + /* Testing irregular selection */ + sid_irreg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL); + + /* Build up four dimensional irregular selection with H5_SELECT_OR */ + start4[0] = 2; + count4[0] = 2; + stride4[0] = 3; + block4[0] = 2; + start4[1] = 1; + count4[1] = 3; + stride4[1] = 3; + block4[1] = 2; + + start4[2] = 1; + count4[2] = 1; + stride4[2] = 4; + block4[2] = 2; + + start4[3] = 1; + count4[3] = 2; + stride4[3] = 4; + block4[3] = 2; /* sub-block is one element difference */ + + ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_SET, start4, stride4, count4, block4); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start4[2] = 5; + count4[2] = 1; + stride4[2] = 4; + block4[2] = 2; + + start4[3] = 1; + count4[3] = 2; + stride4[3] = 4; + block4[3] = 3; /* sub-block is one element difference */ + + ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_OR, start4, stride4, count4, block4); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_irreg4, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + MESSAGE(7, ("Testing functionality to rebuild 5-D hyperslab selection\n")); + + /* Create 5-D dataspace */ + sid_reg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL); + sid_reg_ori5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL); + + /* Build up the original five dimensional regular selection */ + start5[0] = 2; + count5[0] = 2; + stride5[0] = 3; + block5[0] = 2; + + start5[1] = 1; + count5[1] = 3; + stride5[1] = 3; + block5[1] = 2; + + start5[2] = 1; + count5[2] = 2; + stride5[2] = 4; + block5[2] = 2; + + start5[3] = 1; + count5[3] = 2; + stride5[3] = 4; + block5[3] = 2; + + start5[4] = 1; + count5[4] = 2; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_reg_ori5, H5S_SELECT_SET, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Build up five dimensional regular selection with H5_SELECT_OR, inside HDF5, + it will be treated as an irregular selection. */ + start5[4] = 1; + count5[4] = 1; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_SET, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start5[4] = 5; + count5[4] = 1; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_OR, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + +#if 0 + ret = H5S__get_rebuild_status_test(sid_reg5, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 and rebuild_stat2 should be + * H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (ret != FAIL) { + /* In this case, rebuild_check should be TRUE. */ + rebuild_check = H5Sselect_shape_same(sid_reg5, sid_reg_ori5); + CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); + } +#endif + + sid_irreg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL); + + /* Build up five dimensional irregular selection with H5_SELECT_OR */ + start5[0] = 2; + count5[0] = 2; + stride5[0] = 3; + block5[0] = 2; + + start5[1] = 1; + count5[1] = 3; + stride5[1] = 3; + block5[1] = 2; + + start5[2] = 1; + count5[2] = 2; + stride5[2] = 4; + block5[2] = 2; + + start5[3] = 1; + count5[3] = 1; + stride5[3] = 4; + block5[3] = 2; + + start5[4] = 2; /* One element difference */ + count5[4] = 1; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_SET, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start5[3] = 5; + count5[3] = 1; + stride5[3] = 4; + block5[3] = 2; + + start5[4] = 1; /* One element difference */ + count5[4] = 2; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_OR, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_irreg5, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + /* We use 5-D to test a special case with + rebuilding routine TRUE, FALSE and TRUE */ + sid_spec = H5Screate_simple(SPACERE5_RANK, dims5, NULL); + + /* Build up the original five dimensional regular selection */ + start5[0] = 2; + count5[0] = 2; + stride5[0] = 3; + block5[0] = 2; + + start5[1] = 1; + count5[1] = 3; + stride5[1] = 3; + block5[1] = 2; + + start5[2] = 1; + count5[2] = 2; + stride5[2] = 4; + block5[2] = 2; + + start5[3] = 1; + count5[3] = 2; + stride5[3] = 4; + block5[3] = 2; + + start5[4] = 1; + count5[4] = 1; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_SET, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 and rebuild_stat2 should both be + * H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + /* Adding some selections to make it real irregular */ + start5[3] = 1; + count5[3] = 1; + stride5[3] = 4; + block5[3] = 2; + + start5[4] = 5; + count5[4] = 1; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + /* Add more selections to make it regular again */ + start5[3] = 5; + count5[3] = 1; + stride5[3] = 4; + block5[3] = 2; + + start5[4] = 5; + count5[4] = 1; + stride5[4] = 4; + block5[4] = 2; + + ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and + * rebuild_stat2 should be H5S_DIMINFO_VALID_YES. */ + if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } + /* No need to do shape comparison */ +#endif + + H5Sclose(sid_reg1); + CHECK(ret, FAIL, "H5Sclose"); + H5Sclose(sid_irreg1); + CHECK(ret, FAIL, "H5Sclose"); + + H5Sclose(sid_reg2); + CHECK(ret, FAIL, "H5Sclose"); + H5Sclose(sid_irreg2); + CHECK(ret, FAIL, "H5Sclose"); + + H5Sclose(sid_reg3); + CHECK(ret, FAIL, "H5Sclose"); + H5Sclose(sid_irreg3); + CHECK(ret, FAIL, "H5Sclose"); + + H5Sclose(sid_reg4); + CHECK(ret, FAIL, "H5Sclose"); + H5Sclose(sid_irreg4); + CHECK(ret, FAIL, "H5Sclose"); + + H5Sclose(sid_reg5); + CHECK(ret, FAIL, "H5Sclose"); + H5Sclose(sid_irreg5); + CHECK(ret, FAIL, "H5Sclose"); + + H5Sclose(sid_spec); + CHECK(ret, FAIL, "H5Sclose"); +} + +/**************************************************************** +** +** test_space_update_diminfo(): Tests selection diminfo update +** routine. We will test whether regular selections can be +** quickly updated when the selection is modified. +** +** +****************************************************************/ +static void +test_space_update_diminfo(void) +{ + hid_t space_id; /* Dataspace id */ +#if 0 + H5S_diminfo_valid_t diminfo_valid; /* Diminfo status */ + H5S_diminfo_valid_t rebuild_status; /* Diminfo status after rebuid */ +#endif + H5S_sel_type sel_type; /* Selection type */ + herr_t ret; /* Return value */ + + /* dimensions of rank 1 to rank 5 */ + hsize_t dims1[] = {SPACEUD1_DIM0}; + hsize_t dims3[] = {SPACEUD3_DIM0, SPACEUD3_DIM1, SPACEUD3_DIM2}; + + /* The start of the hyperslab */ + hsize_t start1[1], start3[3]; + + /* The stride of the hyperslab */ + hsize_t stride1[1], stride3[3]; + + /* The number of blocks for the hyperslab */ + hsize_t count1[1], count3[3]; + + /* The size of each block for the hyperslab */ + hsize_t block1[1], block3[3]; + + /* Output message about test being performed */ + MESSAGE(6, ("Testing functionality to update hyperslab dimension info\n")); + + MESSAGE(7, ("Testing functionality to update 1-D hyperslab dimension info\n")); + + /* + * Test adding regularly spaced distinct blocks + */ + + /* Create 1-D dataspace */ + space_id = H5Screate_simple(1, dims1, NULL); + + /* Create single block */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block after first, with OR */ + start1[0] = 6; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block before first, this time with XOR */ + start1[0] = 0; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add two blocks after current block */ + start1[0] = 9; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add two blocks overlapping current block, with OR */ + start1[0] = 9; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add two blocks partially overlapping current block, with OR */ + start1[0] = 12; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add two blocks partially overlapping current block, with XOR */ + start1[0] = 15; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO, after rebuild it should be IMPOSSIBLE */ + ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ + if (rebuild_status != H5S_DIMINFO_VALID_IMPOSSIBLE) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } /* end if */ +#endif + + /* Fill in missing block */ + start1[0] = 15; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO, after rebuild it should be YES */ + ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ + if (rebuild_status != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } /* end if */ +#endif + /* + * Test adding contiguous blocks + */ + + /* Create single block */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block immediately after first, with OR */ + start1[0] = 5; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block immediately before first, with XOR */ + start1[0] = 1; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add differently size block immediately after current, with OR */ + start1[0] = 7; + count1[0] = 1; + block1[0] = 7; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* + * Test adding overlapping blocks + */ + + /* Create single block */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block completely overlapping first, with OR */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block partially overlapping first, with OR */ + start1[0] = 4; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block completely enclosing current, with OR */ + start1[0] = 2; + count1[0] = 1; + block1[0] = 5; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add block completely enclosed by current, with OR */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add equally sized block partially overlapping current, with XOR */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 5; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Fill in hole in block */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 4; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO, after rebuild it should be YES */ + ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ + if (rebuild_status != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } /* end if */ +#endif + + /* Add differently sized block partially overlapping current, with XOR */ + start1[0] = 4; + count1[0] = 1; + block1[0] = 5; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Fill in hole in block */ + start1[0] = 4; + count1[0] = 1; + block1[0] = 4; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO, after rebuild it should be YES */ + ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); + CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ + if (rebuild_status != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_rebuild"); + } /* end if */ +#endif + + /* Add block completely overlapping current, with XOR */ + start1[0] = 2; + count1[0] = 1; + block1[0] = 7; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + sel_type = H5Sget_select_type(space_id); + VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); + + /* + * Test various conditions that break the fast algorithm + */ + + /* Create multiple blocks */ + start1[0] = 3; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create single block with start out of phase */ + start1[0] = 8; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks */ + start1[0] = 3; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks with start out of phase */ + start1[0] = 8; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks */ + start1[0] = 3; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks with wrong stride */ + start1[0] = 9; + stride1[0] = 4; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create single block */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create single block with wrong size */ + start1[0] = 6; + count1[0] = 1; + block1[0] = 1; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create single block */ + start1[0] = 3; + count1[0] = 1; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks with wrong size */ + start1[0] = 6; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 1; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks */ + start1[0] = 3; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create single block with wrong size */ + start1[0] = 9; + count1[0] = 1; + block1[0] = 1; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks */ + start1[0] = 3; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks with wrong size */ + start1[0] = 9; + stride1[0] = 3; + count1[0] = 2; + block1[0] = 1; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + ret = H5Sclose(space_id); + CHECK(ret, FAIL, "H5Sclose"); + + MESSAGE(7, ("Testing functionality to update 3-D hyperslab dimension info\n")); + + /* Create 3-D dataspace */ + space_id = H5Screate_simple(3, dims3, NULL); + + /* Create multiple blocks */ + start3[0] = 0; + start3[1] = 1; + start3[2] = 2; + stride3[0] = 2; + stride3[1] = 3; + stride3[2] = 4; + count3[0] = 4; + count3[1] = 3; + count3[2] = 2; + block3[0] = 1; + block3[1] = 2; + block3[2] = 3; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add blocks with same values in all dimensions */ + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add blocks with same values in two dimensions */ + start3[0] = 8; + stride3[0] = 1; + count3[0] = 1; + block3[0] = 1; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks */ + start3[0] = 0; + start3[1] = 1; + start3[2] = 2; + stride3[0] = 2; + stride3[1] = 3; + stride3[2] = 4; + count3[0] = 4; + count3[1] = 3; + count3[2] = 2; + block3[0] = 1; + block3[1] = 2; + block3[2] = 3; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add blocks with same values in one dimension */ + start3[0] = 8; + start3[1] = 10; + stride3[0] = 1; + stride3[1] = 1; + count3[0] = 1; + count3[1] = 1; + block3[0] = 1; + block3[1] = 2; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Create multiple blocks */ + start3[0] = 0; + start3[1] = 1; + start3[2] = 2; + stride3[0] = 2; + stride3[1] = 3; + stride3[2] = 4; + count3[0] = 4; + count3[1] = 3; + count3[2] = 2; + block3[0] = 1; + block3[1] = 2; + block3[2] = 3; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be YES */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_YES) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + /* Add blocks with same values in no dimensions */ + start3[0] = 8; + start3[1] = 10; + start3[2] = 10; + stride3[0] = 1; + stride3[1] = 1; + stride3[2] = 1; + count3[0] = 1; + count3[1] = 1; + count3[2] = 1; + block3[0] = 1; + block3[1] = 2; + block3[2] = 3; + ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +#if 0 + /* diminfo_valid should be NO */ + ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); + CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); + if (diminfo_valid != H5S_DIMINFO_VALID_NO) { + ret = FAIL; + CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); + } /* end if */ +#endif + ret = H5Sclose(space_id); + CHECK(ret, FAIL, "H5Sclose"); +} /* end test_space_update_diminfo() */ + +/**************************************************************** +** +** test_select_hyper_chunk_offset(): Tests selections on dataspace, +** verify that offsets for hyperslab selections are working in +** chunked datasets. +** +****************************************************************/ +#if 0 +static void +test_select_hyper_chunk_offset(void) +{ + hid_t fid; /* File ID */ + hid_t sid; /* Dataspace ID */ + hid_t msid; /* Memory dataspace ID */ + hid_t did; /* Dataset ID */ + const hsize_t mem_dims[1] = {SPACE10_DIM1}; /* Dataspace dimensions for memory */ + const hsize_t dims[1] = {0}; /* Dataspace initial dimensions */ + const hsize_t maxdims[1] = {H5S_UNLIMITED}; /* Dataspace mam dims */ + int *wbuf; /* Buffer for writing data */ + int *rbuf; /* Buffer for reading data */ + hid_t dcpl; /* Dataset creation property list ID */ + hsize_t chunks[1] = {SPACE10_CHUNK_SIZE}; /* Chunk size */ + hsize_t start[1] = {0}; /* The start of the hyperslab */ + hsize_t count[1] = {SPACE10_CHUNK_SIZE}; /* The size of the hyperslab */ + int i, j; /* Local index */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n")); + + /* Allocate buffers */ + wbuf = (int *)HDmalloc(sizeof(int) * SPACE10_DIM1); + CHECK_PTR(wbuf, "HDmalloc"); + rbuf = (int *)HDcalloc(sizeof(int), SPACE10_DIM1); + CHECK_PTR(rbuf, "HDcalloc"); + + /* Initialize the write buffer */ + for (i = 0; i < SPACE10_DIM1; i++) + wbuf[i] = i; + + /* Create file */ + fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid, FAIL, "H5Fcreate"); + + /* Create a dataset creation property list */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + CHECK(dcpl, FAIL, "H5Pcreate"); + + /* Set to chunked storage layout */ + ret = H5Pset_layout(dcpl, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + /* Set the chunk size */ + ret = H5Pset_chunk(dcpl, 1, chunks); + CHECK(ret, FAIL, "H5Pset_chunk"); + + /* Create dataspace for memory */ + msid = H5Screate_simple(1, mem_dims, NULL); + CHECK(msid, FAIL, "H5Screate_simple"); + + /* Select the correct chunk in the memory dataspace */ + ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for dataset */ + sid = H5Screate_simple(1, dims, maxdims); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Create the dataset */ + did = H5Dcreate2(fid, "fooData", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + CHECK(did, FAIL, "H5Dcreate2"); + + /* Close the dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close the dataset creation property list */ + ret = H5Pclose(dcpl); + CHECK(ret, FAIL, "H5Pclose"); + + /* Loop over writing out each chunk */ + for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) { + hssize_t offset[1]; /* Offset of selection */ + hid_t fsid; /* File dataspace ID */ + hsize_t size[1]; /* The size to extend the dataset to */ + + /* Extend the dataset */ + size[0] = (hsize_t)i; /* The size to extend the dataset to */ + ret = H5Dset_extent(did, size); + CHECK(ret, FAIL, "H5Dset_extent"); + + /* Get the (extended) dataspace from the dataset */ + fsid = H5Dget_space(did); + CHECK(fsid, FAIL, "H5Dget_space"); + + /* Select the correct chunk in the dataset */ + ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Set the selection offset for the file dataspace */ + offset[0] = i - SPACE10_CHUNK_SIZE; + ret = H5Soffset_simple(fsid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Set the selection offset for the memory dataspace */ + offset[0] = SPACE10_DIM1 - i; + ret = H5Soffset_simple(msid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Write the data to the chunk */ + ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close the file dataspace copy */ + ret = H5Sclose(fsid); + CHECK(ret, FAIL, "H5Sclose"); + } + + /* Read the data back in */ + ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Verify the information read in */ + for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) + for (j = 0; j < SPACE10_CHUNK_SIZE; j++) + if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j]) + TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j, + rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]); + + /* Check with 'OR'ed set of hyperslab selections, which makes certain the + * hyperslab spanlist code gets tested. -QAK + */ + + /* Re-initialize the write buffer */ + for (i = 0; i < SPACE10_DIM1; i++) + wbuf[i] = i * 2; + + /* Change the selected the region in the memory dataspace */ + start[0] = 0; + count[0] = SPACE10_CHUNK_SIZE / 3; + ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + start[0] = (2 * SPACE10_CHUNK_SIZE) / 3; + ret = H5Sselect_hyperslab(msid, H5S_SELECT_OR, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Loop over writing out each chunk */ + for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) { + hssize_t offset[1]; /* Offset of selection */ + hid_t fsid; /* File dataspace ID */ + hsize_t size[1]; /* The size to extend the dataset to */ + + /* Extend the dataset */ + size[0] = (hsize_t)i; /* The size to extend the dataset to */ + ret = H5Dset_extent(did, size); + CHECK(ret, FAIL, "H5Dset_extent"); + + /* Get the (extended) dataspace from the dataset */ + fsid = H5Dget_space(did); + CHECK(fsid, FAIL, "H5Dget_space"); + + /* Select the correct region in the dataset */ + start[0] = 0; + ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + start[0] = (2 * SPACE10_CHUNK_SIZE) / 3; + ret = H5Sselect_hyperslab(fsid, H5S_SELECT_OR, start, NULL, count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Set the selection offset for the file dataspace */ + offset[0] = i - SPACE10_CHUNK_SIZE; + ret = H5Soffset_simple(fsid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Set the selection offset for the memory dataspace */ + offset[0] = SPACE10_DIM1 - i; + ret = H5Soffset_simple(msid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Write the data to the chunk */ + ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Close the file dataspace copy */ + ret = H5Sclose(fsid); + CHECK(ret, FAIL, "H5Sclose"); + } + + /* Read the data back in */ + ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Verify the information read in */ + for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) + for (j = 0; j < SPACE10_CHUNK_SIZE; j++) + /* We're not writing out the "middle" of each chunk, so don't check that */ + if (j < (SPACE10_CHUNK_SIZE / 3) || j >= ((2 * SPACE10_CHUNK_SIZE) / 3)) + if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j]) + TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j, + rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]); + + /* Close the memory dataspace */ + ret = H5Sclose(msid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close the dataset */ + ret = H5Dclose(did); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close the file */ + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free the buffers */ + HDfree(wbuf); + HDfree(rbuf); +} /* test_select_hyper_chunk_offset() */ +#endif +/**************************************************************** +** +** test_select_hyper_chunk_offset2(): Tests selections on dataspace, +** another test to verify that offsets for hyperslab selections are +** working in chunked datasets. +** +****************************************************************/ +#if 0 +static void +test_select_hyper_chunk_offset2(void) +{ + hid_t file, dataset; /* handles */ + hid_t dataspace; + hid_t memspace; + hid_t dcpl; /* Dataset creation property list */ + herr_t status; + unsigned data_out[SPACE12_DIM0]; /* output buffer */ + unsigned data_in[SPACE12_CHUNK_DIM0]; /* input buffer */ + hsize_t dims[SPACE12_RANK] = {SPACE12_DIM0}; /* Dimension size */ + hsize_t chunk_dims[SPACE12_RANK] = {SPACE12_CHUNK_DIM0}; /* Chunk size */ + hsize_t start[SPACE12_RANK]; /* Start of hyperslab */ + hsize_t count[SPACE12_RANK]; /* Size of hyperslab */ + hssize_t offset[SPACE12_RANK]; /* hyperslab offset in the file */ + unsigned u, v; /* Local index variables */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n")); + + /* Initialize data to write out */ + for (u = 0; u < SPACE12_DIM0; u++) + data_out[u] = u; + + /* Create the file */ + file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(file, FAIL, "H5Fcreate"); + + /* Create dataspace */ + dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL); + CHECK(dataspace, FAIL, "H5Screate_simple"); + + /* Create dataset creation property list */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + CHECK(dcpl, FAIL, "H5Pcreate"); + + /* Set chunk sizes */ + status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims); + CHECK(status, FAIL, "H5Pset_chunk"); + + /* Create dataset */ + dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); + CHECK(dataset, FAIL, "H5Dcreate2"); + + /* Close DCPL */ + status = H5Pclose(dcpl); + CHECK(status, FAIL, "H5Pclose"); + + /* Write out entire dataset */ + status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out); + CHECK(status, FAIL, "H5Dclose"); + + /* Create memory dataspace (same size as a chunk) */ + memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL); + CHECK(dataspace, FAIL, "H5Screate_simple"); + + /* + * Define hyperslab in the file dataspace. + */ + start[0] = 0; + count[0] = SPACE12_CHUNK_DIM0; + status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL); + CHECK(status, FAIL, "H5Sselect_hyperslab"); + + /* Loop through retrieving data from file, checking it against data written */ + for (u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) { + /* Set the offset of the file selection */ + offset[0] = u; + status = H5Soffset_simple(dataspace, offset); + CHECK(status, FAIL, "H5Soffset_simple"); + + /* Read in buffer of data */ + status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace, H5P_DEFAULT, data_in); + CHECK(status, FAIL, "H5Dread"); + + /* Check data read in */ + for (v = 0; v < SPACE12_CHUNK_DIM0; v++) + if (data_out[u + v] != data_in[v]) + TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n", (unsigned)(u + v), data_out[u + v], + v, data_in[v]); + } /* end for */ + + status = H5Dclose(dataset); + CHECK(status, FAIL, "H5Dclose"); + + status = H5Sclose(dataspace); + CHECK(status, FAIL, "H5Sclose"); + + status = H5Sclose(memspace); + CHECK(status, FAIL, "H5Sclose"); + + status = H5Fclose(file); + CHECK(status, FAIL, "H5Fclose"); +} /* test_select_hyper_chunk_offset2() */ +#endif +/**************************************************************** +** +** test_select_bounds(): Tests selection bounds on dataspaces, +** both with and without offsets. +** +****************************************************************/ +static void +test_select_bounds(void) +{ + hid_t sid; /* Dataspace ID */ + const hsize_t dims[SPACE11_RANK] = {SPACE11_DIM1, SPACE11_DIM2}; /* Dataspace dimensions */ + hsize_t coord[SPACE11_NPOINTS][SPACE11_RANK]; /* Coordinates for point selection */ + hsize_t start[SPACE11_RANK]; /* The start of the hyperslab */ + hsize_t stride[SPACE11_RANK]; /* The stride between block starts for the hyperslab */ + hsize_t count[SPACE11_RANK]; /* The number of blocks for the hyperslab */ + hsize_t block[SPACE11_RANK]; /* The size of each block for the hyperslab */ + hssize_t offset[SPACE11_RANK]; /* Offset amount for selection */ + hsize_t low_bounds[SPACE11_RANK]; /* The low bounds for the selection */ + hsize_t high_bounds[SPACE11_RANK]; /* The high bounds for the selection */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing selection bounds\n")); + + /* Create dataspace */ + sid = H5Screate_simple(SPACE11_RANK, dims, NULL); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Get bounds for 'all' selection */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 0, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds"); + + /* Set offset for selection */ + offset[0] = 1; + offset[1] = 1; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for 'all' selection with offset (which should be ignored) */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 0, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds"); + + /* Reset offset for selection */ + offset[0] = 0; + offset[1] = 0; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Set 'none' selection */ + ret = H5Sselect_none(sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Get bounds for 'none' selection */ + H5E_BEGIN_TRY + { + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_select_bounds"); + + /* Set point selection */ + coord[0][0] = 3; + coord[0][1] = 3; + coord[1][0] = 3; + coord[1][1] = 96; + coord[2][0] = 96; + coord[2][1] = 3; + coord[3][0] = 96; + coord[3][1] = 96; + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE11_NPOINTS, (const hsize_t *)coord); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Get bounds for point selection */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 3, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 3, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], SPACE11_DIM1 - 4, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], SPACE11_DIM2 - 4, "H5Sget_select_bounds"); + + /* Set bad offset for selection */ + offset[0] = 5; + offset[1] = -5; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for hyperslab selection with negative offset */ + H5E_BEGIN_TRY + { + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_select_bounds"); + + /* Set valid offset for selection */ + offset[0] = 2; + offset[1] = -2; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for point selection with offset */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 5, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 1, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], SPACE11_DIM1 - 2, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], SPACE11_DIM2 - 6, "H5Sget_select_bounds"); + + /* Reset offset for selection */ + offset[0] = 0; + offset[1] = 0; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Set "regular" hyperslab selection */ + start[0] = 2; + start[1] = 2; + stride[0] = 10; + stride[1] = 10; + count[0] = 4; + count[1] = 4; + block[0] = 5; + block[1] = 5; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Get bounds for hyperslab selection */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 2, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 2, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], 36, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], 36, "H5Sget_select_bounds"); + + /* Set bad offset for selection */ + offset[0] = 5; + offset[1] = -5; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for hyperslab selection with negative offset */ + H5E_BEGIN_TRY + { + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_select_bounds"); + + /* Set valid offset for selection */ + offset[0] = 5; + offset[1] = -2; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for hyperslab selection with offset */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 7, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], 41, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], 34, "H5Sget_select_bounds"); + + /* Reset offset for selection */ + offset[0] = 0; + offset[1] = 0; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Make "irregular" hyperslab selection */ + start[0] = 20; + start[1] = 20; + stride[0] = 20; + stride[1] = 20; + count[0] = 2; + count[1] = 2; + block[0] = 10; + block[1] = 10; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Get bounds for hyperslab selection */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 2, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 2, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], 49, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], 49, "H5Sget_select_bounds"); + + /* Set bad offset for selection */ + offset[0] = 5; + offset[1] = -5; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for hyperslab selection with negative offset */ + H5E_BEGIN_TRY + { + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_select_bounds"); + + /* Set valid offset for selection */ + offset[0] = 5; + offset[1] = -2; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Get bounds for hyperslab selection with offset */ + ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(low_bounds[0], 7, "H5Sget_select_bounds"); + VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); + VERIFY(high_bounds[0], 54, "H5Sget_select_bounds"); + VERIFY(high_bounds[1], 47, "H5Sget_select_bounds"); + + /* Reset offset for selection */ + offset[0] = 0; + offset[1] = 0; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Close the dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_select_bounds() */ + +/**************************************************************** +** +** test_hyper_regular(): Tests query operations on regular hyperslabs +** +****************************************************************/ +static void +test_hyper_regular(void) +{ + hid_t sid; /* Dataspace ID */ + const hsize_t dims[SPACE13_RANK] = {SPACE13_DIM1, SPACE13_DIM2, SPACE13_DIM3}; /* Dataspace dimensions */ + hsize_t coord[SPACE13_NPOINTS][SPACE13_RANK]; /* Coordinates for point selection */ + hsize_t start[SPACE13_RANK]; /* The start of the hyperslab */ + hsize_t stride[SPACE13_RANK]; /* The stride between block starts for the hyperslab */ + hsize_t count[SPACE13_RANK]; /* The number of blocks for the hyperslab */ + hsize_t block[SPACE13_RANK]; /* The size of each block for the hyperslab */ + hsize_t t_start[SPACE13_RANK]; /* Temporary start of the hyperslab */ + hsize_t t_count[SPACE13_RANK]; /* Temporary number of blocks for the hyperslab */ + hsize_t q_start[SPACE13_RANK]; /* The queried start of the hyperslab */ + hsize_t q_stride[SPACE13_RANK]; /* The queried stride between block starts for the hyperslab */ + hsize_t q_count[SPACE13_RANK]; /* The queried number of blocks for the hyperslab */ + hsize_t q_block[SPACE13_RANK]; /* The queried size of each block for the hyperslab */ + htri_t is_regular; /* Whether a hyperslab selection is regular */ + unsigned u; /* Local index variable */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing queries on regular hyperslabs\n")); + + /* Create dataspace */ + sid = H5Screate_simple(SPACE13_RANK, dims, NULL); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Query if 'all' selection is regular hyperslab (should fail) */ + H5E_BEGIN_TRY + { + is_regular = H5Sis_regular_hyperslab(sid); + } + H5E_END_TRY; + VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab"); + + /* Query regular hyperslab selection info (should fail) */ + H5E_BEGIN_TRY + { + ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); + + /* Set 'none' selection */ + ret = H5Sselect_none(sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Query if 'none' selection is regular hyperslab (should fail) */ + H5E_BEGIN_TRY + { + is_regular = H5Sis_regular_hyperslab(sid); + } + H5E_END_TRY; + VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab"); + + /* Query regular hyperslab selection info (should fail) */ + H5E_BEGIN_TRY + { + ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); + + /* Set point selection */ + coord[0][0] = 3; + coord[0][1] = 3; + coord[0][2] = 3; + coord[1][0] = 3; + coord[1][1] = 48; + coord[1][2] = 48; + coord[2][0] = 48; + coord[2][1] = 3; + coord[2][2] = 3; + coord[3][0] = 48; + coord[3][1] = 48; + coord[3][2] = 48; + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE13_NPOINTS, (const hsize_t *)coord); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Query if 'point' selection is regular hyperslab (should fail) */ + H5E_BEGIN_TRY + { + is_regular = H5Sis_regular_hyperslab(sid); + } + H5E_END_TRY; + VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab"); + + /* Query regular hyperslab selection info (should fail) */ + H5E_BEGIN_TRY + { + ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); + + /* Set "regular" hyperslab selection */ + start[0] = 2; + start[1] = 2; + start[2] = 2; + stride[0] = 5; + stride[1] = 5; + stride[2] = 5; + count[0] = 3; + count[1] = 3; + count[2] = 3; + block[0] = 4; + block[1] = 4; + block[2] = 4; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */ + is_regular = H5Sis_regular_hyperslab(sid); + VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab"); + + /* Retrieve the hyperslab parameters */ + ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); + CHECK(ret, FAIL, "H5Sget_regular_hyperslab"); + + /* Verify the hyperslab parameters */ + for (u = 0; u < SPACE13_RANK; u++) { + if (start[u] != q_start[u]) + ERROR("H5Sget_regular_hyperslab, start"); + if (stride[u] != q_stride[u]) + ERROR("H5Sget_regular_hyperslab, stride"); + if (count[u] != q_count[u]) + ERROR("H5Sget_regular_hyperslab, count"); + if (block[u] != q_block[u]) + ERROR("H5Sget_regular_hyperslab, block"); + } /* end for */ + + /* 'OR' in another point */ + t_start[0] = 0; + t_start[1] = 0; + t_start[2] = 0; + t_count[0] = 1; + t_count[1] = 1; + t_count[2] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, t_start, NULL, t_count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Query if 'hyperslab' selection is regular hyperslab (should be FALSE) */ + is_regular = H5Sis_regular_hyperslab(sid); + VERIFY(is_regular, FALSE, "H5Sis_regular_hyperslab"); + + /* Query regular hyperslab selection info (should fail) */ + H5E_BEGIN_TRY + { + ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); + + /* 'XOR' in the point again, to remove it, which should make it regular again */ + t_start[0] = 0; + t_start[1] = 0; + t_start[2] = 0; + t_count[0] = 1; + t_count[1] = 1; + t_count[2] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, t_start, NULL, t_count, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */ + is_regular = H5Sis_regular_hyperslab(sid); + VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab"); + + /* Retrieve the hyperslab parameters */ + ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); + CHECK(ret, FAIL, "H5Sget_regular_hyperslab"); + + /* Verify the hyperslab parameters */ + for (u = 0; u < SPACE13_RANK; u++) { + if (start[u] != q_start[u]) + ERROR("H5Sget_regular_hyperslab, start"); + if (stride[u] != q_stride[u]) + ERROR("H5Sget_regular_hyperslab, stride"); + if (count[u] != q_count[u]) + ERROR("H5Sget_regular_hyperslab, count"); + if (block[u] != q_block[u]) + ERROR("H5Sget_regular_hyperslab, block"); + } /* end for */ + + /* Close the dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_hyper_regular() */ + +/**************************************************************** +** +** test_hyper_unlim(): Tests unlimited hyperslab selections +** +****************************************************************/ +static void +test_hyper_unlim_check(hid_t sid, hsize_t *dims, hssize_t endpoints, hssize_t enblocks, hsize_t *eblock1, + hsize_t *eblock2) +{ + hid_t lim_sid; + hsize_t start[3]; + H5S_sel_type sel_type; + hssize_t npoints; + hssize_t nblocks; + hsize_t blocklist[12]; + herr_t ret; + + HDassert(enblocks <= 2); + + /* Copy sid to lim_sid */ + lim_sid = H5Scopy(sid); + CHECK(lim_sid, FAIL, "H5Scopy"); + + /* "And" lim_sid with dims to create limited selection */ + HDmemset(start, 0, sizeof(start)); + ret = H5Sselect_hyperslab(lim_sid, H5S_SELECT_AND, start, NULL, dims, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Check number of elements */ + npoints = H5Sget_select_npoints(lim_sid); + CHECK(npoints, FAIL, "H5Sget_select_npoints"); + VERIFY(npoints, endpoints, "H5Sget_select_npoints"); + + /* Get selection type */ + sel_type = H5Sget_select_type(lim_sid); + CHECK(sel_type, H5S_SEL_ERROR, "H5Sget_select_type"); + + /* Only examine blocks for hyperslab selection */ + if (sel_type == H5S_SEL_HYPERSLABS) { + /* Get number of blocks */ + nblocks = H5Sget_select_hyper_nblocks(lim_sid); + CHECK(nblocks, FAIL, "H5Sget_select_hyper_nblocks"); + VERIFY(nblocks, enblocks, "H5Sget_select_hyper_nblocks"); + + if (nblocks > 0) { + /* Get blocklist */ + ret = H5Sget_select_hyper_blocklist(lim_sid, (hsize_t)0, (hsize_t)nblocks, blocklist); + CHECK(ret, FAIL, "H5Sget_select_hyper_blocklist"); + + /* Verify blocklist */ + if (nblocks == (hssize_t)1) { + if (HDmemcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0) + ERROR("H5Sget_select_hyper_blocklist"); + } /* end if */ + else { + HDassert(nblocks == (hssize_t)2); + if (HDmemcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0) { + if (HDmemcmp(blocklist, eblock2, 6 * sizeof(eblock2[0])) != 0) + ERROR("H5Sget_select_hyper_blocklist"); + if (HDmemcmp(&blocklist[6], eblock1, 6 * sizeof(eblock1[0])) != 0) + ERROR("H5Sget_select_hyper_blocklist"); + } /* end if */ + else if (HDmemcmp(&blocklist[6], eblock2, 6 * sizeof(eblock2[0])) != 0) + ERROR("H5Sget_select_hyper_blocklist"); + } /* end else */ + } /* end if */ + } /* end if */ + else if (sel_type != H5S_SEL_NONE) + ERROR("H5Sget_select_type"); + + /* Close the limited dataspace */ + ret = H5Sclose(lim_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* end test_hyper_unlim_check() */ + +static void +test_hyper_unlim(void) +{ + hid_t sid; + hsize_t dims[3] = {4, 4, 7}; + hsize_t mdims[3] = {4, H5S_UNLIMITED, 7}; + hsize_t start[3] = {1, 2, 1}; + hsize_t stride[3] = {1, 1, 3}; + hsize_t count[3] = {1, 1, 2}; + hsize_t block[3] = {2, H5S_UNLIMITED, 2}; + hsize_t start2[3]; + hsize_t count2[3]; + hsize_t eblock1[6] = {1, 2, 1, 2, 3, 2}; + hsize_t eblock2[6] = {1, 2, 4, 2, 3, 5}; + hssize_t offset[3] = {0, -1, 0}; + hssize_t ssize_out; + herr_t ret; + + /* Output message about test being performed */ + MESSAGE(6, ("Testing unlimited hyperslab selections\n")); + + /* Create dataspace */ + sid = H5Screate_simple(3, dims, mdims); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Select unlimited hyperslab */ + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Check with unlimited dimension clipped to 4 */ + test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 3 */ + dims[1] = 3; + eblock1[4] = 2; + eblock2[4] = 2; + test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)2, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 2 */ + dims[1] = 2; + test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 1 */ + dims[1] = 1; + test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 7 */ + dims[1] = 7; + eblock1[4] = 6; + eblock2[4] = 6; + test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2); + + /* Set offset of selection */ + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Check with adjusted offset (should not affect result) */ + test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2); + + /* Reset offset of selection */ + offset[1] = (hssize_t)0; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* + * Now try with multiple blocks in unlimited dimension + */ + stride[1] = 3; + stride[2] = 1; + count[1] = H5S_UNLIMITED; + count[2] = 1; + block[1] = 2; + + /* Select unlimited hyperslab */ + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Check with new selection */ + eblock1[1] = 2; + eblock1[4] = 3; + eblock2[1] = 5; + eblock2[2] = 1; + eblock2[4] = 6; + eblock2[5] = 2; + test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 3 */ + dims[1] = 3; + eblock1[4] = 2; + test_hyper_unlim_check(sid, dims, (hssize_t)4, (hssize_t)1, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 4 */ + dims[1] = 4; + eblock1[4] = 3; + test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 5 */ + dims[1] = 5; + eblock1[4] = 3; + test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2); + + /* Check with unlimited dimension clipped to 6 */ + dims[1] = 6; + eblock1[4] = 3; + eblock2[4] = 5; + test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); + + /* Set offset of selection */ + offset[1] = (hssize_t)-1; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Check with adjusted offset (should not affect result) */ + test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); + + /* Set offset of selection */ + offset[1] = (hssize_t)3; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* Check with adjusted offset (should not affect result) */ + test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); + + /* Reset offset of selection */ + offset[1] = (hssize_t)0; + ret = H5Soffset_simple(sid, offset); + CHECK(ret, FAIL, "H5Soffset_simple"); + + /* + * Now try invalid operations + */ + H5E_BEGIN_TRY + { + /* Try multiple unlimited dimensions */ + start[0] = 1; + start[1] = 2; + start[2] = 1; + stride[0] = 1; + stride[1] = 3; + stride[2] = 3; + count[0] = 1; + count[1] = H5S_UNLIMITED; + count[2] = H5S_UNLIMITED; + block[0] = 2; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + + /* Try unlimited count and block */ + count[2] = 2; + block[1] = H5S_UNLIMITED; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + } + H5E_END_TRY + + /* Try operations with two unlimited selections */ + block[1] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + H5E_BEGIN_TRY + { + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, count, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, NULL, count, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, count, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, count, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, NULL, count, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + } + H5E_END_TRY + + /* Try invalid combination operations */ + H5E_BEGIN_TRY + { + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, block, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, block, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, block, NULL); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + } + H5E_END_TRY + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, block, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + H5E_BEGIN_TRY + { + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, stride, count, block); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, stride, count, block); + VERIFY(ret, FAIL, "H5Sselect_hyperslab"); + } + H5E_END_TRY + + /* + * Now test valid combination operations + */ + /* unlim AND non-unlim */ + count[0] = 1; + count[1] = H5S_UNLIMITED; + count[2] = 2; + block[0] = 2; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + start2[0] = 2; + start2[1] = 2; + start2[2] = 0; + count2[0] = 5; + count2[1] = 4; + count2[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start2, NULL, count2, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + eblock1[0] = 2; + eblock1[3] = 2; + eblock1[1] = 2; + eblock1[4] = 3; + eblock1[2] = 1; + eblock1[5] = 1; + eblock2[0] = 2; + eblock2[3] = 2; + eblock2[1] = 5; + eblock2[4] = 5; + eblock2[2] = 1; + eblock2[5] = 1; + dims[0] = 50; + dims[1] = 50; + dims[2] = 50; + test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2); + + /* unlim NOTA non-unlim */ + count[0] = 1; + count[1] = H5S_UNLIMITED; + count[2] = 2; + block[0] = 2; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + start2[0] = 1; + start2[1] = 5; + start2[2] = 2; + count2[0] = 2; + count2[1] = 2; + count2[2] = 6; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start2, NULL, count2, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + eblock1[0] = 1; + eblock1[3] = 2; + eblock1[1] = 5; + eblock1[4] = 6; + eblock1[2] = 3; + eblock1[5] = 3; + eblock2[0] = 1; + eblock2[3] = 2; + eblock2[1] = 5; + eblock2[4] = 6; + eblock2[2] = 6; + eblock2[5] = 7; + dims[0] = 50; + dims[1] = 50; + dims[2] = 50; + test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); + + /* non-unlim AND unlim */ + start2[0] = 2; + start2[1] = 2; + start2[2] = 0; + count2[0] = 5; + count2[1] = 4; + count2[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + count[0] = 1; + count[1] = H5S_UNLIMITED; + count[2] = 2; + block[0] = 2; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + eblock1[0] = 2; + eblock1[3] = 2; + eblock1[1] = 2; + eblock1[4] = 3; + eblock1[2] = 1; + eblock1[5] = 1; + eblock2[0] = 2; + eblock2[3] = 2; + eblock2[1] = 5; + eblock2[4] = 5; + eblock2[2] = 1; + eblock2[5] = 1; + dims[0] = 50; + dims[1] = 50; + dims[2] = 50; + test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2); + + /* non-unlim NOTB unlim */ + start2[0] = 1; + start2[1] = 5; + start2[2] = 2; + count2[0] = 2; + count2[1] = 2; + count2[2] = 6; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + count[0] = 1; + count[1] = H5S_UNLIMITED; + count[2] = 2; + block[0] = 2; + block[1] = 2; + block[2] = 2; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + eblock1[0] = 1; + eblock1[3] = 2; + eblock1[1] = 5; + eblock1[4] = 6; + eblock1[2] = 3; + eblock1[5] = 3; + eblock2[0] = 1; + eblock2[3] = 2; + eblock2[1] = 5; + eblock2[4] = 6; + eblock2[2] = 6; + eblock2[5] = 7; + dims[0] = 50; + dims[1] = 50; + dims[2] = 50; + test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); + + /* Test H5Sget_select_npoints() */ + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + ssize_out = H5Sget_select_npoints(sid); + VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_npoints"); + + /* Test H5Sget_select_hyper_nblocks() */ + H5E_BEGIN_TRY + { + ssize_out = H5Sget_select_hyper_nblocks(sid); + } + H5E_END_TRY; + VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_hyper_nblocks"); + + /* Test H5Sget_select_bounds() */ + ret = H5Sget_select_bounds(sid, start2, count2); + CHECK(ret, FAIL, "H5Sget_select_bounds"); + VERIFY(start2[0], start[0], "H5Sget_select_bounds"); + VERIFY(start2[1], start[1], "H5Sget_select_bounds"); + VERIFY(start2[2], start[2], "H5Sget_select_bounds"); + VERIFY(count2[0], (long)(start[0] + (stride[0] * (count[0] - 1)) + block[0] - 1), "H5Sget_select_bounds"); + VERIFY(count2[1], H5S_UNLIMITED, "H5Sget_select_bounds"); + VERIFY(count2[2], (long)(start[2] + (stride[2] * (count[2] - 1)) + block[2] - 1), "H5Sget_select_bounds"); + + /* Close the dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* end test_hyper_unlim() */ + +/**************************************************************** +** +** test_internal_consistency(): Tests selections on dataspace, then +** verify that internal states of data structures of selections are +** consistent. +** +****************************************************************/ +static void +test_internal_consistency(void) +{ + hid_t all_sid; /* Dataspace ID with "all" selection */ + hid_t none_sid; /* Dataspace ID with "none" selection */ + hid_t single_pt_sid; /* Dataspace ID with single point selection */ + hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */ + hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */ + hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab + * selection that is the entire dataspace + */ + hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab + * selection that is the same as the single + * point selection + */ + hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */ + hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */ + hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */ + hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */ + hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */ + hid_t tmp_sid; /* Temporary dataspace ID */ + hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2}; + hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */ + hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */ + hsize_t start[SPACE9_RANK]; /* Hyperslab start */ + hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */ + hsize_t count[SPACE9_RANK]; /* Hyperslab block count */ + hsize_t block[SPACE9_RANK]; /* Hyperslab block size */ +#if 0 + htri_t check; /* Shape comparison return value */ +#endif + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Consistency of Internal States\n")); + HDassert(SPACE9_DIM2 >= POINT1_NPOINTS); + + /* Create dataspace for "all" selection */ + all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(all_sid, FAIL, "H5Screate_simple"); + + /* Select entire extent for dataspace */ + ret = H5Sselect_all(all_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + /* Create dataspace for "none" selection */ + none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(none_sid, FAIL, "H5Screate_simple"); + + /* Un-Select entire extent for dataspace */ + ret = H5Sselect_none(none_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Create dataspace for single point selection */ + single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_pt_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for multiple point selection */ + coord1[0][0] = 2; + coord1[0][1] = 2; + ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create dataspace for multiple point selection */ + mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(mult_pt_sid, FAIL, "H5Screate_simple"); + + /* Select sequence of ten points for multiple point selection */ + coord2[0][0] = 2; + coord2[0][1] = 2; + coord2[1][0] = 7; + coord2[1][1] = 2; + coord2[2][0] = 1; + coord2[2][1] = 4; + coord2[3][0] = 2; + coord2[3][1] = 6; + coord2[4][0] = 0; + coord2[4][1] = 8; + coord2[5][0] = 3; + coord2[5][1] = 2; + coord2[6][0] = 4; + coord2[6][1] = 4; + coord2[7][0] = 1; + coord2[7][1] = 0; + coord2[8][0] = 5; + coord2[8][1] = 1; + coord2[9][0] = 9; + coord2[9][1] = 3; + ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create dataspace for single hyperslab selection */ + single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); + + /* Select 10x10 hyperslab for single hyperslab selection */ + start[0] = 1; + start[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = (SPACE9_DIM1 - 2); + block[1] = (SPACE9_DIM2 - 2); + ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for single hyperslab selection with entire extent selected */ + single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple"); + + /* Select entire extent for hyperslab selection */ + start[0] = 0; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = SPACE9_DIM1; + block[1] = SPACE9_DIM2; + ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for single hyperslab selection with single point selected */ + single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple"); + + /* Select entire extent for hyperslab selection */ + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for regular hyperslab selection */ + regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); + + /* Select regular, strided hyperslab selection */ + start[0] = 2; + start[1] = 2; + stride[0] = 2; + stride[1] = 2; + count[0] = 5; + count[1] = 2; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for irregular hyperslab selection */ + irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple"); + + /* Create irregular hyperslab selection by OR'ing two blocks together */ + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + start[1] = 4; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 3; + block[1] = 3; + ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create dataspace for "no" hyperslab selection */ + none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); + CHECK(none_hyper_sid, FAIL, "H5Screate_simple"); + + /* Create "no" hyperslab selection by XOR'ing same blocks together */ + start[0] = 2; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 1; + count[1] = 1; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create scalar dataspace for "all" selection */ + scalar_all_sid = H5Screate(H5S_SCALAR); + CHECK(scalar_all_sid, FAIL, "H5Screate"); + + /* Create scalar dataspace for "none" selection */ + scalar_none_sid = H5Screate(H5S_SCALAR); + CHECK(scalar_none_sid, FAIL, "H5Screate"); + + /* Un-Select entire extent for dataspace */ + ret = H5Sselect_none(scalar_none_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Test all the selections created */ + + /* Test the copy of itself */ + tmp_sid = H5Scopy(all_sid); + CHECK(tmp_sid, FAIL, "H5Scopy"); +#if 0 + check = H5S__internal_consistency_test(tmp_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); +#endif + ret = H5Sclose(tmp_sid); + CHECK(ret, FAIL, "H5Sclose"); +#if 0 + /* Test "none" selection */ + check = H5S__internal_consistency_test(none_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test single point selection */ + check = H5S__internal_consistency_test(single_pt_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test multiple point selection */ + check = H5S__internal_consistency_test(mult_pt_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test "plain" single hyperslab selection */ + check = H5S__internal_consistency_test(single_hyper_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test "all" single hyperslab selection */ + check = H5S__internal_consistency_test(single_hyper_all_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test "single point" single hyperslab selection */ + check = H5S__internal_consistency_test(single_hyper_pt_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test regular, strided hyperslab selection */ + check = H5S__internal_consistency_test(regular_hyper_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test irregular hyperslab selection */ + check = H5S__internal_consistency_test(irreg_hyper_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test "no" hyperslab selection */ + check = H5S__internal_consistency_test(none_hyper_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test scalar "all" hyperslab selection */ + check = H5S__internal_consistency_test(scalar_all_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); + + /* Test scalar "none" hyperslab selection */ + check = H5S__internal_consistency_test(scalar_none_sid); + VERIFY(check, TRUE, "H5S__internal_consistency_test"); +#endif + + /* Close dataspaces */ + ret = H5Sclose(all_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(none_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(mult_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_all_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(single_hyper_pt_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(regular_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(irreg_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(none_hyper_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(scalar_all_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(scalar_none_sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_internal_consistency() */ + +/**************************************************************** +** +** test_irreg_io(): Tests unusual selections on datasets, to stress the +** new hyperslab code. +** +****************************************************************/ +static void +test_irreg_io(void) +{ + hid_t fid; /* File ID */ + hid_t did; /* Dataset ID */ + hid_t dcpl_id; /* Dataset creation property list ID */ + hid_t sid; /* File dataspace ID */ + hid_t mem_sid; /* Memory dataspace ID */ + hsize_t dims[] = {6, 12}; /* Dataspace dimensions */ + hsize_t chunk_dims[] = {2, 2}; /* Chunk dimensions */ + hsize_t mem_dims[] = {32}; /* Memory dataspace dimensions */ + hsize_t start[2]; /* Hyperslab start */ + hsize_t stride[2]; /* Hyperslab stride */ + hsize_t count[2]; /* Hyperslab block count */ + hsize_t block[2]; /* Hyperslab block size */ + unsigned char wbuf[72]; /* Write buffer */ + unsigned char rbuf[32]; /* Read buffer */ + unsigned u; /* Local index variable */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Irregular Hyperslab I/O\n")); + + /* Create file */ + fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid, FAIL, "H5Fcreate"); + + /* Create dataspace for dataset */ + sid = H5Screate_simple(2, dims, NULL); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Set chunk dimensions for dataset */ + dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(dcpl_id, FAIL, "H5Pcreate"); + ret = H5Pset_chunk(dcpl_id, 2, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + /* Create a dataset */ + did = H5Dcreate2(fid, SPACE1_NAME, H5T_NATIVE_UCHAR, sid, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); + CHECK(did, FAIL, "H5Dcreate2"); + + /* Initialize the write buffer */ + for (u = 0; u < 72; u++) + wbuf[u] = (unsigned char)u; + + /* Write entire dataset to disk */ + ret = H5Dwrite(did, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Close the DCPL */ + ret = H5Pclose(dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + + /* Create dataspace for memory selection */ + mem_sid = H5Screate_simple(1, mem_dims, NULL); + CHECK(mem_sid, FAIL, "H5Screate_simple"); + + /* Select 'L'-shaped region within dataset */ + start[0] = 0; + start[1] = 10; + stride[0] = 1; + stride[1] = 1; + count[0] = 4; + count[1] = 2; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + start[1] = 0; + stride[0] = 1; + stride[1] = 1; + count[0] = 2; + count[1] = 12; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Reset the buffer */ + HDmemset(rbuf, 0, sizeof(rbuf)); + + /* Read selection from disk */ + ret = H5Dread(did, H5T_NATIVE_UCHAR, mem_sid, sid, H5P_DEFAULT, rbuf); + CHECK(ret, FAIL, "H5Dread"); + + /* Close everything */ + ret = H5Sclose(mem_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Dclose(did); + CHECK(ret, FAIL, "H5Dclose"); + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); +} /* test_irreg_io() */ + +/**************************************************************** +** +** test_sel_iter(): Test selection iterator API routines. +** +****************************************************************/ +static void +test_sel_iter(void) +{ + hid_t sid; /* Dataspace ID */ + hid_t iter_id; /* Dataspace selection iterator ID */ + hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */ + hsize_t coord1[POINT1_NPOINTS][2]; /* Coordinates for point selection */ + hsize_t start[2]; /* Hyperslab start */ + hsize_t stride[2]; /* Hyperslab stride */ + hsize_t count[2]; /* Hyperslab block count */ + hsize_t block[2]; /* Hyperslab block size */ + size_t nseq; /* # of sequences retrieved */ + size_t nbytes; /* # of bytes retrieved */ + hsize_t off[SEL_ITER_MAX_SEQ]; /* Offsets for retrieved sequences */ + size_t len[SEL_ITER_MAX_SEQ]; /* Lengths for retrieved sequences */ + H5S_sel_type sel_type; /* Selection type */ + unsigned sel_share; /* Whether to share selection with dataspace */ + unsigned sel_iter_flags; /* Flags for selection iterator creation */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Dataspace Selection Iterators\n")); + + /* Create dataspace */ + sid = H5Screate_simple(2, dims1, NULL); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Try creating selection iterator object with bad parameters */ + H5E_BEGIN_TRY + { /* Bad dataspace ID */ + iter_id = H5Ssel_iter_create(H5I_INVALID_HID, (size_t)1, (unsigned)0); + } + H5E_END_TRY; + VERIFY(iter_id, FAIL, "H5Ssel_iter_create"); + H5E_BEGIN_TRY + { /* Bad element size */ + iter_id = H5Ssel_iter_create(sid, (size_t)0, (unsigned)0); + } + H5E_END_TRY; + VERIFY(iter_id, FAIL, "H5Ssel_iter_create"); + H5E_BEGIN_TRY + { /* Bad flag(s) */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)0xffff); + } + H5E_END_TRY; + VERIFY(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Try closing selection iterator, with bad parameters */ + H5E_BEGIN_TRY + { /* Invalid ID */ + ret = H5Ssel_iter_close(H5I_INVALID_HID); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_close"); + H5E_BEGIN_TRY + { /* Not a selection iterator ID */ + ret = H5Ssel_iter_close(sid); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_close"); + + /* Try with no selection sharing, and with sharing */ + for (sel_share = 0; sel_share < 2; sel_share++) { + /* Set selection iterator sharing flags */ + if (sel_share) + sel_iter_flags = H5S_SEL_ITER_SHARE_WITH_DATASPACE; + else + sel_iter_flags = 0; + + /* Create selection iterator object */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); + CHECK(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Close selection iterator */ + ret = H5Ssel_iter_close(iter_id); + CHECK(ret, FAIL, "H5Ssel_iter_close"); + + /* Try closing selection iterator twice */ + H5E_BEGIN_TRY + { /* Invalid ID */ + ret = H5Ssel_iter_close(iter_id); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_close"); + + /* Create selection iterator object */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); + CHECK(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Try resetting selection iterator with bad parameters */ + H5E_BEGIN_TRY + { + ret = H5Ssel_iter_reset(H5I_INVALID_HID, sid); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_reset"); + H5E_BEGIN_TRY + { + ret = H5Ssel_iter_reset(iter_id, H5I_INVALID_HID); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_reset"); + + /* Try retrieving sequences, with bad parameters */ + H5E_BEGIN_TRY + { /* Invalid ID */ + ret = H5Ssel_iter_get_seq_list(H5I_INVALID_HID, (size_t)1, (size_t)1, &nseq, &nbytes, off, len); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); + H5E_BEGIN_TRY + { /* Invalid nseq pointer */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, NULL, &nbytes, off, len); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); + H5E_BEGIN_TRY + { /* Invalid nbytes pointer */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, NULL, off, len); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); + H5E_BEGIN_TRY + { /* Invalid offset array */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, NULL, len); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); + H5E_BEGIN_TRY + { /* Invalid length array */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, off, NULL); + } + H5E_END_TRY; + VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); + + /* Close selection iterator */ + ret = H5Ssel_iter_close(iter_id); + CHECK(ret, FAIL, "H5Ssel_iter_close"); + + /* Test iterators on various basic selection types */ + for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) { + switch (sel_type) { + case H5S_SEL_NONE: /* "None" selection */ + ret = H5Sselect_none(sid); + CHECK(ret, FAIL, "H5Sselect_none"); + break; + + case H5S_SEL_POINTS: /* Point selection */ + /* Select sequence of ten points */ + coord1[0][0] = 0; + coord1[0][1] = 9; + coord1[1][0] = 1; + coord1[1][1] = 2; + coord1[2][0] = 2; + coord1[2][1] = 4; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[5][0] = 2; + coord1[5][1] = 10; + coord1[6][0] = 0; + coord1[6][1] = 11; + coord1[7][0] = 1; + coord1[7][1] = 4; + coord1[8][0] = 2; + coord1[8][1] = 1; + coord1[9][0] = 0; + coord1[9][1] = 3; + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, + (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + break; + + case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ + /* Select regular hyperslab */ + start[0] = 3; + start[1] = 0; + stride[0] = 2; + stride[1] = 2; + count[0] = 2; + count[1] = 5; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + break; + + case H5S_SEL_ALL: /* "All" selection */ + ret = H5Sselect_all(sid); + CHECK(ret, FAIL, "H5Sselect_all"); + break; + + case H5S_SEL_ERROR: + case H5S_SEL_N: + default: + HDassert(0 && "Can't occur"); + break; + } /* end switch */ + + /* Create selection iterator object */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); + CHECK(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Try retrieving no sequences, with 0 for maxseq & maxbytes */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + + /* Try retrieving all sequences */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + + /* Check results from retrieving sequence list */ + switch (sel_type) { + case H5S_SEL_NONE: /* "None" selection */ + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_POINTS: /* Point selection */ + VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ + VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_ALL: /* "All" selection */ + VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_ERROR: + case H5S_SEL_N: + default: + HDassert(0 && "Can't occur"); + break; + } /* end switch */ + + /* Close selection iterator */ + ret = H5Ssel_iter_close(iter_id); + CHECK(ret, FAIL, "H5Ssel_iter_close"); + } /* end for */ + + /* Create selection iterator object */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); + CHECK(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Test iterators on various basic selection types using + * H5Ssel_iter_reset instead of creating multiple iterators */ + for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) { + switch (sel_type) { + case H5S_SEL_NONE: /* "None" selection */ + ret = H5Sselect_none(sid); + CHECK(ret, FAIL, "H5Sselect_none"); + break; + + case H5S_SEL_POINTS: /* Point selection */ + /* Select sequence of ten points */ + coord1[0][0] = 0; + coord1[0][1] = 9; + coord1[1][0] = 1; + coord1[1][1] = 2; + coord1[2][0] = 2; + coord1[2][1] = 4; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[5][0] = 2; + coord1[5][1] = 10; + coord1[6][0] = 0; + coord1[6][1] = 11; + coord1[7][0] = 1; + coord1[7][1] = 4; + coord1[8][0] = 2; + coord1[8][1] = 1; + coord1[9][0] = 0; + coord1[9][1] = 3; + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, + (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + break; + + case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ + /* Select regular hyperslab */ + start[0] = 3; + start[1] = 0; + stride[0] = 2; + stride[1] = 2; + count[0] = 2; + count[1] = 5; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + break; + + case H5S_SEL_ALL: /* "All" selection */ + ret = H5Sselect_all(sid); + CHECK(ret, FAIL, "H5Sselect_all"); + break; + + case H5S_SEL_ERROR: + case H5S_SEL_N: + default: + HDassert(0 && "Can't occur"); + break; + } /* end switch */ + + /* Try retrieving no sequences, with 0 for maxseq & maxbytes */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + + /* Reset iterator */ + ret = H5Ssel_iter_reset(iter_id, sid); + CHECK(ret, FAIL, "H5Ssel_iter_reset"); + + /* Try retrieving all sequences */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + + /* Check results from retrieving sequence list */ + switch (sel_type) { + case H5S_SEL_NONE: /* "None" selection */ + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_POINTS: /* Point selection */ + VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ + VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_ALL: /* "All" selection */ + VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_ERROR: + case H5S_SEL_N: + default: + HDassert(0 && "Can't occur"); + break; + } /* end switch */ + + /* Reset iterator */ + ret = H5Ssel_iter_reset(iter_id, sid); + CHECK(ret, FAIL, "H5Ssel_iter_reset"); + + /* Try retrieving all sequences again */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + + /* Check results from retrieving sequence list */ + switch (sel_type) { + case H5S_SEL_NONE: /* "None" selection */ + VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_POINTS: /* Point selection */ + VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ + VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_ALL: /* "All" selection */ + VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list"); + break; + + case H5S_SEL_ERROR: + case H5S_SEL_N: + default: + HDassert(0 && "Can't occur"); + break; + } /* end switch */ + + /* Reset iterator */ + ret = H5Ssel_iter_reset(iter_id, sid); + CHECK(ret, FAIL, "H5Ssel_iter_reset"); + } /* end for */ + + /* Close selection iterator */ + ret = H5Ssel_iter_close(iter_id); + CHECK(ret, FAIL, "H5Ssel_iter_close"); + + /* Point selection which will merge into smaller # of sequences */ + coord1[0][0] = 0; + coord1[0][1] = 9; + coord1[1][0] = 0; + coord1[1][1] = 10; + coord1[2][0] = 0; + coord1[2][1] = 11; + coord1[3][0] = 0; + coord1[3][1] = 6; + coord1[4][0] = 1; + coord1[4][1] = 8; + coord1[5][0] = 2; + coord1[5][1] = 10; + coord1[6][0] = 0; + coord1[6][1] = 11; + coord1[7][0] = 1; + coord1[7][1] = 4; + coord1[8][0] = 1; + coord1[8][1] = 5; + coord1[9][0] = 1; + coord1[9][1] = 6; + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Create selection iterator object */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); + CHECK(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Try retrieving all sequences */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + + /* Reset iterator */ + ret = H5Ssel_iter_reset(iter_id, sid); + CHECK(ret, FAIL, "H5Ssel_iter_reset"); + + /* Try retrieving all sequences again */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); + + /* Close selection iterator */ + ret = H5Ssel_iter_close(iter_id); + CHECK(ret, FAIL, "H5Ssel_iter_close"); + + /* Select irregular hyperslab, which will merge into smaller # of sequences */ + start[0] = 3; + start[1] = 0; + stride[0] = 2; + stride[1] = 2; + count[0] = 2; + count[1] = 5; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + start[1] = 3; + stride[0] = 2; + stride[1] = 2; + count[0] = 2; + count[1] = 5; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Create selection iterator object */ + iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); + CHECK(iter_id, FAIL, "H5Ssel_iter_create"); + + /* Try retrieving all sequences */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list"); + + /* Reset iterator */ + ret = H5Ssel_iter_reset(iter_id, sid); + CHECK(ret, FAIL, "H5Ssel_iter_reset"); + + /* Try retrieving all sequences again */ + ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, + &nbytes, off, len); + CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); + VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); + VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list"); + + /* Close selection iterator */ + ret = H5Ssel_iter_close(iter_id); + CHECK(ret, FAIL, "H5Ssel_iter_close"); + + } /* end for */ + + /* Close dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_sel_iter() */ + +/**************************************************************** +** +** test_select_intersect_block(): Test selections on dataspace, +** verify that "intersect block" routine is working correctly. +** +****************************************************************/ +static void +test_select_intersect_block(void) +{ + hid_t sid; /* Dataspace ID */ + hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */ + hsize_t block_start[] = {1, 3}; /* Start offset for block */ + hsize_t block_end[] = {2, 5}; /* End offset for block */ + hsize_t block_end2[] = {0, 5}; /* Bad end offset for block */ + hsize_t block_end3[] = {2, 2}; /* Another bad end offset for block */ + hsize_t block_end4[] = {1, 3}; /* End offset that makes a single element block */ + hsize_t coord[10][2]; /* Coordinates for point selection */ + hsize_t start[2]; /* Starting location of hyperslab */ + hsize_t stride[2]; /* Stride of hyperslab */ + hsize_t count[2]; /* Element count of hyperslab */ + hsize_t block[2]; /* Block size of hyperslab */ + htri_t status; /* Intersection status */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Dataspace Selection Block Intersection\n")); + + /* Create dataspace */ + sid = H5Screate_simple(2, dims1, NULL); + CHECK(sid, FAIL, "H5Screate_simple"); + + /* Try intersection calls with bad parameters */ + H5E_BEGIN_TRY + { /* Bad dataspace ID */ + status = H5Sselect_intersect_block(H5I_INVALID_HID, block_start, block_end); + } + H5E_END_TRY; + VERIFY(status, FAIL, "H5Sselect_intersect_block"); + H5E_BEGIN_TRY + { /* Bad start pointer */ + status = H5Sselect_intersect_block(sid, NULL, block_end); + } + H5E_END_TRY; + VERIFY(status, FAIL, "H5Sselect_intersect_block"); + H5E_BEGIN_TRY + { /* Bad end pointer */ + status = H5Sselect_intersect_block(sid, block_start, NULL); + } + H5E_END_TRY; + VERIFY(status, FAIL, "H5Sselect_intersect_block"); + H5E_BEGIN_TRY + { /* Invalid block */ + status = H5Sselect_intersect_block(sid, block_start, block_end2); + } + H5E_END_TRY; + VERIFY(status, FAIL, "H5Sselect_intersect_block"); + H5E_BEGIN_TRY + { /* Another invalid block */ + status = H5Sselect_intersect_block(sid, block_start, block_end3); + } + H5E_END_TRY; + VERIFY(status, FAIL, "H5Sselect_intersect_block"); + + /* Set selection to 'none' */ + ret = H5Sselect_none(sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* Test block intersection with 'none' selection (always false) */ + status = H5Sselect_intersect_block(sid, block_start, block_end); + VERIFY(status, FALSE, "H5Sselect_intersect_block"); + + /* Set selection to 'all' */ + ret = H5Sselect_all(sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + /* Test block intersection with 'all' selection (always true) */ + status = H5Sselect_intersect_block(sid, block_start, block_end); + VERIFY(status, TRUE, "H5Sselect_intersect_block"); + + /* Select sequence of ten points */ + coord[0][0] = 0; + coord[0][1] = 10; + coord[1][0] = 1; + coord[1][1] = 2; + coord[2][0] = 2; + coord[2][1] = 4; + coord[3][0] = 0; + coord[3][1] = 6; + coord[4][0] = 1; + coord[4][1] = 8; + coord[5][0] = 2; + coord[5][1] = 11; + coord[6][0] = 0; + coord[6][1] = 4; + coord[7][0] = 1; + coord[7][1] = 0; + coord[8][0] = 2; + coord[8][1] = 1; + coord[9][0] = 0; + coord[9][1] = 3; + ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)10, (const hsize_t *)coord); + CHECK(ret, FAIL, "H5Sselect_elements"); + + /* Test block intersection with 'point' selection */ + status = H5Sselect_intersect_block(sid, block_start, block_end); + VERIFY(status, TRUE, "H5Sselect_intersect_block"); + status = H5Sselect_intersect_block(sid, block_start, block_end4); + VERIFY(status, FALSE, "H5Sselect_intersect_block"); + + /* Select single 4x6 hyperslab block at (2,1) */ + start[0] = 2; + start[1] = 1; + stride[0] = 1; + stride[1] = 1; + count[0] = 4; + count[1] = 6; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Test block intersection with single 'hyperslab' selection */ + status = H5Sselect_intersect_block(sid, block_start, block_end); + VERIFY(status, TRUE, "H5Sselect_intersect_block"); + status = H5Sselect_intersect_block(sid, block_start, block_end4); + VERIFY(status, FALSE, "H5Sselect_intersect_block"); + + /* 'OR' another hyperslab block in, making an irregular hyperslab selection */ + start[0] = 3; + start[1] = 2; + stride[0] = 1; + stride[1] = 1; + count[0] = 4; + count[1] = 6; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Test block intersection with 'hyperslab' selection */ + status = H5Sselect_intersect_block(sid, block_start, block_end); + VERIFY(status, TRUE, "H5Sselect_intersect_block"); + status = H5Sselect_intersect_block(sid, block_start, block_end4); + VERIFY(status, FALSE, "H5Sselect_intersect_block"); + + /* Select regular, strided hyperslab selection */ + start[0] = 2; + start[1] = 1; + stride[0] = 2; + stride[1] = 2; + count[0] = 2; + count[1] = 4; + block[0] = 1; + block[1] = 1; + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Test block intersection with single 'hyperslab' selection */ + status = H5Sselect_intersect_block(sid, block_start, block_end); + VERIFY(status, TRUE, "H5Sselect_intersect_block"); + status = H5Sselect_intersect_block(sid, block_start, block_end4); + VERIFY(status, FALSE, "H5Sselect_intersect_block"); + + /* Close dataspace */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); +} /* test_select_intersect_block() */ + +/**************************************************************** +** +** test_hyper_io_1d(): +** Test to verify all the selected 10th element in the 1-d file +** dataspace is read correctly into the 1-d contiguous memory space. +** This is modeled after the test scenario described in HDFFV-10585 +** that demonstrated the hyperslab slowness. A fix to speed up +** performance is in place to handle the special case for 1-d disjoint +** file dataspace into 1-d single block contiguous memory space. +** +****************************************************************/ +static void +test_hyper_io_1d(void) +{ + hid_t fid; /* File ID */ + hid_t did; /* Dataset ID */ + hid_t sid, mid; /* Dataspace IDs */ + hid_t dcpl; /* Dataset creation property list ID */ + hsize_t dims[1], maxdims[1], dimsm[1]; /* Dataset dimension sizes */ + hsize_t chunk_dims[1]; /* Chunk dimension size */ + hsize_t offset[1]; /* Starting offset for hyperslab */ + hsize_t stride[1]; /* Distance between blocks in the hyperslab selection */ + hsize_t count[1]; /* # of blocks in the the hyperslab selection */ + hsize_t block[1]; /* Size of block in the hyperslab selection */ + unsigned int wdata[CHUNKSZ]; /* Data to be written */ + unsigned int rdata[NUM_ELEMENTS / 10]; /* Data to be read */ + herr_t ret; /* Generic return value */ + unsigned i; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(6, ("Testing Hyperslab I/O for 1-d single block memory space\n")); + + for (i = 0; i < CHUNKSZ; i++) + wdata[i] = i; + + /* Create the file file */ + fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); + CHECK(fid, H5I_INVALID_HID, "H5Fcreate"); + + /* Create file dataspace */ + dims[0] = CHUNKSZ; + maxdims[0] = H5S_UNLIMITED; + sid = H5Screate_simple(RANK, dims, maxdims); + CHECK(sid, H5I_INVALID_HID, "H5Pcreate"); + + /* Create memory dataspace */ + dimsm[0] = CHUNKSZ; + mid = H5Screate_simple(RANK, dimsm, NULL); + CHECK(mid, H5I_INVALID_HID, "H5Pcreate"); + + /* Set up to create a chunked dataset */ + dcpl = H5Pcreate(H5P_DATASET_CREATE); + CHECK(dcpl, H5I_INVALID_HID, "H5Pcreate"); + + chunk_dims[0] = CHUNKSZ; + ret = H5Pset_chunk(dcpl, RANK, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + /* Create a chunked dataset */ + did = H5Dcreate2(fid, DNAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); + CHECK(did, H5I_INVALID_HID, "H5Dcreate2"); + + /* Set up hyperslab selection for file dataspace */ + offset[0] = 0; + stride[0] = 1; + count[0] = 1; + block[0] = CHUNKSZ; + + /* Write to each chunk in the dataset */ + for (i = 0; i < NUMCHUNKS; i++) { + /* Set the hyperslab selection */ + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Write to the dataset */ + ret = H5Dwrite(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, wdata); + CHECK(ret, FAIL, "H5Dwrite"); + + /* Extend the dataset's dataspace */ + if (i < (NUMCHUNKS - 1)) { + offset[0] = offset[0] + CHUNKSZ; + dims[0] = dims[0] + CHUNKSZ; + ret = H5Dset_extent(did, dims); + CHECK(ret, FAIL, "H5Dset_extent"); + + /* Get the dataset's current dataspace */ + sid = H5Dget_space(did); + CHECK(sid, H5I_INVALID_HID, "H5Dget_space"); + } + } + + /* Closing */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(mid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Dclose(did); + CHECK(ret, FAIL, "H5Dclose"); + ret = H5Pclose(dcpl); + CHECK(ret, FAIL, "H5Pclose"); + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); + + /* Open the file */ + fid = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT); + CHECK(fid, H5I_INVALID_HID, "H5Fopen"); + + /* Open the dataset */ + did = H5Dopen2(fid, DNAME, H5P_DEFAULT); + CHECK(did, H5I_INVALID_HID, "H5Dopen"); + + /* Set up to read every 10th element in file dataspace */ + offset[0] = 1; + stride[0] = 10; + count[0] = NUM_ELEMENTS / 10; + block[0] = 1; + + /* Get the dataset's dataspace */ + sid = H5Dget_space(did); + CHECK(sid, H5I_INVALID_HID, "H5Dget_space"); + ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* Set up contiguous memory dataspace for the selected elements */ + dimsm[0] = count[0]; + mid = H5Screate_simple(RANK, dimsm, NULL); + CHECK(mid, H5I_INVALID_HID, "H5Screate_simple"); + + /* Read all the selected 10th elements in the dataset into "rdata" */ + ret = H5Dread(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, rdata); + CHECK(ret, FAIL, "H5Dread"); + + /* Verify data read is correct */ + for (i = 0; i < 6; i += 2) { + VERIFY(rdata[i], 1, "H5Dread\n"); + VERIFY(rdata[i + 1], 11, "H5Dread\n"); + } + + /* Closing */ + ret = H5Sclose(mid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Dclose(did); + CHECK(ret, FAIL, "H5Dclose"); + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); + +} /* test_hyper_io_1d() */ + +/**************************************************************** +** +** test_h5s_set_extent_none: +** Test to verify the behavior of dataspace code when passed +** a dataspace modified by H5Sset_extent_none(). +** +****************************************************************/ +static void +test_h5s_set_extent_none(void) +{ + hid_t sid = H5I_INVALID_HID; + hid_t dst_sid = H5I_INVALID_HID; + hid_t null_sid = H5I_INVALID_HID; + int rank = 1; + hsize_t current_dims = 123; + H5S_class_t cls; + int out_rank; + hsize_t out_dims; + hsize_t out_maxdims; + hssize_t out_points; + htri_t equal; + herr_t ret; + + /* Specific values here don't matter as we're just going to reset */ + sid = H5Screate_simple(rank, ¤t_dims, NULL); + CHECK(sid, H5I_INVALID_HID, "H5Screate_simple"); + + /* Dataspace class will be H5S_NULL after this. + * In versions prior to 1.10.7 / 1.12.1 this would produce a + * dataspace with the internal H5S_NO_CLASS class. + */ + ret = H5Sset_extent_none(sid); + CHECK(ret, FAIL, "H5Sset_extent_none"); + cls = H5Sget_simple_extent_type(sid); + VERIFY(cls, H5S_NULL, "H5Sget_simple_extent_type"); + + /* Extent getters should generate normal results and not segfault. + */ + out_rank = H5Sget_simple_extent_dims(sid, &out_dims, &out_maxdims); + VERIFY(out_rank, 0, "H5Sget_simple_extent_dims"); + out_rank = H5Sget_simple_extent_ndims(sid); + VERIFY(out_rank, 0, "H5Sget_simple_extent_ndims"); + out_points = H5Sget_simple_extent_npoints(sid); + VERIFY(out_points, 0, "H5Sget_simple_extent_npoints"); + + /* Check that copying the new (non-)extent works. + */ + dst_sid = H5Screate_simple(rank, ¤t_dims, NULL); + CHECK(dst_sid, H5I_INVALID_HID, "H5Screate_simple"); + ret = H5Sextent_copy(dst_sid, sid); + CHECK(ret, FAIL, "H5Sextent_copy"); + + /* Check that H5Sset_extent_none() produces the same extent as + * H5Screate(H5S_NULL). + */ + null_sid = H5Screate(H5S_NULL); + CHECK(null_sid, H5I_INVALID_HID, "H5Screate"); + equal = H5Sextent_equal(sid, null_sid); + VERIFY(equal, TRUE, "H5Sextent_equal"); + + /* Close */ + ret = H5Sclose(sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(dst_sid); + CHECK(ret, FAIL, "H5Sclose"); + ret = H5Sclose(null_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_h5s_set_extent_none() */ + +/**************************************************************** +** +** test_select(): Main H5S selection testing routine. +** +****************************************************************/ +void +test_select(void) +{ + hid_t plist_id; /* Property list for reading random hyperslabs */ + hid_t fapl; /* Property list accessing the file */ + int mdc_nelmts; /* Metadata number of elements */ + size_t rdcc_nelmts; /* Raw data number of elements */ + size_t rdcc_nbytes; /* Raw data number of bytes */ + double rdcc_w0; /* Raw data write percentage */ + hssize_t offset[SPACE7_RANK] = {1, 1}; /* Offset for testing selection offsets */ + const char *env_h5_drvr; /* File Driver value from environment */ + herr_t ret; /* Generic return value */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Selections\n")); + + /* Get the VFD to use */ + env_h5_drvr = HDgetenv(HDF5_DRIVER); + if (env_h5_drvr == NULL) + env_h5_drvr = "nomatch"; + + /* Create a dataset transfer property list */ + plist_id = H5Pcreate(H5P_DATASET_XFER); + CHECK(plist_id, FAIL, "H5Pcreate"); + + /* test I/O with a very small buffer for reads */ + ret = H5Pset_buffer(plist_id, (size_t)59, NULL, NULL); + CHECK(ret, FAIL, "H5Pset_buffer"); + + /* These next tests use the same file */ + test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */ + test_select_hyper(plist_id); /* Test basic H5S hyperslab selection code */ + test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing + element selections */ + test_select_point(plist_id); /* Test basic H5S element selection code, also tests appending to existing + element selections */ + test_select_all(H5P_DEFAULT); /* Test basic all & none selection code */ + test_select_all(plist_id); /* Test basic all & none selection code */ + test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */ + test_select_all_hyper(plist_id); /* Test basic all & none selection code */ + + /* These next tests use the same file */ + test_select_combo(); /* Test combined hyperslab & element selection code */ + test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */ + test_select_hyper_stride(plist_id); /* Test strided hyperslab selection code */ + test_select_hyper_contig(H5T_STD_U16LE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */ + test_select_hyper_contig(H5T_STD_U16LE, plist_id); /* Test contiguous hyperslab selection code */ + test_select_hyper_contig(H5T_STD_U16BE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */ + test_select_hyper_contig(H5T_STD_U16BE, plist_id); /* Test contiguous hyperslab selection code */ + test_select_hyper_contig2(H5T_STD_U16LE, + H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */ + test_select_hyper_contig2(H5T_STD_U16LE, plist_id); /* Test more contiguous hyperslab selection cases */ + test_select_hyper_contig2(H5T_STD_U16BE, + H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */ + test_select_hyper_contig2(H5T_STD_U16BE, plist_id); /* Test more contiguous hyperslab selection cases */ + test_select_hyper_contig3(H5T_STD_U16LE, + H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ + test_select_hyper_contig3(H5T_STD_U16LE, + plist_id); /* Test yet more contiguous hyperslab selection cases */ + test_select_hyper_contig3(H5T_STD_U16BE, + H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ + test_select_hyper_contig3(H5T_STD_U16BE, + plist_id); /* Test yet more contiguous hyperslab selection cases */ +#if 0 + test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT); + test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id); + test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT); + test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id); +#else + HDprintf("** SKIPPED a test due to file creation issues\n"); +#endif +#if 0 + test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT); + test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id); + test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT); + test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id); +#else + HDprintf("** SKIPPED a test due to assertion in HDF5\n"); +#endif + test_select_hyper_copy(); /* Test hyperslab selection copying code */ + test_select_point_copy(); /* Test point selection copying code */ + test_select_hyper_offset(); /* Test selection offset code with hyperslabs */ + test_select_hyper_offset2(); /* Test more selection offset code with hyperslabs */ + test_select_point_offset(); /* Test selection offset code with elements */ + test_select_hyper_union(); /* Test hyperslab union code */ + + /* Fancy hyperslab API tests */ + test_select_hyper_union_stagger(); /* Test hyperslab union code for staggered slabs */ + test_select_hyper_union_3d(); /* Test hyperslab union code for 3-D dataset */ + test_select_hyper_valid_combination(); /* Test different input combinations */ + + /* The following tests are currently broken with the Direct VFD */ + if (HDstrcmp(env_h5_drvr, "direct") != 0) { + test_select_hyper_and_2d(); /* Test hyperslab intersection (AND) code for 2-D dataset */ + test_select_hyper_xor_2d(); /* Test hyperslab XOR code for 2-D dataset */ + test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */ + test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */ + } + + /* test the random hyperslab I/O with the default property list for reading */ + test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */ + + /* test random hyperslab I/O with a small buffer for reads */ + test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */ + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Get the default file access properties for caching */ + ret = H5Pget_cache(fapl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); + CHECK(ret, FAIL, "H5Pget_cache"); + + /* Increase the size of the raw data cache */ + rdcc_nbytes = 10 * 1024 * 1024; + + /* Set the file access properties for caching */ + ret = H5Pset_cache(fapl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); + CHECK(ret, FAIL, "H5Pset_cache"); + + /* Test reading in a large hyperslab with a chunked dataset */ + test_select_hyper_chunk(fapl, H5P_DEFAULT); + + /* Test reading in a large hyperslab with a chunked dataset a small amount at a time */ + test_select_hyper_chunk(fapl, plist_id); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + /* Close dataset transfer property list */ + ret = H5Pclose(plist_id); + CHECK(ret, FAIL, "H5Pclose"); + + /* More tests for checking validity of selections */ + test_select_valid(); + + /* Tests for combining "all" and "none" selections with hyperslabs */ + test_select_combine(); + + /* Test filling selections */ + /* (Also tests iterating through each selection */ + test_select_fill_all(); + test_select_fill_point(NULL); + test_select_fill_point(offset); + test_select_fill_hyper_simple(NULL); + test_select_fill_hyper_simple(offset); + test_select_fill_hyper_regular(NULL); + test_select_fill_hyper_regular(offset); + test_select_fill_hyper_irregular(NULL); + test_select_fill_hyper_irregular(offset); + + /* Test 0-sized selections */ + test_select_none(); + + /* Test selections on scalar dataspaces */ + test_scalar_select(); + test_scalar_select2(); + test_scalar_select3(); + + /* Test "same shape" routine */ + test_shape_same(); + + /* Test "same shape" routine for selections of different rank */ + test_shape_same_dr(); + + /* Test "re-build" routine */ + test_space_rebuild(); + + /* Test "update diminfo" routine */ + test_space_update_diminfo(); + + /* Test point selections in chunked datasets */ + test_select_point_chunk(); + + /* Test scalar dataspaces in chunked datasets */ + test_select_scalar_chunk(); +#if 0 + /* Test using selection offset on hyperslab in chunked dataset */ + test_select_hyper_chunk_offset(); + test_select_hyper_chunk_offset2(); +#else + HDprintf("** SKIPPED a test due to assertion in HDF5\n"); +#endif + + /* Test selection bounds with & without offsets */ + test_select_bounds(); + + /* Test 'regular' hyperslab query routines */ + test_hyper_regular(); + + /* Test unlimited hyperslab selections */ + test_hyper_unlim(); + + /* Test the consistency of internal data structures of selection */ + test_internal_consistency(); + + /* Test irregular selection I/O */ + test_irreg_io(); + + /* Test selection iterators */ + test_sel_iter(); + + /* Test selection intersection with block */ + test_select_intersect_block(); + + /* Test reading of 1-d disjoint file space to 1-d single block memory space */ + test_hyper_io_1d(); + + /* Test H5Sset_extent_none() functionality after we updated it to set + * the class to H5S_NULL instead of H5S_NO_CLASS. + */ + test_h5s_set_extent_none(); + +} /* test_select() */ + +/*------------------------------------------------------------------------- + * Function: cleanup_select + * + * Purpose: Cleanup temporary test files + * + * Return: none + * + * Programmer: Albert Cheng + * July 2, 1998 + * + *------------------------------------------------------------------------- + */ +void +cleanup_select(void) +{ + H5Fdelete(FILENAME, H5P_DEFAULT); +} |