summaryrefslogtreecommitdiffstats
path: root/test/API/tselect.c
diff options
context:
space:
mode:
Diffstat (limited to 'test/API/tselect.c')
-rw-r--r--test/API/tselect.c16314
1 files changed, 16314 insertions, 0 deletions
diff --git a/test/API/tselect.c b/test/API/tselect.c
new file mode 100644
index 0000000..a2f377d
--- /dev/null
+++ b/test/API/tselect.c
@@ -0,0 +1,16314 @@
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ * Copyright by The HDF Group. *
+ * All rights reserved. *
+ * *
+ * This file is part of HDF5. The full HDF5 copyright notice, including *
+ * terms governing use, modification, and redistribution, is contained in *
+ * the COPYING file, which can be found at the root of the source code *
+ * distribution tree, or in https://www.hdfgroup.org/licenses. *
+ * If you do not have access to either file, you may request a copy from *
+ * help@hdfgroup.org. *
+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+/***********************************************************
+ *
+ * Test program: tselect
+ *
+ * Test the Dataspace selection functionality
+ *
+ *************************************************************/
+
+#define H5S_FRIEND /*suppress error about including H5Spkg */
+
+/* Define this macro to indicate that the testing APIs should be available */
+#define H5S_TESTING
+
+#include "testhdf5.h"
+#include "hdf5.h"
+/* #include "H5Spkg.h" */ /* Dataspaces */
+
+#define FILENAME "tselect.h5"
+
+/* 3-D dataset with fixed dimensions */
+#define SPACE1_NAME "Space1"
+#define SPACE1_RANK 3
+#define SPACE1_DIM1 3
+#define SPACE1_DIM2 15
+#define SPACE1_DIM3 13
+
+/* 2-D dataset with fixed dimensions */
+#define SPACE2_NAME "Space2"
+#define SPACE2_RANK 2
+#define SPACE2_DIM1 30
+#define SPACE2_DIM2 26
+#define SPACE2A_RANK 1
+#define SPACE2A_DIM1 (SPACE2_DIM1 * SPACE2_DIM2)
+
+/* 2-D dataset with fixed dimensions */
+#define SPACE3_NAME "Space3"
+#define SPACE3_RANK 2
+#define SPACE3_DIM1 15
+#define SPACE3_DIM2 26
+
+/* 3-D dataset with fixed dimensions */
+#define SPACE4_NAME "Space4"
+#define SPACE4_RANK 3
+#define SPACE4_DIM1 11
+#define SPACE4_DIM2 13
+#define SPACE4_DIM3 17
+
+/* Number of random hyperslabs to test */
+#define NHYPERSLABS 10
+
+/* Number of random hyperslab tests performed */
+#define NRAND_HYPER 100
+
+/* 5-D dataset with fixed dimensions */
+#define SPACE5_NAME "Space5"
+#define SPACE5_RANK 5
+#define SPACE5_DIM1 10
+#define SPACE5_DIM2 10
+#define SPACE5_DIM3 10
+#define SPACE5_DIM4 10
+#define SPACE5_DIM5 10
+
+/* 1-D dataset with same size as 5-D dataset */
+#define SPACE6_RANK 1
+#define SPACE6_DIM1 (SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5)
+
+/* 2-D dataset with easy dimension sizes */
+#define SPACE7_NAME "Space7"
+#define SPACE7_RANK 2
+#define SPACE7_DIM1 10
+#define SPACE7_DIM2 10
+#define SPACE7_FILL 254
+#define SPACE7_CHUNK_DIM1 5
+#define SPACE7_CHUNK_DIM2 5
+#define SPACE7_NPOINTS 8
+
+/* 4-D dataset with fixed dimensions */
+#define SPACE8_NAME "Space8"
+#define SPACE8_RANK 4
+#define SPACE8_DIM1 11
+#define SPACE8_DIM2 13
+#define SPACE8_DIM3 17
+#define SPACE8_DIM4 19
+
+/* Another 2-D dataset with easy dimension sizes */
+#define SPACE9_RANK 2
+#define SPACE9_DIM1 12
+#define SPACE9_DIM2 12
+
+/* Element selection information */
+#define POINT1_NPOINTS 10
+
+/* Chunked dataset information */
+#define DATASETNAME "ChunkArray"
+#define NX_SUB 87 /* hyperslab dimensions */
+#define NY_SUB 61
+#define NZ_SUB 181
+#define NX 87 /* output buffer dimensions */
+#define NY 61
+#define NZ 181
+#define RANK_F 3 /* File dataspace rank */
+#define RANK_M 3 /* Memory dataspace rank */
+#define X 87 /* dataset dimensions */
+#define Y 61
+#define Z 181
+#define CHUNK_X 87 /* chunk dimensions */
+#define CHUNK_Y 61
+#define CHUNK_Z 181
+
+/* Basic chunk size */
+#define SPACE10_DIM1 180
+#define SPACE10_CHUNK_SIZE 12
+
+/* Information for bounds checking test */
+#define SPACE11_RANK 2
+#define SPACE11_DIM1 100
+#define SPACE11_DIM2 100
+#define SPACE11_NPOINTS 4
+
+/* Information for offsets w/chunks test #2 */
+#define SPACE12_RANK 1
+#define SPACE12_DIM0 25
+#define SPACE12_CHUNK_DIM0 5
+
+/* Information for Space rebuild test */
+#define SPACERE1_RANK 1
+#define SPACERE1_DIM0 20
+#define SPACERE2_RANK 2
+#define SPACERE2_DIM0 8
+#define SPACERE2_DIM1 12
+#define SPACERE3_RANK 3
+#define SPACERE3_DIM0 8
+#define SPACERE3_DIM1 12
+#define SPACERE3_DIM2 8
+#define SPACERE4_RANK 4
+#define SPACERE4_DIM0 8
+#define SPACERE4_DIM1 12
+#define SPACERE4_DIM2 8
+#define SPACERE4_DIM3 12
+#define SPACERE5_RANK 5
+#define SPACERE5_DIM0 8
+#define SPACERE5_DIM1 12
+#define SPACERE5_DIM2 8
+#define SPACERE5_DIM3 12
+#define SPACERE5_DIM4 8
+
+/* Information for Space update diminfo test */
+#define SPACEUD1_DIM0 20
+#define SPACEUD3_DIM0 9
+#define SPACEUD3_DIM1 12
+#define SPACEUD3_DIM2 13
+
+/* #defines for shape same / different rank tests */
+#define SS_DR_MAX_RANK 5
+
+/* Information for regular hyperslab query test */
+#define SPACE13_RANK 3
+#define SPACE13_DIM1 50
+#define SPACE13_DIM2 50
+#define SPACE13_DIM3 50
+#define SPACE13_NPOINTS 4
+
+/* Information for testing selection iterators */
+#define SEL_ITER_MAX_SEQ 256
+
+/* Defines for test_hyper_io_1d() */
+#define DNAME "DSET_1D"
+#define RANK 1
+#define NUMCHUNKS 3
+#define CHUNKSZ 20
+#define NUM_ELEMENTS NUMCHUNKS *CHUNKSZ
+
+/* Location comparison function */
+static int compare_size_t(const void *s1, const void *s2);
+
+static herr_t test_select_hyper_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
+ void *operator_data);
+static herr_t test_select_point_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
+ void *operator_data);
+static herr_t test_select_all_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
+ void *operator_data);
+static herr_t test_select_none_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
+ void *operator_data);
+static herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point,
+ void *_operator_data);
+static herr_t test_select_hyper_iter3(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
+ void *operator_data);
+
+/****************************************************************
+**
+** test_select_hyper_iter1(): Iterator for checking hyperslab iteration
+**
+****************************************************************/
+static herr_t
+test_select_hyper_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
+ const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
+{
+ uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */
+ **tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */
+
+ if (*tbuf != **tbuf2)
+ return (-1);
+ else {
+ (*tbuf2)++;
+ return (0);
+ }
+} /* end test_select_hyper_iter1() */
+
+/****************************************************************
+**
+** test_select_hyper(): Test basic H5S (dataspace) selection code.
+** Tests hyperslabs of various sizes and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_hyper(hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ H5S_class_t ext_type; /* Extent type */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Verify extent type */
+ ext_type = H5Sget_simple_extent_type(sid1);
+ VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
+
+ /* Test selecting stride==0 to verify failure */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 0;
+ stride[1] = 0;
+ stride[2] = 0;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Test selecting stride<block to verify failure */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 2;
+ block[1] = 2;
+ block[2] = 2;
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 15x26 hyperslab for memory dataset */
+ start[0] = 15;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Exercise checks for NULL buffer and valid selection */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Dwrite");
+ H5E_BEGIN_TRY
+ {
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 0x26 hyperslab to OR into current selection (should be a NOOP) */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 0;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Exercise checks for NULL buffer and valid selection */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Dread");
+ H5E_BEGIN_TRY
+ {
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Dread");
+
+ /* Check that the values match with a dataset iterator */
+ tbuf = wbuf + (15 * SPACE2_DIM2);
+ ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_hyper_iter1, &tbuf);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper() */
+
+struct pnt_iter {
+ hsize_t coord[POINT1_NPOINTS * 2][SPACE2_RANK]; /* Coordinates for point selection */
+ uint8_t *buf; /* Buffer the points are in */
+ int offset; /* Which point we are looking at */
+};
+
+/****************************************************************
+**
+** test_select_point_iter1(): Iterator for checking point iteration
+** (This is really ugly code, not a very good example of correct usage - QAK)
+**
+****************************************************************/
+static herr_t
+test_select_point_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
+ const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
+{
+ uint8_t *elem = (uint8_t *)_elem; /* Pointer to the element to examine */
+ uint8_t *tmp; /* temporary ptr to element in operator data */
+ struct pnt_iter *pnt_info = (struct pnt_iter *)_operator_data;
+
+ tmp = pnt_info->buf + (pnt_info->coord[pnt_info->offset][0] * SPACE2_DIM2) +
+ pnt_info->coord[pnt_info->offset][1];
+ if (*elem != *tmp)
+ return (-1);
+ else {
+ pnt_info->offset++;
+ return (0);
+ }
+} /* end test_select_point_iter1() */
+
+/****************************************************************
+**
+** test_select_point(): Test basic H5S (dataspace) selection code.
+** Tests element selections between dataspaces of various sizes
+** and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_point(hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
+ hsize_t temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
+ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
+ hsize_t temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
+ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
+ hsize_t temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ struct pnt_iter pi; /* Custom Pointer iterator struct */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Element Selection Functions\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for write buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for disk dataset */
+ coord1[0][0] = 0;
+ coord1[0][1] = 10;
+ coord1[0][2] = 5;
+ coord1[1][0] = 1;
+ coord1[1][1] = 2;
+ coord1[1][2] = 7;
+ coord1[2][0] = 2;
+ coord1[2][1] = 4;
+ coord1[2][2] = 9;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[3][2] = 11;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[4][2] = 13;
+ coord1[5][0] = 2;
+ coord1[5][1] = 12;
+ coord1[5][2] = 0;
+ coord1[6][0] = 0;
+ coord1[6][1] = 14;
+ coord1[6][2] = 2;
+ coord1[7][0] = 1;
+ coord1[7][1] = 0;
+ coord1[7][2] = 4;
+ coord1[8][0] = 2;
+ coord1[8][1] = 1;
+ coord1[8][2] = 6;
+ coord1[9][0] = 0;
+ coord1[9][1] = 3;
+ coord1[9][2] = 8;
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Verify correct elements selected */
+ H5Sget_select_elem_pointlist(sid1, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord1);
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist");
+ } /* end for */
+
+ ret = (int)H5Sget_select_npoints(sid1);
+ VERIFY(ret, 10, "H5Sget_select_npoints");
+
+ /* Append another sequence of ten points to disk dataset */
+ coord1[0][0] = 0;
+ coord1[0][1] = 2;
+ coord1[0][2] = 0;
+ coord1[1][0] = 1;
+ coord1[1][1] = 10;
+ coord1[1][2] = 8;
+ coord1[2][0] = 2;
+ coord1[2][1] = 8;
+ coord1[2][2] = 10;
+ coord1[3][0] = 0;
+ coord1[3][1] = 7;
+ coord1[3][2] = 12;
+ coord1[4][0] = 1;
+ coord1[4][1] = 3;
+ coord1[4][2] = 11;
+ coord1[5][0] = 2;
+ coord1[5][1] = 1;
+ coord1[5][2] = 1;
+ coord1[6][0] = 0;
+ coord1[6][1] = 13;
+ coord1[6][2] = 7;
+ coord1[7][0] = 1;
+ coord1[7][1] = 14;
+ coord1[7][2] = 6;
+ coord1[8][0] = 2;
+ coord1[8][1] = 2;
+ coord1[8][2] = 5;
+ coord1[9][0] = 0;
+ coord1[9][1] = 6;
+ coord1[9][2] = 13;
+ ret = H5Sselect_elements(sid1, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Verify correct elements selected */
+ H5Sget_select_elem_pointlist(sid1, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS,
+ (hsize_t *)temp_coord1);
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist");
+ } /* end for */
+
+ ret = (int)H5Sget_select_npoints(sid1);
+ VERIFY(ret, 20, "H5Sget_select_npoints");
+
+ /* Select sequence of ten points for memory dataset */
+ coord2[0][0] = 12;
+ coord2[0][1] = 3;
+ coord2[1][0] = 15;
+ coord2[1][1] = 13;
+ coord2[2][0] = 7;
+ coord2[2][1] = 25;
+ coord2[3][0] = 0;
+ coord2[3][1] = 6;
+ coord2[4][0] = 13;
+ coord2[4][1] = 0;
+ coord2[5][0] = 24;
+ coord2[5][1] = 11;
+ coord2[6][0] = 12;
+ coord2[6][1] = 21;
+ coord2[7][0] = 29;
+ coord2[7][1] = 4;
+ coord2[8][0] = 8;
+ coord2[8][1] = 8;
+ coord2[9][0] = 19;
+ coord2[9][1] = 17;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Verify correct elements selected */
+ H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2);
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist");
+ } /* end for */
+
+ /* Save points for later iteration */
+ /* (these are in the second half of the buffer, because we are prepending */
+ /* the next list of points to the beginning of the point selection list) */
+ HDmemcpy(((char *)pi.coord) + sizeof(coord2), coord2, sizeof(coord2));
+
+ ret = (int)H5Sget_select_npoints(sid2);
+ VERIFY(ret, 10, "H5Sget_select_npoints");
+
+ /* Append another sequence of ten points to memory dataset */
+ coord2[0][0] = 24;
+ coord2[0][1] = 0;
+ coord2[1][0] = 2;
+ coord2[1][1] = 25;
+ coord2[2][0] = 13;
+ coord2[2][1] = 17;
+ coord2[3][0] = 8;
+ coord2[3][1] = 3;
+ coord2[4][0] = 29;
+ coord2[4][1] = 4;
+ coord2[5][0] = 11;
+ coord2[5][1] = 14;
+ coord2[6][0] = 5;
+ coord2[6][1] = 22;
+ coord2[7][0] = 12;
+ coord2[7][1] = 2;
+ coord2[8][0] = 21;
+ coord2[8][1] = 12;
+ coord2[9][0] = 9;
+ coord2[9][1] = 18;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_PREPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Verify correct elements selected */
+ H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2);
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist");
+ } /* end for */
+
+ ret = (int)H5Sget_select_npoints(sid2);
+ VERIFY(ret, 20, "H5Sget_select_npoints");
+
+ /* Save points for later iteration */
+ HDmemcpy(pi.coord, coord2, sizeof(coord2));
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of points for read dataset */
+ coord3[0][0] = 0;
+ coord3[0][1] = 2;
+ coord3[1][0] = 4;
+ coord3[1][1] = 8;
+ coord3[2][0] = 13;
+ coord3[2][1] = 13;
+ coord3[3][0] = 14;
+ coord3[3][1] = 20;
+ coord3[4][0] = 7;
+ coord3[4][1] = 9;
+ coord3[5][0] = 2;
+ coord3[5][1] = 0;
+ coord3[6][0] = 9;
+ coord3[6][1] = 19;
+ coord3[7][0] = 1;
+ coord3[7][1] = 22;
+ coord3[8][0] = 12;
+ coord3[8][1] = 21;
+ coord3[9][0] = 11;
+ coord3[9][1] = 6;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Verify correct elements selected */
+ H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord3);
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist");
+ } /* end for */
+
+ ret = (int)H5Sget_select_npoints(sid2);
+ VERIFY(ret, 10, "H5Sget_select_npoints");
+
+ /* Append another sequence of ten points to disk dataset */
+ coord3[0][0] = 14;
+ coord3[0][1] = 25;
+ coord3[1][0] = 0;
+ coord3[1][1] = 0;
+ coord3[2][0] = 11;
+ coord3[2][1] = 11;
+ coord3[3][0] = 5;
+ coord3[3][1] = 14;
+ coord3[4][0] = 3;
+ coord3[4][1] = 5;
+ coord3[5][0] = 2;
+ coord3[5][1] = 2;
+ coord3[6][0] = 7;
+ coord3[6][1] = 13;
+ coord3[7][0] = 9;
+ coord3[7][1] = 16;
+ coord3[8][0] = 12;
+ coord3[8][1] = 22;
+ coord3[9][0] = 13;
+ coord3[9][1] = 9;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Verify correct elements selected */
+ H5Sget_select_elem_pointlist(sid2, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS,
+ (hsize_t *)temp_coord3);
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist");
+ VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist");
+ } /* end for */
+ ret = (int)H5Sget_select_npoints(sid2);
+ VERIFY(ret, 20, "H5Sget_select_npoints");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the values match with a dataset iterator */
+ pi.buf = wbuf;
+ pi.offset = 0;
+ ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_point_iter1, &pi);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_point() */
+
+/****************************************************************
+**
+** test_select_all_iter1(): Iterator for checking all iteration
+**
+**
+****************************************************************/
+static herr_t
+test_select_all_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
+ const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
+{
+ uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */
+ **tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */
+
+ if (*tbuf != **tbuf2)
+ return (-1);
+ else {
+ (*tbuf2)++;
+ return (0);
+ }
+} /* end test_select_all_iter1() */
+
+/****************************************************************
+**
+** test_select_none_iter1(): Iterator for checking none iteration
+** (This is never supposed to be called, so it always returns -1)
+**
+****************************************************************/
+static herr_t
+test_select_none_iter1(void H5_ATTR_UNUSED *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
+ const hsize_t H5_ATTR_UNUSED *point, void H5_ATTR_UNUSED *_operator_data)
+{
+ return (-1);
+} /* end test_select_none_iter1() */
+
+/****************************************************************
+**
+** test_select_all(): Test basic H5S (dataspace) selection code.
+** Tests "all" selections.
+**
+****************************************************************/
+static void
+test_select_all(hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j, k; /* Counters */
+ herr_t ret; /* Generic return value */
+ H5S_class_t ext_type; /* Extent type */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing 'All' Selection Functions\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++)
+ for (j = 0; j < SPACE4_DIM2; j++)
+ for (k = 0; k < SPACE4_DIM3; k++)
+ *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE4_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Verify extent type */
+ ext_type = H5Sget_simple_extent_type(sid1);
+ VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the values match with a dataset iterator */
+ tbuf = wbuf;
+ ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid1, test_select_all_iter1, &tbuf);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_all() */
+
+/****************************************************************
+**
+** test_select_all_hyper(): Test basic H5S (dataspace) selection code.
+** Tests "all" and hyperslab selections.
+**
+****************************************************************/
+static void
+test_select_all_hyper(hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ H5S_class_t ext_type; /* Extent type */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing 'All' Selection Functions\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE3_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Verify extent type */
+ ext_type = H5Sget_simple_extent_type(sid1);
+ VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
+
+ /* Select entire 15x26 extent for disk dataset */
+ ret = H5Sselect_all(sid1);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ /* Select 15x26 hyperslab for memory dataset */
+ start[0] = 15;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select no extent for disk dataset */
+ ret = H5Sselect_none(sid1);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Read selection from disk (should fail with no selection defined) */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Dread");
+
+ /* Select entire 15x26 extent for disk dataset */
+ ret = H5Sselect_all(sid1);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ /* Read selection from disk (should work now) */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the values match with a dataset iterator */
+ tbuf = wbuf + (15 * SPACE2_DIM2);
+ ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_all_iter1, &tbuf);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* A quick check to make certain that iterating through a "none" selection works */
+ ret = H5Sselect_none(sid2);
+ CHECK(ret, FAIL, "H5Sselect_none");
+ ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_none_iter1, &tbuf);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_all_hyper() */
+
+/****************************************************************
+**
+** test_select_combo(): Test basic H5S (dataspace) selection code.
+** Tests combinations of element and hyperslab selections between
+** dataspaces of various sizes and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_combo(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Combination of Hyperslab & Element Selection Functions\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for write buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for disk dataset */
+ coord1[0][0] = 0;
+ coord1[0][1] = 10;
+ coord1[0][2] = 5;
+ coord1[1][0] = 1;
+ coord1[1][1] = 2;
+ coord1[1][2] = 7;
+ coord1[2][0] = 2;
+ coord1[2][1] = 4;
+ coord1[2][2] = 9;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[3][2] = 11;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[4][2] = 13;
+ coord1[5][0] = 2;
+ coord1[5][1] = 12;
+ coord1[5][2] = 0;
+ coord1[6][0] = 0;
+ coord1[6][1] = 14;
+ coord1[6][2] = 2;
+ coord1[7][0] = 1;
+ coord1[7][1] = 0;
+ coord1[7][2] = 4;
+ coord1[8][0] = 2;
+ coord1[8][1] = 1;
+ coord1[8][2] = 6;
+ coord1[9][0] = 0;
+ coord1[9][1] = 3;
+ coord1[9][2] = 8;
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Select 1x10 hyperslab for writing memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 10x1 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ tbuf = wbuf + i;
+ tbuf2 = rbuf + (i * SPACE3_DIM2);
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("element values don't match!, i=%d\n", i);
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_combo() */
+
+static int
+compare_size_t(const void *s1, const void *s2)
+{
+ if (*(const size_t *)s1 < *(const size_t *)s2)
+ return (-1);
+ else if (*(const size_t *)s1 > *(const size_t *)s2)
+ return (1);
+ else
+ return (0);
+}
+
+/****************************************************************
+**
+** test_select_hyper_stride(): Test H5S (dataspace) selection code.
+** Tests strided hyperslabs of various sizes and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_hyper_stride(hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ uint16_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ size_t loc1[72] = {
+ /* Gruesomely ugly way to make certain hyperslab locations are checked correctly */
+ 27, 28, 29, 53, 54, 55, 79, 80, 81, /* Block #1 */
+ 32, 33, 34, 58, 59, 60, 84, 85, 86, /* Block #2 */
+ 157, 158, 159, 183, 184, 185, 209, 210, 211, /* Block #3 */
+ 162, 163, 164, 188, 189, 190, 214, 215, 216, /* Block #4 */
+ 287, 288, 289, 313, 314, 315, 339, 340, 341, /* Block #5 */
+ 292, 293, 294, 318, 319, 320, 344, 345, 346, /* Block #6 */
+ 417, 418, 419, 443, 444, 445, 469, 470, 471, /* Block #7 */
+ 422, 423, 424, 448, 449, 450, 474, 475, 476, /* Block #8 */
+ };
+ size_t loc2[72] = {
+ 0, 1, 2, 26, 27, 28, /* Block #1 */
+ 4, 5, 6, 30, 31, 32, /* Block #2 */
+ 8, 9, 10, 34, 35, 36, /* Block #3 */
+ 12, 13, 14, 38, 39, 40, /* Block #4 */
+ 104, 105, 106, 130, 131, 132, /* Block #5 */
+ 108, 109, 110, 134, 135, 136, /* Block #6 */
+ 112, 113, 114, 138, 139, 140, /* Block #7 */
+ 116, 117, 118, 142, 143, 144, /* Block #8 */
+ 208, 209, 210, 234, 235, 236, /* Block #9 */
+ 212, 213, 214, 238, 239, 240, /* Block #10 */
+ 216, 217, 218, 242, 243, 244, /* Block #11 */
+ 220, 221, 222, 246, 247, 248, /* Block #12 */
+ };
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 2;
+ stride[1] = 4;
+ stride[2] = 3;
+ count[0] = 2;
+ count[1] = 3;
+ count[2] = 3;
+ block[0] = 1;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
+ start[0] = 1;
+ start[1] = 1;
+ stride[0] = 5;
+ stride[1] = 5;
+ count[0] = 4;
+ count[1] = 2;
+ block[0] = 3;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 4;
+ stride[1] = 4;
+ count[0] = 3;
+ count[1] = 4;
+ block[0] = 2;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Sort the locations into the proper order */
+ HDqsort(loc1, (size_t)72, sizeof(size_t), compare_size_t);
+ HDqsort(loc2, (size_t)72, sizeof(size_t), compare_size_t);
+ /* Compare data read with data written out */
+ for (i = 0; i < 72; i++) {
+ tbuf = wbuf + loc1[i];
+ tbuf2 = rbuf + loc2[i];
+ if (*tbuf != *tbuf2) {
+ HDprintf("%d: hyperslab values don't match!, loc1[%d]=%d, loc2[%d]=%d\n", __LINE__, i,
+ (int)loc1[i], i, (int)loc2[i]);
+ HDprintf("wbuf=%p, tbuf=%p, rbuf=%p, tbuf2=%p\n", (void *)wbuf, (void *)tbuf, (void *)rbuf,
+ (void *)tbuf2);
+ TestErrPrintf("*tbuf=%u, *tbuf2=%u\n", (unsigned)*tbuf, (unsigned)*tbuf2);
+ } /* end if */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_stride() */
+
+/****************************************************************
+**
+** test_select_hyper_contig(): Test H5S (dataspace) selection code.
+** Tests contiguous hyperslabs of various sizes and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_hyper_contig(hid_t dset_type, hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims2[] = {SPACE2_DIM2, SPACE2_DIM1};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ uint16_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Contiguous Hyperslabs Functionality\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 12x10 count with a stride of 1x3 & 3x3 block hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 3;
+ count[0] = 12;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 4x5 count with a stride of 3x6 & 3x6 block hyperslab for memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 3;
+ stride[1] = 6;
+ count[0] = 4;
+ count[1] = 5;
+ block[0] = 3;
+ block[1] = 6;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 6x5 count with a stride of 2x6 & 2x6 block hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 2;
+ stride[1] = 6;
+ count[0] = 6;
+ count[1] = 5;
+ block[0] = 2;
+ block[1] = 6;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 3x15 count with a stride of 4x2 & 4x2 block hyperslab for memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 4;
+ stride[1] = 2;
+ count[0] = 3;
+ count[1] = 15;
+ block[0] = 4;
+ block[1] = 2;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ if (HDmemcmp(rbuf, wbuf, sizeof(uint16_t) * 30 * 12) != 0)
+ TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__);
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_contig() */
+
+/****************************************************************
+**
+** test_select_hyper_contig2(): Test H5S (dataspace) selection code.
+** Tests more contiguous hyperslabs of various sizes and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_hyper_contig2(hid_t dset_type, hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
+ hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */
+ hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */
+ uint16_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j, k, l; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing More Contiguous Hyperslabs Functionality\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t),
+ (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE8_DIM1; i++)
+ for (j = 0; j < SPACE8_DIM2; j++)
+ for (k = 0; k < SPACE8_DIM3; k++)
+ for (l = 0; l < SPACE8_DIM4; l++)
+ *tbuf++ = (uint16_t)((i * SPACE8_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select contiguous hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select contiguous hyperslab in memory */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select contiguous hyperslab in memory */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select contiguous hyperslab in memory */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ if (HDmemcmp(rbuf, wbuf, sizeof(uint16_t) * 2 * SPACE8_DIM3 * SPACE8_DIM2 * SPACE8_DIM1) != 0)
+ TestErrPrintf("Error: hyperslab values don't match!\n");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_contig2() */
+
+/****************************************************************
+**
+** test_select_hyper_contig3(): Test H5S (dataspace) selection code.
+** Tests contiguous hyperslabs of various sizes and dimensionalities.
+** This test uses a hyperslab that is contiguous in the lowest dimension,
+** not contiguous in a dimension, then has a selection across the entire next
+** dimension (which should be "flattened" out also).
+**
+****************************************************************/
+static void
+test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
+ hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */
+ hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */
+ uint16_t *wbuf, /* Buffer to write to disk */
+ *rbuf, /* Buffer read from disk */
+ *tbuf, *tbuf2; /* Temporary buffer pointers */
+ unsigned i, j, k, l; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Yet More Contiguous Hyperslabs Functionality\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t),
+ (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE8_DIM4; i++)
+ for (j = 0; j < SPACE8_DIM3; j++)
+ for (k = 0; k < SPACE8_DIM2; k++)
+ for (l = 0; l < SPACE8_DIM1; l++)
+ *tbuf++ = (uint16_t)((k * SPACE8_DIM2) + l);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select semi-contiguous hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = SPACE8_DIM2 / 2;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2 / 2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select semi-contiguous hyperslab in memory */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = SPACE8_DIM2 / 2;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2 / 2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select semi-contiguous hyperslab in memory */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = SPACE8_DIM2 / 2;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2 / 2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select semi-contiguous hyperslab in memory */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = SPACE8_DIM2 / 2;
+ start[3] = 0;
+ count[0] = 2;
+ count[1] = SPACE8_DIM3;
+ count[2] = SPACE8_DIM2 / 2;
+ count[3] = SPACE8_DIM1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0, tbuf = wbuf, tbuf2 = rbuf; i < SPACE8_DIM4; i++)
+ for (j = 0; j < SPACE8_DIM3; j++)
+ for (k = 0; k < SPACE8_DIM2; k++)
+ for (l = 0; l < SPACE8_DIM1; l++, tbuf++, tbuf2++)
+ if ((i >= start[0] && i < (start[0] + count[0])) &&
+ (j >= start[1] && j < (start[1] + count[1])) &&
+ (k >= start[2] && k < (start[2] + count[2])) &&
+ (l >= start[3] && l < (start[3] + count[3]))) {
+ if (*tbuf != *tbuf2) {
+ HDprintf("Error: hyperslab values don't match!\n");
+ TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__,
+ i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2);
+ } /* end if */
+ } /* end if */
+ else {
+ if (*tbuf2 != 0) {
+ HDprintf("Error: invalid data in read buffer!\n");
+ TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__,
+ i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2);
+ } /* end if */
+ } /* end else */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_contig3() */
+
+#if 0
+/****************************************************************
+**
+** verify_select_hyper_contig_dr__run_test(): Verify data from
+** test_select_hyper_contig_dr__run_test()
+**
+****************************************************************/
+static void
+verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, size_t cube_size,
+ unsigned edge_size, unsigned cube_rank)
+{
+ const uint16_t *cube_ptr; /* Pointer into the cube buffer */
+ uint16_t expected_value; /* Expected value in dataset */
+ unsigned i, j, k, l, m; /* Local index variables */
+ size_t s; /* Local index variable */
+ hbool_t mis_match; /* Flag to indicate mismatch in expected value */
+
+ HDassert(cube_buf);
+ HDassert(cube_size > 0);
+
+ expected_value = 0;
+ mis_match = FALSE;
+ cube_ptr = cube_buf;
+ s = 0;
+ i = 0;
+ do {
+ j = 0;
+ do {
+ k = 0;
+ do {
+ l = 0;
+ do {
+ m = 0;
+ do {
+ /* Sanity check */
+ HDassert(s < cube_size);
+
+ /* Check for correct value */
+ if (*cube_ptr != expected_value)
+ mis_match = TRUE;
+
+ /* Advance to next element */
+ cube_ptr++;
+ expected_value++;
+ s++;
+ m++;
+ } while ((cube_rank > 0) && (m < edge_size));
+ l++;
+ } while ((cube_rank > 1) && (l < edge_size));
+ k++;
+ } while ((cube_rank > 2) && (k < edge_size));
+ j++;
+ } while ((cube_rank > 3) && (j < edge_size));
+ i++;
+ } while ((cube_rank > 4) && (i < edge_size));
+ if (mis_match)
+ TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__);
+} /* verify_select_hyper_contig_dr__run_test() */
+#endif
+#if 0
+
+/****************************************************************
+**
+** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace)
+** selection code with contiguous source and target having
+** different ranks but the same shape. We have already
+** tested H5Sselect_shape_same in isolation, so now we try to do
+** I/O.
+**
+****************************************************************/
+static void
+test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf,
+ unsigned edge_size, unsigned chunk_edge_size, unsigned small_rank,
+ unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
+{
+ hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */
+ hid_t fapl; /* File access property list */
+ hid_t fid1; /* File ID */
+ hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */
+ hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */
+ hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */
+ hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
+ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
+ hid_t small_cube_dataset; /* Dataset ID */
+ hid_t large_cube_dataset; /* Dataset ID */
+ size_t start_index; /* Offset within buffer to begin inspecting */
+ size_t stop_index; /* Offset within buffer to end inspecting */
+ uint16_t expected_value; /* Expected value in dataset */
+ uint16_t *small_cube_buf_1; /* Buffer for small cube data */
+ uint16_t *large_cube_buf_1; /* Buffer for large cube data */
+ uint16_t *ptr_1; /* Temporary pointer into cube data */
+ hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */
+ hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */
+ hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */
+ hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */
+ hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */
+ hsize_t *start_ptr; /* Actual hyperslab start offset */
+ hsize_t *stride_ptr; /* Actual hyperslab stride */
+ hsize_t *count_ptr; /* Actual hyperslab count */
+ hsize_t *block_ptr; /* Actual hyperslab block size */
+ size_t small_cube_size; /* Number of elements in small cube */
+ size_t large_cube_size; /* Number of elements in large cube */
+ unsigned u, v, w, x; /* Local index variables */
+ size_t s; /* Local index variable */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
+ MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size,
+ chunk_edge_size));
+
+ HDassert(edge_size >= 6);
+ HDassert(edge_size >= chunk_edge_size);
+ HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
+ HDassert(small_rank > 0);
+ HDassert(small_rank < large_rank);
+ HDassert(large_rank <= SS_DR_MAX_RANK);
+
+ /* Compute cube sizes */
+ small_cube_size = large_cube_size = (size_t)1;
+ for (u = 0; u < large_rank; u++) {
+ if (u < small_rank)
+ small_cube_size *= (size_t)edge_size;
+
+ large_cube_size *= (size_t)edge_size;
+ } /* end for */
+
+ HDassert(large_cube_size < (size_t)UINT_MAX);
+
+ /* set up the start, stride, count, and block pointers */
+ start_ptr = &(start[SS_DR_MAX_RANK - large_rank]);
+ stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]);
+ count_ptr = &(count[SS_DR_MAX_RANK - large_rank]);
+ block_ptr = &(block[SS_DR_MAX_RANK - large_rank]);
+
+ /* Allocate buffers */
+ small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size);
+ CHECK_PTR(small_cube_buf_1, "HDcalloc");
+ large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size);
+ CHECK_PTR(large_cube_buf_1, "HDcalloc");
+
+ /* Create a dataset transfer property list */
+ fapl = H5Pcreate(H5P_FILE_ACCESS);
+ CHECK(fapl, FAIL, "H5Pcreate");
+
+ /* Use the 'core' VFD for this test */
+ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
+ CHECK(ret, FAIL, "H5Pset_fapl_core");
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Close file access property list */
+ ret = H5Pclose(fapl);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* setup dims: */
+ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size;
+
+ /* Create small cube dataspaces */
+ small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(small_cube_sid, FAIL, "H5Screate_simple");
+
+ /* Create large cube dataspace */
+ mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
+ file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if (chunk_edge_size > 0) {
+ hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */
+
+ chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] =
+ (hsize_t)chunk_edge_size;
+
+ small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+ large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+ } /* end if */
+
+ /* create the small cube dataset */
+ small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, small_cube_sid, H5P_DEFAULT,
+ small_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(small_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default small dataset DCPL */
+ if (small_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(small_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+ /* create the large cube dataset */
+ large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT,
+ large_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(large_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default large dataset DCPL */
+ if (large_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(large_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+ /* write initial data to the on disk datasets */
+ ret =
+ H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist,
+ cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* read initial data from disk and verify that it is as expected. */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist,
+ small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank);
+
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist,
+ large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank);
+
+ /* first, verify that we can read from disk correctly using selections
+ * of different rank that H5Sselect_shape_same() views as being of the
+ * same shape.
+ *
+ * Start by reading small_rank-D slice from the on disk large cube, and
+ * verifying that the data read is correct. Verify that H5Sselect_shape_same()
+ * returns true on the memory and file selections.
+ */
+
+ /* set up start, stride, count, and block -- note that we will
+ * change start[] so as to read slices of the large cube.
+ */
+ for (u = 0; u < SS_DR_MAX_RANK; u++) {
+ start[u] = 0;
+ stride[u] = 1;
+ count[u] = 1;
+ if ((SS_DR_MAX_RANK - u) > small_rank)
+ block[u] = 1;
+ else
+ block[u] = (hsize_t)edge_size;
+ } /* end for */
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
+ count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Read selection from disk */
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid,
+ xfer_plist, small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that expected data is retrieved */
+ mis_match = FALSE;
+ ptr_1 = small_cube_buf_1;
+ expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) + (x * edge_size));
+ for (s = 0; s < small_cube_size; s++) {
+ if (*ptr_1 != expected_value)
+ mis_match = TRUE;
+ ptr_1++;
+ expected_value++;
+ } /* end for */
+ if (mis_match)
+ TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+ /* similarly, read the on disk small cube into slices through the in memory
+ * large cube, and verify that the correct data (and only the correct data)
+ * is read.
+ */
+
+ /* zero out the in-memory large cube */
+ HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t));
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
+ count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Read selection from disk */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid,
+ xfer_plist, large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= large_cube_size);
+
+ mis_match = FALSE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ for (s = 0; s < start_index; s++) {
+ if (*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ for (; s <= stop_index; s++) {
+ if (*ptr_1 != expected_value)
+ mis_match = TRUE;
+ expected_value++;
+ ptr_1++;
+ } /* end for */
+ for (; s < large_cube_size; s++) {
+ if (*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ if (mis_match)
+ TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__);
+
+ /* Zero out the buffer for the next pass */
+ HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t));
+
+ x++;
+ } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+ /* now we go in the opposite direction, verifying that we can write
+ * from memory to file using selections of different rank that
+ * H5Sselect_shape_same() views as being of the same shape.
+ *
+ * Start by writing small_rank D slices from the in memory large cube, to
+ * the the on disk small cube dataset. After each write, read the small
+ * cube dataset back from disk, and verify that it contains the expected
+ * data. Verify that H5Sselect_shape_same() returns true on the
+ * memory and file selections.
+ */
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* zero out the on disk small cube */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid,
+ xfer_plist, zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* select the portion of the in memory large cube from which we
+ * are going to write data.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
+ count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* verify that H5Sselect_shape_same() reports the in
+ * memory slice through the cube selection and the
+ * on disk full small cube selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* write the slice from the in memory large cube to the on disk small cube */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid,
+ xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* read the on disk small cube into memory */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid,
+ xfer_plist, small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that expected data is retrieved */
+ mis_match = FALSE;
+ ptr_1 = small_cube_buf_1;
+ expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) + (x * edge_size));
+ for (s = 0; s < small_cube_size; s++) {
+ if (*ptr_1 != expected_value)
+ mis_match = TRUE;
+ expected_value++;
+ ptr_1++;
+ } /* end for */
+ if (mis_match)
+ TestErrPrintf("small cube data don't match! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+ /* Now write the contents of the in memory small cube to slices of
+ * the on disk cube. After each write, read the on disk cube
+ * into memory, and verify that it contains the expected
+ * data. Verify that H5Sselect_shape_same() returns true on
+ * the memory and file selections.
+ */
+
+ /* select the entire memory and file cube dataspaces */
+ ret = H5Sselect_all(mem_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ ret = H5Sselect_all(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ u = 0;
+ do {
+ v = 0;
+ do {
+ w = 0;
+ do {
+ x = 0;
+ do {
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ /* zero out the on disk cube */
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, mem_large_cube_sid,
+ file_large_cube_sid, xfer_plist, zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* select the portion of the in memory large cube to which we
+ * are going to write data.
+ */
+ start[0] = (hsize_t)u;
+ start[1] = (hsize_t)v;
+ start[2] = (hsize_t)w;
+ start[3] = (hsize_t)x;
+ start[4] = (hsize_t)0;
+
+ ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
+ count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* verify that H5Sselect_shape_same() reports the in
+ * memory full selection of the small cube and the
+ * on disk slice through the large cube selection
+ * as having the same shape.
+ */
+ check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* write the cube from memory to the target slice of the disk cube */
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid,
+ xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* read the on disk cube into memory */
+ ret = H5Sselect_all(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
+ file_large_cube_sid, xfer_plist, large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= large_cube_size);
+
+ mis_match = FALSE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ for (s = 0; s < start_index; s++) {
+ if (*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ for (; s <= stop_index; s++) {
+ if (*ptr_1 != expected_value)
+ mis_match = TRUE;
+ expected_value++;
+ ptr_1++;
+ } /* end for */
+ for (; s < large_cube_size; s++) {
+ if (*ptr_1 != 0)
+ mis_match = TRUE;
+ ptr_1++;
+ } /* end for */
+ if (mis_match)
+ TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
+ w++;
+ } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
+ v++;
+ } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
+ u++;
+ } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));
+
+ /* Close memory dataspaces */
+ ret = H5Sclose(small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(mem_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Datasets */
+ ret = H5Dclose(small_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ ret = H5Dclose(large_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(small_cube_buf_1);
+ HDfree(large_cube_buf_1);
+
+} /* test_select_hyper_contig_dr__run_test() */
+#endif
+#if 0
+/****************************************************************
+**
+** test_select_hyper_contig_dr(): Test H5S (dataspace)
+** selection code with contiguous source and target having
+** different ranks but the same shape. We have already
+** tested H5Sselect_shape_same in isolation, so now we try to do
+** I/O.
+**
+****************************************************************/
+static void
+test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist)
+{
+ int test_num = 0;
+ unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */
+ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */
+ unsigned small_rank; /* Current rank of small dataset */
+ unsigned large_rank; /* Current rank of large dataset */
+ uint16_t *cube_buf; /* Buffer for writing cube data */
+ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
+ uint16_t *cube_ptr; /* Temporary pointer into cube data */
+ unsigned max_rank = 5; /* Max. rank to use */
+ size_t max_cube_size; /* Max. number of elements in largest cube */
+ size_t s; /* Local index variable */
+ unsigned u; /* Local index variable */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n"));
+
+ /* Compute max. cube size */
+ max_cube_size = (size_t)1;
+ for (u = 0; u < max_rank; u++)
+ max_cube_size *= (size_t)edge_size;
+
+ /* Allocate cube buffer for writing values */
+ cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size);
+ CHECK_PTR(cube_buf, "HDmalloc");
+
+ /* Initialize the cube buffer */
+ cube_ptr = cube_buf;
+ for (s = 0; s < max_cube_size; s++)
+ *cube_ptr++ = (uint16_t)s;
+
+ /* Allocate cube buffer for zeroing values on disk */
+ zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size);
+ CHECK_PTR(zero_buf, "HDcalloc");
+
+ for (large_rank = 1; large_rank <= max_rank; large_rank++) {
+ for (small_rank = 1; small_rank < large_rank; small_rank++) {
+ chunk_edge_size = 0;
+ test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size,
+ small_rank, large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ chunk_edge_size = 3;
+ test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size,
+ small_rank, large_rank, dset_type, xfer_plist);
+ test_num++;
+ } /* for loop on small rank */
+ } /* for loop on large rank */
+
+ HDfree(cube_buf);
+ HDfree(zero_buf);
+
+} /* test_select_hyper_contig_dr() */
+#endif
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr__select_checker_board():
+** Given an n-cube dataspace with each edge of length
+** edge_size, and a checker_edge_size either select a checker
+** board selection of the entire cube(if sel_rank == n),
+** or select a checker board selection of a
+** sel_rank dimensional slice through n-cube parallel to the
+** sel_rank fastest changing indices, with origin (in the
+** higher indices) as indicated by the start array.
+**
+** Note that this function, like all its relatives, is
+** hard coded to presume a maximum n-cube rank of 5.
+** While this maximum is declared as a constant, increasing
+** it will require extensive coding in addition to changing
+** the value of the constant.
+**
+** JRM -- 9/9/09
+**
+****************************************************************/
+#if 0
+static void
+test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, unsigned tgt_n_cube_rank,
+ unsigned edge_size, unsigned checker_edge_size,
+ unsigned sel_rank, const hsize_t sel_start[])
+{
+ hbool_t first_selection = TRUE;
+ unsigned n_cube_offset;
+ unsigned sel_offset;
+ hsize_t base_count;
+ hsize_t offset_count;
+ hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */
+ hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */
+ hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */
+ hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */
+ unsigned i, j, k, l, m; /* Local index variable */
+ unsigned u; /* Local index variables */
+ herr_t ret; /* Generic return value */
+
+ HDassert(edge_size >= 6);
+ HDassert(0 < checker_edge_size);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(0 < sel_rank);
+ HDassert(sel_rank <= tgt_n_cube_rank);
+ HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK);
+
+ sel_offset = SS_DR_MAX_RANK - sel_rank;
+ n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank;
+ HDassert(n_cube_offset <= sel_offset);
+
+ /* First, compute the base count (which assumes start == 0
+ * for the associated offset) and offset_count (which
+ * assumes start == checker_edge_size for the associated
+ * offset).
+ */
+ base_count = edge_size / (checker_edge_size * 2);
+ if ((edge_size % (checker_edge_size * 2)) > 0)
+ base_count++;
+
+ offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2);
+ if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0)
+ offset_count++;
+
+ /* Now set up the stride and block arrays, and portions of the start
+ * and count arrays that will not be altered during the selection of
+ * the checker board.
+ */
+ u = 0;
+ while (u < n_cube_offset) {
+ /* these values should never be used */
+ start[u] = 0;
+ stride[u] = 0;
+ count[u] = 0;
+ block[u] = 0;
+
+ u++;
+ } /* end while */
+
+ while (u < sel_offset) {
+ start[u] = sel_start[u];
+ stride[u] = 2 * edge_size;
+ count[u] = 1;
+ block[u] = 1;
+
+ u++;
+ } /* end while */
+
+ while (u < SS_DR_MAX_RANK) {
+ stride[u] = 2 * checker_edge_size;
+ block[u] = checker_edge_size;
+
+ u++;
+ } /* end while */
+
+ i = 0;
+ do {
+ if (0 >= sel_offset) {
+ if (i == 0) {
+ start[0] = 0;
+ count[0] = base_count;
+ } /* end if */
+ else {
+ start[0] = checker_edge_size;
+ count[0] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ j = 0;
+ do {
+ if (1 >= sel_offset) {
+ if (j == 0) {
+ start[1] = 0;
+ count[1] = base_count;
+ } /* end if */
+ else {
+ start[1] = checker_edge_size;
+ count[1] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ k = 0;
+ do {
+ if (2 >= sel_offset) {
+ if (k == 0) {
+ start[2] = 0;
+ count[2] = base_count;
+ } /* end if */
+ else {
+ start[2] = checker_edge_size;
+ count[2] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ l = 0;
+ do {
+ if (3 >= sel_offset) {
+ if (l == 0) {
+ start[3] = 0;
+ count[3] = base_count;
+ } /* end if */
+ else {
+ start[3] = checker_edge_size;
+ count[3] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ m = 0;
+ do {
+ if (4 >= sel_offset) {
+ if (m == 0) {
+ start[4] = 0;
+ count[4] = base_count;
+ } /* end if */
+ else {
+ start[4] = checker_edge_size;
+ count[4] = offset_count;
+ } /* end else */
+ } /* end if */
+
+ if (((i + j + k + l + m) % 2) == 0) {
+ if (first_selection) {
+ first_selection = FALSE;
+
+ ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_SET,
+ &(start[n_cube_offset]), &(stride[n_cube_offset]),
+ &(count[n_cube_offset]), &(block[n_cube_offset]));
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end if */
+ else {
+ ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_OR,
+ &(start[n_cube_offset]), &(stride[n_cube_offset]),
+ &(count[n_cube_offset]), &(block[n_cube_offset]));
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end else */
+ } /* end if */
+
+ m++;
+ } while ((m <= 1) && (4 >= sel_offset));
+ l++;
+ } while ((l <= 1) && (3 >= sel_offset));
+ k++;
+ } while ((k <= 1) && (2 >= sel_offset));
+ j++;
+ } while ((j <= 1) && (1 >= sel_offset));
+ i++;
+ } while ((i <= 1) && (0 >= sel_offset));
+
+ /* Weirdness alert:
+ *
+ * Some how, it seems that selections can extend beyond the
+ * boundaries of the target dataspace -- hence the following
+ * code to manually clip the selection back to the dataspace
+ * proper.
+ */
+ for (u = 0; u < SS_DR_MAX_RANK; u++) {
+ start[u] = 0;
+ stride[u] = edge_size;
+ count[u] = 1;
+ block[u] = edge_size;
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+} /* test_select_hyper_checker_board_dr__select_checker_board() */
+#endif
+
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr__verify_data():
+**
+** Examine the supplied buffer to see if it contains the
+** expected data. Return TRUE if it does, and FALSE
+** otherwise.
+**
+** The supplied buffer is presumed to contain the results
+** of read or writing a checkerboard selection of an
+** n-cube, or a checkerboard selection of an m (1 <= m < n)
+** dimensional slice through an n-cube parallel to the
+** fastest changing indices.
+**
+** It is further presumed that the buffer was zeroed before
+** the read, and that the n-cube was initialize with the
+** natural numbers listed in order from the origin along
+** the fastest changing axis.
+**
+** Thus for a 10x10x10 3-cube, the value stored in location
+** (x, y, z) (assuming that z is the fastest changing index
+** and x the slowest) is assumed to be:
+**
+** (10 * 10 * x) + (10 * y) + z
+**
+** Thus, if the buffer contains the result of reading a
+** checker board selection of a 10x10x10 3-cube, location
+** (x, y, z) will contain zero if it is not in a checker,
+** and 100x + 10y + z if (x, y, z) is in a checker.
+**
+** If the buffer contains the result of reading a 3
+** dimensional slice (parallel to the three fastest changing
+** indices) through an n cube (n > 3), then the expected
+** values in the buffer will be the same, save that we will
+** add a constant determined by the origin of the 3-cube
+** in the n-cube.
+**
+** Finally, the function presumes that the first element
+** of the buffer resides either at the origin of either
+** a selected or an unselected checker.
+**
+****************************************************************/
+#if 0
+H5_ATTR_PURE static hbool_t
+test_select_hyper_checker_board_dr__verify_data(uint16_t *buf_ptr, unsigned rank, unsigned edge_size,
+ unsigned checker_edge_size, uint16_t first_expected_val,
+ hbool_t buf_starts_in_checker)
+{
+ hbool_t good_data = TRUE;
+ hbool_t in_checker;
+ hbool_t start_in_checker[5];
+ uint16_t expected_value;
+ uint16_t *val_ptr;
+ unsigned i, j, k, l, m; /* to track position in n-cube */
+ unsigned v, w, x, y, z; /* to track position in checker */
+ const unsigned test_max_rank = 5; /* code changes needed if this is increased */
+
+ HDassert(buf_ptr != NULL);
+ HDassert(0 < rank);
+ HDassert(rank <= test_max_rank);
+ HDassert(edge_size >= 6);
+ HDassert(0 < checker_edge_size);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(test_max_rank <= SS_DR_MAX_RANK);
+
+ val_ptr = buf_ptr;
+ expected_value = first_expected_val;
+
+ i = 0;
+ v = 0;
+ start_in_checker[0] = buf_starts_in_checker;
+ do {
+ if (v >= checker_edge_size) {
+ start_in_checker[0] = !start_in_checker[0];
+ v = 0;
+ } /* end if */
+
+ j = 0;
+ w = 0;
+ start_in_checker[1] = start_in_checker[0];
+ do {
+ if (w >= checker_edge_size) {
+ start_in_checker[1] = !start_in_checker[1];
+ w = 0;
+ } /* end if */
+
+ k = 0;
+ x = 0;
+ start_in_checker[2] = start_in_checker[1];
+ do {
+ if (x >= checker_edge_size) {
+ start_in_checker[2] = !start_in_checker[2];
+ x = 0;
+ } /* end if */
+
+ l = 0;
+ y = 0;
+ start_in_checker[3] = start_in_checker[2];
+ do {
+ if (y >= checker_edge_size) {
+ start_in_checker[3] = !start_in_checker[3];
+ y = 0;
+ } /* end if */
+
+ m = 0;
+ z = 0;
+ in_checker = start_in_checker[3];
+ do {
+ if (z >= checker_edge_size) {
+ in_checker = !in_checker;
+ z = 0;
+ } /* end if */
+
+ if (in_checker) {
+ if (*val_ptr != expected_value)
+ good_data = FALSE;
+ } /* end if */
+ else {
+ if (*val_ptr != 0)
+ good_data = FALSE;
+ } /* end else */
+
+ val_ptr++;
+ expected_value++;
+
+ m++;
+ z++;
+ } while ((rank >= (test_max_rank - 4)) && (m < edge_size));
+ l++;
+ y++;
+ } while ((rank >= (test_max_rank - 3)) && (l < edge_size));
+ k++;
+ x++;
+ } while ((rank >= (test_max_rank - 2)) && (k < edge_size));
+ j++;
+ w++;
+ } while ((rank >= (test_max_rank - 1)) && (j < edge_size));
+ i++;
+ v++;
+ } while ((rank >= test_max_rank) && (i < edge_size));
+
+ return (good_data);
+} /* test_select_hyper_checker_board_dr__verify_data() */
+#endif
+
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr__run_test(): Test H5S
+** (dataspace) selection code with checker board source and
+** target selections having different ranks but the same
+** shape. We have already tested H5Sselect_shape_same in
+** isolation, so now we try to do I/O.
+**
+****************************************************************/
+#if 0
+static void
+test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf,
+ unsigned edge_size, unsigned checker_edge_size,
+ unsigned chunk_edge_size, unsigned small_rank,
+ unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
+{
+ hbool_t data_ok;
+ hid_t fapl; /* File access property list */
+ hid_t fid; /* HDF5 File IDs */
+ hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */
+ hid_t mem_small_cube_sid;
+ hid_t file_small_cube_sid;
+ hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */
+ hid_t mem_large_cube_sid;
+ hid_t file_large_cube_sid;
+ hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
+ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
+ hid_t small_cube_dataset; /* Dataset ID */
+ hid_t large_cube_dataset; /* Dataset ID */
+ unsigned small_rank_offset; /* Rank offset of slice */
+ const unsigned test_max_rank = 5; /* must update code if this changes */
+ size_t start_index; /* Offset within buffer to begin inspecting */
+ size_t stop_index; /* Offset within buffer to end inspecting */
+ uint16_t expected_value;
+ uint16_t *small_cube_buf_1;
+ uint16_t *large_cube_buf_1;
+ uint16_t *ptr_1;
+ size_t small_cube_size; /* Number of elements in small cube */
+ size_t large_cube_size; /* Number of elements in large cube */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t chunk_dims[SS_DR_MAX_RANK];
+ hsize_t sel_start[SS_DR_MAX_RANK];
+ unsigned u, v, w, x; /* Local index variables */
+ size_t s; /* Local index variable */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
+ MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n",
+ small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size));
+
+ HDassert(edge_size >= 6);
+ HDassert(checker_edge_size > 0);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(edge_size >= chunk_edge_size);
+ HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
+ HDassert(small_rank > 0);
+ HDassert(small_rank < large_rank);
+ HDassert(large_rank <= test_max_rank);
+ HDassert(test_max_rank <= SS_DR_MAX_RANK);
+
+ /* Compute cube sizes */
+ small_cube_size = large_cube_size = (size_t)1;
+ for (u = 0; u < large_rank; u++) {
+ if (u < small_rank)
+ small_cube_size *= (size_t)edge_size;
+
+ large_cube_size *= (size_t)edge_size;
+ } /* end for */
+ HDassert(large_cube_size < (size_t)(UINT_MAX));
+
+ small_rank_offset = test_max_rank - small_rank;
+ HDassert(small_rank_offset >= 1);
+
+ /* also, at present, we use 16 bit values in this test --
+ * hence the following assertion. Delete it if we convert
+ * to 32 bit values.
+ */
+ HDassert(large_cube_size < (size_t)(64 * 1024));
+
+ /* Allocate & initialize buffers */
+ small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size);
+ CHECK_PTR(small_cube_buf_1, "HDcalloc");
+ large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size);
+ CHECK_PTR(large_cube_buf_1, "HDcalloc");
+
+ /* Create a dataset transfer property list */
+ fapl = H5Pcreate(H5P_FILE_ACCESS);
+ CHECK(fapl, FAIL, "H5Pcreate");
+
+ /* Use the 'core' VFD for this test */
+ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
+ CHECK(ret, FAIL, "H5Pset_fapl_core");
+
+ /* Create file */
+ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
+ CHECK(fid, FAIL, "H5Fcreate");
+
+ /* Close file access property list */
+ ret = H5Pclose(fapl);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* setup dims: */
+ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size;
+
+ /* Create small cube dataspaces */
+ full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(full_small_cube_sid, FAIL, "H5Screate_simple");
+
+ mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple");
+
+ file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
+ CHECK(file_small_cube_sid, FAIL, "H5Screate_simple");
+
+ /* Create large cube dataspace */
+ full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(full_large_cube_sid, FAIL, "H5Screate_simple");
+
+ mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
+
+ file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
+ CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if (chunk_edge_size > 0) {
+ chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size;
+
+ small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+ large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");
+
+ ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+ } /* end if */
+
+ /* create the small cube dataset */
+ small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, file_small_cube_sid, H5P_DEFAULT,
+ small_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(small_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default small dataset DCPL */
+ if (small_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(small_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+ /* create the large cube dataset */
+ large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT,
+ large_cube_dcpl_id, H5P_DEFAULT);
+ CHECK(large_cube_dataset, FAIL, "H5Dcreate2");
+
+ /* Close non-default large dataset DCPL */
+ if (large_cube_dcpl_id != H5P_DEFAULT) {
+ ret = H5Pclose(large_cube_dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+ } /* end if */
+
+ /* write initial data to the on disk datasets */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid,
+ xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid,
+ xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* read initial small cube data from disk and verify that it is as expected. */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist,
+ small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank);
+
+ /* read initial large cube data from disk and verify that it is as expected. */
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist,
+ large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check that the data is valid */
+ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank);
+
+ /* first, verify that we can read from disk correctly using selections
+ * of different rank that H5Sselect_shape_same() views as being of the
+ * same shape.
+ *
+ * Start by reading small_rank-D slice from the on disk large cube, and
+ * verifying that the data read is correct. Verify that H5Sselect_shape_same()
+ * returns true on the memory and file selections.
+ *
+ * The first step is to set up the needed checker board selection in the
+ * in memory small small cube
+ */
+
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+
+ test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size,
+ checker_edge_size, small_rank, sel_start);
+
+ /* now read slices from the large, on-disk cube into the small cube.
+ * Note how we adjust sel_start only in the dimensions peculiar to the
+ * large cube.
+ */
+
+ u = 0;
+ do {
+ if (small_rank_offset > 0)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if (small_rank_offset > 1)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if (small_rank_offset > 2)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if (small_rank_offset > 3)
+ sel_start[3] = x;
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board(
+ file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(mem_small_cube_sid, file_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* zero the buffer that we will be using for reading */
+ HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);
+
+ /* Read selection from disk */
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid,
+ file_large_cube_sid, xfer_plist, small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) + (x * edge_size));
+
+ data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank,
+ edge_size, checker_edge_size,
+ expected_value, (hbool_t)TRUE);
+ if (!data_ok)
+ TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
+ (x < edge_size));
+ w++;
+ } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
+ (w < edge_size));
+ v++;
+ } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
+ (v < edge_size));
+ u++;
+ } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+ /* similarly, read the on disk small cube into slices through the in memory
+ * large cube, and verify that the correct data (and only the correct data)
+ * is read.
+ */
+
+ /* select a checker board in the file small cube dataspace */
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size,
+ checker_edge_size, small_rank, sel_start);
+
+ u = 0;
+ do {
+ if (0 < small_rank_offset)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if (1 < small_rank_offset)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if (2 < small_rank_offset)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if (3 < small_rank_offset)
+ sel_start[3] = x;
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board(
+ mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* zero out the in memory large cube */
+ HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);
+
+ /* Read selection from disk */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
+ file_small_cube_sid, xfer_plist, large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that the expected data and only the
+ * expected data was read.
+ */
+ data_ok = TRUE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= large_cube_size);
+
+ /* verify that the large cube contains only zeros before the slice */
+ for (s = 0; s < start_index; s++) {
+ if (*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ HDassert(s == start_index);
+
+ data_ok &= test_select_hyper_checker_board_dr__verify_data(
+ ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE);
+
+ ptr_1 += small_cube_size;
+ s += small_cube_size;
+
+ HDassert(s == stop_index + 1);
+
+ /* verify that the large cube contains only zeros after the slice */
+ for (s = stop_index + 1; s < large_cube_size; s++) {
+ if (*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ if (!data_ok)
+ TestErrPrintf("large cube read from small cube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
+ (x < edge_size));
+ w++;
+ } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
+ (w < edge_size));
+ v++;
+ } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
+ (v < edge_size));
+ u++;
+ } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+ /* now we go in the opposite direction, verifying that we can write
+ * from memory to file using selections of different rank that
+ * H5Sselect_shape_same() views as being of the same shape.
+ *
+ * Start by writing small_rank D slices from the in memory large cube, to
+ * the the on disk small cube dataset. After each write, read the small
+ * cube dataset back from disk, and verify that it contains the expected
+ * data. Verify that H5Sselect_shape_same() returns true on the
+ * memory and file selections.
+ */
+
+ /* select a checker board in the file small cube dataspace */
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size,
+ checker_edge_size, small_rank, sel_start);
+
+ u = 0;
+ do {
+ if (small_rank_offset > 0)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if (small_rank_offset > 1)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if (small_rank_offset > 2)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if (small_rank_offset > 3)
+ sel_start[3] = x;
+
+ /* zero out the on disk small cube */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
+ full_small_cube_sid, xfer_plist, zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board(
+ mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* write the slice from the in memory large cube to the
+ * on disk small cube
+ */
+ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
+ file_small_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* zero the buffer that we will be using for reading */
+ HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);
+
+ /* read the on disk small cube into memory */
+ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
+ full_small_cube_sid, xfer_plist, small_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) +
+ (w * edge_size * edge_size) + (x * edge_size));
+
+ data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank,
+ edge_size, checker_edge_size,
+ expected_value, (hbool_t)TRUE);
+ if (!data_ok)
+ TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
+ (x < edge_size));
+ w++;
+ } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
+ (w < edge_size));
+ v++;
+ } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
+ (v < edge_size));
+ u++;
+ } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+ /* Now write checker board selections of the entries in memory
+ * small cube to slices of the on disk cube. After each write,
+ * read the on disk large cube * into memory, and verify that
+ * it contains the expected * data. Verify that
+ * H5Sselect_shape_same() returns true on the memory and file
+ * selections.
+ */
+
+ /* select a checker board in the in memory small cube dataspace */
+ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
+ test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size,
+ checker_edge_size, small_rank, sel_start);
+
+ u = 0;
+ do {
+ if (small_rank_offset > 0)
+ sel_start[0] = u;
+
+ v = 0;
+ do {
+ if (small_rank_offset > 1)
+ sel_start[1] = v;
+
+ w = 0;
+ do {
+ if (small_rank_offset > 2)
+ sel_start[2] = w;
+
+ x = 0;
+ do {
+ if (small_rank_offset > 3)
+ sel_start[3] = x;
+
+ /* zero out the on disk cube */
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, full_large_cube_sid,
+ full_large_cube_sid, xfer_plist, zero_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* we know that small_rank >= 1 and that large_rank > small_rank
+ * by the assertions at the head of this function. Thus no
+ * need for another inner loop.
+ */
+
+ HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
+ HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
+ HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
+ HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
+ HDassert((sel_start[4] == 0) || (4 < small_rank_offset));
+
+ test_select_hyper_checker_board_dr__select_checker_board(
+ file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(file_large_cube_sid, mem_small_cube_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* write the checker board selection of the in memory
+ * small cube to a slice through the on disk large
+ * cube.
+ */
+ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid,
+ file_large_cube_sid, xfer_plist, cube_buf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* zero out the in memory large cube */
+ HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);
+
+ /* read the on disk large cube into memory */
+ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid,
+ full_large_cube_sid, xfer_plist, large_cube_buf_1);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* verify that the expected data and only the
+ * expected data was written to the on disk large
+ * cube.
+ */
+ data_ok = TRUE;
+ ptr_1 = large_cube_buf_1;
+ expected_value = 0;
+ start_index = (u * edge_size * edge_size * edge_size * edge_size) +
+ (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
+ (x * edge_size);
+ stop_index = start_index + small_cube_size - 1;
+
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= large_cube_size);
+
+ /* verify that the large cube contains only zeros before the slice */
+ for (s = 0; s < start_index; s++) {
+ if (*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ HDassert(s == start_index);
+
+ /* verify that the slice contains the expected data */
+ data_ok &= test_select_hyper_checker_board_dr__verify_data(
+ ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE);
+
+ ptr_1 += small_cube_size;
+ s += small_cube_size;
+
+ HDassert(s == stop_index + 1);
+
+ /* verify that the large cube contains only zeros after the slice */
+ for (s = stop_index + 1; s < large_cube_size; s++) {
+ if (*ptr_1 != 0)
+ data_ok = FALSE;
+ ptr_1++;
+ } /* end for */
+ if (!data_ok)
+ TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);
+
+ x++;
+ } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
+ (x < edge_size));
+ w++;
+ } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
+ (w < edge_size));
+ v++;
+ } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
+ (v < edge_size));
+ u++;
+ } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));
+
+ /* Close memory dataspaces */
+ ret = H5Sclose(full_small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(full_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(mem_small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(mem_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(file_small_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(file_large_cube_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Datasets */
+ ret = H5Dclose(small_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ ret = H5Dclose(large_cube_dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(small_cube_buf_1);
+ HDfree(large_cube_buf_1);
+
+} /* test_select_hyper_checker_board_dr__run_test() */
+#endif
+/****************************************************************
+**
+** test_select_hyper_checker_board_dr(): Test H5S (dataspace)
+** selection code with checkerboard source and target having
+** different ranks but the same shape. We have already
+** tested H5Sselect_shape_same in isolation, so now we try to do
+** I/O.
+**
+** This is just an initial smoke check, so we will work
+** with a slice through a cube only.
+**
+****************************************************************/
+#if 0
+static void
+test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist)
+{
+ uint16_t *cube_buf; /* Buffer for writing cube data */
+ uint16_t *cube_ptr; /* Temporary pointer into cube data */
+ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
+ int test_num = 0;
+ unsigned checker_edge_size = 2; /* Size of checkerboard dimension */
+ unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */
+ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */
+ unsigned small_rank; /* Current rank of small dataset */
+ unsigned large_rank; /* Current rank of large dataset */
+ unsigned max_rank = 5; /* Max. rank to use */
+ size_t max_cube_size; /* Max. number of elements in largest cube */
+ size_t s; /* Local index variable */
+ unsigned u; /* Local index variable */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n"));
+
+ /* Compute max. cube size */
+ max_cube_size = (size_t)1;
+ for (u = 0; u < max_rank; u++)
+ max_cube_size *= (size_t)(edge_size + 1);
+
+ /* Allocate cube buffer for writing values */
+ cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size);
+ CHECK_PTR(cube_buf, "HDmalloc");
+
+ /* Initialize the cube buffer */
+ cube_ptr = cube_buf;
+ for (s = 0; s < max_cube_size; s++)
+ *cube_ptr++ = (uint16_t)s;
+
+ /* Allocate cube buffer for zeroing values on disk */
+ zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size);
+ CHECK_PTR(zero_buf, "HDcalloc");
+
+ for (large_rank = 1; large_rank <= max_rank; large_rank++) {
+ for (small_rank = 1; small_rank < large_rank; small_rank++) {
+ chunk_edge_size = 0;
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size,
+ checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1,
+ checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ chunk_edge_size = 3;
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size,
+ checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+
+ test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1,
+ checker_edge_size, chunk_edge_size, small_rank,
+ large_rank, dset_type, xfer_plist);
+ test_num++;
+ } /* for loop on small rank */
+ } /* for loop on large rank */
+
+ HDfree(cube_buf);
+ HDfree(zero_buf);
+
+} /* test_select_hyper_checker_board_dr() */
+#endif
+/****************************************************************
+**
+** test_select_hyper_copy(): Test H5S (dataspace) selection code.
+** Tests copying hyperslab selections
+**
+****************************************************************/
+static void
+test_select_hyper_copy(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t data1, data2; /* Dataset IDs */
+ hid_t sid1, sid2, sid3; /* Dataspace IDs */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ uint16_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* 1st buffer read from disk */
+ *rbuf2, /* 2nd buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+ rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf2, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 2;
+ stride[1] = 4;
+ stride[2] = 3;
+ count[0] = 2;
+ count[1] = 3;
+ count[2] = 3;
+ block[0] = 1;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
+ start[0] = 1;
+ start[1] = 1;
+ stride[0] = 5;
+ stride[1] = 5;
+ count[0] = 4;
+ count[1] = 2;
+ block[0] = 3;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Make a copy of the dataspace to write */
+ sid3 = H5Scopy(sid2);
+ CHECK(sid3, FAIL, "H5Scopy");
+
+ /* Create a dataset */
+ data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(data1, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create another dataset */
+ data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(data2, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid3);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 4;
+ stride[1] = 4;
+ count[0] = 3;
+ count[1] = 4;
+ block[0] = 2;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Make a copy of the dataspace to read */
+ sid3 = H5Scopy(sid2);
+ CHECK(sid3, FAIL, "H5Scopy");
+
+ /* Read selection from disk */
+ ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Read selection from disk */
+ ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ if (HDmemcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0)
+ TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__);
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close 2nd memory dataspace */
+ ret = H5Sclose(sid3);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(data1);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(data2);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+ HDfree(rbuf2);
+} /* test_select_hyper_copy() */
+
+/****************************************************************
+**
+** test_select_point_copy(): Test H5S (dataspace) selection code.
+** Tests copying point selections
+**
+****************************************************************/
+static void
+test_select_point_copy(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t data1, data2; /* Dataset IDs */
+ hid_t sid1, sid2, sid3; /* Dataspace IDs */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
+ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
+ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
+ uint16_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* 1st buffer read from disk */
+ *rbuf2, /* 2nd buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+ rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf2, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for disk dataset */
+ coord1[0][0] = 0;
+ coord1[0][1] = 10;
+ coord1[0][2] = 5;
+ coord1[1][0] = 1;
+ coord1[1][1] = 2;
+ coord1[1][2] = 7;
+ coord1[2][0] = 2;
+ coord1[2][1] = 4;
+ coord1[2][2] = 9;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[3][2] = 11;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[4][2] = 13;
+ coord1[5][0] = 2;
+ coord1[5][1] = 12;
+ coord1[5][2] = 0;
+ coord1[6][0] = 0;
+ coord1[6][1] = 14;
+ coord1[6][2] = 2;
+ coord1[7][0] = 1;
+ coord1[7][1] = 0;
+ coord1[7][2] = 4;
+ coord1[8][0] = 2;
+ coord1[8][1] = 1;
+ coord1[8][2] = 6;
+ coord1[9][0] = 0;
+ coord1[9][1] = 3;
+ coord1[9][2] = 8;
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Select sequence of ten points for write dataset */
+ coord2[0][0] = 12;
+ coord2[0][1] = 3;
+ coord2[1][0] = 15;
+ coord2[1][1] = 13;
+ coord2[2][0] = 7;
+ coord2[2][1] = 25;
+ coord2[3][0] = 0;
+ coord2[3][1] = 6;
+ coord2[4][0] = 13;
+ coord2[4][1] = 0;
+ coord2[5][0] = 24;
+ coord2[5][1] = 11;
+ coord2[6][0] = 12;
+ coord2[6][1] = 21;
+ coord2[7][0] = 29;
+ coord2[7][1] = 4;
+ coord2[8][0] = 8;
+ coord2[8][1] = 8;
+ coord2[9][0] = 19;
+ coord2[9][1] = 17;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Make a copy of the dataspace to write */
+ sid3 = H5Scopy(sid2);
+ CHECK(sid3, FAIL, "H5Scopy");
+
+ /* Create a dataset */
+ data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(data1, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create another dataset */
+ data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(data2, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid3);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of points for read dataset */
+ coord3[0][0] = 0;
+ coord3[0][1] = 2;
+ coord3[1][0] = 4;
+ coord3[1][1] = 8;
+ coord3[2][0] = 13;
+ coord3[2][1] = 13;
+ coord3[3][0] = 14;
+ coord3[3][1] = 25;
+ coord3[4][0] = 7;
+ coord3[4][1] = 9;
+ coord3[5][0] = 2;
+ coord3[5][1] = 0;
+ coord3[6][0] = 9;
+ coord3[6][1] = 19;
+ coord3[7][0] = 1;
+ coord3[7][1] = 22;
+ coord3[8][0] = 12;
+ coord3[8][1] = 21;
+ coord3[9][0] = 11;
+ coord3[9][1] = 6;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Make a copy of the dataspace to read */
+ sid3 = H5Scopy(sid2);
+ CHECK(sid3, FAIL, "H5Scopy");
+
+ /* Read selection from disk */
+ ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Read selection from disk */
+ ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ if (HDmemcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0)
+ TestErrPrintf("point values don't match!\n");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close 2nd memory dataspace */
+ ret = H5Sclose(sid3);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(data1);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(data2);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+ HDfree(rbuf2);
+} /* test_select_point_copy() */
+
+/****************************************************************
+**
+** test_select_hyper_offset(): Test basic H5S (dataspace) selection code.
+** Tests hyperslabs of various sizes and dimensionalities with selection
+** offsets.
+**
+****************************************************************/
+static void
+test_select_hyper_offset(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ hssize_t offset[SPACE1_RANK]; /* Offset of selection */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ htri_t valid; /* Generic boolean return value */
+ H5S_class_t ext_type; /* Extent type */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with Offsets\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Verify extent type */
+ ext_type = H5Sget_simple_extent_type(sid1);
+ VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Check a valid offset */
+ offset[0] = -1;
+ offset[1] = 0;
+ offset[2] = 0;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Check an invalid offset */
+ offset[0] = 10;
+ offset[1] = 0;
+ offset[2] = 0;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, FALSE, "H5Sselect_valid");
+
+ /* Reset offset */
+ offset[0] = 0;
+ offset[1] = 0;
+ offset[2] = 0;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Select 15x26 hyperslab for memory dataset */
+ start[0] = 15;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Choose a valid offset for the memory dataspace */
+ offset[0] = -10;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid2, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid2);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < SPACE3_DIM1; i++) {
+ tbuf = wbuf + ((i + 5) * SPACE2_DIM2);
+ tbuf2 = rbuf + (i * SPACE3_DIM2);
+ for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",
+ __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_offset() */
+
+/****************************************************************
+**
+** test_select_hyper_offset2(): Test basic H5S (dataspace) selection code.
+** Tests optimized hyperslab I/O with selection offsets.
+**
+****************************************************************/
+static void
+test_select_hyper_offset2(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hsize_t start[SPACE7_RANK]; /* Starting location of hyperslab */
+ hsize_t count[SPACE7_RANK]; /* Element count of hyperslab */
+ hssize_t offset[SPACE7_RANK]; /* Offset of selection */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ htri_t valid; /* Generic boolean return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing More Hyperslab Selection Functions with Offsets\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE7_DIM1 * SPACE7_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++)
+ for (j = 0; j < SPACE7_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 4x10 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ count[0] = 4;
+ count[1] = 10;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Set offset */
+ offset[0] = 1;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Select 4x10 hyperslab for memory dataset */
+ start[0] = 1;
+ start[1] = 0;
+ count[0] = 4;
+ count[1] = 10;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Choose a valid offset for the memory dataspace */
+ offset[0] = 2;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid2, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid2);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE7_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < 4; i++) {
+ tbuf = wbuf + ((i + 3) * SPACE7_DIM2);
+ tbuf2 = rbuf + ((i + 3) * SPACE7_DIM2);
+ for (j = 0; j < SPACE7_DIM2; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",
+ __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_offset2() */
+
+/****************************************************************
+**
+** test_select_point_offset(): Test basic H5S (dataspace) selection code.
+** Tests element selections between dataspaces of various sizes
+** and dimensionalities with selection offsets.
+**
+****************************************************************/
+static void
+test_select_point_offset(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
+ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
+ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
+ hssize_t offset[SPACE1_RANK]; /* Offset of selection */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ htri_t valid; /* Generic boolean return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Element Selection Functions\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for write buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for disk dataset */
+ coord1[0][0] = 0;
+ coord1[0][1] = 10;
+ coord1[0][2] = 5;
+ coord1[1][0] = 1;
+ coord1[1][1] = 2;
+ coord1[1][2] = 7;
+ coord1[2][0] = 2;
+ coord1[2][1] = 4;
+ coord1[2][2] = 9;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[3][2] = 11;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[4][2] = 12;
+ coord1[5][0] = 2;
+ coord1[5][1] = 12;
+ coord1[5][2] = 0;
+ coord1[6][0] = 0;
+ coord1[6][1] = 14;
+ coord1[6][2] = 2;
+ coord1[7][0] = 1;
+ coord1[7][1] = 0;
+ coord1[7][2] = 4;
+ coord1[8][0] = 2;
+ coord1[8][1] = 1;
+ coord1[8][2] = 6;
+ coord1[9][0] = 0;
+ coord1[9][1] = 3;
+ coord1[9][2] = 8;
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Check a valid offset */
+ offset[0] = 0;
+ offset[1] = 0;
+ offset[2] = 1;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Check an invalid offset */
+ offset[0] = 10;
+ offset[1] = 0;
+ offset[2] = 0;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, FALSE, "H5Sselect_valid");
+
+ /* Reset offset */
+ offset[0] = 0;
+ offset[1] = 0;
+ offset[2] = 0;
+ ret = H5Soffset_simple(sid1, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid1);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Select sequence of ten points for write dataset */
+ coord2[0][0] = 12;
+ coord2[0][1] = 3;
+ coord2[1][0] = 15;
+ coord2[1][1] = 13;
+ coord2[2][0] = 7;
+ coord2[2][1] = 24;
+ coord2[3][0] = 0;
+ coord2[3][1] = 6;
+ coord2[4][0] = 13;
+ coord2[4][1] = 0;
+ coord2[5][0] = 24;
+ coord2[5][1] = 11;
+ coord2[6][0] = 12;
+ coord2[6][1] = 21;
+ coord2[7][0] = 23;
+ coord2[7][1] = 4;
+ coord2[8][0] = 8;
+ coord2[8][1] = 8;
+ coord2[9][0] = 19;
+ coord2[9][1] = 17;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Choose a valid offset for the memory dataspace */
+ offset[0] = 5;
+ offset[1] = 1;
+ ret = H5Soffset_simple(sid2, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ valid = H5Sselect_valid(sid2);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select sequence of points for read dataset */
+ coord3[0][0] = 0;
+ coord3[0][1] = 2;
+ coord3[1][0] = 4;
+ coord3[1][1] = 8;
+ coord3[2][0] = 13;
+ coord3[2][1] = 13;
+ coord3[3][0] = 14;
+ coord3[3][1] = 25;
+ coord3[4][0] = 7;
+ coord3[4][1] = 9;
+ coord3[5][0] = 2;
+ coord3[5][1] = 0;
+ coord3[6][0] = 9;
+ coord3[6][1] = 19;
+ coord3[7][0] = 1;
+ coord3[7][1] = 22;
+ coord3[8][0] = 12;
+ coord3[8][1] = 21;
+ coord3[9][0] = 11;
+ coord3[9][1] = 6;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < POINT1_NPOINTS; i++) {
+ tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1];
+ tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1];
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("element values don't match!, i=%d\n", i);
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_point_offset() */
+
+/****************************************************************
+**
+** test_select_hyper_union(): Test basic H5S (dataspace) selection code.
+** Tests unions of hyperslabs of various sizes and dimensionalities.
+**
+****************************************************************/
+static void
+test_select_hyper_union(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hid_t xfer; /* Dataset Transfer Property List ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ size_t begin[SPACE2_DIM1] = /* Offset within irregular block */
+ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* First ten rows start at offset 0 */
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; /* Next eighteen rows start at offset 5 */
+ size_t len[SPACE2_DIM1] = /* Len of each row within irregular block */
+ {10, 10, 10, 10, 10, 10, 10, 10, /* First eight rows are 10 long */
+ 20, 20, /* Next two rows are 20 long */
+ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; /* Next eighteen rows are 15 long */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ hssize_t npoints; /* Number of elements in selection */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Test simple case of one block overlapping another */
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid1);
+ VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints");
+
+ /* Select 8x26 hyperslab for memory dataset */
+ start[0] = 15;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 8;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union overlapping 8x26 hyperslab for memory dataset (to form a 15x26 selection) */
+ start[0] = 22;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 8;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < SPACE3_DIM1; i++) {
+ tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
+ tbuf2 = rbuf + (i * SPACE3_DIM2);
+ for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Test simple case of several block overlapping another */
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 8x15 hyperslab for memory dataset */
+ start[0] = 15;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 8;
+ count[1] = 15;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union overlapping 8x15 hyperslab for memory dataset (to form a 15x15 selection) */
+ start[0] = 22;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 8;
+ count[1] = 15;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union overlapping 15x15 hyperslab for memory dataset (to form a 15x26 selection) */
+ start[0] = 15;
+ start[1] = 11;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 15;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < SPACE3_DIM1; i++) {
+ tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
+ tbuf2 = rbuf + (i * SPACE3_DIM2);
+ for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Test disjoint case of two non-overlapping blocks */
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 7x26 hyperslab for memory dataset */
+ start[0] = 1;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 7;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
+ start[0] = 22;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 8;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < SPACE3_DIM1; i++) {
+ /* Jump over gap in middle */
+ if (i < 7)
+ tbuf = wbuf + ((i + 1) * SPACE2_DIM2);
+ else
+ tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
+ tbuf2 = rbuf + (i * SPACE3_DIM2);
+ for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Test disjoint case of two non-overlapping blocks with hyperslab caching turned off */
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 7x26 hyperslab for memory dataset */
+ start[0] = 1;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 7;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
+ start[0] = 22;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 8;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ xfer = H5Pcreate(H5P_DATASET_XFER);
+ CHECK(xfer, FAIL, "H5Pcreate");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Close transfer property list */
+ ret = H5Pclose(xfer);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* Compare data read with data written out */
+ for (i = 0; i < SPACE3_DIM1; i++) {
+ /* Jump over gap in middle */
+ if (i < 7)
+ tbuf = wbuf + ((i + 1) * SPACE2_DIM2);
+ else
+ tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
+ tbuf2 = rbuf + (i * SPACE3_DIM2);
+ for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Test case of two blocks which overlap corners and must be split */
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 10x10 hyperslab for memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
+ start[0] = 8;
+ start[1] = 5;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 20;
+ count[1] = 15;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0, tbuf2 = rbuf; i < SPACE2_DIM1; i++) {
+ tbuf = wbuf + (i * SPACE2_DIM2) + begin[i];
+ for (j = 0; j < (int)len[i]; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_union() */
+
+/****************************************************************
+**
+** test_select_hyper_union_stagger(): Test basic H5S (dataspace) selection code.
+** Tests unions of staggered hyperslabs. (Uses H5Scombine_hyperslab
+** and H5Smodify_select instead of H5Sselect_hyperslab)
+**
+****************************************************************/
+static void
+test_select_hyper_union_stagger(void)
+{
+ hid_t file_id; /* File ID */
+ hid_t dset_id; /* Dataset ID */
+ hid_t dataspace; /* File dataspace ID */
+ hid_t memspace; /* Memory dataspace ID */
+ hid_t tmp_space; /* Temporary dataspace ID */
+ hid_t tmp2_space; /* Another emporary dataspace ID */
+ hsize_t dimsm[2] = {7, 7}; /* Memory array dimensions */
+ hsize_t dimsf[2] = {6, 5}; /* File array dimensions */
+ hsize_t count[2] = {3, 1}; /* 1st Hyperslab size */
+ hsize_t count2[2] = {3, 1}; /* 2nd Hyperslab size */
+ hsize_t count3[2] = {2, 1}; /* 3rd Hyperslab size */
+ hsize_t start[2] = {0, 0}; /* 1st Hyperslab offset */
+ hsize_t start2[2] = {2, 1}; /* 2nd Hyperslab offset */
+ hsize_t start3[2] = {4, 2}; /* 3rd Hyperslab offset */
+ hsize_t count_out[2] = {4, 2}; /* Hyperslab size in memory */
+ hsize_t start_out[2] = {0, 3}; /* Hyperslab offset in memory */
+ int data[6][5]; /* Data to write */
+ int data_out[7][7]; /* Data read in */
+ int input_loc[8][2] = {{0, 0}, {1, 0}, {2, 0}, {2, 1}, {3, 1}, {4, 1}, {4, 2}, {5, 2}};
+ int output_loc[8][2] = {{0, 3}, {0, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 3}, {3, 4}};
+ int dsetrank = 2; /* File Dataset rank */
+ int memrank = 2; /* Memory Dataset rank */
+ int i, j; /* Local counting variables */
+ herr_t error;
+ hsize_t stride[2] = {1, 1};
+ hsize_t block[2] = {1, 1};
+
+ /* Initialize data to write */
+ for (i = 0; i < 6; i++)
+ for (j = 0; j < 5; j++)
+ data[i][j] = j * 10 + i;
+
+ /* Create file */
+ file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(file_id, FAIL, "H5Fcreate");
+
+ /* Create File Dataspace */
+ dataspace = H5Screate_simple(dsetrank, dimsf, NULL);
+ CHECK(dataspace, FAIL, "H5Screate_simple");
+
+ /* Create File Dataset */
+ dset_id =
+ H5Dcreate2(file_id, "IntArray", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dset_id, FAIL, "H5Dcreate2");
+
+ /* Write File Dataset */
+ error = H5Dwrite(dset_id, H5T_NATIVE_INT, dataspace, dataspace, H5P_DEFAULT, data);
+ CHECK(error, FAIL, "H5Dwrite");
+
+ /* Close things */
+ error = H5Sclose(dataspace);
+ CHECK(error, FAIL, "H5Sclose");
+ error = H5Dclose(dset_id);
+ CHECK(error, FAIL, "H5Dclose");
+ error = H5Fclose(file_id);
+ CHECK(error, FAIL, "H5Fclose");
+
+ /* Initialize input buffer */
+ HDmemset(data_out, 0, 7 * 7 * sizeof(int));
+
+ /* Open file */
+ file_id = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
+ CHECK(file_id, FAIL, "H5Fopen");
+
+ /* Open dataset */
+ dset_id = H5Dopen2(file_id, "IntArray", H5P_DEFAULT);
+ CHECK(dset_id, FAIL, "H5Dopen2");
+
+ /* Get the dataspace */
+ dataspace = H5Dget_space(dset_id);
+ CHECK(dataspace, FAIL, "H5Dget_space");
+
+ /* Select the hyperslabs */
+ error = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+ tmp_space = H5Scombine_hyperslab(dataspace, H5S_SELECT_OR, start2, stride, count2, block);
+ CHECK(tmp_space, FAIL, "H5Scombine_hyperslab");
+
+ /* Copy the file dataspace and select hyperslab */
+ tmp2_space = H5Scopy(dataspace);
+ CHECK(tmp2_space, FAIL, "H5Scopy");
+ error = H5Sselect_hyperslab(tmp2_space, H5S_SELECT_SET, start3, stride, count3, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Combine the copied dataspace with the temporary dataspace */
+ error = H5Smodify_select(tmp_space, H5S_SELECT_OR, tmp2_space);
+ CHECK(error, FAIL, "H5Smodify_select");
+
+ /* Create Memory Dataspace */
+ memspace = H5Screate_simple(memrank, dimsm, NULL);
+ CHECK(memspace, FAIL, "H5Screate_simple");
+
+ /* Select hyperslab in memory */
+ error = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, start_out, stride, count_out, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Read File Dataset */
+ error = H5Dread(dset_id, H5T_NATIVE_INT, memspace, tmp_space, H5P_DEFAULT, data_out);
+ CHECK(error, FAIL, "H5Dread");
+
+ /* Verify input data */
+ for (i = 0; i < 8; i++) {
+ if (data[input_loc[i][0]][input_loc[i][1]] != data_out[output_loc[i][0]][output_loc[i][1]]) {
+ HDprintf("input data #%d is wrong!\n", i);
+ HDprintf("input_loc=[%d][%d]\n", input_loc[i][0], input_loc[i][1]);
+ HDprintf("output_loc=[%d][%d]\n", output_loc[i][0], output_loc[i][1]);
+ HDprintf("data=%d\n", data[input_loc[i][0]][input_loc[i][1]]);
+ TestErrPrintf("data_out=%d\n", data_out[output_loc[i][0]][output_loc[i][1]]);
+ } /* end if */
+ } /* end for */
+
+ /* Close things */
+ error = H5Sclose(tmp2_space);
+ CHECK(error, FAIL, "H5Sclose");
+ error = H5Sclose(tmp_space);
+ CHECK(error, FAIL, "H5Sclose");
+ error = H5Sclose(dataspace);
+ CHECK(error, FAIL, "H5Sclose");
+ error = H5Sclose(memspace);
+ CHECK(error, FAIL, "H5Sclose");
+ error = H5Dclose(dset_id);
+ CHECK(error, FAIL, "H5Dclose");
+ error = H5Fclose(file_id);
+ CHECK(error, FAIL, "H5Fclose");
+}
+
+/****************************************************************
+**
+** test_select_hyper_union_3d(): Test basic H5S (dataspace) selection code.
+** Tests unions of hyperslabs in 3-D (Uses H5Scombine_hyperslab
+** and H5Scombine_select instead of H5Sselect_hyperslab)
+**
+****************************************************************/
+static void
+test_select_hyper_union_3d(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hid_t tmp_space; /* Temporary Dataspace ID */
+ hid_t tmp2_space; /* Another temporary Dataspace ID */
+ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
+ hsize_t dims2[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
+ hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
+ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */
+ struct row_list {
+ size_t z;
+ size_t y;
+ size_t x;
+ size_t l;
+ } rows[] = {
+ /* Array of x,y,z coordinates & length for each row written from memory */
+ {0, 0, 0, 6}, /* 1st face of 3-D object */
+ {0, 1, 0, 6}, {0, 2, 0, 6}, {0, 3, 0, 6}, {0, 4, 0, 6}, {1, 0, 0, 6}, /* 2nd face of 3-D object */
+ {1, 1, 0, 6}, {1, 2, 0, 6}, {1, 3, 0, 6}, {1, 4, 0, 6}, {2, 0, 0, 6}, /* 3rd face of 3-D object */
+ {2, 1, 0, 10}, {2, 2, 0, 10}, {2, 3, 0, 10}, {2, 4, 0, 10}, {2, 5, 2, 8},
+ {2, 6, 2, 8}, {3, 0, 0, 6}, /* 4th face of 3-D object */
+ {3, 1, 0, 10}, {3, 2, 0, 10}, {3, 3, 0, 10}, {3, 4, 0, 10}, {3, 5, 2, 8},
+ {3, 6, 2, 8}, {4, 0, 0, 6}, /* 5th face of 3-D object */
+ {4, 1, 0, 10}, {4, 2, 0, 10}, {4, 3, 0, 10}, {4, 4, 0, 10}, {4, 5, 2, 8},
+ {4, 6, 2, 8}, {5, 1, 2, 8}, /* 6th face of 3-D object */
+ {5, 2, 2, 8}, {5, 3, 2, 8}, {5, 4, 2, 8}, {5, 5, 2, 8}, {5, 6, 2, 8},
+ {6, 1, 2, 8}, /* 7th face of 3-D object */
+ {6, 2, 2, 8}, {6, 3, 2, 8}, {6, 4, 2, 8}, {6, 5, 2, 8}, {6, 6, 2, 8},
+ {7, 1, 2, 8}, /* 8th face of 3-D object */
+ {7, 2, 2, 8}, {7, 3, 2, 8}, {7, 4, 2, 8}, {7, 5, 2, 8}, {7, 6, 2, 8}};
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j, k; /* Counters */
+ herr_t ret; /* Generic return value */
+ hsize_t npoints; /* Number of elements in selection */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of 3-D hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE3_DIM1 * SPACE3_DIM2);
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++)
+ for (j = 0; j < SPACE4_DIM2; j++)
+ for (k = 0; k < SPACE4_DIM3; k++)
+ *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Test case of two blocks which overlap corners and must be split */
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE4_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 2x15x13 hyperslab for disk dataset */
+ start[0] = 1;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 2;
+ count[1] = 15;
+ count[2] = 13;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select 5x5x6 hyperslab for memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ start[2] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 5;
+ count[1] = 5;
+ count[2] = 6;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
+ start[0] = 2;
+ start[1] = 1;
+ start[2] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ stride[2] = 1;
+ count[0] = 6;
+ count[1] = 6;
+ count[2] = 8;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ tmp_space = H5Scombine_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(tmp_space, FAIL, "H5Sselect_hyperslab");
+
+ /* Combine dataspaces and create new dataspace */
+ tmp2_space = H5Scombine_select(sid2, H5S_SELECT_OR, tmp_space);
+ CHECK(tmp2_space, FAIL, "H5Scombin_select");
+
+ npoints = (hsize_t)H5Sget_select_npoints(tmp2_space);
+ VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, tmp2_space, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close temporary dataspaces */
+ ret = H5Sclose(tmp_space);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(tmp2_space);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 15x26 hyperslab for reading memory dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 15;
+ count[1] = 26;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Compare data read with data written out */
+ for (i = 0, tbuf2 = rbuf; i < (int)(sizeof(rows) / sizeof(struct row_list)); i++) {
+ tbuf = wbuf + (rows[i].z * SPACE4_DIM3 * SPACE4_DIM2) + (rows[i].y * SPACE4_DIM3) + rows[i].x;
+ for (j = 0; j < (int)rows[i].l; j++, tbuf++, tbuf2++) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ } /* end for */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_union_3d() */
+
+/****************************************************************
+**
+** test_select_hyper_valid_combination(): Tests invalid and valid
+** combinations of selections on dataspace for H5Scombine_select
+** and H5Smodify_select.
+**
+****************************************************************/
+static void
+test_select_hyper_valid_combination(void)
+{
+ hid_t single_pt_sid; /* Dataspace ID with single point selection */
+ hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
+ hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
+ hid_t non_existent_sid = -1; /* A non-existent space id */
+ hid_t tmp_sid; /* Temporary dataspace ID */
+ hsize_t dims2D[] = {SPACE9_DIM1, SPACE9_DIM2};
+ hsize_t dims3D[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
+
+ hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
+ hsize_t start[SPACE4_RANK]; /* Hyperslab start */
+ hsize_t stride[SPACE4_RANK]; /* Hyperslab stride */
+ hsize_t count[SPACE4_RANK]; /* Hyperslab block count */
+ hsize_t block[SPACE4_RANK]; /* Hyperslab block size */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Selection Combination Validity\n"));
+ HDassert(SPACE9_DIM2 >= POINT1_NPOINTS);
+
+ /* Create dataspace for single point selection */
+ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL);
+ CHECK(single_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for multiple point selection */
+ coord1[0][0] = 2;
+ coord1[0][1] = 2;
+ ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create dataspace for single hyperslab selection */
+ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL);
+ CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for single hyperslab selection */
+ start[0] = 1;
+ start[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = (SPACE9_DIM1 - 2);
+ block[1] = (SPACE9_DIM2 - 2);
+ ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for regular hyperslab selection */
+ regular_hyper_sid = H5Screate_simple(SPACE4_RANK, dims3D, NULL);
+ CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Select regular, strided hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ start[2] = 2;
+ stride[0] = 2;
+ stride[1] = 2;
+ stride[2] = 2;
+ count[0] = 5;
+ count[1] = 2;
+ count[2] = 5;
+ block[0] = 1;
+ block[1] = 1;
+ block[2] = 1;
+ ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Test all the selections created */
+
+ /* Test the invalid combinations between point and hyperslab */
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Scombine_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Scombine_select");
+
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Smodify_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Smodify_select");
+
+ /* Test the invalid combination between two hyperslab but of different dimension size */
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Scombine_select");
+
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Smodify_select");
+
+ /* Test invalid operation inputs to the two functions */
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Scombine_select");
+
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Smodify_select");
+
+ /* Test inputs in case of non-existent space ids */
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Scombine_select");
+
+ H5E_BEGIN_TRY
+ {
+ tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid);
+ }
+ H5E_END_TRY;
+ VERIFY(tmp_sid, FAIL, "H5Smodify_select");
+
+ /* Close dataspaces */
+ ret = H5Sclose(single_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(regular_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_select_hyper_valid_combination() */
+
+/****************************************************************
+**
+** test_select_hyper_and_2d(): Test basic H5S (dataspace) selection code.
+** Tests 'and' of hyperslabs in 2-D
+**
+****************************************************************/
+static void
+test_select_hyper_and_2d(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims2[] = {SPACE2A_DIM1};
+ hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ hssize_t npoints; /* Number of elements in selection */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Intersect overlapping 10x10 hyperslab */
+ start[0] = 5;
+ start[1] = 5;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid1);
+ VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");
+
+ /* Select 25 hyperslab for memory dataset */
+ start[0] = 0;
+ stride[0] = 1;
+ count[0] = 25;
+ block[0] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read entire dataset from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
+ if ((i >= 5 && i <= 9) && (j >= 5 && j <= 9)) {
+ if (*tbuf != *tbuf2)
+ HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
+ i, j, (int)*tbuf, (int)*tbuf2);
+ tbuf2++;
+ } /* end if */
+ else {
+ if (*tbuf != 0)
+ HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
+ (int)*tbuf);
+ } /* end else */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_and_2d() */
+
+/****************************************************************
+**
+** test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code.
+** Tests 'xor' of hyperslabs in 2-D
+**
+****************************************************************/
+static void
+test_select_hyper_xor_2d(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims2[] = {SPACE2A_DIM1};
+ hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ hssize_t npoints; /* Number of elements in selection */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Intersect overlapping 10x10 hyperslab */
+ start[0] = 5;
+ start[1] = 5;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_XOR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid1);
+ VERIFY(npoints, 150, "H5Sget_select_npoints");
+
+ /* Select 25 hyperslab for memory dataset */
+ start[0] = 0;
+ stride[0] = 1;
+ count[0] = 150;
+ block[0] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 150, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read entire dataset from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
+ if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) ||
+ ((i >= 5 && i <= 9) && ((j >= 0 && j <= 4) || (j >= 10 && j <= 14))) ||
+ ((i >= 10 && i <= 14) && (j >= 5 && j <= 14))) {
+ if (*tbuf != *tbuf2)
+ HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
+ i, j, (int)*tbuf, (int)*tbuf2);
+ tbuf2++;
+ } /* end if */
+ else {
+ if (*tbuf != 0)
+ HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
+ (int)*tbuf);
+ } /* end else */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_xor_2d() */
+
+/****************************************************************
+**
+** test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code.
+** Tests 'notb' of hyperslabs in 2-D
+**
+****************************************************************/
+static void
+test_select_hyper_notb_2d(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims2[] = {SPACE2A_DIM1};
+ hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ hssize_t npoints; /* Number of elements in selection */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Intersect overlapping 10x10 hyperslab */
+ start[0] = 5;
+ start[1] = 5;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTB, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid1);
+ VERIFY(npoints, 75, "H5Sget_select_npoints");
+
+ /* Select 75 hyperslab for memory dataset */
+ start[0] = 0;
+ stride[0] = 1;
+ count[0] = 75;
+ block[0] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 75, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read entire dataset from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
+ if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || ((i >= 5 && i <= 9) && (j >= 0 && j <= 4))) {
+ if (*tbuf != *tbuf2)
+ HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
+ i, j, (int)*tbuf, (int)*tbuf2);
+ tbuf2++;
+ } /* end if */
+ else {
+ if (*tbuf != 0)
+ HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
+ (int)*tbuf);
+ } /* end else */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_notb_2d() */
+
+/****************************************************************
+**
+** test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code.
+** Tests 'nota' of hyperslabs in 2-D
+**
+****************************************************************/
+static void
+test_select_hyper_nota_2d(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
+ hsize_t dims2[] = {SPACE2A_DIM1};
+ hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */
+ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */
+ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */
+ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf, /* temporary buffer pointer */
+ *tbuf2; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+ hssize_t npoints; /* Number of elements in selection */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for disk dataset */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Intersect overlapping 10x10 hyperslab */
+ start[0] = 5;
+ start[1] = 5;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 10;
+ count[1] = 10;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTA, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid1);
+ VERIFY(npoints, 75, "H5Sget_select_npoints");
+
+ /* Select 75 hyperslab for memory dataset */
+ start[0] = 0;
+ stride[0] = 1;
+ count[0] = 75;
+ block[0] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, 75, "H5Sget_select_npoints");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write selection to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read entire dataset from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
+ for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
+ if (((i >= 10 && i <= 14) && (j >= 5 && j <= 14)) ||
+ ((i >= 5 && i <= 9) && (j >= 10 && j <= 14))) {
+ if (*tbuf != *tbuf2)
+ TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
+ __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
+ tbuf2++;
+ } /* end if */
+ else {
+ if (*tbuf != 0)
+ TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__,
+ i, j, (int)*tbuf);
+ } /* end else */
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_nota_2d() */
+
+/****************************************************************
+**
+** test_select_hyper_iter2(): Iterator for checking hyperslab iteration
+**
+****************************************************************/
+static herr_t
+test_select_hyper_iter2(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point,
+ void *_operator_data)
+{
+ int *tbuf = (int *)_elem, /* temporary buffer pointer */
+ **tbuf2 = (int **)_operator_data; /* temporary buffer handle */
+ unsigned u; /* Local counting variable */
+
+ if (*tbuf != **tbuf2) {
+ TestErrPrintf("Error in hyperslab iteration!\n");
+ HDprintf("location: { ");
+ for (u = 0; u < ndim; u++) {
+ HDprintf("%2d", (int)point[u]);
+ if (u < (ndim - 1))
+ HDprintf(", ");
+ } /* end for */
+ HDprintf("}\n");
+ HDprintf("*tbuf=%d, **tbuf2=%d\n", *tbuf, **tbuf2);
+ return (-1);
+ } /* end if */
+ else {
+ (*tbuf2)++;
+ return (0);
+ }
+} /* end test_select_hyper_iter2() */
+
+/****************************************************************
+**
+** test_select_hyper_union_random_5d(): Test basic H5S (dataspace) selection code.
+** Tests random unions of 5-D hyperslabs
+**
+****************************************************************/
+static void
+test_select_hyper_union_random_5d(hid_t read_plist)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE5_DIM1, SPACE5_DIM2, SPACE5_DIM3, SPACE5_DIM4, SPACE5_DIM5};
+ hsize_t dims2[] = {SPACE6_DIM1};
+ hsize_t start[SPACE5_RANK]; /* Starting location of hyperslab */
+ hsize_t count[SPACE5_RANK]; /* Element count of hyperslab */
+ int *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j, k, l, m; /* Counters */
+ herr_t ret; /* Generic return value */
+ hssize_t npoints, /* Number of elements in file selection */
+ npoints2; /* Number of elements in memory selection */
+ unsigned seed; /* Random number seed for each test */
+ unsigned test_num; /* Count of tests being executed */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab Selection Functions with random unions of 5-D hyperslabs\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (int *)HDmalloc(sizeof(int) * SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (int *)HDcalloc(sizeof(int),
+ (size_t)(SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5));
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE5_DIM1; i++)
+ for (j = 0; j < SPACE5_DIM2; j++)
+ for (k = 0; k < SPACE5_DIM3; k++)
+ for (l = 0; l < SPACE5_DIM4; l++)
+ for (m = 0; m < SPACE5_DIM5; m++)
+ *tbuf++ = (int)(((((((i * SPACE5_DIM2) + j) * SPACE5_DIM3) + k) * SPACE5_DIM4) + l) *
+ SPACE5_DIM5) +
+ m;
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE5_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Write entire dataset to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Create dataspace for reading buffer */
+ sid2 = H5Screate_simple(SPACE6_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Get initial random # seed */
+ seed = (unsigned)HDtime(NULL) + (unsigned)HDclock();
+
+ /* Crunch through a bunch of random hyperslab reads from the file dataset */
+ for (test_num = 0; test_num < NRAND_HYPER; test_num++) {
+ /* Save random # seed for later use */
+ /* (Used in case of errors, to regenerate the hyperslab sequence) */
+ seed += (unsigned)HDclock();
+ HDsrandom(seed);
+
+ for (i = 0; i < NHYPERSLABS; i++) {
+ /* Select random hyperslab location & size for selection */
+ for (j = 0; j < SPACE5_RANK; j++) {
+ start[j] = ((hsize_t)HDrandom() % dims1[j]);
+ count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1);
+ } /* end for */
+
+ /* Select hyperslab */
+ ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count,
+ NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ if (ret < 0) {
+ TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
+ break;
+ } /* end if */
+ } /* end for */
+
+ /* Get the number of elements selected */
+ npoints = H5Sget_select_npoints(sid1);
+ CHECK(npoints, 0, "H5Sget_select_npoints");
+
+ /* Select linear 1-D hyperslab for memory dataset */
+ start[0] = 0;
+ count[0] = (hsize_t)npoints;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ npoints2 = H5Sget_select_npoints(sid2);
+ VERIFY(npoints, npoints2, "H5Sget_select_npoints");
+
+ /* Read selection from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, read_plist, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+ if (ret < 0) {
+ TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
+ break;
+ } /* end if */
+
+ /* Compare data read with data written out */
+ tbuf = rbuf;
+ ret = H5Diterate(wbuf, H5T_NATIVE_INT, sid1, test_select_hyper_iter2, &tbuf);
+ if (ret < 0) {
+ TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
+ break;
+ } /* end if */
+
+ /* Set the read buffer back to all zeroes */
+ HDmemset(rbuf, 0, (size_t)SPACE6_DIM1);
+ } /* end for */
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_union_random_5d() */
+
+/****************************************************************
+**
+** test_select_hyper_chunk(): Test basic H5S (dataspace) selection code.
+** Tests large hyperslab selection in chunked dataset
+**
+****************************************************************/
+static void
+test_select_hyper_chunk(hid_t fapl_plist, hid_t xfer_plist)
+{
+ hsize_t dimsf[3]; /* dataset dimensions */
+ hsize_t chunk_dimsf[3] = {CHUNK_X, CHUNK_Y, CHUNK_Z}; /* chunk sizes */
+ short *data; /* data to write */
+ short *tmpdata; /* data to write */
+
+ /*
+ * Data and output buffer initialization.
+ */
+ hid_t file, dataset; /* handles */
+ hid_t dataspace;
+ hid_t memspace;
+ hid_t plist;
+ hsize_t dimsm[3]; /* memory space dimensions */
+ hsize_t dims_out[3]; /* dataset dimensions */
+ herr_t status;
+
+ short *data_out; /* output buffer */
+ short *tmpdata_out; /* output buffer */
+
+ hsize_t count[3]; /* size of the hyperslab in the file */
+ hsize_t offset[3]; /* hyperslab offset in the file */
+ hsize_t count_out[3]; /* size of the hyperslab in memory */
+ hsize_t offset_out[3]; /* hyperslab offset in memory */
+ int i, j, k, status_n, rank;
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Hyperslab I/O on Large Chunks\n"));
+
+ /* Allocate the transfer buffers */
+ data = (short *)HDmalloc(sizeof(short) * X * Y * Z);
+ CHECK_PTR(data, "HDmalloc");
+ data_out = (short *)HDcalloc((size_t)(NX * NY * NZ), sizeof(short));
+ CHECK_PTR(data_out, "HDcalloc");
+
+ /*
+ * Data buffer initialization.
+ */
+ tmpdata = data;
+ for (j = 0; j < X; j++)
+ for (i = 0; i < Y; i++)
+ for (k = 0; k < Z; k++)
+ *tmpdata++ = (short)((k + 1) % 256);
+
+ /*
+ * Create a new file using H5F_ACC_TRUNC access,
+ * the default file creation properties, and the default file
+ * access properties.
+ */
+ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_plist);
+ CHECK(file, FAIL, "H5Fcreate");
+
+ /*
+ * Describe the size of the array and create the dataspace for fixed
+ * size dataset.
+ */
+ dimsf[0] = X;
+ dimsf[1] = Y;
+ dimsf[2] = Z;
+ dataspace = H5Screate_simple(RANK_F, dimsf, NULL);
+ CHECK(dataspace, FAIL, "H5Screate_simple");
+
+ /*
+ * Create a new dataset within the file using defined dataspace and
+ * chunking properties.
+ */
+ plist = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(plist, FAIL, "H5Pcreate");
+ status = H5Pset_chunk(plist, RANK_F, chunk_dimsf);
+ CHECK(status, FAIL, "H5Pset_chunk");
+ dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /*
+ * Define hyperslab in the dataset.
+ */
+ offset[0] = 0;
+ offset[1] = 0;
+ offset[2] = 0;
+ count[0] = NX_SUB;
+ count[1] = NY_SUB;
+ count[2] = NZ_SUB;
+ status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
+ CHECK(status, FAIL, "H5Sselect_hyperslab");
+
+ /*
+ * Define the memory dataspace.
+ */
+ dimsm[0] = NX;
+ dimsm[1] = NY;
+ dimsm[2] = NZ;
+ memspace = H5Screate_simple(RANK_M, dimsm, NULL);
+ CHECK(memspace, FAIL, "H5Screate_simple");
+
+ /*
+ * Define memory hyperslab.
+ */
+ offset_out[0] = 0;
+ offset_out[1] = 0;
+ offset_out[2] = 0;
+ count_out[0] = NX_SUB;
+ count_out[1] = NY_SUB;
+ count_out[2] = NZ_SUB;
+ status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
+ CHECK(status, FAIL, "H5Sselect_hyperslab");
+
+ /*
+ * Write the data to the dataset using hyperslabs
+ */
+ status = H5Dwrite(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data);
+ CHECK(status, FAIL, "H5Dwrite");
+
+ /*
+ * Close/release resources.
+ */
+ status = H5Pclose(plist);
+ CHECK(status, FAIL, "H5Pclose");
+ status = H5Sclose(dataspace);
+ CHECK(status, FAIL, "H5Sclose");
+ status = H5Sclose(memspace);
+ CHECK(status, FAIL, "H5Sclose");
+ status = H5Dclose(dataset);
+ CHECK(status, FAIL, "H5Dclose");
+ status = H5Fclose(file);
+ CHECK(status, FAIL, "H5Fclose");
+
+ /*************************************************************
+
+ This reads the hyperslab from the test.h5 file just
+ created, into a 3-dimensional plane of the 3-dimensional
+ array.
+
+ ************************************************************/
+
+ /*
+ * Open the file and the dataset.
+ */
+ file = H5Fopen(FILENAME, H5F_ACC_RDONLY, fapl_plist);
+ CHECK(file, FAIL, "H5Fopen");
+ dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dopen2");
+
+ dataspace = H5Dget_space(dataset); /* dataspace handle */
+ CHECK(dataspace, FAIL, "H5Dget_space");
+ rank = H5Sget_simple_extent_ndims(dataspace);
+ VERIFY(rank, 3, "H5Sget_simple_extent_ndims");
+ status_n = H5Sget_simple_extent_dims(dataspace, dims_out, NULL);
+ CHECK(status_n, FAIL, "H5Sget_simple_extent_dims");
+ VERIFY(dims_out[0], dimsf[0], "Dataset dimensions");
+ VERIFY(dims_out[1], dimsf[1], "Dataset dimensions");
+ VERIFY(dims_out[2], dimsf[2], "Dataset dimensions");
+
+ /*
+ * Define hyperslab in the dataset.
+ */
+ offset[0] = 0;
+ offset[1] = 0;
+ offset[2] = 0;
+ count[0] = NX_SUB;
+ count[1] = NY_SUB;
+ count[2] = NZ_SUB;
+ status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
+ CHECK(status, FAIL, "H5Sselect_hyperslab");
+
+ /*
+ * Define the memory dataspace.
+ */
+ dimsm[0] = NX;
+ dimsm[1] = NY;
+ dimsm[2] = NZ;
+ memspace = H5Screate_simple(RANK_M, dimsm, NULL);
+ CHECK(memspace, FAIL, "H5Screate_simple");
+
+ /*
+ * Define memory hyperslab.
+ */
+ offset_out[0] = 0;
+ offset_out[1] = 0;
+ offset_out[2] = 0;
+ count_out[0] = NX_SUB;
+ count_out[1] = NY_SUB;
+ count_out[2] = NZ_SUB;
+ status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
+ CHECK(status, FAIL, "H5Sselect_hyperslab");
+
+ /*
+ * Read data from hyperslab in the file into the hyperslab in
+ * memory and display.
+ */
+ status = H5Dread(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data_out);
+ CHECK(status, FAIL, "H5Dread");
+
+ /* Compare data written with data read in */
+ tmpdata = data;
+ tmpdata_out = data_out;
+ for (j = 0; j < X; j++)
+ for (i = 0; i < Y; i++)
+ for (k = 0; k < Z; k++, tmpdata++, tmpdata_out++) {
+ if (*tmpdata != *tmpdata_out)
+ TestErrPrintf("Line %d: Error! j=%d, i=%d, k=%d, *tmpdata=%x, *tmpdata_out=%x\n",
+ __LINE__, j, i, k, (unsigned)*tmpdata, (unsigned)*tmpdata_out);
+ } /* end for */
+
+ /*
+ * Close and release resources.
+ */
+ status = H5Dclose(dataset);
+ CHECK(status, FAIL, "H5Dclose");
+ status = H5Sclose(dataspace);
+ CHECK(status, FAIL, "H5Sclose");
+ status = H5Sclose(memspace);
+ CHECK(status, FAIL, "H5Sclose");
+ status = H5Fclose(file);
+ CHECK(status, FAIL, "H5Fclose");
+ HDfree(data);
+ HDfree(data_out);
+} /* test_select_hyper_chunk() */
+
+/****************************************************************
+**
+** test_select_point_chunk(): Test basic H5S (dataspace) selection code.
+** Tests combinations of hyperslab and point selections on
+** chunked datasets.
+**
+****************************************************************/
+static void
+test_select_point_chunk(void)
+{
+ hsize_t dimsf[SPACE7_RANK]; /* dataset dimensions */
+ hsize_t chunk_dimsf[SPACE7_RANK] = {SPACE7_CHUNK_DIM1, SPACE7_CHUNK_DIM2}; /* chunk sizes */
+ unsigned *data; /* data to write */
+ unsigned *tmpdata; /* data to write */
+
+ /*
+ * Data and output buffer initialization.
+ */
+ hid_t file, dataset; /* handles */
+ hid_t dataspace;
+ hid_t pnt1_space; /* Dataspace to hold 1st point selection */
+ hid_t pnt2_space; /* Dataspace to hold 2nd point selection */
+ hid_t hyp1_space; /* Dataspace to hold 1st hyperslab selection */
+ hid_t hyp2_space; /* Dataspace to hold 2nd hyperslab selection */
+ hid_t dcpl;
+ herr_t ret; /* Generic return value */
+
+ unsigned *data_out; /* output buffer */
+
+ hsize_t start[SPACE7_RANK]; /* hyperslab offset */
+ hsize_t count[SPACE7_RANK]; /* size of the hyperslab */
+ hsize_t points[SPACE7_NPOINTS][SPACE7_RANK]; /* points for selection */
+ unsigned i, j; /* Local index variables */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Point Selections on Chunked Datasets\n"));
+
+ /* Allocate the transfer buffers */
+ data = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(data, "HDmalloc");
+ data_out = (unsigned *)HDcalloc((size_t)(SPACE7_DIM1 * SPACE7_DIM2), sizeof(unsigned));
+ CHECK_PTR(data_out, "HDcalloc");
+
+ /*
+ * Data buffer initialization.
+ */
+ tmpdata = data;
+ for (i = 0; i < SPACE7_DIM1; i++)
+ for (j = 0; j < SPACE7_DIM1; j++)
+ *tmpdata++ = ((i * SPACE7_DIM2) + j) % 256;
+
+ /*
+ * Create a new file using H5F_ACC_TRUNC access,
+ * the default file creation properties and file
+ * access properties.
+ */
+ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(file, FAIL, "H5Fcreate");
+
+ /* Create file dataspace */
+ dimsf[0] = SPACE7_DIM1;
+ dimsf[1] = SPACE7_DIM2;
+ dataspace = H5Screate_simple(SPACE7_RANK, dimsf, NULL);
+ CHECK(dataspace, FAIL, "H5Screate_simple");
+
+ /*
+ * Create a new dataset within the file using defined dataspace and
+ * chunking properties.
+ */
+ dcpl = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(dcpl, FAIL, "H5Pcreate");
+ ret = H5Pset_chunk(dcpl, SPACE7_RANK, chunk_dimsf);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+ dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Create 1st point selection */
+ pnt1_space = H5Scopy(dataspace);
+ CHECK(pnt1_space, FAIL, "H5Scopy");
+
+ points[0][0] = 3;
+ points[0][1] = 3;
+ points[1][0] = 3;
+ points[1][1] = 8;
+ points[2][0] = 8;
+ points[2][1] = 3;
+ points[3][0] = 8;
+ points[3][1] = 8;
+ points[4][0] = 1; /* In same chunk as point #0, but "earlier" in chunk */
+ points[4][1] = 1;
+ points[5][0] = 1; /* In same chunk as point #1, but "earlier" in chunk */
+ points[5][1] = 6;
+ points[6][0] = 6; /* In same chunk as point #2, but "earlier" in chunk */
+ points[6][1] = 1;
+ points[7][0] = 6; /* In same chunk as point #3, but "earlier" in chunk */
+ points[7][1] = 6;
+ ret = H5Sselect_elements(pnt1_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create 1st hyperslab selection */
+ hyp1_space = H5Scopy(dataspace);
+ CHECK(hyp1_space, FAIL, "H5Scopy");
+
+ start[0] = 2;
+ start[1] = 2;
+ count[0] = 4;
+ count[1] = 2;
+ ret = H5Sselect_hyperslab(hyp1_space, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Write out data using 1st point selection for file & hyperslab for memory */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Create 2nd point selection */
+ pnt2_space = H5Scopy(dataspace);
+ CHECK(pnt2_space, FAIL, "H5Scopy");
+
+ points[0][0] = 4;
+ points[0][1] = 4;
+ points[1][0] = 4;
+ points[1][1] = 9;
+ points[2][0] = 9;
+ points[2][1] = 4;
+ points[3][0] = 9;
+ points[3][1] = 9;
+ points[4][0] = 2; /* In same chunk as point #0, but "earlier" in chunk */
+ points[4][1] = 2;
+ points[5][0] = 2; /* In same chunk as point #1, but "earlier" in chunk */
+ points[5][1] = 7;
+ points[6][0] = 7; /* In same chunk as point #2, but "earlier" in chunk */
+ points[6][1] = 2;
+ points[7][0] = 7; /* In same chunk as point #3, but "earlier" in chunk */
+ points[7][1] = 7;
+ ret = H5Sselect_elements(pnt2_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create 2nd hyperslab selection */
+ hyp2_space = H5Scopy(dataspace);
+ CHECK(hyp2_space, FAIL, "H5Scopy");
+
+ start[0] = 2;
+ start[1] = 4;
+ count[0] = 4;
+ count[1] = 2;
+ ret = H5Sselect_hyperslab(hyp2_space, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Write out data using 2nd hyperslab selection for file & point for memory */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close everything (except selections) */
+ ret = H5Pclose(dcpl);
+ CHECK(ret, FAIL, "H5Pclose");
+ ret = H5Sclose(dataspace);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+ ret = H5Fclose(file);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Re-open file & dataset */
+ file = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
+ CHECK(file, FAIL, "H5Fopen");
+ dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dopen2");
+
+ /* Read data using 1st point selection for file and hyperslab for memory */
+ ret = H5Dread(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data_out);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Verify data (later) */
+
+ /* Read data using 2nd hyperslab selection for file and point for memory */
+ ret = H5Dread(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data_out);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Verify data (later) */
+
+ /* Close everything (including selections) */
+ ret = H5Sclose(pnt1_space);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(pnt2_space);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(hyp1_space);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(hyp2_space);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+ ret = H5Fclose(file);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ HDfree(data);
+ HDfree(data_out);
+} /* test_select_point_chunk() */
+
+/****************************************************************
+**
+** test_select_sclar_chunk(): Test basic H5S (dataspace) selection code.
+** Tests using a scalar dataspace (in memory) to access chunked datasets.
+**
+****************************************************************/
+static void
+test_select_scalar_chunk(void)
+{
+ hid_t file_id; /* File ID */
+ hid_t dcpl; /* Dataset creation property list */
+ hid_t dsid; /* Dataset ID */
+ hid_t sid; /* Dataspace ID */
+ hid_t m_sid; /* Memory dataspace */
+ hsize_t dims[] = {2}; /* Dataset dimensions */
+ hsize_t maxdims[] = {H5S_UNLIMITED}; /* Dataset maximum dimensions */
+ hsize_t offset[] = {0}; /* Hyperslab start */
+ hsize_t count[] = {1}; /* Hyperslab count */
+ unsigned data = 2; /* Data to write */
+ herr_t ret;
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Scalar Dataspaces and Chunked Datasets\n"));
+
+ file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(file_id, FAIL, "H5Fcreate");
+
+ dcpl = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(dcpl, FAIL, "H5Pcreate");
+
+ dims[0] = 1024U;
+ ret = H5Pset_chunk(dcpl, 1, dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+ /* Create 1-D dataspace */
+ sid = H5Screate_simple(1, dims, maxdims);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ dsid = H5Dcreate2(file_id, "dset", H5T_NATIVE_UINT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
+ CHECK(dsid, FAIL, "H5Dcreate2");
+
+ /* Select scalar area (offset 0, count 1) */
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create scalar memory dataspace */
+ m_sid = H5Screate(H5S_SCALAR);
+ CHECK(m_sid, FAIL, "H5Screate");
+
+ /* Write out data using scalar dataspace for memory dataspace */
+ ret = H5Dwrite(dsid, H5T_NATIVE_UINT, m_sid, sid, H5P_DEFAULT, &data);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close resources */
+ ret = H5Sclose(m_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Dclose(dsid);
+ CHECK(ret, FAIL, "H5Dclose");
+ ret = H5Pclose(dcpl);
+ CHECK(ret, FAIL, "H5Pclose");
+ ret = H5Fclose(file_id);
+ CHECK(ret, FAIL, "H5Fclose");
+} /* test_select_scalar_chunk() */
+
+/****************************************************************
+**
+** test_select_valid(): Test basic H5S (dataspace) selection code.
+** Tests selection validity
+**
+****************************************************************/
+static void
+test_select_valid(void)
+{
+ herr_t error;
+ htri_t valid;
+ hid_t main_space, sub_space;
+ hsize_t safe_start[2] = {1, 1};
+ hsize_t safe_count[2] = {1, 1};
+ hsize_t start[2];
+ hsize_t dims[2], maxdims[2], size[2], count[2];
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Selection Validity\n"));
+
+ MESSAGE(8, ("Case 1 : sub_space is not a valid dataspace\n"));
+ dims[0] = dims[1] = H5S_UNLIMITED;
+
+ H5E_BEGIN_TRY
+ {
+ sub_space = H5Screate_simple(2, dims, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(sub_space, FAIL, "H5Screate_simple");
+
+ H5E_BEGIN_TRY
+ {
+ valid = H5Sselect_valid(sub_space);
+ }
+ H5E_END_TRY;
+ VERIFY(valid, FAIL, "H5Sselect_valid");
+
+ /* Set arrays and dataspace for the rest of the cases */
+ count[0] = count[1] = 1;
+ dims[0] = dims[1] = maxdims[0] = maxdims[1] = 10;
+
+ main_space = H5Screate_simple(2, dims, maxdims);
+ CHECK(main_space, FAIL, "H5Screate_simple");
+
+ MESSAGE(8, ("Case 2 : sub_space is a valid but closed dataspace\n"));
+ sub_space = H5Scopy(main_space);
+ CHECK(sub_space, FAIL, "H5Scopy");
+
+ error = H5Sclose(sub_space);
+ CHECK(error, FAIL, "H5Sclose");
+
+ H5E_BEGIN_TRY
+ {
+ valid = H5Sselect_valid(sub_space);
+ }
+ H5E_END_TRY;
+ VERIFY(valid, FAIL, "H5Sselect_valid");
+
+ MESSAGE(8, ("Case 3 : in the dimensions\nTry offset (4,4) and size(6,6), the original space is of size "
+ "(10,10)\n"));
+ start[0] = start[1] = 4;
+ size[0] = size[1] = 6;
+
+ sub_space = H5Scopy(main_space);
+ CHECK(sub_space, FAIL, "H5Scopy");
+
+ error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ valid = H5Sselect_valid(sub_space);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ valid = H5Sselect_valid(sub_space);
+ VERIFY(valid, TRUE, "H5Sselect_valid");
+
+ error = H5Sclose(sub_space);
+ CHECK(error, FAIL, "H5Sclose");
+
+ MESSAGE(8, ("Case 4 : exceed dimensions by 1\nTry offset (5,5) and size(6,6), the original space is of "
+ "size (10,10)\n"));
+ start[0] = start[1] = 5;
+ size[0] = size[1] = 6;
+
+ sub_space = H5Scopy(main_space);
+ CHECK(sub_space, FAIL, "H5Scopy");
+
+ error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ valid = H5Sselect_valid(sub_space);
+ VERIFY(valid, FALSE, "H5Sselect_valid");
+
+ error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ valid = H5Sselect_valid(sub_space);
+ VERIFY(valid, FALSE, "H5Sselect_valid");
+
+ error = H5Sclose(sub_space);
+ CHECK(error, FAIL, "H5Sclose");
+
+ MESSAGE(8, ("Case 5 : exceed dimensions by 2\nTry offset (6,6) and size(6,6), the original space is of "
+ "size (10,10)\n"));
+ start[0] = start[1] = 6;
+ size[0] = size[1] = 6;
+
+ sub_space = H5Scopy(main_space);
+ CHECK(sub_space, FAIL, "H5Scopy");
+
+ error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ valid = H5Sselect_valid(sub_space);
+ VERIFY(valid, FALSE, "H5Sselect_valid");
+
+ error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ valid = H5Sselect_valid(sub_space);
+ VERIFY(valid, FALSE, "H5Sselect_valid");
+
+ error = H5Sclose(sub_space);
+ CHECK(error, FAIL, "H5Sclose");
+ error = H5Sclose(main_space);
+ CHECK(error, FAIL, "H5Sclose");
+} /* test_select_valid() */
+
+/****************************************************************
+**
+** test_select_combine(): Test basic H5S (dataspace) selection code.
+** Tests combining "all" and "none" selections with hyperslab
+** operations.
+**
+****************************************************************/
+static void
+test_select_combine(void)
+{
+ hid_t base_id; /* Base dataspace for test */
+ hid_t all_id; /* Dataspace for "all" selection */
+ hid_t none_id; /* Dataspace for "none" selection */
+ hid_t space1; /* Temporary dataspace #1 */
+ hsize_t start[SPACE7_RANK]; /* Hyperslab start */
+ hsize_t stride[SPACE7_RANK]; /* Hyperslab stride */
+ hsize_t count[SPACE7_RANK]; /* Hyperslab count */
+ hsize_t block[SPACE7_RANK]; /* Hyperslab block */
+ hsize_t dims[SPACE7_RANK] = {SPACE7_DIM1, SPACE7_DIM2}; /* Dimensions of dataspace */
+ H5S_sel_type sel_type; /* Selection type */
+ hssize_t nblocks; /* Number of hyperslab blocks */
+ hsize_t blocks[16][2][SPACE7_RANK]; /* List of blocks */
+ herr_t error;
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Selection Combinations\n"));
+
+ /* Create dataspace for dataset on disk */
+ base_id = H5Screate_simple(SPACE7_RANK, dims, NULL);
+ CHECK(base_id, FAIL, "H5Screate_simple");
+
+ /* Copy base dataspace and set selection to "all" */
+ all_id = H5Scopy(base_id);
+ CHECK(all_id, FAIL, "H5Scopy");
+ error = H5Sselect_all(all_id);
+ CHECK(error, FAIL, "H5Sselect_all");
+ sel_type = H5Sget_select_type(all_id);
+ VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
+
+ /* Copy base dataspace and set selection to "none" */
+ none_id = H5Scopy(base_id);
+ CHECK(none_id, FAIL, "H5Scopy");
+ error = H5Sselect_none(none_id);
+ CHECK(error, FAIL, "H5Sselect_none");
+ sel_type = H5Sget_select_type(none_id);
+ VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
+
+ /* Copy "all" selection & space */
+ space1 = H5Scopy(all_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'OR' "all" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that it's still "all" selection */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "all" selection & space */
+ space1 = H5Scopy(all_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'AND' "all" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the same at the original block */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
+
+ /* Verify that there is only one block */
+ nblocks = H5Sget_select_hyper_nblocks(space1);
+ VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
+
+ /* Retrieve the block defined */
+ HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
+ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
+ CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify that the correct block is defined */
+ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "all" selection & space */
+ space1 = H5Scopy(all_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'XOR' "all" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is an inversion of the original block */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
+
+ /* Verify that there are two blocks */
+ nblocks = H5Sget_select_hyper_nblocks(space1);
+ VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");
+
+ /* Retrieve the block defined */
+ HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
+ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
+ CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify that the correct block is defined */
+ VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "all" selection & space */
+ space1 = H5Scopy(all_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'NOTB' "all" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is an inversion of the original block */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
+
+ /* Verify that there are two blocks */
+ nblocks = H5Sget_select_hyper_nblocks(space1);
+ VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");
+
+ /* Retrieve the block defined */
+ HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
+ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
+ CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify that the correct block is defined */
+ VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "all" selection & space */
+ space1 = H5Scopy(all_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'NOTA' "all" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the "none" selection */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "none" selection & space */
+ space1 = H5Scopy(none_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'OR' "none" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the same as the original hyperslab */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
+
+ /* Verify that there is only one block */
+ nblocks = H5Sget_select_hyper_nblocks(space1);
+ VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
+
+ /* Retrieve the block defined */
+ HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
+ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
+ CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify that the correct block is defined */
+ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "none" selection & space */
+ space1 = H5Scopy(none_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'AND' "none" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the "none" selection */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "none" selection & space */
+ space1 = H5Scopy(none_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'XOR' "none" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the same as the original hyperslab */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
+
+ /* Verify that there is only one block */
+ nblocks = H5Sget_select_hyper_nblocks(space1);
+ VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
+
+ /* Retrieve the block defined */
+ HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
+ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
+ CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify that the correct block is defined */
+ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "none" selection & space */
+ space1 = H5Scopy(none_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'NOTB' "none" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the "none" selection */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Copy "none" selection & space */
+ space1 = H5Scopy(none_id);
+ CHECK(space1, FAIL, "H5Scopy");
+
+ /* 'NOTA' "none" selection with another hyperslab */
+ start[0] = start[1] = 0;
+ stride[0] = stride[1] = 1;
+ count[0] = count[1] = 1;
+ block[0] = block[1] = 5;
+ error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block);
+ CHECK(error, FAIL, "H5Sselect_hyperslab");
+
+ /* Verify that the new selection is the same as the original hyperslab */
+ sel_type = H5Sget_select_type(space1);
+ VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");
+
+ /* Verify that there is only one block */
+ nblocks = H5Sget_select_hyper_nblocks(space1);
+ VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");
+
+ /* Retrieve the block defined */
+ HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
+ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
+ CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify that the correct block is defined */
+ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
+ VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");
+
+ /* Close temporary dataspace */
+ error = H5Sclose(space1);
+ CHECK(error, FAIL, "H5Sclose");
+
+ /* Close dataspaces */
+ error = H5Sclose(base_id);
+ CHECK(error, FAIL, "H5Sclose");
+
+ error = H5Sclose(all_id);
+ CHECK(error, FAIL, "H5Sclose");
+
+ error = H5Sclose(none_id);
+ CHECK(error, FAIL, "H5Sclose");
+} /* test_select_combine() */
+
+/*
+ * Typedef for iteration structure used in the fill value tests
+ */
+typedef struct {
+ unsigned short fill_value; /* The fill value to check */
+ size_t curr_coord; /* Current coordinate to examine */
+ hsize_t *coords; /* Pointer to selection's coordinates */
+} fill_iter_info;
+
+/****************************************************************
+**
+** test_select_hyper_iter3(): Iterator for checking hyperslab iteration
+**
+****************************************************************/
+static herr_t
+test_select_hyper_iter3(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point,
+ void *_operator_data)
+{
+ unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */
+ fill_iter_info *iter_info =
+ (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */
+ hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/
+
+ /* Check value in current buffer location */
+ if (*tbuf != iter_info->fill_value)
+ return (-1);
+ else {
+ /* Check number of dimensions */
+ if (ndim != SPACE7_RANK)
+ return (-1);
+ else {
+ /* Check Coordinates */
+ coord_ptr = iter_info->coords + (2 * iter_info->curr_coord);
+ iter_info->curr_coord++;
+ if (coord_ptr[0] != point[0])
+ return (-1);
+ else if (coord_ptr[1] != point[1])
+ return (-1);
+ else
+ return (0);
+ } /* end else */
+ } /* end else */
+} /* end test_select_hyper_iter3() */
+
+/****************************************************************
+**
+** test_select_fill_all(): Test basic H5S (dataspace) selection code.
+** Tests filling "all" selections
+**
+****************************************************************/
+static void
+test_select_fill_all(void)
+{
+ hid_t sid1; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ unsigned fill_value; /* Fill value */
+ fill_iter_info iter_info; /* Iterator information structure */
+ hsize_t points[SPACE7_DIM1 * SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */
+ unsigned *wbuf, /* buffer to write to disk */
+ *tbuf; /* temporary buffer pointer */
+ unsigned u, v; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Filling 'all' Selections\n"));
+
+ /* Allocate memory buffer */
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+
+ /* Initialize memory buffer */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (u * SPACE7_DIM2) + v;
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Space defaults to "all" selection */
+
+ /* Set fill value */
+ fill_value = SPACE7_FILL;
+
+ /* Fill selection in memory */
+ ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1);
+ CHECK(ret, FAIL, "H5Dfill");
+
+ /* Verify memory buffer the hard way... */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++)
+ if (*tbuf != fill_value)
+ TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value);
+
+ /* Set the coordinates of the selection */
+ for (u = 0; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++) {
+ points[(u * SPACE7_DIM2) + v][0] = u;
+ points[(u * SPACE7_DIM2) + v][1] = v;
+ } /* end for */
+
+ /* Initialize the iterator structure */
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
+
+ /* Iterate through selection, verifying correct data */
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+} /* test_select_fill_all() */
+
+/****************************************************************
+**
+** test_select_fill_point(): Test basic H5S (dataspace) selection code.
+** Tests filling "point" selections
+**
+****************************************************************/
+static void
+test_select_fill_point(hssize_t *offset)
+{
+ hid_t sid1; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
+ hsize_t points[5][SPACE7_RANK] = {{2, 4}, {3, 8}, {8, 4}, {7, 5}, {7, 7}};
+ size_t num_points = 5; /* Number of points selected */
+ int fill_value; /* Fill value */
+ fill_iter_info iter_info; /* Iterator information structure */
+ unsigned *wbuf, /* buffer to write to disk */
+ *tbuf; /* temporary buffer pointer */
+ unsigned u, v, w; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Filling 'point' Selections\n"));
+
+ /* Allocate memory buffer */
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+
+ /* Initialize memory buffer */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Select "point" selection */
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ if (offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set offset, if provided */
+ ret = H5Soffset_simple(sid1, real_offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ } /* end if */
+ else
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set fill value */
+ fill_value = SPACE7_FILL;
+
+ /* Fill selection in memory */
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
+ CHECK(ret, FAIL, "H5Dfill");
+
+ /* Verify memory buffer the hard way... */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ for (w = 0; w < (unsigned)num_points; w++) {
+ if (u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) &&
+ v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) {
+ if (*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
+ (unsigned)fill_value);
+ break;
+ } /* end if */
+ } /* end for */
+ if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf,
+ ((u * SPACE7_DIM2) + v));
+ } /* end for */
+
+ /* Initialize the iterator structure */
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
+
+ /* Add in the offset */
+ for (u = 0; u < (unsigned)num_points; u++) {
+ points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]);
+ points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]);
+ } /* end for */
+
+ /* Iterate through selection, verifying correct data */
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+} /* test_select_fill_point() */
+
+/****************************************************************
+**
+** test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code.
+** Tests filling "simple" (i.e. one block) hyperslab selections
+**
+****************************************************************/
+static void
+test_select_fill_hyper_simple(hssize_t *offset)
+{
+ hid_t sid1; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
+ hsize_t start[SPACE7_RANK]; /* Hyperslab start */
+ hsize_t count[SPACE7_RANK]; /* Hyperslab block size */
+ size_t num_points; /* Number of points in selection */
+ hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */
+ int fill_value; /* Fill value */
+ fill_iter_info iter_info; /* Iterator information structure */
+ unsigned *wbuf, /* buffer to write to disk */
+ *tbuf; /* temporary buffer pointer */
+ unsigned u, v; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n"));
+
+ /* Allocate memory buffer */
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+
+ /* Initialize memory buffer */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Select "hyperslab" selection */
+ start[0] = 3;
+ start[1] = 3;
+ count[0] = 4;
+ count[1] = 4;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ if (offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set offset, if provided */
+ ret = H5Soffset_simple(sid1, real_offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ } /* end if */
+ else
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set fill value */
+ fill_value = SPACE7_FILL;
+
+ /* Fill selection in memory */
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
+ CHECK(ret, FAIL, "H5Dfill");
+
+ /* Verify memory buffer the hard way... */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ if ((u >= (unsigned)((hssize_t)start[0] + real_offset[0]) &&
+ u < (unsigned)((hssize_t)(start[0] + count[0]) + real_offset[0])) &&
+ (v >= (unsigned)((hssize_t)start[1] + real_offset[1]) &&
+ v < (unsigned)((hssize_t)(start[1] + count[1]) + real_offset[1]))) {
+ if (*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
+ (unsigned)fill_value);
+ } /* end if */
+ else {
+ if (*tbuf != ((unsigned)(u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf,
+ ((u * SPACE7_DIM2) + v));
+ } /* end else */
+ } /* end for */
+
+ /* Initialize the iterator structure */
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
+
+ /* Set the coordinates of the selection (with the offset) */
+ for (u = 0, num_points = 0; u < (unsigned)count[0]; u++)
+ for (v = 0; v < (unsigned)count[1]; v++, num_points++) {
+ points[num_points][0] = (hsize_t)((hssize_t)(u + start[0]) + real_offset[0]);
+ points[num_points][1] = (hsize_t)((hssize_t)(v + start[1]) + real_offset[1]);
+ } /* end for */
+
+ /* Iterate through selection, verifying correct data */
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+} /* test_select_fill_hyper_simple() */
+
+/****************************************************************
+**
+** test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code.
+** Tests filling "regular" (i.e. strided block) hyperslab selections
+**
+****************************************************************/
+static void
+test_select_fill_hyper_regular(hssize_t *offset)
+{
+ hid_t sid1; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
+ hsize_t start[SPACE7_RANK]; /* Hyperslab start */
+ hsize_t stride[SPACE7_RANK]; /* Hyperslab stride size */
+ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
+ hsize_t block[SPACE7_RANK]; /* Hyperslab block size */
+ hsize_t points[16][SPACE7_RANK] = {
+ {2, 2}, {2, 3}, {2, 6}, {2, 7}, {3, 2}, {3, 3}, {3, 6}, {3, 7},
+ {6, 2}, {6, 3}, {6, 6}, {6, 7}, {7, 2}, {7, 3}, {7, 6}, {7, 7},
+ };
+ size_t num_points = 16; /* Number of points selected */
+ int fill_value; /* Fill value */
+ fill_iter_info iter_info; /* Iterator information structure */
+ unsigned *wbuf, /* buffer to write to disk */
+ *tbuf; /* temporary buffer pointer */
+ unsigned u, v, w; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n"));
+
+ /* Allocate memory buffer */
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+
+ /* Initialize memory buffer */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (u * SPACE7_DIM2) + v;
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Select "hyperslab" selection */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 4;
+ stride[1] = 4;
+ count[0] = 2;
+ count[1] = 2;
+ block[0] = 2;
+ block[1] = 2;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ if (offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set offset, if provided */
+ ret = H5Soffset_simple(sid1, real_offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ } /* end if */
+ else
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set fill value */
+ fill_value = SPACE7_FILL;
+
+ /* Fill selection in memory */
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
+ CHECK(ret, FAIL, "H5Dfill");
+
+ /* Verify memory buffer the hard way... */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ for (w = 0; w < (unsigned)num_points; w++) {
+ if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) &&
+ v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) {
+ if (*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
+ (unsigned)fill_value);
+ break;
+ } /* end if */
+ } /* end for */
+ if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf,
+ ((u * SPACE7_DIM2) + v));
+ } /* end for */
+
+ /* Initialize the iterator structure */
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)points;
+
+ /* Add in the offset */
+ for (u = 0; u < (unsigned)num_points; u++) {
+ points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]);
+ points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]);
+ } /* end for */
+
+ /* Iterate through selection, verifying correct data */
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+} /* test_select_fill_hyper_regular() */
+
+/****************************************************************
+**
+** test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code.
+** Tests filling "irregular" (i.e. combined blocks) hyperslab selections
+**
+****************************************************************/
+static void
+test_select_fill_hyper_irregular(hssize_t *offset)
+{
+ hid_t sid1; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
+ hsize_t start[SPACE7_RANK]; /* Hyperslab start */
+ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
+ hsize_t points[32][SPACE7_RANK] = {
+ /* Yes, some of the are duplicated.. */
+ {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 4},
+ {4, 5}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 4}, {5, 5},
+ {5, 6}, {5, 7}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
+ };
+ hsize_t iter_points[28][SPACE7_RANK] = {
+ /* Coordinates, as iterated through */
+ {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3},
+ {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {5, 7},
+ {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
+ };
+ size_t num_points = 32; /* Number of points selected */
+ size_t num_iter_points = 28; /* Number of resulting points */
+ int fill_value; /* Fill value */
+ fill_iter_info iter_info; /* Iterator information structure */
+ unsigned *wbuf, /* buffer to write to disk */
+ *tbuf; /* temporary buffer pointer */
+ unsigned u, v, w; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n"));
+
+ /* Allocate memory buffer */
+ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+
+ /* Initialize memory buffer */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++)
+ *tbuf++ = (u * SPACE7_DIM2) + v;
+
+ /* Create dataspace for dataset on disk */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Select first "hyperslab" selection */
+ start[0] = 2;
+ start[1] = 2;
+ count[0] = 4;
+ count[1] = 4;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Combine with second "hyperslab" selection */
+ start[0] = 4;
+ start[1] = 4;
+ count[0] = 4;
+ count[1] = 4;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ if (offset != NULL) {
+ HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set offset, if provided */
+ ret = H5Soffset_simple(sid1, real_offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+ } /* end if */
+ else
+ HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));
+
+ /* Set fill value */
+ fill_value = SPACE7_FILL;
+
+ /* Fill selection in memory */
+ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
+ CHECK(ret, FAIL, "H5Dfill");
+
+ /* Verify memory buffer the hard way... */
+ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
+ for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
+ for (w = 0; w < (unsigned)num_points; w++) {
+ if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) &&
+ v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) {
+ if (*tbuf != (unsigned)fill_value)
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
+ (unsigned)fill_value);
+ break;
+ } /* end if */
+ } /* end for */
+ if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
+ TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf,
+ ((u * SPACE7_DIM2) + v));
+ } /* end for */
+
+ /* Initialize the iterator structure */
+ iter_info.fill_value = SPACE7_FILL;
+ iter_info.curr_coord = 0;
+ iter_info.coords = (hsize_t *)iter_points;
+
+ /* Add in the offset */
+ for (u = 0; u < (unsigned)num_iter_points; u++) {
+ iter_points[u][0] = (hsize_t)((hssize_t)iter_points[u][0] + real_offset[0]);
+ iter_points[u][1] = (hsize_t)((hssize_t)iter_points[u][1] + real_offset[1]);
+ } /* end for */
+
+ /* Iterate through selection, verifying correct data */
+ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
+ CHECK(ret, FAIL, "H5Diterate");
+
+ /* Close dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+} /* test_select_fill_hyper_irregular() */
+
+/****************************************************************
+**
+** test_select_none(): Test basic H5S (dataspace) selection code.
+** Tests I/O on 0-sized point selections
+**
+****************************************************************/
+static void
+test_select_none(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
+ uint8_t *wbuf, /* buffer to write to disk */
+ *rbuf, /* buffer to read from disk */
+ *tbuf; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing I/O on 0-sized Selections\n"));
+
+ /* Allocate write & read buffers */
+ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize write buffer */
+ for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++)
+ for (j = 0; j < SPACE7_DIM2; j++)
+ *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j);
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Make "none" selection in both disk and memory datasets */
+ ret = H5Sselect_none(sid1);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ ret = H5Sselect_none(sid2);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Attempt to read "nothing" from disk (before space is allocated) */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Write "nothing" to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Write "nothing" to disk (with a datatype conversion :-) */
+ ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Write "nothing" to disk (with NULL buffer argument) */
+ ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read "nothing" from disk (with NULL buffer argument) */
+ ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_none() */
+
+/****************************************************************
+**
+** test_scalar_select(): Test basic H5S (dataspace) selection code.
+** Tests selections on scalar dataspaces
+**
+****************************************************************/
+static void
+test_scalar_select(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */
+ hsize_t start[SPACE7_RANK]; /* Hyperslab start */
+ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
+ uint8_t *wbuf_uint8, /* buffer to write to disk */
+ rval_uint8, /* value read back in */
+ *tbuf_uint8; /* temporary buffer pointer */
+ unsigned short *wbuf_ushort, /* another buffer to write to disk */
+ rval_ushort, /* value read back in */
+ *tbuf_ushort; /* temporary buffer pointer */
+ int i, j; /* Counters */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces\n"));
+
+ /* Allocate write & read buffers */
+ wbuf_uint8 = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf_uint8, "HDmalloc");
+ wbuf_ushort = (unsigned short *)HDmalloc(sizeof(unsigned short) * SPACE7_DIM1 * SPACE7_DIM2);
+ CHECK_PTR(wbuf_ushort, "HDmalloc");
+
+ /* Initialize write buffers */
+ for (i = 0, tbuf_uint8 = wbuf_uint8, tbuf_ushort = wbuf_ushort; i < SPACE7_DIM1; i++)
+ for (j = 0; j < SPACE7_DIM2; j++) {
+ *tbuf_uint8++ = (uint8_t)((i * SPACE7_DIM2) + j);
+ *tbuf_ushort++ = (unsigned short)((j * SPACE7_DIM2) + i);
+ } /* end for */
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate(H5S_SCALAR);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Select one element in memory with a point selection */
+ coord1[0] = 0;
+ coord1[1] = 2;
+ ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Write single point to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_uint8 != *(wbuf_uint8 + 2))
+ TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_uint8,
+ (unsigned)*(wbuf_uint8 + 2));
+
+ /* Write single point to disk (with a datatype conversion) */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_ushort != *(wbuf_ushort + 2))
+ TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_ushort,
+ (unsigned)*(wbuf_ushort + 2));
+
+ /* Select one element in memory with a hyperslab selection */
+ start[0] = 4;
+ start[1] = 3;
+ count[0] = 1;
+ count[1] = 1;
+ ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Write single hyperslab element to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_uint8 != *(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3))
+ TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_uint8,
+ (unsigned)*(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3));
+
+ /* Write single hyperslab element to disk (with a datatype conversion) */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_ushort != *(wbuf_ushort + (SPACE7_DIM2 * 4) + 3))
+ TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_ushort,
+ (unsigned)*(wbuf_ushort + (SPACE7_DIM2 * 4) + 3));
+
+ /* Select no elements in memory & file with "none" selections */
+ ret = H5Sselect_none(sid1);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ ret = H5Sselect_none(sid2);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Write no data to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Write no data to disk (with a datatype conversion) */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free memory buffers */
+ HDfree(wbuf_uint8);
+ HDfree(wbuf_ushort);
+} /* test_scalar_select() */
+
+/****************************************************************
+**
+** test_scalar_select2(): Tests selections on scalar dataspace,
+** verify H5Sselect_hyperslab and H5Sselect_elements fails for
+** scalar dataspace.
+**
+****************************************************************/
+static void
+test_scalar_select2(void)
+{
+ hid_t sid; /* Dataspace ID */
+ hsize_t coord1[1]; /* Coordinates for point selection */
+ hsize_t start[1]; /* Hyperslab start */
+ hsize_t count[1]; /* Hyperslab block count */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Selections in Scalar Dataspaces\n"));
+
+ /* Create dataspace for dataset */
+ sid = H5Screate(H5S_SCALAR);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Select one element in memory with a point selection */
+ coord1[0] = 0;
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sselect_elements");
+
+ /* Select one element in memory with a hyperslab selection */
+ start[0] = 0;
+ count[0] = 0;
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select no elements in memory & file with "none" selection */
+ ret = H5Sselect_none(sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Select all elements in memory & file with "all" selection */
+ ret = H5Sselect_all(sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_scalar_select2() */
+
+/****************************************************************
+**
+** test_scalar_select3(): Test basic H5S (dataspace) selection code.
+** Tests selections on scalar dataspaces in memory
+**
+****************************************************************/
+static void
+test_scalar_select3(void)
+{
+ hid_t fid1; /* HDF5 File IDs */
+ hid_t dataset; /* Dataset ID */
+ hid_t sid1, sid2; /* Dataspace ID */
+ hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
+ hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */
+ hsize_t start[SPACE7_RANK]; /* Hyperslab start */
+ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */
+ uint8_t wval_uint8, /* Value written out */
+ rval_uint8; /* Value read in */
+ unsigned short wval_ushort, /* Another value written out */
+ rval_ushort; /* Another value read in */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces in Memory\n"));
+
+ /* Create file */
+ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid1, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid1 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
+ CHECK(sid1, FAIL, "H5Screate_simple");
+
+ /* Create dataspace for writing buffer */
+ sid2 = H5Screate(H5S_SCALAR);
+ CHECK(sid2, FAIL, "H5Screate_simple");
+
+ /* Create a dataset */
+ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Select one element in file with a point selection */
+ coord1[0] = 0;
+ coord1[1] = 2;
+ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Write single point to disk */
+ wval_uint8 = 12;
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ rval_uint8 = 0;
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_uint8 != wval_uint8)
+ TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8,
+ (unsigned)wval_uint8);
+
+ /* Write single point to disk (with a datatype conversion) */
+ wval_ushort = 23;
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ rval_ushort = 0;
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_ushort != wval_ushort)
+ TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort,
+ (unsigned)wval_ushort);
+
+ /* Select one element in file with a hyperslab selection */
+ start[0] = 4;
+ start[1] = 3;
+ count[0] = 1;
+ count[1] = 1;
+ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Write single hyperslab element to disk */
+ wval_uint8 = 92;
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ rval_uint8 = 0;
+ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_uint8 != wval_uint8)
+ TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8,
+ (unsigned)wval_uint8);
+
+ /* Write single hyperslab element to disk (with a datatype conversion) */
+ wval_ushort = 107;
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Read scalar element from disk */
+ rval_ushort = 0;
+ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Check value read back in */
+ if (rval_ushort != wval_ushort)
+ TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort,
+ (unsigned)wval_ushort);
+
+ /* Select no elements in memory & file with "none" selections */
+ ret = H5Sselect_none(sid1);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ ret = H5Sselect_none(sid2);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Write no data to disk */
+ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Write no data to disk (with a datatype conversion) */
+ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close memory dataspace */
+ ret = H5Sclose(sid2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close disk dataspace */
+ ret = H5Sclose(sid1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close Dataset */
+ ret = H5Dclose(dataset);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close file */
+ ret = H5Fclose(fid1);
+ CHECK(ret, FAIL, "H5Fclose");
+} /* test_scalar_select3() */
+
+/****************************************************************
+**
+** test_shape_same(): Tests selections on dataspace, verify that
+** "shape same" routine is working correctly.
+**
+****************************************************************/
+static void
+test_shape_same(void)
+{
+ hid_t all_sid; /* Dataspace ID with "all" selection */
+ hid_t none_sid; /* Dataspace ID with "none" selection */
+ hid_t single_pt_sid; /* Dataspace ID with single point selection */
+ hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */
+ hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
+ hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab
+ * selection that is the entire dataspace
+ */
+ hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab
+ * selection that is the same as the single
+ * point selection
+ */
+ hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
+ hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */
+ hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */
+ hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */
+ hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */
+ hid_t tmp_sid; /* Temporary dataspace ID */
+ hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2};
+ hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
+ hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
+ hsize_t start[SPACE9_RANK]; /* Hyperslab start */
+ hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */
+ hsize_t count[SPACE9_RANK]; /* Hyperslab block count */
+ hsize_t block[SPACE9_RANK]; /* Hyperslab block size */
+ unsigned u, v; /* Local index variables */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Same Shape Comparisons\n"));
+ HDassert(SPACE9_DIM2 >= POINT1_NPOINTS);
+
+ /* Create dataspace for "all" selection */
+ all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(all_sid, FAIL, "H5Screate_simple");
+
+ /* Select entire extent for dataspace */
+ ret = H5Sselect_all(all_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ /* Create dataspace for "none" selection */
+ none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(none_sid, FAIL, "H5Screate_simple");
+
+ /* Un-Select entire extent for dataspace */
+ ret = H5Sselect_none(none_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Create dataspace for single point selection */
+ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for multiple point selection */
+ coord1[0][0] = 2;
+ coord1[0][1] = 2;
+ ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create dataspace for multiple point selection */
+ mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(mult_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for multiple point selection */
+ coord2[0][0] = 2;
+ coord2[0][1] = 2;
+ coord2[1][0] = 7;
+ coord2[1][1] = 2;
+ coord2[2][0] = 1;
+ coord2[2][1] = 4;
+ coord2[3][0] = 2;
+ coord2[3][1] = 6;
+ coord2[4][0] = 0;
+ coord2[4][1] = 8;
+ coord2[5][0] = 3;
+ coord2[5][1] = 2;
+ coord2[6][0] = 4;
+ coord2[6][1] = 4;
+ coord2[7][0] = 1;
+ coord2[7][1] = 0;
+ coord2[8][0] = 5;
+ coord2[8][1] = 1;
+ coord2[9][0] = 9;
+ coord2[9][1] = 3;
+ ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create dataspace for single hyperslab selection */
+ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for single hyperslab selection */
+ start[0] = 1;
+ start[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = (SPACE9_DIM1 - 2);
+ block[1] = (SPACE9_DIM2 - 2);
+ ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for single hyperslab selection with entire extent selected */
+ single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");
+
+ /* Select entire extent for hyperslab selection */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = SPACE9_DIM1;
+ block[1] = SPACE9_DIM2;
+ ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for single hyperslab selection with single point selected */
+ single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select entire extent for hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for regular hyperslab selection */
+ regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Select regular, strided hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 5;
+ count[1] = 2;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for irregular hyperslab selection */
+ irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Create irregular hyperslab selection by OR'ing two blocks together */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ start[1] = 4;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 3;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for "no" hyperslab selection */
+ none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(none_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Create "no" hyperslab selection by XOR'ing same blocks together */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create scalar dataspace for "all" selection */
+ scalar_all_sid = H5Screate(H5S_SCALAR);
+ CHECK(scalar_all_sid, FAIL, "H5Screate");
+
+ /* Create scalar dataspace for "none" selection */
+ scalar_none_sid = H5Screate(H5S_SCALAR);
+ CHECK(scalar_none_sid, FAIL, "H5Screate");
+
+ /* Un-Select entire extent for dataspace */
+ ret = H5Sselect_none(scalar_none_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Compare "all" selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(all_sid, all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(all_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(all_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(all_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(all_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(all_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, single_hyper_all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(all_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare "none" selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(none_sid, none_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(none_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(none_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(none_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(none_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(none_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, none_hyper_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(none_sid, scalar_none_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare single point selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(single_pt_sid, single_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(single_pt_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(single_pt_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(single_pt_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(single_pt_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(single_pt_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, single_hyper_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, scalar_all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(single_pt_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare multiple point selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(mult_pt_sid, mult_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(mult_pt_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(mult_pt_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(mult_pt_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(mult_pt_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(mult_pt_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(mult_pt_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare single "normal" hyperslab selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(single_hyper_sid, single_hyper_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(single_hyper_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(single_hyper_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(single_hyper_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(single_hyper_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(single_hyper_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+#ifdef NOT_YET
+ /* In theory, these two selections are the same shape, but the
+ * H5Sselect_shape_same() routine is just not this sophisticated yet and it
+ * would take too much effort to make this work. The worst case is that the
+ * non-optimized chunk mapping routines will be invoked instead of the more
+ * optimized routines, so this only hurts performance, not correctness
+ */
+ /* Construct point selection which matches "plain" hyperslab selection */
+ /* Create dataspace for point selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of points for point selection */
+ for (u = 1; u < (SPACE9_DIM1 - 1); u++) {
+ for (v = 1; v < (SPACE9_DIM2 - 1); v++) {
+ coord2[v - 1][0] = u;
+ coord2[v - 1][1] = v;
+ } /* end for */
+
+ ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (SPACE9_DIM2 - 2), coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+#endif /* NOT_YET */
+
+ /* Construct hyperslab selection which matches "plain" hyperslab selection */
+ /* Create dataspace for hyperslab selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Un-select entire extent */
+ ret = H5Sselect_none(tmp_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Select sequence of rows for hyperslab selection */
+ for (u = 1; u < (SPACE9_DIM1 - 1); u++) {
+ start[0] = u;
+ start[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = (SPACE9_DIM2 - 2);
+ ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare single "all" hyperslab selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(single_hyper_all_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+#ifdef NOT_YET
+ /* In theory, these two selections are the same shape, but the
+ * H5S_select_shape_same() routine is just not this sophisticated yet and it
+ * would take too much effort to make this work. The worst case is that the
+ * non-optimized chunk mapping routines will be invoked instead of the more
+ * optimized routines, so this only hurts performance, not correctness
+ */
+ /* Construct point selection which matches "all" hyperslab selection */
+ /* Create dataspace for point selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of points for point selection */
+ for (u = 0; u < SPACE9_DIM1; u++) {
+ for (v = 0; v < SPACE9_DIM2; v++) {
+ coord2[v][0] = u;
+ coord2[v][1] = v;
+ } /* end for */
+ ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, SPACE9_DIM2, coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+#endif /* NOT_YET */
+
+ /* Construct hyperslab selection which matches "all" hyperslab selection */
+ /* Create dataspace for hyperslab selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Un-select entire extent */
+ ret = H5Sselect_none(tmp_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Select sequence of rows for hyperslab selection */
+ for (u = 0; u < SPACE9_DIM2; u++) {
+ start[0] = u;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = SPACE9_DIM2;
+ ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_all_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare single "point" hyperslab selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(single_hyper_pt_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(single_hyper_pt_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, single_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare regular, strided hyperslab selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(regular_hyper_sid, regular_hyper_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(regular_hyper_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Construct point selection which matches regular, strided hyperslab selection */
+ /* Create dataspace for point selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of points for point selection */
+ for (u = 2; u < 11; u += 2) {
+ for (v = 0; v < 2; v++) {
+ coord2[v][0] = u;
+ coord2[v][1] = (v * 2) + 2;
+ } /* end for */
+ ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (size_t)2, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Construct hyperslab selection which matches regular, strided hyperslab selection */
+ /* Create dataspace for hyperslab selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Un-select entire extent */
+ ret = H5Sselect_none(tmp_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Select sequence of rows for hyperslab selection */
+ for (u = 2; u < 11; u += 2) {
+ start[0] = u;
+ start[1] = 3;
+ stride[0] = 1;
+ stride[1] = 2;
+ count[0] = 1;
+ count[1] = 2;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Construct regular hyperslab selection with an offset which matches regular, strided hyperslab selection
+ */
+ /* Create dataspace for hyperslab selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ /* Select regular, strided hyperslab selection at an offset */
+ start[0] = 1;
+ start[1] = 1;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 5;
+ count[1] = 2;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(regular_hyper_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare irregular hyperslab selection to all the selections created */
+ /* Compare against itself */
+ check = H5Sselect_shape_same(irreg_hyper_sid, irreg_hyper_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(irreg_hyper_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Construct hyperslab selection which matches irregular hyperslab selection */
+ /* Create dataspace for hyperslab selection */
+ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(tmp_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Select sequence of columns for hyperslab selection */
+ for (u = 0; u < 3; u++) {
+ start[0] = 4;
+ start[1] = u + 4;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 3;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* Compare against hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(irreg_hyper_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare scalar "all" dataspace with all selections created */
+
+ /* Compare against itself */
+ check = H5Sselect_shape_same(scalar_all_sid, scalar_all_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(scalar_all_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(scalar_all_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(scalar_all_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(scalar_all_sid, none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(scalar_all_sid, single_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(scalar_all_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, single_hyper_pt_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, none_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "none" hyperslab selection */
+ check = H5Sselect_shape_same(scalar_all_sid, scalar_none_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare scalar "none" dataspace with all selections created */
+
+ /* Compare against itself */
+ check = H5Sselect_shape_same(scalar_none_sid, scalar_none_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against copy of itself */
+ tmp_sid = H5Scopy(scalar_none_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+
+ check = H5Sselect_shape_same(scalar_none_sid, tmp_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Compare against "all" selection */
+ check = H5Sselect_shape_same(scalar_none_sid, all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "none" selection */
+ check = H5Sselect_shape_same(scalar_none_sid, none_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against single point selection */
+ check = H5Sselect_shape_same(scalar_none_sid, single_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against multiple point selection */
+ check = H5Sselect_shape_same(scalar_none_sid, mult_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "plain" single hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, single_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "all" single hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, single_hyper_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "single point" single hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, single_hyper_pt_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against regular, strided hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, regular_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against irregular hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, irreg_hyper_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "no" hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, none_hyper_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Compare against scalar "all" hyperslab selection */
+ check = H5Sselect_shape_same(scalar_none_sid, scalar_all_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(all_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(none_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(mult_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_all_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(regular_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(irreg_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(none_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(scalar_all_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(scalar_none_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_shape_same() */
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_1():
+**
+** Create a square, 2-D dataspace (10 X 10), and select
+** all of it.
+**
+** Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
+** and select (10 X 10 X 1) hyperslabs in each, three with
+** the slab parallel to the xy plane, three parallel to the
+** xz plane, and three parallel to the yz plane.
+**
+** Assuming that z is the fastest changing dimension,
+** H5Sselect_shape_same() should return TRUE when comparing
+** the full 2-D space against any hyperslab parallel to the
+** yz plane in the 3-D space, and FALSE when comparing the
+** full 2-D space against the other two hyperslabs.
+**
+** Also create two additional 3-D dataspaces (10 X 10 X 10),
+** and select a (10 X 10 X 2) hyperslab parallel to the yz
+** axis in one of them, and two parallel (10 X 10 X 1) hyper
+** slabs parallel to the yz axis in the other.
+** H5Sselect_shape_same() should return FALSE when comparing
+** each to the 2-D selection.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_1(void)
+{
+ hid_t small_square_sid;
+ hid_t small_cube_xy_slice_0_sid;
+ hid_t small_cube_xy_slice_1_sid;
+ hid_t small_cube_xy_slice_2_sid;
+ hid_t small_cube_xz_slice_0_sid;
+ hid_t small_cube_xz_slice_1_sid;
+ hid_t small_cube_xz_slice_2_sid;
+ hid_t small_cube_yz_slice_0_sid;
+ hid_t small_cube_yz_slice_1_sid;
+ hid_t small_cube_yz_slice_2_sid;
+ hid_t small_cube_yz_slice_3_sid;
+ hid_t small_cube_yz_slice_4_sid;
+ hsize_t small_cube_dims[] = {10, 10, 10};
+ hsize_t start[3];
+ hsize_t stride[3];
+ hsize_t count[3];
+ hsize_t block[3];
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 1: Slices through a cube.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
+ CHECK(small_square_sid, FAIL, "H5Screate_simple");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
+ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ /* stride is a bit silly here, since we are only selecting a single */
+ /* contiguous plane, but include it anyway, with values large enough */
+ /* to ensure that we will only get the single block selected. */
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 10; /* x */
+ block[1] = 10; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 5;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
+ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ /* stride is a bit silly here, since we are only selecting a single */
+ /* contiguous chunk, but include it anyway, with values large enough */
+ /* to ensure that we will only get the single chunk. */
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 10; /* x */
+ block[1] = 1; /* y */
+ block[2] = 10; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 4;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
+ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ /* stride is a bit silly here, since we are only selecting a single */
+ /* contiguous chunk, but include it anyway, with values large enough */
+ /* to ensure that we will only get the single chunk. */
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 10; /* y */
+ block[2] = 10; /* z */
+
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 9;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ block[0] = 2;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3;
+ block[0] = 1;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 6;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the tests: */
+
+ /* Compare against "xy" selection */
+ check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "xz" selection */
+ check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "yz" selection */
+ check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_4_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(small_square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_4_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__smoke_check_1() */
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_2():
+**
+** Create a square, 2-D dataspace (10 X 10), and select
+** a "checker board" hyperslab as follows:
+**
+** * * - - * * - - * *
+** * * - - * * - - * *
+** - - * * - - * * - -
+** - - * * - - * * - -
+** * * - - * * - - * *
+** * * - - * * - - * *
+** - - * * - - * * - -
+** - - * * - - * * - -
+** * * - - * * - - * *
+** * * - - * * - - * *
+**
+** where asterisks indicate selected elements, and dashes
+** indicate unselected elements.
+**
+** Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
+** and select similar (10 X 10 X 1) checker board hyper
+** slabs in each, three with the slab parallel to the xy
+** plane, three parallel to the xz plane, and three parallel
+** to the yz plane.
+**
+** Assuming that z is the fastest changing dimension,
+** H5Sselect_shape_same() should return TRUE when comparing
+** the 2-D space checker board selection against a checker
+** board hyperslab parallel to the yz plane in the 3-D
+** space, and FALSE when comparing the 2-D checkerboard
+** selection against two hyperslabs parallel to the xy
+** or xz planes.
+**
+** Also create an additional 3-D dataspaces (10 X 10 X 10),
+** and select a checker board parallel with the yz axis,
+** save with some squares being on different planes.
+** H5Sselect_shape_same() should return FALSE when
+** comparing this selection to the 2-D selection.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_2(void)
+{
+ hid_t small_square_sid;
+ hid_t small_cube_xy_slice_0_sid;
+ hid_t small_cube_xy_slice_1_sid;
+ hid_t small_cube_xy_slice_2_sid;
+ hid_t small_cube_xz_slice_0_sid;
+ hid_t small_cube_xz_slice_1_sid;
+ hid_t small_cube_xz_slice_2_sid;
+ hid_t small_cube_yz_slice_0_sid;
+ hid_t small_cube_yz_slice_1_sid;
+ hid_t small_cube_yz_slice_2_sid;
+ hid_t small_cube_yz_slice_3_sid;
+ hsize_t small_cube_dims[] = {10, 10, 10};
+ hsize_t start[3];
+ hsize_t stride[3];
+ hsize_t count[3];
+ hsize_t block[3];
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
+ CHECK(small_square_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+
+ count[0] = 3; /* x */
+ count[1] = 3; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 2; /* x */
+ start[1] = 2; /* y */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+
+ count[0] = 2; /* x */
+ count[1] = 2; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
+ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+ stride[2] = 20; /* z -- large enough that there will only be one slice */
+
+ count[0] = 3; /* x */
+ count[1] = 3; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 3;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 2; /* x */
+ start[1] = 2; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 4; /* y */
+ stride[2] = 20; /* z -- large enough that there will only be one slice */
+
+ count[0] = 2; /* x */
+ count[1] = 2; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 3;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[2] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
+ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 20; /* y -- large enough that there will only be one slice */
+ stride[2] = 4; /* z */
+
+ count[0] = 3; /* x */
+ count[1] = 1; /* y */
+ count[2] = 3; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 5;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 2; /* x */
+ start[1] = 0; /* y */
+ start[2] = 2; /* z */
+
+ stride[0] = 4; /* x */
+ stride[1] = 20; /* y -- large enough that there will only be one slice */
+ stride[2] = 4; /* z */
+
+ count[0] = 2; /* x */
+ count[1] = 1; /* y */
+ count[2] = 2; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 5;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[1] = 9;
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
+ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 0; /* x */
+ start[1] = 0; /* y */
+ start[2] = 0; /* z */
+
+ stride[0] = 20; /* x -- large enough that there will only be one slice */
+ stride[1] = 4; /* y */
+ stride[2] = 4; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 3; /* y */
+ count[2] = 3; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 9;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 0; /* x */
+ start[1] = 2; /* y */
+ start[2] = 2; /* z */
+
+ stride[0] = 20; /* x -- large enough that there will only be one slice */
+ stride[1] = 4; /* y */
+ stride[2] = 4; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 2; /* y */
+ count[2] = 2; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 9;
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ /* This test gets the right answer, but it fails the shape same
+ * test in an unexpected point. Bring this up with Quincey, as
+ * the oddness looks like it is not related to my code.
+ * -- JRM
+ */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the tests: */
+
+ /* Compare against "xy" selection */
+ check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "xz" selection */
+ check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "yz" selection */
+ check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(small_square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_shape_same_dr__smoke_check_2() */
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_3():
+**
+** Create a square, 2-D dataspace (10 X 10), and select an
+** irregular hyperslab as follows:
+**
+** y
+** 9 - - - - - - - - - -
+** 8 - - - - - - - - - -
+** 7 - - - * * * * - - -
+** 6 - - * * * * * - - -
+** 5 - - * * - - - - - -
+** 4 - - * * - * * - - -
+** 3 - - * * - * * - - -
+** 2 - - - - - - - - - -
+** 1 - - - - - - - - - -
+** 0 - - - - - - - - - -
+** 0 1 2 3 4 5 6 7 8 9 x
+**
+** where asterisks indicate selected elements, and dashes
+** indicate unselected elements.
+**
+** Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
+** and select similar irregular hyperslabs in each, three
+** with the slab parallel to the xy plane, three parallel
+** to the xz plane, and three parallel to the yz plane.
+** Further, translate the irregular slab in 2/3rds of the
+** cases.
+**
+** Assuming that z is the fastest changing dimension,
+** H5Sselect_shape_same() should return TRUE when
+** comparing the 2-D irregular hyperslab selection
+** against the irregular hyperslab selections parallel
+** to the yz plane in the 3-D space, and FALSE when
+** comparing it against the irregular hyperslabs
+** selections parallel to the xy or xz planes.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_3(void)
+{
+ hid_t small_square_sid;
+ hid_t small_cube_xy_slice_0_sid;
+ hid_t small_cube_xy_slice_1_sid;
+ hid_t small_cube_xy_slice_2_sid;
+ hid_t small_cube_xz_slice_0_sid;
+ hid_t small_cube_xz_slice_1_sid;
+ hid_t small_cube_xz_slice_2_sid;
+ hid_t small_cube_yz_slice_0_sid;
+ hid_t small_cube_yz_slice_1_sid;
+ hid_t small_cube_yz_slice_2_sid;
+ hsize_t small_cube_dims[] = {10, 10, 10};
+ hsize_t start[3];
+ hsize_t stride[3];
+ hsize_t count[3];
+ hsize_t block[3];
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
+ CHECK(small_square_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 2; /* x */
+ start[1] = 3; /* y */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 4; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3; /* x */
+ start[1] = 6; /* y */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+
+ block[0] = 4; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 5; /* x */
+ start[1] = 3; /* y */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
+ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 2; /* x */
+ start[1] = 3; /* y */
+ start[2] = 5; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 4; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[1] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[1] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3; /* x */
+ start[1] = 6; /* y */
+ start[2] = 5; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 4; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[1] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[1] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 5; /* x */
+ start[1] = 3; /* y */
+ start[2] = 5; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 2; /* y */
+ block[2] = 1; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[1] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[1] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
+ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 2; /* x */
+ start[1] = 5; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 4; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3; /* x */
+ start[1] = 5; /* y */
+ start[2] = 6; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 4; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 5; /* x */
+ start[1] = 5; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 2; /* x */
+ block[1] = 1; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[0] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* QAK: Start here.
+ */
+ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
+ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");
+
+ small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
+ CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");
+
+ start[0] = 8; /* x */
+ start[1] = 2; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x -- large enough that there will only be one slice */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 4; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[1] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8; /* x */
+ start[1] = 3; /* y */
+ start[2] = 6; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 4; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[1] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 8; /* x */
+ start[1] = 5; /* y */
+ start[2] = 3; /* z */
+
+ stride[0] = 20; /* x */
+ stride[1] = 20; /* y */
+ stride[2] = 20; /* z */
+
+ count[0] = 1; /* x */
+ count[1] = 1; /* y */
+ count[2] = 1; /* z */
+
+ block[0] = 1; /* x */
+ block[1] = 2; /* y */
+ block[2] = 2; /* z */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the starting point to the origin */
+ start[1] -= 1; /* x */
+ start[2] -= 2; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* move the irregular selection to the upper right hand corner */
+ start[0] += 5; /* x */
+ start[2] += 5; /* y */
+ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the tests: */
+
+ /* Compare against "xy" selection */
+ check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "xz" selection */
+ check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Compare against "yz" selection */
+ check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(small_square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xy_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_xz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(small_cube_yz_slice_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_shape_same_dr__smoke_check_3() */
+
+/****************************************************************
+**
+** test_shape_same_dr__smoke_check_4():
+**
+** Create a square, 2-D dataspace (10 X 10), and select
+** the entire space.
+**
+** Similarly, create 3-D and 4-D dataspaces:
+**
+** (1 X 10 X 10)
+** (10 X 1 X 10)
+** (10 X 10 X 1)
+** (10 X 10 X 10)
+**
+** (1 X 1 X 10 X 10)
+** (1 X 10 X 1 X 10)
+** (1 X 10 X 10 X 1)
+** (10 X 1 X 1 X 10)
+** (10 X 1 X 10 X 1)
+** (10 X 10 X 1 X 1)
+** (10 X 1 X 10 X 10)
+**
+** And select these entire spaces as well.
+**
+** Compare the 2-D space against all the other spaces
+** with H5Sselect_shape_same(). The (1 X 10 X 10) &
+** (1 X 1 X 10 X 10) should return TRUE. All others
+** should return FALSE.
+**
+****************************************************************/
+static void
+test_shape_same_dr__smoke_check_4(void)
+{
+ hid_t square_sid;
+ hid_t three_d_space_0_sid;
+ hid_t three_d_space_1_sid;
+ hid_t three_d_space_2_sid;
+ hid_t three_d_space_3_sid;
+ hid_t four_d_space_0_sid;
+ hid_t four_d_space_1_sid;
+ hid_t four_d_space_2_sid;
+ hid_t four_d_space_3_sid;
+ hid_t four_d_space_4_sid;
+ hid_t four_d_space_5_sid;
+ hid_t four_d_space_6_sid;
+ hsize_t dims[] = {10, 10, 10, 10};
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n"));
+
+ /* Create the 10 x 10 dataspace */
+ square_sid = H5Screate_simple(2, dims, NULL);
+ CHECK(square_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 10 X 10) dataspace */
+ dims[0] = 1;
+ dims[1] = 10;
+ dims[2] = 10;
+ three_d_space_0_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 10) dataspace */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 10;
+ three_d_space_1_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 10 X 1) dataspace */
+ dims[0] = 10;
+ dims[1] = 10;
+ dims[2] = 1;
+ three_d_space_2_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 10 X 10) dataspace */
+ dims[0] = 10;
+ dims[1] = 10;
+ dims[2] = 10;
+ three_d_space_3_sid = H5Screate_simple(3, dims, NULL);
+ CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 1 X 10 X 10) dataspace */
+ dims[0] = 1;
+ dims[1] = 1;
+ dims[2] = 10;
+ dims[3] = 10;
+ four_d_space_0_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 10 X 1 X 10) dataspace */
+ dims[0] = 1;
+ dims[1] = 10;
+ dims[2] = 1;
+ dims[3] = 10;
+ four_d_space_1_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple");
+
+ /* create (1 X 10 X 10 X 1) dataspace */
+ dims[0] = 1;
+ dims[1] = 10;
+ dims[2] = 10;
+ dims[3] = 1;
+ four_d_space_2_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 1 X 10) dataspace */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 1;
+ dims[3] = 10;
+ four_d_space_3_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 10 X 1) dataspace */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 10;
+ dims[3] = 1;
+ four_d_space_4_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 10 X 1 X 1) dataspace */
+ dims[0] = 10;
+ dims[1] = 10;
+ dims[2] = 1;
+ dims[3] = 1;
+ four_d_space_5_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple");
+
+ /* create (10 X 1 X 10 X 10) dataspace */
+ dims[0] = 10;
+ dims[1] = 1;
+ dims[2] = 10;
+ dims[3] = 10;
+ four_d_space_6_sid = H5Screate_simple(4, dims, NULL);
+ CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple");
+
+ /* setup is done -- run the tests: */
+
+ check = H5Sselect_shape_same(three_d_space_0_sid, square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(three_d_space_1_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(three_d_space_2_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(three_d_space_3_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_0_sid, square_sid);
+ VERIFY(check, TRUE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_1_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_2_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_3_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_4_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_5_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ check = H5Sselect_shape_same(four_d_space_6_sid, square_sid);
+ VERIFY(check, FALSE, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(square_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(three_d_space_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_2_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_3_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_4_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_5_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(four_d_space_6_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_shape_same_dr__smoke_check_4() */
+
+/****************************************************************
+**
+** test_shape_same_dr__full_space_vs_slice(): Tests selection
+** of a full n-cube dataspace vs an n-dimensional slice of
+** of an m-cube (m > n) in a call to H5Sselect_shape_same().
+** Note that this test does not require the n-cube and the
+** n-dimensional slice to have the same rank (although
+** H5Sselect_shape_same() should always return FALSE if
+** they don't).
+**
+** Per Quincey's suggestion, only test up to 5 dimensional
+** spaces.
+**
+****************************************************************/
+static void
+test_shape_same_dr__full_space_vs_slice(int test_num, int small_rank, int large_rank, int offset,
+ hsize_t edge_size, hbool_t dim_selected[], hbool_t expected_result)
+{
+ char test_desc_0[128];
+ char test_desc_1[256];
+ int i;
+ hid_t n_cube_0_sid; /* the fully selected hyper cube */
+ hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t start[SS_DR_MAX_RANK];
+ hsize_t *start_ptr;
+ hsize_t stride[SS_DR_MAX_RANK];
+ hsize_t *stride_ptr;
+ hsize_t count[SS_DR_MAX_RANK];
+ hsize_t *count_ptr;
+ hsize_t block[SS_DR_MAX_RANK];
+ hsize_t *block_ptr;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert(0 < small_rank);
+ HDassert(small_rank <= large_rank);
+ HDassert(large_rank <= SS_DR_MAX_RANK);
+ HDassert(0 <= offset);
+ HDassert(offset < large_rank);
+ HDassert(edge_size > 0);
+ HDassert(edge_size <= 1000);
+
+ HDsnprintf(test_desc_0, sizeof(test_desc_0), "\tn-cube slice through m-cube (n <= m) test %d.\n",
+ test_num);
+ MESSAGE(7, ("%s", test_desc_0));
+
+ /* This statement must be updated if SS_DR_MAX_RANK is changed */
+ HDsnprintf(test_desc_1, sizeof(test_desc_1),
+ "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", small_rank, large_rank, offset,
+ (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3],
+ (int)dim_selected[4]);
+ MESSAGE(7, ("%s", test_desc_1));
+
+ /* copy the edge size into the dims array */
+ for (i = 0; i < SS_DR_MAX_RANK; i++)
+ dims[i] = edge_size;
+
+ /* Create the small n-cube */
+ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
+ CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
+
+ /* Create the large n-cube */
+ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
+ CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
+
+ /* set up start, stride, count, and block for the hyperslab selection */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ stride[i] = 2 * edge_size; /* a bit silly in this case */
+ count[i] = 1;
+ if (dim_selected[i]) {
+ start[i] = 0;
+ block[i] = edge_size;
+ }
+ else {
+ start[i] = (hsize_t)offset;
+ block[i] = 1;
+ }
+ }
+
+ /* since large rank may be less than SS_DR_MAX_RANK, we may not
+ * use the entire start, stride, count, and block arrays. This
+ * is a problem, since it is inconvenient to set up the dim_selected
+ * array to reflect the large rank, and thus if large_rank <
+ * SS_DR_MAX_RANK, we need to hide the lower index entries
+ * from H5Sselect_hyperslab().
+ *
+ * Do this by setting up pointers to the first valid entry in start,
+ * stride, count, and block below, and pass these pointers in
+ * to H5Sselect_hyperslab() instead of the array base addresses.
+ */
+
+ i = SS_DR_MAX_RANK - large_rank;
+ HDassert(i >= 0);
+
+ start_ptr = &(start[i]);
+ stride_ptr = &(stride[i]);
+ count_ptr = &(count[i]);
+ block_ptr = &(block[i]);
+
+ /* select the hyperslab */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the test: */
+ check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
+ VERIFY(check, expected_result, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_shape_same_dr__full_space_vs_slice() */
+
+/****************************************************************
+**
+** test_shape_same_dr__run_full_space_vs_slice_tests():
+**
+** Run the test_shape_same_dr__full_space_vs_slice() test
+** over a variety of ranks and offsets.
+**
+** At present, we test H5Sselect_shape_same() with
+** fully selected 1, 2, 3, and 4 cubes as one parameter, and
+** 1, 2, 3, and 4 dimensional slices through a n-cube of rank
+** no more than 5 (and at least the rank of the slice).
+** We stop at rank 5, as Quincey suggested that it would be
+** sufficient.
+**
+** All the n-cubes will have lengths of the same size, so
+** H5Sselect_shape_same() should return true iff:
+**
+** 1) the rank for the fully selected n cube equals the
+** number of dimensions selected in the slice through the
+** m-cube (m >= n).
+**
+** 2) The dimensions selected in the slice through the m-cube
+** are the dimensions with the most quickly changing
+** indices.
+**
+****************************************************************/
+static void
+test_shape_same_dr__run_full_space_vs_slice_tests(void)
+{
+ hbool_t dim_selected[5];
+ hbool_t expected_result;
+ int i, j;
+ int v, w, x, y, z;
+ int test_num = 0;
+ int small_rank;
+ int large_rank;
+ hsize_t edge_size = 10;
+
+ for (large_rank = 1; large_rank <= 5; large_rank++) {
+ for (small_rank = 1; small_rank <= large_rank; small_rank++) {
+ v = 0;
+ do {
+ if (v == 0)
+ dim_selected[0] = FALSE;
+ else
+ dim_selected[0] = TRUE;
+
+ w = 0;
+ do {
+ if (w == 0)
+ dim_selected[1] = FALSE;
+ else
+ dim_selected[1] = TRUE;
+
+ x = 0;
+ do {
+ if (x == 0)
+ dim_selected[2] = FALSE;
+ else
+ dim_selected[2] = TRUE;
+
+ y = 0;
+ do {
+ if (y == 0)
+ dim_selected[3] = FALSE;
+ else
+ dim_selected[3] = TRUE;
+
+ z = 0;
+ do {
+ if (z == 0)
+ dim_selected[4] = FALSE;
+ else
+ dim_selected[4] = TRUE;
+
+ /* compute the expected result: */
+ i = 0;
+ j = 4;
+ expected_result = TRUE;
+ while ((i < small_rank) && expected_result) {
+ if (!dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ }
+
+ while ((i < large_rank) && expected_result) {
+ if (dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ }
+
+ /* everything is set up -- run the tests */
+
+ test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, 0,
+ edge_size, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank,
+ large_rank / 2, edge_size,
+ dim_selected, expected_result);
+
+ test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank,
+ large_rank - 1, edge_size,
+ dim_selected, expected_result);
+
+ z++;
+ } while ((z < 2) && (large_rank >= 1));
+
+ y++;
+ } while ((y < 2) && (large_rank >= 2));
+
+ x++;
+ } while ((x < 2) && (large_rank >= 3));
+
+ w++;
+ } while ((w < 2) && (large_rank >= 4));
+
+ v++;
+ } while ((v < 2) && (large_rank >= 5));
+ } /* end for */
+ } /* end for */
+} /* test_shape_same_dr__run_full_space_vs_slice_tests() */
+
+/****************************************************************
+**
+** test_shape_same_dr__checkerboard(): Tests selection of a
+** "checker board" subset of a full n-cube dataspace vs
+** a "checker board" n-dimensional slice of an m-cube (m > n).
+** in a call to H5Sselect_shape_same().
+**
+** Note that this test does not require the n-cube and the
+** n-dimensional slice to have the same rank (although
+** H5Sselect_shape_same() should always return FALSE if
+** they don't).
+**
+** Per Quincey's suggestion, only test up to 5 dimensional
+** spaces.
+**
+****************************************************************/
+static void
+test_shape_same_dr__checkerboard(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size,
+ hsize_t checker_size, hbool_t dim_selected[], hbool_t expected_result)
+{
+ char test_desc_0[128];
+ char test_desc_1[256];
+ int i;
+ int dims_selected = 0;
+ hid_t n_cube_0_sid; /* the checker board selected
+ * hyper cube
+ */
+ hid_t n_cube_1_sid; /* the hyper cube in which a
+ * checkerboard slice is selected
+ */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t base_start[2];
+ hsize_t start[SS_DR_MAX_RANK];
+ hsize_t *start_ptr;
+ hsize_t base_stride[2];
+ hsize_t stride[SS_DR_MAX_RANK];
+ hsize_t *stride_ptr;
+ hsize_t base_count[2];
+ hsize_t count[SS_DR_MAX_RANK];
+ hsize_t *count_ptr;
+ hsize_t base_block[2];
+ hsize_t block[SS_DR_MAX_RANK];
+ hsize_t *block_ptr;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert(0 < small_rank);
+ HDassert(small_rank <= large_rank);
+ HDassert(large_rank <= SS_DR_MAX_RANK);
+ HDassert(0 < checker_size);
+ HDassert(checker_size <= edge_size);
+ HDassert(edge_size <= 1000);
+ HDassert(0 <= offset);
+ HDassert(offset < (int)edge_size);
+
+ for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
+ if (dim_selected[i] == TRUE)
+ dims_selected++;
+
+ HDassert(dims_selected >= 0);
+ HDassert(dims_selected <= large_rank);
+
+ HDsnprintf(test_desc_0, sizeof(test_desc_0),
+ "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", test_num);
+ MESSAGE(7, ("%s", test_desc_0));
+
+ /* This statement must be updated if SS_DR_MAX_RANK is changed */
+ HDsnprintf(test_desc_1, sizeof(test_desc_1),
+ "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n",
+ small_rank, large_rank, (int)edge_size, (int)checker_size, offset, (int)dim_selected[0],
+ (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4],
+ dims_selected);
+ MESSAGE(7, ("%s", test_desc_1));
+
+ /* copy the edge size into the dims array */
+ for (i = 0; i < SS_DR_MAX_RANK; i++)
+ dims[i] = edge_size;
+
+ /* Create the small n-cube */
+ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
+ CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
+
+ /* Select a "checkerboard" pattern in the small n-cube.
+ *
+ * In the 1-D case, the "checkerboard" would look like this:
+ *
+ * * * - - * * - - * *
+ *
+ * and in the 2-D case, it would look like this:
+ *
+ * * * - - * * - - * *
+ * * * - - * * - - * *
+ * - - * * - - * * - -
+ * - - * * - - * * - -
+ * * * - - * * - - * *
+ * * * - - * * - - * *
+ * - - * * - - * * - -
+ * - - * * - - * * - -
+ * * * - - * * - - * *
+ * * * - - * * - - * *
+ *
+ * In both cases, asterisks indicate selected elements,
+ * and dashes indicate unselected elements.
+ *
+ * 3-D and 4-D ascii art is somewhat painful, so I'll
+ * leave those selections to your imagination. :-)
+ *
+ * Note, that since the edge_size and checker_size are
+ * parameters that are passed in, the selection need
+ * not look exactly like the selection shown above.
+ * At present, the function allows checker sizes that
+ * are not even divisors of the edge size -- thus
+ * something like the following is also possible:
+ *
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * - - - * * * - - - *
+ * - - - * * * - - - *
+ * - - - * * * - - - *
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * * * * - - - * * * -
+ * - - - * * * - - - *
+ *
+ * As the above pattern can't be selected in one
+ * call to H5Sselect_hyperslab(), and since the
+ * values in the start, stride, count, and block
+ * arrays will be repeated over all entries in
+ * the selected space case, and over all selected
+ * dimensions in the selected hyperslab case, we
+ * compute these values first and store them in
+ * in the base_start, base_stride, base_count,
+ * and base_block arrays.
+ */
+
+ base_start[0] = 0;
+ base_start[1] = checker_size;
+
+ base_stride[0] = 2 * checker_size;
+ base_stride[1] = 2 * checker_size;
+
+ /* Note that the following computation depends on the C99
+ * requirement that integer division discard any fraction
+ * (truncation towards zero) to function correctly. As we
+ * now require C99, this shouldn't be a problem, but noting
+ * it may save us some pain if we are ever obliged to support
+ * pre-C99 compilers again.
+ */
+
+ base_count[0] = edge_size / (checker_size * 2);
+ if ((edge_size % (checker_size * 2)) > 0)
+ base_count[0]++;
+
+ base_count[1] = (edge_size - checker_size) / (checker_size * 2);
+ if (((edge_size - checker_size) % (checker_size * 2)) > 0)
+ base_count[1]++;
+
+ base_block[0] = checker_size;
+ base_block[1] = checker_size;
+
+ /* now setup start, stride, count, and block arrays for
+ * the first call to H5Sselect_hyperslab().
+ */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = base_start[0];
+ stride[i] = base_stride[0];
+ count[i] = base_count[0];
+ block[i] = base_block[0];
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* if small_rank == 1, or if edge_size == checker_size, we
+ * are done, as either there is no added dimension in which
+ * to place offset selected "checkers".
+ *
+ * Otherwise, set up start, stride, count and block, and
+ * make the additional selection.
+ */
+
+ if ((small_rank > 1) && (checker_size < edge_size)) {
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = base_start[1];
+ stride[i] = base_stride[1];
+ count[i] = base_count[1];
+ block[i] = base_block[1];
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end if */
+
+ /* Weirdness alert:
+ *
+ * Some how, it seems that selections can extend beyond the
+ * boundaries of the target dataspace -- hence the following
+ * code to manually clip the selection back to the dataspace
+ * proper.
+ */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = 0;
+ stride[i] = edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the large n-cube */
+ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
+ CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
+
+ /* Now select the checkerboard selection in the (possibly larger) n-cube.
+ *
+ * Since we have already calculated the base start, stride, count,
+ * and block, re-use the values in setting up start, stride, count,
+ * and block.
+ */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ if (dim_selected[i]) {
+ start[i] = base_start[0];
+ stride[i] = base_stride[0];
+ count[i] = base_count[0];
+ block[i] = base_block[0];
+ } /* end if */
+ else {
+ start[i] = (hsize_t)offset;
+ stride[i] = (hsize_t)(2 * edge_size);
+ count[i] = 1;
+ block[i] = 1;
+ } /* end else */
+ } /* end for */
+
+ /* Since large rank may be less than SS_DR_MAX_RANK, we may not
+ * use the entire start, stride, count, and block arrays. This
+ * is a problem, since it is inconvenient to set up the dim_selected
+ * array to reflect the large rank, and thus if large_rank <
+ * SS_DR_MAX_RANK, we need to hide the lower index entries
+ * from H5Sselect_hyperslab().
+ *
+ * Do this by setting up pointers to the first valid entry in start,
+ * stride, count, and block below, and pass these pointers in
+ * to H5Sselect_hyperslab() instead of the array base addresses.
+ */
+
+ i = SS_DR_MAX_RANK - large_rank;
+ HDassert(i >= 0);
+
+ start_ptr = &(start[i]);
+ stride_ptr = &(stride[i]);
+ count_ptr = &(count[i]);
+ block_ptr = &(block[i]);
+
+ /* select the hyperslab */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* As before, if the number of dimensions selected is less than or
+ * equal to 1, or if edge_size == checker_size, we are done, as
+ * either there is no added dimension in which to place offset selected
+ * "checkers", or the hyperslab is completely occupied by one
+ * "checker".
+ *
+ * Otherwise, set up start, stride, count and block, and
+ * make the additional selection.
+ */
+ if ((dims_selected > 1) && (checker_size < edge_size)) {
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ if (dim_selected[i]) {
+ start[i] = base_start[1];
+ stride[i] = base_stride[1];
+ count[i] = base_count[1];
+ block[i] = base_block[1];
+ } /* end if */
+ else {
+ start[i] = (hsize_t)offset;
+ stride[i] = (hsize_t)(2 * edge_size);
+ count[i] = 1;
+ block[i] = 1;
+ } /* end else */
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end if */
+
+ /* Weirdness alert:
+ *
+ * Again, it seems that selections can extend beyond the
+ * boundaries of the target dataspace -- hence the following
+ * code to manually clip the selection back to the dataspace
+ * proper.
+ */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ start[i] = 0;
+ stride[i] = edge_size;
+ count[i] = 1;
+ block[i] = edge_size;
+ } /* end for */
+
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the test: */
+ check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
+ VERIFY(check, expected_result, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_shape_same_dr__checkerboard() */
+
+/****************************************************************
+**
+** test_shape_same_dr__run_checkerboard_tests():
+**
+** In this set of tests, we test H5Sselect_shape_same()
+** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as
+** one parameter, and 1, 2, 3, and 4 dimensional checkerboard
+** slices through a n-cube of rank no more than 5 (and at
+** least the rank of the slice).
+**
+** All the n-cubes will have lengths of the same size, so
+** H5Sselect_shape_same() should return true iff:
+**
+** 1) the rank of the n cube equals the number of dimensions
+** selected in the checker board slice through the m-cube
+** (m >= n).
+**
+** 2) The dimensions selected in the checkerboard slice
+** through the m-cube are the dimensions with the most
+** quickly changing indices.
+**
+****************************************************************/
+static void
+test_shape_same_dr__run_checkerboard_tests(void)
+{
+ hbool_t dim_selected[5];
+ hbool_t expected_result;
+ int i, j;
+ int v, w, x, y, z;
+ int test_num = 0;
+ int small_rank;
+ int large_rank;
+
+ for (large_rank = 1; large_rank <= 5; large_rank++) {
+ for (small_rank = 1; small_rank <= large_rank; small_rank++) {
+ v = 0;
+ do {
+ if (v == 0)
+ dim_selected[0] = FALSE;
+ else
+ dim_selected[0] = TRUE;
+
+ w = 0;
+ do {
+ if (w == 0)
+ dim_selected[1] = FALSE;
+ else
+ dim_selected[1] = TRUE;
+
+ x = 0;
+ do {
+ if (x == 0)
+ dim_selected[2] = FALSE;
+ else
+ dim_selected[2] = TRUE;
+
+ y = 0;
+ do {
+ if (y == 0)
+ dim_selected[3] = FALSE;
+ else
+ dim_selected[3] = TRUE;
+
+ z = 0;
+ do {
+ if (z == 0)
+ dim_selected[4] = FALSE;
+ else
+ dim_selected[4] = TRUE;
+
+ /* compute the expected result: */
+ i = 0;
+ j = 4;
+ expected_result = TRUE;
+ while ((i < small_rank) && expected_result) {
+ if (!dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ while ((i < large_rank) && expected_result) {
+ if (dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ /* everything is set up -- run the tests */
+
+ /* run test with edge size 16, checker
+ * size 1, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 0,
+ /* edge_size */ 16,
+ /* checker_size */ 1, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 5,
+ /* edge_size */ 16,
+ /* checker_size */ 1, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 15,
+ /* edge_size */ 16,
+ /* checker_size */ 1, dim_selected,
+ expected_result);
+
+ /* run test with edge size 10, checker
+ * size 2, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 0,
+ /* edge_size */ 10,
+ /* checker_size */ 2, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 5,
+ /* edge_size */ 10,
+ /* checker_size */ 2, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 9,
+ /* edge_size */ 10,
+ /* checker_size */ 2, dim_selected,
+ expected_result);
+
+ /* run test with edge size 10, checker
+ * size 3, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 0,
+ /* edge_size */ 10,
+ /* checker_size */ 3, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 5,
+ /* edge_size */ 10,
+ /* checker_size */ 3, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 9,
+ /* edge_size */ 10,
+ /* checker_size */ 3, dim_selected,
+ expected_result);
+
+ /* run test with edge size 8, checker
+ * size 8, and a variety of offsets
+ */
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 0,
+ /* edge_size */ 8,
+ /* checker_size */ 8, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 4,
+ /* edge_size */ 8,
+ /* checker_size */ 8, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
+ /* offset */ 7,
+ /* edge_size */ 8,
+ /* checker_size */ 8, dim_selected,
+ expected_result);
+
+ z++;
+ } while ((z < 2) && (large_rank >= 1));
+
+ y++;
+ } while ((y < 2) && (large_rank >= 2));
+
+ x++;
+ } while ((x < 2) && (large_rank >= 3));
+
+ w++;
+ } while ((w < 2) && (large_rank >= 4));
+
+ v++;
+ } while ((v < 2) && (large_rank >= 5));
+ } /* end for */
+ } /* end for */
+} /* test_shape_same_dr__run_checkerboard_tests() */
+
+/****************************************************************
+**
+** test_shape_same_dr__irregular():
+**
+** Tests selection of an "irregular" subset of a full
+** n-cube dataspace vs an identical "irregular" subset
+** of an n-dimensional slice of an m-cube (m > n).
+** in a call to H5Sselect_shape_same().
+**
+** Note that this test does not require the n-cube and the
+** n-dimensional slice to have the same rank (although
+** H5Sselect_shape_same() should always return FALSE if
+** they don't).
+**
+****************************************************************/
+static void
+test_shape_same_dr__irregular(int test_num, int small_rank, int large_rank, int pattern_offset,
+ int slice_offset, hbool_t dim_selected[], hbool_t expected_result)
+{
+ char test_desc_0[128];
+ char test_desc_1[256];
+ int edge_size = 10;
+ int i;
+ int j;
+ int k;
+ int dims_selected = 0;
+ hid_t n_cube_0_sid; /* the hyper cube containing
+ * an irregular selection
+ */
+ hid_t n_cube_1_sid; /* the hyper cube in which a
+ * slice contains an irregular
+ * selection.
+ */
+ hsize_t dims[SS_DR_MAX_RANK];
+ hsize_t start_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 5};
+ hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_0[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
+ hsize_t block_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 3};
+
+ hsize_t start_1[SS_DR_MAX_RANK] = {2, 2, 2, 5, 2};
+ hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_1[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
+ hsize_t block_1[SS_DR_MAX_RANK] = {2, 2, 2, 3, 2};
+
+ hsize_t start_2[SS_DR_MAX_RANK] = {2, 2, 5, 2, 2};
+ hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_2[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
+ hsize_t block_2[SS_DR_MAX_RANK] = {2, 2, 3, 2, 2};
+
+ hsize_t start_3[SS_DR_MAX_RANK] = {2, 5, 2, 2, 2};
+ hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_3[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
+ hsize_t block_3[SS_DR_MAX_RANK] = {2, 3, 2, 2, 2};
+
+ hsize_t start_4[SS_DR_MAX_RANK] = {5, 2, 2, 2, 2};
+ hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t count_4[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
+ hsize_t block_4[SS_DR_MAX_RANK] = {3, 2, 2, 2, 2};
+
+ hsize_t clip_start[SS_DR_MAX_RANK] = {0, 0, 0, 0, 0};
+ hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+ hsize_t clip_count[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1};
+ hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
+
+ hsize_t *(starts[SS_DR_MAX_RANK]) = {start_0, start_1, start_2, start_3, start_4};
+ hsize_t *(strides[SS_DR_MAX_RANK]) = {stride_0, stride_1, stride_2, stride_3, stride_4};
+ hsize_t *(counts[SS_DR_MAX_RANK]) = {count_0, count_1, count_2, count_3, count_4};
+ hsize_t *(blocks[SS_DR_MAX_RANK]) = {block_0, block_1, block_2, block_3, block_4};
+
+ hsize_t start[SS_DR_MAX_RANK];
+ hsize_t *start_ptr;
+ hsize_t stride[SS_DR_MAX_RANK];
+ hsize_t *stride_ptr;
+ hsize_t count[SS_DR_MAX_RANK];
+ hsize_t *count_ptr;
+ hsize_t block[SS_DR_MAX_RANK];
+ hsize_t *block_ptr;
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ HDassert(0 < small_rank);
+ HDassert(small_rank <= large_rank);
+ HDassert(large_rank <= SS_DR_MAX_RANK);
+ HDassert(9 <= edge_size);
+ HDassert(edge_size <= 1000);
+ HDassert(0 <= slice_offset);
+ HDassert(slice_offset < edge_size);
+ HDassert(-2 <= pattern_offset);
+ HDassert(pattern_offset <= 2);
+
+ for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
+ if (dim_selected[i] == TRUE)
+ dims_selected++;
+
+ HDassert(dims_selected >= 0);
+ HDassert(dims_selected <= large_rank);
+
+ HDsnprintf(test_desc_0, sizeof(test_desc_0),
+ "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", test_num);
+ MESSAGE(7, ("%s", test_desc_0));
+
+ /* This statement must be updated if SS_DR_MAX_RANK is changed */
+ HDsnprintf(test_desc_1, sizeof(test_desc_1),
+ "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank,
+ large_rank, edge_size, slice_offset, pattern_offset, (int)dim_selected[0],
+ (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4],
+ dims_selected);
+ MESSAGE(7, ("%s", test_desc_1));
+
+ /* copy the edge size into the dims array */
+ for (i = 0; i < SS_DR_MAX_RANK; i++)
+ dims[i] = (hsize_t)edge_size;
+
+ /* Create the small n-cube */
+ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
+ CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");
+
+ /* Select an "irregular" pattern in the small n-cube. This
+ * pattern can be though of a set of four 3 x 2 x 2 X 2
+ * four dimensional prisims, each parallel to one of the
+ * axies and none of them intersecting with the other.
+ *
+ * In the lesser dimensional cases, this 4D pattern is
+ * projected onto the lower dimensional space.
+ *
+ * In the 1-D case, the projection of the pattern looks
+ * like this:
+ *
+ * - - * * - * * * - -
+ * 0 1 2 3 4 5 6 7 8 9 x
+ *
+ * and in the 2-D case, it would look like this:
+ *
+ *
+ * y
+ * 9 - - - - - - - - - -
+ * 8 - - - - - - - - - -
+ * 7 - - * * - - - - - -
+ * 6 - - * * - - - - - -
+ * 5 - - * * - - - - - -
+ * 4 - - - - - - - - - -
+ * 3 - - * * - * * * - -
+ * 2 - - * * - * * * - -
+ * 1 - - - - - - - - - -
+ * 0 - - - - - - - - - -
+ * 0 1 2 3 4 5 6 7 8 9 x
+ *
+ * In both cases, asterisks indicate selected elements,
+ * and dashes indicate unselected elements.
+ *
+ * Note that is this case, since the edge size is fixed,
+ * the pattern does not change. However, we do use the
+ * displacement parameter to allow it to be moved around
+ * within the n-cube or hyperslab.
+ */
+
+ /* first, ensure that the small n-cube has no selection */
+ ret = H5Sselect_none(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* now, select the irregular pattern */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, starts[i], strides[i], counts[i], blocks[i]);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* finally, clip the selection to ensure that it lies fully
+ * within the n-cube.
+ */
+ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create the large n-cube */
+ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
+ CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");
+
+ /* Ensure that the large n-cube has no selection */
+ H5Sselect_none(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Since large rank may be less than SS_DR_MAX_RANK, we may not
+ * use the entire start, stride, count, and block arrays. This
+ * is a problem, since it is inconvenient to set up the dim_selected
+ * array to reflect the large rank, and thus if large_rank <
+ * SS_DR_MAX_RANK, we need to hide the lower index entries
+ * from H5Sselect_hyperslab().
+ *
+ * Do this by setting up pointers to the first valid entry in start,
+ * stride, count, and block below, and pass these pointers in
+ * to H5Sselect_hyperslab() instead of the array base addresses.
+ */
+
+ i = SS_DR_MAX_RANK - large_rank;
+ HDassert(i >= 0);
+
+ start_ptr = &(start[i]);
+ stride_ptr = &(stride[i]);
+ count_ptr = &(count[i]);
+ block_ptr = &(block[i]);
+
+ /* Now select the irregular selection in the (possibly larger) n-cube.
+ *
+ * Basic idea is to project the pattern used in the smaller n-cube
+ * onto the dimensions selected in the larger n-cube, with the displacement
+ * specified.
+ */
+ for (i = 0; i < SS_DR_MAX_RANK; i++) {
+ j = 0;
+ for (k = 0; k < SS_DR_MAX_RANK; k++) {
+ if (dim_selected[k]) {
+ start[k] = (starts[i])[j] + (hsize_t)pattern_offset;
+ stride[k] = (strides[i])[j];
+ count[k] = (counts[i])[j];
+ block[k] = (blocks[i])[j];
+ j++;
+ } /* end if */
+ else {
+ start[k] = (hsize_t)slice_offset;
+ stride[k] = (hsize_t)(2 * edge_size);
+ count[k] = 1;
+ block[k] = 1;
+ } /* end else */
+ } /* end for */
+
+ /* select the hyperslab */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ } /* end for */
+
+ /* it is possible that the selection extends beyond the dataspace.
+ * clip the selection to ensure that it doesn't.
+ */
+ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* setup is done -- run the test: */
+ check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
+ VERIFY(check, expected_result, "H5Sselect_shape_same");
+
+ /* Close dataspaces */
+ ret = H5Sclose(n_cube_0_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ ret = H5Sclose(n_cube_1_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_shape_same_dr__irregular() */
+
+/****************************************************************
+**
+** test_shape_same_dr__run_irregular_tests():
+**
+** In this set of tests, we test H5Sselect_shape_same()
+** with an "irregular" subselection of 1, 2, 3, and 4 cubes as
+** one parameter, and irregular subselections of 1, 2, 3,
+** and 4 dimensional slices through a n-cube of rank no more
+** than 5 (and at least the rank of the slice) as the other.
+** Note that the "irregular" selection may be offset between
+** the n-cube and the slice.
+**
+** All the irregular selections will be identical (modulo rank)
+** so H5Sselect_shape_same() should return true iff:
+**
+** 1) the rank of the n cube equals the number of dimensions
+** selected in the irregular slice through the m-cube
+** (m >= n).
+**
+** 2) The dimensions selected in the irregular slice
+** through the m-cube are the dimensions with the most
+** quickly changing indices.
+**
+****************************************************************/
+static void
+test_shape_same_dr__run_irregular_tests(void)
+{
+ hbool_t dim_selected[5];
+ hbool_t expected_result;
+ int i, j;
+ int v, w, x, y, z;
+ int test_num = 0;
+ int small_rank;
+ int large_rank;
+
+ for (large_rank = 1; large_rank <= 5; large_rank++) {
+ for (small_rank = 1; small_rank <= large_rank; small_rank++) {
+ v = 0;
+ do {
+ if (v == 0)
+ dim_selected[0] = FALSE;
+ else
+ dim_selected[0] = TRUE;
+
+ w = 0;
+ do {
+ if (w == 0)
+ dim_selected[1] = FALSE;
+ else
+ dim_selected[1] = TRUE;
+
+ x = 0;
+ do {
+ if (x == 0)
+ dim_selected[2] = FALSE;
+ else
+ dim_selected[2] = TRUE;
+
+ y = 0;
+ do {
+ if (y == 0)
+ dim_selected[3] = FALSE;
+ else
+ dim_selected[3] = TRUE;
+
+ z = 0;
+ do {
+ if (z == 0)
+ dim_selected[4] = FALSE;
+ else
+ dim_selected[4] = TRUE;
+
+ /* compute the expected result: */
+ i = 0;
+ j = 4;
+ expected_result = TRUE;
+ while ((i < small_rank) && expected_result) {
+ if (!dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ while ((i < large_rank) && expected_result) {
+ if (dim_selected[j])
+ expected_result = FALSE;
+ i++;
+ j--;
+ } /* end while */
+
+ /* everything is set up -- run the tests */
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ -2,
+ /* slice_offset */ 0, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ -2,
+ /* slice_offset */ 4, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ -2,
+ /* slice_offset */ 9, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ 0,
+ /* slice_offset */ 0, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ 0,
+ /* slice_offset */ 6, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ 0,
+ /* slice_offset */ 9, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ 2,
+ /* slice_offset */ 0, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ 2,
+ /* slice_offset */ 5, dim_selected,
+ expected_result);
+
+ test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
+ /* pattern_offset */ 2,
+ /* slice_offset */ 9, dim_selected,
+ expected_result);
+
+ z++;
+ } while ((z < 2) && (large_rank >= 1));
+
+ y++;
+ } while ((y < 2) && (large_rank >= 2));
+
+ x++;
+ } while ((x < 2) && (large_rank >= 3));
+
+ w++;
+ } while ((w < 2) && (large_rank >= 4));
+
+ v++;
+ } while ((v < 2) && (large_rank >= 5));
+ } /* end for */
+ } /* end for */
+} /* test_shape_same_dr__run_irregular_tests() */
+
+/****************************************************************
+**
+** test_shape_same_dr(): Tests selections on dataspace with
+** different ranks, to verify that "shape same" routine
+** is now handling this case correctly.
+**
+****************************************************************/
+static void
+test_shape_same_dr(void)
+{
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n"));
+
+ /* first run some smoke checks */
+ test_shape_same_dr__smoke_check_1();
+ test_shape_same_dr__smoke_check_2();
+ test_shape_same_dr__smoke_check_3();
+ test_shape_same_dr__smoke_check_4();
+
+ /* now run more intensive tests. */
+ test_shape_same_dr__run_full_space_vs_slice_tests();
+ test_shape_same_dr__run_checkerboard_tests();
+ test_shape_same_dr__run_irregular_tests();
+} /* test_shape_same_dr() */
+
+/****************************************************************
+**
+** test_space_rebuild(): Tests selection rebuild routine,
+** We will test whether selection in span-tree form can be rebuilt
+** into a regular selection.
+**
+**
+****************************************************************/
+static void
+test_space_rebuild(void)
+{
+ /* regular space IDs in span-tree form */
+ hid_t sid_reg1, sid_reg2, sid_reg3, sid_reg4, sid_reg5;
+
+ /* Original regular Space IDs */
+ hid_t sid_reg_ori1, sid_reg_ori2, sid_reg_ori3, sid_reg_ori4, sid_reg_ori5;
+
+ /* Irregular space IDs */
+ hid_t sid_irreg1, sid_irreg2, sid_irreg3, sid_irreg4, sid_irreg5;
+
+ /* rebuild status state */
+#if 0
+ H5S_diminfo_valid_t rebuild_stat1, rebuild_stat2;
+ htri_t rebuild_check;
+#endif
+ herr_t ret;
+
+ /* dimensions of rank 1 to rank 5 */
+ hsize_t dims1[] = {SPACERE1_DIM0};
+ hsize_t dims2[] = {SPACERE2_DIM0, SPACERE2_DIM1};
+ hsize_t dims3[] = {SPACERE3_DIM0, SPACERE3_DIM1, SPACERE3_DIM2};
+ hsize_t dims4[] = {SPACERE4_DIM0, SPACERE4_DIM1, SPACERE4_DIM2, SPACERE4_DIM3};
+ hsize_t dims5[] = {SPACERE5_DIM0, SPACERE5_DIM1, SPACERE5_DIM2, SPACERE5_DIM3, SPACERE5_DIM4};
+
+ /* The start of the hyperslab */
+ hsize_t start1[SPACERE1_RANK], start2[SPACERE2_RANK], start3[SPACERE3_RANK], start4[SPACERE4_RANK],
+ start5[SPACERE5_RANK];
+
+ /* The stride of the hyperslab */
+ hsize_t stride1[SPACERE1_RANK], stride2[SPACERE2_RANK], stride3[SPACERE3_RANK], stride4[SPACERE4_RANK],
+ stride5[SPACERE5_RANK];
+
+ /* The number of blocks for the hyperslab */
+ hsize_t count1[SPACERE1_RANK], count2[SPACERE2_RANK], count3[SPACERE3_RANK], count4[SPACERE4_RANK],
+ count5[SPACERE5_RANK];
+
+ /* The size of each block for the hyperslab */
+ hsize_t block1[SPACERE1_RANK], block2[SPACERE2_RANK], block3[SPACERE3_RANK], block4[SPACERE4_RANK],
+ block5[SPACERE5_RANK];
+
+ /* Declarations for special test of rebuild */
+ hid_t sid_spec;
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing functionality to rebuild regular hyperslab selection\n"));
+
+ MESSAGE(7, ("Testing functionality to rebuild 1-D hyperslab selection\n"));
+
+ /* Create 1-D dataspace */
+ sid_reg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
+ sid_reg_ori1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
+
+ /* Build up the original one dimensional regular selection */
+ start1[0] = 1;
+ count1[0] = 3;
+ stride1[0] = 5;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(sid_reg_ori1, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Build up one dimensional regular selection with H5_SELECT_OR,
+ inside HDF5, it will be treated as an irregular selection. */
+
+ start1[0] = 1;
+ count1[0] = 2;
+ stride1[0] = 5;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start1[0] = 11;
+ count1[0] = 1;
+ stride1[0] = 5;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_reg1, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 and rebuild_stat2 should be
+ * H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (ret != FAIL) {
+ /* In this case, rebuild_check should be TRUE. */
+ rebuild_check = H5Sselect_shape_same(sid_reg1, sid_reg_ori1);
+ CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
+ }
+#endif
+ /* For irregular hyperslab */
+ sid_irreg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
+
+ /* Build up one dimensional irregular selection with H5_SELECT_OR */
+ start1[0] = 1;
+ count1[0] = 2;
+ stride1[0] = 5;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start1[0] = 12; /* Just one position switch */
+ count1[0] = 1;
+ stride1[0] = 5;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_irreg1, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ MESSAGE(7, ("Testing functionality to rebuild 2-D hyperslab selection\n"));
+ /* Create 2-D dataspace */
+ sid_reg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
+ sid_reg_ori2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
+
+ /* Build up the original two dimensional regular selection */
+ start2[0] = 2;
+ count2[0] = 2;
+ stride2[0] = 7;
+ block2[0] = 5;
+ start2[1] = 1;
+ count2[1] = 3;
+ stride2[1] = 3;
+ block2[1] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg_ori2, H5S_SELECT_SET, start2, stride2, count2, block2);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Build up two dimensional regular selection with H5_SELECT_OR, inside HDF5,
+ it will be treated as an irregular selection. */
+
+ start2[1] = 1;
+ count2[1] = 2;
+ stride2[1] = 3;
+ block2[1] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_SET, start2, stride2, count2, block2);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start2[1] = 7; /* 7 = start(1) + count(2) * stride(3) */
+ count2[1] = 1;
+ stride2[1] = 3;
+ block2[1] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_OR, start2, stride2, count2, block2);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_reg2, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 and rebuild_stat2 should be
+ * H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ } /* end if */
+ if (ret != FAIL) {
+ /* In this case, rebuild_check should be TRUE. */
+ rebuild_check = H5Sselect_shape_same(sid_reg2, sid_reg_ori2);
+ CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
+ }
+#endif
+ /* 2-D irregular case */
+ sid_irreg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
+ /* Build up two dimensional irregular selection with H5_SELECT_OR */
+
+ start2[0] = 2;
+ count2[0] = 2;
+ stride2[0] = 7;
+ block2[0] = 5;
+ start2[1] = 1;
+ count2[1] = 1;
+ stride2[1] = 3;
+ block2[1] = 2;
+ ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_SET, start2, stride2, count2, block2);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start2[1] = 4;
+ count2[1] = 2;
+ stride2[1] = 4;
+ block2[1] = 3; /* Just add one element for the block */
+
+ ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_OR, start2, stride2, count2, block2);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_irreg2, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ MESSAGE(7, ("Testing functionality to rebuild 3-D hyperslab selection\n"));
+
+ /* Create 3-D dataspace */
+ sid_reg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
+ sid_reg_ori3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
+
+ /* Build up the original three dimensional regular selection */
+ start3[0] = 2;
+ count3[0] = 2;
+ stride3[0] = 3;
+ block3[0] = 2;
+ start3[1] = 1;
+ count3[1] = 3;
+ stride3[1] = 3;
+ block3[1] = 2;
+
+ start3[2] = 1;
+ count3[2] = 2;
+ stride3[2] = 4;
+ block3[2] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg_ori3, H5S_SELECT_SET, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Build up three dimensional regular selection with H5_SELECT_OR, inside HDF5,
+ it will be treated as an irregular selection. */
+ start3[2] = 1;
+ count3[2] = 1;
+ stride3[2] = 4;
+ block3[2] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_SET, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start3[2] = 5;
+ count3[2] = 1;
+ stride3[2] = 4;
+ block3[2] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_OR, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_reg3, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 and rebuild_stat2 should be
+ * H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (ret != FAIL) {
+ /* In this case, rebuild_check should be TRUE. */
+ rebuild_check = H5Sselect_shape_same(sid_reg3, sid_reg_ori3);
+ CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
+ }
+#endif
+
+ sid_irreg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
+
+ /* Build up three dimensional irregular selection with H5_SELECT_OR */
+ start3[0] = 2;
+ count3[0] = 2;
+ stride3[0] = 3;
+ block3[0] = 2;
+ start3[1] = 1;
+ count3[1] = 3;
+ stride3[1] = 3;
+ block3[1] = 2;
+
+ start3[2] = 1;
+ count3[2] = 2;
+ stride3[2] = 2;
+ block3[2] = 1;
+
+ ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_SET, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start3[2] = 3;
+ count3[2] = 2;
+ stride3[2] = 3; /* Just add one element for the stride */
+ block3[2] = 1;
+
+ ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_OR, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_irreg3, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ MESSAGE(7, ("Testing functionality to rebuild 4-D hyperslab selection\n"));
+
+ /* Create 4-D dataspace */
+ sid_reg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
+ sid_reg_ori4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
+
+ /* Build up the original four dimensional regular selection */
+ start4[0] = 2;
+ count4[0] = 2;
+ stride4[0] = 3;
+ block4[0] = 2;
+
+ start4[1] = 1;
+ count4[1] = 3;
+ stride4[1] = 3;
+ block4[1] = 2;
+
+ start4[2] = 1;
+ count4[2] = 2;
+ stride4[2] = 4;
+ block4[2] = 2;
+
+ start4[3] = 1;
+ count4[3] = 2;
+ stride4[3] = 4;
+ block4[3] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg_ori4, H5S_SELECT_SET, start4, stride4, count4, block4);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5,
+ it will be treated as an irregular selection. */
+ start4[3] = 1;
+ count4[3] = 1;
+ stride4[3] = 4;
+ block4[3] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_SET, start4, stride4, count4, block4);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start4[3] = 5;
+ count4[3] = 1;
+ stride4[3] = 4;
+ block4[3] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_OR, start4, stride4, count4, block4);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_reg4, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 and rebuild_stat2 should be
+ * H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (ret != FAIL) {
+ /* In this case, rebuild_check should be TRUE. */
+ rebuild_check = H5Sselect_shape_same(sid_reg4, sid_reg_ori4);
+ CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
+ }
+#endif
+
+ /* Testing irregular selection */
+ sid_irreg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
+
+ /* Build up four dimensional irregular selection with H5_SELECT_OR */
+ start4[0] = 2;
+ count4[0] = 2;
+ stride4[0] = 3;
+ block4[0] = 2;
+ start4[1] = 1;
+ count4[1] = 3;
+ stride4[1] = 3;
+ block4[1] = 2;
+
+ start4[2] = 1;
+ count4[2] = 1;
+ stride4[2] = 4;
+ block4[2] = 2;
+
+ start4[3] = 1;
+ count4[3] = 2;
+ stride4[3] = 4;
+ block4[3] = 2; /* sub-block is one element difference */
+
+ ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_SET, start4, stride4, count4, block4);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start4[2] = 5;
+ count4[2] = 1;
+ stride4[2] = 4;
+ block4[2] = 2;
+
+ start4[3] = 1;
+ count4[3] = 2;
+ stride4[3] = 4;
+ block4[3] = 3; /* sub-block is one element difference */
+
+ ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_OR, start4, stride4, count4, block4);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_irreg4, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ MESSAGE(7, ("Testing functionality to rebuild 5-D hyperslab selection\n"));
+
+ /* Create 5-D dataspace */
+ sid_reg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
+ sid_reg_ori5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
+
+ /* Build up the original five dimensional regular selection */
+ start5[0] = 2;
+ count5[0] = 2;
+ stride5[0] = 3;
+ block5[0] = 2;
+
+ start5[1] = 1;
+ count5[1] = 3;
+ stride5[1] = 3;
+ block5[1] = 2;
+
+ start5[2] = 1;
+ count5[2] = 2;
+ stride5[2] = 4;
+ block5[2] = 2;
+
+ start5[3] = 1;
+ count5[3] = 2;
+ stride5[3] = 4;
+ block5[3] = 2;
+
+ start5[4] = 1;
+ count5[4] = 2;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg_ori5, H5S_SELECT_SET, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Build up five dimensional regular selection with H5_SELECT_OR, inside HDF5,
+ it will be treated as an irregular selection. */
+ start5[4] = 1;
+ count5[4] = 1;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_SET, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start5[4] = 5;
+ count5[4] = 1;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_OR, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_reg5, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 and rebuild_stat2 should be
+ * H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (ret != FAIL) {
+ /* In this case, rebuild_check should be TRUE. */
+ rebuild_check = H5Sselect_shape_same(sid_reg5, sid_reg_ori5);
+ CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
+ }
+#endif
+
+ sid_irreg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
+
+ /* Build up five dimensional irregular selection with H5_SELECT_OR */
+ start5[0] = 2;
+ count5[0] = 2;
+ stride5[0] = 3;
+ block5[0] = 2;
+
+ start5[1] = 1;
+ count5[1] = 3;
+ stride5[1] = 3;
+ block5[1] = 2;
+
+ start5[2] = 1;
+ count5[2] = 2;
+ stride5[2] = 4;
+ block5[2] = 2;
+
+ start5[3] = 1;
+ count5[3] = 1;
+ stride5[3] = 4;
+ block5[3] = 2;
+
+ start5[4] = 2; /* One element difference */
+ count5[4] = 1;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_SET, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start5[3] = 5;
+ count5[3] = 1;
+ stride5[3] = 4;
+ block5[3] = 2;
+
+ start5[4] = 1; /* One element difference */
+ count5[4] = 2;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_OR, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_irreg5, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ /* We use 5-D to test a special case with
+ rebuilding routine TRUE, FALSE and TRUE */
+ sid_spec = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
+
+ /* Build up the original five dimensional regular selection */
+ start5[0] = 2;
+ count5[0] = 2;
+ stride5[0] = 3;
+ block5[0] = 2;
+
+ start5[1] = 1;
+ count5[1] = 3;
+ stride5[1] = 3;
+ block5[1] = 2;
+
+ start5[2] = 1;
+ count5[2] = 2;
+ stride5[2] = 4;
+ block5[2] = 2;
+
+ start5[3] = 1;
+ count5[3] = 2;
+ stride5[3] = 4;
+ block5[3] = 2;
+
+ start5[4] = 1;
+ count5[4] = 1;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_SET, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 and rebuild_stat2 should both be
+ * H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ /* Adding some selections to make it real irregular */
+ start5[3] = 1;
+ count5[3] = 1;
+ stride5[3] = 4;
+ block5[3] = 2;
+
+ start5[4] = 5;
+ count5[4] = 1;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ /* Add more selections to make it regular again */
+ start5[3] = 5;
+ count5[3] = 1;
+ stride5[3] = 4;
+ block5[3] = 2;
+
+ start5[4] = 5;
+ count5[4] = 1;
+ stride5[4] = 4;
+ block5[4] = 2;
+
+ ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
+ * rebuild_stat2 should be H5S_DIMINFO_VALID_YES. */
+ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ }
+ /* No need to do shape comparison */
+#endif
+
+ H5Sclose(sid_reg1);
+ CHECK(ret, FAIL, "H5Sclose");
+ H5Sclose(sid_irreg1);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ H5Sclose(sid_reg2);
+ CHECK(ret, FAIL, "H5Sclose");
+ H5Sclose(sid_irreg2);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ H5Sclose(sid_reg3);
+ CHECK(ret, FAIL, "H5Sclose");
+ H5Sclose(sid_irreg3);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ H5Sclose(sid_reg4);
+ CHECK(ret, FAIL, "H5Sclose");
+ H5Sclose(sid_irreg4);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ H5Sclose(sid_reg5);
+ CHECK(ret, FAIL, "H5Sclose");
+ H5Sclose(sid_irreg5);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ H5Sclose(sid_spec);
+ CHECK(ret, FAIL, "H5Sclose");
+}
+
+/****************************************************************
+**
+** test_space_update_diminfo(): Tests selection diminfo update
+** routine. We will test whether regular selections can be
+** quickly updated when the selection is modified.
+**
+**
+****************************************************************/
+static void
+test_space_update_diminfo(void)
+{
+ hid_t space_id; /* Dataspace id */
+#if 0
+ H5S_diminfo_valid_t diminfo_valid; /* Diminfo status */
+ H5S_diminfo_valid_t rebuild_status; /* Diminfo status after rebuid */
+#endif
+ H5S_sel_type sel_type; /* Selection type */
+ herr_t ret; /* Return value */
+
+ /* dimensions of rank 1 to rank 5 */
+ hsize_t dims1[] = {SPACEUD1_DIM0};
+ hsize_t dims3[] = {SPACEUD3_DIM0, SPACEUD3_DIM1, SPACEUD3_DIM2};
+
+ /* The start of the hyperslab */
+ hsize_t start1[1], start3[3];
+
+ /* The stride of the hyperslab */
+ hsize_t stride1[1], stride3[3];
+
+ /* The number of blocks for the hyperslab */
+ hsize_t count1[1], count3[3];
+
+ /* The size of each block for the hyperslab */
+ hsize_t block1[1], block3[3];
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing functionality to update hyperslab dimension info\n"));
+
+ MESSAGE(7, ("Testing functionality to update 1-D hyperslab dimension info\n"));
+
+ /*
+ * Test adding regularly spaced distinct blocks
+ */
+
+ /* Create 1-D dataspace */
+ space_id = H5Screate_simple(1, dims1, NULL);
+
+ /* Create single block */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block after first, with OR */
+ start1[0] = 6;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block before first, this time with XOR */
+ start1[0] = 0;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add two blocks after current block */
+ start1[0] = 9;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add two blocks overlapping current block, with OR */
+ start1[0] = 9;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add two blocks partially overlapping current block, with OR */
+ start1[0] = 12;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add two blocks partially overlapping current block, with XOR */
+ start1[0] = 15;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO, after rebuild it should be IMPOSSIBLE */
+ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+ if (rebuild_status != H5S_DIMINFO_VALID_IMPOSSIBLE) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ } /* end if */
+#endif
+
+ /* Fill in missing block */
+ start1[0] = 15;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO, after rebuild it should be YES */
+ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+ if (rebuild_status != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ } /* end if */
+#endif
+ /*
+ * Test adding contiguous blocks
+ */
+
+ /* Create single block */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block immediately after first, with OR */
+ start1[0] = 5;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block immediately before first, with XOR */
+ start1[0] = 1;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add differently size block immediately after current, with OR */
+ start1[0] = 7;
+ count1[0] = 1;
+ block1[0] = 7;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /*
+ * Test adding overlapping blocks
+ */
+
+ /* Create single block */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block completely overlapping first, with OR */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block partially overlapping first, with OR */
+ start1[0] = 4;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block completely enclosing current, with OR */
+ start1[0] = 2;
+ count1[0] = 1;
+ block1[0] = 5;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add block completely enclosed by current, with OR */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add equally sized block partially overlapping current, with XOR */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 5;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Fill in hole in block */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO, after rebuild it should be YES */
+ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+ if (rebuild_status != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ } /* end if */
+#endif
+
+ /* Add differently sized block partially overlapping current, with XOR */
+ start1[0] = 4;
+ count1[0] = 1;
+ block1[0] = 5;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Fill in hole in block */
+ start1[0] = 4;
+ count1[0] = 1;
+ block1[0] = 4;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO, after rebuild it should be YES */
+ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
+ CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+ if (rebuild_status != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_rebuild");
+ } /* end if */
+#endif
+
+ /* Add block completely overlapping current, with XOR */
+ start1[0] = 2;
+ count1[0] = 1;
+ block1[0] = 7;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ sel_type = H5Sget_select_type(space_id);
+ VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");
+
+ /*
+ * Test various conditions that break the fast algorithm
+ */
+
+ /* Create multiple blocks */
+ start1[0] = 3;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create single block with start out of phase */
+ start1[0] = 8;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks */
+ start1[0] = 3;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks with start out of phase */
+ start1[0] = 8;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks */
+ start1[0] = 3;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks with wrong stride */
+ start1[0] = 9;
+ stride1[0] = 4;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create single block */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create single block with wrong size */
+ start1[0] = 6;
+ count1[0] = 1;
+ block1[0] = 1;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create single block */
+ start1[0] = 3;
+ count1[0] = 1;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks with wrong size */
+ start1[0] = 6;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 1;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks */
+ start1[0] = 3;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create single block with wrong size */
+ start1[0] = 9;
+ count1[0] = 1;
+ block1[0] = 1;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks */
+ start1[0] = 3;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks with wrong size */
+ start1[0] = 9;
+ stride1[0] = 3;
+ count1[0] = 2;
+ block1[0] = 1;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ ret = H5Sclose(space_id);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ MESSAGE(7, ("Testing functionality to update 3-D hyperslab dimension info\n"));
+
+ /* Create 3-D dataspace */
+ space_id = H5Screate_simple(3, dims3, NULL);
+
+ /* Create multiple blocks */
+ start3[0] = 0;
+ start3[1] = 1;
+ start3[2] = 2;
+ stride3[0] = 2;
+ stride3[1] = 3;
+ stride3[2] = 4;
+ count3[0] = 4;
+ count3[1] = 3;
+ count3[2] = 2;
+ block3[0] = 1;
+ block3[1] = 2;
+ block3[2] = 3;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add blocks with same values in all dimensions */
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add blocks with same values in two dimensions */
+ start3[0] = 8;
+ stride3[0] = 1;
+ count3[0] = 1;
+ block3[0] = 1;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks */
+ start3[0] = 0;
+ start3[1] = 1;
+ start3[2] = 2;
+ stride3[0] = 2;
+ stride3[1] = 3;
+ stride3[2] = 4;
+ count3[0] = 4;
+ count3[1] = 3;
+ count3[2] = 2;
+ block3[0] = 1;
+ block3[1] = 2;
+ block3[2] = 3;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add blocks with same values in one dimension */
+ start3[0] = 8;
+ start3[1] = 10;
+ stride3[0] = 1;
+ stride3[1] = 1;
+ count3[0] = 1;
+ count3[1] = 1;
+ block3[0] = 1;
+ block3[1] = 2;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Create multiple blocks */
+ start3[0] = 0;
+ start3[1] = 1;
+ start3[2] = 2;
+ stride3[0] = 2;
+ stride3[1] = 3;
+ stride3[2] = 4;
+ count3[0] = 4;
+ count3[1] = 3;
+ count3[2] = 2;
+ block3[0] = 1;
+ block3[1] = 2;
+ block3[2] = 3;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be YES */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ /* Add blocks with same values in no dimensions */
+ start3[0] = 8;
+ start3[1] = 10;
+ start3[2] = 10;
+ stride3[0] = 1;
+ stride3[1] = 1;
+ stride3[2] = 1;
+ count3[0] = 1;
+ count3[1] = 1;
+ count3[2] = 1;
+ block3[0] = 1;
+ block3[1] = 2;
+ block3[2] = 3;
+ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+#if 0
+ /* diminfo_valid should be NO */
+ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
+ CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
+ if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
+ ret = FAIL;
+ CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
+ } /* end if */
+#endif
+ ret = H5Sclose(space_id);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* end test_space_update_diminfo() */
+
+/****************************************************************
+**
+** test_select_hyper_chunk_offset(): Tests selections on dataspace,
+** verify that offsets for hyperslab selections are working in
+** chunked datasets.
+**
+****************************************************************/
+#if 0
+static void
+test_select_hyper_chunk_offset(void)
+{
+ hid_t fid; /* File ID */
+ hid_t sid; /* Dataspace ID */
+ hid_t msid; /* Memory dataspace ID */
+ hid_t did; /* Dataset ID */
+ const hsize_t mem_dims[1] = {SPACE10_DIM1}; /* Dataspace dimensions for memory */
+ const hsize_t dims[1] = {0}; /* Dataspace initial dimensions */
+ const hsize_t maxdims[1] = {H5S_UNLIMITED}; /* Dataspace mam dims */
+ int *wbuf; /* Buffer for writing data */
+ int *rbuf; /* Buffer for reading data */
+ hid_t dcpl; /* Dataset creation property list ID */
+ hsize_t chunks[1] = {SPACE10_CHUNK_SIZE}; /* Chunk size */
+ hsize_t start[1] = {0}; /* The start of the hyperslab */
+ hsize_t count[1] = {SPACE10_CHUNK_SIZE}; /* The size of the hyperslab */
+ int i, j; /* Local index */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n"));
+
+ /* Allocate buffers */
+ wbuf = (int *)HDmalloc(sizeof(int) * SPACE10_DIM1);
+ CHECK_PTR(wbuf, "HDmalloc");
+ rbuf = (int *)HDcalloc(sizeof(int), SPACE10_DIM1);
+ CHECK_PTR(rbuf, "HDcalloc");
+
+ /* Initialize the write buffer */
+ for (i = 0; i < SPACE10_DIM1; i++)
+ wbuf[i] = i;
+
+ /* Create file */
+ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid, FAIL, "H5Fcreate");
+
+ /* Create a dataset creation property list */
+ dcpl = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(dcpl, FAIL, "H5Pcreate");
+
+ /* Set to chunked storage layout */
+ ret = H5Pset_layout(dcpl, H5D_CHUNKED);
+ CHECK(ret, FAIL, "H5Pset_layout");
+
+ /* Set the chunk size */
+ ret = H5Pset_chunk(dcpl, 1, chunks);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+ /* Create dataspace for memory */
+ msid = H5Screate_simple(1, mem_dims, NULL);
+ CHECK(msid, FAIL, "H5Screate_simple");
+
+ /* Select the correct chunk in the memory dataspace */
+ ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for dataset */
+ sid = H5Screate_simple(1, dims, maxdims);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Create the dataset */
+ did = H5Dcreate2(fid, "fooData", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
+ CHECK(did, FAIL, "H5Dcreate2");
+
+ /* Close the dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close the dataset creation property list */
+ ret = H5Pclose(dcpl);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* Loop over writing out each chunk */
+ for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) {
+ hssize_t offset[1]; /* Offset of selection */
+ hid_t fsid; /* File dataspace ID */
+ hsize_t size[1]; /* The size to extend the dataset to */
+
+ /* Extend the dataset */
+ size[0] = (hsize_t)i; /* The size to extend the dataset to */
+ ret = H5Dset_extent(did, size);
+ CHECK(ret, FAIL, "H5Dset_extent");
+
+ /* Get the (extended) dataspace from the dataset */
+ fsid = H5Dget_space(did);
+ CHECK(fsid, FAIL, "H5Dget_space");
+
+ /* Select the correct chunk in the dataset */
+ ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Set the selection offset for the file dataspace */
+ offset[0] = i - SPACE10_CHUNK_SIZE;
+ ret = H5Soffset_simple(fsid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Set the selection offset for the memory dataspace */
+ offset[0] = SPACE10_DIM1 - i;
+ ret = H5Soffset_simple(msid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Write the data to the chunk */
+ ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close the file dataspace copy */
+ ret = H5Sclose(fsid);
+ CHECK(ret, FAIL, "H5Sclose");
+ }
+
+ /* Read the data back in */
+ ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Verify the information read in */
+ for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE)
+ for (j = 0; j < SPACE10_CHUNK_SIZE; j++)
+ if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j])
+ TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j,
+ rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]);
+
+ /* Check with 'OR'ed set of hyperslab selections, which makes certain the
+ * hyperslab spanlist code gets tested. -QAK
+ */
+
+ /* Re-initialize the write buffer */
+ for (i = 0; i < SPACE10_DIM1; i++)
+ wbuf[i] = i * 2;
+
+ /* Change the selected the region in the memory dataspace */
+ start[0] = 0;
+ count[0] = SPACE10_CHUNK_SIZE / 3;
+ ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ start[0] = (2 * SPACE10_CHUNK_SIZE) / 3;
+ ret = H5Sselect_hyperslab(msid, H5S_SELECT_OR, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Loop over writing out each chunk */
+ for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) {
+ hssize_t offset[1]; /* Offset of selection */
+ hid_t fsid; /* File dataspace ID */
+ hsize_t size[1]; /* The size to extend the dataset to */
+
+ /* Extend the dataset */
+ size[0] = (hsize_t)i; /* The size to extend the dataset to */
+ ret = H5Dset_extent(did, size);
+ CHECK(ret, FAIL, "H5Dset_extent");
+
+ /* Get the (extended) dataspace from the dataset */
+ fsid = H5Dget_space(did);
+ CHECK(fsid, FAIL, "H5Dget_space");
+
+ /* Select the correct region in the dataset */
+ start[0] = 0;
+ ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ start[0] = (2 * SPACE10_CHUNK_SIZE) / 3;
+ ret = H5Sselect_hyperslab(fsid, H5S_SELECT_OR, start, NULL, count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Set the selection offset for the file dataspace */
+ offset[0] = i - SPACE10_CHUNK_SIZE;
+ ret = H5Soffset_simple(fsid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Set the selection offset for the memory dataspace */
+ offset[0] = SPACE10_DIM1 - i;
+ ret = H5Soffset_simple(msid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Write the data to the chunk */
+ ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Close the file dataspace copy */
+ ret = H5Sclose(fsid);
+ CHECK(ret, FAIL, "H5Sclose");
+ }
+
+ /* Read the data back in */
+ ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Verify the information read in */
+ for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE)
+ for (j = 0; j < SPACE10_CHUNK_SIZE; j++)
+ /* We're not writing out the "middle" of each chunk, so don't check that */
+ if (j < (SPACE10_CHUNK_SIZE / 3) || j >= ((2 * SPACE10_CHUNK_SIZE) / 3))
+ if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j])
+ TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j,
+ rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]);
+
+ /* Close the memory dataspace */
+ ret = H5Sclose(msid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+ /* Close the dataset */
+ ret = H5Dclose(did);
+ CHECK(ret, FAIL, "H5Dclose");
+
+ /* Close the file */
+ ret = H5Fclose(fid);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Free the buffers */
+ HDfree(wbuf);
+ HDfree(rbuf);
+} /* test_select_hyper_chunk_offset() */
+#endif
+/****************************************************************
+**
+** test_select_hyper_chunk_offset2(): Tests selections on dataspace,
+** another test to verify that offsets for hyperslab selections are
+** working in chunked datasets.
+**
+****************************************************************/
+#if 0
+static void
+test_select_hyper_chunk_offset2(void)
+{
+ hid_t file, dataset; /* handles */
+ hid_t dataspace;
+ hid_t memspace;
+ hid_t dcpl; /* Dataset creation property list */
+ herr_t status;
+ unsigned data_out[SPACE12_DIM0]; /* output buffer */
+ unsigned data_in[SPACE12_CHUNK_DIM0]; /* input buffer */
+ hsize_t dims[SPACE12_RANK] = {SPACE12_DIM0}; /* Dimension size */
+ hsize_t chunk_dims[SPACE12_RANK] = {SPACE12_CHUNK_DIM0}; /* Chunk size */
+ hsize_t start[SPACE12_RANK]; /* Start of hyperslab */
+ hsize_t count[SPACE12_RANK]; /* Size of hyperslab */
+ hssize_t offset[SPACE12_RANK]; /* hyperslab offset in the file */
+ unsigned u, v; /* Local index variables */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n"));
+
+ /* Initialize data to write out */
+ for (u = 0; u < SPACE12_DIM0; u++)
+ data_out[u] = u;
+
+ /* Create the file */
+ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(file, FAIL, "H5Fcreate");
+
+ /* Create dataspace */
+ dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL);
+ CHECK(dataspace, FAIL, "H5Screate_simple");
+
+ /* Create dataset creation property list */
+ dcpl = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(dcpl, FAIL, "H5Pcreate");
+
+ /* Set chunk sizes */
+ status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims);
+ CHECK(status, FAIL, "H5Pset_chunk");
+
+ /* Create dataset */
+ dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
+ CHECK(dataset, FAIL, "H5Dcreate2");
+
+ /* Close DCPL */
+ status = H5Pclose(dcpl);
+ CHECK(status, FAIL, "H5Pclose");
+
+ /* Write out entire dataset */
+ status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out);
+ CHECK(status, FAIL, "H5Dclose");
+
+ /* Create memory dataspace (same size as a chunk) */
+ memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL);
+ CHECK(dataspace, FAIL, "H5Screate_simple");
+
+ /*
+ * Define hyperslab in the file dataspace.
+ */
+ start[0] = 0;
+ count[0] = SPACE12_CHUNK_DIM0;
+ status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL);
+ CHECK(status, FAIL, "H5Sselect_hyperslab");
+
+ /* Loop through retrieving data from file, checking it against data written */
+ for (u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) {
+ /* Set the offset of the file selection */
+ offset[0] = u;
+ status = H5Soffset_simple(dataspace, offset);
+ CHECK(status, FAIL, "H5Soffset_simple");
+
+ /* Read in buffer of data */
+ status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace, H5P_DEFAULT, data_in);
+ CHECK(status, FAIL, "H5Dread");
+
+ /* Check data read in */
+ for (v = 0; v < SPACE12_CHUNK_DIM0; v++)
+ if (data_out[u + v] != data_in[v])
+ TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n", (unsigned)(u + v), data_out[u + v],
+ v, data_in[v]);
+ } /* end for */
+
+ status = H5Dclose(dataset);
+ CHECK(status, FAIL, "H5Dclose");
+
+ status = H5Sclose(dataspace);
+ CHECK(status, FAIL, "H5Sclose");
+
+ status = H5Sclose(memspace);
+ CHECK(status, FAIL, "H5Sclose");
+
+ status = H5Fclose(file);
+ CHECK(status, FAIL, "H5Fclose");
+} /* test_select_hyper_chunk_offset2() */
+#endif
+/****************************************************************
+**
+** test_select_bounds(): Tests selection bounds on dataspaces,
+** both with and without offsets.
+**
+****************************************************************/
+static void
+test_select_bounds(void)
+{
+ hid_t sid; /* Dataspace ID */
+ const hsize_t dims[SPACE11_RANK] = {SPACE11_DIM1, SPACE11_DIM2}; /* Dataspace dimensions */
+ hsize_t coord[SPACE11_NPOINTS][SPACE11_RANK]; /* Coordinates for point selection */
+ hsize_t start[SPACE11_RANK]; /* The start of the hyperslab */
+ hsize_t stride[SPACE11_RANK]; /* The stride between block starts for the hyperslab */
+ hsize_t count[SPACE11_RANK]; /* The number of blocks for the hyperslab */
+ hsize_t block[SPACE11_RANK]; /* The size of each block for the hyperslab */
+ hssize_t offset[SPACE11_RANK]; /* Offset amount for selection */
+ hsize_t low_bounds[SPACE11_RANK]; /* The low bounds for the selection */
+ hsize_t high_bounds[SPACE11_RANK]; /* The high bounds for the selection */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing selection bounds\n"));
+
+ /* Create dataspace */
+ sid = H5Screate_simple(SPACE11_RANK, dims, NULL);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Get bounds for 'all' selection */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 0, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds");
+
+ /* Set offset for selection */
+ offset[0] = 1;
+ offset[1] = 1;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for 'all' selection with offset (which should be ignored) */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 0, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds");
+
+ /* Reset offset for selection */
+ offset[0] = 0;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Set 'none' selection */
+ ret = H5Sselect_none(sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Get bounds for 'none' selection */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_select_bounds");
+
+ /* Set point selection */
+ coord[0][0] = 3;
+ coord[0][1] = 3;
+ coord[1][0] = 3;
+ coord[1][1] = 96;
+ coord[2][0] = 96;
+ coord[2][1] = 3;
+ coord[3][0] = 96;
+ coord[3][1] = 96;
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE11_NPOINTS, (const hsize_t *)coord);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Get bounds for point selection */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 3, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 3, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], SPACE11_DIM1 - 4, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], SPACE11_DIM2 - 4, "H5Sget_select_bounds");
+
+ /* Set bad offset for selection */
+ offset[0] = 5;
+ offset[1] = -5;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for hyperslab selection with negative offset */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_select_bounds");
+
+ /* Set valid offset for selection */
+ offset[0] = 2;
+ offset[1] = -2;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for point selection with offset */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 5, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 1, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], SPACE11_DIM1 - 2, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], SPACE11_DIM2 - 6, "H5Sget_select_bounds");
+
+ /* Reset offset for selection */
+ offset[0] = 0;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Set "regular" hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 10;
+ stride[1] = 10;
+ count[0] = 4;
+ count[1] = 4;
+ block[0] = 5;
+ block[1] = 5;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Get bounds for hyperslab selection */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 2, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 2, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], 36, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], 36, "H5Sget_select_bounds");
+
+ /* Set bad offset for selection */
+ offset[0] = 5;
+ offset[1] = -5;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for hyperslab selection with negative offset */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_select_bounds");
+
+ /* Set valid offset for selection */
+ offset[0] = 5;
+ offset[1] = -2;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for hyperslab selection with offset */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 7, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], 41, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], 34, "H5Sget_select_bounds");
+
+ /* Reset offset for selection */
+ offset[0] = 0;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Make "irregular" hyperslab selection */
+ start[0] = 20;
+ start[1] = 20;
+ stride[0] = 20;
+ stride[1] = 20;
+ count[0] = 2;
+ count[1] = 2;
+ block[0] = 10;
+ block[1] = 10;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Get bounds for hyperslab selection */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 2, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 2, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], 49, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], 49, "H5Sget_select_bounds");
+
+ /* Set bad offset for selection */
+ offset[0] = 5;
+ offset[1] = -5;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for hyperslab selection with negative offset */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_select_bounds");
+
+ /* Set valid offset for selection */
+ offset[0] = 5;
+ offset[1] = -2;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Get bounds for hyperslab selection with offset */
+ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(low_bounds[0], 7, "H5Sget_select_bounds");
+ VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
+ VERIFY(high_bounds[0], 54, "H5Sget_select_bounds");
+ VERIFY(high_bounds[1], 47, "H5Sget_select_bounds");
+
+ /* Reset offset for selection */
+ offset[0] = 0;
+ offset[1] = 0;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Close the dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_select_bounds() */
+
+/****************************************************************
+**
+** test_hyper_regular(): Tests query operations on regular hyperslabs
+**
+****************************************************************/
+static void
+test_hyper_regular(void)
+{
+ hid_t sid; /* Dataspace ID */
+ const hsize_t dims[SPACE13_RANK] = {SPACE13_DIM1, SPACE13_DIM2, SPACE13_DIM3}; /* Dataspace dimensions */
+ hsize_t coord[SPACE13_NPOINTS][SPACE13_RANK]; /* Coordinates for point selection */
+ hsize_t start[SPACE13_RANK]; /* The start of the hyperslab */
+ hsize_t stride[SPACE13_RANK]; /* The stride between block starts for the hyperslab */
+ hsize_t count[SPACE13_RANK]; /* The number of blocks for the hyperslab */
+ hsize_t block[SPACE13_RANK]; /* The size of each block for the hyperslab */
+ hsize_t t_start[SPACE13_RANK]; /* Temporary start of the hyperslab */
+ hsize_t t_count[SPACE13_RANK]; /* Temporary number of blocks for the hyperslab */
+ hsize_t q_start[SPACE13_RANK]; /* The queried start of the hyperslab */
+ hsize_t q_stride[SPACE13_RANK]; /* The queried stride between block starts for the hyperslab */
+ hsize_t q_count[SPACE13_RANK]; /* The queried number of blocks for the hyperslab */
+ hsize_t q_block[SPACE13_RANK]; /* The queried size of each block for the hyperslab */
+ htri_t is_regular; /* Whether a hyperslab selection is regular */
+ unsigned u; /* Local index variable */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing queries on regular hyperslabs\n"));
+
+ /* Create dataspace */
+ sid = H5Screate_simple(SPACE13_RANK, dims, NULL);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Query if 'all' selection is regular hyperslab (should fail) */
+ H5E_BEGIN_TRY
+ {
+ is_regular = H5Sis_regular_hyperslab(sid);
+ }
+ H5E_END_TRY;
+ VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");
+
+ /* Query regular hyperslab selection info (should fail) */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
+
+ /* Set 'none' selection */
+ ret = H5Sselect_none(sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Query if 'none' selection is regular hyperslab (should fail) */
+ H5E_BEGIN_TRY
+ {
+ is_regular = H5Sis_regular_hyperslab(sid);
+ }
+ H5E_END_TRY;
+ VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");
+
+ /* Query regular hyperslab selection info (should fail) */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
+
+ /* Set point selection */
+ coord[0][0] = 3;
+ coord[0][1] = 3;
+ coord[0][2] = 3;
+ coord[1][0] = 3;
+ coord[1][1] = 48;
+ coord[1][2] = 48;
+ coord[2][0] = 48;
+ coord[2][1] = 3;
+ coord[2][2] = 3;
+ coord[3][0] = 48;
+ coord[3][1] = 48;
+ coord[3][2] = 48;
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE13_NPOINTS, (const hsize_t *)coord);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Query if 'point' selection is regular hyperslab (should fail) */
+ H5E_BEGIN_TRY
+ {
+ is_regular = H5Sis_regular_hyperslab(sid);
+ }
+ H5E_END_TRY;
+ VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");
+
+ /* Query regular hyperslab selection info (should fail) */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
+
+ /* Set "regular" hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ start[2] = 2;
+ stride[0] = 5;
+ stride[1] = 5;
+ stride[2] = 5;
+ count[0] = 3;
+ count[1] = 3;
+ count[2] = 3;
+ block[0] = 4;
+ block[1] = 4;
+ block[2] = 4;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */
+ is_regular = H5Sis_regular_hyperslab(sid);
+ VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab");
+
+ /* Retrieve the hyperslab parameters */
+ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
+ CHECK(ret, FAIL, "H5Sget_regular_hyperslab");
+
+ /* Verify the hyperslab parameters */
+ for (u = 0; u < SPACE13_RANK; u++) {
+ if (start[u] != q_start[u])
+ ERROR("H5Sget_regular_hyperslab, start");
+ if (stride[u] != q_stride[u])
+ ERROR("H5Sget_regular_hyperslab, stride");
+ if (count[u] != q_count[u])
+ ERROR("H5Sget_regular_hyperslab, count");
+ if (block[u] != q_block[u])
+ ERROR("H5Sget_regular_hyperslab, block");
+ } /* end for */
+
+ /* 'OR' in another point */
+ t_start[0] = 0;
+ t_start[1] = 0;
+ t_start[2] = 0;
+ t_count[0] = 1;
+ t_count[1] = 1;
+ t_count[2] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, t_start, NULL, t_count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Query if 'hyperslab' selection is regular hyperslab (should be FALSE) */
+ is_regular = H5Sis_regular_hyperslab(sid);
+ VERIFY(is_regular, FALSE, "H5Sis_regular_hyperslab");
+
+ /* Query regular hyperslab selection info (should fail) */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");
+
+ /* 'XOR' in the point again, to remove it, which should make it regular again */
+ t_start[0] = 0;
+ t_start[1] = 0;
+ t_start[2] = 0;
+ t_count[0] = 1;
+ t_count[1] = 1;
+ t_count[2] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, t_start, NULL, t_count, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */
+ is_regular = H5Sis_regular_hyperslab(sid);
+ VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab");
+
+ /* Retrieve the hyperslab parameters */
+ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
+ CHECK(ret, FAIL, "H5Sget_regular_hyperslab");
+
+ /* Verify the hyperslab parameters */
+ for (u = 0; u < SPACE13_RANK; u++) {
+ if (start[u] != q_start[u])
+ ERROR("H5Sget_regular_hyperslab, start");
+ if (stride[u] != q_stride[u])
+ ERROR("H5Sget_regular_hyperslab, stride");
+ if (count[u] != q_count[u])
+ ERROR("H5Sget_regular_hyperslab, count");
+ if (block[u] != q_block[u])
+ ERROR("H5Sget_regular_hyperslab, block");
+ } /* end for */
+
+ /* Close the dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_hyper_regular() */
+
+/****************************************************************
+**
+** test_hyper_unlim(): Tests unlimited hyperslab selections
+**
+****************************************************************/
+static void
+test_hyper_unlim_check(hid_t sid, hsize_t *dims, hssize_t endpoints, hssize_t enblocks, hsize_t *eblock1,
+ hsize_t *eblock2)
+{
+ hid_t lim_sid;
+ hsize_t start[3];
+ H5S_sel_type sel_type;
+ hssize_t npoints;
+ hssize_t nblocks;
+ hsize_t blocklist[12];
+ herr_t ret;
+
+ HDassert(enblocks <= 2);
+
+ /* Copy sid to lim_sid */
+ lim_sid = H5Scopy(sid);
+ CHECK(lim_sid, FAIL, "H5Scopy");
+
+ /* "And" lim_sid with dims to create limited selection */
+ HDmemset(start, 0, sizeof(start));
+ ret = H5Sselect_hyperslab(lim_sid, H5S_SELECT_AND, start, NULL, dims, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Check number of elements */
+ npoints = H5Sget_select_npoints(lim_sid);
+ CHECK(npoints, FAIL, "H5Sget_select_npoints");
+ VERIFY(npoints, endpoints, "H5Sget_select_npoints");
+
+ /* Get selection type */
+ sel_type = H5Sget_select_type(lim_sid);
+ CHECK(sel_type, H5S_SEL_ERROR, "H5Sget_select_type");
+
+ /* Only examine blocks for hyperslab selection */
+ if (sel_type == H5S_SEL_HYPERSLABS) {
+ /* Get number of blocks */
+ nblocks = H5Sget_select_hyper_nblocks(lim_sid);
+ CHECK(nblocks, FAIL, "H5Sget_select_hyper_nblocks");
+ VERIFY(nblocks, enblocks, "H5Sget_select_hyper_nblocks");
+
+ if (nblocks > 0) {
+ /* Get blocklist */
+ ret = H5Sget_select_hyper_blocklist(lim_sid, (hsize_t)0, (hsize_t)nblocks, blocklist);
+ CHECK(ret, FAIL, "H5Sget_select_hyper_blocklist");
+
+ /* Verify blocklist */
+ if (nblocks == (hssize_t)1) {
+ if (HDmemcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0)
+ ERROR("H5Sget_select_hyper_blocklist");
+ } /* end if */
+ else {
+ HDassert(nblocks == (hssize_t)2);
+ if (HDmemcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0) {
+ if (HDmemcmp(blocklist, eblock2, 6 * sizeof(eblock2[0])) != 0)
+ ERROR("H5Sget_select_hyper_blocklist");
+ if (HDmemcmp(&blocklist[6], eblock1, 6 * sizeof(eblock1[0])) != 0)
+ ERROR("H5Sget_select_hyper_blocklist");
+ } /* end if */
+ else if (HDmemcmp(&blocklist[6], eblock2, 6 * sizeof(eblock2[0])) != 0)
+ ERROR("H5Sget_select_hyper_blocklist");
+ } /* end else */
+ } /* end if */
+ } /* end if */
+ else if (sel_type != H5S_SEL_NONE)
+ ERROR("H5Sget_select_type");
+
+ /* Close the limited dataspace */
+ ret = H5Sclose(lim_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* end test_hyper_unlim_check() */
+
+static void
+test_hyper_unlim(void)
+{
+ hid_t sid;
+ hsize_t dims[3] = {4, 4, 7};
+ hsize_t mdims[3] = {4, H5S_UNLIMITED, 7};
+ hsize_t start[3] = {1, 2, 1};
+ hsize_t stride[3] = {1, 1, 3};
+ hsize_t count[3] = {1, 1, 2};
+ hsize_t block[3] = {2, H5S_UNLIMITED, 2};
+ hsize_t start2[3];
+ hsize_t count2[3];
+ hsize_t eblock1[6] = {1, 2, 1, 2, 3, 2};
+ hsize_t eblock2[6] = {1, 2, 4, 2, 3, 5};
+ hssize_t offset[3] = {0, -1, 0};
+ hssize_t ssize_out;
+ herr_t ret;
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing unlimited hyperslab selections\n"));
+
+ /* Create dataspace */
+ sid = H5Screate_simple(3, dims, mdims);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Select unlimited hyperslab */
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Check with unlimited dimension clipped to 4 */
+ test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 3 */
+ dims[1] = 3;
+ eblock1[4] = 2;
+ eblock2[4] = 2;
+ test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)2, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 2 */
+ dims[1] = 2;
+ test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 1 */
+ dims[1] = 1;
+ test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 7 */
+ dims[1] = 7;
+ eblock1[4] = 6;
+ eblock2[4] = 6;
+ test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2);
+
+ /* Set offset of selection */
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Check with adjusted offset (should not affect result) */
+ test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2);
+
+ /* Reset offset of selection */
+ offset[1] = (hssize_t)0;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /*
+ * Now try with multiple blocks in unlimited dimension
+ */
+ stride[1] = 3;
+ stride[2] = 1;
+ count[1] = H5S_UNLIMITED;
+ count[2] = 1;
+ block[1] = 2;
+
+ /* Select unlimited hyperslab */
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Check with new selection */
+ eblock1[1] = 2;
+ eblock1[4] = 3;
+ eblock2[1] = 5;
+ eblock2[2] = 1;
+ eblock2[4] = 6;
+ eblock2[5] = 2;
+ test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 3 */
+ dims[1] = 3;
+ eblock1[4] = 2;
+ test_hyper_unlim_check(sid, dims, (hssize_t)4, (hssize_t)1, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 4 */
+ dims[1] = 4;
+ eblock1[4] = 3;
+ test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 5 */
+ dims[1] = 5;
+ eblock1[4] = 3;
+ test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2);
+
+ /* Check with unlimited dimension clipped to 6 */
+ dims[1] = 6;
+ eblock1[4] = 3;
+ eblock2[4] = 5;
+ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
+
+ /* Set offset of selection */
+ offset[1] = (hssize_t)-1;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Check with adjusted offset (should not affect result) */
+ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
+
+ /* Set offset of selection */
+ offset[1] = (hssize_t)3;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /* Check with adjusted offset (should not affect result) */
+ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
+
+ /* Reset offset of selection */
+ offset[1] = (hssize_t)0;
+ ret = H5Soffset_simple(sid, offset);
+ CHECK(ret, FAIL, "H5Soffset_simple");
+
+ /*
+ * Now try invalid operations
+ */
+ H5E_BEGIN_TRY
+ {
+ /* Try multiple unlimited dimensions */
+ start[0] = 1;
+ start[1] = 2;
+ start[2] = 1;
+ stride[0] = 1;
+ stride[1] = 3;
+ stride[2] = 3;
+ count[0] = 1;
+ count[1] = H5S_UNLIMITED;
+ count[2] = H5S_UNLIMITED;
+ block[0] = 2;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Try unlimited count and block */
+ count[2] = 2;
+ block[1] = H5S_UNLIMITED;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ }
+ H5E_END_TRY
+
+ /* Try operations with two unlimited selections */
+ block[1] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, count, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, NULL, count, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, count, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, count, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, NULL, count, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ }
+ H5E_END_TRY
+
+ /* Try invalid combination operations */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, block, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, block, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, block, NULL);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ }
+ H5E_END_TRY
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, block, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ H5E_BEGIN_TRY
+ {
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, stride, count, block);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, stride, count, block);
+ VERIFY(ret, FAIL, "H5Sselect_hyperslab");
+ }
+ H5E_END_TRY
+
+ /*
+ * Now test valid combination operations
+ */
+ /* unlim AND non-unlim */
+ count[0] = 1;
+ count[1] = H5S_UNLIMITED;
+ count[2] = 2;
+ block[0] = 2;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ start2[0] = 2;
+ start2[1] = 2;
+ start2[2] = 0;
+ count2[0] = 5;
+ count2[1] = 4;
+ count2[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start2, NULL, count2, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ eblock1[0] = 2;
+ eblock1[3] = 2;
+ eblock1[1] = 2;
+ eblock1[4] = 3;
+ eblock1[2] = 1;
+ eblock1[5] = 1;
+ eblock2[0] = 2;
+ eblock2[3] = 2;
+ eblock2[1] = 5;
+ eblock2[4] = 5;
+ eblock2[2] = 1;
+ eblock2[5] = 1;
+ dims[0] = 50;
+ dims[1] = 50;
+ dims[2] = 50;
+ test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2);
+
+ /* unlim NOTA non-unlim */
+ count[0] = 1;
+ count[1] = H5S_UNLIMITED;
+ count[2] = 2;
+ block[0] = 2;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ start2[0] = 1;
+ start2[1] = 5;
+ start2[2] = 2;
+ count2[0] = 2;
+ count2[1] = 2;
+ count2[2] = 6;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start2, NULL, count2, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ eblock1[0] = 1;
+ eblock1[3] = 2;
+ eblock1[1] = 5;
+ eblock1[4] = 6;
+ eblock1[2] = 3;
+ eblock1[5] = 3;
+ eblock2[0] = 1;
+ eblock2[3] = 2;
+ eblock2[1] = 5;
+ eblock2[4] = 6;
+ eblock2[2] = 6;
+ eblock2[5] = 7;
+ dims[0] = 50;
+ dims[1] = 50;
+ dims[2] = 50;
+ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
+
+ /* non-unlim AND unlim */
+ start2[0] = 2;
+ start2[1] = 2;
+ start2[2] = 0;
+ count2[0] = 5;
+ count2[1] = 4;
+ count2[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ count[0] = 1;
+ count[1] = H5S_UNLIMITED;
+ count[2] = 2;
+ block[0] = 2;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ eblock1[0] = 2;
+ eblock1[3] = 2;
+ eblock1[1] = 2;
+ eblock1[4] = 3;
+ eblock1[2] = 1;
+ eblock1[5] = 1;
+ eblock2[0] = 2;
+ eblock2[3] = 2;
+ eblock2[1] = 5;
+ eblock2[4] = 5;
+ eblock2[2] = 1;
+ eblock2[5] = 1;
+ dims[0] = 50;
+ dims[1] = 50;
+ dims[2] = 50;
+ test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2);
+
+ /* non-unlim NOTB unlim */
+ start2[0] = 1;
+ start2[1] = 5;
+ start2[2] = 2;
+ count2[0] = 2;
+ count2[1] = 2;
+ count2[2] = 6;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ count[0] = 1;
+ count[1] = H5S_UNLIMITED;
+ count[2] = 2;
+ block[0] = 2;
+ block[1] = 2;
+ block[2] = 2;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ eblock1[0] = 1;
+ eblock1[3] = 2;
+ eblock1[1] = 5;
+ eblock1[4] = 6;
+ eblock1[2] = 3;
+ eblock1[5] = 3;
+ eblock2[0] = 1;
+ eblock2[3] = 2;
+ eblock2[1] = 5;
+ eblock2[4] = 6;
+ eblock2[2] = 6;
+ eblock2[5] = 7;
+ dims[0] = 50;
+ dims[1] = 50;
+ dims[2] = 50;
+ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);
+
+ /* Test H5Sget_select_npoints() */
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ ssize_out = H5Sget_select_npoints(sid);
+ VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_npoints");
+
+ /* Test H5Sget_select_hyper_nblocks() */
+ H5E_BEGIN_TRY
+ {
+ ssize_out = H5Sget_select_hyper_nblocks(sid);
+ }
+ H5E_END_TRY;
+ VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_hyper_nblocks");
+
+ /* Test H5Sget_select_bounds() */
+ ret = H5Sget_select_bounds(sid, start2, count2);
+ CHECK(ret, FAIL, "H5Sget_select_bounds");
+ VERIFY(start2[0], start[0], "H5Sget_select_bounds");
+ VERIFY(start2[1], start[1], "H5Sget_select_bounds");
+ VERIFY(start2[2], start[2], "H5Sget_select_bounds");
+ VERIFY(count2[0], (long)(start[0] + (stride[0] * (count[0] - 1)) + block[0] - 1), "H5Sget_select_bounds");
+ VERIFY(count2[1], H5S_UNLIMITED, "H5Sget_select_bounds");
+ VERIFY(count2[2], (long)(start[2] + (stride[2] * (count[2] - 1)) + block[2] - 1), "H5Sget_select_bounds");
+
+ /* Close the dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* end test_hyper_unlim() */
+
+/****************************************************************
+**
+** test_internal_consistency(): Tests selections on dataspace, then
+** verify that internal states of data structures of selections are
+** consistent.
+**
+****************************************************************/
+static void
+test_internal_consistency(void)
+{
+ hid_t all_sid; /* Dataspace ID with "all" selection */
+ hid_t none_sid; /* Dataspace ID with "none" selection */
+ hid_t single_pt_sid; /* Dataspace ID with single point selection */
+ hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */
+ hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */
+ hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab
+ * selection that is the entire dataspace
+ */
+ hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab
+ * selection that is the same as the single
+ * point selection
+ */
+ hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */
+ hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */
+ hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */
+ hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */
+ hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */
+ hid_t tmp_sid; /* Temporary dataspace ID */
+ hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2};
+ hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
+ hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
+ hsize_t start[SPACE9_RANK]; /* Hyperslab start */
+ hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */
+ hsize_t count[SPACE9_RANK]; /* Hyperslab block count */
+ hsize_t block[SPACE9_RANK]; /* Hyperslab block size */
+#if 0
+ htri_t check; /* Shape comparison return value */
+#endif
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Consistency of Internal States\n"));
+ HDassert(SPACE9_DIM2 >= POINT1_NPOINTS);
+
+ /* Create dataspace for "all" selection */
+ all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(all_sid, FAIL, "H5Screate_simple");
+
+ /* Select entire extent for dataspace */
+ ret = H5Sselect_all(all_sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ /* Create dataspace for "none" selection */
+ none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(none_sid, FAIL, "H5Screate_simple");
+
+ /* Un-Select entire extent for dataspace */
+ ret = H5Sselect_none(none_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Create dataspace for single point selection */
+ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for multiple point selection */
+ coord1[0][0] = 2;
+ coord1[0][1] = 2;
+ ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create dataspace for multiple point selection */
+ mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(mult_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select sequence of ten points for multiple point selection */
+ coord2[0][0] = 2;
+ coord2[0][1] = 2;
+ coord2[1][0] = 7;
+ coord2[1][1] = 2;
+ coord2[2][0] = 1;
+ coord2[2][1] = 4;
+ coord2[3][0] = 2;
+ coord2[3][1] = 6;
+ coord2[4][0] = 0;
+ coord2[4][1] = 8;
+ coord2[5][0] = 3;
+ coord2[5][1] = 2;
+ coord2[6][0] = 4;
+ coord2[6][1] = 4;
+ coord2[7][0] = 1;
+ coord2[7][1] = 0;
+ coord2[8][0] = 5;
+ coord2[8][1] = 1;
+ coord2[9][0] = 9;
+ coord2[9][1] = 3;
+ ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create dataspace for single hyperslab selection */
+ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Select 10x10 hyperslab for single hyperslab selection */
+ start[0] = 1;
+ start[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = (SPACE9_DIM1 - 2);
+ block[1] = (SPACE9_DIM2 - 2);
+ ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for single hyperslab selection with entire extent selected */
+ single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");
+
+ /* Select entire extent for hyperslab selection */
+ start[0] = 0;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = SPACE9_DIM1;
+ block[1] = SPACE9_DIM2;
+ ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for single hyperslab selection with single point selected */
+ single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");
+
+ /* Select entire extent for hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for regular hyperslab selection */
+ regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Select regular, strided hyperslab selection */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 5;
+ count[1] = 2;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for irregular hyperslab selection */
+ irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Create irregular hyperslab selection by OR'ing two blocks together */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ start[1] = 4;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 3;
+ block[1] = 3;
+ ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create dataspace for "no" hyperslab selection */
+ none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
+ CHECK(none_hyper_sid, FAIL, "H5Screate_simple");
+
+ /* Create "no" hyperslab selection by XOR'ing same blocks together */
+ start[0] = 2;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 1;
+ count[1] = 1;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create scalar dataspace for "all" selection */
+ scalar_all_sid = H5Screate(H5S_SCALAR);
+ CHECK(scalar_all_sid, FAIL, "H5Screate");
+
+ /* Create scalar dataspace for "none" selection */
+ scalar_none_sid = H5Screate(H5S_SCALAR);
+ CHECK(scalar_none_sid, FAIL, "H5Screate");
+
+ /* Un-Select entire extent for dataspace */
+ ret = H5Sselect_none(scalar_none_sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Test all the selections created */
+
+ /* Test the copy of itself */
+ tmp_sid = H5Scopy(all_sid);
+ CHECK(tmp_sid, FAIL, "H5Scopy");
+#if 0
+ check = H5S__internal_consistency_test(tmp_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+#endif
+ ret = H5Sclose(tmp_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+#if 0
+ /* Test "none" selection */
+ check = H5S__internal_consistency_test(none_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test single point selection */
+ check = H5S__internal_consistency_test(single_pt_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test multiple point selection */
+ check = H5S__internal_consistency_test(mult_pt_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test "plain" single hyperslab selection */
+ check = H5S__internal_consistency_test(single_hyper_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test "all" single hyperslab selection */
+ check = H5S__internal_consistency_test(single_hyper_all_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test "single point" single hyperslab selection */
+ check = H5S__internal_consistency_test(single_hyper_pt_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test regular, strided hyperslab selection */
+ check = H5S__internal_consistency_test(regular_hyper_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test irregular hyperslab selection */
+ check = H5S__internal_consistency_test(irreg_hyper_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test "no" hyperslab selection */
+ check = H5S__internal_consistency_test(none_hyper_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test scalar "all" hyperslab selection */
+ check = H5S__internal_consistency_test(scalar_all_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+
+ /* Test scalar "none" hyperslab selection */
+ check = H5S__internal_consistency_test(scalar_none_sid);
+ VERIFY(check, TRUE, "H5S__internal_consistency_test");
+#endif
+
+ /* Close dataspaces */
+ ret = H5Sclose(all_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(none_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(mult_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_all_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(single_hyper_pt_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(regular_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(irreg_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(none_hyper_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(scalar_all_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(scalar_none_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_internal_consistency() */
+
+/****************************************************************
+**
+** test_irreg_io(): Tests unusual selections on datasets, to stress the
+** new hyperslab code.
+**
+****************************************************************/
+static void
+test_irreg_io(void)
+{
+ hid_t fid; /* File ID */
+ hid_t did; /* Dataset ID */
+ hid_t dcpl_id; /* Dataset creation property list ID */
+ hid_t sid; /* File dataspace ID */
+ hid_t mem_sid; /* Memory dataspace ID */
+ hsize_t dims[] = {6, 12}; /* Dataspace dimensions */
+ hsize_t chunk_dims[] = {2, 2}; /* Chunk dimensions */
+ hsize_t mem_dims[] = {32}; /* Memory dataspace dimensions */
+ hsize_t start[2]; /* Hyperslab start */
+ hsize_t stride[2]; /* Hyperslab stride */
+ hsize_t count[2]; /* Hyperslab block count */
+ hsize_t block[2]; /* Hyperslab block size */
+ unsigned char wbuf[72]; /* Write buffer */
+ unsigned char rbuf[32]; /* Read buffer */
+ unsigned u; /* Local index variable */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Irregular Hyperslab I/O\n"));
+
+ /* Create file */
+ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid, FAIL, "H5Fcreate");
+
+ /* Create dataspace for dataset */
+ sid = H5Screate_simple(2, dims, NULL);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Set chunk dimensions for dataset */
+ dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(dcpl_id, FAIL, "H5Pcreate");
+ ret = H5Pset_chunk(dcpl_id, 2, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+ /* Create a dataset */
+ did = H5Dcreate2(fid, SPACE1_NAME, H5T_NATIVE_UCHAR, sid, H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
+ CHECK(did, FAIL, "H5Dcreate2");
+
+ /* Initialize the write buffer */
+ for (u = 0; u < 72; u++)
+ wbuf[u] = (unsigned char)u;
+
+ /* Write entire dataset to disk */
+ ret = H5Dwrite(did, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Close the DCPL */
+ ret = H5Pclose(dcpl_id);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* Create dataspace for memory selection */
+ mem_sid = H5Screate_simple(1, mem_dims, NULL);
+ CHECK(mem_sid, FAIL, "H5Screate_simple");
+
+ /* Select 'L'-shaped region within dataset */
+ start[0] = 0;
+ start[1] = 10;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 4;
+ count[1] = 2;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 4;
+ start[1] = 0;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 2;
+ count[1] = 12;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Reset the buffer */
+ HDmemset(rbuf, 0, sizeof(rbuf));
+
+ /* Read selection from disk */
+ ret = H5Dread(did, H5T_NATIVE_UCHAR, mem_sid, sid, H5P_DEFAULT, rbuf);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Close everything */
+ ret = H5Sclose(mem_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Dclose(did);
+ CHECK(ret, FAIL, "H5Dclose");
+ ret = H5Fclose(fid);
+ CHECK(ret, FAIL, "H5Fclose");
+} /* test_irreg_io() */
+
+/****************************************************************
+**
+** test_sel_iter(): Test selection iterator API routines.
+**
+****************************************************************/
+static void
+test_sel_iter(void)
+{
+ hid_t sid; /* Dataspace ID */
+ hid_t iter_id; /* Dataspace selection iterator ID */
+ hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */
+ hsize_t coord1[POINT1_NPOINTS][2]; /* Coordinates for point selection */
+ hsize_t start[2]; /* Hyperslab start */
+ hsize_t stride[2]; /* Hyperslab stride */
+ hsize_t count[2]; /* Hyperslab block count */
+ hsize_t block[2]; /* Hyperslab block size */
+ size_t nseq; /* # of sequences retrieved */
+ size_t nbytes; /* # of bytes retrieved */
+ hsize_t off[SEL_ITER_MAX_SEQ]; /* Offsets for retrieved sequences */
+ size_t len[SEL_ITER_MAX_SEQ]; /* Lengths for retrieved sequences */
+ H5S_sel_type sel_type; /* Selection type */
+ unsigned sel_share; /* Whether to share selection with dataspace */
+ unsigned sel_iter_flags; /* Flags for selection iterator creation */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Dataspace Selection Iterators\n"));
+
+ /* Create dataspace */
+ sid = H5Screate_simple(2, dims1, NULL);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Try creating selection iterator object with bad parameters */
+ H5E_BEGIN_TRY
+ { /* Bad dataspace ID */
+ iter_id = H5Ssel_iter_create(H5I_INVALID_HID, (size_t)1, (unsigned)0);
+ }
+ H5E_END_TRY;
+ VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
+ H5E_BEGIN_TRY
+ { /* Bad element size */
+ iter_id = H5Ssel_iter_create(sid, (size_t)0, (unsigned)0);
+ }
+ H5E_END_TRY;
+ VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
+ H5E_BEGIN_TRY
+ { /* Bad flag(s) */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)0xffff);
+ }
+ H5E_END_TRY;
+ VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Try closing selection iterator, with bad parameters */
+ H5E_BEGIN_TRY
+ { /* Invalid ID */
+ ret = H5Ssel_iter_close(H5I_INVALID_HID);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_close");
+ H5E_BEGIN_TRY
+ { /* Not a selection iterator ID */
+ ret = H5Ssel_iter_close(sid);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_close");
+
+ /* Try with no selection sharing, and with sharing */
+ for (sel_share = 0; sel_share < 2; sel_share++) {
+ /* Set selection iterator sharing flags */
+ if (sel_share)
+ sel_iter_flags = H5S_SEL_ITER_SHARE_WITH_DATASPACE;
+ else
+ sel_iter_flags = 0;
+
+ /* Create selection iterator object */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
+ CHECK(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Close selection iterator */
+ ret = H5Ssel_iter_close(iter_id);
+ CHECK(ret, FAIL, "H5Ssel_iter_close");
+
+ /* Try closing selection iterator twice */
+ H5E_BEGIN_TRY
+ { /* Invalid ID */
+ ret = H5Ssel_iter_close(iter_id);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_close");
+
+ /* Create selection iterator object */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
+ CHECK(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Try resetting selection iterator with bad parameters */
+ H5E_BEGIN_TRY
+ {
+ ret = H5Ssel_iter_reset(H5I_INVALID_HID, sid);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_reset");
+ H5E_BEGIN_TRY
+ {
+ ret = H5Ssel_iter_reset(iter_id, H5I_INVALID_HID);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_reset");
+
+ /* Try retrieving sequences, with bad parameters */
+ H5E_BEGIN_TRY
+ { /* Invalid ID */
+ ret = H5Ssel_iter_get_seq_list(H5I_INVALID_HID, (size_t)1, (size_t)1, &nseq, &nbytes, off, len);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ H5E_BEGIN_TRY
+ { /* Invalid nseq pointer */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, NULL, &nbytes, off, len);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ H5E_BEGIN_TRY
+ { /* Invalid nbytes pointer */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, NULL, off, len);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ H5E_BEGIN_TRY
+ { /* Invalid offset array */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, NULL, len);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ H5E_BEGIN_TRY
+ { /* Invalid length array */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, off, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
+
+ /* Close selection iterator */
+ ret = H5Ssel_iter_close(iter_id);
+ CHECK(ret, FAIL, "H5Ssel_iter_close");
+
+ /* Test iterators on various basic selection types */
+ for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) {
+ switch (sel_type) {
+ case H5S_SEL_NONE: /* "None" selection */
+ ret = H5Sselect_none(sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+ break;
+
+ case H5S_SEL_POINTS: /* Point selection */
+ /* Select sequence of ten points */
+ coord1[0][0] = 0;
+ coord1[0][1] = 9;
+ coord1[1][0] = 1;
+ coord1[1][1] = 2;
+ coord1[2][0] = 2;
+ coord1[2][1] = 4;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[5][0] = 2;
+ coord1[5][1] = 10;
+ coord1[6][0] = 0;
+ coord1[6][1] = 11;
+ coord1[7][0] = 1;
+ coord1[7][1] = 4;
+ coord1[8][0] = 2;
+ coord1[8][1] = 1;
+ coord1[9][0] = 0;
+ coord1[9][1] = 3;
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS,
+ (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+ break;
+
+ case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
+ /* Select regular hyperslab */
+ start[0] = 3;
+ start[1] = 0;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 2;
+ count[1] = 5;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ break;
+
+ case H5S_SEL_ALL: /* "All" selection */
+ ret = H5Sselect_all(sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+ break;
+
+ case H5S_SEL_ERROR:
+ case H5S_SEL_N:
+ default:
+ HDassert(0 && "Can't occur");
+ break;
+ } /* end switch */
+
+ /* Create selection iterator object */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
+ CHECK(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Try retrieving no sequences, with 0 for maxseq & maxbytes */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+
+ /* Try retrieving all sequences */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+
+ /* Check results from retrieving sequence list */
+ switch (sel_type) {
+ case H5S_SEL_NONE: /* "None" selection */
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_POINTS: /* Point selection */
+ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
+ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_ALL: /* "All" selection */
+ VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_ERROR:
+ case H5S_SEL_N:
+ default:
+ HDassert(0 && "Can't occur");
+ break;
+ } /* end switch */
+
+ /* Close selection iterator */
+ ret = H5Ssel_iter_close(iter_id);
+ CHECK(ret, FAIL, "H5Ssel_iter_close");
+ } /* end for */
+
+ /* Create selection iterator object */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
+ CHECK(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Test iterators on various basic selection types using
+ * H5Ssel_iter_reset instead of creating multiple iterators */
+ for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) {
+ switch (sel_type) {
+ case H5S_SEL_NONE: /* "None" selection */
+ ret = H5Sselect_none(sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+ break;
+
+ case H5S_SEL_POINTS: /* Point selection */
+ /* Select sequence of ten points */
+ coord1[0][0] = 0;
+ coord1[0][1] = 9;
+ coord1[1][0] = 1;
+ coord1[1][1] = 2;
+ coord1[2][0] = 2;
+ coord1[2][1] = 4;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[5][0] = 2;
+ coord1[5][1] = 10;
+ coord1[6][0] = 0;
+ coord1[6][1] = 11;
+ coord1[7][0] = 1;
+ coord1[7][1] = 4;
+ coord1[8][0] = 2;
+ coord1[8][1] = 1;
+ coord1[9][0] = 0;
+ coord1[9][1] = 3;
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS,
+ (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+ break;
+
+ case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
+ /* Select regular hyperslab */
+ start[0] = 3;
+ start[1] = 0;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 2;
+ count[1] = 5;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+ break;
+
+ case H5S_SEL_ALL: /* "All" selection */
+ ret = H5Sselect_all(sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+ break;
+
+ case H5S_SEL_ERROR:
+ case H5S_SEL_N:
+ default:
+ HDassert(0 && "Can't occur");
+ break;
+ } /* end switch */
+
+ /* Try retrieving no sequences, with 0 for maxseq & maxbytes */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+
+ /* Reset iterator */
+ ret = H5Ssel_iter_reset(iter_id, sid);
+ CHECK(ret, FAIL, "H5Ssel_iter_reset");
+
+ /* Try retrieving all sequences */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+
+ /* Check results from retrieving sequence list */
+ switch (sel_type) {
+ case H5S_SEL_NONE: /* "None" selection */
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_POINTS: /* Point selection */
+ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
+ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_ALL: /* "All" selection */
+ VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_ERROR:
+ case H5S_SEL_N:
+ default:
+ HDassert(0 && "Can't occur");
+ break;
+ } /* end switch */
+
+ /* Reset iterator */
+ ret = H5Ssel_iter_reset(iter_id, sid);
+ CHECK(ret, FAIL, "H5Ssel_iter_reset");
+
+ /* Try retrieving all sequences again */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+
+ /* Check results from retrieving sequence list */
+ switch (sel_type) {
+ case H5S_SEL_NONE: /* "None" selection */
+ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_POINTS: /* Point selection */
+ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
+ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_ALL: /* "All" selection */
+ VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
+ break;
+
+ case H5S_SEL_ERROR:
+ case H5S_SEL_N:
+ default:
+ HDassert(0 && "Can't occur");
+ break;
+ } /* end switch */
+
+ /* Reset iterator */
+ ret = H5Ssel_iter_reset(iter_id, sid);
+ CHECK(ret, FAIL, "H5Ssel_iter_reset");
+ } /* end for */
+
+ /* Close selection iterator */
+ ret = H5Ssel_iter_close(iter_id);
+ CHECK(ret, FAIL, "H5Ssel_iter_close");
+
+ /* Point selection which will merge into smaller # of sequences */
+ coord1[0][0] = 0;
+ coord1[0][1] = 9;
+ coord1[1][0] = 0;
+ coord1[1][1] = 10;
+ coord1[2][0] = 0;
+ coord1[2][1] = 11;
+ coord1[3][0] = 0;
+ coord1[3][1] = 6;
+ coord1[4][0] = 1;
+ coord1[4][1] = 8;
+ coord1[5][0] = 2;
+ coord1[5][1] = 10;
+ coord1[6][0] = 0;
+ coord1[6][1] = 11;
+ coord1[7][0] = 1;
+ coord1[7][1] = 4;
+ coord1[8][0] = 1;
+ coord1[8][1] = 5;
+ coord1[9][0] = 1;
+ coord1[9][1] = 6;
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Create selection iterator object */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
+ CHECK(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Try retrieving all sequences */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+
+ /* Reset iterator */
+ ret = H5Ssel_iter_reset(iter_id, sid);
+ CHECK(ret, FAIL, "H5Ssel_iter_reset");
+
+ /* Try retrieving all sequences again */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
+
+ /* Close selection iterator */
+ ret = H5Ssel_iter_close(iter_id);
+ CHECK(ret, FAIL, "H5Ssel_iter_close");
+
+ /* Select irregular hyperslab, which will merge into smaller # of sequences */
+ start[0] = 3;
+ start[1] = 0;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 2;
+ count[1] = 5;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ start[0] = 3;
+ start[1] = 3;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 2;
+ count[1] = 5;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Create selection iterator object */
+ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
+ CHECK(iter_id, FAIL, "H5Ssel_iter_create");
+
+ /* Try retrieving all sequences */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list");
+
+ /* Reset iterator */
+ ret = H5Ssel_iter_reset(iter_id, sid);
+ CHECK(ret, FAIL, "H5Ssel_iter_reset");
+
+ /* Try retrieving all sequences again */
+ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
+ &nbytes, off, len);
+ CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
+ VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
+ VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list");
+
+ /* Close selection iterator */
+ ret = H5Ssel_iter_close(iter_id);
+ CHECK(ret, FAIL, "H5Ssel_iter_close");
+
+ } /* end for */
+
+ /* Close dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_sel_iter() */
+
+/****************************************************************
+**
+** test_select_intersect_block(): Test selections on dataspace,
+** verify that "intersect block" routine is working correctly.
+**
+****************************************************************/
+static void
+test_select_intersect_block(void)
+{
+ hid_t sid; /* Dataspace ID */
+ hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */
+ hsize_t block_start[] = {1, 3}; /* Start offset for block */
+ hsize_t block_end[] = {2, 5}; /* End offset for block */
+ hsize_t block_end2[] = {0, 5}; /* Bad end offset for block */
+ hsize_t block_end3[] = {2, 2}; /* Another bad end offset for block */
+ hsize_t block_end4[] = {1, 3}; /* End offset that makes a single element block */
+ hsize_t coord[10][2]; /* Coordinates for point selection */
+ hsize_t start[2]; /* Starting location of hyperslab */
+ hsize_t stride[2]; /* Stride of hyperslab */
+ hsize_t count[2]; /* Element count of hyperslab */
+ hsize_t block[2]; /* Block size of hyperslab */
+ htri_t status; /* Intersection status */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Dataspace Selection Block Intersection\n"));
+
+ /* Create dataspace */
+ sid = H5Screate_simple(2, dims1, NULL);
+ CHECK(sid, FAIL, "H5Screate_simple");
+
+ /* Try intersection calls with bad parameters */
+ H5E_BEGIN_TRY
+ { /* Bad dataspace ID */
+ status = H5Sselect_intersect_block(H5I_INVALID_HID, block_start, block_end);
+ }
+ H5E_END_TRY;
+ VERIFY(status, FAIL, "H5Sselect_intersect_block");
+ H5E_BEGIN_TRY
+ { /* Bad start pointer */
+ status = H5Sselect_intersect_block(sid, NULL, block_end);
+ }
+ H5E_END_TRY;
+ VERIFY(status, FAIL, "H5Sselect_intersect_block");
+ H5E_BEGIN_TRY
+ { /* Bad end pointer */
+ status = H5Sselect_intersect_block(sid, block_start, NULL);
+ }
+ H5E_END_TRY;
+ VERIFY(status, FAIL, "H5Sselect_intersect_block");
+ H5E_BEGIN_TRY
+ { /* Invalid block */
+ status = H5Sselect_intersect_block(sid, block_start, block_end2);
+ }
+ H5E_END_TRY;
+ VERIFY(status, FAIL, "H5Sselect_intersect_block");
+ H5E_BEGIN_TRY
+ { /* Another invalid block */
+ status = H5Sselect_intersect_block(sid, block_start, block_end3);
+ }
+ H5E_END_TRY;
+ VERIFY(status, FAIL, "H5Sselect_intersect_block");
+
+ /* Set selection to 'none' */
+ ret = H5Sselect_none(sid);
+ CHECK(ret, FAIL, "H5Sselect_none");
+
+ /* Test block intersection with 'none' selection (always false) */
+ status = H5Sselect_intersect_block(sid, block_start, block_end);
+ VERIFY(status, FALSE, "H5Sselect_intersect_block");
+
+ /* Set selection to 'all' */
+ ret = H5Sselect_all(sid);
+ CHECK(ret, FAIL, "H5Sselect_all");
+
+ /* Test block intersection with 'all' selection (always true) */
+ status = H5Sselect_intersect_block(sid, block_start, block_end);
+ VERIFY(status, TRUE, "H5Sselect_intersect_block");
+
+ /* Select sequence of ten points */
+ coord[0][0] = 0;
+ coord[0][1] = 10;
+ coord[1][0] = 1;
+ coord[1][1] = 2;
+ coord[2][0] = 2;
+ coord[2][1] = 4;
+ coord[3][0] = 0;
+ coord[3][1] = 6;
+ coord[4][0] = 1;
+ coord[4][1] = 8;
+ coord[5][0] = 2;
+ coord[5][1] = 11;
+ coord[6][0] = 0;
+ coord[6][1] = 4;
+ coord[7][0] = 1;
+ coord[7][1] = 0;
+ coord[8][0] = 2;
+ coord[8][1] = 1;
+ coord[9][0] = 0;
+ coord[9][1] = 3;
+ ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)10, (const hsize_t *)coord);
+ CHECK(ret, FAIL, "H5Sselect_elements");
+
+ /* Test block intersection with 'point' selection */
+ status = H5Sselect_intersect_block(sid, block_start, block_end);
+ VERIFY(status, TRUE, "H5Sselect_intersect_block");
+ status = H5Sselect_intersect_block(sid, block_start, block_end4);
+ VERIFY(status, FALSE, "H5Sselect_intersect_block");
+
+ /* Select single 4x6 hyperslab block at (2,1) */
+ start[0] = 2;
+ start[1] = 1;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 4;
+ count[1] = 6;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Test block intersection with single 'hyperslab' selection */
+ status = H5Sselect_intersect_block(sid, block_start, block_end);
+ VERIFY(status, TRUE, "H5Sselect_intersect_block");
+ status = H5Sselect_intersect_block(sid, block_start, block_end4);
+ VERIFY(status, FALSE, "H5Sselect_intersect_block");
+
+ /* 'OR' another hyperslab block in, making an irregular hyperslab selection */
+ start[0] = 3;
+ start[1] = 2;
+ stride[0] = 1;
+ stride[1] = 1;
+ count[0] = 4;
+ count[1] = 6;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Test block intersection with 'hyperslab' selection */
+ status = H5Sselect_intersect_block(sid, block_start, block_end);
+ VERIFY(status, TRUE, "H5Sselect_intersect_block");
+ status = H5Sselect_intersect_block(sid, block_start, block_end4);
+ VERIFY(status, FALSE, "H5Sselect_intersect_block");
+
+ /* Select regular, strided hyperslab selection */
+ start[0] = 2;
+ start[1] = 1;
+ stride[0] = 2;
+ stride[1] = 2;
+ count[0] = 2;
+ count[1] = 4;
+ block[0] = 1;
+ block[1] = 1;
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Test block intersection with single 'hyperslab' selection */
+ status = H5Sselect_intersect_block(sid, block_start, block_end);
+ VERIFY(status, TRUE, "H5Sselect_intersect_block");
+ status = H5Sselect_intersect_block(sid, block_start, block_end4);
+ VERIFY(status, FALSE, "H5Sselect_intersect_block");
+
+ /* Close dataspace */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+} /* test_select_intersect_block() */
+
+/****************************************************************
+**
+** test_hyper_io_1d():
+** Test to verify all the selected 10th element in the 1-d file
+** dataspace is read correctly into the 1-d contiguous memory space.
+** This is modeled after the test scenario described in HDFFV-10585
+** that demonstrated the hyperslab slowness. A fix to speed up
+** performance is in place to handle the special case for 1-d disjoint
+** file dataspace into 1-d single block contiguous memory space.
+**
+****************************************************************/
+static void
+test_hyper_io_1d(void)
+{
+ hid_t fid; /* File ID */
+ hid_t did; /* Dataset ID */
+ hid_t sid, mid; /* Dataspace IDs */
+ hid_t dcpl; /* Dataset creation property list ID */
+ hsize_t dims[1], maxdims[1], dimsm[1]; /* Dataset dimension sizes */
+ hsize_t chunk_dims[1]; /* Chunk dimension size */
+ hsize_t offset[1]; /* Starting offset for hyperslab */
+ hsize_t stride[1]; /* Distance between blocks in the hyperslab selection */
+ hsize_t count[1]; /* # of blocks in the the hyperslab selection */
+ hsize_t block[1]; /* Size of block in the hyperslab selection */
+ unsigned int wdata[CHUNKSZ]; /* Data to be written */
+ unsigned int rdata[NUM_ELEMENTS / 10]; /* Data to be read */
+ herr_t ret; /* Generic return value */
+ unsigned i; /* Local index variable */
+
+ /* Output message about test being performed */
+ MESSAGE(6, ("Testing Hyperslab I/O for 1-d single block memory space\n"));
+
+ for (i = 0; i < CHUNKSZ; i++)
+ wdata[i] = i;
+
+ /* Create the file file */
+ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
+ CHECK(fid, H5I_INVALID_HID, "H5Fcreate");
+
+ /* Create file dataspace */
+ dims[0] = CHUNKSZ;
+ maxdims[0] = H5S_UNLIMITED;
+ sid = H5Screate_simple(RANK, dims, maxdims);
+ CHECK(sid, H5I_INVALID_HID, "H5Pcreate");
+
+ /* Create memory dataspace */
+ dimsm[0] = CHUNKSZ;
+ mid = H5Screate_simple(RANK, dimsm, NULL);
+ CHECK(mid, H5I_INVALID_HID, "H5Pcreate");
+
+ /* Set up to create a chunked dataset */
+ dcpl = H5Pcreate(H5P_DATASET_CREATE);
+ CHECK(dcpl, H5I_INVALID_HID, "H5Pcreate");
+
+ chunk_dims[0] = CHUNKSZ;
+ ret = H5Pset_chunk(dcpl, RANK, chunk_dims);
+ CHECK(ret, FAIL, "H5Pset_chunk");
+
+ /* Create a chunked dataset */
+ did = H5Dcreate2(fid, DNAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
+ CHECK(did, H5I_INVALID_HID, "H5Dcreate2");
+
+ /* Set up hyperslab selection for file dataspace */
+ offset[0] = 0;
+ stride[0] = 1;
+ count[0] = 1;
+ block[0] = CHUNKSZ;
+
+ /* Write to each chunk in the dataset */
+ for (i = 0; i < NUMCHUNKS; i++) {
+ /* Set the hyperslab selection */
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Write to the dataset */
+ ret = H5Dwrite(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, wdata);
+ CHECK(ret, FAIL, "H5Dwrite");
+
+ /* Extend the dataset's dataspace */
+ if (i < (NUMCHUNKS - 1)) {
+ offset[0] = offset[0] + CHUNKSZ;
+ dims[0] = dims[0] + CHUNKSZ;
+ ret = H5Dset_extent(did, dims);
+ CHECK(ret, FAIL, "H5Dset_extent");
+
+ /* Get the dataset's current dataspace */
+ sid = H5Dget_space(did);
+ CHECK(sid, H5I_INVALID_HID, "H5Dget_space");
+ }
+ }
+
+ /* Closing */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(mid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Dclose(did);
+ CHECK(ret, FAIL, "H5Dclose");
+ ret = H5Pclose(dcpl);
+ CHECK(ret, FAIL, "H5Pclose");
+ ret = H5Fclose(fid);
+ CHECK(ret, FAIL, "H5Fclose");
+
+ /* Open the file */
+ fid = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
+ CHECK(fid, H5I_INVALID_HID, "H5Fopen");
+
+ /* Open the dataset */
+ did = H5Dopen2(fid, DNAME, H5P_DEFAULT);
+ CHECK(did, H5I_INVALID_HID, "H5Dopen");
+
+ /* Set up to read every 10th element in file dataspace */
+ offset[0] = 1;
+ stride[0] = 10;
+ count[0] = NUM_ELEMENTS / 10;
+ block[0] = 1;
+
+ /* Get the dataset's dataspace */
+ sid = H5Dget_space(did);
+ CHECK(sid, H5I_INVALID_HID, "H5Dget_space");
+ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block);
+ CHECK(ret, FAIL, "H5Sselect_hyperslab");
+
+ /* Set up contiguous memory dataspace for the selected elements */
+ dimsm[0] = count[0];
+ mid = H5Screate_simple(RANK, dimsm, NULL);
+ CHECK(mid, H5I_INVALID_HID, "H5Screate_simple");
+
+ /* Read all the selected 10th elements in the dataset into "rdata" */
+ ret = H5Dread(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, rdata);
+ CHECK(ret, FAIL, "H5Dread");
+
+ /* Verify data read is correct */
+ for (i = 0; i < 6; i += 2) {
+ VERIFY(rdata[i], 1, "H5Dread\n");
+ VERIFY(rdata[i + 1], 11, "H5Dread\n");
+ }
+
+ /* Closing */
+ ret = H5Sclose(mid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Dclose(did);
+ CHECK(ret, FAIL, "H5Dclose");
+ ret = H5Fclose(fid);
+ CHECK(ret, FAIL, "H5Fclose");
+
+} /* test_hyper_io_1d() */
+
+/****************************************************************
+**
+** test_h5s_set_extent_none:
+** Test to verify the behavior of dataspace code when passed
+** a dataspace modified by H5Sset_extent_none().
+**
+****************************************************************/
+static void
+test_h5s_set_extent_none(void)
+{
+ hid_t sid = H5I_INVALID_HID;
+ hid_t dst_sid = H5I_INVALID_HID;
+ hid_t null_sid = H5I_INVALID_HID;
+ int rank = 1;
+ hsize_t current_dims = 123;
+ H5S_class_t cls;
+ int out_rank;
+ hsize_t out_dims;
+ hsize_t out_maxdims;
+ hssize_t out_points;
+ htri_t equal;
+ herr_t ret;
+
+ /* Specific values here don't matter as we're just going to reset */
+ sid = H5Screate_simple(rank, &current_dims, NULL);
+ CHECK(sid, H5I_INVALID_HID, "H5Screate_simple");
+
+ /* Dataspace class will be H5S_NULL after this.
+ * In versions prior to 1.10.7 / 1.12.1 this would produce a
+ * dataspace with the internal H5S_NO_CLASS class.
+ */
+ ret = H5Sset_extent_none(sid);
+ CHECK(ret, FAIL, "H5Sset_extent_none");
+ cls = H5Sget_simple_extent_type(sid);
+ VERIFY(cls, H5S_NULL, "H5Sget_simple_extent_type");
+
+ /* Extent getters should generate normal results and not segfault.
+ */
+ out_rank = H5Sget_simple_extent_dims(sid, &out_dims, &out_maxdims);
+ VERIFY(out_rank, 0, "H5Sget_simple_extent_dims");
+ out_rank = H5Sget_simple_extent_ndims(sid);
+ VERIFY(out_rank, 0, "H5Sget_simple_extent_ndims");
+ out_points = H5Sget_simple_extent_npoints(sid);
+ VERIFY(out_points, 0, "H5Sget_simple_extent_npoints");
+
+ /* Check that copying the new (non-)extent works.
+ */
+ dst_sid = H5Screate_simple(rank, &current_dims, NULL);
+ CHECK(dst_sid, H5I_INVALID_HID, "H5Screate_simple");
+ ret = H5Sextent_copy(dst_sid, sid);
+ CHECK(ret, FAIL, "H5Sextent_copy");
+
+ /* Check that H5Sset_extent_none() produces the same extent as
+ * H5Screate(H5S_NULL).
+ */
+ null_sid = H5Screate(H5S_NULL);
+ CHECK(null_sid, H5I_INVALID_HID, "H5Screate");
+ equal = H5Sextent_equal(sid, null_sid);
+ VERIFY(equal, TRUE, "H5Sextent_equal");
+
+ /* Close */
+ ret = H5Sclose(sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(dst_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+ ret = H5Sclose(null_sid);
+ CHECK(ret, FAIL, "H5Sclose");
+
+} /* test_h5s_set_extent_none() */
+
+/****************************************************************
+**
+** test_select(): Main H5S selection testing routine.
+**
+****************************************************************/
+void
+test_select(void)
+{
+ hid_t plist_id; /* Property list for reading random hyperslabs */
+ hid_t fapl; /* Property list accessing the file */
+ int mdc_nelmts; /* Metadata number of elements */
+ size_t rdcc_nelmts; /* Raw data number of elements */
+ size_t rdcc_nbytes; /* Raw data number of bytes */
+ double rdcc_w0; /* Raw data write percentage */
+ hssize_t offset[SPACE7_RANK] = {1, 1}; /* Offset for testing selection offsets */
+ const char *env_h5_drvr; /* File Driver value from environment */
+ herr_t ret; /* Generic return value */
+
+ /* Output message about test being performed */
+ MESSAGE(5, ("Testing Selections\n"));
+
+ /* Get the VFD to use */
+ env_h5_drvr = HDgetenv(HDF5_DRIVER);
+ if (env_h5_drvr == NULL)
+ env_h5_drvr = "nomatch";
+
+ /* Create a dataset transfer property list */
+ plist_id = H5Pcreate(H5P_DATASET_XFER);
+ CHECK(plist_id, FAIL, "H5Pcreate");
+
+ /* test I/O with a very small buffer for reads */
+ ret = H5Pset_buffer(plist_id, (size_t)59, NULL, NULL);
+ CHECK(ret, FAIL, "H5Pset_buffer");
+
+ /* These next tests use the same file */
+ test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */
+ test_select_hyper(plist_id); /* Test basic H5S hyperslab selection code */
+ test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing
+ element selections */
+ test_select_point(plist_id); /* Test basic H5S element selection code, also tests appending to existing
+ element selections */
+ test_select_all(H5P_DEFAULT); /* Test basic all & none selection code */
+ test_select_all(plist_id); /* Test basic all & none selection code */
+ test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */
+ test_select_all_hyper(plist_id); /* Test basic all & none selection code */
+
+ /* These next tests use the same file */
+ test_select_combo(); /* Test combined hyperslab & element selection code */
+ test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */
+ test_select_hyper_stride(plist_id); /* Test strided hyperslab selection code */
+ test_select_hyper_contig(H5T_STD_U16LE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */
+ test_select_hyper_contig(H5T_STD_U16LE, plist_id); /* Test contiguous hyperslab selection code */
+ test_select_hyper_contig(H5T_STD_U16BE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */
+ test_select_hyper_contig(H5T_STD_U16BE, plist_id); /* Test contiguous hyperslab selection code */
+ test_select_hyper_contig2(H5T_STD_U16LE,
+ H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */
+ test_select_hyper_contig2(H5T_STD_U16LE, plist_id); /* Test more contiguous hyperslab selection cases */
+ test_select_hyper_contig2(H5T_STD_U16BE,
+ H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */
+ test_select_hyper_contig2(H5T_STD_U16BE, plist_id); /* Test more contiguous hyperslab selection cases */
+ test_select_hyper_contig3(H5T_STD_U16LE,
+ H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
+ test_select_hyper_contig3(H5T_STD_U16LE,
+ plist_id); /* Test yet more contiguous hyperslab selection cases */
+ test_select_hyper_contig3(H5T_STD_U16BE,
+ H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
+ test_select_hyper_contig3(H5T_STD_U16BE,
+ plist_id); /* Test yet more contiguous hyperslab selection cases */
+#if 0
+ test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT);
+ test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id);
+ test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT);
+ test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id);
+#else
+ HDprintf("** SKIPPED a test due to file creation issues\n");
+#endif
+#if 0
+ test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT);
+ test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id);
+ test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT);
+ test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id);
+#else
+ HDprintf("** SKIPPED a test due to assertion in HDF5\n");
+#endif
+ test_select_hyper_copy(); /* Test hyperslab selection copying code */
+ test_select_point_copy(); /* Test point selection copying code */
+ test_select_hyper_offset(); /* Test selection offset code with hyperslabs */
+ test_select_hyper_offset2(); /* Test more selection offset code with hyperslabs */
+ test_select_point_offset(); /* Test selection offset code with elements */
+ test_select_hyper_union(); /* Test hyperslab union code */
+
+ /* Fancy hyperslab API tests */
+ test_select_hyper_union_stagger(); /* Test hyperslab union code for staggered slabs */
+ test_select_hyper_union_3d(); /* Test hyperslab union code for 3-D dataset */
+ test_select_hyper_valid_combination(); /* Test different input combinations */
+
+ /* The following tests are currently broken with the Direct VFD */
+ if (HDstrcmp(env_h5_drvr, "direct") != 0) {
+ test_select_hyper_and_2d(); /* Test hyperslab intersection (AND) code for 2-D dataset */
+ test_select_hyper_xor_2d(); /* Test hyperslab XOR code for 2-D dataset */
+ test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */
+ test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */
+ }
+
+ /* test the random hyperslab I/O with the default property list for reading */
+ test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */
+
+ /* test random hyperslab I/O with a small buffer for reads */
+ test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */
+
+ /* Create a dataset transfer property list */
+ fapl = H5Pcreate(H5P_FILE_ACCESS);
+ CHECK(fapl, FAIL, "H5Pcreate");
+
+ /* Get the default file access properties for caching */
+ ret = H5Pget_cache(fapl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0);
+ CHECK(ret, FAIL, "H5Pget_cache");
+
+ /* Increase the size of the raw data cache */
+ rdcc_nbytes = 10 * 1024 * 1024;
+
+ /* Set the file access properties for caching */
+ ret = H5Pset_cache(fapl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0);
+ CHECK(ret, FAIL, "H5Pset_cache");
+
+ /* Test reading in a large hyperslab with a chunked dataset */
+ test_select_hyper_chunk(fapl, H5P_DEFAULT);
+
+ /* Test reading in a large hyperslab with a chunked dataset a small amount at a time */
+ test_select_hyper_chunk(fapl, plist_id);
+
+ /* Close file access property list */
+ ret = H5Pclose(fapl);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* Close dataset transfer property list */
+ ret = H5Pclose(plist_id);
+ CHECK(ret, FAIL, "H5Pclose");
+
+ /* More tests for checking validity of selections */
+ test_select_valid();
+
+ /* Tests for combining "all" and "none" selections with hyperslabs */
+ test_select_combine();
+
+ /* Test filling selections */
+ /* (Also tests iterating through each selection */
+ test_select_fill_all();
+ test_select_fill_point(NULL);
+ test_select_fill_point(offset);
+ test_select_fill_hyper_simple(NULL);
+ test_select_fill_hyper_simple(offset);
+ test_select_fill_hyper_regular(NULL);
+ test_select_fill_hyper_regular(offset);
+ test_select_fill_hyper_irregular(NULL);
+ test_select_fill_hyper_irregular(offset);
+
+ /* Test 0-sized selections */
+ test_select_none();
+
+ /* Test selections on scalar dataspaces */
+ test_scalar_select();
+ test_scalar_select2();
+ test_scalar_select3();
+
+ /* Test "same shape" routine */
+ test_shape_same();
+
+ /* Test "same shape" routine for selections of different rank */
+ test_shape_same_dr();
+
+ /* Test "re-build" routine */
+ test_space_rebuild();
+
+ /* Test "update diminfo" routine */
+ test_space_update_diminfo();
+
+ /* Test point selections in chunked datasets */
+ test_select_point_chunk();
+
+ /* Test scalar dataspaces in chunked datasets */
+ test_select_scalar_chunk();
+#if 0
+ /* Test using selection offset on hyperslab in chunked dataset */
+ test_select_hyper_chunk_offset();
+ test_select_hyper_chunk_offset2();
+#else
+ HDprintf("** SKIPPED a test due to assertion in HDF5\n");
+#endif
+
+ /* Test selection bounds with & without offsets */
+ test_select_bounds();
+
+ /* Test 'regular' hyperslab query routines */
+ test_hyper_regular();
+
+ /* Test unlimited hyperslab selections */
+ test_hyper_unlim();
+
+ /* Test the consistency of internal data structures of selection */
+ test_internal_consistency();
+
+ /* Test irregular selection I/O */
+ test_irreg_io();
+
+ /* Test selection iterators */
+ test_sel_iter();
+
+ /* Test selection intersection with block */
+ test_select_intersect_block();
+
+ /* Test reading of 1-d disjoint file space to 1-d single block memory space */
+ test_hyper_io_1d();
+
+ /* Test H5Sset_extent_none() functionality after we updated it to set
+ * the class to H5S_NULL instead of H5S_NO_CLASS.
+ */
+ test_h5s_set_extent_none();
+
+} /* test_select() */
+
+/*-------------------------------------------------------------------------
+ * Function: cleanup_select
+ *
+ * Purpose: Cleanup temporary test files
+ *
+ * Return: none
+ *
+ * Programmer: Albert Cheng
+ * July 2, 1998
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+cleanup_select(void)
+{
+ H5Fdelete(FILENAME, H5P_DEFAULT);
+}