diff options
Diffstat (limited to 'test/accum.c')
-rw-r--r-- | test/accum.c | 1809 |
1 files changed, 1809 insertions, 0 deletions
diff --git a/test/accum.c b/test/accum.c new file mode 100644 index 0000000..c5f6610 --- /dev/null +++ b/test/accum.c @@ -0,0 +1,1809 @@ +/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * + * Copyright by the Board of Trustees of the University of Illinois. * + * All rights reserved. * + * * + * This file is part of HDF5. The full HDF5 copyright notice, including * + * terms governing use, modification, and redistribution, is contained in * + * the files COPYING and Copyright.html. COPYING can be found at the root * + * of the source code distribution tree; Copyright.html can be found at the * + * root level of an installed copy of the electronic HDF5 document set and * + * is linked from the top-level documents page. It can also be found at * + * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * + * access to either file, you may request a copy from help@hdfgroup.org. * + * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ + +/* Programmer: Mike McGreevy + * October 7, 2010 + */ +#include "h5test.h" + +#define H5F_PACKAGE +#include "H5Fpkg.h" +#include "H5FDprivate.h" +#include "H5Iprivate.h" + +/* Filename */ +#define FILENAME "accum.h5" + +/* "big" I/O test values */ +#define BIG_BUF_SIZE (6 * 1024 * 1024) + +/* Random I/O test values */ +#define RANDOM_BUF_SIZE (1 * 1024 * 1024) +#define MAX_RANDOM_SEGMENTS (5 * 1024) +#define RAND_SEG_LEN (1024) +#define RANDOM_BASE_OFF (1024 * 1024) + +/* Make file global to all tests */ +H5F_t * f = NULL; + +/* Function Prototypes */ +unsigned test_write_read(void); +unsigned test_write_read_nonacc_front(void); +unsigned test_write_read_nonacc_end(void); +unsigned test_accum_overlap(void); +unsigned test_accum_overlap_clean(void); +unsigned test_accum_overlap_size(void); +unsigned test_accum_non_overlap_size(void); +unsigned test_accum_adjust(void); +unsigned test_read_after(void); +unsigned test_free(void); +unsigned test_big(void); +unsigned test_random_write(void); + +/* Helper Function Prototypes */ +void accum_printf(void); + +/* Private Test H5Faccum Function Wrappers */ +#define accum_write(a,s,b) H5F_block_write(f, H5FD_MEM_DEFAULT, (haddr_t)(a), (size_t)(s), H5P_DATASET_XFER_DEFAULT, (b)) +#define accum_read(a,s,b) H5F_block_read(f, H5FD_MEM_DEFAULT, (haddr_t)(a), (size_t)(s), H5P_DATASET_XFER_DEFAULT, (b)) +#define accum_free(a,s) H5F_accum_free(f, H5P_DATASET_XFER_DEFAULT, H5FD_MEM_DEFAULT, (haddr_t)(a), (hsize_t)(s)) +#define accum_flush() H5F_accum_flush(f, H5P_DATASET_XFER_DEFAULT) +#define accum_reset() H5F_accum_reset(f, H5P_DATASET_XFER_DEFAULT, TRUE) + +/* ================= */ +/* Main Test Routine */ +/* ================= */ + + +/*------------------------------------------------------------------------- + * Function: main + * + * Purpose: Test the metadata accumulator code + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Mike McGreevy + * October 7, 2010 + * + *------------------------------------------------------------------------- + */ +int +main(void) +{ + unsigned nerrors = 0; /* track errors */ + hid_t fid = -1; + + /* Test Setup */ + puts("Testing the metadata accumulator"); + + /* Create a test file */ + if((fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT)) < 0) FAIL_STACK_ERROR + + /* Get H5F_t * to internal file structure */ + if(NULL == (f = (H5F_t *)H5I_object(fid))) FAIL_STACK_ERROR + + /* We'll be writing lots of garbage data, so extend the + file a ways. 10MB should do. */ + if(H5FD_set_eoa(f->shared->lf, H5FD_MEM_DEFAULT, (haddr_t)(1024*1024*10)) < 0) FAIL_STACK_ERROR + + /* Reset metadata accumulator for the file */ + if(accum_reset() < 0) FAIL_STACK_ERROR + + /* Test Functions */ + nerrors += test_write_read(); + nerrors += test_write_read_nonacc_front(); + nerrors += test_write_read_nonacc_end(); + nerrors += test_accum_overlap(); + nerrors += test_accum_overlap_clean(); + nerrors += test_accum_overlap_size(); + nerrors += test_accum_non_overlap_size(); + nerrors += test_accum_adjust(); + nerrors += test_read_after(); + nerrors += test_free(); + nerrors += test_big(); + nerrors += test_random_write(); + + /* End of test code, close and delete file */ + if(H5Fclose(fid) < 0) TEST_ERROR + HDremove(FILENAME); + + if(nerrors) + goto error; + puts("All metadata accumulator tests passed."); + + return 0; + +error: + puts("*** TESTS FAILED ***"); + return 1; +} /* end main() */ + +/* ============================= */ +/* Individual Unit Test Routines */ +/* ============================= */ + + +/*------------------------------------------------------------------------- + * Function: test_write_read + * + * Purpose: Simple test to write to then read from metadata accumulator. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Mike McGreevy + * October 7, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_write_read(void) +{ + int i = 0; + int *write_buf, *read_buf; + + TESTING("simple write/read to/from metadata accumulator"); + + /* Allocate buffers */ + write_buf = (int *)HDmalloc(1024 * sizeof(int)); + HDassert(write_buf); + read_buf = (int *)HDcalloc(1024, sizeof(int)); + HDassert(read_buf); + + /* Fill buffer with data, zero out read buffer */ + for(i = 0; i < 1024; i++) + write_buf[i] = i + 1; + + /* Do a simple write/read/verify of data */ + /* Write 1KB at Address 0 */ + if(accum_write(0, 1024, write_buf) < 0) FAIL_STACK_ERROR; + if(accum_read(0, 1024, read_buf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(write_buf, read_buf, 1024) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(write_buf); + HDfree(read_buf); + + return 0; + +error: + /* Release memory */ + HDfree(write_buf); + HDfree(read_buf); + + return 1; +} /* test_write_read */ + + +/*------------------------------------------------------------------------- + * Function: test_write_read_nonacc_front + * + * Purpose: Simple test to write to then read from before metadata accumulator. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Allen Byrne + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_write_read_nonacc_front(void) +{ + int i = 0; + int *write_buf, *read_buf; + + TESTING("simple write/read to/from before metadata accumulator"); + + /* Allocate buffers */ + write_buf = (int *)HDmalloc(2048 * sizeof(int)); + HDassert(write_buf); + read_buf = (int *)HDcalloc(2048, sizeof(int)); + HDassert(read_buf); + + /* Fill buffer with data, zero out read buffer */ + for(i = 0; i < 2048; i++) + write_buf[i] = i + 1; + + /* Do a simple write/read/verify of data */ + /* Write 1KB at Address 0 */ + if(accum_write(0, 1024, write_buf) < 0) FAIL_STACK_ERROR; + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_reset() < 0) FAIL_STACK_ERROR; + if(accum_write(1024, 1024, write_buf) < 0) FAIL_STACK_ERROR; + if(accum_read(0, 1024, read_buf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(write_buf, read_buf, 1024) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(write_buf); + HDfree(read_buf); + + return 0; + +error: + /* Release memory */ + HDfree(write_buf); + HDfree(read_buf); + + return 1; +} /* test_write_read */ + + +/*------------------------------------------------------------------------- + * Function: test_write_read_nonacc_end + * + * Purpose: Simple test to write to then read from after metadata accumulator. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Allen Byrne + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_write_read_nonacc_end(void) +{ + int i = 0; + int *write_buf, *read_buf; + + TESTING("simple write/read to/from after metadata accumulator"); + + /* Allocate buffers */ + write_buf = (int *)HDmalloc(2048 * sizeof(int)); + HDassert(write_buf); + read_buf = (int *)HDcalloc(2048, sizeof(int)); + HDassert(read_buf); + + /* Fill buffer with data, zero out read buffer */ + for(i = 0; i < 2048; i++) + write_buf[i] = i + 1; + + /* Do a simple write/read/verify of data */ + /* Write 1KB at Address 0 */ + if(accum_write(1024, 1024, write_buf) < 0) FAIL_STACK_ERROR; + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_reset() < 0) FAIL_STACK_ERROR; + if(accum_write(0, 1024, write_buf) < 0) FAIL_STACK_ERROR; + if(accum_read(1024, 1024, read_buf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(write_buf, read_buf, 1024) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(write_buf); + HDfree(read_buf); + + return 0; + +error: + /* Release memory */ + HDfree(write_buf); + HDfree(read_buf); + + return 1; +} /* test_write_read */ + + +/*------------------------------------------------------------------------- + * Function: test_free + * + * Purpose: Simple test to free metadata accumulator. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Raymond Lu + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_free(void) +{ + int i = 0; + int32_t *wbuf = NULL; + int32_t *rbuf = NULL; + int32_t *expect = NULL; + + TESTING("simple freeing metadata accumulator"); + + /* Write and free the whole accumulator. */ + wbuf = (int32_t *)HDmalloc(256 * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int32_t *)HDmalloc(256 * sizeof(int32_t)); + HDassert(rbuf); + expect = (int32_t *)HDmalloc(256 * sizeof(int32_t)); + HDassert(expect); + + /* Fill buffer with data */ + for(i = 0; i < 256; i++) + wbuf[i] = (int32_t)(i + 1); + + if(accum_write(0, 256 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + + if(accum_free(0, 256 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Free an empty accumulator */ + if(accum_free(0, 256 * 1024 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Write second quarter of the accumulator */ + if(accum_write(64 * sizeof(int32_t), 64 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + + /* Free the second quarter of the accumulator, the requested area + * is bigger than the data region on the right side. */ + if(accum_free(64 * sizeof(int32_t), 65 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + + /* Write half of the accumulator. */ + if(accum_write(0, 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + + /* Free the first block of 4B */ + if(accum_free(0, sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(1 * sizeof(int32_t), 127 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf + 1, rbuf, 127 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Free the block of 4B at 127*4B */ + if(accum_free(127 * sizeof(int32_t), sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(1 * sizeof(int32_t), 126 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf + 1, rbuf, 126 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Free the block of 4B at 2*4B */ + if(accum_free(2 * sizeof(int32_t), sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(1 * sizeof(int32_t), 1 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf + 1, rbuf, 1 * sizeof(int32_t)) != 0) TEST_ERROR; + if(accum_read(3 * sizeof(int32_t), 124 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf + 3, rbuf, 124 * sizeof(int32_t)) != 0) TEST_ERROR; + + + /* Test freeing section that overlaps the start of the accumulator and is + * entirely before dirty section */ + if(accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t)); + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_write(68 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 68, wbuf, 4 * sizeof(int32_t)); + if(accum_free(62 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(66 * sizeof(int32_t), 126 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(expect + 66, rbuf, 126 * sizeof(int32_t)) != 0) TEST_ERROR; + + + /* Test freeing section that overlaps the start of the accumulator and + * completely contains dirty section */ + if(accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t)); + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_write(68 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 68, wbuf, 4 * sizeof(int32_t)); + if(accum_free(62 * sizeof(int32_t), 16 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(78 * sizeof(int32_t), 114 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(expect + 78, rbuf, 114 * sizeof(int32_t)) != 0) TEST_ERROR; + + + /* Test freeing section completely contained in accumulator and is entirely + * before dirty section */ + if(accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t)); + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_write(72 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 72, wbuf, 4 * sizeof(int32_t)); + if(accum_free(66 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(70 * sizeof(int32_t), 122 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(expect + 70, rbuf, 122 * sizeof(int32_t)) != 0) TEST_ERROR; + + + /* Test freeing section completely contained in accumulator, starts before + * dirty section, and ends in dirty section */ + if(accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t)); + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_write(72 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 72, wbuf, 4 * sizeof(int32_t)); + if(accum_free(70 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(74 * sizeof(int32_t), 118 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(expect + 74, rbuf, 118 * sizeof(int32_t)) != 0) TEST_ERROR; + + + /* Test freeing section completely contained in accumulator and completely + * contains dirty section */ + if(accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t)); + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_write(72 * sizeof(int32_t), 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 72, wbuf, 4 * sizeof(int32_t)); + if(accum_free(70 * sizeof(int32_t), 8 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(78 * sizeof(int32_t), 114 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(expect + 78, rbuf, 114 * sizeof(int32_t)) != 0) TEST_ERROR; + + + /* Test freeing section completely contained in accumulator, starts at start + * of dirty section, and ends in dirty section */ + if(accum_write(64 * sizeof(int32_t), 128 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 64, wbuf, 128 * sizeof(int32_t)); + if(accum_flush() < 0) FAIL_STACK_ERROR; + if(accum_write(72 * sizeof(int32_t), 8 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + HDmemcpy(expect + 72, wbuf, 8 * sizeof(int32_t)); + if(accum_free(72 * sizeof(int32_t), 4 * sizeof(int32_t)) < 0) FAIL_STACK_ERROR; + + /* Check that the accumulator still contains the correct data */ + if(accum_read(76 * sizeof(int32_t), 116 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(expect + 76, rbuf, 116 * sizeof(int32_t)) != 0) TEST_ERROR; + + HDfree(wbuf); + HDfree(rbuf); + HDfree(expect); + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + return 0; + +error: + HDfree(wbuf); + HDfree(rbuf); + HDfree(expect); + + return 1; +} /* test_free */ + + +/*------------------------------------------------------------------------- + * Function: test_accum_overlap + * + * Purpose: This test will write a series of pieces of data + * to the accumulator with the goal of overlapping + * the writes in various different ways. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Mike McGreevy + * October 7, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_accum_overlap(void) +{ + int i = 0; + int32_t *wbuf, *rbuf; + + TESTING("overlapping write to metadata accumulator"); + + /* Allocate buffers */ + wbuf = (int32_t *)HDmalloc(4096 * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int32_t *)HDcalloc(4096, sizeof(int32_t)); + HDassert(rbuf); + + /* Case 1: No metadata in accumulator */ + /* Write 10 1's at address 40 */ + /* @0:| 1111111111| */ + /* Put some data in the accumulator initially */ + for(i = 0; i < 10; i++) + wbuf[i] = 1; + if(accum_write(40, 10 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(40, 10 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 2: End of new piece aligns with start of accumulated data */ + /* Write 5 2's at address 20 */ + /* @0:| 222221111111111| */ + for(i = 0; i < 5; i++) + wbuf[i] = 2; + if(accum_write(20, 5 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(20, 5 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 3: Start of new piece aligns with start of accumulated data */ + /* Write 3 3's at address 20 */ + /* @0:| 333221111111111| */ + for(i = 0; i < 3; i++) + wbuf[i] = 3; + if(accum_write(20, 3 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(20, 3 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 4: New piece overlaps start of accumulated data */ + /* Write 5 4's at address 8 */ + /* @0:| 444443221111111111| */ + for(i = 0; i < 5; i++) + wbuf[i] = 4; + if(accum_write(8, 5 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(8, 5 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 5: New piece completely within accumulated data */ + /* Write 4 5's at address 48 */ + /* @0:| 444443221155551111| */ + for(i = 0; i < 4; i++) + wbuf[i] = 5; + if(accum_write(48, 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(48, 4 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 6: End of new piece aligns with end of accumulated data */ + /* Write 3 6's at address 68 */ + /* @0:| 444443221155551666| */ + for(i = 0; i < 3; i++) + wbuf[i] = 6; + if(accum_write(68, 3 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(68, 3 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 7: New piece overlaps end of accumulated data */ + /* Write 5 7's at address 76 */ + /* @0:| 4444432211555516677777| */ + for(i = 0; i < 5; i++) + wbuf[i] = 7; + if(accum_write(76, 5 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(76, 5 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 8: Start of new piece aligns with end of accumulated data */ + /* Write 3 8's at address 96 */ + /* @0:| 4444432211555516677777888| */ + for(i = 0; i < 3; i++) + wbuf[i] = 8; + if(accum_write(96, 3 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(96, 3 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Set up expected data buffer and verify contents of + accumulator as constructed by cases 1-8, above */ + for(i = 0; i < 5; i++) + wbuf[i] = 4; + for(i = 5; i < 6; i++) + wbuf[i] = 3; + for(i = 6; i < 8; i++) + wbuf[i] = 2; + for(i = 8; i < 10; i++) + wbuf[i] = 1; + for(i = 10; i < 14; i++) + wbuf[i] = 5; + for(i = 14; i < 15; i++) + wbuf[i] = 1; + for(i = 15; i < 17; i++) + wbuf[i] = 6; + for(i = 17; i < 22; i++) + wbuf[i] = 7; + for(i = 22; i < 25; i++) + wbuf[i] = 8; + if(accum_read(8, 25 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 25 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 9: New piece completely before accumulated data */ + /* Write 1 9 at address 0 */ + /* @0:|9 4444432211555516677777888| */ + for(i = 0; i < 1; i++) + wbuf[i] = 9; + if(accum_write(0, 1 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(0, 1 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 1 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 10: New piece completely after accumulated data */ + /* Write 4 3's at address 116 */ + /* @0:|9 4444432211555516677777888 3333| */ + for(i = 0; i < 4; i++) + wbuf[i] = 3; + if(accum_write(116, 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(116, 4 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 11: New piece completely overlaps accumulated data */ + /* Write 6 4's at address 112 */ + /* @0:|9 4444432211555516677777888 444444| */ + for(i = 0; i < 6; i++) + wbuf[i] = 4; + if(accum_write(112, 6 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(112, 6 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 6 * sizeof(int32_t)) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 1; +} /* test_accum_overlap */ + + +/*------------------------------------------------------------------------- + * Function: test_accum_overlap_clean + * + * Purpose: This test will write a series of pieces of data + * to the accumulator with the goal of overlapping + * the writes in various different ways, with clean + * areas in the accumulator. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Neil Fortner + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_accum_overlap_clean(void) +{ + int i = 0; + int32_t *wbuf, *rbuf; + + TESTING("overlapping write to partially clean metadata accumulator"); + + /* Allocate buffers */ + wbuf = (int32_t *)HDmalloc(4096 * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int32_t *)HDcalloc(4096, sizeof(int32_t)); + HDassert(rbuf); + + /* Case 1: No metadata in accumulator */ + /* Write 10 1's at address 40 */ + /* @0:| 1111111111| */ + /* Put some data in the accumulator initially */ + for(i = 0; i < 10; i++) + wbuf[i] = 1; + if(accum_write(40, 10 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(40, 10 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 2: End of new piece aligns with start of clean accumulated data */ + /* Write 5 2's at address 20 */ + /* @0:| 222221111111111| */ + if(accum_flush() < 0) FAIL_STACK_ERROR; + for(i = 0; i < 5; i++) + wbuf[i] = 2; + if(accum_write(20, 5 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(20, 5 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 5 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 3: Start of new piece aligns with start of accumulated data, + * completely encloses dirty section of accumulator */ + /* Write 6 3's at address 20 */ + /* @0:| 333333111111111| */ + for(i = 0; i < 6; i++) + wbuf[i] = 3; + if(accum_write(20, 6 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(20, 6 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 6 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 4: New piece completely within accumulated data, overlaps + * end of dirty section of accumulator */ + /* Write 2 4's at address 40 */ + /* @0:| 333334411111111| */ + for(i = 0; i < 2; i++) + wbuf[i] = 4; + if(accum_write(40, 2 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(40, 2 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 5: New piece completely within accumulated data, completely + * after dirty section of accumulator */ + /* Write 2 5's at address 52 */ + /* @0:| 333334415511111| */ + for(i = 0; i < 2; i++) + wbuf[i] = 5; + if(accum_write(52, 2 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(52, 2 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 6: New piece completely within clean accumulated data */ + /* Write 3 6's at address 44 */ + /* @0:| 333334666511111| */ + if(accum_flush() < 0) FAIL_STACK_ERROR; + for(i = 0; i < 3; i++) + wbuf[i] = 6; + if(accum_write(44, 3 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(44, 3 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 7: New piece overlaps start of clean accumulated data */ + /* Write 2 7's at address 16 */ + /* @0:| 7733334666511111| */ + if(accum_flush() < 0) FAIL_STACK_ERROR; + for(i = 0; i < 2; i++) + wbuf[i] = 7; + if(accum_write(16, 2 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(16, 2 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 8: New piece overlaps start of accumulated data, completely + * encloses dirty section of accumulator */ + /* Write 4 8's at address 12 */ + /* @0:| 88883334666511111| */ + for(i = 0; i < 4; i++) + wbuf[i] = 8; + if(accum_write(12, 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(12, 4 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 9: Start of new piece aligns with end of clean accumulated data */ + /* Write 3 9's at address 80 */ + /* @0:| 88883334666511111999| */ + if(accum_flush() < 0) FAIL_STACK_ERROR; + for(i = 0; i < 3; i++) + wbuf[i] = 9; + if(accum_write(80, 3 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(80, 3 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 3 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 10: New piece overlaps end of clean accumulated data */ + /* Write 3 2's at address 88 */ + /* @0:| 888833346665111119922| */ + if(accum_flush() < 0) FAIL_STACK_ERROR; + for(i = 0; i < 2; i++) + wbuf[i] = 2; + if(accum_write(88, 2 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(88, 2 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 2 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 11: New piece overlaps end of accumulated data, completely encloses + * dirty section of accumulator */ + /* Write 4 7's at address 84 */ + /* @0:| 8888333466651111197777| */ + for(i = 0; i < 4; i++) + wbuf[i] = 7; + if(accum_write(84, 4 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(84, 4 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 4 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Set up expected data buffer and verify contents of + accumulator as constructed by cases 1-11, above */ + for(i = 0; i < 4; i++) + wbuf[i] = 8; + for(i = 4; i < 7; i++) + wbuf[i] = 3; + for(i = 7; i < 8; i++) + wbuf[i] = 4; + for(i = 8; i < 11; i++) + wbuf[i] = 6; + for(i = 11; i < 12; i++) + wbuf[i] = 5; + for(i = 12; i < 17; i++) + wbuf[i] = 1; + for(i = 17; i < 18; i++) + wbuf[i] = 9; + for(i = 18; i < 22; i++) + wbuf[i] = 7; + if(accum_read(12, 22 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 22 * sizeof(int32_t)) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 1; +} /* test_accum_overlap_clean */ + + +/*------------------------------------------------------------------------- + * Function: test_accum_non_overlap_size + * + * Purpose: This test will write a series of pieces of data + * to the accumulator with the goal of not overlapping + * the writes with a data size larger then the accum size. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Allen Byrne + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_accum_non_overlap_size(void) +{ + int i = 0; + int32_t *wbuf, *rbuf; + + TESTING("non-overlapping write to accumulator larger then accum_size"); + + /* Allocate buffers */ + wbuf = (int *)HDmalloc(4096 * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int *)HDcalloc(4096, sizeof(int32_t)); + HDassert(rbuf); + + /* Case 1: No metadata in accumulator */ + /* Write 10 1's at address 140 */ + /* @0:| 1111111111| */ + /* Put some data in the accumulator initially */ + for(i = 0; i < 10; i++) + wbuf[i] = 1; + if(accum_write(140, 10 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(140, 10 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 9: New piece completely before accumulated data */ + /* Write 20 9 at address 0 */ + /* @0:|9 1111111111| */ + for(i = 0; i < 20; i++) + wbuf[i] = 9; + if(accum_write(0, 20 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(0, 20 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 20 * sizeof(int32_t)) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 1; +} /* test_accum_non_overlap_size */ + +/*------------------------------------------------------------------------- + * Function: test_accum_overlap_size + * + * Purpose: This test will write a series of pieces of data + * to the accumulator with the goal of overlapping + * the writes with a data size completely overlapping + * the accumulator at both ends. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Allen Byrne + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_accum_overlap_size(void) +{ + int i = 0; + int32_t *wbuf, *rbuf; + + TESTING("overlapping write to accumulator larger then accum_size"); + + /* Allocate buffers */ + wbuf = (int32_t *)HDmalloc(4096 * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int32_t *)HDcalloc(4096, sizeof(int32_t)); + HDassert(rbuf); + + /* Case 1: No metadata in accumulator */ + /* Write 10 1's at address 64 */ + /* @0:| 1111111111| */ + /* Put some data in the accumulator initially */ + for(i = 0; i < 10; i++) + wbuf[i] = 1; + if(accum_write(64, 10 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(64, 10 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 10 * sizeof(int32_t)) != 0) TEST_ERROR; + + /* Case 9: New piece completely before accumulated data */ + /* Write 72 9 at address 60 */ + /* @0:|9 1111111111| */ + for(i = 0; i < 72; i++) + wbuf[i] = 9; + if(accum_write(60, 72 * sizeof(int32_t), wbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(60, 72 * sizeof(int32_t), rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 72 * sizeof(int32_t)) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 1; +} /* test_accum_overlap_size */ + + +/*------------------------------------------------------------------------- + * Function: test_accum_adjust + * + * Purpose: This test examines the various ways the accumulator might + * adjust itself as a result of data appending or prepending + * to it. + * + * This test program covers all the code in H5F_accum_adjust, + * but NOT all possible paths through said code. It only covers + * six potential paths through the function. (Again, though, each + * piece of code within an if/else statement in H5F_accum_adjust is + * covered by one of the paths in this test function). Since there + * are a ridiculous number of total possible paths through this + * function due to its large number of embedded if/else statements, + * that's certainly a lot of different test cases to write by hand. + * (Though if someone comes across this code and has some free + * time, go for it). + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Mike McGreevy + * October 11, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_accum_adjust(void) +{ + int i = 0; + int s = 1048576; /* size of buffer */ + int32_t *wbuf, *rbuf; + + TESTING("accumulator adjustments after append/prepend of data"); + + /* Allocate buffers */ + wbuf = (int32_t *)HDmalloc((size_t)s * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int32_t *)HDcalloc((size_t)s, sizeof(int32_t)); + HDassert(rbuf); + + /* Fill up write buffer */ + for(i = 0; i < s; i++) + wbuf[i] = i + 1; + + /* ================================================================ */ + /* CASE 1: Prepending small block to large, fully dirty accumulator */ + /* ================================================================ */ + + /* Write data to the accumulator to fill it just under 1MB (max size), + * but not quite full. This will force the accumulator to, on subsequent + * writes, a) have to adjust since it's nearly full, and b) prevent + * an increase in size because it's already at it's maximum size */ + if(accum_write((1024 * 1024), (1024 * 1024) - 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a small (1KB) block that prepends to the front of the accumulator. */ + /* ==> Accumulator will need more buffer space */ + /* ==> Accumulator will try to resize, but see that it's getting too big */ + /* ==> Size of new block is less than half maximum size of accumulator */ + /* ==> New block is being prepended to accumulator */ + /* ==> Accumulator is dirty, it will be flushed. */ + /* ==> Dirty region overlaps region to eliminate from accumulator */ + if(accum_write((1024 * 1024) - 1024, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read back and verify first write */ + if(accum_read((1024 * 1024), (1024 * 1024) - 1, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, (1024 * 1024) - 1) != 0) TEST_ERROR; + + /* Read back and verify second write */ + if(accum_read((1024 * 1024) - 1024, 1024, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 1024) != 0) TEST_ERROR; + + /* Reset accumulator for next case */ + if(accum_reset() < 0) FAIL_STACK_ERROR; + + /* ================================================================ */ + /* Case 2: Prepending large block to large, fully dirty accumulator */ + /* ================================================================ */ + + /* Write data to the accumulator to fill it just under 1MB (max size), + * but not quite full. This will force the accumulator to, on subsequent + * writes, a) have to adjust since it's nearly full, and b) prevent + * an increase in size because it's already at it's maximum size */ + if(accum_write((1024 * 1024), (1024 * 1024) - 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a large (just under 1MB) block to the front of the accumulator. */ + /* ==> Accumulator will need more buffer space */ + /* ==> Accumulator will try to resize, but see that it's getting too big */ + /* ==> Size of new block is larger than half maximum size of accumulator */ + /* ==> New block is being prepended to accumulator */ + /* ==> Accumulator is dirty, it will be flushed. */ + /* ==> Dirty region overlaps region to eliminate from accumulator */ + if(accum_write(5, (1024 * 1024) - 5, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read back and verify both pieces of data */ + if(accum_read(1048576, 1048575, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 1048576) != 0) TEST_ERROR; + + if(accum_read(5, 1048571, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 1048571) != 0) TEST_ERROR; + + /* Reset accumulator for next case */ + if(accum_reset() < 0) FAIL_STACK_ERROR; + + /* ========================================================= */ + /* Case 3: Appending small block to large, clean accumulator */ + /* ========================================================= */ + + /* Write data to the accumulator to fill it just under 1MB (max size), + * but not quite full. This will force the accumulator to, on subsequent + * writes, a) have to adjust since it's nearly full, and b) prevent + * an increase in size because it's already at it's maximum size */ + if(accum_write(0, (1024 * 1024) - 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Flush the accumulator -- we want to test the case when + accumulator contains clean data */ + if(accum_flush() < 0) FAIL_STACK_ERROR + + /* Write a small (1KB) block to the end of the accumulator */ + /* ==> Accumulator will need more buffer space */ + /* ==> Accumulator will try to resize, but see that it's getting too big */ + /* ==> Size of new block is larger than half maximum size of accumulator */ + /* ==> New block being appended to accumulator */ + /* ==> Accumulator is NOT dirty */ + /* ==> Since we're appending, need to adjust location of accumulator */ + if(accum_write((1024 * 1024) - 1, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a piece of metadata outside current accumulator to force write + to disk */ + if(accum_write(0, 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read in the piece we wrote to disk above, and then verify that + the data is as expected */ + if(accum_read((1024 * 1024) - 1, 1024, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 1024) != 0) TEST_ERROR; + + /* Reset accumulator for next case */ + if(accum_reset() < 0) FAIL_STACK_ERROR; + + /* ==================================================================== */ + /* Case 4: Appending small block to large, partially dirty accumulator, */ + /* with existing dirty region NOT aligning with the new block */ + /* ==================================================================== */ + + /* Write data to the accumulator to fill it just under 1MB (max size), + * but not quite full. This will force the accumulator to, on subsequent + * writes, a) have to adjust since it's nearly full, and b) prevent + * an increase in size because it's already at it's maximum size */ + if(accum_write(0, (1024 * 1024) - 5, wbuf) < 0) FAIL_STACK_ERROR; + + /* Flush the accumulator to clean it */ + if(accum_flush() < 0) FAIL_STACK_ERROR + + /* write to part of the accumulator so just the start of it is dirty */ + if(accum_write(0, 5, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a small (~340KB) piece of data to the other end of the accumulator */ + /* ==> Accumulator will need more buffer space */ + /* ==> Accumulator will try to resize, but see that it's getting too big */ + /* ==> Size of new block is less than than half maximum size of accumulator */ + /* ==> New block being appended to accumulator */ + /* ==> We can slide the dirty region down, to accomodate the request */ + /* ==> Max Buffer Size - (dirty offset + adjust size) >= 2 * size) */ + /* ==> Need to adjust location of accumulator while appending */ + /* ==> Accumulator will need to be reallocated */ + if(accum_write(1048571, 349523, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a piece of metadata outside current accumulator to force write + to disk */ + if(accum_write(1398900, 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read in the piece we wrote to disk above, and then verify that + the data is as expected */ + if(accum_read(1048571, 349523, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 349523) != 0) TEST_ERROR; + + /* Reset accumulator for next case */ + if(accum_reset() < 0) FAIL_STACK_ERROR; + + /* ==================================================================== */ + /* Case 5: Appending small block to large, partially dirty accumulator, */ + /* with existing dirty region aligning with new block */ + /* ==================================================================== */ + + /* Write data to the accumulator to fill it just under max size (but not full) */ + if(accum_write(0, (1024 * 1024) - 5, wbuf) < 0) FAIL_STACK_ERROR; + + /* Flush the accumulator to clean it */ + if(accum_flush() < 0) FAIL_STACK_ERROR + + /* write to part of the accumulator so it's dirty, but not entirely dirty */ + /* (just the begging few bytes will be clean) */ + if(accum_write(10, (1024 * 1024) - 15, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a small piece of data to the dirty end of the accumulator */ + /* ==> Accumulator will need more buffer space */ + /* ==> Accumulator will try to resize, but see that it's getting too big */ + /* ==> Size of new block is less than than half maximum size of accumulator */ + /* ==> New block being appended to accumulator */ + /* ==> We can slide the dirty region down, to accomodate the request */ + /* ==> Max Buffer Size - (dirty offset + adjust size) < 2 * size) */ + /* ==> Need to adjust location of accumulator while appending */ + if(accum_write((1024 * 1024) - 5, 10, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a piece of metadata outside current accumulator to force write + to disk */ + if(accum_write(0, 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read in the piece we wrote to disk above, and then verify that + the data is as expected */ + if(accum_read((1024 * 1024) - 5, 10, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 10) != 0) TEST_ERROR; + + /* Reset accumulator for next case */ + if(accum_reset() < 0) FAIL_STACK_ERROR; + + /* ================================================================= */ + /* Case 6: Appending small block to large, fully dirty accumulator */ + /* ================================================================= */ + + /* Write data to the accumulator to fill it just under 1MB (max size), + * but not quite full. This will force the accumulator to, on subsequent + * writes, a) have to adjust since it's nearly full, and b) prevent + * an increase in size because it's already at it's maximum size */ + if(accum_write(0, (1024 * 1024) - 5, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a small (~340KB) piece of data to the end of the accumulator */ + /* ==> Accumulator will need more buffer space */ + /* ==> Accumulator will try to resize, but see that it's getting too big */ + /* ==> Size of new block is less than than half maximum size of accumulator */ + /* ==> New block being appended to accumulator */ + /* ==> We cannot slide dirty region down, it's all dirty */ + /* ==> Dirty region overlaps region to eliminate from accumulator */ + /* ==> Need to adjust location of accumulator while appending */ + if(accum_write(1048571, 349523, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a piece of metadata outside current accumulator to force write + to disk */ + if(accum_write(1398900, 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read in the piece we wrote to disk above, and then verify that + the data is as expected */ + if(accum_read(1048571, 349523, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 349523) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 1; +} /* test_accum_adjust */ + + +/*------------------------------------------------------------------------- + * Function: test_read_after + * + * Purpose: This test will verify the case when metadata is read partly + * from the accumulator and partly from disk. The test will + * write a block of data at address 512, force the data to be + * written to disk, write new data partially overlapping the + * original block from below, then read data at address 512. + * The data read should be partly new and partly original. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Larry Knox + * October 8, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_read_after(void) +{ + int i = 0; + int s = 128; /* size of buffer */ + int32_t *wbuf, *rbuf; + + TESTING("reading data from both accumulator and disk"); + + /* Allocate buffers */ + wbuf = (int32_t *)HDmalloc((size_t)s * sizeof(int32_t)); + HDassert(wbuf); + rbuf = (int32_t *)HDcalloc((size_t)s, sizeof(int32_t)); + HDassert(rbuf); + + /* Fill up write buffer with 1s */ + for(i = 0; i < s; i++) + wbuf[i] = 1; + + /* Write data to the accumulator to fill it. */ + if(accum_write(512, 512, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write a piece of metadata outside current accumulator to force write + to disk */ + if(accum_write(0, 1, wbuf) < 0) FAIL_STACK_ERROR; + + /* Fill up write buffer with 2s */ + for(i = 0; i < s; i++) + wbuf[i] = 2; + + /* Write a block of 2s of the original size that will overlap the lower half + of the original block */ + if(accum_write(256, 512, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read 128 bytes at the original address, and then */ + if(accum_read(512, 512, rbuf) < 0) FAIL_STACK_ERROR; + + /* Set the second half of wbuf back to 1s */ + for(i = 64; i < s; i++) + wbuf[i] = 1; + + /* Read in the piece we wrote to disk above, and then verify that + the data is as expected */ + if(accum_read(512, 512, rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf, rbuf, 128) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + + return 1; +} /* end test_read_after */ + + +/*------------------------------------------------------------------------- + * Function: test_big + * + * Purpose: This test exercises writing large pieces of metadata to the + * file. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Quincey Koziol + * October 12, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_big(void) +{ + uint8_t *wbuf, *wbuf2, *rbuf, *zbuf; /* Buffers for reading & writing, etc */ + unsigned u; /* Local index variable */ + + /* Allocate space for the write & read buffers */ + wbuf = (uint8_t *)HDmalloc(BIG_BUF_SIZE); + HDassert(wbuf); + wbuf2 = (uint8_t *)HDmalloc(BIG_BUF_SIZE); + HDassert(wbuf2); + rbuf = (uint8_t *)HDcalloc(BIG_BUF_SIZE + 1536, 1); + HDassert(rbuf); + zbuf = (uint8_t *)HDcalloc(BIG_BUF_SIZE + 1536, 1); + HDassert(zbuf); + + /* Initialize write buffers */ + for(u = 0; u < BIG_BUF_SIZE; u++) { + wbuf[u] = (uint8_t)u; + wbuf2[u] = (uint8_t)(u + 1); + } /* end for */ + + TESTING("large metadata I/O operations"); + + /* Write large data segment to file */ + if(accum_write(0, BIG_BUF_SIZE, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read entire segment back from file */ + if(accum_read(0, BIG_BUF_SIZE, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf, rbuf, BIG_BUF_SIZE) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(0, BIG_BUF_SIZE, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to middle of accumulator */ + if(accum_write(1024, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read entire segment back from file */ + /* (Read covers entire dirty region) */ + if(accum_read(0, BIG_BUF_SIZE, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(zbuf, rbuf, 1024) != 0) TEST_ERROR; + if(HDmemcmp(wbuf, rbuf + 1024, 1024) != 0) TEST_ERROR; + if(HDmemcmp(zbuf, rbuf + 2048, (BIG_BUF_SIZE - 2048)) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(1024, 1024, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to overlap with end of "big" region */ + if(accum_write(BIG_BUF_SIZE - 512, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read entire segment back from file */ + /* (Read covers bottom half of dirty region) */ + if(accum_read(0, BIG_BUF_SIZE, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(zbuf, rbuf, (BIG_BUF_SIZE - 512)) != 0) TEST_ERROR; + if(HDmemcmp(wbuf, rbuf + (BIG_BUF_SIZE - 512), 512) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(BIG_BUF_SIZE - 512, 1024, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to overlap with beginning of "big" region */ + if(accum_write(0, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read entire segment back from file */ + /* (Read covers bottom half of dirty region) */ + if(accum_read(512, BIG_BUF_SIZE, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf + 512, rbuf, 512) != 0) TEST_ERROR; + if(HDmemcmp(zbuf, rbuf + 512, (BIG_BUF_SIZE - 512)) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(0, 1024, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to middle of accumulator */ + /* (With write buffer #1) */ + if(accum_write(1024, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Write covers entire dirty region) */ + if(accum_write(0, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read entire segment back from file */ + if(accum_read(0, BIG_BUF_SIZE, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf2, rbuf, BIG_BUF_SIZE) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(0, BIG_BUF_SIZE, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to overlap with end of "big" region */ + /* (With write buffer #1) */ + if(accum_write(BIG_BUF_SIZE - 512, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Read covers bottom half of dirty region) */ + if(accum_write(0, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read both segments back from file */ + if(accum_read(0, BIG_BUF_SIZE + 512, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf2, rbuf, BIG_BUF_SIZE) != 0) TEST_ERROR; + if(HDmemcmp(wbuf + 512, rbuf + BIG_BUF_SIZE, 512) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(0, BIG_BUF_SIZE + 512, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE + 512); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to be past "big" region */ + /* (With write buffer #1) */ + if(accum_write(BIG_BUF_SIZE + 512, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read section before "big" region */ + /* (To enlarge accumulator, to it will intersect with big write) */ + if(accum_read(BIG_BUF_SIZE - 512, 1024, rbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Doesn't overlap with small section) */ + if(accum_write(0, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read both segments & gap back from file */ + if(accum_read(0, BIG_BUF_SIZE + 1024, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf2, rbuf, BIG_BUF_SIZE) != 0) TEST_ERROR; + if(HDmemcmp(zbuf, rbuf + BIG_BUF_SIZE, 512) != 0) TEST_ERROR; + if(HDmemcmp(wbuf, rbuf + BIG_BUF_SIZE + 512, 512) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(0, BIG_BUF_SIZE + 1536, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE + 1024); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section to be past "big" region */ + /* (With write buffer #1) */ + if(accum_write(BIG_BUF_SIZE + 512, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read section before "big" region */ + /* (To enlarge accumulator, so it will intersect with big write) */ + if(accum_read(BIG_BUF_SIZE - 512, 1024, rbuf) < 0) FAIL_STACK_ERROR; + if(accum_read(BIG_BUF_SIZE + 1536, 1024, rbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Overwriting dirty region, but not invalidating entire accumulator) */ + if(accum_write(1536, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read both segments & gap back from file */ + if(accum_read(0, BIG_BUF_SIZE + 1536, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(zbuf, rbuf, 1536) != 0) TEST_ERROR; + if(HDmemcmp(wbuf2, rbuf + 1536, BIG_BUF_SIZE) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(1536, BIG_BUF_SIZE, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE + 1536); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section before "big" region */ + /* (With write buffer #1) */ + if(accum_write(1024, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read section before "big" region */ + /* (To enlarge accumulator, so it will intersect with big write) */ + if(accum_read(0, 1024, rbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Overwriting dirty region, but not invalidating entire accumulator) */ + if(accum_write(512, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read both segments & gap back from file */ + if(accum_read(0, BIG_BUF_SIZE + 512, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(zbuf, rbuf, 512) != 0) TEST_ERROR; + if(HDmemcmp(wbuf2, rbuf + 512, BIG_BUF_SIZE) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(512, BIG_BUF_SIZE, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE + 512); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section before "big" region */ + /* (With write buffer #1) */ + if(accum_write(0, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read section before "big" region */ + /* (To enlarge accumulator, so it will intersect with big write) */ + if(accum_read(1024, 1024, rbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Avoiding dirty region, and not invalidating entire accumulator) */ + if(accum_write(1536, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read both segments & gap back from file */ + if(accum_read(0, BIG_BUF_SIZE + 1536, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf, rbuf, 1024) != 0) TEST_ERROR; + if(HDmemcmp(zbuf, rbuf + 1024, 512) != 0) TEST_ERROR; + if(HDmemcmp(wbuf2, rbuf + 1536, BIG_BUF_SIZE) != 0) TEST_ERROR; + + + /* Reset data in file back to zeros & reset the read buffer */ + if(accum_write(0, BIG_BUF_SIZE + 1536, zbuf) < 0) FAIL_STACK_ERROR; + HDmemset(rbuf, 0, BIG_BUF_SIZE + 1536); + if(accum_reset() < 0) FAIL_STACK_ERROR; + + + /* Write small section before "big" region */ + /* (With write buffer #1) */ + if(accum_write(0, 1024, wbuf) < 0) FAIL_STACK_ERROR; + + /* Read section before "big" region */ + /* (To enlarge accumulator, so it will intersect with big write) */ + if(accum_read(1024, 1024, rbuf) < 0) FAIL_STACK_ERROR; + + /* Write entire segment to from file */ + /* (With write buffer #2) */ + /* (Partially overwriting dirty region, and not invalidating entire accumulator) */ + if(accum_write(512, BIG_BUF_SIZE, wbuf2) < 0) FAIL_STACK_ERROR; + + /* Read both segments back from file */ + if(accum_read(0, BIG_BUF_SIZE + 512, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read */ + if(HDmemcmp(wbuf, rbuf, 512) != 0) TEST_ERROR; + if(HDmemcmp(wbuf2, rbuf + 512, BIG_BUF_SIZE) != 0) TEST_ERROR; + + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(wbuf2); + HDfree(rbuf); + HDfree(zbuf); + + return 0; + +error: + HDfree(wbuf); + HDfree(wbuf2); + HDfree(rbuf); + HDfree(zbuf); + + return 1; +} /* end test_big() */ + + +/*------------------------------------------------------------------------- + * Function: test_random_write + * + * Purpose: This test writes random pieces of data to the file and + * then reads it all back. + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Quincey Koziol + * October 11, 2010 + * + *------------------------------------------------------------------------- + */ +unsigned +test_random_write(void) +{ + uint8_t *wbuf, *rbuf; /* Buffers for reading & writing */ + unsigned long seed = 0; /* Random # seed */ + size_t *off; /* Offset of buffer segments to write */ + size_t *len; /* Size of buffer segments to write */ + size_t cur_off; /* Current offset */ + size_t nsegments; /* Number of segments to write */ + size_t swap; /* Position to swap with */ + unsigned u; /* Local index variable */ + + /* Allocate space for the write & read buffers */ + wbuf = (uint8_t *)malloc(RANDOM_BUF_SIZE); + HDassert(wbuf); + rbuf = (uint8_t *)calloc(RANDOM_BUF_SIZE, 1); + HDassert(rbuf); + + /* Initialize write buffer */ + for(u = 0; u < RANDOM_BUF_SIZE; u++) + wbuf[u] = (uint8_t)u; + + TESTING("random writes to accumulator"); + + /* Choose random # seed */ + seed = (unsigned long)HDtime(NULL); +#ifdef QAK +/* seed = (unsigned long)1155438845; */ +HDfprintf(stderr, "Random # seed was: %lu\n", seed); +#endif /* QAK */ + HDsrandom(seed); + + /* Allocate space for the segment length buffer */ + off = (size_t *)malloc(MAX_RANDOM_SEGMENTS * sizeof(size_t)); + HDassert(off); + len = (size_t *)malloc(MAX_RANDOM_SEGMENTS * sizeof(size_t)); + HDassert(len); + + /* Randomly choose lengths of segments */ + cur_off = 0; + for(u = 0; u < MAX_RANDOM_SEGMENTS; ) { + size_t length = 0; /* Length of current segment */ + + /* Choose random length of segment, allowing for variance */ + do { + length += (size_t)(HDrandom() % RAND_SEG_LEN) + 1; + } while((HDrandom() & 256) >= 128); /* end while */ + + /* Check for going off end of buffer */ + if((cur_off + length) > RANDOM_BUF_SIZE) + length = RANDOM_BUF_SIZE - cur_off; + + /* Set offset & length of segment */ + off[u] = cur_off; + len[u] = length; + + /* Advance array offset */ + u++; + + /* Advance current offset */ + cur_off += length; + + /* If we've used up entire buffer before hitting limit of segments, get out */ + if(cur_off >= RANDOM_BUF_SIZE) + break; + } /* end for */ + nsegments = u; + + /* Increase length of last segment, if it doesn't reach end of buffer */ + if(nsegments < MAX_RANDOM_SEGMENTS) + len[nsegments - 1] = RANDOM_BUF_SIZE - off[nsegments - 1]; + + /* Shuffle order of segments, to randomize positions to write */ + for(u = 0; u < nsegments; u++) { + size_t tmp; /* Temporary holder for offset & length values */ + + /* Choose value within next few elements to to swap with */ + swap = ((size_t)HDrandom() % 8) + u; + if(swap >= nsegments) + swap = nsegments - 1; + + /* Swap values */ + tmp = off[u]; off[u] = off[swap]; off[swap] = tmp; + tmp = len[u]; len[u] = len[swap]; len[swap] = tmp; + } /* end for */ + + /* Write data segments to file */ + for(u = 0; u < nsegments; u++) { + if(accum_write(RANDOM_BASE_OFF + off[u], len[u], wbuf + off[u]) < 0) FAIL_STACK_ERROR; + + /* Verify individual reads */ + if(accum_read(RANDOM_BASE_OFF + off[u], len[u], rbuf) < 0) FAIL_STACK_ERROR; + if(HDmemcmp(wbuf + off[u], rbuf, len[u]) != 0) TEST_ERROR; + } /* end for */ + + /* Read entire region back from file */ + if(accum_read(RANDOM_BASE_OFF, RANDOM_BUF_SIZE, rbuf) < 0) FAIL_STACK_ERROR; + + /* Verify data read back in */ + if(HDmemcmp(wbuf, rbuf, RANDOM_BUF_SIZE) != 0) TEST_ERROR; + + if(accum_reset() < 0) FAIL_STACK_ERROR; + + PASSED(); + + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + HDfree(off); + HDfree(len); + + return 0; + +error: + /* Release memory */ + HDfree(wbuf); + HDfree(rbuf); + HDfree(off); + HDfree(len); + + HDfprintf(stderr, "Random # seed was: %lu\n", seed); + return 1; +} /* end test_random_write() */ + + +/*------------------------------------------------------------------------- + * Function: accum_printf + * + * Purpose: Debug function to print some stats about the accumulator + * + * Return: Success: SUCCEED + * Failure: FAIL + * + * Programmer: Mike McGreevy + * October 7, 2010 + * + *------------------------------------------------------------------------- + */ +void +accum_printf(void) +{ + H5F_meta_accum_t * accum = &f->shared->accum; + + printf("\n"); + printf("Current contents of accumulator:\n"); + if (accum->alloc_size == 0) { + printf("=====================================================\n"); + printf(" No accumulator allocated.\n"); + printf("=====================================================\n"); + } else { + printf("=====================================================\n"); + printf(" accumulator allocated size == %lu\n", (unsigned long)accum->alloc_size); + printf(" accumulated data size == %lu\n", (unsigned long)accum->size); + printf(" accumulator dirty? == %d\n", accum->dirty); + printf("=====================================================\n"); + printf(" start of accumulated data, loc = %llu\n", accum->loc); + if (accum->dirty) printf(" start of dirty region, loc = %llu\n", accum->loc + accum->dirty_off); + if (accum->dirty) printf(" end of dirty region, loc = %llu\n", accum->loc + accum->dirty_off + accum->dirty_len); + printf(" end of accumulated data, loc = %llu\n", accum->loc + accum->size); + printf(" end of accumulator allocation, loc = %llu\n", accum->loc + accum->alloc_size); + printf("=====================================================\n"); + } + printf("\n\n"); +} /* accum_printf() */ + |