diff options
Diffstat (limited to 'test/tselect.c')
-rw-r--r-- | test/tselect.c | 5244 |
1 files changed, 5066 insertions, 178 deletions
diff --git a/test/tselect.c b/test/tselect.c index b8c59d8..89cd9e5 100644 --- a/test/tselect.c +++ b/test/tselect.c @@ -159,6 +159,9 @@ #define SPACERE5_DIM3 12 #define SPACERE5_DIM4 8 +/* #defines for shape same / different rank tests */ +#define SS_DR_MAX_RANK 5 + /* Location comparison function */ @@ -1585,6 +1588,2031 @@ test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist) HDfree(rbuf); } /* test_select_hyper_contig3() */ + +/**************************************************************** +** +** verify_select_hyper_contig_dr__run_test(): Verify data from +** test_select_hyper_contig_dr__run_test() +** +****************************************************************/ +static void +verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, + size_t cube_size, unsigned edge_size, unsigned cube_rank) +{ + const uint16_t *cube_ptr; /* Pointer into the cube buffer */ + uint16_t expected_value; /* Expected value in dataset */ + unsigned i, j, k, l, m; /* Local index variables */ + size_t s; /* Local index variable */ + hbool_t mis_match; /* Flag to indicate mis-match in expected value */ + + HDassert(cube_buf); + HDassert(cube_size > 0); + + expected_value = 0; + mis_match = FALSE; + cube_ptr = cube_buf; + s = 0; + i = 0; + do { + j = 0; + do { + k = 0; + do { + l = 0; + do { + m = 0; + do { + /* Sanity check */ + HDassert(s < cube_size); + + /* Check for correct value */ + if(*cube_ptr != expected_value) + mis_match = TRUE; + + /* Advance to next element */ + cube_ptr++; + expected_value++; + s++; + m++; + } while((cube_rank > 0) && (m < edge_size)); + l++; + } while((cube_rank > 1) && (l < edge_size)); + k++; + } while((cube_rank > 2) && (k < edge_size)); + j++; + } while((cube_rank > 3) && (j < edge_size)); + i++; + } while((cube_rank > 4) && (i < edge_size)); + if(mis_match) + TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__); +} /* verify_select_hyper_contig_dr__run_test() */ + + +/**************************************************************** +** +** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace) +** selection code with contiguous source and target having +** different ranks but the same shape. We have already +** tested H5S_shape_same in isolation, so now we try to do +** I/O. +** +****************************************************************/ +static void +test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, + const uint16_t *zero_buf, unsigned edge_size, unsigned chunk_edge_size, + unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist) +{ + hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */ + hid_t fapl; /* File access property list */ + hid_t fid1; /* File ID */ + hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */ + hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */ + hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */ + hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ + hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ + hid_t small_cube_dataset; /* Dataset ID */ + hid_t large_cube_dataset; /* Dataset ID */ + size_t start_index; /* Offset within buffer to begin inspecting */ + size_t stop_index; /* Offset within buffer to end inspecting */ + uint16_t expected_value; /* Expected value in dataset */ + uint16_t * small_cube_buf_1; /* Buffer for small cube data */ + uint16_t * large_cube_buf_1; /* Buffer for large cube data */ + uint16_t * ptr_1; /* Temporary pointer into cube data */ + hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */ + hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */ + hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */ + hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */ + hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */ + hsize_t * start_ptr; /* Actual hyperslab start offset */ + hsize_t * stride_ptr; /* Actual hyperslab stride */ + hsize_t * count_ptr; /* Actual hyperslab count */ + hsize_t * block_ptr; /* Actual hyperslab block size */ + size_t small_cube_size; /* Number of elements in small cube */ + size_t large_cube_size; /* Number of elements in large cube */ + unsigned u, v, w, x; /* Local index variables */ + size_t s; /* Local index variable */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); + MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size, chunk_edge_size)); + + HDassert(edge_size >= 6); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(small_rank > 0); + HDassert(small_rank < large_rank); + HDassert(large_rank <= SS_DR_MAX_RANK); + + /* Compute cube sizes */ + small_cube_size = large_cube_size = (size_t)1; + for(u = 0; u < large_rank; u++) { + if(u < small_rank) + small_cube_size *= (size_t)edge_size; + + large_cube_size *= (size_t)edge_size; + } /* end for */ + + HDassert(large_cube_size < (size_t)UINT_MAX); + + /* set up the start, stride, count, and block pointers */ + start_ptr = &(start[SS_DR_MAX_RANK - large_rank]); + stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]); + count_ptr = &(count[SS_DR_MAX_RANK - large_rank]); + block_ptr = &(block[SS_DR_MAX_RANK - large_rank]); + + /* Allocate buffers */ + small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); + CHECK(small_cube_buf_1, NULL, "HDcalloc"); + large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); + CHECK(large_cube_buf_1, NULL, "HDcalloc"); + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Use the 'core' VFD for this test */ + ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); + CHECK(ret, FAIL, "H5Pset_fapl_core"); + + /* Create file */ + fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + CHECK(fid1, FAIL, "H5Fcreate"); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + /* setup dims: */ + dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size; + + /* Create small cube dataspaces */ + small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(small_cube_sid, FAIL, "H5Screate_simple"); + + /* Create large cube dataspace */ + mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); + file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if(chunk_edge_size > 0) { + hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */ + + chunk_dims[0] = chunk_dims[1] = + chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = (hsize_t)chunk_edge_size; + + small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + + large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + } /* end if */ + + /* create the small cube dataset */ + small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, + small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); + CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default small dataset DCPL */ + if(small_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(small_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* create the large cube dataset */ + large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, + file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); + CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default large dataset DCPL */ + if(large_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(large_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + + /* write initial data to the on disk datasets */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, + small_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_large_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* read initial data from disk and verify that it is as expected. */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, + small_cube_sid, xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, + edge_size, small_rank); + + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, + file_large_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, + edge_size, large_rank); + + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5S_select_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D slice from the on disk large cube, and + * verifying that the data read is correct. Verify that H5S_select_shape_same() + * returns true on the memory and file selections. + */ + + + /* set up start, stride, count, and block -- note that we will + * change start[] so as to read slices of the large cube. + */ + for(u = 0; u < SS_DR_MAX_RANK; u++) { + start[u] = 0; + stride[u] = 1; + count[u] = 1; + if((SS_DR_MAX_RANK - u) > small_rank) + block[u] = 1; + else + block[u] = (hsize_t)edge_size; + } /* end for */ + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(file_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + file_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + /* Read selection from disk */ + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + file_large_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* verify that expected data is retrieved */ + mis_match = FALSE; + ptr_1 = small_cube_buf_1; + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + for(s = 0; s < small_cube_size; s++ ) { + if(*ptr_1 != expected_value ) + mis_match = TRUE; + ptr_1++; + expected_value++; + } /* end for */ + if(mis_match) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + + /* similarly, read the on disk small cube into slices through the in memory + * large cube, and verify that the correct data (and only the correct data) + * is read. + */ + + /* zero out the in-memory large cube */ + HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t)); + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(mem_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* Read selection from disk */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + small_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was read. + */ + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + mis_match = FALSE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + for(; s <= stop_index; s++) { + if(*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + for(; s < large_cube_size; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + if(mis_match) + TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__); + + /* Zero out the buffer for the next pass */ + HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t)); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5S_select_shape_same() views as being of the same shape. + * + * Start by writing small_rank D slices from the in memory large cube, to + * the the on disk small cube dataset. After each write, read the small + * cube dataset back from disk, and verify that it contains the expected + * data. Verify that H5S_select_shape_same() returns true on the + * memory and file selections. + */ + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + small_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* select the portion of the in memory large cube from which we + * are going to write data. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(mem_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* verify that H5S_select_shape_same() reports the in + * memory slice through the cube selection and the + * on disk full small cube selections as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the slice from the in memory large cube to the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + small_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* read the on disk small cube into memory */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + small_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that expected data is retrieved */ + mis_match = FALSE; + ptr_1 = small_cube_buf_1; + expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + for(s = 0; s < small_cube_size; s++) { + if(*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + if(mis_match ) + TestErrPrintf("small cube data don't match! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + + /* Now write the contents of the in memory small cube to slices of + * the on disk cube. After each write, read the on disk cube + * into memeory, and verify that it contains the expected + * data. Verify that H5S_select_shape_same() returns true on + * the memory and file selections. + */ + + /* select the entire memory and file cube dataspaces */ + ret = H5Sselect_all(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + ret = H5Sselect_all(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + u = 0; + do { + v = 0; + do { + w = 0; + do { + x = 0; + do { + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + /* zero out the on disk cube */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_USHORT, + mem_large_cube_sid, + file_large_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* select the portion of the in memory large cube to which we + * are going to write data. + */ + start[0] = (hsize_t)u; + start[1] = (hsize_t)v; + start[2] = (hsize_t)w; + start[3] = (hsize_t)x; + start[4] = (hsize_t)0; + + ret = H5Sselect_hyperslab(file_large_cube_sid, + H5S_SELECT_SET, + start_ptr, + stride_ptr, + count_ptr, + block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* verify that H5S_select_shape_same() reports the in + * memory full selection of the small cube and the + * on disk slice through the large cube selection + * as having the same shape. + */ + check = H5S_select_shape_same_test(small_cube_sid, + file_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the cube from memory to the target slice of the disk cube */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_UINT16, + small_cube_sid, + file_large_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* read the on disk cube into memory */ + ret = H5Sselect_all(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sselect_all"); + + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + file_large_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was read. + */ + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert(start_index < stop_index); + HDassert(stop_index <= large_cube_size); + + mis_match = FALSE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + for(; s <= stop_index; s++) { + if(*ptr_1 != expected_value) + mis_match = TRUE; + expected_value++; + ptr_1++; + } /* end for */ + for(; s < large_cube_size; s++) { + if(*ptr_1 != 0) + mis_match = TRUE; + ptr_1++; + } /* end for */ + if(mis_match) + TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); + + x++; + } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); + w++; + } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); + v++; + } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); + u++; + } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); + + /* Close memory dataspaces */ + ret = H5Sclose(small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + /* Close disk dataspace */ + ret = H5Sclose(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + /* Close Datasets */ + ret = H5Dclose(small_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + ret = H5Dclose(large_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid1); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(small_cube_buf_1); + HDfree(large_cube_buf_1); + +} /* test_select_hyper_contig_dr__run_test() */ + + +/**************************************************************** +** +** test_select_hyper_contig_dr(): Test H5S (dataspace) +** selection code with contiguous source and target having +** different ranks but the same shape. We have already +** tested H5S_shape_same in isolation, so now we try to do +** I/O. +** +****************************************************************/ +static void +test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist) +{ + int test_num = 0; + unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ + unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ + unsigned small_rank; /* Current rank of small dataset */ + unsigned large_rank; /* Current rank of large dataset */ + uint16_t *cube_buf; /* Buffer for writing cube data */ + uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ + uint16_t *cube_ptr; /* Temporary pointer into cube data */ + unsigned max_rank = 5; /* Max. rank to use */ + size_t max_cube_size; /* Max. number of elements in largest cube */ + size_t s; /* Local index variable */ + unsigned u; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n")); + + /* Compute max. cube size */ + max_cube_size = (size_t)1; + for(u = 0; u < max_rank; u++) + max_cube_size *= (size_t)edge_size; + + /* Allocate cube buffer for writing values */ + cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); + CHECK(cube_buf, NULL, "HDmalloc"); + + /* Initialize the cube buffer */ + cube_ptr = cube_buf; + for(s = 0; s < max_cube_size; s++) + *cube_ptr++ = (uint16_t)s; + + /* Allocate cube buffer for zeroing values on disk */ + zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); + CHECK(zero_buf, NULL, "HDcalloc"); + + for(large_rank = 1; large_rank <= max_rank; large_rank++) { + for(small_rank = 1; small_rank < large_rank; small_rank++) { + chunk_edge_size = 0; + test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, + edge_size, chunk_edge_size, small_rank, large_rank, + dset_type, xfer_plist); + test_num++; + + chunk_edge_size = 3; + test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, + edge_size, chunk_edge_size, small_rank, large_rank, + dset_type, xfer_plist); + test_num++; + } /* for loop on small rank */ + } /* for loop on large rank */ + + HDfree(cube_buf); + HDfree(zero_buf); + +} /* test_select_hyper_contig_dr() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__select_checker_board(): +** Given an n-cube data space with each edge of length +** edge_size, and a checker_edge_size either select a checker +** board selection of the entire cube(if sel_rank == n), +** or select a checker board selection of a +** sel_rank dimensional slice through n-cube parallel to the +** sel_rank fastest changing indices, with origin (in the +** higher indices) as indicated by the start array. +** +** Note that this function, like all its relatives, is +** hard coded to presume a maximum n-cube rank of 5. +** While this maximum is declared as a constant, increasing +** it will require extensive coding in addition to changing +** the value of the constant. +** +** JRM -- 9/9/09 +** +****************************************************************/ +static void +test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, + unsigned tgt_n_cube_rank, unsigned edge_size, unsigned checker_edge_size, + unsigned sel_rank, hsize_t sel_start[]) +{ + hbool_t first_selection = TRUE; + unsigned n_cube_offset; + unsigned sel_offset; + hsize_t base_count; + hsize_t offset_count; + hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */ + hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */ + hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */ + hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */ + unsigned i, j, k, l, m; /* Local index variable */ + unsigned u; /* Local index variables */ + herr_t ret; /* Generic return value */ + + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(0 < sel_rank); + HDassert(sel_rank <= tgt_n_cube_rank); + HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK); + + sel_offset = SS_DR_MAX_RANK - sel_rank; + n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank; + HDassert(n_cube_offset <= sel_offset); + + /* First, compute the base count (which assumes start == 0 + * for the associated offset) and offset_count (which + * assumes start == checker_edge_size for the associated + * offset). + */ + base_count = edge_size / (checker_edge_size * 2); + if((edge_size % (checker_edge_size * 2)) > 0) + base_count++; + + offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2); + if(((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) + offset_count++; + + /* Now set up the stride and block arrays, and portions of the start + * and count arrays that will not be altered during the selection of + * the checker board. + */ + u = 0; + while(u < n_cube_offset) { + /* these values should never be used */ + start[u] = 0; + stride[u] = 0; + count[u] = 0; + block[u] = 0; + + u++; + } /* end while */ + + while(u < sel_offset) { + start[u] = sel_start[u]; + stride[u] = 2 * edge_size; + count[u] = 1; + block[u] = 1; + + u++; + } /* end while */ + + while(u < SS_DR_MAX_RANK) { + stride[u] = 2 * checker_edge_size; + block[u] = checker_edge_size; + + u++; + } /* end while */ + + i = 0; + do { + if(0 >= sel_offset) { + if(i == 0) { + start[0] = 0; + count[0] = base_count; + } /* end if */ + else { + start[0] = checker_edge_size; + count[0] = offset_count; + } /* end else */ + } /* end if */ + + j = 0; + do { + if(1 >= sel_offset) { + if(j == 0 ) { + start[1] = 0; + count[1] = base_count; + } /* end if */ + else { + start[1] = checker_edge_size; + count[1] = offset_count; + } /* end else */ + } /* end if */ + + k = 0; + do { + if(2 >= sel_offset) { + if(k == 0) { + start[2] = 0; + count[2] = base_count; + } /* end if */ + else { + start[2] = checker_edge_size; + count[2] = offset_count; + } /* end else */ + } /* end if */ + + l = 0; + do { + if(3 >= sel_offset) { + if(l == 0) { + start[3] = 0; + count[3] = base_count; + } /* end if */ + else { + start[3] = checker_edge_size; + count[3] = offset_count; + } /* end else */ + } /* end if */ + + m = 0; + do { + if(4 >= sel_offset) { + if(m == 0) { + start[4] = 0; + count[4] = base_count; + } /* end if */ + else { + start[4] = checker_edge_size; + count[4] = offset_count; + } /* end else */ + } /* end if */ + + if(((i + j + k + l + m) % 2) == 0) { + if(first_selection) { + first_selection = FALSE; + + ret = H5Sselect_hyperslab(tgt_n_cube_sid, + H5S_SELECT_SET, + &(start[n_cube_offset]), + &(stride[n_cube_offset]), + &(count[n_cube_offset]), + &(block[n_cube_offset])); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + else { + ret = H5Sselect_hyperslab(tgt_n_cube_sid, + H5S_SELECT_OR, + &(start[n_cube_offset]), + &(stride[n_cube_offset]), + &(count[n_cube_offset]), + &(block[n_cube_offset])); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end else */ + } /* end if */ + + m++; + } while((m <= 1) && (4 >= sel_offset)); + l++; + } while((l <= 1) && (3 >= sel_offset)); + k++; + } while((k <= 1) && (2 >= sel_offset)); + j++; + } while((j <= 1) && (1 >= sel_offset)); + i++; + } while((i <= 1) && (0 >= sel_offset)); + + /* Wierdness alert: + * + * Some how, it seems that selections can extend beyond the + * boundaries of the target data space -- hence the following + * code to manually clip the selection back to the data space + * proper. + */ + for(u = 0; u < SS_DR_MAX_RANK; u++) { + start[u] = 0; + stride[u] = edge_size; + count[u] = 1; + block[u] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); +} /* test_select_hyper_checker_board_dr__select_checker_board() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__verify_data(): +** +** Examine the supplied buffer to see if it contains the +** expected data. Return TRUE if it does, and FALSE +** otherwise. +** +** The supplied buffer is presumed to contain the results +** of read or writing a checkerboard selection of an +** n-cube, or a checkerboard selection of an m (1 <= m < n) +** dimensional slice through an n-cube parallel to the +** fastest changing indices. +** +** It is further presumed that the buffer was zeroed before +** the read, and that the n-cube was initialize with the +** natural numbers listed in order from the origin along +** the fastest changing axis. +** +** Thus for a 10x10x10 3-cube, the value stored in location +** (x, y, z) (assuming that z is the fastest changing index +** and x the slowest) is assumed to be: +** +** (10 * 10 * x) + (10 * y) + z +** +** Thus, if the buffer contains the result of reading a +** checker board selection of a 10x10x10 3-cube, location +** (x, y, z) will contain zero if it is not in a checker, +** and 100x + 10y + z if (x, y, z) is in a checker. +** +** If the buffer contains the result of reading a 3 +** dimensional slice (parallel to the three fastest changing +** indices) through an n cube (n > 3), then the expected +** values in the buffer will be the same, save that we will +** add a constant determined by the origin of the 3-cube +** in the n-cube. +** +** Finally, the function presumes that the first element +** of the buffer resides either at the origin of either +** a selected or an unselected checker. +** +****************************************************************/ +static hbool_t +test_select_hyper_checker_board_dr__verify_data(uint16_t * buf_ptr, + unsigned rank, unsigned edge_size, unsigned checker_edge_size, + uint16_t first_expected_val, hbool_t buf_starts_in_checker) +{ + hbool_t good_data = TRUE; + hbool_t in_checker; + hbool_t start_in_checker[5]; + uint16_t expected_value; + uint16_t * val_ptr; + unsigned i, j, k, l, m; /* to track position in n-cube */ + unsigned v, w, x, y, z; /* to track position in checker */ + const unsigned test_max_rank = 5; /* code changes needed if this is increased */ + + HDassert(buf_ptr != NULL); + HDassert(0 < rank); + HDassert(rank <= test_max_rank); + HDassert(edge_size >= 6); + HDassert(0 < checker_edge_size); + HDassert(checker_edge_size <= edge_size); + HDassert(test_max_rank <= SS_DR_MAX_RANK); + + val_ptr = buf_ptr; + expected_value = first_expected_val; + + i = 0; + v = 0; + start_in_checker[0] = buf_starts_in_checker; + do { + if(v >= checker_edge_size) { + start_in_checker[0] = !start_in_checker[0]; + v = 0; + } /* end if */ + + j = 0; + w = 0; + start_in_checker[1] = start_in_checker[0]; + do { + if(w >= checker_edge_size) { + start_in_checker[1] = !start_in_checker[1]; + w = 0; + } /* end if */ + + k = 0; + x = 0; + start_in_checker[2] = start_in_checker[1]; + do { + if(x >= checker_edge_size) { + start_in_checker[2] = !start_in_checker[2]; + x = 0; + } /* end if */ + + l = 0; + y = 0; + start_in_checker[3] = start_in_checker[2]; + do { + if(y >= checker_edge_size) { + start_in_checker[3] = ! start_in_checker[3]; + y = 0; + } /* end if */ + + m = 0; + z = 0; + in_checker = start_in_checker[3]; + do { + if(z >= checker_edge_size) { + in_checker = ! in_checker; + z = 0; + } /* end if */ + + if(in_checker) { + if(*val_ptr != expected_value) + good_data = FALSE; + } /* end if */ + else { + if(*val_ptr != 0) + good_data = FALSE; + } /* end else */ + + val_ptr++; + expected_value++; + + m++; + z++; + } while((rank >= (test_max_rank - 4)) && (m < edge_size)); + l++; + y++; + } while((rank >= (test_max_rank - 3)) && (l < edge_size)); + k++; + x++; + } while((rank >= (test_max_rank - 2)) && (k < edge_size)); + j++; + w++; + } while((rank >= (test_max_rank - 1)) && (j < edge_size)); + i++; + v++; + } while((rank >= test_max_rank) && (i < edge_size)); + + return(good_data); +} /* test_select_hyper_checker_board_dr__verify_data() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr__run_test(): Test H5S +** (dataspace) selection code with checker board source and +** target selections having different ranks but the same +** shape. We have already tested H5S_shape_same in +** isolation, so now we try to do I/O. +** +****************************************************************/ +static void +test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, + const uint16_t *zero_buf, unsigned edge_size, unsigned checker_edge_size, + unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank, + hid_t dset_type, hid_t xfer_plist) +{ + hbool_t data_ok; + hbool_t start_in_checker[5]; + hid_t fapl; /* File access property list */ + hid_t fid; /* HDF5 File IDs */ + hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */ + hid_t mem_small_cube_sid; + hid_t file_small_cube_sid; + hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */ + hid_t mem_large_cube_sid; + hid_t file_large_cube_sid; + hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ + hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ + hid_t small_cube_dataset; /* Dataset ID */ + hid_t large_cube_dataset; /* Dataset ID */ + unsigned small_rank_offset; /* Rank offset of slice */ + const unsigned test_max_rank = 5; /* must update code if this changes */ + size_t start_index; /* Offset within buffer to begin inspecting */ + size_t stop_index; /* Offset within buffer to end inspecting */ + uint16_t expected_value; + uint16_t * small_cube_buf_1; + uint16_t * large_cube_buf_1; + uint16_t * ptr_1; + size_t small_cube_size; /* Number of elements in small cube */ + size_t large_cube_size; /* Number of elements in large cube */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t chunk_dims[SS_DR_MAX_RANK]; + hsize_t sel_start[SS_DR_MAX_RANK]; + unsigned u, v, w, x; /* Local index variables */ + size_t s; /* Local index variable */ + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); + MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n", small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size)); + + HDassert(edge_size >= 6); + HDassert(checker_edge_size > 0); + HDassert(checker_edge_size <= edge_size); + HDassert(edge_size >= chunk_edge_size); + HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); + HDassert(small_rank > 0); + HDassert(small_rank < large_rank); + HDassert(large_rank <= test_max_rank); + HDassert(test_max_rank <= SS_DR_MAX_RANK); + + /* Compute cube sizes */ + small_cube_size = large_cube_size = (size_t)1; + for(u = 0; u < large_rank; u++) { + if(u < small_rank) + small_cube_size *= (size_t)edge_size; + + large_cube_size *= (size_t)edge_size; + } /* end for */ + HDassert(large_cube_size < (size_t)(UINT_MAX)); + + small_rank_offset = test_max_rank - small_rank; + HDassert(small_rank_offset >= 1); + + /* also, at present, we use 16 bit values in this test -- + * hence the following assertion. Delete it if we convert + * to 32 bit values. + */ + HDassert(large_cube_size < (size_t)(UINT16_MAX)); + + + /* Allocate & initialize buffers */ + small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); + CHECK(small_cube_buf_1, NULL, "HDcalloc"); + large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); + CHECK(large_cube_buf_1, NULL, "HDcalloc"); + + + /* Create a dataset transfer property list */ + fapl = H5Pcreate(H5P_FILE_ACCESS); + CHECK(fapl, FAIL, "H5Pcreate"); + + /* Use the 'core' VFD for this test */ + ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); + CHECK(ret, FAIL, "H5Pset_fapl_core"); + + /* Create file */ + fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); + CHECK(fid, FAIL, "H5Fcreate"); + + /* Close file access property list */ + ret = H5Pclose(fapl); + CHECK(ret, FAIL, "H5Pclose"); + + + /* setup dims: */ + dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size; + + + /* Create small cube dataspaces */ + full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(full_small_cube_sid, FAIL, "H5Screate_simple"); + + mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple"); + + file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); + CHECK(file_small_cube_sid, FAIL, "H5Screate_simple"); + + + /* Create large cube dataspace */ + full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(full_large_cube_sid, FAIL, "H5Screate_simple"); + + mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); + + file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); + CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); + + + /* if chunk edge size is greater than zero, set up the small and + * large data set creation property lists to specify chunked + * datasets. + */ + if(chunk_edge_size > 0) { + chunk_dims[0] = chunk_dims[1] = + chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size; + + small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + + + large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); + CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); + + ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); + CHECK(ret, FAIL, "H5Pset_layout"); + + ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); + CHECK(ret, FAIL, "H5Pset_chunk"); + } /* end if */ + + + /* create the small cube dataset */ + small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, + file_small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); + CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default small dataset DCPL */ + if(small_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(small_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + /* create the large cube dataset */ + large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, + file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); + CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); + + /* Close non-default large dataset DCPL */ + if(large_cube_dcpl_id != H5P_DEFAULT) { + ret = H5Pclose(large_cube_dcpl_id); + CHECK(ret, FAIL, "H5Pclose"); + } /* end if */ + + + /* write initial data to the on disk datasets */ + ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, + full_small_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, + full_large_cube_sid, xfer_plist, cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* read initial small cube data from disk and verify that it is as expected. */ + ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, + full_small_cube_sid, xfer_plist, small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, + edge_size, small_rank); + + /* read initial large cube data from disk and verify that it is as expected. */ + ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, + full_large_cube_sid, xfer_plist, large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + /* Check that the data is valid */ + verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, + edge_size, large_rank); + + + /* first, verify that we can read from disk correctly using selections + * of different rank that H5S_select_shape_same() views as being of the + * same shape. + * + * Start by reading small_rank-D slice from the on disk large cube, and + * verifying that the data read is correct. Verify that H5S_select_shape_same() + * returns true on the memory and file selections. + * + * The first step is to set up the needed checker board selection in the + * in memory small small cube + */ + + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + + test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + /* now read slices from the large, on-disk cube into the small cube. + * Note how we adjust sel_start only in the dimensions peculiar to the + * large cube. + */ + + start_in_checker[0] = TRUE; + u = 0; + do { + if(small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if(small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if(small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if(small_rank_offset > 3) + sel_start[3] = x; + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board + ( + file_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(mem_small_cube_sid, + file_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + /* zero the buffer that we will be using for reading */ + HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); + + /* Read selection from disk */ + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + mem_small_cube_sid, + file_large_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + expected_value = (uint16_t) + ((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + + data_ok = test_select_hyper_checker_board_dr__verify_data + ( + small_cube_buf_1, + small_rank, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + if(!data_ok) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* similarly, read the on disk small cube into slices through the in memory + * large cube, and verify that the correct data (and only the correct data) + * is read. + */ + + /* select a checker board in the file small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + + start_in_checker[0] = TRUE; + u = 0; + do { + if(0 < small_rank_offset) + sel_start[0] = u; + + v = 0; + do { + if(1 < small_rank_offset) + sel_start[1] = v; + + w = 0; + do { + if(2 < small_rank_offset) + sel_start[2] = w; + + x = 0; + do { + if(3 < small_rank_offset) + sel_start[3] = x; + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board + ( + mem_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* zero out the in memory large cube */ + HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); + + /* Read selection from disk */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + file_small_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was read. + */ + data_ok = TRUE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert( start_index < stop_index ); + HDassert( stop_index <= large_cube_size ); + + /* verify that the large cube contains only zeros before the slice */ + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + HDassert(s == start_index); + + data_ok &= test_select_hyper_checker_board_dr__verify_data + ( + ptr_1, + small_rank, + edge_size, + checker_edge_size, + (uint16_t)0, + (hbool_t)TRUE + ); + + ptr_1 += small_cube_size; + s += small_cube_size; + + HDassert(s == stop_index + 1); + + /* verify that the large cube contains only zeros after the slice */ + for(s = stop_index + 1; s < large_cube_size; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + if(!data_ok) + TestErrPrintf("large cube read from small cube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* now we go in the opposite direction, verifying that we can write + * from memory to file using selections of different rank that + * H5S_select_shape_same() views as being of the same shape. + * + * Start by writing small_rank D slices from the in memory large cube, to + * the the on disk small cube dataset. After each write, read the small + * cube dataset back from disk, and verify that it contains the expected + * data. Verify that H5S_select_shape_same() returns true on the + * memory and file selections. + */ + + /* select a checker board in the file small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + start_in_checker[0] = TRUE; + u = 0; + do { + if(small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if(small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if(small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if(small_rank_offset > 3) + sel_start[3] = x; + + /* zero out the on disk small cube */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + full_small_cube_sid, + full_small_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + test_select_hyper_checker_board_dr__select_checker_board + ( + mem_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_small_cube_sid, + mem_large_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the slice from the in memory large cube to the + * on disk small cube + */ + ret = H5Dwrite(small_cube_dataset, + H5T_NATIVE_UINT16, + mem_large_cube_sid, + file_small_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* zero the buffer that we will be using for reading */ + HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); + + /* read the on disk small cube into memory */ + ret = H5Dread(small_cube_dataset, + H5T_NATIVE_UINT16, + full_small_cube_sid, + full_small_cube_sid, + xfer_plist, + small_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + expected_value = (uint16_t) + ((u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size)); + + data_ok = test_select_hyper_checker_board_dr__verify_data + ( + small_cube_buf_1, + small_rank, + edge_size, + checker_edge_size, + expected_value, + (hbool_t)TRUE + ); + if(!data_ok) + TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* Now write checker board selections of the entries in memory + * small cube to slices of the on disk cube. After each write, + * read the on disk large cube * into memeory, and verify that + * it contains the expected * data. Verify that + * H5S_select_shape_same() returns true on the memory and file + * selections. + */ + + /* select a checker board in the in memory small cube dataspace */ + sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; + test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, + small_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start); + + start_in_checker[0] = TRUE; + u = 0; + do { + if(small_rank_offset > 0) + sel_start[0] = u; + + v = 0; + do { + if(small_rank_offset > 1) + sel_start[1] = v; + + w = 0; + do { + if(small_rank_offset > 2) + sel_start[2] = w; + + x = 0; + do { + if(small_rank_offset > 3) + sel_start[3] = x; + + /* zero out the on disk cube */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_USHORT, + full_large_cube_sid, + full_large_cube_sid, + xfer_plist, + zero_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + /* we know that small_rank >= 1 and that large_rank > small_rank + * by the assertions at the head of this function. Thus no + * need for another inner loop. + */ + + HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); + HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); + HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); + HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); + HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); + + + test_select_hyper_checker_board_dr__select_checker_board + ( + file_large_cube_sid, + large_rank, + edge_size, + checker_edge_size, + small_rank, + sel_start + ); + + /* verify that H5S_select_shape_same() reports the two + * selections as having the same shape. + */ + check = H5S_select_shape_same_test(file_large_cube_sid, + mem_small_cube_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* write the checker board selection of the in memory + * small cube to a slice through the on disk large + * cube. + */ + ret = H5Dwrite(large_cube_dataset, + H5T_NATIVE_UINT16, + mem_small_cube_sid, + file_large_cube_sid, + xfer_plist, + cube_buf); + CHECK(ret, FAIL, "H5Dwrite"); + + + /* zero out the in memory large cube */ + HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); + + /* read the on disk large cube into memory */ + ret = H5Dread(large_cube_dataset, + H5T_NATIVE_UINT16, + full_large_cube_sid, + full_large_cube_sid, + xfer_plist, + large_cube_buf_1); + CHECK(ret, FAIL, "H5Dread"); + + + /* verify that the expected data and only the + * expected data was written to the on disk large + * cube. + */ + data_ok = TRUE; + ptr_1 = large_cube_buf_1; + expected_value = 0; + start_index = (u * edge_size * edge_size * edge_size * edge_size) + + (v * edge_size * edge_size * edge_size) + + (w * edge_size * edge_size) + + (x * edge_size); + stop_index = start_index + small_cube_size - 1; + + HDassert( start_index < stop_index ); + HDassert( stop_index <= large_cube_size ); + + /* verify that the large cube contains only zeros before the slice */ + for(s = 0; s < start_index; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + HDassert(s == start_index); + + /* verify that the slice contains the expected data */ + data_ok &= test_select_hyper_checker_board_dr__verify_data + ( + ptr_1, + small_rank, + edge_size, + checker_edge_size, + (uint16_t)0, + (hbool_t)TRUE + ); + + ptr_1 += small_cube_size; + s += small_cube_size; + + HDassert(s == stop_index + 1); + + /* verify that the large cube contains only zeros after the slice */ + for(s = stop_index + 1; s < large_cube_size; s++) { + if(*ptr_1 != 0) + data_ok = FALSE; + ptr_1++; + } /* end for */ + if(!data_ok) + TestErrPrintf("large cube written from small cube has bad data! Line=%d\n",__LINE__); + + x++; + } while((large_rank >= (test_max_rank - 3)) && + (small_rank <= (test_max_rank - 4)) && (x < edge_size)); + w++; + } while((large_rank >= (test_max_rank - 2)) && + (small_rank <= (test_max_rank - 3)) && (w < edge_size)); + v++; + } while((large_rank >= (test_max_rank - 1)) && + (small_rank <= (test_max_rank - 2)) && (v < edge_size)); + u++; + } while((large_rank >= test_max_rank) && + (small_rank <= (test_max_rank - 1)) && (u < edge_size)); + + + /* Close memory dataspaces */ + ret = H5Sclose(full_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(full_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(mem_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + /* Close disk dataspace */ + ret = H5Sclose(file_small_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(file_large_cube_sid); + CHECK(ret, FAIL, "H5Sclose"); + + /* Close Datasets */ + ret = H5Dclose(small_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + ret = H5Dclose(large_cube_dataset); + CHECK(ret, FAIL, "H5Dclose"); + + /* Close file */ + ret = H5Fclose(fid); + CHECK(ret, FAIL, "H5Fclose"); + + /* Free memory buffers */ + HDfree(small_cube_buf_1); + HDfree(large_cube_buf_1); + +} /* test_select_hyper_checker_board_dr__run_test() */ + + +/**************************************************************** +** +** test_select_hyper_checker_board_dr(): Test H5S (dataspace) +** selection code with checkerboard source and target having +** different ranks but the same shape. We have already +** tested H5S_shape_same in isolation, so now we try to do +** I/O. +** +** This is just an initial smoke check, so we will work +** with a slice through a cube only. +** +****************************************************************/ +static void +test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist) +{ + uint16_t *cube_buf; /* Buffer for writing cube data */ + uint16_t *cube_ptr; /* Temporary pointer into cube data */ + uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ + int test_num = 0; + unsigned checker_edge_size = 2; /* Size of checkerboard dimension */ + unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ + unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ + unsigned small_rank; /* Current rank of small dataset */ + unsigned large_rank; /* Current rank of large dataset */ + unsigned max_rank = 5; /* Max. rank to use */ + size_t max_cube_size; /* Max. number of elements in largest cube */ + size_t s; /* Local index variable */ + unsigned u; /* Local index variable */ + + /* Output message about test being performed */ + MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n")); + + /* Compute max. cube size */ + max_cube_size = (size_t)1; + for(u = 0; u < max_rank; u++) + max_cube_size *= (size_t)(edge_size + 1); + + /* Allocate cube buffer for writing values */ + cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); + CHECK(cube_buf, NULL, "HDmalloc"); + + /* Initialize the cube buffer */ + cube_ptr = cube_buf; + for(s = 0; s < max_cube_size; s++) + *cube_ptr++ = (uint16_t)s; + + /* Allocate cube buffer for zeroing values on disk */ + zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); + CHECK(zero_buf, NULL, "HDcalloc"); + + for(large_rank = 1; large_rank <= max_rank; large_rank++) { + for(small_rank = 1; small_rank < large_rank; small_rank++) { + chunk_edge_size = 0; + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, + edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + chunk_edge_size = 3; + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, + edge_size, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + + test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, + zero_buf, + edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, + large_rank, dset_type, xfer_plist); + test_num++; + } /* for loop on small rank */ + } /* for loop on large rank */ + + HDfree(cube_buf); + HDfree(zero_buf); + +} /* test_select_hyper_checker_board_dr() */ + + /**************************************************************** ** ** test_select_hyper_copy(): Test H5S (dataspace) selection code. @@ -2345,15 +4373,15 @@ test_select_point_offset(void) CHECK(ret, FAIL, "H5Sselect_elements"); /* Read selection from disk */ - ret=H5Dread(dataset,H5T_NATIVE_UCHAR,sid2,sid1,H5P_DEFAULT,rbuf); + ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ - for(i=0; i<POINT1_NPOINTS; i++) { - tbuf=wbuf+((coord2[i][0]+offset[0])*SPACE2_DIM2)+coord2[i][1]+offset[1]; - tbuf2=rbuf+(coord3[i][0]*SPACE3_DIM2)+coord3[i][1]; - if(*tbuf!=*tbuf2) - TestErrPrintf("element values don't match!, i=%d\n",i); + for(i = 0; i < POINT1_NPOINTS; i++) { + tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1]; + tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1]; + if(*tbuf != *tbuf2) + TestErrPrintf("element values don't match!, i=%d\n", i); } /* end for */ /* Close memory dataspace */ @@ -2410,7 +4438,7 @@ test_select_hyper_union(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n")); @@ -2448,7 +4476,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); - VERIFY(npoints, 2*15*13, "H5Sget_select_npoints"); + VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints"); /* Select 8x26 hyperslab for memory dataset */ start[0]=15; start[1]=0; @@ -2561,7 +4589,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -2647,7 +4675,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -2737,7 +4765,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -2834,7 +4862,7 @@ test_select_hyper_union(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 15*26, "H5Sget_select_npoints"); + VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1,SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -3277,7 +5305,7 @@ test_select_hyper_and_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n")); @@ -3322,7 +5350,7 @@ test_select_hyper_and_2d(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); - VERIFY(npoints, 5*5, "H5Sget_select_npoints"); + VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); /* Select 25 hyperslab for memory dataset */ start[0]=0; @@ -3333,7 +5361,7 @@ test_select_hyper_and_2d(void) CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); - VERIFY(npoints, 5*5, "H5Sget_select_npoints"); + VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); @@ -3406,7 +5434,7 @@ test_select_hyper_xor_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n")); @@ -3537,7 +5565,7 @@ test_select_hyper_notb_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n")); @@ -3667,7 +5695,7 @@ test_select_hyper_nota_2d(void) *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ - hsize_t npoints; /* Number of elements in selection */ + hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n")); @@ -3878,7 +5906,7 @@ test_select_hyper_union_random_5d(hid_t read_plist) #else /* QAK */ seed=987909620; #endif /* QAK */ - HDsrand(seed); + HDsrandom(seed); #ifdef QAK printf("test_num=%d, seed=%u\n",test_num,seed); @@ -3893,26 +5921,26 @@ printf("hyperslab=%d\n",i); #endif /* QAK */ /* Select random hyperslab location & size for selection */ for(j=0; j<SPACE5_RANK; j++) { - start[j]=rand()%dims1[j]; - count[j]=(rand()%(dims1[j]-start[j]))+1; + start[j] = ((hsize_t)HDrandom() % dims1[j]); + count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1); #ifdef QAK printf("start[%d]=%d, count[%d]=%d (end[%d]=%d)\n",j,(int)start[j],j,(int)count[j],j,(int)(start[j]+count[j]-1)); #endif /* QAK */ } /* end for */ /* Select hyperslab */ - ret = H5Sselect_hyperslab(sid1,(i==0 ? H5S_SELECT_SET : H5S_SELECT_OR),start,NULL,count,NULL); + ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Get the number of elements selected */ - npoints=H5Sget_select_npoints(sid1); + npoints = H5Sget_select_npoints(sid1); CHECK(npoints, 0, "H5Sget_select_npoints"); /* Select linear 1-D hyperslab for memory dataset */ - start[0]=0; - count[0]=npoints; - ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,NULL,count,NULL); + start[0] = 0; + count[0] = (hsize_t)npoints; + ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints2 = H5Sget_select_npoints(sid2); @@ -4973,24 +7001,24 @@ typedef struct { static herr_t test_select_hyper_iter3(void *_elem, hid_t UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data) { - unsigned short *tbuf=(unsigned short *)_elem; /* temporary buffer pointer */ - fill_iter_info *iter_info=(fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */ + unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */ + fill_iter_info *iter_info = (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */ hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/ /* Check value in current buffer location */ - if(*tbuf!=iter_info->fill_value) + if(*tbuf != iter_info->fill_value) return(-1); else { /* Check number of dimensions */ - if(ndim!=SPACE7_RANK) + if(ndim != SPACE7_RANK) return(-1); else { /* Check Coordinates */ - coord_ptr=iter_info->coords+(2*iter_info->curr_coord); + coord_ptr = iter_info->coords + (2 * iter_info->curr_coord); iter_info->curr_coord++; - if(coord_ptr[0]!=point[0]) + if(coord_ptr[0] != point[0]) return(-1); - else if(coord_ptr[1]!=point[1]) + else if(coord_ptr[1] != point[1]) return(-1); else return(0); @@ -5009,25 +7037,25 @@ test_select_fill_all(void) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; - int fill_value; /* Fill value */ + unsigned fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ hsize_t points[SPACE7_DIM1*SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j; /* Counters */ + unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'all' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); @@ -5036,32 +7064,32 @@ test_select_fill_all(void) /* Space defaults to "all" selection */ /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%x, fill_value=%x\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + if(*tbuf != fill_value) + TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value); /* Set the coordinates of the selection */ - for(i=0; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) { - points[(i*SPACE7_DIM2)+j][0]=i; - points[(i*SPACE7_DIM2)+j][1]=j; + for(u = 0; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) { + points[(u * SPACE7_DIM2) + v][0] = u; + points[(u * SPACE7_DIM2) + v][1] = v; } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5085,78 +7113,78 @@ test_select_fill_point(hssize_t *offset) hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t points[5][SPACE7_RANK] = {{2,4}, {3,8}, {8,4}, {7,5}, {7,7}}; - size_t num_points=5; /* Number of points selected */ + size_t num_points = 5; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j,k; /* Counters */ + unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'point' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "point" selection */ - ret = H5Sselect_elements(sid1, H5S_SELECT_SET,num_points,(const hsize_t *)points); + ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points); CHECK(ret, FAIL, "H5Sselect_elements"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - for(k=0; k<(int)num_points; k++) { - if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for(w = 0; w < (unsigned)num_points; w++) { + if(u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) && v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ - if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Add in the offset */ - for(i=0; i<(int)num_points; i++) { - points[i][0]+=real_offset[0]; - points[i][1]+=real_offset[1]; + for(u = 0; u < (unsigned)num_points; u++) { + points[u][0] = (hsize_t)(points[u][0] + real_offset[0]); + points[u][1] = (hsize_t)(points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5185,78 +7213,78 @@ test_select_fill_hyper_simple(hssize_t *offset) hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j; /* Counters */ + unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ - start[0]=3; start[1]=3; - count[0]=4; count[1]=4; - ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET,start,NULL,count,NULL); + start[0] = 3; start[1] = 3; + count[0] = 4; count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - if((i>=(int)(start[0]+real_offset[0]) && i<(int)(start[0]+count[0]+real_offset[0])) - && (j>=(int)(start[1]+real_offset[1]) && j<(int)(start[1]+count[1]+real_offset[1]))) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + if((u >= (unsigned)(start[0] + real_offset[0]) && u < (unsigned)(start[0] + count[0] + real_offset[0])) + && (v >= (unsigned)(start[1] + real_offset[1]) && v < (unsigned)(start[1] + count[1] + real_offset[1]))) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); } /* end if */ else { - if(*tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(*tbuf != ((unsigned)(u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end else */ } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Set the coordinates of the selection (with the offset) */ - for(i=0, num_points=0; i<(int)count[0]; i++) - for(j=0; j<(int)count[1]; j++, num_points++) { - points[num_points][0]=i+start[0]+real_offset[0]; - points[num_points][1]=j+start[1]+real_offset[1]; + for(u = 0, num_points = 0; u < (unsigned)count[0]; u++) + for(v = 0; v < (unsigned)count[1]; v++, num_points++) { + points[num_points][0] = (hsize_t)(u + start[0] + real_offset[0]); + points[num_points][1] = (hsize_t)(v + start[1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5292,79 +7320,79 @@ test_select_fill_hyper_regular(hssize_t *offset) size_t num_points=16; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j,k; /* Counters */ + unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ =(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ - start[0]=2; start[1]=2; - stride[0]=4; stride[1]=4; - count[0]=2; count[1]=2; - block[0]=2; block[1]=2; - ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,stride,count,block); + start[0] = 2; start[1] = 2; + stride[0] = 4; stride[1] = 4; + count[0] = 2; count[1] = 2; + block[0] = 2; block[1] = 2; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - for(k=0; k<(int)num_points; k++) { - if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for(w = 0; w < (unsigned)num_points; w++) { + if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ - if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ - iter_info.fill_value=SPACE7_FILL; - iter_info.curr_coord=0; - iter_info.coords=(hsize_t *)points; + iter_info.fill_value = SPACE7_FILL; + iter_info.curr_coord = 0; + iter_info.coords = (hsize_t *)points; /* Add in the offset */ - for(i=0; i<(int)num_points; i++) { - points[i][0] += real_offset[0]; - points[i][1] += real_offset[1]; + for(u = 0; u < (unsigned)num_points; u++) { + points[u][0] = (hsize_t)(points[u][0] + real_offset[0]); + points[u][1] = (hsize_t)(points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf,H5T_NATIVE_USHORT,sid1,test_select_hyper_iter3,&iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -5407,72 +7435,72 @@ test_select_fill_hyper_irregular(hssize_t *offset) {6,4}, {6,5}, {6,6}, {6,7}, {7,4}, {7,5}, {7,6}, {7,7}, }; - size_t num_points=32; /* Number of points selected */ - size_t num_iter_points=28; /* Number of resulting points */ + size_t num_points = 32; /* Number of points selected */ + size_t num_iter_points = 28; /* Number of resulting points */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ - unsigned short *wbuf, /* buffer to write to disk */ + unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ - int i,j,k; /* Counters */ + unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n")); /* Allocate memory buffer */ - wbuf = (unsigned short *)HDmalloc(sizeof(unsigned short)*SPACE7_DIM1*SPACE7_DIM2); + wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++) - *tbuf++=(unsigned short)(i*SPACE7_DIM2)+j; + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++) + *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select first "hyperslab" selection */ - start[0]=2; start[1]=2; - count[0]=4; count[1]=4; - ret = H5Sselect_hyperslab(sid1,H5S_SELECT_SET,start,NULL,count,NULL); + start[0] = 2; start[1] = 2; + count[0] = 4; count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Combine with second "hyperslab" selection */ - start[0]=4; start[1]=4; - count[0]=4; count[1]=4; - ret = H5Sselect_hyperslab(sid1,H5S_SELECT_OR,start,NULL,count,NULL); + start[0] = 4; start[1] = 4; + count[0] = 4; count[1] = 4; + ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); - if(offset!=NULL) { - HDmemcpy(real_offset,offset,SPACE7_RANK*sizeof(hssize_t)); + if(offset != NULL) { + HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ - ret = H5Soffset_simple(sid1,real_offset); + ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else - HDmemset(real_offset,0,SPACE7_RANK*sizeof(hssize_t)); + HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ - fill_value=SPACE7_FILL; + fill_value = SPACE7_FILL; /* Fill selection in memory */ - ret=H5Dfill(&fill_value,H5T_NATIVE_INT,wbuf,H5T_NATIVE_USHORT,sid1); + ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ - for(i=0, tbuf=wbuf; i<SPACE7_DIM1; i++) - for(j=0; j<SPACE7_DIM2; j++, tbuf++) { - for(k=0; k<(int)num_points; k++) { - if(i==(int)(points[k][0]+real_offset[0]) && j==(int)(points[k][1]+real_offset[1])) { - if(*tbuf!=(unsigned short)fill_value) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, fill_value=%u\n",j,i,(unsigned)*tbuf,(unsigned)fill_value); + for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) + for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { + for(w = 0; w < (unsigned)num_points; w++) { + if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) { + if(*tbuf != (unsigned)fill_value) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ - if(k==(int)num_points && *tbuf!=((unsigned short)(i*SPACE7_DIM2)+j)) - TestErrPrintf("Error! j=%d, i=%d, *tbuf=%u, should be: %u\n",j,i,(unsigned)*tbuf,(unsigned)((i*SPACE7_DIM2)+j)); + if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) + TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ @@ -5481,13 +7509,13 @@ test_select_fill_hyper_irregular(hssize_t *offset) iter_info.coords = (hsize_t *)iter_points; /* Add in the offset */ - for(i=0; i<(int)num_iter_points; i++) { - iter_points[i][0] += real_offset[0]; - iter_points[i][1] += real_offset[1]; + for(u = 0; u < (unsigned)num_iter_points; u++) { + iter_points[u][0] = (hsize_t)(iter_points[u][0] + real_offset[0]); + iter_points[u][1] = (hsize_t)(iter_points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ - ret = H5Diterate(wbuf, H5T_NATIVE_USHORT, sid1, test_select_hyper_iter3, &iter_info); + ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ @@ -7005,6 +9033,2855 @@ test_shape_same(void) CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same() */ +/**************************************************************** +** +** test_shape_same_dr__smoke_check_1(): +** +** Create a square, 2 D data space (10 X 10), and select +** all of it. +** +** Similarly, create nine, 3 D data spaces (10 X 10 X 10), +** and select (10 X 10 X 1) hyper slabs in each, three with +** the slab parallel to the xy plane, three parallel to the +** xz plane, and three parallel to the yz plane. +** +** Assuming that z is the fastest changing dimension, +** H5S_select_shape_same() should return TRUE when comparing +** the full 2 D space against any hyperslab parallel to the +** yz plane in the 3 D space, and FALSE when comparing the +** full 2 D space against the other two hyper slabs. +** +** Also create two additional 3 D data spaces (10 X 10 X 10), +** and select a (10 X 10 X 2) hyper slab parallel to the yz +** axis in one of them, and two parallel (10 X 10 X 1) hyper +** slabs parallel to the yz axis in the other. +** H5S_select_shape_same() should return FALSE when comparing +** each to the 2 D selection. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_1(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hid_t small_cube_yz_slice_3_sid; + hid_t small_cube_yz_slice_4_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 1: Slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous plane, but include it anyway, with values large enough */ + /* to ensure that we will only get the single block selected. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 10; /* x */ + block[1] = 10; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 5; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous chunk, but include it anyway, with values large enough */ + /* to ensure that we will only get the single chunk. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 10; /* x */ + block[1] = 1; /* y */ + block[2] = 10; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 4; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + /* stride is a bit silly here, since we are only selecting a single */ + /* contiguous chunk, but include it anyway, with values large enough */ + /* to ensure that we will only get the single chunk. */ + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 10; /* y */ + block[2] = 10; /* z */ + + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + block[0] = 2; + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + block[0] = 1; + ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 6; + ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "xz" selection */ + check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "yz" selection */ + check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_3_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_4_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_4_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_1() */ + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_2(): +** +** Create a square, 2 D data space (10 X 10), and select +** a "checker board" hyper slab as follows: +** +** * * - - * * - - * * +** * * - - * * - - * * +** - - * * - - * * - - +** - - * * - - * * - - +** * * - - * * - - * * +** * * - - * * - - * * +** - - * * - - * * - - +** - - * * - - * * - - +** * * - - * * - - * * +** * * - - * * - - * * +** +** where asterisks indicate selected elements, and dashes +** indicate unselected elements. +** +** Similarly, create nine, 3 D data spaces (10 X 10 X 10), +** and select similar (10 X 10 X 1) checker board hyper +** slabs in each, three with the slab parallel to the xy +** plane, three parallel to the xz plane, and three parallel +** to the yz plane. +** +** Assuming that z is the fastest changing dimension, +** H5S_select_shape_same() should return TRUE when comparing +** the 2 D space checker board selection against a checker +** board hyperslab parallel to the yz plane in the 3 D +** space, and FALSE when comparing the 2 D checkerboard +** selection against two hyper slabs parallel to the xy +** or xz planes. +** +** Also create an additional 3 D data spaces (10 X 10 X 10), +** and select a checker board parallel with the yz axis, +** save with some squares being on different planes. +** H5S_select_shape_same() should return FALSE when +** comparing this selection to the 2 D selection. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_2(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hid_t small_cube_yz_slice_3_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + + count[0] = 3; /* x */ + count[1] = 3; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 2; /* y */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + + count[0] = 2; /* x */ + count[1] = 2; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + stride[2] = 20; /* z -- large enough that there will only be one slice */ + + count[0] = 3; /* x */ + count[1] = 3; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 3; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + start[0] = 2; /* x */ + start[1] = 2; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 4; /* y */ + stride[2] = 20; /* z -- large enough that there will only be one slice */ + + count[0] = 2; /* x */ + count[1] = 2; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 3; + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[2] = 9; + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 20; /* y -- large enough that there will only be one slice */ + stride[2] = 4; /* z */ + + count[0] = 3; /* x */ + count[1] = 1; /* y */ + count[2] = 3; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 5; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 2; /* x */ + start[1] = 0; /* y */ + start[2] = 2; /* z */ + + stride[0] = 4; /* x */ + stride[1] = 20; /* y -- large enough that there will only be one slice */ + stride[2] = 4; /* z */ + + count[0] = 2; /* x */ + count[1] = 1; /* y */ + count[2] = 2; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 5; + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[1] = 9; + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); + + start[0] = 0; /* x */ + start[1] = 0; /* y */ + start[2] = 0; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 4; /* y */ + stride[2] = 4; /* z */ + + count[0] = 1; /* x */ + count[1] = 3; /* y */ + count[2] = 3; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + start[0] = 0; /* x */ + start[1] = 2; /* y */ + start[2] = 2; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 4; /* y */ + stride[2] = 4; /* z */ + + count[0] = 1; /* x */ + count[1] = 2; /* y */ + count[2] = 2; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 9; + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 4; + /* This test gets the right answer, but it fails the shape same + * test in an unexpected point. Bring this up with Quincey, as + * the oddness looks like it is not related to my code. + * -- JRM + */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "xz" selection */ + check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "yz" selection */ + check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_3_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_2() */ + + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_3(): +** +** Create a square, 2 D data space (10 X 10), and select an +** irregular hyper slab as follows: +** +** y +** 9 - - - - - - - - - - +** 8 - - - - - - - - - - +** 7 - - - * * * * - - - +** 6 - - * * * * * - - - +** 5 - - * * - - - - - - +** 4 - - * * - * * - - - +** 3 - - * * - * * - - - +** 2 - - - - - - - - - - +** 1 - - - - - - - - - - +** 0 - - - - - - - - - - +** 0 1 2 3 4 5 6 7 8 9 x +** +** where asterisks indicate selected elements, and dashes +** indicate unselected elements. +** +** Similarly, create nine, 3 D data spaces (10 X 10 X 10), +** and select similar irregular hyper slabs in each, three +** with the slab parallel to the xy plane, three parallel +** to the xz plane, and three parallel to the yz plane. +** Further, translate the irregular slab in 2/3rds of the +** cases. +** +** Assuming that z is the fastest changing dimension, +** H5S_select_shape_same() should return TRUE when +** comparing the 2 D irregular hyperslab selection +** against the irregular hyperslab selections parallel +** to the yz plane in the 3 D space, and FALSE when +** comparing it against the irregular hyper slabs +** selections parallel to the xy or xz planes. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_3(void) +{ + hid_t small_square_sid; + hid_t small_cube_xy_slice_0_sid; + hid_t small_cube_xy_slice_1_sid; + hid_t small_cube_xy_slice_2_sid; + hid_t small_cube_xz_slice_0_sid; + hid_t small_cube_xz_slice_1_sid; + hid_t small_cube_xz_slice_2_sid; + hid_t small_cube_yz_slice_0_sid; + hid_t small_cube_yz_slice_1_sid; + hid_t small_cube_yz_slice_2_sid; + hsize_t small_cube_dims[] = {10, 10, 10}; + hsize_t start[3]; + hsize_t stride[3]; + hsize_t count[3]; + hsize_t block[3]; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n")); + + /* Create the 10 x 10 dataspace */ + small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); + CHECK(small_square_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 3; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 2; /* x */ + block[1] = 4; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 6; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 4; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 3; /* y */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ + small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); + + + start[0] = 2; /* x */ + start[1] = 3; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 4; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 6; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 4; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 3; /* y */ + start[2] = 5; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 2; /* y */ + block[2] = 1; /* z */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[1] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[1] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ + small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 2; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 4; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 3; /* x */ + start[1] = 5; /* y */ + start[2] = 6; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 4; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 5; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 2; /* x */ + block[1] = 1; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[0] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + +/* QAK: Start here. + */ + /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ + small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); + + small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); + CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); + + start[0] = 8; /* x */ + start[1] = 2; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x -- large enough that there will only be one slice */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 4; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; /* x */ + start[1] = 3; /* y */ + start[2] = 6; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 4; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + start[0] = 8; /* x */ + start[1] = 5; /* y */ + start[2] = 3; /* z */ + + stride[0] = 20; /* x */ + stride[1] = 20; /* y */ + stride[2] = 20; /* z */ + + count[0] = 1; /* x */ + count[1] = 1; /* y */ + count[2] = 1; /* z */ + + block[0] = 1; /* x */ + block[1] = 2; /* y */ + block[2] = 2; /* z */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the starting point to the origin */ + start[1] -= 1; /* x */ + start[2] -= 2; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* move the irregular selection to the upper right hand corner */ + start[0] += 5; /* x */ + start[2] += 5; /* y */ + ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the tests: */ + + /* Compare against "xy" selection */ + check = H5S_select_shape_same_test(small_cube_xy_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xy_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "xz" selection */ + check = H5S_select_shape_same_test(small_cube_xz_slice_0_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_1_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_xz_slice_2_sid, small_square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Compare against "yz" selection */ + check = H5S_select_shape_same_test(small_cube_yz_slice_0_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_1_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(small_cube_yz_slice_2_sid, small_square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(small_square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xy_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xy_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_xz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_xz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(small_cube_yz_slice_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(small_cube_yz_slice_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_3() */ + + +/**************************************************************** +** +** test_shape_same_dr__smoke_check_4(): +** +** Create a square, 2 D data space (10 X 10), and select +** the entire space. +** +** Similarly, create 3 D and 4 D data spaces: +** +** (1 X 10 X 10) +** (10 X 1 X 10) +** (10 X 10 X 1) +** (10 X 10 X 10) +** +** (1 X 1 X 10 X 10) +** (1 X 10 X 1 X 10) +** (1 X 10 X 10 X 1) +** (10 X 1 X 1 X 10) +** (10 X 1 X 10 X 1) +** (10 X 10 X 1 X 1) +** (10 X 1 X 10 X 10) +** +** And select these entire spaces as well. +** +** Compare the 2 D space against all the other spaces +** with H5S_select_shape_same(). The (1 X 10 X 10) & +** (1 X 1 X 10 X 10) should return TRUE. All others +** should return FALSE. +** +****************************************************************/ +static void +test_shape_same_dr__smoke_check_4(void) +{ + hid_t square_sid; + hid_t three_d_space_0_sid; + hid_t three_d_space_1_sid; + hid_t three_d_space_2_sid; + hid_t three_d_space_3_sid; + hid_t four_d_space_0_sid; + hid_t four_d_space_1_sid; + hid_t four_d_space_2_sid; + hid_t four_d_space_3_sid; + hid_t four_d_space_4_sid; + hid_t four_d_space_5_sid; + hid_t four_d_space_6_sid; + hsize_t dims[] = {10, 10, 10, 10}; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n")); + + /* Create the 10 x 10 dataspace */ + square_sid = H5Screate_simple(2, dims, NULL); + CHECK(square_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 10) data space */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 10; + three_d_space_0_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + three_d_space_1_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 1) data space */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 1; + three_d_space_2_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 10) data space */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 10; + three_d_space_3_sid = H5Screate_simple(3, dims, NULL); + CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple"); + + + /* create (1 X 1 X 10 X 10) data space */ + dims[0] = 1; + dims[1] = 1; + dims[2] = 10; + dims[3] = 10; + four_d_space_0_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 1 X 10) data space */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 1; + dims[3] = 10; + four_d_space_1_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple"); + + /* create (1 X 10 X 10 X 1) data space */ + dims[0] = 1; + dims[1] = 10; + dims[2] = 10; + dims[3] = 1; + four_d_space_2_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 1 X 10) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 1; + dims[3] = 10; + four_d_space_3_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10 X 1) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + dims[3] = 1; + four_d_space_4_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 10 X 1 X 1) data space */ + dims[0] = 10; + dims[1] = 10; + dims[2] = 1; + dims[3] = 1; + four_d_space_5_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple"); + + /* create (10 X 1 X 10 X 10) data space */ + dims[0] = 10; + dims[1] = 1; + dims[2] = 10; + dims[3] = 10; + four_d_space_6_sid = H5Screate_simple(4, dims, NULL); + CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple"); + + + /* setup is done -- run the tests: */ + + check = H5S_select_shape_same_test(three_d_space_0_sid, square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(three_d_space_1_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(three_d_space_2_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(three_d_space_3_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + check = H5S_select_shape_same_test(four_d_space_0_sid, square_sid); + VERIFY(check, TRUE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_1_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_2_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_3_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_4_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_5_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + check = H5S_select_shape_same_test(four_d_space_6_sid, square_sid); + VERIFY(check, FALSE, "H5S_select_shape_same_test"); + + + /* Close dataspaces */ + ret = H5Sclose(square_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(three_d_space_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(three_d_space_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + + ret = H5Sclose(four_d_space_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_2_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_3_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_4_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_5_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(four_d_space_6_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__smoke_check_4() */ + +/**************************************************************** +** +** test_shape_same_dr__full_space_vs_slice(): Tests selection +** of a full n-cube data space vs an n-dimensional slice of +** of an m-cube (m > n) in a call to H5S_select_shape_same(). +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5S_select_shape_same() should always return FALSE if +** they don't). +** +** Per Quincey's suggestion, only test up to 5 dimensional +** spaces. +** +****************************************************************/ +static void +test_shape_same_dr__full_space_vs_slice(int test_num, + int small_rank, + int large_rank, + int offset, + hsize_t edge_size, + hbool_t dim_selected[], + hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[128]; + int i; + hid_t n_cube_0_sid; /* the fully selected hyper cube */ + hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t start[SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t * stride_ptr; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t * count_ptr; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t * block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( 0 < small_rank ); + HDassert( small_rank <= large_rank ); + HDassert( large_rank <= SS_DR_MAX_RANK ); + HDassert( 0 <= offset ); + HDassert( offset < large_rank ); + HDassert( edge_size > 0 ); + HDassert( edge_size <= 1000 ); + + sprintf(test_desc_0, + "\tn-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, (test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + sprintf(test_desc_1, + "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", + small_rank, large_rank, offset, + (int)dim_selected[0], + (int)dim_selected[1], + (int)dim_selected[2], + (int)dim_selected[3], + (int)dim_selected[4]); + MESSAGE(7, (test_desc_1)); + + /* copy the edge size into the dims array */ + for(i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* set up start, stride, count, and block for the hyperslab selection */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + stride[i] = 2 * edge_size; /* a bit silly in this case */ + count[i] = 1; + if(dim_selected[i]) { + start[i] = 0; + block[i] = edge_size; + } /* end if */ + else { + start[i] = (hsize_t)offset; + block[i] = 1; + } /* end else */ + } /* end for */ + + /* since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert(i >= 0); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + + /* select the hyper slab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the test: */ + check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "test_shape_same_dr__full_space_vs_slice"); + + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__full_space_vs_slice() */ + + +/**************************************************************** +** +** test_shape_same_dr__run_full_space_vs_slice_tests(): +** +** Run the est_shape_same_dr__full_space_vs_slice() test +** over a variety of ranks and offsets. +** +** At present, we test H5S_select_shape_same() with +** fully selected 1, 2, 3, and 4 cubes as one parameter, and +** 1, 2, 3, and 4 dimensional slices through a n-cube of rank +** no more than 5 (and at least the rank of the slice). +** We stop at rank 5, as Quincey suggested that it would be +** sufficient. +** +** All the n-cubes will have lengths of the same size, so +** H5S_select_shape_same() should return true iff: +** +** 1) the rank for the fully selected n cube equals the +** number of dimensions selected in the slice through the +** m-cube (m >= n). +** +** 2) The dimensions selected in the slice through the m-cube +** are the dimesnions with the most quickly changing +** indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_full_space_vs_slice_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + hsize_t edge_size = 10; + + for(large_rank = 1; large_rank <= 5; large_rank++) { + for(small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if(v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if(w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if(x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if(y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if(z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while((i < small_rank) && expected_result) { + if(!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while((i < large_rank) && expected_result) { + if(dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + + /* everything is set up -- run the tests */ + + test_shape_same_dr__full_space_vs_slice + ( + test_num++, + small_rank, + large_rank, + 0, + edge_size, + dim_selected, + expected_result + ); + + test_shape_same_dr__full_space_vs_slice + ( + test_num++, + small_rank, + large_rank, + large_rank / 2, + edge_size, + dim_selected, + expected_result + ); + + test_shape_same_dr__full_space_vs_slice + ( + test_num++, + small_rank, + large_rank, + large_rank - 1, + edge_size, + dim_selected, + expected_result + ); + + z++; + } while((z < 2) && (large_rank >= 1)); + + y++; + } while((y < 2) && (large_rank >= 2)); + + x++; + } while((x < 2) && (large_rank >= 3)); + + w++; + } while((w < 2) && (large_rank >= 4)); + + v++; + } while((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ + +} /* test_shape_same_dr__run_full_space_vs_slice_tests() */ + + +/**************************************************************** +** +** test_shape_same_dr__checkerboard(): Tests selection of a +** "checker board" subset of a full n-cube data space vs +** a "checker board" n-dimensional slice of an m-cube (m > n). +** in a call to H5S_select_shape_same(). +** +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5S_select_shape_same() should always return FALSE if +** they don't). +** +** Per Quincey's suggestion, only test up to 5 dimensional +** spaces. +** +****************************************************************/ +static void +test_shape_same_dr__checkerboard(int test_num, + int small_rank, + int large_rank, + int offset, + hsize_t edge_size, + hsize_t checker_size, + hbool_t dim_selected[], + hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[128]; + int i; + int dims_selected = 0; + hid_t n_cube_0_sid; /* the checker board selected + * hyper cube + */ + hid_t n_cube_1_sid; /* the hyper cube in which a + * checkerboard slice is selected + */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t base_start[2]; + hsize_t start[SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t base_stride[2]; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t * stride_ptr; + hsize_t base_count[2]; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t * count_ptr; + hsize_t base_block[2]; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t * block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( 0 < small_rank ); + HDassert( small_rank <= large_rank ); + HDassert( large_rank <= SS_DR_MAX_RANK ); + HDassert( 0 < checker_size ); + HDassert( checker_size <= edge_size ); + HDassert( edge_size <= 1000 ); + HDassert( 0 <= offset ); + HDassert( offset < (int)edge_size ); + + for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) + if(dim_selected[i] == TRUE) + dims_selected++; + + HDassert( dims_selected >= 0 ); + HDassert( dims_selected <= large_rank ); + + sprintf(test_desc_0, + "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, (test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + sprintf(test_desc_1, + "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n", + small_rank, large_rank, + (int)edge_size, (int)checker_size, + offset, + (int)dim_selected[0], + (int)dim_selected[1], + (int)dim_selected[2], + (int)dim_selected[3], + (int)dim_selected[4], + dims_selected); + MESSAGE(7, (test_desc_1)); + + /* copy the edge size into the dims array */ + for(i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Select a "checkerboard" pattern in the small n-cube. + * + * In the 1-D case, the "checkerboard" would look like this: + * + * * * - - * * - - * * + * + * and in the 2-D case, it would look like this: + * + * * * - - * * - - * * + * * * - - * * - - * * + * - - * * - - * * - - + * - - * * - - * * - - + * * * - - * * - - * * + * * * - - * * - - * * + * - - * * - - * * - - + * - - * * - - * * - - + * * * - - * * - - * * + * * * - - * * - - * * + * + * In both cases, asterisks indicate selected elements, + * and dashes indicate unselected elements. + * + * 3-D and 4-D ascii art is somewhat painful, so I'll + * leave those selections to your imagination. :-) + * + * Note, that since the edge_size and checker_size are + * parameters that are passed in, the selection need + * not look exactly like the selection shown above. + * At present, the function allows checker sizes that + * are not even divisors of the edge size -- thus + * something like the following is also possible: + * + * * * * - - - * * * - + * * * * - - - * * * - + * * * * - - - * * * - + * - - - * * * - - - * + * - - - * * * - - - * + * - - - * * * - - - * + * * * * - - - * * * - + * * * * - - - * * * - + * * * * - - - * * * - + * - - - * * * - - - * + * + * As the above pattern can't be selected in one + * call to H5Sselect_hyperslab(), and since the + * values in the start, stride, count, and block + * arrays will be repeated over all entries in + * the selected space case, and over all selected + * dimensions in the selected hyperslab case, we + * compute these values first and store them in + * in the base_start, base_stride, base_count, + * and base_block arrays. + */ + + base_start[0] = 0; + base_start[1] = checker_size; + + base_stride[0] = 2 * checker_size; + base_stride[1] = 2 * checker_size; + + /* Note that the following computation depends on the C99 + * requirement that integer division discard any fraction + * (truncation towards zero) to function correctly. As we + * now require C99, this shouldn't be a problem, but noting + * it may save us some pain if we are ever obliged to support + * pre-C99 compilers again. + */ + + base_count[0] = edge_size / (checker_size * 2); + if((edge_size % (checker_size * 2)) > 0) + base_count[0]++; + + base_count[1] = (edge_size - checker_size) / (checker_size * 2); + if(((edge_size - checker_size) % (checker_size * 2)) > 0) + base_count[1]++; + + base_block[0] = checker_size; + base_block[1] = checker_size; + + /* now setup start, stride, count, and block arrays for + * the first call to H5Sselect_hyperslab(). + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = base_start[0]; + stride[i] = base_stride[0]; + count[i] = base_count[0]; + block[i] = base_block[0]; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* if small_rank == 1, or if edge_size == checker_size, we + * are done, as either there is no added dimension in which + * to place offset selected "checkers". + * + * Otherwise, set up start, stride, count and block, and + * make the additional selection. + */ + + if((small_rank > 1) && (checker_size < edge_size)) { + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = base_start[1]; + stride[i] = base_stride[1]; + count[i] = base_count[1]; + block[i] = base_block[1]; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + + /* Wierdness alert: + * + * Some how, it seems that selections can extend beyond the + * boundaries of the target data space -- hence the following + * code to manually clip the selection back to the data space + * proper. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + + /* Now select the checkerboard selection in the (possibly larger) n-cube. + * + * Since we have already calculated the base start, stride, count, + * and block, re-use the values in setting up start, stride, count, + * and block. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + if(dim_selected[i]) { + start[i] = base_start[0]; + stride[i] = base_stride[0]; + count[i] = base_count[0]; + block[i] = base_block[0]; + } /* end if */ + else { + start[i] = (hsize_t)offset; + stride[i] = (hsize_t)(2 * edge_size); + count[i] = 1; + block[i] = 1; + } /* end else */ + } /* end for */ + + /* Since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert( i >= 0 ); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + /* select the hyper slab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* As before, if the number of dimensions selected is less than or + * equal to 1, or if edge_size == checker_size, we are done, as + * either there is no added dimension in which to place offset selected + * "checkers", or the hyperslab is completely occupied by one + * "checker". + * + * Otherwise, set up start, stride, count and block, and + * make the additional selection. + */ + if((dims_selected > 1) && (checker_size < edge_size)) { + for(i = 0; i < SS_DR_MAX_RANK; i++) { + if(dim_selected[i]) { + start[i] = base_start[1]; + stride[i] = base_stride[1]; + count[i] = base_count[1]; + block[i] = base_block[1]; + } /* end if */ + else { + start[i] = (hsize_t)offset; + stride[i] = (hsize_t)(2 * edge_size); + count[i] = 1; + block[i] = 1; + } /* end else */ + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end if */ + + + /* Wierdness alert: + * + * Again, it seems that selections can extend beyond the + * boundaries of the target data space -- hence the following + * code to manually clip the selection back to the data space + * proper. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + start[i] = 0; + stride[i] = edge_size; + count[i] = 1; + block[i] = edge_size; + } /* end for */ + + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, + start, stride, count, block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + /* setup is done -- run the test: */ + check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "test_shape_same_dr__checkerboard"); + + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__checkerboard() */ + + +/**************************************************************** +** +** test_shape_same_dr__run_checkerboard_tests(): +** +** In this set of tests, we test H5S_select_shape_same() +** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as +** one parameter, and 1, 2, 3, and 4 dimensional checkerboard +** slices through a n-cube of rank no more than 5 (and at +** least the rank of the slice). +** +** All the n-cubes will have lengths of the same size, so +** H5S_select_shape_same() should return true iff: +** +** 1) the rank of the n cube equals the number of dimensions +** selected in the checker board slice through the m-cube +** (m >= n). +** +** 2) The dimensions selected in the checkerboard slice +** through the m-cube are the dimensions with the most +** quickly changing indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_checkerboard_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + + for(large_rank = 1; large_rank <= 5; large_rank++) { + for(small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if(v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if(w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if(x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if(y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if(z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while((i < small_rank) && expected_result) { + if(!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while((i < large_rank) && expected_result) { + if(dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + + /* everything is set up -- run the tests */ + + /* run test with edge size 16, checker + * size 1, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 16, + /* checker_size */ 1, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 5, + /* edge_size */ 16, + /* checker_size */ 1, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 15, + /* edge_size */ 16, + /* checker_size */ 1, + dim_selected, + expected_result + ); + + + /* run test with edge size 10, checker + * size 2, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 10, + /* checker_size */ 2, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 5, + /* edge_size */ 10, + /* checker_size */ 2, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 9, + /* edge_size */ 10, + /* checker_size */ 2, + dim_selected, + expected_result + ); + + + /* run test with edge size 10, checker + * size 3, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 10, + /* checker_size */ 3, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 5, + /* edge_size */ 10, + /* checker_size */ 3, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 9, + /* edge_size */ 10, + /* checker_size */ 3, + dim_selected, + expected_result + ); + + + /* run test with edge size 8, checker + * size 8, and a variety of offsets + */ + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 0, + /* edge_size */ 8, + /* checker_size */ 8, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 4, + /* edge_size */ 8, + /* checker_size */ 8, + dim_selected, + expected_result + ); + + test_shape_same_dr__checkerboard + ( + test_num++, + small_rank, + large_rank, + /* offset */ 7, + /* edge_size */ 8, + /* checker_size */ 8, + dim_selected, + expected_result + ); + + z++; + } while((z < 2) && (large_rank >= 1)); + + y++; + } while((y < 2) && (large_rank >= 2)); + + x++; + } while((x < 2) && (large_rank >= 3)); + + w++; + } while((w < 2) && (large_rank >= 4)); + + v++; + } while((v < 2) && (large_rank >= 5)); + } /* end for */ + } /* end for */ + +} /* test_shape_same_dr__run_checkerboard_tests() */ + + +/**************************************************************** +** +** test_shape_same_dr__irregular(): +** +** Tests selection of an "irregular" subset of a full +** n-cube data space vs an identical "irregular" subset +** of an n-dimensional slice of an m-cube (m > n). +** in a call to H5S_select_shape_same(). +** +** Note that this test does not require the n-cube and the +** n-dimensional slice to have the same rank (although +** H5S_select_shape_same() should always return FALSE if +** they don't). +** +****************************************************************/ +static void +test_shape_same_dr__irregular(int test_num, + int small_rank, + int large_rank, + int pattern_offset, + int slice_offset, + hbool_t dim_selected[], + hbool_t expected_result) +{ + char test_desc_0[128]; + char test_desc_1[128]; + int edge_size = 10; + int i; + int j; + int k; + int dims_selected = 0; + hid_t n_cube_0_sid; /* the hyper cube containing + * an irregular selection + */ + hid_t n_cube_1_sid; /* the hyper cube in which a + * slice contains an irregular + * selection. + */ + hsize_t dims[SS_DR_MAX_RANK]; + hsize_t start_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 5}; + hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_0[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 3}; + + hsize_t start_1[SS_DR_MAX_RANK] = { 2, 2, 2, 5, 2}; + hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_1[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_1[SS_DR_MAX_RANK] = { 2, 2, 2, 3, 2}; + + hsize_t start_2[SS_DR_MAX_RANK] = { 2, 2, 5, 2, 2}; + hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_2[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_2[SS_DR_MAX_RANK] = { 2, 2, 3, 2, 2}; + + hsize_t start_3[SS_DR_MAX_RANK] = { 2, 5, 2, 2, 2}; + hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_3[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_3[SS_DR_MAX_RANK] = { 2, 3, 2, 2, 2}; + + hsize_t start_4[SS_DR_MAX_RANK] = { 5, 2, 2, 2, 2}; + hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t count_4[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t block_4[SS_DR_MAX_RANK] = { 3, 2, 2, 2, 2}; + + hsize_t clip_start[SS_DR_MAX_RANK] = { 0, 0, 0, 0, 0}; + hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + hsize_t clip_count[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; + hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; + + + hsize_t *(starts[SS_DR_MAX_RANK]) = + {start_0, start_1, start_2, start_3, start_4}; + hsize_t *(strides[SS_DR_MAX_RANK]) = + {stride_0, stride_1, stride_2, stride_3, stride_4}; + hsize_t *(counts[SS_DR_MAX_RANK]) = + {count_0, count_1, count_2, count_3, count_4}; + hsize_t *(blocks[SS_DR_MAX_RANK]) = + {block_0, block_1, block_2, block_3, block_4}; + + hsize_t start[SS_DR_MAX_RANK]; + hsize_t * start_ptr; + hsize_t stride[SS_DR_MAX_RANK]; + hsize_t * stride_ptr; + hsize_t count[SS_DR_MAX_RANK]; + hsize_t * count_ptr; + hsize_t block[SS_DR_MAX_RANK]; + hsize_t * block_ptr; + htri_t check; /* Shape comparison return value */ + herr_t ret; /* Generic return value */ + + HDassert( 0 < small_rank ); + HDassert( small_rank <= large_rank ); + HDassert( large_rank <= SS_DR_MAX_RANK ); + HDassert( 9 <= edge_size ); + HDassert( edge_size <= 1000 ); + HDassert( 0 <= slice_offset ); + HDassert( slice_offset < edge_size ); + HDassert( -2 <= pattern_offset ); + HDassert( pattern_offset <= 2 ); + + for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) + if(dim_selected[i] == TRUE) + dims_selected++; + + HDassert( dims_selected >= 0 ); + HDassert( dims_selected <= large_rank ); + + sprintf(test_desc_0, + "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", + test_num); + MESSAGE(7, (test_desc_0)); + + /* This statement must be updated if SS_DR_MAX_RANK is changed */ + sprintf(test_desc_1, + "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", + small_rank, large_rank, + edge_size, + slice_offset, pattern_offset, + (int)dim_selected[0], + (int)dim_selected[1], + (int)dim_selected[2], + (int)dim_selected[3], + (int)dim_selected[4], + dims_selected); + MESSAGE(7, (test_desc_1)); + + /* copy the edge size into the dims array */ + for(i = 0; i < SS_DR_MAX_RANK; i++) + dims[i] = (hsize_t)edge_size; + + /* Create the small n-cube */ + n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); + CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); + + /* Select an "irregular" pattern in the small n-cube. This + * pattern can be though of a set of four 3 x 2 x 2 X 2 + * four dimensional prisims, each parallel to one of the + * axies and none of them intersecting with the other. + * + * In the lesser dimensional cases, this 4D pattern is + * projected onto the lower dimensional space. + * + * In the 1-D case, the projection of the pattern looks + * like this: + * + * - - * * - * * * - - + * 0 1 2 3 4 5 6 7 8 9 x + * + * and in the 2-D case, it would look like this: + * + * + * y + * 9 - - - - - - - - - - + * 8 - - - - - - - - - - + * 7 - - * * - - - - - - + * 6 - - * * - - - - - - + * 5 - - * * - - - - - - + * 4 - - - - - - - - - - + * 3 - - * * - * * * - - + * 2 - - * * - * * * - - + * 1 - - - - - - - - - - + * 0 - - - - - - - - - - + * 0 1 2 3 4 5 6 7 8 9 x + * + * In both cases, asterisks indicate selected elements, + * and dashes indicate unselected elements. + * + * Note that is this case, since the edge size is fixed, + * the pattern does not change. However, we do use the + * displacement parameter to allow it to be moved around + * within the n-cube or hyper slab. + */ + + /* first, ensure that the small n-cube has no selection */ + ret = H5Sselect_none(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + /* now, select the irregular pattern */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, + starts[i], strides[i], counts[i], blocks[i]); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* finally, clip the selection to ensure that it lies fully + * within the n-cube. + */ + ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, + clip_start, clip_stride, clip_count, clip_block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* Create the large n-cube */ + n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); + CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); + + /* Ensure that the large n-cube has no selection */ + H5Sselect_none(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sselect_none"); + + + /* Since large rank may be less than SS_DR_MAX_RANK, we may not + * use the entire start, stride, count, and block arrays. This + * is a problem, since it is inconvenient to set up the dim_selected + * array to reflect the large rank, and thus if large_rank < + * SS_DR_MAX_RANK, we need to hide the lower index entries + * from H5Sselect_hyperslab(). + * + * Do this by setting up pointers to the first valid entry in start, + * stride, count, and block below, and pass these pointers in + * to H5Sselect_hyperslab() instead of the array base addresses. + */ + + i = SS_DR_MAX_RANK - large_rank; + HDassert( i >= 0 ); + + start_ptr = &(start[i]); + stride_ptr = &(stride[i]); + count_ptr = &(count[i]); + block_ptr = &(block[i]); + + + /* Now select the irregular selection in the (possibly larger) n-cube. + * + * Basic idea is to project the pattern used in the smaller n-cube + * onto the dimensions selected in the larger n-cube, with the displacement + * specified. + */ + for(i = 0; i < SS_DR_MAX_RANK; i++) { + j = 0; + for(k = 0; k < SS_DR_MAX_RANK; k++) { + if(dim_selected[k]) { + start[k] = (starts[i])[j] + (hsize_t)pattern_offset; + stride[k] = (strides[i])[j]; + count[k] = (counts[i])[j]; + block[k] = (blocks[i])[j]; + j++; + } /* end if */ + else { + start[k] = (hsize_t)slice_offset; + stride[k] = (hsize_t)(2 * edge_size); + count[k] = 1; + block[k] = 1; + } /* end else */ + } /* end for */ + + /* select the hyper slab */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, + start_ptr, stride_ptr, count_ptr, block_ptr); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + } /* end for */ + + /* it is possible that the selection extends beyond the data space. + * clip the selection to ensure that it doesn't. + */ + ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, + clip_start, clip_stride, clip_count, clip_block); + CHECK(ret, FAIL, "H5Sselect_hyperslab"); + + + /* setup is done -- run the test: */ + check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); + VERIFY(check, expected_result, "test_shape_same_dr__checkerboard"); + + + /* Close dataspaces */ + ret = H5Sclose(n_cube_0_sid); + CHECK(ret, FAIL, "H5Sclose"); + + ret = H5Sclose(n_cube_1_sid); + CHECK(ret, FAIL, "H5Sclose"); + +} /* test_shape_same_dr__irregular() */ + + +/**************************************************************** +** +** test_shape_same_dr__run_irregular_tests(): +** +** In this set of tests, we test H5S_select_shape_same() +** with an "irregular" subselection of 1, 2, 3, and 4 cubes as +** one parameter, and irregular subselections of 1, 2, 3, +** and 4 dimensional slices through a n-cube of rank no more +** than 5 (and at least the rank of the slice) as the other. +** Note that the "irregular" selection may be offset between +** the n-cube and the slice. +** +** All the irregular selections will be identical (modulo rank) +** so H5S_select_shape_same() should return true iff: +** +** 1) the rank of the n cube equals the number of dimensions +** selected in the irregular slice through the m-cube +** (m >= n). +** +** 2) The dimensions selected in the irregular slice +** through the m-cube are the dimensions with the most +** quickly changing indices. +** +****************************************************************/ +static void +test_shape_same_dr__run_irregular_tests(void) +{ + hbool_t dim_selected[5]; + hbool_t expected_result; + int i, j; + int v, w, x, y, z; + int test_num = 0; + int small_rank; + int large_rank; + + for(large_rank = 1; large_rank <= 5; large_rank++) { + for(small_rank = 1; small_rank <= large_rank; small_rank++) { + v = 0; + do { + if(v == 0) + dim_selected[0] = FALSE; + else + dim_selected[0] = TRUE; + + w = 0; + do { + if(w == 0) + dim_selected[1] = FALSE; + else + dim_selected[1] = TRUE; + + x = 0; + do { + if(x == 0) + dim_selected[2] = FALSE; + else + dim_selected[2] = TRUE; + + y = 0; + do { + if(y == 0) + dim_selected[3] = FALSE; + else + dim_selected[3] = TRUE; + + z = 0; + do { + if(z == 0) + dim_selected[4] = FALSE; + else + dim_selected[4] = TRUE; + + + /* compute the expected result: */ + i = 0; + j = 4; + expected_result = TRUE; + while((i < small_rank) && expected_result) { + if(!dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + while((i < large_rank) && expected_result) { + if(dim_selected[j]) + expected_result = FALSE; + i++; + j--; + } /* end while */ + + + /* everything is set up -- run the tests */ + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 0, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 4, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ -2, + /* slice_offset */ 9, + dim_selected, + expected_result + ); + + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 0, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 6, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 0, + /* slice_offset */ 9, + dim_selected, + expected_result + ); + + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 0, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 5, + dim_selected, + expected_result + ); + + test_shape_same_dr__irregular + ( + test_num++, + small_rank, + large_rank, + /* pattern_offset */ 2, + /* slice_offset */ 9, + dim_selected, + expected_result + ); + + z++; + } while((z < 2) && (large_rank >= 1)); + + y++; + } while((y < 2) && (large_rank >= 2)); + + x++; + } while((x < 2) && (large_rank >= 3)); + + w++; + } while((w < 2) && (large_rank >= 4)); + + v++; + } while((v < 2 ) && (large_rank >= 5)); + } /* end for */ + } /* end for */ + +} /* test_shape_same_dr__run_irregular_tests() */ + + +/**************************************************************** +** +** test_shape_same_dr(): Tests selections on dataspace with +** different ranks, to verify that "shape same" routine +** is now handling this case correctly. +** +****************************************************************/ +static void +test_shape_same_dr(void) +{ + /* Output message about test being performed */ + MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n")); + + + /* first run some smoke checks */ + test_shape_same_dr__smoke_check_1(); + test_shape_same_dr__smoke_check_2(); + test_shape_same_dr__smoke_check_3(); + test_shape_same_dr__smoke_check_4(); + + + /* now run more intensive tests. */ + test_shape_same_dr__run_full_space_vs_slice_tests(); + test_shape_same_dr__run_checkerboard_tests(); + test_shape_same_dr__run_irregular_tests(); + +} /* test_shape_same_dr() */ + /**************************************************************** ** @@ -8241,6 +13118,14 @@ test_select(void) test_select_hyper_contig3(H5T_STD_U16LE,plist_id); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE,H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE,plist_id); /* Test yet more contiguous hyperslab selection cases */ + test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT); + test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id); + test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT); + test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id); + test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT); + test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id); + test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT); + test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id); test_select_hyper_copy(); /* Test hyperslab selection copying code */ test_select_point_copy(); /* Test point selection copying code */ test_select_hyper_offset(); /* Test selection offset code with hyperslabs */ @@ -8320,6 +13205,9 @@ test_select(void) /* Test "same shape" routine */ test_shape_same(); + /* Test "same shape" routine for selections of different rank */ + test_shape_same_dr(); + /* Test "re-build" routine */ test_space_rebuild(); |