summaryrefslogtreecommitdiffstats
path: root/testpar/API/t_span_tree.c
diff options
context:
space:
mode:
Diffstat (limited to 'testpar/API/t_span_tree.c')
-rw-r--r--testpar/API/t_span_tree.c2622
1 files changed, 2622 insertions, 0 deletions
diff --git a/testpar/API/t_span_tree.c b/testpar/API/t_span_tree.c
new file mode 100644
index 0000000..5aafb0b
--- /dev/null
+++ b/testpar/API/t_span_tree.c
@@ -0,0 +1,2622 @@
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ * Copyright by The HDF Group. *
+ * All rights reserved. *
+ * *
+ * This file is part of HDF5. The full HDF5 copyright notice, including *
+ * terms governing use, modification, and redistribution, is contained in *
+ * the COPYING file, which can be found at the root of the source code *
+ * distribution tree, or in https://www.hdfgroup.org/licenses. *
+ * If you do not have access to either file, you may request a copy from *
+ * help@hdfgroup.org. *
+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+/*
+ This program will test irregular hyperslab selections with collective write and read.
+ The way to test whether collective write and read works is to use independent IO
+ output to verify the collective output.
+
+ 1) We will write two datasets with the same hyperslab selection settings;
+ one in independent mode,
+ one in collective mode,
+ 2) We will read two datasets with the same hyperslab selection settings,
+ 1. independent read to read independent output,
+ independent read to read collecive output,
+ Compare the result,
+ If the result is the same, then collective write succeeds.
+ 2. collective read to read independent output,
+ independent read to read independent output,
+ Compare the result,
+ If the result is the same, then collective read succeeds.
+
+ */
+
+#include "hdf5.h"
+#if 0
+#include "H5private.h"
+#endif
+#include "testphdf5.h"
+
+#define LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG 0
+
+static void coll_write_test(int chunk_factor);
+static void coll_read_test(void);
+
+/*-------------------------------------------------------------------------
+ * Function: coll_irregular_cont_write
+ *
+ * Purpose: Wrapper to test the collectively irregular hyperslab write in
+ * contiguous storage
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_irregular_cont_write(void)
+{
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file dataset, or dataset more aren't supported with this "
+ "connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ coll_write_test(0);
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_irregular_cont_read
+ *
+ * Purpose: Wrapper to test the collectively irregular hyperslab read in
+ * contiguous storage
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_irregular_cont_read(void)
+{
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file dataset, or dataset more aren't supported with this "
+ "connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ coll_read_test();
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_irregular_simple_chunk_write
+ *
+ * Purpose: Wrapper to test the collectively irregular hyperslab write in
+ * chunk storage(1 chunk)
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_irregular_simple_chunk_write(void)
+{
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file dataset, or dataset more aren't supported with this "
+ "connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ coll_write_test(1);
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_irregular_simple_chunk_read
+ *
+ * Purpose: Wrapper to test the collectively irregular hyperslab read in chunk
+ * storage(1 chunk)
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_irregular_simple_chunk_read(void)
+{
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file dataset, or dataset more aren't supported with this "
+ "connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ coll_read_test();
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_irregular_complex_chunk_write
+ *
+ * Purpose: Wrapper to test the collectively irregular hyperslab write in chunk
+ * storage(4 chunks)
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_irregular_complex_chunk_write(void)
+{
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file dataset, or dataset more aren't supported with this "
+ "connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ coll_write_test(4);
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_irregular_complex_chunk_read
+ *
+ * Purpose: Wrapper to test the collectively irregular hyperslab read in chunk
+ * storage(1 chunk)
+ *
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_irregular_complex_chunk_read(void)
+{
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) ||
+ !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file dataset, or dataset more aren't supported with this "
+ "connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ coll_read_test();
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_write_test
+ *
+ * Purpose: To test the collectively irregular hyperslab write in chunk
+ * storage
+ * Input: number of chunks on each dimension
+ * if number is equal to 0, contiguous storage
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+void
+coll_write_test(int chunk_factor)
+{
+
+ const char *filename;
+ hid_t facc_plist, dxfer_plist, dcrt_plist;
+ hid_t file, datasetc, dataseti; /* File and dataset identifiers */
+ hid_t mspaceid1, mspaceid, fspaceid, fspaceid1; /* Dataspace identifiers */
+
+ hsize_t mdim1[1]; /* Dimension size of the first dataset (in memory) */
+ hsize_t fsdim[2]; /* Dimension sizes of the dataset (on disk) */
+ hsize_t mdim[2]; /* Dimension sizes of the dataset in memory when we
+ * read selection from the dataset on the disk
+ */
+
+ hsize_t start[2]; /* Start of hyperslab */
+ hsize_t stride[2]; /* Stride of hyperslab */
+ hsize_t count[2]; /* Block count */
+ hsize_t block[2]; /* Block sizes */
+ hsize_t chunk_dims[2];
+
+ herr_t ret;
+ int i;
+ int fillvalue = 0; /* Fill value for the dataset */
+
+ int *matrix_out = NULL;
+ int *matrix_out1 = NULL; /* Buffer to read from the dataset */
+ int *vector = NULL;
+
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ /*set up MPI parameters */
+ MPI_Comm_size(comm, &mpi_size);
+ MPI_Comm_rank(comm, &mpi_rank);
+
+ /* Obtain file name */
+ filename = PARATESTFILE /* GetTestParameters() */;
+
+ /*
+ * Buffers' initialization.
+ */
+
+ mdim1[0] = (hsize_t)(MSPACE1_DIM * mpi_size);
+ mdim[0] = MSPACE_DIM1;
+ mdim[1] = (hsize_t)(MSPACE_DIM2 * mpi_size);
+ fsdim[0] = FSPACE_DIM1;
+ fsdim[1] = (hsize_t)(FSPACE_DIM2 * mpi_size);
+
+ vector = (int *)HDmalloc(sizeof(int) * (size_t)mdim1[0] * (size_t)mpi_size);
+ matrix_out = (int *)HDmalloc(sizeof(int) * (size_t)mdim[0] * (size_t)mdim[1] * (size_t)mpi_size);
+ matrix_out1 = (int *)HDmalloc(sizeof(int) * (size_t)mdim[0] * (size_t)mdim[1] * (size_t)mpi_size);
+
+ HDmemset(vector, 0, sizeof(int) * (size_t)mdim1[0] * (size_t)mpi_size);
+ vector[0] = vector[MSPACE1_DIM * mpi_size - 1] = -1;
+ for (i = 1; i < MSPACE1_DIM * mpi_size - 1; i++)
+ vector[i] = (int)i;
+
+ /* Grab file access property list */
+ facc_plist = create_faccess_plist(comm, info, facc_type);
+ VRFY((facc_plist >= 0), "");
+
+ /*
+ * Create a file.
+ */
+ file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, facc_plist);
+ VRFY((file >= 0), "H5Fcreate succeeded");
+
+ /*
+ * Create property list for a dataset and set up fill values.
+ */
+ dcrt_plist = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((dcrt_plist >= 0), "");
+
+ ret = H5Pset_fill_value(dcrt_plist, H5T_NATIVE_INT, &fillvalue);
+ VRFY((ret >= 0), "Fill value creation property list succeeded");
+
+ if (chunk_factor != 0) {
+ chunk_dims[0] = fsdim[0] / (hsize_t)chunk_factor;
+ chunk_dims[1] = fsdim[1] / (hsize_t)chunk_factor;
+ ret = H5Pset_chunk(dcrt_plist, 2, chunk_dims);
+ VRFY((ret >= 0), "chunk creation property list succeeded");
+ }
+
+ /*
+ *
+ * Create dataspace for the first dataset in the disk.
+ * dim1 = 9
+ * dim2 = 3600
+ *
+ *
+ */
+ fspaceid = H5Screate_simple(FSPACE_RANK, fsdim, NULL);
+ VRFY((fspaceid >= 0), "file dataspace created succeeded");
+
+ /*
+ * Create dataset in the file. Notice that creation
+ * property list dcrt_plist is used.
+ */
+ datasetc =
+ H5Dcreate2(file, "collect_write", H5T_NATIVE_INT, fspaceid, H5P_DEFAULT, dcrt_plist, H5P_DEFAULT);
+ VRFY((datasetc >= 0), "dataset created succeeded");
+
+ dataseti =
+ H5Dcreate2(file, "independ_write", H5T_NATIVE_INT, fspaceid, H5P_DEFAULT, dcrt_plist, H5P_DEFAULT);
+ VRFY((dataseti >= 0), "dataset created succeeded");
+
+ /* The First selection for FILE
+ *
+ * block (3,2)
+ * stride(4,3)
+ * count (1,768/mpi_size)
+ * start (0,1+768*3*mpi_rank/mpi_size)
+ *
+ */
+
+ start[0] = FHSTART0;
+ start[1] = (hsize_t)(FHSTART1 + mpi_rank * FHSTRIDE1 * FHCOUNT1);
+ stride[0] = FHSTRIDE0;
+ stride[1] = FHSTRIDE1;
+ count[0] = FHCOUNT0;
+ count[1] = FHCOUNT1;
+ block[0] = FHBLOCK0;
+ block[1] = FHBLOCK1;
+
+ ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /* The Second selection for FILE
+ *
+ * block (3,768)
+ * stride (1,1)
+ * count (1,1)
+ * start (4,768*mpi_rank/mpi_size)
+ *
+ */
+
+ start[0] = SHSTART0;
+ start[1] = (hsize_t)(SHSTART1 + SHCOUNT1 * SHBLOCK1 * mpi_rank);
+ stride[0] = SHSTRIDE0;
+ stride[1] = SHSTRIDE1;
+ count[0] = SHCOUNT0;
+ count[1] = SHCOUNT1;
+ block[0] = SHBLOCK0;
+ block[1] = SHBLOCK1;
+
+ ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Create dataspace for the first dataset in the memory
+ * dim1 = 27000
+ *
+ */
+ mspaceid1 = H5Screate_simple(MSPACE1_RANK, mdim1, NULL);
+ VRFY((mspaceid1 >= 0), "memory dataspace created succeeded");
+
+ /*
+ * Memory space is 1-D, this is a good test to check
+ * whether a span-tree derived datatype needs to be built.
+ * block 1
+ * stride 1
+ * count 6912/mpi_size
+ * start 1
+ *
+ */
+ start[0] = MHSTART0;
+ stride[0] = MHSTRIDE0;
+ count[0] = MHCOUNT0;
+ block[0] = MHBLOCK0;
+
+ ret = H5Sselect_hyperslab(mspaceid1, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /* independent write */
+ ret = H5Dwrite(dataseti, H5T_NATIVE_INT, mspaceid1, fspaceid, H5P_DEFAULT, vector);
+ VRFY((ret >= 0), "dataset independent write succeed");
+
+ dxfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((dxfer_plist >= 0), "");
+
+ ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "MPIO data transfer property list succeed");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(dxfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* collective write */
+ ret = H5Dwrite(datasetc, H5T_NATIVE_INT, mspaceid1, fspaceid, dxfer_plist, vector);
+ VRFY((ret >= 0), "dataset collective write succeed");
+
+ ret = H5Sclose(mspaceid1);
+ VRFY((ret >= 0), "");
+
+ ret = H5Sclose(fspaceid);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close dataset.
+ */
+ ret = H5Dclose(datasetc);
+ VRFY((ret >= 0), "");
+
+ ret = H5Dclose(dataseti);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close the file.
+ */
+ ret = H5Fclose(file);
+ VRFY((ret >= 0), "");
+ /*
+ * Close property list
+ */
+
+ ret = H5Pclose(facc_plist);
+ VRFY((ret >= 0), "");
+ ret = H5Pclose(dxfer_plist);
+ VRFY((ret >= 0), "");
+ ret = H5Pclose(dcrt_plist);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Open the file.
+ */
+
+ /***
+
+ For testing collective hyperslab selection write
+ In this test, we are using independent read to check
+ the correctedness of collective write compared with
+ independent write,
+
+ In order to thoroughly test this feature, we choose
+ a different selection set for reading the data out.
+
+
+ ***/
+
+ /* Obtain file access property list with MPI-IO driver */
+ facc_plist = create_faccess_plist(comm, info, facc_type);
+ VRFY((facc_plist >= 0), "");
+
+ file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist);
+ VRFY((file >= 0), "H5Fopen succeeded");
+
+ /*
+ * Open the dataset.
+ */
+ datasetc = H5Dopen2(file, "collect_write", H5P_DEFAULT);
+ VRFY((datasetc >= 0), "H5Dopen2 succeeded");
+
+ dataseti = H5Dopen2(file, "independ_write", H5P_DEFAULT);
+ VRFY((dataseti >= 0), "H5Dopen2 succeeded");
+
+ /*
+ * Get dataspace of the open dataset.
+ */
+ fspaceid = H5Dget_space(datasetc);
+ VRFY((fspaceid >= 0), "file dataspace obtained succeeded");
+
+ fspaceid1 = H5Dget_space(dataseti);
+ VRFY((fspaceid1 >= 0), "file dataspace obtained succeeded");
+
+ /* The First selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (1,2+768*mpi_rank/mpi_size)
+ *
+ */
+ start[0] = RFFHSTART0;
+ start[1] = (hsize_t)(RFFHSTART1 + mpi_rank * RFFHCOUNT1);
+ block[0] = RFFHBLOCK0;
+ block[1] = RFFHBLOCK1;
+ stride[0] = RFFHSTRIDE0;
+ stride[1] = RFFHSTRIDE1;
+ count[0] = RFFHCOUNT0;
+ count[1] = RFFHCOUNT1;
+
+ /* The first selection of the dataset generated by collective write */
+ ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /* The first selection of the dataset generated by independent write */
+ ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /* The Second selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,1536/mpi_size)
+ * start (2,4+1536*mpi_rank/mpi_size)
+ *
+ */
+
+ start[0] = RFSHSTART0;
+ start[1] = (hsize_t)(RFSHSTART1 + RFSHCOUNT1 * mpi_rank);
+ block[0] = RFSHBLOCK0;
+ block[1] = RFSHBLOCK1;
+ stride[0] = RFSHSTRIDE0;
+ stride[1] = RFSHSTRIDE0;
+ count[0] = RFSHCOUNT0;
+ count[1] = RFSHCOUNT1;
+
+ /* The second selection of the dataset generated by collective write */
+ ret = H5Sselect_hyperslab(fspaceid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /* The second selection of the dataset generated by independent write */
+ ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Create memory dataspace.
+ * rank = 2
+ * mdim1 = 9
+ * mdim2 = 3600
+ *
+ */
+ mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL);
+
+ /*
+ * Select two hyperslabs in memory. Hyperslabs has the same
+ * size and shape as the selected hyperslabs for the file dataspace
+ * Only the starting point is different.
+ * The first selection
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (0,768*mpi_rank/mpi_size)
+ *
+ */
+
+ start[0] = RMFHSTART0;
+ start[1] = (hsize_t)(RMFHSTART1 + mpi_rank * RMFHCOUNT1);
+ block[0] = RMFHBLOCK0;
+ block[1] = RMFHBLOCK1;
+ stride[0] = RMFHSTRIDE0;
+ stride[1] = RMFHSTRIDE1;
+ count[0] = RMFHCOUNT0;
+ count[1] = RMFHCOUNT1;
+
+ ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Select two hyperslabs in memory. Hyperslabs has the same
+ * size and shape as the selected hyperslabs for the file dataspace
+ * Only the starting point is different.
+ * The second selection
+ * block (1,1)
+ * stride(1,1)
+ * count (3,1536/mpi_size)
+ * start (1,2+1536*mpi_rank/mpi_size)
+ *
+ */
+ start[0] = RMSHSTART0;
+ start[1] = (hsize_t)(RMSHSTART1 + mpi_rank * RMSHCOUNT1);
+ block[0] = RMSHBLOCK0;
+ block[1] = RMSHBLOCK1;
+ stride[0] = RMSHSTRIDE0;
+ stride[1] = RMSHSTRIDE1;
+ count[0] = RMSHCOUNT0;
+ count[1] = RMSHCOUNT1;
+
+ ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Initialize data buffer.
+ */
+
+ HDmemset(matrix_out, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size);
+ HDmemset(matrix_out1, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size);
+ /*
+ * Read data back to the buffer matrix_out.
+ */
+
+ ret = H5Dread(datasetc, H5T_NATIVE_INT, mspaceid, fspaceid, H5P_DEFAULT, matrix_out);
+ VRFY((ret >= 0), "H5D independent read succeed");
+
+ ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid, H5P_DEFAULT, matrix_out1);
+ VRFY((ret >= 0), "H5D independent read succeed");
+
+ ret = 0;
+
+ for (i = 0; i < MSPACE_DIM1 * MSPACE_DIM2 * mpi_size; i++) {
+ if (matrix_out[i] != matrix_out1[i])
+ ret = -1;
+ if (ret < 0)
+ break;
+ }
+
+ VRFY((ret >= 0), "H5D irregular collective write succeed");
+
+ /*
+ * Close memory file and memory dataspaces.
+ */
+ ret = H5Sclose(mspaceid);
+ VRFY((ret >= 0), "");
+ ret = H5Sclose(fspaceid);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close dataset.
+ */
+ ret = H5Dclose(dataseti);
+ VRFY((ret >= 0), "");
+
+ ret = H5Dclose(datasetc);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close property list
+ */
+
+ ret = H5Pclose(facc_plist);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close the file.
+ */
+ ret = H5Fclose(file);
+ VRFY((ret >= 0), "");
+
+ if (vector)
+ HDfree(vector);
+ if (matrix_out)
+ HDfree(matrix_out);
+ if (matrix_out1)
+ HDfree(matrix_out1);
+
+ return;
+}
+
+/*-------------------------------------------------------------------------
+ * Function: coll_read_test
+ *
+ * Purpose: To test the collectively irregular hyperslab read in chunk
+ * storage
+ * Input: number of chunks on each dimension
+ * if number is equal to 0, contiguous storage
+ * Return: Success: 0
+ *
+ * Failure: -1
+ *
+ * Programmer: Unknown
+ * Dec 2nd, 2004
+ *
+ *-------------------------------------------------------------------------
+ */
+static void
+coll_read_test(void)
+{
+
+ const char *filename;
+ hid_t facc_plist, dxfer_plist;
+ hid_t file, dataseti; /* File and dataset identifiers */
+ hid_t mspaceid, fspaceid1; /* Dataspace identifiers */
+
+ /* Dimension sizes of the dataset (on disk) */
+ hsize_t mdim[2]; /* Dimension sizes of the dataset in memory when we
+ * read selection from the dataset on the disk
+ */
+
+ hsize_t start[2]; /* Start of hyperslab */
+ hsize_t stride[2]; /* Stride of hyperslab */
+ hsize_t count[2]; /* Block count */
+ hsize_t block[2]; /* Block sizes */
+ herr_t ret;
+
+ int i;
+
+ int *matrix_out;
+ int *matrix_out1; /* Buffer to read from the dataset */
+
+ int mpi_size, mpi_rank;
+
+ MPI_Comm comm = MPI_COMM_WORLD;
+ MPI_Info info = MPI_INFO_NULL;
+
+ /*set up MPI parameters */
+ MPI_Comm_size(comm, &mpi_size);
+ MPI_Comm_rank(comm, &mpi_rank);
+
+ /* Obtain file name */
+ filename = PARATESTFILE /* GetTestParameters() */;
+
+ /* Initialize the buffer */
+
+ mdim[0] = MSPACE_DIM1;
+ mdim[1] = (hsize_t)(MSPACE_DIM2 * mpi_size);
+ matrix_out = (int *)HDmalloc(sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size);
+ matrix_out1 = (int *)HDmalloc(sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size);
+
+ /*** For testing collective hyperslab selection read ***/
+
+ /* Obtain file access property list */
+ facc_plist = create_faccess_plist(comm, info, facc_type);
+ VRFY((facc_plist >= 0), "");
+
+ /*
+ * Open the file.
+ */
+ file = H5Fopen(filename, H5F_ACC_RDONLY, facc_plist);
+ VRFY((file >= 0), "H5Fopen succeeded");
+
+ /*
+ * Open the dataset.
+ */
+ dataseti = H5Dopen2(file, "independ_write", H5P_DEFAULT);
+ VRFY((dataseti >= 0), "H5Dopen2 succeeded");
+
+ /*
+ * Get dataspace of the open dataset.
+ */
+ fspaceid1 = H5Dget_space(dataseti);
+ VRFY((fspaceid1 >= 0), "file dataspace obtained succeeded");
+
+ /* The First selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (1,2+768*mpi_rank/mpi_size)
+ *
+ */
+ start[0] = RFFHSTART0;
+ start[1] = (hsize_t)(RFFHSTART1 + mpi_rank * RFFHCOUNT1);
+ block[0] = RFFHBLOCK0;
+ block[1] = RFFHBLOCK1;
+ stride[0] = RFFHSTRIDE0;
+ stride[1] = RFFHSTRIDE1;
+ count[0] = RFFHCOUNT0;
+ count[1] = RFFHCOUNT1;
+
+ ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /* The Second selection for FILE to read
+ *
+ * block (1,1)
+ * stride(1.1)
+ * count (3,1536/mpi_size)
+ * start (2,4+1536*mpi_rank/mpi_size)
+ *
+ */
+ start[0] = RFSHSTART0;
+ start[1] = (hsize_t)(RFSHSTART1 + RFSHCOUNT1 * mpi_rank);
+ block[0] = RFSHBLOCK0;
+ block[1] = RFSHBLOCK1;
+ stride[0] = RFSHSTRIDE0;
+ stride[1] = RFSHSTRIDE0;
+ count[0] = RFSHCOUNT0;
+ count[1] = RFSHCOUNT1;
+
+ ret = H5Sselect_hyperslab(fspaceid1, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Create memory dataspace.
+ */
+ mspaceid = H5Screate_simple(MSPACE_RANK, mdim, NULL);
+
+ /*
+ * Select two hyperslabs in memory. Hyperslabs has the same
+ * size and shape as the selected hyperslabs for the file dataspace.
+ * Only the starting point is different.
+ * The first selection
+ * block (1,1)
+ * stride(1.1)
+ * count (3,768/mpi_size)
+ * start (0,768*mpi_rank/mpi_size)
+ *
+ */
+
+ start[0] = RMFHSTART0;
+ start[1] = (hsize_t)(RMFHSTART1 + mpi_rank * RMFHCOUNT1);
+ block[0] = RMFHBLOCK0;
+ block[1] = RMFHBLOCK1;
+ stride[0] = RMFHSTRIDE0;
+ stride[1] = RMFHSTRIDE1;
+ count[0] = RMFHCOUNT0;
+ count[1] = RMFHCOUNT1;
+ ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Select two hyperslabs in memory. Hyperslabs has the same
+ * size and shape as the selected hyperslabs for the file dataspace
+ * Only the starting point is different.
+ * The second selection
+ * block (1,1)
+ * stride(1,1)
+ * count (3,1536/mpi_size)
+ * start (1,2+1536*mpi_rank/mpi_size)
+ *
+ */
+ start[0] = RMSHSTART0;
+ start[1] = (hsize_t)(RMSHSTART1 + mpi_rank * RMSHCOUNT1);
+ block[0] = RMSHBLOCK0;
+ block[1] = RMSHBLOCK1;
+ stride[0] = RMSHSTRIDE0;
+ stride[1] = RMSHSTRIDE1;
+ count[0] = RMSHCOUNT0;
+ count[1] = RMSHCOUNT1;
+ ret = H5Sselect_hyperslab(mspaceid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "hyperslab selection succeeded");
+
+ /*
+ * Initialize data buffer.
+ */
+
+ HDmemset(matrix_out, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size);
+ HDmemset(matrix_out1, 0, sizeof(int) * (size_t)MSPACE_DIM1 * (size_t)MSPACE_DIM2 * (size_t)mpi_size);
+
+ /*
+ * Read data back to the buffer matrix_out.
+ */
+
+ dxfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((dxfer_plist >= 0), "");
+
+ ret = H5Pset_dxpl_mpio(dxfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "MPIO data transfer property list succeed");
+ if (dxfer_coll_type == DXFER_INDEPENDENT_IO) {
+ ret = H5Pset_dxpl_mpio_collective_opt(dxfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY((ret >= 0), "set independent IO collectively succeeded");
+ }
+
+ /* Collective read */
+ ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, dxfer_plist, matrix_out);
+ VRFY((ret >= 0), "H5D collecive read succeed");
+
+ ret = H5Pclose(dxfer_plist);
+ VRFY((ret >= 0), "");
+
+ /* Independent read */
+ ret = H5Dread(dataseti, H5T_NATIVE_INT, mspaceid, fspaceid1, H5P_DEFAULT, matrix_out1);
+ VRFY((ret >= 0), "H5D independent read succeed");
+
+ ret = 0;
+ for (i = 0; i < MSPACE_DIM1 * MSPACE_DIM2 * mpi_size; i++) {
+ if (matrix_out[i] != matrix_out1[i])
+ ret = -1;
+ if (ret < 0)
+ break;
+ }
+ VRFY((ret >= 0), "H5D contiguous irregular collective read succeed");
+
+ /*
+ * Free read buffers.
+ */
+ HDfree(matrix_out);
+ HDfree(matrix_out1);
+
+ /*
+ * Close memory file and memory dataspaces.
+ */
+ ret = H5Sclose(mspaceid);
+ VRFY((ret >= 0), "");
+ ret = H5Sclose(fspaceid1);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close dataset.
+ */
+ ret = H5Dclose(dataseti);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close property list
+ */
+ ret = H5Pclose(facc_plist);
+ VRFY((ret >= 0), "");
+
+ /*
+ * Close the file.
+ */
+ ret = H5Fclose(file);
+ VRFY((ret >= 0), "");
+
+ return;
+}
+
+/****************************************************************
+**
+** lower_dim_size_comp_test__select_checker_board():
+**
+** Given a dataspace of tgt_rank, and dimensions:
+**
+** (mpi_size + 1), edge_size, ... , edge_size
+**
+** edge_size, and a checker_edge_size, select a checker
+** board selection of a sel_rank (sel_rank < tgt_rank)
+** dimensional slice through the dataspace parallel to the
+** sel_rank fastest changing indices, with origin (in the
+** higher indices) as indicated by the start array.
+**
+** Note that this function, is hard coded to presume a
+** maximum dataspace rank of 5.
+**
+** While this maximum is declared as a constant, increasing
+** it will require extensive coding in addition to changing
+** the value of the constant.
+**
+** JRM -- 11/11/09
+**
+****************************************************************/
+
+#define LDSCT_DS_RANK 5
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+#define LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK 0
+#endif
+
+#define LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG 0
+
+static void
+lower_dim_size_comp_test__select_checker_board(const int mpi_rank, const hid_t tgt_sid, const int tgt_rank,
+ const hsize_t dims[LDSCT_DS_RANK], const int checker_edge_size,
+ const int sel_rank, hsize_t sel_start[])
+{
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ const char *fcnName = "lower_dim_size_comp_test__select_checker_board():";
+#endif
+ hbool_t first_selection = TRUE;
+ int i, j, k, l, m;
+ int ds_offset;
+ int sel_offset;
+ const int test_max_rank = LDSCT_DS_RANK; /* must update code if */
+ /* this changes */
+ hsize_t base_count;
+ hsize_t offset_count;
+ hsize_t start[LDSCT_DS_RANK];
+ hsize_t stride[LDSCT_DS_RANK];
+ hsize_t count[LDSCT_DS_RANK];
+ hsize_t block[LDSCT_DS_RANK];
+ herr_t ret; /* Generic return value */
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: dims/checker_edge_size = %d %d %d %d %d / %d\n", fcnName, mpi_rank,
+ (int)dims[0], (int)dims[1], (int)dims[2], (int)dims[3], (int)dims[4], checker_edge_size);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ HDassert(0 < checker_edge_size);
+ HDassert(0 < sel_rank);
+ HDassert(sel_rank <= tgt_rank);
+ HDassert(tgt_rank <= test_max_rank);
+ HDassert(test_max_rank <= LDSCT_DS_RANK);
+
+ sel_offset = test_max_rank - sel_rank;
+ HDassert(sel_offset >= 0);
+
+ ds_offset = test_max_rank - tgt_rank;
+ HDassert(ds_offset >= 0);
+ HDassert(ds_offset <= sel_offset);
+
+ HDassert((hsize_t)checker_edge_size <= dims[sel_offset]);
+ HDassert(dims[sel_offset] == 10);
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: sel_rank/sel_offset = %d/%d.\n", fcnName, mpi_rank, sel_rank, sel_offset);
+ HDfprintf(stdout, "%s:%d: tgt_rank/ds_offset = %d/%d.\n", fcnName, mpi_rank, tgt_rank, ds_offset);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* First, compute the base count (which assumes start == 0
+ * for the associated offset) and offset_count (which
+ * assumes start == checker_edge_size for the associated
+ * offset).
+ *
+ * Note that the following computation depends on the C99
+ * requirement that integer division discard any fraction
+ * (truncation towards zero) to function correctly. As we
+ * now require C99, this shouldn't be a problem, but noting
+ * it may save us some pain if we are ever obliged to support
+ * pre-C99 compilers again.
+ */
+
+ base_count = dims[sel_offset] / (hsize_t)(checker_edge_size * 2);
+
+ if ((dims[sel_rank] % (hsize_t)(checker_edge_size * 2)) > 0) {
+
+ base_count++;
+ }
+
+ offset_count =
+ (hsize_t)((dims[sel_offset] - (hsize_t)checker_edge_size) / ((hsize_t)(checker_edge_size * 2)));
+
+ if (((dims[sel_rank] - (hsize_t)checker_edge_size) % ((hsize_t)(checker_edge_size * 2))) > 0) {
+
+ offset_count++;
+ }
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: base_count/offset_count = %d/%d.\n", fcnName, mpi_rank, base_count,
+ offset_count);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* Now set up the stride and block arrays, and portions of the start
+ * and count arrays that will not be altered during the selection of
+ * the checker board.
+ */
+ i = 0;
+ while (i < ds_offset) {
+
+ /* these values should never be used */
+ start[i] = 0;
+ stride[i] = 0;
+ count[i] = 0;
+ block[i] = 0;
+
+ i++;
+ }
+
+ while (i < sel_offset) {
+
+ start[i] = sel_start[i];
+ stride[i] = 2 * dims[i];
+ count[i] = 1;
+ block[i] = 1;
+
+ i++;
+ }
+
+ while (i < test_max_rank) {
+
+ stride[i] = (hsize_t)(2 * checker_edge_size);
+ block[i] = (hsize_t)checker_edge_size;
+
+ i++;
+ }
+
+ i = 0;
+ do {
+ if (0 >= sel_offset) {
+
+ if (i == 0) {
+
+ start[0] = 0;
+ count[0] = base_count;
+ }
+ else {
+
+ start[0] = (hsize_t)checker_edge_size;
+ count[0] = offset_count;
+ }
+ }
+
+ j = 0;
+ do {
+ if (1 >= sel_offset) {
+
+ if (j == 0) {
+
+ start[1] = 0;
+ count[1] = base_count;
+ }
+ else {
+
+ start[1] = (hsize_t)checker_edge_size;
+ count[1] = offset_count;
+ }
+ }
+
+ k = 0;
+ do {
+ if (2 >= sel_offset) {
+
+ if (k == 0) {
+
+ start[2] = 0;
+ count[2] = base_count;
+ }
+ else {
+
+ start[2] = (hsize_t)checker_edge_size;
+ count[2] = offset_count;
+ }
+ }
+
+ l = 0;
+ do {
+ if (3 >= sel_offset) {
+
+ if (l == 0) {
+
+ start[3] = 0;
+ count[3] = base_count;
+ }
+ else {
+
+ start[3] = (hsize_t)checker_edge_size;
+ count[3] = offset_count;
+ }
+ }
+
+ m = 0;
+ do {
+ if (4 >= sel_offset) {
+
+ if (m == 0) {
+
+ start[4] = 0;
+ count[4] = base_count;
+ }
+ else {
+
+ start[4] = (hsize_t)checker_edge_size;
+ count[4] = offset_count;
+ }
+ }
+
+ if (((i + j + k + l + m) % 2) == 0) {
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+
+ HDfprintf(stdout, "%s%d: *** first_selection = %d ***\n", fcnName, mpi_rank,
+ (int)first_selection);
+ HDfprintf(stdout, "%s:%d: i/j/k/l/m = %d/%d/%d/%d/%d\n", fcnName, mpi_rank, i,
+ j, k, l, m);
+ HDfprintf(stdout, "%s:%d: start = %d %d %d %d %d.\n", fcnName, mpi_rank,
+ (int)start[0], (int)start[1], (int)start[2], (int)start[3],
+ (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride = %d %d %d %d %d.\n", fcnName, mpi_rank,
+ (int)stride[0], (int)stride[1], (int)stride[2], (int)stride[3],
+ (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count = %d %d %d %d %d.\n", fcnName, mpi_rank,
+ (int)count[0], (int)count[1], (int)count[2], (int)count[3],
+ (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block = %d %d %d %d %d.\n", fcnName, mpi_rank,
+ (int)block[0], (int)block[1], (int)block[2], (int)block[3],
+ (int)block[4]);
+ HDfprintf(stdout, "%s:%d: n-cube extent dims = %d.\n", fcnName, mpi_rank,
+ H5Sget_simple_extent_ndims(tgt_sid));
+ HDfprintf(stdout, "%s:%d: selection rank = %d.\n", fcnName, mpi_rank,
+ sel_rank);
+ }
+#endif
+
+ if (first_selection) {
+
+ first_selection = FALSE;
+
+ ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_SET, &(start[ds_offset]),
+ &(stride[ds_offset]), &(count[ds_offset]),
+ &(block[ds_offset]));
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(SET) succeeded");
+ }
+ else {
+
+ ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_OR, &(start[ds_offset]),
+ &(stride[ds_offset]), &(count[ds_offset]),
+ &(block[ds_offset]));
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(OR) succeeded");
+ }
+ }
+
+ m++;
+
+ } while ((m <= 1) && (4 >= sel_offset));
+
+ l++;
+
+ } while ((l <= 1) && (3 >= sel_offset));
+
+ k++;
+
+ } while ((k <= 1) && (2 >= sel_offset));
+
+ j++;
+
+ } while ((j <= 1) && (1 >= sel_offset));
+
+ i++;
+
+ } while ((i <= 1) && (0 >= sel_offset));
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(tgt_sid));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ /* Clip the selection back to the dataspace proper. */
+
+ for (i = 0; i < test_max_rank; i++) {
+
+ start[i] = 0;
+ stride[i] = dims[i];
+ count[i] = 1;
+ block[i] = dims[i];
+ }
+
+ ret = H5Sselect_hyperslab(tgt_sid, H5S_SELECT_AND, start, stride, count, block);
+
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(AND) succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(tgt_sid) = %d.\n", fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(tgt_sid));
+ HDfprintf(stdout, "%s%d: done.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__SELECT_CHECKER_BOARD__DEBUG */
+
+ return;
+
+} /* lower_dim_size_comp_test__select_checker_board() */
+
+/****************************************************************
+**
+** lower_dim_size_comp_test__verify_data():
+**
+** Examine the supplied buffer to see if it contains the
+** expected data. Return TRUE if it does, and FALSE
+** otherwise.
+**
+** The supplied buffer is presumed to this process's slice
+** of the target data set. Each such slice will be an
+** n-cube of rank (rank -1) and the supplied edge_size with
+** origin (mpi_rank, 0, ... , 0) in the target data set.
+**
+** Further, the buffer is presumed to be the result of reading
+** or writing a checker board selection of an m (1 <= m <
+** rank) dimensional slice through this processes slice
+** of the target data set. Also, this slice must be parallel
+** to the fastest changing indices.
+**
+** It is further presumed that the buffer was zeroed before
+** the read/write, and that the full target data set (i.e.
+** the buffer/data set for all processes) was initialized
+** with the natural numbers listed in order from the origin
+** along the fastest changing axis.
+**
+** Thus for a 20x10x10 dataset, the value stored in location
+** (x, y, z) (assuming that z is the fastest changing index
+** and x the slowest) is assumed to be:
+**
+** (10 * 10 * x) + (10 * y) + z
+**
+** Further, supposing that this is process 10, this process's
+** slice of the dataset would be a 10 x 10 2-cube with origin
+** (10, 0, 0) in the data set, and would be initialize (prior
+** to the checkerboard selection) as follows:
+**
+** 1000, 1001, 1002, ... 1008, 1009
+** 1010, 1011, 1012, ... 1018, 1019
+** . . . . .
+** . . . . .
+** . . . . .
+** 1090, 1091, 1092, ... 1098, 1099
+**
+** In the case of a read from the processors slice of another
+** data set of different rank, the values expected will have
+** to be adjusted accordingly. This is done via the
+** first_expected_val parameter.
+**
+** Finally, the function presumes that the first element
+** of the buffer resides either at the origin of either
+** a selected or an unselected checker. (Translation:
+** if partial checkers appear in the buffer, they will
+** intersect the edges of the n-cube opposite the origin.)
+**
+****************************************************************/
+
+#define LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG 0
+
+static hbool_t
+lower_dim_size_comp_test__verify_data(uint32_t *buf_ptr,
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ const int mpi_rank,
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+ const int rank, const int edge_size, const int checker_edge_size,
+ uint32_t first_expected_val, hbool_t buf_starts_in_checker)
+{
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ const char *fcnName = "lower_dim_size_comp_test__verify_data():";
+#endif
+ hbool_t good_data = TRUE;
+ hbool_t in_checker;
+ hbool_t start_in_checker[5];
+ uint32_t expected_value;
+ uint32_t *val_ptr;
+ int i, j, k, l, m; /* to track position in n-cube */
+ int v, w, x, y, z; /* to track position in checker */
+ const int test_max_rank = 5; /* code changes needed if this is increased */
+
+ HDassert(buf_ptr != NULL);
+ HDassert(0 < rank);
+ HDassert(rank <= test_max_rank);
+ HDassert(edge_size >= 6);
+ HDassert(0 < checker_edge_size);
+ HDassert(checker_edge_size <= edge_size);
+ HDassert(test_max_rank <= LDSCT_DS_RANK);
+
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s mpi_rank = %d.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s rank = %d.\n", fcnName, rank);
+ HDfprintf(stdout, "%s edge_size = %d.\n", fcnName, edge_size);
+ HDfprintf(stdout, "%s checker_edge_size = %d.\n", fcnName, checker_edge_size);
+ HDfprintf(stdout, "%s first_expected_val = %d.\n", fcnName, (int)first_expected_val);
+ HDfprintf(stdout, "%s starts_in_checker = %d.\n", fcnName, (int)buf_starts_in_checker);
+ }
+#endif
+
+ val_ptr = buf_ptr;
+ expected_value = first_expected_val;
+
+ i = 0;
+ v = 0;
+ start_in_checker[0] = buf_starts_in_checker;
+ do {
+ if (v >= checker_edge_size) {
+
+ start_in_checker[0] = !start_in_checker[0];
+ v = 0;
+ }
+
+ j = 0;
+ w = 0;
+ start_in_checker[1] = start_in_checker[0];
+ do {
+ if (w >= checker_edge_size) {
+
+ start_in_checker[1] = !start_in_checker[1];
+ w = 0;
+ }
+
+ k = 0;
+ x = 0;
+ start_in_checker[2] = start_in_checker[1];
+ do {
+ if (x >= checker_edge_size) {
+
+ start_in_checker[2] = !start_in_checker[2];
+ x = 0;
+ }
+
+ l = 0;
+ y = 0;
+ start_in_checker[3] = start_in_checker[2];
+ do {
+ if (y >= checker_edge_size) {
+
+ start_in_checker[3] = !start_in_checker[3];
+ y = 0;
+ }
+
+ m = 0;
+ z = 0;
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%d, %d, %d, %d, %d:", i, j, k, l, m);
+ }
+#endif
+ in_checker = start_in_checker[3];
+ do {
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, " %d", (int)(*val_ptr));
+ }
+#endif
+ if (z >= checker_edge_size) {
+
+ in_checker = !in_checker;
+ z = 0;
+ }
+
+ if (in_checker) {
+
+ if (*val_ptr != expected_value) {
+
+ good_data = FALSE;
+ }
+
+ /* zero out buffer for re-use */
+ *val_ptr = 0;
+ }
+ else if (*val_ptr != 0) {
+
+ good_data = FALSE;
+
+ /* zero out buffer for re-use */
+ *val_ptr = 0;
+ }
+
+ val_ptr++;
+ expected_value++;
+ m++;
+ z++;
+
+ } while ((rank >= (test_max_rank - 4)) && (m < edge_size));
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "\n");
+ }
+#endif
+ l++;
+ y++;
+ } while ((rank >= (test_max_rank - 3)) && (l < edge_size));
+ k++;
+ x++;
+ } while ((rank >= (test_max_rank - 2)) && (k < edge_size));
+ j++;
+ w++;
+ } while ((rank >= (test_max_rank - 1)) && (j < edge_size));
+ i++;
+ v++;
+ } while ((rank >= test_max_rank) && (i < edge_size));
+
+ return (good_data);
+
+} /* lower_dim_size_comp_test__verify_data() */
+
+/*-------------------------------------------------------------------------
+ * Function: lower_dim_size_comp_test__run_test()
+ *
+ * Purpose: Verify that a bug in the computation of the size of the
+ * lower dimensions of a dataspace in H5S_obtain_datatype()
+ * has been corrected.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 11/11/09
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#define LDSCT_DS_RANK 5
+
+static void
+lower_dim_size_comp_test__run_test(const int chunk_edge_size, const hbool_t use_collective_io,
+ const hid_t dset_type)
+{
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ const char *fcnName = "lower_dim_size_comp_test__run_test()";
+ int rank;
+ hsize_t dims[32];
+ hsize_t max_dims[32];
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+ const char *filename;
+ hbool_t data_ok = FALSE;
+ hbool_t mis_match = FALSE;
+ int i;
+ int start_index;
+ int stop_index;
+ int mrc;
+ int mpi_rank;
+ int mpi_size;
+ MPI_Comm mpi_comm = MPI_COMM_NULL;
+ MPI_Info mpi_info = MPI_INFO_NULL;
+ hid_t fid; /* HDF5 file ID */
+ hid_t acc_tpl; /* File access templates */
+ hid_t xfer_plist = H5P_DEFAULT;
+ size_t small_ds_size;
+ size_t small_ds_slice_size;
+ size_t large_ds_size;
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ size_t large_ds_slice_size;
+#endif
+ uint32_t expected_value;
+ uint32_t *small_ds_buf_0 = NULL;
+ uint32_t *small_ds_buf_1 = NULL;
+ uint32_t *large_ds_buf_0 = NULL;
+ uint32_t *large_ds_buf_1 = NULL;
+ uint32_t *ptr_0;
+ uint32_t *ptr_1;
+ hsize_t small_chunk_dims[LDSCT_DS_RANK];
+ hsize_t large_chunk_dims[LDSCT_DS_RANK];
+ hsize_t small_dims[LDSCT_DS_RANK];
+ hsize_t large_dims[LDSCT_DS_RANK];
+ hsize_t start[LDSCT_DS_RANK];
+ hsize_t stride[LDSCT_DS_RANK];
+ hsize_t count[LDSCT_DS_RANK];
+ hsize_t block[LDSCT_DS_RANK];
+ hsize_t small_sel_start[LDSCT_DS_RANK];
+ hsize_t large_sel_start[LDSCT_DS_RANK];
+ hid_t full_mem_small_ds_sid;
+ hid_t full_file_small_ds_sid;
+ hid_t mem_small_ds_sid;
+ hid_t file_small_ds_sid;
+ hid_t full_mem_large_ds_sid;
+ hid_t full_file_large_ds_sid;
+ hid_t mem_large_ds_sid;
+ hid_t file_large_ds_sid;
+ hid_t small_ds_dcpl_id = H5P_DEFAULT;
+ hid_t large_ds_dcpl_id = H5P_DEFAULT;
+ hid_t small_dataset; /* Dataset ID */
+ hid_t large_dataset; /* Dataset ID */
+ htri_t check; /* Shape comparison return value */
+ herr_t ret; /* Generic return value */
+
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ HDassert(mpi_size >= 1);
+
+ mpi_comm = MPI_COMM_WORLD;
+ mpi_info = MPI_INFO_NULL;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: chunk_edge_size = %d.\n", fcnName, mpi_rank, (int)chunk_edge_size);
+ HDfprintf(stdout, "%s:%d: use_collective_io = %d.\n", fcnName, mpi_rank, (int)use_collective_io);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ small_ds_size = (size_t)((mpi_size + 1) * 1 * 1 * 10 * 10);
+ small_ds_slice_size = (size_t)(1 * 1 * 10 * 10);
+ large_ds_size = (size_t)((mpi_size + 1) * 10 * 10 * 10 * 10);
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ large_ds_slice_size = (size_t)(10 * 10 * 10 * 10);
+
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: small ds size / slice size = %d / %d.\n", fcnName, mpi_rank,
+ (int)small_ds_size, (int)small_ds_slice_size);
+ HDfprintf(stdout, "%s:%d: large ds size / slice size = %d / %d.\n", fcnName, mpi_rank,
+ (int)large_ds_size, (int)large_ds_slice_size);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* Allocate buffers */
+ small_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_0 != NULL), "malloc of small_ds_buf_0 succeeded");
+
+ small_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * small_ds_size);
+ VRFY((small_ds_buf_1 != NULL), "malloc of small_ds_buf_1 succeeded");
+
+ large_ds_buf_0 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_0 != NULL), "malloc of large_ds_buf_0 succeeded");
+
+ large_ds_buf_1 = (uint32_t *)HDmalloc(sizeof(uint32_t) * large_ds_size);
+ VRFY((large_ds_buf_1 != NULL), "malloc of large_ds_buf_1 succeeded");
+
+ /* initialize the buffers */
+
+ ptr_0 = small_ds_buf_0;
+ ptr_1 = small_ds_buf_1;
+
+ for (i = 0; i < (int)small_ds_size; i++) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ }
+
+ ptr_0 = large_ds_buf_0;
+ ptr_1 = large_ds_buf_1;
+
+ for (i = 0; i < (int)large_ds_size; i++) {
+
+ *ptr_0 = (uint32_t)i;
+ *ptr_1 = 0;
+
+ ptr_0++;
+ ptr_1++;
+ }
+
+ /* get the file name */
+
+ filename = (const char *)PARATESTFILE /* GetTestParameters() */;
+ HDassert(filename != NULL);
+
+ /* ----------------------------------------
+ * CREATE AN HDF5 FILE WITH PARALLEL ACCESS
+ * ---------------------------------------*/
+ /* setup file access template */
+ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type);
+ VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
+
+ /* create the file collectively */
+ fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY((fid >= 0), "H5Fcreate succeeded");
+
+ MESG("File opened.");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
+
+ /* setup dims: */
+ small_dims[0] = (hsize_t)(mpi_size + 1);
+ small_dims[1] = 1;
+ small_dims[2] = 1;
+ small_dims[3] = 10;
+ small_dims[4] = 10;
+
+ large_dims[0] = (hsize_t)(mpi_size + 1);
+ large_dims[1] = 10;
+ large_dims[2] = 10;
+ large_dims[3] = 10;
+ large_dims[4] = 10;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: small_dims[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)small_dims[0],
+ (int)small_dims[1], (int)small_dims[2], (int)small_dims[3], (int)small_dims[4]);
+ HDfprintf(stdout, "%s:%d: large_dims[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)large_dims[0],
+ (int)large_dims[1], (int)large_dims[2], (int)large_dims[3], (int)large_dims[4]);
+ }
+#endif
+
+ /* create dataspaces */
+
+ full_mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((full_mem_small_ds_sid != 0), "H5Screate_simple() full_mem_small_ds_sid succeeded");
+
+ full_file_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((full_file_small_ds_sid != 0), "H5Screate_simple() full_file_small_ds_sid succeeded");
+
+ mem_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((mem_small_ds_sid != 0), "H5Screate_simple() mem_small_ds_sid succeeded");
+
+ file_small_ds_sid = H5Screate_simple(5, small_dims, NULL);
+ VRFY((file_small_ds_sid != 0), "H5Screate_simple() file_small_ds_sid succeeded");
+
+ full_mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((full_mem_large_ds_sid != 0), "H5Screate_simple() full_mem_large_ds_sid succeeded");
+
+ full_file_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((full_file_large_ds_sid != 0), "H5Screate_simple() full_file_large_ds_sid succeeded");
+
+ mem_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((mem_large_ds_sid != 0), "H5Screate_simple() mem_large_ds_sid succeeded");
+
+ file_large_ds_sid = H5Screate_simple(5, large_dims, NULL);
+ VRFY((file_large_ds_sid != 0), "H5Screate_simple() file_large_ds_sid succeeded");
+
+ /* Select the entire extent of the full small ds dataspaces */
+ ret = H5Sselect_all(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_small_ds_sid) succeeded");
+
+ /* Select the entire extent of the full large ds dataspaces */
+ ret = H5Sselect_all(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sselect_all(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(full_file_large_ds_sid) succeeded");
+
+ /* if chunk edge size is greater than zero, set up the small and
+ * large data set creation property lists to specify chunked
+ * datasets.
+ */
+ if (chunk_edge_size > 0) {
+
+ small_chunk_dims[0] = (hsize_t)(1);
+ small_chunk_dims[1] = small_chunk_dims[2] = (hsize_t)1;
+ small_chunk_dims[3] = small_chunk_dims[4] = (hsize_t)chunk_edge_size;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: small chunk dims[] = %d %d %d %d %d\n", fcnName, mpi_rank,
+ (int)small_chunk_dims[0], (int)small_chunk_dims[1], (int)small_chunk_dims[2],
+ (int)small_chunk_dims[3], (int)small_chunk_dims[4]);
+ }
+#endif
+
+ small_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(small_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() small_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(small_ds_dcpl_id, 5, small_chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
+
+ large_chunk_dims[0] = (hsize_t)(1);
+ large_chunk_dims[1] = large_chunk_dims[2] = large_chunk_dims[3] = large_chunk_dims[4] =
+ (hsize_t)chunk_edge_size;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: large chunk dims[] = %d %d %d %d %d\n", fcnName, mpi_rank,
+ (int)large_chunk_dims[0], (int)large_chunk_dims[1], (int)large_chunk_dims[2],
+ (int)large_chunk_dims[3], (int)large_chunk_dims[4]);
+ }
+#endif
+
+ large_ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ret != FAIL), "H5Pcreate() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(large_ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() large_ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(large_ds_dcpl_id, 5, large_chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() large_ds_dcpl_id succeeded");
+ }
+
+ /* create the small dataset */
+ small_dataset = H5Dcreate2(fid, "small_dataset", dset_type, file_small_ds_sid, H5P_DEFAULT,
+ small_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret >= 0), "H5Dcreate2() small_dataset succeeded");
+
+ /* create the large dataset */
+ large_dataset = H5Dcreate2(fid, "large_dataset", dset_type, file_large_ds_sid, H5P_DEFAULT,
+ large_ds_dcpl_id, H5P_DEFAULT);
+ VRFY((ret >= 0), "H5Dcreate2() large_dataset succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: small/large ds id = %d / %d.\n", fcnName, mpi_rank, (int)small_dataset,
+ (int)large_dataset);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* setup xfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
+
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+
+ if (!use_collective_io) {
+
+ ret = H5Pset_dxpl_mpio_collective_opt(xfer_plist, H5FD_MPIO_INDIVIDUAL_IO);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio_collective_opt() succeeded");
+ }
+
+ /* setup selection to write initial data to the small data sets */
+ start[0] = (hsize_t)(mpi_rank + 1);
+ start[1] = start[2] = start[3] = start[4] = 0;
+
+ stride[0] = (hsize_t)(2 * (mpi_size + 1));
+ stride[1] = stride[2] = 2;
+ stride[3] = stride[4] = 2 * 10;
+
+ count[0] = count[1] = count[2] = count[3] = count[4] = 1;
+
+ block[0] = block[1] = block[2] = 1;
+ block[3] = block[4] = 10;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: settings for small data set initialization.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0],
+ (int)start[1], (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0],
+ (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0],
+ (int)count[1], (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0],
+ (int)block[1], (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* setup selections for writing initial data to the small data set */
+ ret = H5Sselect_hyperslab(mem_small_ds_sid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, set) succeeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, set) succeeded");
+
+ if (MAINPROCESS) { /* add an additional slice to the selections */
+
+ start[0] = 0;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: added settings for main process.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0],
+ (int)start[1], (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0],
+ (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0],
+ (int)count[1], (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0],
+ (int)block[1], (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Sselect_hyperslab(mem_small_ds_sid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_small_ds_sid, or) succeeded");
+
+ ret = H5Sselect_hyperslab(file_small_ds_sid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_small_ds_sid, or) succeeded");
+ }
+
+ check = H5Sselect_valid(mem_small_ds_sid);
+ VRFY((check == TRUE), "H5Sselect_valid(mem_small_ds_sid) returns TRUE");
+
+ check = H5Sselect_valid(file_small_ds_sid);
+ VRFY((check == TRUE), "H5Sselect_valid(file_small_ds_sid) returns TRUE");
+
+ /* write the initial value of the small data set to file */
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: writing init value of small ds to file.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+ ret = H5Dwrite(small_dataset, dset_type, mem_small_ds_sid, file_small_ds_sid, xfer_plist, small_ds_buf_0);
+ VRFY((ret >= 0), "H5Dwrite() small_dataset initial write succeeded");
+
+ /* sync with the other processes before reading data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc == MPI_SUCCESS), "Sync after small dataset writes");
+
+ /* read the small data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set and verifies it.
+ */
+ ret = H5Dread(small_dataset, H5T_NATIVE_UINT32, full_mem_small_ds_sid, full_file_small_ds_sid, xfer_plist,
+ small_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() small_dataset initial read succeeded");
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc == MPI_SUCCESS), "Sync after small dataset writes");
+
+ /* verify that the correct data was written to the small data set,
+ * and reset the buffer to zero in passing.
+ */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = small_ds_buf_1;
+
+ i = 0;
+ for (i = 0; i < (int)small_ds_size; i++) {
+
+ if (*ptr_1 != expected_value) {
+
+ mis_match = TRUE;
+ }
+
+ *ptr_1 = (uint32_t)0;
+
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY((mis_match == FALSE), "small ds init data good.");
+
+ /* setup selections for writing initial data to the large data set */
+ start[0] = (hsize_t)(mpi_rank + 1);
+ start[1] = start[2] = start[3] = start[4] = (hsize_t)0;
+
+ stride[0] = (hsize_t)(2 * (mpi_size + 1));
+ stride[1] = stride[2] = stride[3] = stride[4] = (hsize_t)(2 * 10);
+
+ count[0] = count[1] = count[2] = count[3] = count[4] = (hsize_t)1;
+
+ block[0] = (hsize_t)1;
+ block[1] = block[2] = block[3] = block[4] = (hsize_t)10;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: settings for large data set initialization.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0],
+ (int)start[1], (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0],
+ (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0],
+ (int)count[1], (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0],
+ (int)block[1], (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, set) succeeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, set) succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(mem_large_ds_sid));
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(file_large_ds_sid));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ if (MAINPROCESS) { /* add an additional slice to the selections */
+
+ start[0] = (hsize_t)0;
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: added settings for main process.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: start[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)start[0],
+ (int)start[1], (int)start[2], (int)start[3], (int)start[4]);
+ HDfprintf(stdout, "%s:%d: stride[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)stride[0],
+ (int)stride[1], (int)stride[2], (int)stride[3], (int)stride[4]);
+ HDfprintf(stdout, "%s:%d: count[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)count[0],
+ (int)count[1], (int)count[2], (int)count[3], (int)count[4]);
+ HDfprintf(stdout, "%s:%d: block[] = %d %d %d %d %d\n", fcnName, mpi_rank, (int)block[0],
+ (int)block[1], (int)block[2], (int)block[3], (int)block[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(mem_large_ds_sid, or) succeeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_OR, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_large_ds_sid, or) succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(mem_large_ds_sid) = %d.\n", fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(mem_large_ds_sid));
+ HDfprintf(stdout, "%s%d: H5Sget_select_npoints(file_large_ds_sid) = %d.\n", fcnName, mpi_rank,
+ (int)H5Sget_select_npoints(file_large_ds_sid));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+ }
+
+ /* try clipping the selection back to the large dataspace proper */
+ start[0] = start[1] = start[2] = start[3] = start[4] = (hsize_t)0;
+
+ stride[0] = (hsize_t)(2 * (mpi_size + 1));
+ stride[1] = stride[2] = stride[3] = stride[4] = (hsize_t)(2 * 10);
+
+ count[0] = count[1] = count[2] = count[3] = count[4] = (hsize_t)1;
+
+ block[0] = (hsize_t)(mpi_size + 1);
+ block[1] = block[2] = block[3] = block[4] = (hsize_t)10;
+
+ ret = H5Sselect_hyperslab(mem_large_ds_sid, H5S_SELECT_AND, start, stride, count, block);
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(mem_large_ds_sid, and) succeeded");
+
+ ret = H5Sselect_hyperslab(file_large_ds_sid, H5S_SELECT_AND, start, stride, count, block);
+ VRFY((ret != FAIL), "H5Sselect_hyperslab(file_large_ds_sid, and) succeeded");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+
+ rank = H5Sget_simple_extent_dims(mem_large_ds_sid, dims, max_dims);
+ HDfprintf(stdout, "%s:%d: mem_large_ds_sid dims[%d] = %d %d %d %d %d\n", fcnName, mpi_rank, rank,
+ (int)dims[0], (int)dims[1], (int)dims[2], (int)dims[3], (int)dims[4]);
+
+ rank = H5Sget_simple_extent_dims(file_large_ds_sid, dims, max_dims);
+ HDfprintf(stdout, "%s:%d: file_large_ds_sid dims[%d] = %d %d %d %d %d\n", fcnName, mpi_rank, rank,
+ (int)dims[0], (int)dims[1], (int)dims[2], (int)dims[3], (int)dims[4]);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ check = H5Sselect_valid(mem_large_ds_sid);
+ VRFY((check == TRUE), "H5Sselect_valid(mem_large_ds_sid) returns TRUE");
+
+ check = H5Sselect_valid(file_large_ds_sid);
+ VRFY((check == TRUE), "H5Sselect_valid(file_large_ds_sid) returns TRUE");
+
+ /* write the initial value of the large data set to file */
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: writing init value of large ds to file.\n", fcnName, mpi_rank);
+ HDfprintf(stdout, "%s:%d: large_dataset = %d.\n", fcnName, mpi_rank, (int)large_dataset);
+ HDfprintf(stdout, "%s:%d: mem_large_ds_sid = %d, file_large_ds_sid = %d.\n", fcnName, mpi_rank,
+ (int)mem_large_ds_sid, (int)file_large_ds_sid);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ ret = H5Dwrite(large_dataset, dset_type, mem_large_ds_sid, file_large_ds_sid, xfer_plist, large_ds_buf_0);
+
+ if (ret < 0)
+ H5Eprint2(H5E_DEFAULT, stderr);
+ VRFY((ret >= 0), "H5Dwrite() large_dataset initial write succeeded");
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc == MPI_SUCCESS), "Sync after large dataset writes");
+
+ /* read the large data set back to verify that it contains the
+ * expected data. Note that each process reads in the entire
+ * data set.
+ */
+ ret = H5Dread(large_dataset, H5T_NATIVE_UINT32, full_mem_large_ds_sid, full_file_large_ds_sid, xfer_plist,
+ large_ds_buf_1);
+ VRFY((ret >= 0), "H5Dread() large_dataset initial read succeeded");
+
+ /* verify that the correct data was written to the large data set.
+ * in passing, reset the buffer to zeros
+ */
+ expected_value = 0;
+ mis_match = FALSE;
+ ptr_1 = large_ds_buf_1;
+
+ i = 0;
+ for (i = 0; i < (int)large_ds_size; i++) {
+
+ if (*ptr_1 != expected_value) {
+
+ mis_match = TRUE;
+ }
+
+ *ptr_1 = (uint32_t)0;
+
+ ptr_1++;
+ expected_value++;
+ }
+ VRFY((mis_match == FALSE), "large ds init data good.");
+
+ /***********************************/
+ /***** INITIALIZATION COMPLETE *****/
+ /***********************************/
+
+ /* read a checkerboard selection of the process slice of the
+ * small on disk data set into the process slice of the large
+ * in memory data set, and verify the data read.
+ */
+
+ small_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ small_sel_start[1] = small_sel_start[2] = small_sel_start[3] = small_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank, file_small_ds_sid,
+ /* tgt_rank = */ 5, small_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank */ 2, small_sel_start);
+
+ expected_value =
+ (uint32_t)((small_sel_start[0] * small_dims[1] * small_dims[2] * small_dims[3] * small_dims[4]) +
+ (small_sel_start[1] * small_dims[2] * small_dims[3] * small_dims[4]) +
+ (small_sel_start[2] * small_dims[3] * small_dims[4]) +
+ (small_sel_start[3] * small_dims[4]) + (small_sel_start[4]));
+
+ large_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ large_sel_start[1] = 5;
+ large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank, mem_large_ds_sid,
+ /* tgt_rank = */ 5, large_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank = */ 2, large_sel_start);
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(mem_large_ds_sid, file_small_ds_sid);
+ VRFY((check == TRUE), "H5Sselect_shape_same passed (1)");
+
+ ret = H5Dread(small_dataset, H5T_NATIVE_UINT32, mem_large_ds_sid, file_small_ds_sid, xfer_plist,
+ large_ds_buf_1);
+
+ VRFY((ret >= 0), "H5Sread() slice from small ds succeeded.");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* verify that expected data is retrieved */
+
+ data_ok = TRUE;
+
+ start_index = (int)((large_sel_start[0] * large_dims[1] * large_dims[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[1] * large_dims[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[3] * large_dims[4]) + (large_sel_start[4]));
+
+ stop_index = start_index + (int)small_ds_slice_size;
+
+ HDassert(0 <= start_index);
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= (int)large_ds_size);
+
+ ptr_1 = large_ds_buf_1;
+
+ for (i = 0; i < start_index; i++) {
+
+ if (*ptr_1 != (uint32_t)0) {
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from small ds data good(1).");
+
+ data_ok = lower_dim_size_comp_test__verify_data(ptr_1,
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ mpi_rank,
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+ /* rank */ 2,
+ /* edge_size */ 10,
+ /* checker_edge_size */ 3, expected_value,
+ /* buf_starts_in_checker */ TRUE);
+
+ VRFY((data_ok == TRUE), "slice read from small ds data good(2).");
+
+ data_ok = TRUE;
+
+ ptr_1 += small_ds_slice_size;
+
+ for (i = stop_index; i < (int)large_ds_size; i++) {
+
+ if (*ptr_1 != (uint32_t)0) {
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from small ds data good(3).");
+
+ /* read a checkerboard selection of a slice of the process slice of
+ * the large on disk data set into the process slice of the small
+ * in memory data set, and verify the data read.
+ */
+
+ small_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ small_sel_start[1] = small_sel_start[2] = small_sel_start[3] = small_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank, mem_small_ds_sid,
+ /* tgt_rank = */ 5, small_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank */ 2, small_sel_start);
+
+ large_sel_start[0] = (hsize_t)(mpi_rank + 1);
+ large_sel_start[1] = 5;
+ large_sel_start[2] = large_sel_start[3] = large_sel_start[4] = 0;
+
+ lower_dim_size_comp_test__select_checker_board(mpi_rank, file_large_ds_sid,
+ /* tgt_rank = */ 5, large_dims,
+ /* checker_edge_size = */ 3,
+ /* sel_rank = */ 2, large_sel_start);
+
+ /* verify that H5Sselect_shape_same() reports the two
+ * selections as having the same shape.
+ */
+ check = H5Sselect_shape_same(mem_small_ds_sid, file_large_ds_sid);
+ VRFY((check == TRUE), "H5Sselect_shape_same passed (2)");
+
+ ret = H5Dread(large_dataset, H5T_NATIVE_UINT32, mem_small_ds_sid, file_large_ds_sid, xfer_plist,
+ small_ds_buf_1);
+
+ VRFY((ret >= 0), "H5Sread() slice from large ds succeeded.");
+
+#if LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: H5Dread() returns.\n", fcnName, mpi_rank);
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__RUN_TEST__DEBUG */
+
+ /* verify that expected data is retrieved */
+
+ data_ok = TRUE;
+
+ expected_value =
+ (uint32_t)((large_sel_start[0] * large_dims[1] * large_dims[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[1] * large_dims[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[2] * large_dims[3] * large_dims[4]) +
+ (large_sel_start[3] * large_dims[4]) + (large_sel_start[4]));
+
+ start_index = (int)(mpi_rank + 1) * (int)small_ds_slice_size;
+
+ stop_index = start_index + (int)small_ds_slice_size;
+
+ HDassert(0 <= start_index);
+ HDassert(start_index < stop_index);
+ HDassert(stop_index <= (int)small_ds_size);
+
+ ptr_1 = small_ds_buf_1;
+
+ for (i = 0; i < start_index; i++) {
+
+ if (*ptr_1 != (uint32_t)0) {
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from large ds data good(1).");
+
+ data_ok = lower_dim_size_comp_test__verify_data(ptr_1,
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ mpi_rank,
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+ /* rank */ 2,
+ /* edge_size */ 10,
+ /* checker_edge_size */ 3, expected_value,
+ /* buf_starts_in_checker */ TRUE);
+
+ VRFY((data_ok == TRUE), "slice read from large ds data good(2).");
+
+ data_ok = TRUE;
+
+ ptr_1 += small_ds_slice_size;
+
+ for (i = stop_index; i < (int)small_ds_size; i++) {
+
+ if (*ptr_1 != (uint32_t)0) {
+
+#if LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG
+ if (mpi_rank == LOWER_DIM_SIZE_COMP_TEST_DEBUG_TARGET_RANK) {
+ HDfprintf(stdout, "%s:%d: unexpected value at index %d: %d.\n", fcnName, mpi_rank, (int)i,
+ (int)(*ptr_1));
+ }
+#endif /* LOWER_DIM_SIZE_COMP_TEST__VERIFY_DATA__DEBUG */
+
+ data_ok = FALSE;
+ *ptr_1 = (uint32_t)0;
+ }
+
+ ptr_1++;
+ }
+
+ VRFY((data_ok == TRUE), "slice read from large ds data good(3).");
+
+ /* Close dataspaces */
+ ret = H5Sclose(full_mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_small_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_small_ds_sid) succeeded");
+
+ ret = H5Sclose(file_small_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_small_ds_sid) succeeded");
+
+ ret = H5Sclose(full_mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(full_file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(full_file_large_ds_sid) succeeded");
+
+ ret = H5Sclose(mem_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(mem_large_ds_sid) succeeded");
+
+ ret = H5Sclose(file_large_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_large_ds_sid) succeeded");
+
+ /* Close Datasets */
+ ret = H5Dclose(small_dataset);
+ VRFY((ret != FAIL), "H5Dclose(small_dataset) succeeded");
+
+ ret = H5Dclose(large_dataset);
+ VRFY((ret != FAIL), "H5Dclose(large_dataset) succeeded");
+
+ /* close the file collectively */
+ MESG("about to close file.");
+ ret = H5Fclose(fid);
+ VRFY((ret != FAIL), "file close succeeded");
+
+ /* Free memory buffers */
+ if (small_ds_buf_0 != NULL)
+ HDfree(small_ds_buf_0);
+ if (small_ds_buf_1 != NULL)
+ HDfree(small_ds_buf_1);
+
+ if (large_ds_buf_0 != NULL)
+ HDfree(large_ds_buf_0);
+ if (large_ds_buf_1 != NULL)
+ HDfree(large_ds_buf_1);
+
+ return;
+
+} /* lower_dim_size_comp_test__run_test() */
+
+/*-------------------------------------------------------------------------
+ * Function: lower_dim_size_comp_test()
+ *
+ * Purpose: Test to see if an error in the computation of the size
+ * of the lower dimensions in H5S_obtain_datatype() has
+ * been corrected.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 11/11/09
+ *
+ *-------------------------------------------------------------------------
+ */
+
+void
+lower_dim_size_comp_test(void)
+{
+ /* const char *fcnName = "lower_dim_size_comp_test()"; */
+ int chunk_edge_size = 0;
+ int use_collective_io;
+ int mpi_rank;
+
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file or dataset aren't supported with this connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ HDcompile_assert(sizeof(uint32_t) == sizeof(unsigned));
+ for (use_collective_io = 0; use_collective_io <= 1; use_collective_io++) {
+ chunk_edge_size = 0;
+ lower_dim_size_comp_test__run_test(chunk_edge_size, (hbool_t)use_collective_io, H5T_NATIVE_UINT);
+
+ chunk_edge_size = 5;
+ lower_dim_size_comp_test__run_test(chunk_edge_size, (hbool_t)use_collective_io, H5T_NATIVE_UINT);
+ } /* end for */
+
+ return;
+} /* lower_dim_size_comp_test() */
+
+/*-------------------------------------------------------------------------
+ * Function: link_chunk_collective_io_test()
+ *
+ * Purpose: Test to verify that an error in MPI type management in
+ * H5D_link_chunk_collective_io() has been corrected.
+ * In this bug, we used to free MPI types regardless of
+ * whether they were basic or derived.
+ *
+ * This test is based on a bug report kindly provided by
+ * Rob Latham of the MPICH team and ANL.
+ *
+ * The basic thrust of the test is to cause a process
+ * to participate in a collective I/O in which it:
+ *
+ * 1) Reads or writes exactly one chunk,
+ *
+ * 2) Has no in memory buffer for any other chunk.
+ *
+ * The test differers from Rob Latham's bug report in
+ * that is runs with an arbitrary number of proceeses,
+ * and uses a 1 dimensional dataset.
+ *
+ * Return: void
+ *
+ * Programmer: JRM -- 12/16/09
+ *
+ *-------------------------------------------------------------------------
+ */
+
+#define LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE 16
+
+void
+link_chunk_collective_io_test(void)
+{
+ /* const char *fcnName = "link_chunk_collective_io_test()"; */
+ const char *filename;
+ hbool_t mis_match = FALSE;
+ int i;
+ int mrc;
+ int mpi_rank;
+ int mpi_size;
+ MPI_Comm mpi_comm = MPI_COMM_WORLD;
+ MPI_Info mpi_info = MPI_INFO_NULL;
+ hsize_t count[1] = {1};
+ hsize_t stride[1] = {2 * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE};
+ hsize_t block[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE};
+ hsize_t start[1];
+ hsize_t dims[1];
+ hsize_t chunk_dims[1] = {LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE};
+ herr_t ret; /* Generic return value */
+ hid_t file_id;
+ hid_t acc_tpl;
+ hid_t dset_id;
+ hid_t file_ds_sid;
+ hid_t write_mem_ds_sid;
+ hid_t read_mem_ds_sid;
+ hid_t ds_dcpl_id;
+ hid_t xfer_plist;
+ double diff;
+ double expected_value;
+ double local_data_written[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE];
+ double local_data_read[LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE];
+
+ MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);
+ MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
+
+ /* Make sure the connector supports the API functions being tested */
+ if (!(vol_cap_flags_g & H5VL_CAP_FLAG_FILE_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC)) {
+ if (MAINPROCESS) {
+ puts("SKIPPED");
+ printf(" API functions for basic file or dataset aren't supported with this connector\n");
+ fflush(stdout);
+ }
+
+ return;
+ }
+
+ HDassert(mpi_size > 0);
+
+ /* get the file name */
+ filename = (const char *)PARATESTFILE /* GetTestParameters() */;
+ HDassert(filename != NULL);
+
+ /* setup file access template */
+ acc_tpl = create_faccess_plist(mpi_comm, mpi_info, facc_type);
+ VRFY((acc_tpl >= 0), "create_faccess_plist() succeeded");
+
+ /* create the file collectively */
+ file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, acc_tpl);
+ VRFY((file_id >= 0), "H5Fcreate succeeded");
+
+ MESG("File opened.");
+
+ /* Release file-access template */
+ ret = H5Pclose(acc_tpl);
+ VRFY((ret >= 0), "H5Pclose(acc_tpl) succeeded");
+
+ /* setup dims */
+ dims[0] = ((hsize_t)mpi_size) * ((hsize_t)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE));
+
+ /* setup mem and file dataspaces */
+ write_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL);
+ VRFY((write_mem_ds_sid != 0), "H5Screate_simple() write_mem_ds_sid succeeded");
+
+ read_mem_ds_sid = H5Screate_simple(1, chunk_dims, NULL);
+ VRFY((read_mem_ds_sid != 0), "H5Screate_simple() read_mem_ds_sid succeeded");
+
+ file_ds_sid = H5Screate_simple(1, dims, NULL);
+ VRFY((file_ds_sid != 0), "H5Screate_simple() file_ds_sid succeeded");
+
+ /* setup data set creation property list */
+ ds_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
+ VRFY((ds_dcpl_id != FAIL), "H5Pcreate() ds_dcpl_id succeeded");
+
+ ret = H5Pset_layout(ds_dcpl_id, H5D_CHUNKED);
+ VRFY((ret != FAIL), "H5Pset_layout() ds_dcpl_id succeeded");
+
+ ret = H5Pset_chunk(ds_dcpl_id, 1, chunk_dims);
+ VRFY((ret != FAIL), "H5Pset_chunk() small_ds_dcpl_id succeeded");
+
+ /* create the data set */
+ dset_id =
+ H5Dcreate2(file_id, "dataset", H5T_NATIVE_DOUBLE, file_ds_sid, H5P_DEFAULT, ds_dcpl_id, H5P_DEFAULT);
+ VRFY((dset_id >= 0), "H5Dcreate2() dataset succeeded");
+
+ /* close the dataset creation property list */
+ ret = H5Pclose(ds_dcpl_id);
+ VRFY((ret >= 0), "H5Pclose(ds_dcpl_id) succeeded");
+
+ /* setup local data */
+ expected_value = (double)(LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE) * (double)(mpi_rank);
+ for (i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++) {
+
+ local_data_written[i] = expected_value;
+ local_data_read[i] = 0.0;
+ expected_value += 1.0;
+ }
+
+ /* select the file and mem spaces */
+ start[0] = (hsize_t)(mpi_rank * LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE);
+ ret = H5Sselect_hyperslab(file_ds_sid, H5S_SELECT_SET, start, stride, count, block);
+ VRFY((ret >= 0), "H5Sselect_hyperslab(file_ds_sid, set) succeeded");
+
+ ret = H5Sselect_all(write_mem_ds_sid);
+ VRFY((ret != FAIL), "H5Sselect_all(mem_ds_sid) succeeded");
+
+ /* Note that we use NO SELECTION on the read memory dataspace */
+
+ /* setup xfer property list */
+ xfer_plist = H5Pcreate(H5P_DATASET_XFER);
+ VRFY((xfer_plist >= 0), "H5Pcreate(H5P_DATASET_XFER) succeeded");
+
+ ret = H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE);
+ VRFY((ret >= 0), "H5Pset_dxpl_mpio succeeded");
+
+ /* write the data set */
+ ret = H5Dwrite(dset_id, H5T_NATIVE_DOUBLE, write_mem_ds_sid, file_ds_sid, xfer_plist, local_data_written);
+
+ VRFY((ret >= 0), "H5Dwrite() dataset initial write succeeded");
+
+ /* sync with the other processes before checking data */
+ mrc = MPI_Barrier(MPI_COMM_WORLD);
+ VRFY((mrc == MPI_SUCCESS), "Sync after dataset write");
+
+ /* read this processes slice of the dataset back in */
+ ret = H5Dread(dset_id, H5T_NATIVE_DOUBLE, read_mem_ds_sid, file_ds_sid, xfer_plist, local_data_read);
+ VRFY((ret >= 0), "H5Dread() dataset read succeeded");
+
+ /* close the xfer property list */
+ ret = H5Pclose(xfer_plist);
+ VRFY((ret >= 0), "H5Pclose(xfer_plist) succeeded");
+
+ /* verify the data */
+ mis_match = FALSE;
+ for (i = 0; i < LINK_CHUNK_COLLECTIVE_IO_TEST_CHUNK_SIZE; i++) {
+
+ diff = local_data_written[i] - local_data_read[i];
+ diff = fabs(diff);
+
+ if (diff >= 0.001) {
+
+ mis_match = TRUE;
+ }
+ }
+ VRFY((mis_match == FALSE), "dataset data good.");
+
+ /* Close dataspaces */
+ ret = H5Sclose(write_mem_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(write_mem_ds_sid) succeeded");
+
+ ret = H5Sclose(read_mem_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(read_mem_ds_sid) succeeded");
+
+ ret = H5Sclose(file_ds_sid);
+ VRFY((ret != FAIL), "H5Sclose(file_ds_sid) succeeded");
+
+ /* Close Dataset */
+ ret = H5Dclose(dset_id);
+ VRFY((ret != FAIL), "H5Dclose(dset_id) succeeded");
+
+ /* close the file collectively */
+ ret = H5Fclose(file_id);
+ VRFY((ret != FAIL), "file close succeeded");
+
+ return;
+
+} /* link_chunk_collective_io_test() */