summaryrefslogtreecommitdiffstats
path: root/testpar/t_pread.c
diff options
context:
space:
mode:
Diffstat (limited to 'testpar/t_pread.c')
-rw-r--r--testpar/t_pread.c1219
1 files changed, 1219 insertions, 0 deletions
diff --git a/testpar/t_pread.c b/testpar/t_pread.c
new file mode 100644
index 0000000..9a2493d
--- /dev/null
+++ b/testpar/t_pread.c
@@ -0,0 +1,1219 @@
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ * Copyright by The HDF Group. *
+ * All rights reserved. *
+ * *
+ * This file is part of HDF5. The full HDF5 copyright notice, including *
+ * terms governing use, modification, and redistribution, is contained in *
+ * the COPYING file, which can be found at the root of the source code *
+ * distribution tree, or in https://www.hdfgroup.org/licenses. *
+ * If you do not have access to either file, you may request a copy from *
+ * help@hdfgroup.org. *
+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+/*
+ * Collective file open optimization tests
+ *
+ */
+
+#include "testpar.h"
+#include "H5Dprivate.h"
+
+/* The collection of files is included below to aid
+ * an external "cleanup" process if required.
+ *
+ * Note that the code below relies on the ordering of this array
+ * since each set of three is used by the tests either to construct
+ * or to read and validate.
+ */
+#define NFILENAME 3
+const char *FILENAMES[NFILENAME + 1] = {"reloc_t_pread_data_file", "reloc_t_pread_group_0_file",
+ "reloc_t_pread_group_1_file", NULL};
+#define FILENAME_BUF_SIZE 1024
+
+#define COUNT 1000
+
+#define LIMIT_NPROC 6
+
+hbool_t pass = TRUE;
+static const char *random_hdf5_text = "Now is the time for all first-time-users of HDF5 to read their \
+manual or go thru the tutorials!\n\
+While you\'re at it, now is also the time to read up on MPI-IO.";
+
+static const char *hitchhiker_quote = "A common mistake that people make when trying to design something\n\
+completely foolproof is to underestimate the ingenuity of complete\n\
+fools.\n";
+
+static int generate_test_file(MPI_Comm comm, int mpi_rank, int group);
+static int test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group);
+
+static char *test_argv0 = NULL;
+
+/*-------------------------------------------------------------------------
+ * Function: generate_test_file
+ *
+ * Purpose: This function is called to produce an HDF5 data file
+ * whose superblock is relocated to a power-of-2 boundary.
+ *
+ * Since data will be read back and validated, we generate
+ * data in a predictable manner rather than randomly.
+ * For now, we simply use the global mpi_rank of the writing
+ * process as a starting component for the data generation.
+ * Subsequent writes are increments from the initial start
+ * value.
+ *
+ * In the overall scheme of running the test, we'll call
+ * this function twice: first as a collection of all MPI
+ * processes and then a second time with the processes split
+ * more or less in half. Each sub group will operate
+ * collectively on their assigned file. This split into
+ * subgroups validates that parallel groups can successfully
+ * open and read data independently from the other parallel
+ * operations taking place.
+ *
+ * Return: Success: 0
+ *
+ * Failure: 1
+ *
+ * Programmer: Richard Warren
+ * 10/1/17
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+static int
+generate_test_file(MPI_Comm comm, int mpi_rank, int group_id)
+{
+ int header = -1;
+ const char *fcn_name = "generate_test_file()";
+ const char *failure_mssg = NULL;
+ const char *group_filename = NULL;
+ char data_filename[FILENAME_BUF_SIZE];
+ int file_index = 0;
+ int group_size;
+ int group_rank;
+ int local_failure = 0;
+ int global_failures = 0;
+ hsize_t count = COUNT;
+ hsize_t i;
+ hsize_t offset;
+ hsize_t dims[1] = {0};
+ hid_t file_id = -1;
+ hid_t memspace = -1;
+ hid_t filespace = -1;
+ hid_t fctmpl = -1;
+ hid_t fapl_id = -1;
+ hid_t dxpl_id = -1;
+ hid_t dset_id = -1;
+ hid_t dset_id_ch = -1;
+ hid_t dcpl_id = H5P_DEFAULT;
+ hsize_t chunk[1];
+ float nextValue;
+ float *data_slice = NULL;
+
+ pass = TRUE;
+
+ HDassert(comm != MPI_COMM_NULL);
+
+ if ((MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) {
+ pass = FALSE;
+ failure_mssg = "generate_test_file: MPI_Comm_rank failed.\n";
+ }
+
+ if ((MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) {
+ pass = FALSE;
+ failure_mssg = "generate_test_file: MPI_Comm_size failed.\n";
+ }
+
+ if (mpi_rank == 0) {
+
+ HDfprintf(stdout, "Constructing test files...");
+ }
+
+ /* Setup the file names
+ * The test specific filenames are stored as consecutive
+ * array entries in the global 'FILENAMES' array above.
+ * Here, we simply decide on the starting index for
+ * file construction. The reading portion of the test
+ * will have a similar setup process...
+ */
+ if (pass) {
+ if (comm == MPI_COMM_WORLD) { /* Test 1 */
+ file_index = 0;
+ }
+ else if (group_id == 0) { /* Test 2 group 0 */
+ file_index = 1;
+ }
+ else { /* Test 2 group 1 */
+ file_index = 2;
+ }
+
+ /* The 'group_filename' is just a temp variable and
+ * is used to call into the h5_fixname function. No
+ * need to worry that we reassign it for each file!
+ */
+ group_filename = FILENAMES[file_index];
+ HDassert(group_filename);
+
+ /* Assign the 'data_filename' */
+ if (h5_fixname(group_filename, H5P_DEFAULT, data_filename, sizeof(data_filename)) == NULL) {
+ pass = FALSE;
+ failure_mssg = "h5_fixname(0) failed.\n";
+ }
+ }
+
+ /* setup data to write */
+ if (pass) {
+ if ((data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL) {
+ pass = FALSE;
+ failure_mssg = "malloc of data_slice failed.\n";
+ }
+ }
+
+ if (pass) {
+ nextValue = (float)(mpi_rank * COUNT);
+
+ for (i = 0; i < COUNT; i++) {
+ data_slice[i] = nextValue;
+ nextValue += 1;
+ }
+ }
+
+ /* Initialize a file creation template */
+ if (pass) {
+ if ((fctmpl = H5Pcreate(H5P_FILE_CREATE)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.\n";
+ }
+ else if (H5Pset_userblock(fctmpl, 512) != SUCCEED) {
+ pass = FALSE;
+ failure_mssg = "H5Pset_userblock(,size) failed.\n";
+ }
+ }
+ /* setup FAPL */
+ if (pass) {
+ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset_fapl_mpio() failed\n";
+ }
+ }
+
+ /* create the data file */
+ if (pass) {
+ if ((file_id = H5Fcreate(data_filename, H5F_ACC_TRUNC, fctmpl, fapl_id)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Fcreate() failed.\n";
+ }
+ }
+
+ /* create and write the dataset */
+ if (pass) {
+ if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset_dxpl_mpio() failed.\n";
+ }
+ }
+
+ if (pass) {
+ dims[0] = COUNT;
+ if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Screate_simple(1, dims, NULL) failed (1).\n";
+ }
+ }
+
+ if (pass) {
+ dims[0] *= (hsize_t)group_size;
+ if ((filespace = H5Screate_simple(1, dims, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Screate_simple(1, dims, NULL) failed (2).\n";
+ }
+ }
+
+ if (pass) {
+ offset = (hsize_t)group_rank * (hsize_t)COUNT;
+ if ((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &count, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sselect_hyperslab() failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((dset_id = H5Dcreate2(file_id, "dataset0", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT, H5P_DEFAULT,
+ H5P_DEFAULT)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dcreate2() failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Dwrite(dset_id, H5T_NATIVE_FLOAT, memspace, filespace, dxpl_id, data_slice)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dwrite() failed.\n";
+ }
+ }
+
+ /* create a chunked dataset */
+ chunk[0] = COUNT / 8;
+
+ if (pass) {
+ if ((dcpl_id = H5Pcreate(H5P_DATASET_CREATE)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pcreate() failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Pset_chunk(dcpl_id, 1, chunk)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset_chunk() failed.\n";
+ }
+ }
+
+ if (pass) {
+
+ if ((dset_id_ch = H5Dcreate2(file_id, "dataset0_chunked", H5T_NATIVE_FLOAT, filespace, H5P_DEFAULT,
+ dcpl_id, H5P_DEFAULT)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dcreate2() failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Dwrite(dset_id_ch, H5T_NATIVE_FLOAT, memspace, filespace, dxpl_id, data_slice)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dwrite() failed.\n";
+ }
+ }
+ if (pass || (dcpl_id != -1)) {
+ if (H5Pclose(dcpl_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pclose(dcpl_id) failed.\n";
+ }
+ }
+
+ if (pass || (dset_id_ch != -1)) {
+ if (H5Dclose(dset_id_ch) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dclose(dset_id_ch) failed.\n";
+ }
+ }
+
+ /* close file, etc. */
+ if (pass || (dset_id != -1)) {
+ if (H5Dclose(dset_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dclose(dset_id) failed.\n";
+ }
+ }
+
+ if (pass || (memspace != -1)) {
+ if (H5Sclose(memspace) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sclose(memspace) failed.\n";
+ }
+ }
+
+ if (pass || (filespace != -1)) {
+ if (H5Sclose(filespace) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sclose(filespace) failed.\n";
+ }
+ }
+
+ if (pass || (file_id != -1)) {
+ if (H5Fclose(file_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Fclose(file_id) failed.\n";
+ }
+ }
+
+ if (pass || (dxpl_id != -1)) {
+ if (H5Pclose(dxpl_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pclose(dxpl_id) failed.\n";
+ }
+ }
+
+ if (pass || (fapl_id != -1)) {
+ if (H5Pclose(fapl_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pclose(fapl_id) failed.\n";
+ }
+ }
+
+ if (pass || (fctmpl != -1)) {
+ if (H5Pclose(fctmpl) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pclose(fctmpl) failed.\n";
+ }
+ }
+
+ /* Add a userblock to the head of the datafile.
+ * We will use this to for a functional test of the
+ * file open optimization. This is superblock
+ * relocation is done by the rank 0 process associated
+ * with the communicator being used. For test 1, we
+ * utilize MPI_COMM_WORLD, so group_rank 0 is the
+ * same as mpi_rank 0. For test 2 which utilizes
+ * two groups resulting from an MPI_Comm_split, we
+ * will have parallel groups and hence two
+ * group_rank(0) processes. Each parallel group
+ * will create a unique file with different text
+ * headers and different data.
+ */
+ if (group_rank == 0) {
+ const char *text_to_write;
+ size_t bytes_to_write;
+
+ if (group_id == 0)
+ text_to_write = random_hdf5_text;
+ else
+ text_to_write = hitchhiker_quote;
+
+ bytes_to_write = HDstrlen(text_to_write);
+
+ if (pass) {
+ if ((header = HDopen(data_filename, O_WRONLY)) < 0) {
+ pass = FALSE;
+ failure_mssg = "HDopen(data_filename, O_WRONLY) failed.\n";
+ }
+ }
+
+ if (pass) {
+ HDlseek(header, 0, SEEK_SET);
+ if (HDwrite(header, text_to_write, bytes_to_write) < 0) {
+ pass = FALSE;
+ failure_mssg = "Unable to write user text into file.\n";
+ }
+ }
+
+ if (pass || (header > 0)) {
+ if (HDclose(header) < 0) {
+ pass = FALSE;
+ failure_mssg = "HDclose() failed.\n";
+ }
+ }
+ }
+
+ /* collect results from other processes.
+ * Only overwrite the failure message if no previous error
+ * has been detected
+ */
+ local_failure = (pass ? 0 : 1);
+
+ /* This is a global all reduce (NOT group specific) */
+ if (MPI_Allreduce(&local_failure, &global_failures, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS) {
+ if (pass) {
+ pass = FALSE;
+ failure_mssg = "MPI_Allreduce() failed.\n";
+ }
+ }
+ else if ((pass) && (global_failures > 0)) {
+ pass = FALSE;
+ failure_mssg = "One or more processes report failure.\n";
+ }
+
+ /* report results */
+ if (mpi_rank == 0) {
+ if (pass) {
+ HDfprintf(stdout, "Done.\n");
+ }
+ else {
+ HDfprintf(stdout, "FAILED.\n");
+ HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
+ }
+ }
+
+ /* free data_slice if it has been allocated */
+ if (data_slice != NULL) {
+ HDfree(data_slice);
+ data_slice = NULL;
+ }
+
+ return (!pass);
+
+} /* generate_test_file() */
+
+/*-------------------------------------------------------------------------
+ * Function: test_parallel_read
+ *
+ * Purpose: This actually tests the superblock optimization
+ * and covers the three primary cases we're interested in.
+ * 1). That HDF5 files can be opened in parallel by
+ * the rank 0 process and that the superblock
+ * offset is correctly broadcast to the other
+ * parallel file readers.
+ * 2). That a parallel application can correctly
+ * handle reading multiple files by using
+ * subgroups of MPI_COMM_WORLD and that each
+ * subgroup operates as described in (1) to
+ * collectively read the data.
+ * 3). Testing proc0-read-and-MPI_Bcast using
+ * sub-communicators, and reading into
+ * a memory space that is different from the
+ * file space, and chunked datasets.
+ *
+ * The global MPI rank is used for reading and
+ * writing data for process specific data in the
+ * dataset. We do this rather simplisticly, i.e.
+ * rank 0: writes/reads 0-9999
+ * rank 1: writes/reads 1000-1999
+ * rank 2: writes/reads 2000-2999
+ * ...
+ *
+ * Return: Success: 0
+ *
+ * Failure: 1
+ *
+ * Programmer: Richard Warren
+ * 10/1/17
+ *
+ * Modifications:
+ *
+ *-------------------------------------------------------------------------
+ */
+static int
+test_parallel_read(MPI_Comm comm, int mpi_rank, int mpi_size, int group_id)
+{
+ const char *failure_mssg;
+ const char *fcn_name = "test_parallel_read()";
+ const char *group_filename = NULL;
+ char reloc_data_filename[FILENAME_BUF_SIZE];
+ int local_failure = 0;
+ int global_failures = 0;
+ int group_size;
+ int group_rank;
+ hid_t fapl_id = -1;
+ hid_t file_id = -1;
+ hid_t dset_id = -1;
+ hid_t dset_id_ch = -1;
+ hid_t dxpl_id = H5P_DEFAULT;
+ hid_t memspace = -1;
+ hid_t filespace = -1;
+ hid_t filetype = -1;
+ size_t filetype_size;
+ hssize_t dset_size;
+ hsize_t i;
+ hsize_t offset;
+ hsize_t count = COUNT;
+ hsize_t dims[1] = {0};
+ float nextValue;
+ float *data_slice = NULL;
+
+ pass = TRUE;
+
+ HDassert(comm != MPI_COMM_NULL);
+
+ if ((MPI_Comm_rank(comm, &group_rank)) != MPI_SUCCESS) {
+ pass = FALSE;
+ failure_mssg = "test_parallel_read: MPI_Comm_rank failed.\n";
+ }
+
+ if ((MPI_Comm_size(comm, &group_size)) != MPI_SUCCESS) {
+ pass = FALSE;
+ failure_mssg = "test_parallel_read: MPI_Comm_size failed.\n";
+ }
+
+ if (mpi_rank == 0) {
+ if (comm == MPI_COMM_WORLD) {
+ TESTING("parallel file open test 1");
+ }
+ else {
+ TESTING("parallel file open test 2");
+ }
+ }
+
+ /* allocate space for the data_slice array */
+ if (pass) {
+ if ((data_slice = (float *)HDmalloc(COUNT * sizeof(float))) == NULL) {
+ pass = FALSE;
+ failure_mssg = "malloc of data_slice failed.\n";
+ }
+ }
+
+ /* Select the file file name to read
+ * Please see the comments in the 'generate_test_file' function
+ * for more details...
+ */
+ if (pass) {
+
+ if (comm == MPI_COMM_WORLD) /* test 1 */
+ group_filename = FILENAMES[0];
+ else if (group_id == 0) /* test 2 group 0 */
+ group_filename = FILENAMES[1];
+ else /* test 2 group 1 */
+ group_filename = FILENAMES[2];
+
+ HDassert(group_filename);
+ if (h5_fixname(group_filename, H5P_DEFAULT, reloc_data_filename, sizeof(reloc_data_filename)) ==
+ NULL) {
+
+ pass = FALSE;
+ failure_mssg = "h5_fixname(1) failed.\n";
+ }
+ }
+
+ /* setup FAPL */
+ if (pass) {
+ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Pset_fapl_mpio(fapl_id, comm, MPI_INFO_NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset_fapl_mpio() failed\n";
+ }
+ }
+
+ /* open the file -- should have user block, exercising the optimization */
+ if (pass) {
+ if ((file_id = H5Fopen(reloc_data_filename, H5F_ACC_RDONLY, fapl_id)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Fopen() failed\n";
+ }
+ }
+
+ /* open the data set */
+ if (pass) {
+ if ((dset_id = H5Dopen2(file_id, "dataset0", H5P_DEFAULT)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dopen2() failed\n";
+ }
+ }
+
+ /* open the chunked data set */
+ if (pass) {
+ if ((dset_id_ch = H5Dopen2(file_id, "dataset0_chunked", H5P_DEFAULT)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dopen2() failed\n";
+ }
+ }
+
+ /* setup memspace */
+ if (pass) {
+ dims[0] = count;
+ if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n";
+ }
+ }
+
+ /* setup filespace */
+ if (pass) {
+ if ((filespace = H5Dget_space(dset_id)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dget_space(dataset) failed\n";
+ }
+ }
+
+ if (pass) {
+ offset = (hsize_t)group_rank * count;
+ if ((H5Sselect_hyperslab(filespace, H5S_SELECT_SET, &offset, NULL, &count, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sselect_hyperslab() failed\n";
+ }
+ }
+
+ /* read this processes section of the data */
+ if (pass) {
+ if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, filespace, H5P_DEFAULT, data_slice)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dread() failed\n";
+ }
+ }
+
+ /* verify the data */
+ if (pass) {
+ nextValue = (float)((hsize_t)mpi_rank * count);
+ i = 0;
+ while ((pass) && (i < count)) {
+ /* what we really want is data_slice[i] != nextValue --
+ * the following is a circumlocution to shut up the
+ * the compiler.
+ */
+ if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
+ pass = FALSE;
+ failure_mssg = "Unexpected dset contents.\n";
+ }
+ nextValue += 1;
+ i++;
+ }
+ }
+
+ if (pass || (memspace != -1)) {
+ if (H5Sclose(memspace) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sclose(memspace) failed.\n";
+ }
+ }
+
+ if (pass || (filespace != -1)) {
+ if (H5Sclose(filespace) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sclose(filespace) failed.\n";
+ }
+ }
+
+ /* free data_slice if it has been allocated */
+ if (data_slice != NULL) {
+ HDfree(data_slice);
+ data_slice = NULL;
+ }
+
+ /*
+ * Test reading proc0-read-and-bcast with sub-communicators
+ */
+
+ /* Don't test with more than LIMIT_NPROC processes to avoid memory issues */
+
+ if (group_size <= LIMIT_NPROC) {
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ hbool_t prop_value;
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ if ((filespace = H5Dget_space(dset_id)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dget_space failed.\n";
+ }
+
+ if ((dset_size = H5Sget_simple_extent_npoints(filespace)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sget_simple_extent_npoints failed.\n";
+ }
+
+ if ((filetype = H5Dget_type(dset_id)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dget_type failed.\n";
+ }
+
+ if ((filetype_size = H5Tget_size(filetype)) == 0) {
+ pass = FALSE;
+ failure_mssg = "H5Tget_size failed.\n";
+ }
+
+ if (H5Tclose(filetype) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Tclose failed.\n";
+ };
+
+ if ((data_slice = (float *)HDmalloc((size_t)dset_size * filetype_size)) == NULL) {
+ pass = FALSE;
+ failure_mssg = "malloc of data_slice failed.\n";
+ }
+
+ if (pass) {
+ if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pcreate(H5P_DATASET_XFER) failed.\n";
+ }
+ }
+
+ if (pass) {
+ if ((H5Pset_dxpl_mpio(dxpl_id, H5FD_MPIO_COLLECTIVE)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset_dxpl_mpio() failed.\n";
+ }
+ }
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (pass) {
+ prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF;
+ if (H5Pinsert2(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, H5D_XFER_COLL_RANK0_BCAST_SIZE,
+ &prop_value, NULL, NULL, NULL, NULL, NULL, NULL) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pinsert2() failed\n";
+ }
+ }
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ /* read H5S_ALL section */
+ if (pass) {
+ if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, dxpl_id, data_slice)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dread() failed\n";
+ }
+ }
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (pass) {
+ prop_value = FALSE;
+ if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pget() failed\n";
+ }
+ if (pass) {
+ if (prop_value != TRUE) {
+ pass = FALSE;
+ failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n";
+ }
+ }
+ }
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ /* verify the data */
+ if (pass) {
+
+ if (comm == MPI_COMM_WORLD) /* test 1 */
+ nextValue = 0;
+ else if (group_id == 0) /* test 2 group 0 */
+ nextValue = 0;
+ else /* test 2 group 1 */
+ nextValue = (float)((hsize_t)(mpi_size / 2) * count);
+
+ i = 0;
+ while ((pass) && (i < (hsize_t)dset_size)) {
+ /* what we really want is data_slice[i] != nextValue --
+ * the following is a circumlocution to shut up the
+ * the compiler.
+ */
+ if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
+ pass = FALSE;
+ failure_mssg = "Unexpected dset contents.\n";
+ }
+ nextValue += 1;
+ i++;
+ }
+ }
+
+ /* read H5S_ALL section for the chunked dataset */
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (pass) {
+ prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF;
+ if (H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset() failed\n";
+ }
+ }
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ for (i = 0; i < (hsize_t)dset_size; i++) {
+ data_slice[i] = 0;
+ }
+ if (pass) {
+ if ((H5Dread(dset_id_ch, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, dxpl_id, data_slice)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dread() failed\n";
+ }
+ }
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (pass) {
+ prop_value = FALSE;
+ if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pget() failed\n";
+ }
+ if (pass) {
+ if (prop_value == TRUE) {
+ pass = FALSE;
+ failure_mssg = "rank 0 Bcast optimization was mistakenly performed for chunked dataset\n";
+ }
+ }
+ }
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ /* verify the data */
+ if (pass) {
+
+ if (comm == MPI_COMM_WORLD) /* test 1 */
+ nextValue = 0;
+ else if (group_id == 0) /* test 2 group 0 */
+ nextValue = 0;
+ else /* test 2 group 1 */
+ nextValue = (float)((hsize_t)(mpi_size / 2) * count);
+
+ i = 0;
+ while ((pass) && (i < (hsize_t)dset_size)) {
+ /* what we really want is data_slice[i] != nextValue --
+ * the following is a circumlocution to shut up the
+ * the compiler.
+ */
+ if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
+ pass = FALSE;
+ failure_mssg = "Unexpected chunked dset contents.\n";
+ }
+ nextValue += 1;
+ i++;
+ }
+ }
+
+ if (pass || (filespace != -1)) {
+ if (H5Sclose(filespace) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sclose(filespace) failed.\n";
+ }
+ }
+
+ /* free data_slice if it has been allocated */
+ if (data_slice != NULL) {
+ HDfree(data_slice);
+ data_slice = NULL;
+ }
+
+ /*
+ * Read an H5S_ALL filespace into a hyperslab defined memory space
+ */
+
+ if ((data_slice = (float *)HDmalloc((size_t)(dset_size * 2) * filetype_size)) == NULL) {
+ pass = FALSE;
+ failure_mssg = "malloc of data_slice failed.\n";
+ }
+
+ /* setup memspace */
+ if (pass) {
+ dims[0] = (hsize_t)dset_size * 2;
+ if ((memspace = H5Screate_simple(1, dims, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Screate_simple(1, dims, NULL) failed\n";
+ }
+ }
+ if (pass) {
+ offset = (hsize_t)dset_size;
+ if ((H5Sselect_hyperslab(memspace, H5S_SELECT_SET, &offset, NULL, &offset, NULL)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sselect_hyperslab() failed\n";
+ }
+ }
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (pass) {
+ prop_value = H5D_XFER_COLL_RANK0_BCAST_DEF;
+ if (H5Pset(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pset() failed\n";
+ }
+ }
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ /* read this processes section of the data */
+ if (pass) {
+ if ((H5Dread(dset_id, H5T_NATIVE_FLOAT, memspace, H5S_ALL, dxpl_id, data_slice)) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dread() failed\n";
+ }
+ }
+
+#ifdef H5_HAVE_INSTRUMENTED_LIBRARY
+ if (pass) {
+ prop_value = FALSE;
+ if (H5Pget(dxpl_id, H5D_XFER_COLL_RANK0_BCAST_NAME, &prop_value) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pget() failed\n";
+ }
+ if (pass) {
+ if (prop_value != TRUE) {
+ pass = FALSE;
+ failure_mssg = "rank 0 Bcast optimization was mistakenly not performed\n";
+ }
+ }
+ }
+#endif /* H5_HAVE_INSTRUMENTED_LIBRARY */
+
+ /* verify the data */
+ if (pass) {
+
+ if (comm == MPI_COMM_WORLD) /* test 1 */
+ nextValue = 0;
+ else if (group_id == 0) /* test 2 group 0 */
+ nextValue = 0;
+ else /* test 2 group 1 */
+ nextValue = (float)((hsize_t)(mpi_size / 2) * count);
+
+ i = (hsize_t)dset_size;
+ while ((pass) && (i < (hsize_t)dset_size)) {
+ /* what we really want is data_slice[i] != nextValue --
+ * the following is a circumlocution to shut up the
+ * the compiler.
+ */
+ if ((data_slice[i] > nextValue) || (data_slice[i] < nextValue)) {
+ pass = FALSE;
+ failure_mssg = "Unexpected dset contents.\n";
+ }
+ nextValue += 1;
+ i++;
+ }
+ }
+
+ if (pass || (memspace != -1)) {
+ if (H5Sclose(memspace) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Sclose(memspace) failed.\n";
+ }
+ }
+
+ /* free data_slice if it has been allocated */
+ if (data_slice != NULL) {
+ HDfree(data_slice);
+ data_slice = NULL;
+ }
+
+ if (pass || (dxpl_id != -1)) {
+ if (H5Pclose(dxpl_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pclose(dxpl_id) failed.\n";
+ }
+ }
+ }
+
+ /* close file, etc. */
+ if (pass || (dset_id != -1)) {
+ if (H5Dclose(dset_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dclose(dset_id) failed.\n";
+ }
+ }
+
+ if (pass || (dset_id_ch != -1)) {
+ if (H5Dclose(dset_id_ch) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Dclose(dset_id_ch) failed.\n";
+ }
+ }
+
+ if (pass || (file_id != -1)) {
+ if (H5Fclose(file_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Fclose(file_id) failed.\n";
+ }
+ }
+
+ if (pass || (fapl_id != -1)) {
+ if (H5Pclose(fapl_id) < 0) {
+ pass = FALSE;
+ failure_mssg = "H5Pclose(fapl_id) failed.\n";
+ }
+ }
+
+ /* collect results from other processes.
+ * Only overwrite the failure message if no previous error
+ * has been detected
+ */
+ local_failure = (pass ? 0 : 1);
+
+ if (MPI_Allreduce(&local_failure, &global_failures, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD) != MPI_SUCCESS) {
+ if (pass) {
+ pass = FALSE;
+ failure_mssg = "MPI_Allreduce() failed.\n";
+ }
+ }
+ else if ((pass) && (global_failures > 0)) {
+ pass = FALSE;
+ failure_mssg = "One or more processes report failure.\n";
+ }
+
+ /* report results and finish cleanup */
+ if (group_rank == 0) {
+ if (pass) {
+ PASSED();
+ }
+ else {
+ H5_FAILED();
+ HDfprintf(stdout, "%s: failure_mssg = \"%s\"\n", fcn_name, failure_mssg);
+ }
+ HDremove(reloc_data_filename);
+ }
+
+ return (!pass);
+
+} /* test_parallel_read() */
+
+/*-------------------------------------------------------------------------
+ * Function: main
+ *
+ * Purpose: To implement a parallel test which validates whether the
+ * new superblock lookup functionality is working correctly.
+ *
+ * The test consists of creating two separate HDF datasets
+ * in which random text is inserted at the start of each
+ * file using the 'j5jam' application. This forces the
+ * HDF5 file superblock to a non-zero offset.
+ * Having created the two independent files, we create two
+ * non-overlapping MPI groups, each of which is then tasked
+ * with the opening and validation of the data contained
+ * therein.
+ *
+ * Return: Success: 0
+ * Failure: 1
+ *
+ * Programmer: Richard Warren
+ * 10/1/17
+ *-------------------------------------------------------------------------
+ */
+
+int
+main(int argc, char **argv)
+{
+ int nerrs = 0;
+ int which_group = 0;
+ int mpi_rank;
+ int mpi_size;
+ int split_size;
+ MPI_Comm group_comm = MPI_COMM_NULL;
+
+ /* I don't believe that argv[0] can ever be NULL.
+ * It should thus be safe to dup and save as a check
+ * for cmake testing. Note that in our Cmake builds,
+ * all executables are located in the same directory.
+ * We assume (but we'll check) that the h5jam utility
+ * is in the directory as this executable. If that
+ * isn't true, then we can use a relative path that
+ * should be valid for the autotools environment.
+ */
+ test_argv0 = HDstrdup(argv[0]);
+
+ if ((MPI_Init(&argc, &argv)) != MPI_SUCCESS) {
+ HDfprintf(stderr, "FATAL: Unable to initialize MPI\n");
+ HDexit(EXIT_FAILURE);
+ }
+
+ if ((MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank)) != MPI_SUCCESS) {
+ HDfprintf(stderr, "FATAL: MPI_Comm_rank returned an error\n");
+ HDexit(EXIT_FAILURE);
+ }
+
+ if ((MPI_Comm_size(MPI_COMM_WORLD, &mpi_size)) != MPI_SUCCESS) {
+ HDfprintf(stderr, "FATAL: MPI_Comm_size returned an error\n");
+ HDexit(EXIT_FAILURE);
+ }
+
+ H5open();
+
+ if (mpi_rank == 0) {
+ HDfprintf(stdout, "========================================\n");
+ HDfprintf(stdout, "Collective file open optimization tests\n");
+ HDfprintf(stdout, " mpi_size = %d\n", mpi_size);
+ HDfprintf(stdout, "========================================\n");
+ }
+
+ if (mpi_size < 3) {
+
+ if (mpi_rank == 0) {
+
+ HDprintf(" Need at least 3 processes. Exiting.\n");
+ }
+ goto finish;
+ }
+
+ /* ------ Create two (2) MPI groups ------
+ *
+ * We split MPI_COMM_WORLD into 2 more or less equal sized
+ * groups. The resulting communicators will be used to generate
+ * two HDF files which in turn will be opened in parallel and the
+ * contents verified in the second read test below.
+ */
+ split_size = mpi_size / 2;
+ which_group = (mpi_rank < split_size ? 0 : 1);
+
+ if ((MPI_Comm_split(MPI_COMM_WORLD, which_group, 0, &group_comm)) != MPI_SUCCESS) {
+
+ HDfprintf(stderr, "FATAL: MPI_Comm_split returned an error\n");
+ HDexit(EXIT_FAILURE);
+ }
+
+ /* ------ Generate all files ------ */
+
+ /* We generate the file used for test 1 */
+ nerrs += generate_test_file(MPI_COMM_WORLD, mpi_rank, which_group);
+
+ if (nerrs > 0) {
+ if (mpi_rank == 0) {
+ HDprintf(" Test(1) file construction failed -- skipping tests.\n");
+ }
+ goto finish;
+ }
+
+ /* We generate the file used for test 2 */
+ nerrs += generate_test_file(group_comm, mpi_rank, which_group);
+
+ if (nerrs > 0) {
+ if (mpi_rank == 0) {
+ HDprintf(" Test(2) file construction failed -- skipping tests.\n");
+ }
+ goto finish;
+ }
+
+ /* Now read the generated test file (still using MPI_COMM_WORLD) */
+ nerrs += test_parallel_read(MPI_COMM_WORLD, mpi_rank, mpi_size, which_group);
+
+ if (nerrs > 0) {
+ if (mpi_rank == 0) {
+ HDprintf(" Parallel read test(1) failed -- skipping tests.\n");
+ }
+ goto finish;
+ }
+
+ /* Update the user on our progress so far. */
+ if (mpi_rank == 0) {
+ HDprintf(" Test 1 of 2 succeeded\n");
+ HDprintf(" -- Starting multi-group parallel read test.\n");
+ }
+
+ /* run the 2nd set of tests */
+ nerrs += test_parallel_read(group_comm, mpi_rank, mpi_size, which_group);
+
+ if (nerrs > 0) {
+ if (mpi_rank == 0) {
+ HDprintf(" Multi-group read test(2) failed\n");
+ }
+ goto finish;
+ }
+
+ if (mpi_rank == 0) {
+ HDprintf(" Test 2 of 2 succeeded\n");
+ }
+
+finish:
+
+ if ((group_comm != MPI_COMM_NULL) && (MPI_Comm_free(&group_comm)) != MPI_SUCCESS) {
+ HDfprintf(stderr, "MPI_Comm_free failed!\n");
+ }
+
+ /* make sure all processes are finished before final report, cleanup
+ * and exit.
+ */
+ MPI_Barrier(MPI_COMM_WORLD);
+
+ if (mpi_rank == 0) { /* only process 0 reports */
+ const char *header = "Collective file open optimization tests";
+
+ HDfprintf(stdout, "===================================\n");
+ if (nerrs > 0) {
+ HDfprintf(stdout, "***%s detected %d failures***\n", header, nerrs);
+ }
+ else {
+ HDfprintf(stdout, "%s finished with no failures\n", header);
+ }
+ HDfprintf(stdout, "===================================\n");
+ }
+
+ /* close HDF5 library */
+ if (H5close() != SUCCEED) {
+ HDfprintf(stdout, "H5close() failed. (Ignoring)\n");
+ }
+
+ /* MPI_Finalize must be called AFTER H5close which may use MPI calls */
+ MPI_Finalize();
+
+ /* cannot just return (nerrs) because exit code is limited to 1byte */
+ return ((nerrs > 0) ? EXIT_FAILURE : EXIT_SUCCESS);
+
+} /* main() */