summaryrefslogtreecommitdiffstats
path: root/src/H5AClog.c
Commit message (Expand)AuthorAgeFilesLines
* Remove routines not yet used in developQuincey Koziol2016-11-071-140/+0
* Bring cache logging routines from revise_chunks branch to develop.Quincey Koziol2016-11-041-0/+1012
51'>51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the files COPYING and Copyright.html.  COPYING can be found at the root   *
 * of the source code distribution tree; Copyright.html can be found at the  *
 * root level of an installed copy of the electronic HDF5 document set and   *
 * is linked from the top-level documents page.  It can also be found at     *
 * http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html.  If you do not have     *
 * access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*-------------------------------------------------------------------------
 *
 * Created:		hdf5btree.c
 *			Jul 10 1997
 *			Robb Matzke <matzke@llnl.gov>
 *
 * Purpose:		Implements balanced, sibling-linked, N-ary trees
 *			capable of storing any type of data with unique key
 *			values.
 *
 *			A B-link-tree is a balanced tree where each node has
 *			a pointer to its left and right siblings.  A
 *			B-link-tree is a rooted tree having the following
 *			properties:
 *
 *			1. Every node, x, has the following fields:
 *
 *			   a. level[x], the level in the tree at which node
 *			      x appears.  Leaf nodes are at level zero.
 *
 *			   b. n[x], the number of children pointed to by the
 *			      node.  Internal nodes point to subtrees while
 *			      leaf nodes point to arbitrary data.
 *
 *			   c. The child pointers themselves, child[x,i] such
 *			      that 0 <= i < n[x].
 *
 *			   d. n[x]+1 key values stored in increasing
 *			      order:
 *
 *				key[x,0] < key[x,1] < ... < key[x,n[x]].
 *
 *			   e. left[x] is a pointer to the node's left sibling
 *			      or the null pointer if this is the left-most
 *			      node at this level in the tree.
 *			      
 *			   f. right[x] is a pointer to the node's right
 *			      sibling or the null pointer if this is the
 *			      right-most node at this level in the tree.
 *
 *			3. The keys key[x,i] partition the key spaces of the
 *			   children of x:
 *
 *			      key[x,i] <= key[child[x,i],j] <= key[x,i+1]
 *
 *			   for any valid combination of i and j.
 *
 *			4. There are lower and upper bounds on the number of
 *			   child pointers a node can contain.  These bounds
 *			   can be expressed in terms of a fixed integer k>=2
 *			   called the `minimum degree' of the B-tree.
 *
 *			   a. Every node other than the root must have at least
 *			      k child pointers and k+1 keys.  If the tree is
 *			      nonempty, the root must have at least one child
 *			      pointer and two keys.
 *
 *			   b. Every node can contain at most 2k child pointers
 *			      and 2k+1 keys.  A node is `full' if it contains
 *			      exactly 2k child pointers and 2k+1 keys.
 *
 *			5. When searching for a particular value, V, and
 *			   key[V] = key[x,i] for some node x and entry i,
 *			   then:
 *
 *			   a. If i=0 the child[0] is followed.
 *
 *			   b. If i=n[x] the child[n[x]-1] is followed.
 *
 *			   c. Otherwise, the child that is followed
 *			      (either child[x,i-1] or child[x,i]) is
 *			      determined by the type of object to which the
 *			      leaf nodes of the tree point and is controlled
 *			      by the key comparison function registered for
 *			      that type of B-tree.
 *
 *
 * Modifications:
 *
 *	Robb Matzke, 4 Aug 1997
 *	Added calls to H5E.
 *
 *-------------------------------------------------------------------------
 */

#define H5F_PACKAGE		/*suppress error about including H5Fpkg	  */

/* private headers */
#include "H5private.h"		/*library				*/
#include "H5ACprivate.h"	/*cache					*/
#include "H5Bprivate.h"		/*B-link trees				*/
#include "H5Eprivate.h"		/*error handling			*/
#include "H5Fpkg.h"		/*file access				*/
#include "H5FLprivate.h"	/*Free Lists	  */
#include "H5Iprivate.h"		/*IDs					*/
#include "H5MFprivate.h"	/*file memory management		*/
#include "H5MMprivate.h"	/*core memory management		*/
#include "H5Pprivate.h"		/*property lists				*/

#define PABLO_MASK	H5B_mask

#define BOUND(MIN,X,MAX) ((X)<(MIN)?(MIN):((X)>(MAX)?(MAX):(X)))

/* PRIVATE PROTOTYPES */
static H5B_ins_t H5B_insert_helper(H5F_t *f, hid_t dxpl_id, haddr_t addr,
				   const H5B_class_t *type,
				   const double split_ratios[],
				   uint8_t *lt_key,
				   hbool_t *lt_key_changed,
				   uint8_t *md_key, void *udata,
				   uint8_t *rt_key,
				   hbool_t *rt_key_changed,
				   haddr_t *retval);
static herr_t H5B_insert_child(H5F_t *f, const H5B_class_t *type,
			       H5B_t *bt, int idx, haddr_t child,
			       H5B_ins_t anchor, void *md_key);
static H5B_t *H5B_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, const void *_type, void *udata);
static herr_t H5B_flush(H5F_t *f, hid_t dxpl_id, hbool_t destroy, haddr_t addr, H5B_t *b);
static herr_t H5B_dest(H5F_t *f, H5B_t *b);
static herr_t H5B_decode_key(H5F_t *f, H5B_t *bt, int idx);
static herr_t H5B_decode_keys(H5F_t *f, H5B_t *bt, int idx);
static size_t H5B_nodesize(H5F_t *f, const H5B_class_t *type,
			   size_t *total_nkey_size, size_t sizeof_rkey);
static herr_t H5B_split(H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, H5B_t *old_bt,
			haddr_t old_addr, int idx,
			const double split_ratios[], void *udata,
			haddr_t *new_addr/*out*/);
static H5B_t * H5B_copy(H5F_t *f, const H5B_t *old_bt);
#ifdef H5B_DEBUG
static herr_t H5B_assert(H5F_t *f, hid_t dxpl_id, haddr_t addr, const H5B_class_t *type,
			 void *udata);
#endif

/* H5B inherits cache-like properties from H5AC */
static const H5AC_class_t H5AC_BT[1] = {{
    H5AC_BT_ID,
    (H5AC_load_func_t)H5B_load,
    (H5AC_flush_func_t)H5B_flush,
    (H5AC_dest_func_t)H5B_dest,
}};

/* Interface initialization? */
#define INTERFACE_INIT NULL
static int interface_initialize_g = 0;

/* Declare a free list to manage the page information */
H5FL_BLK_DEFINE_STATIC(page);

/* Declare a PQ free list to manage the native block information */
H5FL_BLK_DEFINE_STATIC(native_block);

/* Declare a free list to manage the H5B_key_t array information */
H5FL_ARR_DEFINE_STATIC(H5B_key_t,-1);

/* Declare a free list to manage the haddr_t array information */
H5FL_ARR_DEFINE_STATIC(haddr_t,-1);

/* Declare a free list to manage the H5B_t struct */
H5FL_DEFINE_STATIC(H5B_t);


/*-------------------------------------------------------------------------
 * Function:	H5B_create
 *
 * Purpose:	Creates a new empty B-tree leaf node.  The UDATA pointer is
 *		passed as an argument to the sizeof_rkey() method for the
 *		B-tree.
 *
 * Return:	Success:	Non-negative, and the address of new node is
 *				returned through the ADDR_P argument.
 *
 * 		Failure:	Negative
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jun 23 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		Changed the name of the ADDR argument to ADDR_P to make it
 *		obvious that the address is passed by reference unlike most
 *		other functions that take addresses.
 *-------------------------------------------------------------------------
 */
herr_t
H5B_create(H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, void *udata,
	   haddr_t *addr_p/*out*/)
{
    H5B_t		*bt = NULL;
    size_t		sizeof_rkey;
    size_t		size;
    size_t		total_native_keysize;
    size_t		offset;
    int		i;
    herr_t		ret_value = SUCCEED;

    FUNC_ENTER_NOAPI(H5B_create, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(addr_p);

    /*
     * Allocate file and memory data structures.
     */
    sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
    size = H5B_nodesize(f, type, &total_native_keysize, sizeof_rkey);
    H5_CHECK_OVERFLOW(size,size_t,hsize_t);
    if (HADDR_UNDEF==(*addr_p=H5MF_alloc(f, H5FD_MEM_BTREE, dxpl_id, (hsize_t)size)))
	HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "file allocation failed for B-tree root node");
    if (NULL==(bt = H5FL_CALLOC(H5B_t)))
	HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for B-tree root node");
    bt->type = type;
    bt->sizeof_rkey = sizeof_rkey;
    bt->cache_info.dirty = TRUE;
    bt->ndirty = 0;
    bt->level = 0;
    bt->left = HADDR_UNDEF;
    bt->right = HADDR_UNDEF;
    bt->nchildren = 0;
    if (NULL==(bt->page=H5FL_BLK_CALLOC(page,size)) ||
            NULL==(bt->native=H5FL_BLK_MALLOC(native_block,total_native_keysize)) ||
            NULL==(bt->child=H5FL_ARR_MALLOC(haddr_t,(size_t)(2*H5F_KVALUE(f,type)))) ||
            NULL==(bt->key=H5FL_ARR_MALLOC(H5B_key_t,(size_t)(2*H5F_KVALUE(f,type)+1))))
	HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for B-tree root node");

    /*
     * Initialize each entry's raw child and key pointers to point into the
     * `page' buffer.  Each native key pointer should be null until the key is
     * translated to native format.
     */
    for (i = 0, offset = H5B_SIZEOF_HDR(f);
	 i < 2 * H5F_KVALUE(f, type);
	 i++, offset += bt->sizeof_rkey + H5F_SIZEOF_ADDR(f)) {

	bt->key[i].dirty = FALSE;
	bt->key[i].rkey = bt->page + offset;
	bt->key[i].nkey = NULL;
	bt->child[i] = HADDR_UNDEF;
    }

    /*
     * The last possible key...
     */
    bt->key[2 * H5F_KVALUE(f, type)].dirty = FALSE;
    bt->key[2 * H5F_KVALUE(f, type)].rkey = bt->page + offset;
    bt->key[2 * H5F_KVALUE(f, type)].nkey = NULL;

    /*
     * Cache the new B-tree node.
     */
    if (H5AC_set(f, dxpl_id, H5AC_BT, *addr_p, bt) < 0)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, "can't add B-tree root node to cache");
#ifdef H5B_DEBUG
    H5B_assert(f, dxpl_id, *addr_p, type, udata);
#endif
    
done:
    if (ret_value<0) {
        H5_CHECK_OVERFLOW(size,size_t,hsize_t);
	H5MF_xfree(f, H5FD_MEM_BTREE, dxpl_id, *addr_p, (hsize_t)size);
	if (bt)
            H5B_dest(f,bt);
    }
    
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_load
 *
 * Purpose:	Loads a B-tree node from the disk.
 *
 * Return:	Success:	Pointer to a new B-tree node.
 *
 *		Failure:	NULL
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jun 23 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *
 *	Quincey Koziol, 2002-7-180
 *	Added dxpl parameter to allow more control over I/O from metadata
 *      cache.
 *-------------------------------------------------------------------------
 */
static H5B_t *
H5B_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, const void *_type, void *udata)
{
    const H5B_class_t	*type = (const H5B_class_t *) _type;
    size_t		total_nkey_size;
    size_t		size;
    H5B_t		*bt = NULL;
    int		i;
    uint8_t		*p;
    H5B_t		*ret_value;

    FUNC_ENTER_NOAPI(H5B_load, NULL);

    /* Check arguments */
    assert(f);
    assert(H5F_addr_defined(addr));
    assert(type);
    assert(type->get_sizeof_rkey);

    if (NULL==(bt = H5FL_CALLOC(H5B_t)))
	HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed");
    bt->sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
    size = H5B_nodesize(f, type, &total_nkey_size, bt->sizeof_rkey);
    bt->type = type;
    bt->cache_info.dirty = FALSE;
    bt->ndirty = 0;
    if (NULL==(bt->page=H5FL_BLK_MALLOC(page,size)) ||
            NULL==(bt->native=H5FL_BLK_MALLOC(native_block,total_nkey_size)) ||
            NULL==(bt->key=H5FL_ARR_MALLOC(H5B_key_t,(size_t)(2*H5F_KVALUE(f,type)+1))) ||
            NULL==(bt->child=H5FL_ARR_MALLOC(haddr_t,(size_t)(2*H5F_KVALUE(f,type)))))
	HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed");
    if (H5F_block_read(f, H5FD_MEM_BTREE, addr, size, dxpl_id, bt->page)<0)
	HGOTO_ERROR(H5E_BTREE, H5E_READERROR, NULL, "can't read B-tree node");
    p = bt->page;

    /* magic number */
    if (HDmemcmp(p, H5B_MAGIC, H5B_SIZEOF_MAGIC))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL, "wrong B-tree signature");
    p += 4;

    /* node type and level */
    if (*p++ != type->id)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL, "incorrect B-tree node level");
    bt->level = *p++;

    /* entries used */
    UINT16DECODE(p, bt->nchildren);

    /* sibling pointers */
    H5F_addr_decode(f, (const uint8_t **) &p, &(bt->left));
    H5F_addr_decode(f, (const uint8_t **) &p, &(bt->right));

    /* the child/key pairs */
    for (i = 0; i < 2 * H5F_KVALUE(f, type); i++) {

	bt->key[i].dirty = FALSE;
	bt->key[i].rkey = p;
	p += bt->sizeof_rkey;
	bt->key[i].nkey = NULL;

	if (i < bt->nchildren) {
	    H5F_addr_decode(f, (const uint8_t **) &p, bt->child + i);
	} else {
	    bt->child[i] = HADDR_UNDEF;
	    p += H5F_SIZEOF_ADDR(f);
	}
    }

    bt->key[2 * H5F_KVALUE(f, type)].dirty = FALSE;
    bt->key[2 * H5F_KVALUE(f, type)].rkey = p;
    bt->key[2 * H5F_KVALUE(f, type)].nkey = NULL;

    /* Set return value */
    ret_value = bt;

done:
    if (!ret_value && bt)
        H5B_dest(f,bt);
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_flush
 *
 * Purpose:	Flushes a dirty B-tree node to disk.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jun 23 1997
 *
 * Modifications:
 *              rky 980828
 *		Only p0 writes metadata to disk.
 *
 * 		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *
 *	Quincey Koziol, 2002-7-180
 *	Added dxpl parameter to allow more control over I/O from metadata
 *      cache.
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_flush(H5F_t *f, hid_t dxpl_id, hbool_t destroy, haddr_t addr, H5B_t *bt)
{
    int	i;
    size_t	size = 0;
    uint8_t	*p = bt->page;
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI(H5B_flush, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(H5F_addr_defined(addr));
    assert(bt);
    assert(bt->type);
    assert(bt->type->encode);

    size = H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey);

    if (bt->cache_info.dirty) {

	/* magic number */
	HDmemcpy(p, H5B_MAGIC, H5B_SIZEOF_MAGIC);
	p += 4;

	/* node type and level */
	*p++ = bt->type->id;
	*p++ = bt->level;

	/* entries used */
	UINT16ENCODE(p, bt->nchildren);

	/* sibling pointers */
	H5F_addr_encode(f, &p, bt->left);
	H5F_addr_encode(f, &p, bt->right);

	/* child keys and pointers */
	for (i=0; i<=bt->nchildren; i++) {

	    /* encode the key */
	    assert(bt->key[i].rkey == p);
	    if (bt->key[i].dirty) {
		if (bt->key[i].nkey) {
		    if ((bt->type->encode) (f, bt, bt->key[i].rkey,
					    bt->key[i].nkey) < 0)
			HGOTO_ERROR(H5E_BTREE, H5E_CANTENCODE, FAIL, "unable to encode B-tree key");
		}
		bt->key[i].dirty = FALSE;
	    }
	    p += bt->sizeof_rkey;

	    /* encode the child address */
	    if (i < bt->ndirty) {
		H5F_addr_encode(f, &p, bt->child[i]);
	    } else {
		p += H5F_SIZEOF_ADDR(f);
	    }
	}

	/*
	 * Write the disk page.	 We always write the header, but we don't
	 * bother writing data for the child entries that don't exist or
	 * for the final unchanged children.
	 */
	if (H5F_block_write(f, H5FD_MEM_BTREE, addr, size, dxpl_id, bt->page)<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL, "unable to save B-tree node to disk");
	bt->cache_info.dirty = FALSE;
	bt->ndirty = 0;
    }
    if (destroy) {
        if(H5B_dest(f,bt)<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTFREE, FAIL, "unable to destroy B-tree node");
    }

done:
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_dest
 *
 * Purpose:	Destroys a B-tree node in memory.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		koziol@ncsa.uiuc.edu
 *		Jan 15 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_dest(H5F_t UNUSED *f, H5B_t *bt)
{
    FUNC_ENTER_NOINIT(H5B_dest);

    /*
     * Check arguments.
     */
    assert(bt);

    /* Verify that node is clean */
    assert(bt->cache_info.dirty==0);

    H5FL_ARR_FREE(haddr_t,bt->child);
    H5FL_ARR_FREE(H5B_key_t,bt->key);
    H5FL_BLK_FREE(page,bt->page);
    H5FL_BLK_FREE(native_block,bt->native);
    H5FL_FREE(H5B_t,bt);

    FUNC_LEAVE_NOAPI(SUCCEED);
} /* end H5B_dest() */


/*-------------------------------------------------------------------------
 * Function:	H5B_find
 *
 * Purpose:	Locate the specified information in a B-tree and return
 *		that information by filling in fields of the caller-supplied
 *		UDATA pointer depending on the type of leaf node
 *		requested.  The UDATA can point to additional data passed
 *		to the key comparison function.
 *
 * Note:	This function does not follow the left/right sibling
 *		pointers since it assumes that all nodes can be reached
 *		from the parent node.
 *
 * Return:	Non-negative on success (if found, values returned through the
 *              UDATA argument). Negative on failure (if not found, UDATA is
 *              undefined).
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jun 23 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
herr_t
H5B_find(H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, haddr_t addr, void *udata)
{
    H5B_t	*bt = NULL;
    int	idx = -1, lt = 0, rt, cmp = 1;
    int		ret_value = SUCCEED;

    FUNC_ENTER_NOAPI(H5B_find, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(type->decode);
    assert(type->cmp3);
    assert(type->found);
    assert(H5F_addr_defined(addr));

    /*
     * Perform a binary search to locate the child which contains
     * the thing for which we're searching.
     */
    if (NULL == (bt = H5AC_protect(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load B-tree node");
    rt = bt->nchildren;

    while (lt < rt && cmp) {
	idx = (lt + rt) / 2;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, "unable to decode B-tree key(s)");
	/* compare */
	if ((cmp = (type->cmp3) (f, dxpl_id, bt->key[idx].nkey, udata,
				 bt->key[idx+1].nkey)) < 0) {
	    rt = idx;
	} else {
	    lt = idx+1;
	}
    }
    if (cmp)
	HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL, "B-tree key not found");
    
    /*
     * Follow the link to the subtree or to the data node.
     */
    assert(idx >= 0 && idx < bt->nchildren);
    if (bt->level > 0) {
	if (H5B_find(f, dxpl_id, type, bt->child[idx], udata) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL, "key not found in subtree");
    } else {
	if ((type->found) (f, dxpl_id, bt->child[idx], bt->key[idx].nkey, udata, bt->key[idx+1].nkey) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL, "key not found in leaf node");
    }

done:
    if (bt && H5AC_unprotect(f, dxpl_id, H5AC_BT, addr, bt) < 0 && ret_value>=0)
	HDONE_ERROR(H5E_BTREE, H5E_PROTECT, FAIL, "unable to release node");

    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_split
 *
 * Purpose:	Split a single node into two nodes.  The old node will
 *		contain the left children and the new node will contain the
 *		right children.
 *
 *		The UDATA pointer is passed to the sizeof_rkey() method but is
 *		otherwise unused.
 *
 *		The OLD_BT argument is a pointer to a protected B-tree
 *		node.
 *
 * Return:	Non-negative on success (The address of the new node is
 *              returned through the NEW_ADDR argument). Negative on failure.
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jul  3 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The OLD_ADDR argument is passed by value. The NEW_ADDR
 *		argument has been renamed to NEW_ADDR_P
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_split(H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, H5B_t *old_bt, haddr_t old_addr,
	  int idx, const double split_ratios[], void *udata,
	  haddr_t *new_addr_p/*out*/)
{
    H5B_t	*new_bt = NULL, *tmp_bt = NULL;
    herr_t	ret_value = SUCCEED;
    int	i, k, nleft, nright;
    size_t	recsize = 0;

    FUNC_ENTER_NOINIT(H5B_split);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(H5F_addr_defined(old_addr));

    /*
     * Initialize variables.
     */
    assert(old_bt->nchildren == 2 * H5F_KVALUE(f, type));
    recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
    k = H5F_KVALUE(f, type);

#ifdef H5B_DEBUG
    if (H5DEBUG(B)) {
	const char *side;
	if (!H5F_addr_defined(old_bt->left) &&
	    !H5F_addr_defined(old_bt->right)) {
	    side = "ONLY";
	} else if (!H5F_addr_defined(old_bt->right)) {
	    side = "RIGHT";
	} else if (!H5F_addr_defined(old_bt->left)) {
	    side = "LEFT";
	} else {
	    side = "MIDDLE";
	}
	fprintf(H5DEBUG(B), "H5B_split: %3d {%5.3f,%5.3f,%5.3f} %6s",
		2*k, split_ratios[0], split_ratios[1], split_ratios[2], side);
    }
#endif

    /*
     * Decide how to split the children of the old node among the old node
     * and the new node.
     */
    if (!H5F_addr_defined(old_bt->right)) {
	nleft = (int)(2 * k * split_ratios[2]);	/*right*/
    } else if (!H5F_addr_defined(old_bt->left)) {
	nleft = (int)(2 * k * split_ratios[0]);	/*left*/
    } else {
	nleft = (int)(2 * k * split_ratios[1]);	/*middle*/
    }

    /*
     * Keep the new child in the same node as the child that split.  This can
     * result in nodes that have an unused child when data is written
     * sequentially, but it simplifies stuff below.
     */
    if (idx<nleft && nleft==2*k) {
	--nleft;
    } else if (idx>=nleft && 0==nleft) {
	nleft++;
    }
    nright = 2*k - nleft;
#ifdef H5B_DEBUG
    if (H5DEBUG(B))
	fprintf(H5DEBUG(B), " split %3d/%-3d\n", nleft, nright);
#endif
    
    /*
     * Create the new B-tree node.
     */
    if (H5B_create(f, dxpl_id, type, udata, new_addr_p/*out*/) < 0)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, "unable to create B-tree");
    if (NULL==(new_bt=H5AC_protect(f, dxpl_id, H5AC_BT, *new_addr_p, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to protect B-tree");
    new_bt->level = old_bt->level;

    /*
     * Copy data from the old node to the new node.
     */
    HDmemcpy(new_bt->page + H5B_SIZEOF_HDR(f),
	     old_bt->page + H5B_SIZEOF_HDR(f) + nleft * recsize,
	     nright * recsize + new_bt->sizeof_rkey);
    HDmemcpy(new_bt->native,
	     old_bt->native + nleft * type->sizeof_nkey,
	     (nright+1) * type->sizeof_nkey);

    for (i=0; i<=nright; i++) {
	/* key */
	new_bt->key[i].dirty = old_bt->key[nleft+i].dirty;
	if (old_bt->key[nleft+i].nkey)
	    new_bt->key[i].nkey = new_bt->native + i * type->sizeof_nkey;

	/* child */
	if (i < nright)
	    new_bt->child[i] = old_bt->child[nleft+i];
    }
    new_bt->ndirty = new_bt->nchildren = nright;

    /*
     * Truncate the old node.
     */
    old_bt->cache_info.dirty = TRUE;
    old_bt->nchildren = nleft;
    old_bt->ndirty = MIN(old_bt->ndirty, old_bt->nchildren);
    
    /*
     * Update sibling pointers.
     */
    new_bt->left = old_addr;
    new_bt->right = old_bt->right;

    if (H5F_addr_defined(old_bt->right)) {
	if (NULL == (tmp_bt = H5AC_find(f, dxpl_id, H5AC_BT, old_bt->right, type, udata)))
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load right sibling");
	tmp_bt->cache_info.dirty = TRUE;
	tmp_bt->left = *new_addr_p;
    }
    old_bt->right = *new_addr_p;

done:
    if (new_bt && H5AC_unprotect(f, dxpl_id, H5AC_BT, *new_addr_p, new_bt) < 0 && ret_value>=0)
        HDONE_ERROR(H5E_BTREE, H5E_PROTECT, FAIL, "unable to release B-tree node");

    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_decode_key
 *
 * Purpose:	Decode the specified key into native format.  Do not call
 *		this function if the key is already decoded since it my
 *		decode a stale raw key into the native key.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jul  8 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_decode_key(H5F_t *f, H5B_t *bt, int idx)
{
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOINIT(H5B_decode_key);

    assert(bt->key[idx].dirty==0);

    bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey;
    if ((bt->type->decode) (f, bt, bt->key[idx].rkey, bt->key[idx].nkey) < 0)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, "unable to decode key");

done:
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_decode_keys
 *
 * Purpose:	Decode keys on either side of the specified branch.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Tuesday, October 14, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_decode_keys(H5F_t *f, H5B_t *bt, int idx)
{
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOINIT(H5B_decode_keys);

    assert(f);
    assert(bt);
    assert(idx >= 0 && idx < bt->nchildren);

    if (!bt->key[idx].nkey && H5B_decode_key(f, bt, idx) < 0)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, "unable to decode key");
    if (!bt->key[idx+1].nkey && H5B_decode_key(f, bt, idx+1) < 0)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, "unable to decode key");

done:
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_insert
 *
 * Purpose:	Adds a new item to the B-tree.	If the root node of
 *		the B-tree splits then the B-tree gets a new address.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jun 23 1997
 *
 * Modifications:
 * 	Robb Matzke, 28 Sep 1998
 *	The optional SPLIT_RATIOS[] indicates what percent of the child
 *	pointers should go in the left node when a node splits.  There are
 *	three possibilities and a separate split ratio can be specified for
 *	each: [0] The node that split is the left-most node at its level of
 *	the tree, [1] the node that split has left and right siblings, [2]
 *	the node that split is the right-most node at its level of the tree.
 *	When a node is an only node at its level then we use the right-most
 *	rule.  If SPLIT_RATIOS is null then default values are used.
 *
 * 	Robb Matzke, 1999-07-28
 *	The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
herr_t
H5B_insert(H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, haddr_t addr,
	   const double split_ratios[], void *udata)
{
    /*
     * These are defined this way to satisfy alignment constraints.
     */
    uint64_t	_lt_key[128], _md_key[128], _rt_key[128];
    uint8_t	*lt_key=(uint8_t*)_lt_key;
    uint8_t	*md_key=(uint8_t*)_md_key;
    uint8_t	*rt_key=(uint8_t*)_rt_key;

    hbool_t	lt_key_changed = FALSE, rt_key_changed = FALSE;
    haddr_t	child, old_root;
    int	level;
    H5B_t	*bt;
    hsize_t	size;
    H5B_ins_t	my_ins = H5B_INS_ERROR;
    herr_t	ret_value = SUCCEED;

    FUNC_ENTER_NOAPI(H5B_insert, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(type->sizeof_nkey <= sizeof _lt_key);
    assert(H5F_addr_defined(addr));

    if ((my_ins = H5B_insert_helper(f, dxpl_id, addr, type, split_ratios, lt_key,
            &lt_key_changed, md_key, udata, rt_key, &rt_key_changed, &child/*out*/))<0 ||
            my_ins<0)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, "unable to insert key");
    if (H5B_INS_NOOP == my_ins)
        HGOTO_DONE(SUCCEED);
    assert(H5B_INS_RIGHT == my_ins);

    /* the current root */
    if (NULL == (bt = H5AC_find(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to locate root of B-tree");
    level = bt->level;
    if (!lt_key_changed) {
	if (!bt->key[0].nkey && H5B_decode_key(f, bt, 0) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, "unable to decode key");
	HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey);
    }
    
    /* the new node */
    if (NULL == (bt = H5AC_find(f, dxpl_id, H5AC_BT, child, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load new node");
    if (!rt_key_changed) {
	if (!bt->key[bt->nchildren].nkey &&
                H5B_decode_key(f, bt, bt->nchildren) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL, "unable to decode key");
	HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
    }
    
    /*
     * Copy the old root node to some other file location and make the new
     * root at the old root's previous address.	 This prevents the B-tree
     * from "moving".
     */
    size = H5B_nodesize(f, type, NULL, bt->sizeof_rkey);
    if (HADDR_UNDEF==(old_root=H5MF_alloc(f, H5FD_MEM_BTREE, dxpl_id, size)))
        HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "unable to allocate file space to move root");

    /* update the new child's left pointer */
    if (NULL == (bt = H5AC_find(f, dxpl_id, H5AC_BT, child, type, udata)))
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load new child");
    bt->cache_info.dirty = TRUE;
    bt->left = old_root;

    /*
     * Move the node to the new location by checking it out & checking it in
     * at the new location -QAK
     */
    /* Bring the old root into the cache if it's not already */
    if (NULL == (bt = H5AC_find(f, dxpl_id, H5AC_BT, addr, type, udata)))
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load new child");

    /* Make certain the old root info is marked as dirty before moving it, */
    /* so it is certain to be written out at the new location */
    bt->cache_info.dirty = TRUE;

    /* Make a copy of the old root information */
    if (NULL == (bt = H5B_copy(f, bt)))
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to copy old root");

    /* Move the location on the disk */
    if (H5AC_rename(f, dxpl_id, H5AC_BT, addr, old_root) < 0)
        HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, FAIL, "unable to move B-tree root node");

    /* Insert the copy of the old root into the file again */
    if (H5AC_set(f, dxpl_id, H5AC_BT, addr, bt) < 0)
        HGOTO_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL, "unable to flush old B-tree root node");

    /* clear the old root info at the old address (we already copied it) */
    bt->cache_info.dirty = TRUE;
    bt->left = HADDR_UNDEF;
    bt->right = HADDR_UNDEF;

    /* Set the new information for the copy */
    bt->ndirty = 2;
    bt->level = level + 1;
    bt->nchildren = 2;

    bt->child[0] = old_root;
    bt->key[0].dirty = TRUE;
    bt->key[0].nkey = bt->native;
    HDmemcpy(bt->key[0].nkey, lt_key, type->sizeof_nkey);

    bt->child[1] = child;
    bt->key[1].dirty = TRUE;
    bt->key[1].nkey = bt->native + type->sizeof_nkey;
    HDmemcpy(bt->key[1].nkey, md_key, type->sizeof_nkey);

    bt->key[2].dirty = TRUE;
    bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey;
    HDmemcpy(bt->key[2].nkey, rt_key, type->sizeof_nkey);

#ifdef H5B_DEBUG
    H5B_assert(f, dxpl_id, addr, type, udata);
#endif
    
done:
    FUNC_LEAVE_NOAPI(ret_value);
}
    

/*-------------------------------------------------------------------------
 * Function:	H5B_insert_child
 *
 * Purpose:	Insert a child to the left or right of child[IDX] depending
 *		on whether ANCHOR is H5B_INS_LEFT or H5B_INS_RIGHT. The BT
 *		argument is a pointer to a protected B-tree node.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jul  8 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The CHILD argument is passed by value.
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_insert_child(H5F_t *f, const H5B_class_t *type, H5B_t *bt,
		 int idx, haddr_t child, H5B_ins_t anchor, void *md_key)
{
    size_t	recsize;
    int	i;

    FUNC_ENTER_NOINIT(H5B_insert_child);

    assert(bt);
    assert(bt->nchildren<2*H5F_KVALUE(f, type));

    bt->cache_info.dirty = TRUE;
    recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);

    if (H5B_INS_RIGHT == anchor) {
	/*
	 * The MD_KEY is the left key of the new node.
	 */
	idx++;
	
	HDmemmove(bt->page + H5B_SIZEOF_HDR(f) + (idx+1) * recsize,
		  bt->page + H5B_SIZEOF_HDR(f) + idx * recsize,
		  (bt->nchildren - idx) * recsize + bt->sizeof_rkey);

	HDmemmove(bt->native + (idx+1) * type->sizeof_nkey,
		  bt->native + idx * type->sizeof_nkey,
		  ((bt->nchildren - idx) + 1) * type->sizeof_nkey);

	for (i=bt->nchildren; i>=idx; --i) {
	    bt->key[i+1].dirty = bt->key[i].dirty;
	    if (bt->key[i].nkey) {
		bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey;
	    } else {
		bt->key[i+1].nkey = NULL;
	    }
	}
	bt->key[idx].dirty = TRUE;
	bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey;
	HDmemcpy(bt->key[idx].nkey, md_key, type->sizeof_nkey);

    } else {
	/*
	 * The MD_KEY is the right key of the new node.
	 */
	HDmemmove(bt->page + (H5B_SIZEOF_HDR(f) +
			      (idx+1) * recsize + bt->sizeof_rkey),
		  bt->page + (H5B_SIZEOF_HDR(f) +
			      idx * recsize + bt->sizeof_rkey),
		  (bt->nchildren - idx) * recsize);

	HDmemmove(bt->native + (idx+2) * type->sizeof_nkey,
		  bt->native + (idx+1) * type->sizeof_nkey,
		  (bt->nchildren - idx) * type->sizeof_nkey);

	for (i = bt->nchildren; i > idx; --i) {
	    bt->key[i+1].dirty = bt->key[i].dirty;
	    if (bt->key[i].nkey) {
		bt->key[i+1].nkey = bt->native + (i+1) * type->sizeof_nkey;
	    } else {
		bt->key[i+1].nkey = NULL;
	    }
	}
	bt->key[idx+1].dirty = TRUE;
	bt->key[idx+1].nkey = bt->native + (idx+1) * type->sizeof_nkey;
	HDmemcpy(bt->key[idx+1].nkey, md_key, type->sizeof_nkey);
    }

    HDmemmove(bt->child + idx + 1,
	      bt->child + idx,
	      (bt->nchildren - idx) * sizeof(haddr_t));

    bt->child[idx] = child;
    bt->nchildren += 1;
    bt->ndirty = bt->nchildren;

    FUNC_LEAVE_NOAPI(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_insert_helper
 *
 * Purpose:	Inserts the item UDATA into the tree rooted at ADDR and having
 *		the specified type.
 *
 *		On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is
 *		the new native left key.  Similarily for RT_KEY_CHANGED
 *		and RT_KEY.
 *
 *		If the node splits, then MD_KEY contains the key that
 *		was split between the two nodes (that is, the key that
 *		appears as the max key in the left node and the min key
 *		in the right node).
 *
 * Return:	Success:	A B-tree operation.  The address of the new
 *				node, if the node splits, is returned through
 *				the NEW_NODE_P argument. The new node is always
 *				to the right of the previous node.  This
 *				function is called recursively and the return
 *				value influences the behavior of the caller.
 *				See also, declaration of H5B_ins_t.
 *
 *		Failure:	H5B_INS_ERROR
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jul  9 1997
 *
 * Modifications:
 *
 * 	Robb Matzke, 28 Sep 1998
 *	The optional SPLIT_RATIOS[] indicates what percent of the child
 *	pointers should go in the left node when a node splits.  There are
 *	three possibilities and a separate split ratio can be specified for
 *	each: [0] The node that split is the left-most node at its level of
 *	the tree, [1] the node that split has left and right siblings, [2]
 *	the node that split is the right-most node at its level of the tree.
 *	When a node is an only node at its level then we use the right-most
 *	rule.  If SPLIT_RATIOS is null then default values are used.
 *
 * 	Robb Matzke, 1999-07-28
 *	The ADDR argument is passed by value. The NEW_NODE argument is
 *	renamed NEW_NODE_P
 *-------------------------------------------------------------------------
 */
static H5B_ins_t
H5B_insert_helper(H5F_t *f, hid_t dxpl_id, haddr_t addr, const H5B_class_t *type,
		  const double split_ratios[], uint8_t *lt_key,
		  hbool_t *lt_key_changed, uint8_t *md_key, void *udata,
		  uint8_t *rt_key, hbool_t *rt_key_changed,
		  haddr_t *new_node_p/*out*/)
{
    H5B_t	*bt = NULL, *twin = NULL, *tmp_bt = NULL;
    int	lt = 0, idx = -1, rt, cmp = -1;
    haddr_t	child_addr;
    H5B_ins_t	my_ins = H5B_INS_ERROR;
    H5B_ins_t	ret_value = H5B_INS_ERROR;

    FUNC_ENTER_NOINIT(H5B_insert_helper);

    /*
     * Check arguments
     */
    assert(f);
    assert(H5F_addr_defined(addr));
    assert(type);
    assert(type->decode);
    assert(type->cmp3);
    assert(type->new_node);
    assert(lt_key);
    assert(lt_key_changed);
    assert(rt_key);
    assert(rt_key_changed);
    assert(new_node_p);

    *lt_key_changed = FALSE;
    *rt_key_changed = FALSE;

    /*
     * Use a binary search to find the child that will receive the new
     * data.  When the search completes IDX points to the child that
     * should get the new data.
     */
    if (NULL == (bt = H5AC_protect(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, "unable to load node");
    rt = bt->nchildren;

    while (lt < rt && cmp) {
	idx = (lt + rt) / 2;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	if ((cmp = (type->cmp3) (f, dxpl_id, bt->key[idx].nkey, udata,
				 bt->key[idx+1].nkey)) < 0) {
	    rt = idx;
	} else {
	    lt = idx + 1;
	}
    }

    if (0 == bt->nchildren) {
	/*
	 * The value being inserted will be the only value in this tree. We
	 * must necessarily be at level zero.
	 */
	assert(0 == bt->level);
	bt->key[0].nkey = bt->native;
	bt->key[1].nkey = bt->native + type->sizeof_nkey;
	if ((type->new_node)(f, dxpl_id, H5B_INS_FIRST, bt->key[0].nkey, udata,
			     bt->key[1].nkey, bt->child + 0/*out*/) < 0) {
	    bt->key[0].nkey = bt->key[1].nkey = NULL;
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR, "unable to create leaf node");
	}
	bt->nchildren = 1;
	bt->cache_info.dirty = TRUE;
	bt->ndirty = 1;
	bt->key[0].dirty = TRUE;
	bt->key[1].dirty = TRUE;
	idx = 0;

	if (type->follow_min) {
	    if ((my_ins = (type->insert)(f, dxpl_id, bt->child[idx], bt->key[idx].nkey,
                     lt_key_changed, md_key, udata, bt->key[idx+1].nkey,
                     rt_key_changed, &child_addr/*out*/)) < 0)
		HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "unable to insert first leaf node");
	} else {
	    my_ins = H5B_INS_NOOP;
	}

    } else if (cmp < 0 && idx <= 0 && bt->level > 0) {
	/*
	 * The value being inserted is less than any value in this tree.
	 * Follow the minimum branch out of this node to a subtree.
	 */
	idx = 0;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	if ((my_ins = H5B_insert_helper(f, dxpl_id, bt->child[idx], type, split_ratios,
                bt->key[idx].nkey, lt_key_changed, md_key,
                udata, bt->key[idx+1].nkey, rt_key_changed,
                &child_addr/*out*/))<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert minimum subtree");
    } else if (cmp < 0 && idx <= 0 && type->follow_min) {
	/*
	 * The value being inserted is less than any leaf node out of this
	 * current node.  Follow the minimum branch to a leaf node and let the
	 * subclass handle the problem.
	 */
	idx = 0;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	if ((my_ins = (type->insert)(f, dxpl_id, bt->child[idx], bt->key[idx].nkey,
                 lt_key_changed, md_key, udata, bt->key[idx+1].nkey,
                 rt_key_changed, &child_addr/*out*/)) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert minimum leaf node");
    } else if (cmp < 0 && idx <= 0) {
	/*
	 * The value being inserted is less than any leaf node out of the
	 * current node. Create a new minimum leaf node out of this B-tree
	 * node. This node is not empty (handled above).
	 */
	idx = 0;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	my_ins = H5B_INS_LEFT;
	HDmemcpy(md_key, bt->key[idx].nkey, type->sizeof_nkey);
	if ((type->new_node)(f, dxpl_id, H5B_INS_LEFT, bt->key[idx].nkey, udata,
			     md_key, &child_addr/*out*/) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert minimum leaf node");
	*lt_key_changed = TRUE;

    } else if (cmp > 0 && idx + 1 >= bt->nchildren && bt->level > 0) {
	/*
	 * The value being inserted is larger than any value in this tree.
	 * Follow the maximum branch out of this node to a subtree.
	 */
	idx = bt->nchildren - 1;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	if ((my_ins = H5B_insert_helper(f, dxpl_id, bt->child[idx], type, split_ratios,
                bt->key[idx].nkey, lt_key_changed, md_key, udata,
                bt->key[idx+1].nkey, rt_key_changed, &child_addr/*out*/)) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert maximum subtree");
    } else if (cmp > 0 && idx + 1 >= bt->nchildren && type->follow_max) {
	/*
	 * The value being inserted is larger than any leaf node out of the
	 * current node.  Follow the maximum branch to a leaf node and let the
	 * subclass handle the problem.
	 */
	idx = bt->nchildren - 1;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	if ((my_ins = (type->insert)(f, dxpl_id, bt->child[idx], bt->key[idx].nkey,
                 lt_key_changed, md_key, udata, bt->key[idx+1].nkey,
                 rt_key_changed, &child_addr/*out*/)) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert maximum leaf node");
    } else if (cmp > 0 && idx + 1 >= bt->nchildren) {
	/*
	 * The value being inserted is larger than any leaf node out of the
	 * current node.  Create a new maximum leaf node out of this B-tree
	 * node.
	 */
	idx = bt->nchildren - 1;
	if (H5B_decode_keys(f, bt, idx) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	my_ins = H5B_INS_RIGHT;
	HDmemcpy(md_key, bt->key[idx+1].nkey, type->sizeof_nkey);
	if ((type->new_node)(f, dxpl_id, H5B_INS_RIGHT, md_key, udata,
			     bt->key[idx+1].nkey, &child_addr/*out*/) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert maximum leaf node");
	*rt_key_changed = TRUE;

    } else if (cmp) {
	/*
	 * We couldn't figure out which branch to follow out of this node. THIS
	 * IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm.
	 */
	assert("INTERNAL HDF5 ERROR (contact rpm)" && 0);
	HDabort();

    } else if (bt->level > 0) {
	/*
	 * Follow a branch out of this node to another subtree.
	 */
	assert(idx >= 0 && idx < bt->nchildren);
	if ((my_ins = H5B_insert_helper(f, dxpl_id, bt->child[idx], type, split_ratios,
                bt->key[idx].nkey, lt_key_changed, md_key, udata,
                bt->key[idx+1].nkey, rt_key_changed, &child_addr/*out*/)) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert subtree");
    } else {
	/*
	 * Follow a branch out of this node to a leaf node of some other type.
	 */
	assert(idx >= 0 && idx < bt->nchildren);
	if ((my_ins = (type->insert)(f, dxpl_id, bt->child[idx], bt->key[idx].nkey,
                  lt_key_changed, md_key, udata, bt->key[idx+1].nkey,
                  rt_key_changed, &child_addr/*out*/)) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert leaf node");
    }
    assert(my_ins >= 0);

    /*
     * Update the left and right keys of the current node.
     */
    if (*lt_key_changed) {
	bt->cache_info.dirty = TRUE;
	bt->key[idx].dirty = TRUE;
	if (idx > 0) {
	    *lt_key_changed = FALSE;
	} else {
	    HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey);
	}
    }
    if (*rt_key_changed) {
	bt->cache_info.dirty = TRUE;
	bt->key[idx+1].dirty = TRUE;
	if (idx+1 < bt->nchildren) {
	    *rt_key_changed = FALSE;
	} else {
	    HDmemcpy(rt_key, bt->key[idx+1].nkey, type->sizeof_nkey);
	}
    }
    if (H5B_INS_CHANGE == my_ins) {
	/*
	 * The insertion simply changed the address for the child.
	 */
	bt->child[idx] = child_addr;
	bt->cache_info.dirty = TRUE;
	bt->ndirty = MAX(bt->ndirty, idx+1);
	ret_value = H5B_INS_NOOP;

    } else if (H5B_INS_LEFT == my_ins || H5B_INS_RIGHT == my_ins) {
	/*
	 * If this node is full then split it before inserting the new child.
	 */
	if (bt->nchildren == 2 * H5F_KVALUE(f, type)) {
	    if (H5B_split(f, dxpl_id, type, bt, addr, idx, split_ratios, udata,
			  new_node_p/*out*/)<0)
		HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR, "unable to split node");
	    if (NULL == (twin = H5AC_protect(f, dxpl_id, H5AC_BT, *new_node_p, type, udata)))
		HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, "unable to load node");
	    if (idx<bt->nchildren) {
		tmp_bt = bt;
	    } else {
		idx -= bt->nchildren;
		tmp_bt = twin;
	    }
	} else {
	    tmp_bt = bt;
	}

	/* Insert the child */
	if (H5B_insert_child(f, type, tmp_bt, idx, child_addr, my_ins, md_key) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR, "can't insert child");
    }
    
    /*
     * If this node split, return the mid key (the one that is shared
     * by the left and right node).
     */
    if (twin) {
	if (!twin->key[0].nkey && H5B_decode_key(f, twin, 0) < 0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode key");
	HDmemcpy(md_key, twin->key[0].nkey, type->sizeof_nkey);
	ret_value = H5B_INS_RIGHT;
#ifdef H5B_DEBUG
	/*
	 * The max key in the original left node must be equal to the min key
	 * in the new node.
	 */
	if (!bt->key[bt->nchildren].nkey) {
	    herr_t status = H5B_decode_key(f, bt, bt->nchildren);
	    assert(status >= 0);
	}
	cmp = (type->cmp2) (f, dxpl_id, bt->key[bt->nchildren].nkey, udata,
			    twin->key[0].nkey);
	assert(0 == cmp);
#endif
    } else {
	ret_value = H5B_INS_NOOP;
    }

done:
    {
	herr_t e1 = (bt && H5AC_unprotect(f, dxpl_id, H5AC_BT, addr, bt) < 0);
	herr_t e2 = (twin && H5AC_unprotect(f, dxpl_id, H5AC_BT, *new_node_p, twin)<0);
	if (e1 || e2)  /*use vars to prevent short-circuit of side effects */
	    HDONE_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR, "unable to release node(s)");
    }

    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_iterate
 *
 * Purpose:	Calls the list callback for each leaf node of the
 *		B-tree, passing it the UDATA structure.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jun 23 1997
 *
 * Modifications:
 * 		Robb Matzke, 1999-04-21
 *		The key values are passed to the function which is called.
 *
 * 		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *
 *		Quincey Koziol, 2002-04-22
 *		Changed callback to function pointer from static function
 *-------------------------------------------------------------------------
 */
herr_t
H5B_iterate (H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, H5B_operator_t op, haddr_t addr, void *udata)
{
    H5B_t		*bt = NULL;
    haddr_t		next_addr;
    haddr_t		cur_addr = HADDR_UNDEF;
    haddr_t		*child = NULL;
    uint8_t		*key = NULL;
    int		        i, nchildren;
    herr_t		ret_value = SUCCEED;
    H5B_iterate_t       ret_flag = H5B_ITER_CONT;
    
    FUNC_ENTER_NOAPI(H5B_iterate, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(op);
    assert(H5F_addr_defined(addr));
    assert(udata);

    if (NULL == (bt=H5AC_find(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load B-tree node");
    if (bt->level > 0) {
	/* Keep following the left-most child until we reach a leaf node. */
	if (H5B_iterate(f, dxpl_id, type, op, bt->child[0], udata)<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTLIST, FAIL, "unable to list B-tree node");
    } else {
	/*
	 * We've reached the left-most leaf.  Now follow the right-sibling
	 * pointer from leaf to leaf until we've processed all leaves.
	 */
	if (NULL==(child=H5FL_ARR_MALLOC(haddr_t,(size_t)(2*H5F_KVALUE(f,type)))) ||
                NULL==(key=H5MM_malloc((2*H5F_KVALUE(f, type)+1)*type->sizeof_nkey)))
	    HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed");
	for (cur_addr=addr, ret_value=0; H5F_addr_defined(cur_addr); cur_addr=next_addr) {

	    /*
	     * Save all the child addresses and native keys since we can't
	     * leave the B-tree node protected during an application
	     * callback.
	     */
	    if (NULL==(bt=H5AC_find (f, dxpl_id, H5AC_BT, cur_addr, type, udata)))
		HGOTO_ERROR (H5E_BTREE, H5E_CANTLOAD, FAIL, "B-tree node");
	    for (i=0; i<bt->nchildren; i++)
		child[i] = bt->child[i];
	    for (i=0; i<bt->nchildren+1; i++) {
		if (!bt->key[i].nkey)
                    H5B_decode_key(f, bt, i);
		HDmemcpy(key+i*type->sizeof_nkey, bt->key[i].nkey,
		         type->sizeof_nkey);
	    }
	    next_addr = bt->right;
	    nchildren = bt->nchildren;
	    bt = NULL;

	    /*
	     * Perform the iteration operator, which might invoke an
	     * application callback.
	     */
	    for (i=0; i<nchildren && ret_flag==H5B_ITER_CONT; i++) {
		ret_flag = (*op)(f, dxpl_id, key+i*type->sizeof_nkey,
                         child[i], key+(i+1)*type->sizeof_nkey, udata);
		if (ret_flag==H5B_ITER_ERROR) {
		    HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, "iterator function failed");
                } else if(ret_flag==H5B_ITER_STOP) {
                    HGOTO_DONE(SUCCEED);
                } else {
                    ;
                }
	    } /* end for */
	} /* end for */
    } /* end else */

done:
    if(child!=NULL)
        H5FL_ARR_FREE(haddr_t,child);
    if(key!=NULL)
        H5MM_xfree(key);
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_remove_helper
 *
 * Purpose:	The recursive part of removing an item from a B-tree.  The
 *		sub B-tree that is being considered is located at ADDR and
 *		the item to remove is described by UDATA.  If the removed
 *		item falls at the left or right end of the current level then
 *		it might be necessary to adjust the left and/or right keys
 *		(LT_KEY and/or RT_KEY) to to indicate that they changed by
 * 		setting LT_KEY_CHANGED and/or RT_KEY_CHANGED.
 *
 * Return:	Success:	A B-tree operation, see comments for
 *				H5B_ins_t declaration.  This function is
 *				called recursively and the return value
 *				influences the actions of the caller. It is
 *				also called by H5B_remove().
 *
 *		Failure:	H5B_INS_ERROR, a negative value.
 *
 * Programmer:	Robb Matzke
 *              Wednesday, September 16, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
static H5B_ins_t
H5B_remove_helper(H5F_t *f, hid_t dxpl_id, haddr_t addr, const H5B_class_t *type,
		  int level, uint8_t *lt_key/*out*/,
		  hbool_t *lt_key_changed/*out*/, void *udata,
		  uint8_t *rt_key/*out*/, hbool_t *rt_key_changed/*out*/)
{
    H5B_t	*bt = NULL, *sibling = NULL;
    H5B_ins_t	ret_value = H5B_INS_ERROR;
    int	idx=-1, lt=0, rt, cmp=1, i;
    size_t	sizeof_rkey, sizeof_rec;
    hsize_t	sizeof_node;
    
    FUNC_ENTER_NOAPI(H5B_remove_helper, H5B_INS_ERROR);

    assert(f);
    assert(H5F_addr_defined(addr));
    assert(type);
    assert(type->decode);
    assert(type->cmp3);
    assert(type->found);
    assert(lt_key && lt_key_changed);
    assert(udata);
    assert(rt_key && rt_key_changed);

    /*
     * Perform a binary search to locate the child which contains the thing
     * for which we're searching.
     */
    if (NULL==(bt=H5AC_protect(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, "unable to load B-tree node");
    rt = bt->nchildren;
    while (lt<rt && cmp) {
	idx = (lt+rt)/2;
	if (H5B_decode_keys(f, bt, idx)<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR, "unable to decode B-tree key(s)");
	if ((cmp=(type->cmp3)(f, dxpl_id, bt->key[idx].nkey, udata,
			      bt->key[idx+1].nkey))<0) {
	    rt = idx;
	} else {
	    lt = idx+1;
	}
    }
    if (cmp)
	HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, H5B_INS_ERROR, "B-tree key not found");

    /*
     * Follow the link to the subtree or to the data node.  The return value
     * will be one of H5B_INS_ERROR, H5B_INS_NOOP, or H5B_INS_REMOVE.
     */
    assert(idx>=0 && idx<bt->nchildren);
    if (bt->level>0) {
	/* We're at an internal node -- call recursively */
	if ((ret_value=H5B_remove_helper(f, dxpl_id,
                 bt->child[idx], type, level+1, bt->key[idx].nkey/*out*/,
                 lt_key_changed/*out*/, udata, bt->key[idx+1].nkey/*out*/,
                 rt_key_changed/*out*/))<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, H5B_INS_ERROR, "key not found in subtree");
    } else if (type->remove) {
	/*
	 * We're at a leaf node but the leaf node points to an object that
	 * has a removal method.  Pass the removal request to the pointed-to
	 * object and let it decide how to progress.
	 */
	if ((ret_value=(type->remove)(f, dxpl_id,
                  bt->child[idx], bt->key[idx].nkey, lt_key_changed, udata,
                  bt->key[idx+1].nkey, rt_key_changed))<0)
	    HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, H5B_INS_ERROR, "key not found in leaf node");
    } else {
	/*
	 * We're at a leaf node which points to an object that has no removal
	 * method.  The best we can do is to leave the object alone but
	 * remove the B-tree reference to the object.
	 */
	*lt_key_changed = FALSE;
	*rt_key_changed = FALSE;
	ret_value = H5B_INS_REMOVE;
    }

    /*
     * Update left and right key dirty bits if the subtree indicates that they
     * have changed.  If the subtree's left key changed and the subtree is the
     * left-most child of the current node then we must update the key in our
     * parent and indicate that it changed.  Similarly, if the rigt subtree
     * key changed and it's the right most key of this node we must update
     * our right key and indicate that it changed.
     */
    if (*lt_key_changed) {
	bt->cache_info.dirty = TRUE;
	bt->key[idx].dirty = TRUE;
	if (idx>0) {
            /* Don't propagate change out of this B-tree node */
	    *lt_key_changed = FALSE;
	} else {
	    HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey);
	}
    }
    if (*rt_key_changed) {
	bt->cache_info.dirty = TRUE;
	bt->key[idx+1].dirty = TRUE;
	if (idx+1<bt->nchildren) {
            /* Don't propagate change out of this B-tree node */
	    *rt_key_changed = FALSE;
	} else {
	    HDmemcpy(rt_key, bt->key[idx+1].nkey, type->sizeof_nkey);
	}
    }

    /*
     * If the subtree returned H5B_INS_REMOVE then we should remove the
     * subtree entry from the current node.  There are four cases:
     */
    sizeof_rec = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
    if (H5B_INS_REMOVE==ret_value && 1==bt->nchildren) {
	/*
	 * The subtree is the only child of this node.  Discard both
	 * keys and the subtree pointer. Free this node (unless it's the
	 * root node) and return H5B_INS_REMOVE.
	 */
	bt->cache_info.dirty = TRUE;
	bt->nchildren = 0;
	bt->ndirty = 0;
	if (level>0) {
	    if (H5F_addr_defined(bt->left)) {
		if (NULL==(sibling=H5AC_find(f, dxpl_id, H5AC_BT, bt->left, type, udata)))
		    HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, "unable to unlink node from tree");
		sibling->right = bt->right;
		sibling->cache_info.dirty = TRUE;
	    }
	    if (H5F_addr_defined(bt->right)) {
		if (NULL==(sibling=H5AC_find(f, dxpl_id, H5AC_BT, bt->right, type, udata)))
		    HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR, "unable to unlink node from tree");
		sibling->left = bt->left;
		sibling->cache_info.dirty = TRUE;
	    }
	    bt->left = HADDR_UNDEF;
	    bt->right = HADDR_UNDEF;
	    sizeof_rkey = (type->get_sizeof_rkey)(f, udata);
	    sizeof_node = H5B_nodesize(f, type, NULL, sizeof_rkey);
	    if (H5AC_unprotect(f, dxpl_id, H5AC_BT, addr, bt)<0 ||
                    H5AC_flush(f, dxpl_id, H5AC_BT, addr, H5F_FLUSH_INVALIDATE)<0 ||
                    H5MF_xfree(f, H5FD_MEM_BTREE, dxpl_id, addr, sizeof_node)<0) {
		bt = NULL;
		HGOTO_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR, "unable to free B-tree node");
	    }
	    bt = NULL;
	}

    } else if (H5B_INS_REMOVE==ret_value && 0==idx) {
	/*
	 * The subtree is the left-most child of this node. We discard the
	 * left-most key and the left-most child (the child has already been
	 * freed) and shift everything down by one.  We copy the new left-most
	 * key into lt_key and notify the caller that the left key has
	 * changed.  Return H5B_INS_NOOP.
	 */
	bt->cache_info.dirty = TRUE;
	bt->nchildren -= 1;
	bt->ndirty = bt->nchildren;
	
	HDmemmove(bt->page+H5B_SIZEOF_HDR(f),
		  bt->page+H5B_SIZEOF_HDR(f)+sizeof_rec,
		  bt->nchildren*sizeof_rec + bt->sizeof_rkey);
	HDmemmove(bt->native,
		  bt->native + type->sizeof_nkey,
		  (bt->nchildren+1) * type->sizeof_nkey);
	HDmemmove(bt->child,
		  bt->child+1,
		  bt->nchildren * sizeof(haddr_t));
	for (i=0; i<bt->nchildren; i++) {
	    bt->key[i].dirty = bt->key[i+1].dirty;
	    if (bt->key[i+1].nkey) {
		bt->key[i].nkey = bt->native + i*type->sizeof_nkey;
	    } else {
		bt->key[i].nkey = NULL;
	    }
	}
	assert(bt->key[0].nkey);
	HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey);
	*lt_key_changed = TRUE;
	ret_value = H5B_INS_NOOP;

    } else if (H5B_INS_REMOVE==ret_value && idx+1==bt->nchildren) {
	/*
	 * The subtree is the right-most child of this node.  We discard the
	 * right-most key and the right-most child (the child has already been
	 * freed).  We copy the new right-most key into rt_key and notify the
	 * caller that the right key has changed.  Return H5B_INS_NOOP.
	 */
	bt->cache_info.dirty = TRUE;
	bt->nchildren -= 1;
	bt->ndirty = MIN(bt->ndirty, bt->nchildren);
	assert(bt->key[bt->nchildren].nkey);
	HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
	*rt_key_changed = TRUE;
	ret_value = H5B_INS_NOOP;

    } else if (H5B_INS_REMOVE==ret_value) {
	/*
	 * There are subtrees out of this node to both the left and right of
	 * the subtree being removed.  The key to the left of the subtree and
	 * the subtree are removed from this node and all keys and nodes to
	 * the right are shifted left by one place.  The subtree has already
	 * been freed). Return H5B_INS_NOOP.
	 */
	bt->cache_info.dirty = TRUE;
	bt->nchildren -= 1;
	bt->ndirty = bt->nchildren;
	
	HDmemmove(bt->page+H5B_SIZEOF_HDR(f)+idx*sizeof_rec,
		  bt->page+H5B_SIZEOF_HDR(f)+(idx+1)*sizeof_rec,
		  (bt->nchildren-idx)*sizeof_rec + bt->sizeof_rkey);
	HDmemmove(bt->native + idx * type->sizeof_nkey,
		  bt->native + (idx+1) * type->sizeof_nkey,
		  (bt->nchildren+1-idx) * type->sizeof_nkey);
	HDmemmove(bt->child+idx,
		  bt->child+idx+1,
		  (bt->nchildren-idx) * sizeof(haddr_t));
	for (i=idx; i<bt->nchildren; i++) {
	    bt->key[i].dirty = bt->key[i+1].dirty;
	    if (bt->key[i+1].nkey) {
		bt->key[i].nkey = bt->native + i*type->sizeof_nkey;
	    } else {
		bt->key[i].nkey = NULL;
	    }
	}
	ret_value = H5B_INS_NOOP;
	
    } else {
	ret_value = H5B_INS_NOOP;
    }
    
    
done:
    if (bt && H5AC_unprotect(f, dxpl_id, H5AC_BT, addr, bt)<0 && ret_value>=0)
	HDONE_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR, "unable to release node");

    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_remove
 *
 * Purpose:	Removes an item from a B-tree.
 *
 * Note:	The current version does not attempt to rebalance the tree.
 *
 * Return:	Non-negative on success/Negative on failure (failure includes
 *		not being able to find the object which is to be removed).
 *
 * Programmer:	Robb Matzke
 *              Wednesday, September 16, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
herr_t
H5B_remove(H5F_t *f, hid_t dxpl_id, const H5B_class_t *type, haddr_t addr, void *udata)
{
    /* These are defined this way to satisfy alignment constraints */
    uint64_t	_lt_key[128], _rt_key[128];
    uint8_t	*lt_key = (uint8_t*)_lt_key;	/*left key*/
    uint8_t	*rt_key = (uint8_t*)_rt_key;	/*right key*/
    hbool_t	lt_key_changed = FALSE;		/*left key changed?*/
    hbool_t	rt_key_changed = FALSE;		/*right key changed?*/
    H5B_t	*bt = NULL;			/*btree node */
    herr_t      ret_value=SUCCEED;       /* Return value */
    
    FUNC_ENTER_NOAPI(H5B_remove, FAIL);

    /* Check args */
    assert(f);
    assert(type);
    assert(type->sizeof_nkey <= sizeof _lt_key);
    assert(H5F_addr_defined(addr));

    /* The actual removal */
    if (H5B_remove_helper(f, dxpl_id, addr, type, 0, lt_key, &lt_key_changed,
			  udata, rt_key, &rt_key_changed)==H5B_INS_ERROR)
	HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL, "unable to remove entry from B-tree");

    /*
     * If the B-tree is now empty then make sure we mark the root node as
     * being at level zero
     */
    if (NULL==(bt=H5AC_find(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load B-tree root node");
    if (0==bt->nchildren && 0!=bt->level) {
	bt->level = 0;
	bt->cache_info.dirty = TRUE;
    }
    
#ifdef H5B_DEBUG
    H5B_assert(f, dxpl_id, addr, type, udata);
#endif
done:
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_nodesize
 *
 * Purpose:	Returns the number of bytes needed for this type of
 *		B-tree node.  The size is the size of the header plus
 *		enough space for 2t child pointers and 2t+1 keys.
 *
 *		If TOTAL_NKEY_SIZE is non-null, what it points to will
 *		be initialized with the total number of bytes required to
 *		hold all the key values in native order.
 *
 * Return:	Success:	Size of node in file.
 *
 *		Failure:	0
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Jul  3 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5B_nodesize(H5F_t *f, const H5B_class_t *type,
	     size_t *total_nkey_size/*out*/, size_t sizeof_rkey)
{
    size_t	size;
    size_t ret_value;   /* Return value */

    FUNC_ENTER_NOAPI(H5B_nodesize, (size_t) 0);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(sizeof_rkey > 0);
    assert(H5F_KVALUE(f, type) > 0);

    /*
     * Total native key size.
     */
    if (total_nkey_size)
	*total_nkey_size = (2 * H5F_KVALUE(f, type) + 1) * type->sizeof_nkey;

    /*
     * Total node size.
     */
    size = (H5B_SIZEOF_HDR(f) + /*node header	*/
	    2 * H5F_KVALUE(f, type) * H5F_SIZEOF_ADDR(f) +	/*child pointers */
	    (2 * H5F_KVALUE(f, type) + 1) * sizeof_rkey);	/*keys		*/

    /* Set return value */
    ret_value=size;

done:
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_copy
 *
 * Purpose:	Deep copies an existing H5B_t node.
 *
 * Return:	Success:	Pointer to H5B_t object.
 *
 * 		Failure:	NULL
 *
 * Programmer:	Quincey Koziol
 *		koziol@ncsa.uiuc.edu
 *		Apr 18 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static H5B_t *
H5B_copy(H5F_t *f, const H5B_t *old_bt)
{
    H5B_t		*new_node = NULL;
    size_t		total_native_keysize;
    size_t		size;
    size_t              nkeys;
    size_t		u;
    H5B_t		*ret_value;

    FUNC_ENTER_NOAPI(H5B_copy, NULL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(old_bt);

    /*
     * Get correct sizes 
     */
    size = H5B_nodesize(f, old_bt->type, &total_native_keysize, old_bt->sizeof_rkey);

    /* Allocate memory for the new H5B_t object */
    if (NULL==(new_node = H5FL_MALLOC(H5B_t)))
        HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed for B-tree root node");

    /* Copy the main structure */
    HDmemcpy(new_node,old_bt,sizeof(H5B_t));

    /* Compute the number of keys in this node */
    nkeys=2*H5F_KVALUE(f,old_bt->type);

    if (NULL==(new_node->page=H5FL_BLK_MALLOC(page,size)) ||
            NULL==(new_node->native=H5FL_BLK_MALLOC(native_block,total_native_keysize)) ||
            NULL==(new_node->child=H5FL_ARR_MALLOC(haddr_t,nkeys)) ||
            NULL==(new_node->key=H5FL_ARR_MALLOC(H5B_key_t,(nkeys+1))))
        HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed for B-tree root node");

    /* Copy the other structures */
    HDmemcpy(new_node->page,old_bt->page,(size_t)size);
    HDmemcpy(new_node->native,old_bt->native,(size_t)total_native_keysize);
    HDmemcpy(new_node->child,old_bt->child,(size_t)(sizeof(haddr_t)*nkeys));
    HDmemcpy(new_node->key,old_bt->key,(size_t)(sizeof(H5B_key_t)*(nkeys+1)));

    /*
     * Translate the keys from pointers into the old 'page' buffer into
     *  pointers into the new 'page' buffer.
     */
    for (u = 0; u < (nkeys+1); u++)
        new_node->key[u].rkey = (old_bt->key[u].rkey - old_bt->page) + new_node->page;

    /* Set return value */
    ret_value=new_node;

done:
    if(ret_value==NULL) {
        if(new_node) {
	    H5FL_BLK_FREE (page,new_node->page);
	    H5FL_BLK_FREE (native_block,new_node->native);
	    H5FL_ARR_FREE (haddr_t,new_node->child);
	    H5FL_ARR_FREE (H5B_key_t,new_node->key);
	    H5FL_FREE (H5B_t,new_node);
        } /* end if */
    } /* end if */

    FUNC_LEAVE_NOAPI(ret_value);
}   /* H5B_copy */


/*-------------------------------------------------------------------------
 * Function:	H5B_debug
 *
 * Purpose:	Prints debugging info about a B-tree.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		matzke@llnl.gov
 *		Aug  4 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
herr_t
H5B_debug(H5F_t *f, hid_t dxpl_id, haddr_t addr, FILE *stream, int indent, int fwidth,
	  const H5B_class_t *type, void *udata)
{
    H5B_t	*bt = NULL;
    int		i;
    herr_t      ret_value=SUCCEED;       /* Return value */

    FUNC_ENTER_NOAPI(H5B_debug, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(H5F_addr_defined(addr));
    assert(stream);
    assert(indent >= 0);
    assert(fwidth >= 0);
    assert(type);

    /*
     * Load the tree node.
     */
    if (NULL == (bt = H5AC_find(f, dxpl_id, H5AC_BT, addr, type, udata)))
	HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL, "unable to load B-tree node");

    /*
     * Print the values.
     */
    HDfprintf(stream, "%*s%-*s %s\n", indent, "", fwidth,
	      "Tree type ID:",
	      ((bt->type->id)==H5B_SNODE_ID ? "H5B_SNODE_ID" :
            ((bt->type->id)==H5B_ISTORE_ID ? "H5B_ISTORE_ID" : "Unknown!")));
    HDfprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth,
	      "Size of node:",
	      (unsigned long) H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey));
    HDfprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth,
	      "Size of raw (disk) key:",
	      (unsigned long) (bt->sizeof_rkey));
    HDfprintf(stream, "%*s%-*s %s\n", indent, "", fwidth,
	      "Dirty flag:",
	      bt->cache_info.dirty ? "True" : "False");
    HDfprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
	      "Number of initial dirty children:",
	      (int) (bt->ndirty));
    HDfprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
	      "Level:",
	      (int) (bt->level));

    HDfprintf(stream, "%*s%-*s %a\n", indent, "", fwidth,
	      "Address of left sibling:",
	      bt->left);

    HDfprintf(stream, "%*s%-*s %a\n", indent, "", fwidth,
	      "Address of right sibling:",
	      bt->right);

    HDfprintf(stream, "%*s%-*s %d (%d)\n", indent, "", fwidth,
	      "Number of children (max):",
	      (int) (bt->nchildren),
	      (int) (2 * H5F_KVALUE(f, type)));

    /*
     * Print the child addresses
     */
    for (i = 0; i < bt->nchildren; i++) {
	HDfprintf(stream, "%*sChild %d...\n", indent, "", i);
	HDfprintf(stream, "%*s%-*s %a\n", indent + 3, "", MAX(0, fwidth - 3),
		  "Address:", bt->child[i]);
	
        /* If there is a key debugging routine, use it to display the left & right keys */
	if (type->debug_key) {
            /* Decode the 'left' key & print it */
            HDfprintf(stream, "%*s%-*s\n", indent + 3, "", MAX(0, fwidth - 3),
                      "Left Key:");
            if(bt->key[i].nkey==NULL)
                H5B_decode_key(f, bt, i);
	    (type->debug_key)(stream, f, dxpl_id, indent+6, MAX (0, fwidth-6),
			      bt->key[i].nkey, udata);

            /* Decode the 'right' key & print it */
            HDfprintf(stream, "%*s%-*s\n", indent + 3, "", MAX(0, fwidth - 3),
                      "Right Key:");
            if(bt->key[i+1].nkey==NULL)
                H5B_decode_key(f, bt, i+1);
	    (type->debug_key)(stream, f, dxpl_id, indent+6, MAX (0, fwidth-6),
			      bt->key[i+1].nkey, udata);
	}
    }

done:
    FUNC_LEAVE_NOAPI(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5B_assert
 *
 * Purpose:	Verifies that the tree is structured correctly.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	aborts if something is wrong.
 *
 * Programmer:	Robb Matzke
 *		Tuesday, November  4, 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
#ifdef H5B_DEBUG
static herr_t
H5B_assert(H5F_t *f, hid_t dxpl_id, haddr_t addr, const H5B_class_t *type, void *udata)
{
    H5B_t	*bt = NULL;
    int	i, ncell, cmp;
    static int	ncalls = 0;
    herr_t	status;
    herr_t      ret_value=SUCCEED;       /* Return value */

    /* A queue of child data */
    struct child_t {
	haddr_t			addr;
	int			level;
	struct child_t	       *next;
    } *head = NULL, *tail = NULL, *prev = NULL, *cur = NULL, *tmp = NULL;

    FUNC_ENTER_NOAPI(H5B_assert, FAIL);

    if (0==ncalls++) {
	if (H5DEBUG(B)) {
	    fprintf(H5DEBUG(B), "H5B: debugging B-trees (expensive)\n");
	}
    }
    /* Initialize the queue */
    bt = H5AC_find(f, dxpl_id, H5AC_BT, addr, type, udata);
    assert(bt);
    cur = H5MM_calloc(sizeof(struct child_t));
    assert (cur);
    cur->addr = addr;
    cur->level = bt->level;
    head = tail = cur;

    /*
     * Do a breadth-first search of the tree.  New nodes are added to the end
     * of the queue as the `cur' pointer is advanced toward the end.  We don't
     * remove any nodes from the queue because we need them in the uniqueness
     * test.
     */
    for (ncell = 0; cur; ncell++) {
	bt = H5AC_protect(f, dxpl_id, H5AC_BT, cur->addr, type, udata);
	assert(bt);

	/* Check node header */
	assert(bt->ndirty >= 0 && bt->ndirty <= bt->nchildren);
	assert(bt->level == cur->level);
	if (cur->next && cur->next->level == bt->level) {
	    assert(H5F_addr_eq(bt->right, cur->next->addr));
	} else {
	    assert(!H5F_addr_defined(bt->right));
	}
	if (prev && prev->level == bt->level) {
	    assert(H5F_addr_eq(bt->left, prev->addr));
	} else {
	    assert(!H5F_addr_defined(bt->left));
	}

	if (cur->level > 0) {
	    for (i = 0; i < bt->nchildren; i++) {

		/*
		 * Check that child nodes haven't already been seen.  If they
		 * have then the tree has a cycle.
		 */
		for (tmp = head; tmp; tmp = tmp->next) {
		    assert(H5F_addr_ne(tmp->addr, bt->child[i]));
		}

		/* Add the child node to the end of the queue */
		tmp = H5MM_calloc(sizeof(struct child_t));
		assert (tmp);
		tmp->addr = bt->child[i];
		tmp->level = bt->level - 1;
		tail->next = tmp;
		tail = tmp;

		/* Check that the keys are monotonically increasing */
		status = H5B_decode_keys(f, bt, i);
		assert(status >= 0);
		cmp = (type->cmp2) (f, dxpl_id, bt->key[i].nkey, udata,
				    bt->key[i+1].nkey);
		assert(cmp < 0);
	    }
	}
	/* Release node */
	status = H5AC_unprotect(f, dxpl_id, H5AC_BT, cur->addr, bt);
	assert(status >= 0);

	/* Advance current location in queue */
	prev = cur;
	cur = cur->next;
    }

    /* Free all entries from queue */
    while (head) {
	tmp = head->next;
	H5MM_xfree(head);
	head = tmp;
    }

done:
    FUNC_LEAVE_NOAPI(ret_value);
}
#endif /* H5B_DEBUG */