From 658fdbfb981b60eb42a6be70b5e2baf9f01989cd Mon Sep 17 00:00:00 2001 From: Frank Baker Date: Mon, 13 Dec 1999 15:39:48 -0500 Subject: [svn-r1874] Bringing all changes from R1.2 tree into R1.3 tree. (except Datatypes.html, H5.format.html, ddl.html) This version of HDF5 Ref Manual includes FORTRAN API references. --- doc/html/Attributes.html | 80 +- doc/html/Caching.html | 95 +-- doc/html/Chunking.html | 91 +-- doc/html/Copyright.html | 36 +- doc/html/Datasets.html | 160 ++-- doc/html/Dataspaces.html | 102 +-- doc/html/Debugging.html | 93 +-- doc/html/Environment.html | 175 +---- doc/html/Errors.html | 97 +-- doc/html/Files.html | 94 +-- doc/html/Filters.html | 85 +-- doc/html/Glossary.html | 578 ++++++++++++-- doc/html/Groups.html | 89 +-- doc/html/H5.intro.html | 1657 ++++++++++++++++++++++++++++++++++++++-- doc/html/H5.user.PrintGen.html | 14 +- doc/html/H5.user.PrintTpg.html | 30 +- doc/html/H5.user.html | 119 +-- doc/html/Makefile.in | 42 +- doc/html/Properties.html | 88 +-- doc/html/RM_H5.html | 28 +- doc/html/RM_H5A.html | 135 +++- doc/html/RM_H5D.html | 316 +++++++- doc/html/RM_H5F.html | 184 ++++- doc/html/RM_H5Front.html | 24 +- doc/html/RM_H5G.html | 162 +++- doc/html/RM_H5P.html | 985 ++++++++++++++++++++++-- doc/html/RM_H5R.html | 56 +- doc/html/RM_H5S.html | 486 +++++++++++- doc/html/RM_H5T.html | 1058 ++++++++++++++++++++++--- doc/html/Ragged.html | 99 +-- doc/html/References.html | 88 +-- doc/html/Tools.html | 2 +- doc/html/index.html | 41 +- 33 files changed, 5814 insertions(+), 1575 deletions(-) diff --git a/doc/html/Attributes.html b/doc/html/Attributes.html index 7672d0d..e73419f 100644 --- a/doc/html/Attributes.html +++ b/doc/html/Attributes.html @@ -1,7 +1,7 @@ - Attributes + Attribute Interface (H5A) @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
+ Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
+ References   Attributes   Property Lists   Error Handling   +
Filters   + Palettes   Caching   -
Chunking   + Mounting Files   +
+ Performance   Debugging   Environment   DDL   +
Ragged Arrays   - @@ -217,7 +201,7 @@ And in this document, the or resource leaks will develop. This function returns a datatype ID for success or negative for failure.

-
size_t H5Aget_name (hid_t attr_id, +
ssize_t H5Aget_name (hid_t attr_id, size_t buf_size, char *buf)
This function retrieves the name of an attribute for an attribute ID. Up to buf_size characters are stored in buf followed by a @@ -247,47 +231,31 @@ And in this document, the And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
+ Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
+ References   Attributes   Property Lists   Error Handling   +
Filters   + Palettes   Caching   -
Chunking   + Mounting Files   +
+ Performance   Debugging   Environment   DDL   +
Ragged Arrays   - @@ -296,9 +264,9 @@ And in this document, the
HDF Help Desk +
-
-Last modified: 30 October 1998 +Last modified: 14 October 1999 diff --git a/doc/html/Caching.html b/doc/html/Caching.html index c35cc65..3b9e53c 100644 --- a/doc/html/Caching.html +++ b/doc/html/Caching.html @@ -20,54 +20,40 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
+ Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
+ References   Attributes   Property Lists   Error Handling   +
Filters   + Palettes   Caching   -
Chunking   + Mounting Files   +
+ Performance   Debugging   Environment   DDL   +
Ragged Arrays   -
-

Meta Data Caching

+

Data Caching

+ +

1. Meta Data Caching

The HDF5 library caches two types of data: meta data and raw data. The meta data cache holds file objects like the file @@ -79,7 +65,7 @@ And in this document, the are handled by preempting the older object in favor of the new one. -

Raw Data Chunk Caching

+

2. Raw Data Chunk Caching

Raw data chunks are cached because I/O requests at the application level typically don't map well to chunks at the @@ -112,7 +98,7 @@ And in this document, the a diagonal accross the dataset where each request overlaps the previous request would benefit from a small w0. -

The API

+

3. Data Caching Operations

The cache parameters for both caches are part of a file access property list and are set and queried with this pair of @@ -148,69 +134,46 @@ And in this document, the And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
+ Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
+ References   Attributes   Property Lists   Error Handling   +
Filters   + Palettes   Caching   -
Chunking   + Mounting Files   +
+ Performance   Debugging   Environment   DDL   +
Ragged Arrays   - - - - - -


HDF Help Desk
-Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Chunking.html b/doc/html/Chunking.html index f98196f..5018a2d 100644 --- a/doc/html/Chunking.html +++ b/doc/html/Chunking.html @@ -1,7 +1,7 @@ - Dataset Chunking Issues + Dataset Chunking @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
+ Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
+ References   Attributes   Property Lists   Error Handling   +
Filters   + Palettes   Caching   -
Chunking   + Mounting Files   +
+ Performance   Debugging   Environment   DDL   +
Ragged Arrays   - @@ -257,69 +241,46 @@ And in this document, the And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
+ Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
+ References   Attributes   Property Lists   Error Handling   +
Filters   + Palettes   Caching   -
Chunking   + Mounting Files   +
+ Performance   Debugging   Environment   DDL   +
Ragged Arrays   - - - - - -
HDF Help Desk +
-
-Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Copyright.html b/doc/html/Copyright.html index f295867..b22c16c 100644 --- a/doc/html/Copyright.html +++ b/doc/html/Copyright.html @@ -1,31 +1,35 @@ - -HDF5 Copyright Notice - + + + + HDF5 Copyright Notice + + + + -

Copyright Notice and Statement for
-NCSA Hierarchical Data Format (HDF) Software Library and Utilities

+NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

-NCSA Hierarchical Data Format (HDF) Software Library and Utilities +NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
-Copyright 1998 the Board of Trustees of the University of Illinois +Copyright 1998, 1999 by the Board of Trustees of the University of Illinois
All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at -the University of Illinois, Lawrence Livermore Nat'l Laboratory (LLNL), -Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), -Jean-loup Gailly and Mark Adler (gzip library) +the University of Illinois at Urbana-Champaign (UIUC), Lawrence Livermore +National Laboratory (LLNL), Sandia National Laboratories (SNL), Los Alamos +National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip library).

Redistribution and use in source and binary forms, with or without @@ -35,10 +39,10 @@ provided that the following conditions are met:

  1. Redistributions of source code must retain the above copyright notice, -this list of conditions and the following disclaimer. +this list of conditions, and the following disclaimer.
  2. Redistributions in binary form must reproduce the above copyright -notice, this list of conditions and the following disclaimer in the +notice, this list of conditions, and the following disclaimer in the documentation and/or materials provided with the distribution.
  3. In addition, redistributions of modified forms of the source or binary @@ -46,9 +50,9 @@ code must carry prominent notices stating that the original code was changed and the date of the change.
  4. All publications or advertising materials mentioning features or use of -this software must acknowledge that it was developed by the National Center -for Supercomputing Applications at the University of Illinois, and credit -the Contributors. +this software are asked, but not required, to acknowledge that it was +developed by the National Center for Supercomputing Applications at the +University of Illinois at Urbana-Champaign and to credit the contributors.
  5. Neither the name of the University nor the names of the Contributors may be used to endorse or promote products derived from this software without @@ -69,7 +73,7 @@ the possibility of such damage. HDF Help Desk
    -Last modified: 8 September 1998 +Last modified: 13 October 1999 diff --git a/doc/html/Datasets.html b/doc/html/Datasets.html index 0e64468..16218cc 100644 --- a/doc/html/Datasets.html +++ b/doc/html/Datasets.html @@ -1,7 +1,7 @@ - The Dataset Interface (H5D) + Dataset Interface (H5D) @@ -19,47 +19,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -83,7 +67,7 @@ And in this document, the
    Constant Meta Data
    Meta data that is created when the dataset is created and exists unchanged for the life of the dataset. For instance, - the data type of stored array elements is defined when the + the datatype of stored array elements is defined when the dataset is created and cannot be subsequently changed.
    Persistent Meta Data @@ -96,7 +80,7 @@ And in this document, the
    Meta data that exists to describe how raw data is organized in the application's memory space. For instance, the data type of elements in an application array might not be the same - as the data type of those elements as stored in the HDF5 file. + as the datatype of those elements as stored in the HDF5 file.
    Transport Meta Data
    Meta data that is used only during the transfer of raw data @@ -107,7 +91,7 @@ And in this document, the

    Each of these classes of meta data is handled differently by the library although the same API might be used to create them. - For instance, the data type exists as constant meta data and as + For instance, the datatype exists as constant meta data and as memory meta data; the same API (the H5T API) is used to manipulate both pieces of meta data but they're handled by the dataset API (the H5D API) in different @@ -137,7 +121,7 @@ And in this document, the

    -
    H5D_COMPACT +
    H5D_COMPACT    (Not yet implemented.)
    The raw data is presumably small and can be stored directly in the object header. Such data is non-extendible, non-compressible, non-sparse, and cannot @@ -145,7 +129,7 @@ And in this document, the arbitrary but are enforced because of the small size of the raw data. Storing data in this format eliminates the disk seek/read request normally necessary to read raw - data. This layout is not implemented yet. + data.

    H5D_CONTIGUOUS @@ -299,7 +283,8 @@ H5Pset_chunk (plist, 2, size); continues for size bytes. The space represented by this segment is adjacent to the space already represented by the external file list. The last segment in a file list may have the size - H5F_UNLIMITED. + H5F_UNLIMITED, in which case the external file may be + of unlimited size and no more files can be added to the external files list.

    int H5Pget_external_count (hid_t plist) @@ -397,28 +382,28 @@ H5Pset_external (plist, "scan3.data", 0, 16); through some other library. -

    5. Data Type

    +

    5. Datatype

    -

    Raw data has a constant data type which describes the data type - of the raw data stored in the file, and a memory data type that - describes the data type stored in application memory. Both data +

    Raw data has a constant datatype which describes the datatype + of the raw data stored in the file, and a memory datatype that + describes the datatype stored in application memory. Both data types are manipulated with the H5T API. -

    The constant file data type is associated with the dataset when +

    The constant file datatype is associated with the dataset when the dataset is created in a manner described below. Once assigned, the constant datatype can never be changed. -

    The memory data type is specified when data is transferred +

    The memory datatype is specified when data is transferred to/from application memory. In the name of data sharability, - the memory data type must be specified, but can be the same - type identifier as the constant data type. + the memory datatype must be specified, but can be the same + type identifier as the constant datatype.

    During dataset I/O operations, the library translates the raw - data from the constant data type to the memory data type or vice - versa. Structured data types include member offsets to allow + data from the constant datatype to the memory datatype or vice + versa. Structured datatypes include member offsets to allow reordering of struct members and/or selection of a subset of - members and array data types include index permutation + members and array datatypes include index permutation information to allow things like transpose operations (the prototype does not support array reordering) Permutations are relative to some extrinsic descritpion of the dataset. @@ -452,7 +437,7 @@ H5Pset_external (plist, "scan3.data", 0, 16);

    Each dataset has a set of constant and persistent properties which describe the layout method, pre-compression - transformation, compression method, data type, external storage, + transformation, compression method, datatype, external storage, and data space. The constant properties are set as described above in a dataset creation property list whose identifier is passed to H5Dcreate(). @@ -462,8 +447,8 @@ H5Pset_external (plist, "scan3.data", 0, 16); *name, hid_t type_id, hid_t space_id, hid_t create_plist_id)

    A dataset is created by calling H5Dcreate with - a file identifier, a dataset name, a data type, a data space, - and constant properties. The data type and data space are the + a file identifier, a dataset name, a datatype, a data space, + and constant properties. The datatype and data space are the type and space of the dataset as it will exist in the file, which may be different than in application memory. The create_plist_id is a H5P_DATASET_CREATE @@ -511,7 +496,7 @@ H5Pset_external (plist, "scan3.data", 0, 16);
    hid_t H5Dget_type (hid_t dataset_id)
    Returns an identifier for a copy of the dataset permanent - data type or negative for failure. + datatype or negative for failure.
    hid_t H5Dget_space (hid_t dataset_id)
    Returns an identifier for a copy of the dataset permanent @@ -534,7 +519,7 @@ H5Pset_external (plist, "scan3.data", 0, 16);

    A dataset also has memory properties which describe memory within the application, and transfer properties that control various aspects of the I/O operations. The memory can have a - data type different than the permanent file data type (different + datatype different than the permanent file datatype (different number types, different struct member offsets, different array element orderings) and can also be a different size (memory is a subset of the permanent dataset elements, or vice versa). The @@ -555,7 +540,7 @@ H5Pset_external (plist, "scan3.data", 0, 16);

    size_t H5Pget_buffer (hid_t xfer_plist, void **tconv_buf, void **bkg_buf)
    Sets or retrieves the maximum size in bytes of the temporary - buffer used for data type conversion in the I/O pipeline. An + buffer used for datatype conversion in the I/O pipeline. An application-defined buffer can also be supplied as the tconv_buf argument, otherwise a buffer will be allocated and freed on demand by the library. A second @@ -593,7 +578,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); a dataset transfer property list so that strip mining does not occur. It takes an (optional) dataset transfer property list, a dataset, a data space that describes - what data points are being transfered, and a data type + what data points are being transfered, and a datatype for the data points in memory. It returns a (new) dataset transfer property list with the temporary buffer size set to an appropriate value. The return @@ -604,7 +589,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); 2 disable_strip_mining (hid_t xfer_plist, hid_t dataset, 3 hid_t space, hid_t mem_type) 4 { - 5 hid_t file_type; /* File data type */ + 5 hid_t file_type; /* File datatype */ 6 size_t type_size; /* Sizeof larger type */ 7 size_t size; /* Temp buffer size */ 8 hid_t xfer_plist; /* Return value */ @@ -643,10 +628,10 @@ H5Pset_external (plist, "scan3.data", 0, 16);

    11. Raw Data I/O

    All raw data I/O is accomplished through these functions which - take a dataset handle, a memory data type, a memory data space, + take a dataset handle, a memory datatype, a memory data space, a file data space, transfer properties, and an application - memory buffer. They translate data between the memory data type - and space and the file data type and space. The data spaces can + memory buffer. They translate data between the memory datatype + and space and the file datatype and space. The data spaces can be used to describe partial I/O operations.

    @@ -655,7 +640,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); file_space_id, hid_t xfer_plist_id, void *buf/*out*/)
    Reads raw data from the specified dataset into buf - converting from file data type and space to memory data type + converting from file datatype and space to memory datatype and space.

    @@ -664,8 +649,8 @@ H5Pset_external (plist, "scan3.data", 0, 16); file_space_id, hid_t xfer_plist_id, const void *buf)
    Writes raw data from an application buffer buf to - the specified dataset converting from memory data type and - space to file data type and space. + the specified dataset converting from memory datatype and + space to file datatype and space.
    @@ -673,7 +658,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); supplied. However, it can be the same identifier as was used to create the dataset or as was returned by H5Dget_type(); the library will not implicitly - derive memory data types from constant data types. + derive memory datatypes from constant datatypes.

    For complete reads of the dataset one may supply H5S_ALL as the argument for the file data space. @@ -735,7 +720,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); 29 H5Pset_compression (properties, H5D_COMPRESS_LZ77); 30 31 /* -32 * Create a new dataset within the file. The data type +32 * Create a new dataset within the file. The datatype 33 * and data space describe the data on disk, which may 34 * be different than the format used in the application's 35 * memory. @@ -744,7 +729,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); 38 data_space, properties); 39 40 /* -41 * Write the array to the file. The data type and data +41 * Write the array to the file. The datatype and data 42 * space describe the format of the data in the `dd' 43 * buffer. The raw data is translated to the format 44 * required on disk defined above. We use default raw @@ -865,7 +850,7 @@ H5Pset_external (plist, "scan3.data", 0, 16); 8 dataset = H5Dopen (file, "dataset"); 9 10 /* -11 * Describe the memory data type, a struct with a single +11 * Describe the memory datatype, a struct with a single 12 * "delta" member. 13 */ 14 type = H5Tcreate (H5T_COMPOUND, sizeof(double)); @@ -903,69 +888,46 @@ H5Pset_external (plist, "scan3.data", 0, 16); And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - - -


    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Dataspaces.html b/doc/html/Dataspaces.html index 46eec9c..0df6770 100644 --- a/doc/html/Dataspaces.html +++ b/doc/html/Dataspaces.html @@ -1,7 +1,7 @@ - The Data Space Interface (H5S) + Dataspace Interface (H5S) @@ -19,47 +19,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -311,6 +295,8 @@ Releases resources associated with a dataspace. Subsequent use of the dataspace identifier after this call is undefined.
    + +
    @@ -557,7 +546,7 @@ may execute slower.
    -hbool_t H5Sselect_valid (hid_t space)
    +htri_t H5Sselect_valid (hid_t space)
    This function verifies that the selection for a dataspace is within the extent @@ -656,73 +645,46 @@ is returned. And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - -
    HDF Help Desk +
    -
    -Last modified: 26 April 1999 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Debugging.html b/doc/html/Debugging.html index 34ad4e7..0fe6841 100644 --- a/doc/html/Debugging.html +++ b/doc/html/Debugging.html @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -100,7 +84,7 @@ And in this document, the

    Timings and Statistics
    The library can be configured to accumulate certain - statistics about things like cache performance, data type + statistics about things like cache performance, datatype conversion, data space conversion, and data filters. The code is included on a per-package basis and enabled at runtime by an environment variable. @@ -262,7 +246,7 @@ IOT Trap, core dumped. t Yes - Data types + Datatypes v @@ -297,7 +281,7 @@ IOT Trap, core dumped. all -t -s - Debugging output for all packages except data types + Debugging output for all packages except datatypes and data spaces will appear on the standard error stream. @@ -476,69 +460,46 @@ H5E.c:336: warning: trace info was not inserted And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - - -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Environment.html b/doc/html/Environment.html index 3e2141d..d168ab8 100644 --- a/doc/html/Environment.html +++ b/doc/html/Environment.html @@ -1,8 +1,8 @@ -<<<<<<< Environment.html + -HDF5 Library Environment Variables and Configuration Parameters +Environment Variables and Configuration Parameters @@ -21,47 +21,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -129,155 +113,42 @@ will display the current list of parameters and their effects. And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   -
    -
    HDF Help Desk
    -======= - - HDF5 Library Environment Variables - and Configuration Parameters - - - - -

    HDF5 Library Environment Variables and Configuration Parameters

    - -

    1. Environment Variables

    - - The HDF5 library uses UNIX environment variables to control - or adjust certain library features at runtime. The variables and - their defined effects are as follows: - -
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    VariableDescription
    HDF5_DEBUGDefines a list of debugging switches documented in the - Debugging section of the - HDF5 User's Guide.
    HDF5_NOCLEANUPIf set then programs in the test directories do not - remove temporary files. The default is for each test to - remove the files before exit if the test succeeds but to - leave the files if the test fails.
    HDF5_PREFIXThe value of this variable is prepended to all temporary - file names created by the test programs and separated from - the base name of the file by a slash. The default is no - prefix.
    HDF5_DRIVERThis variable should hold the name of a low-level HDF5 - file driver such as sec2, stdio, - core, split, or - family. The family driver also takes an - optional real-valued family member size in MB which - defaults to 1. If this variable is not set or empty then - the library-defined default file driver is used (which can - be set at configuration time with the H5F_LOW_DFLT cpp - constant, usually sec2).
    HDF5_MPI_OPT_TYPESWhen set to 1, parallel HDF5 will use the - MPI-optimized code to perform parallel read/write accesses - to datasets. Currently, this optimization fails when - accessing extendable datasets. The default is not to use - the optimized code.
    HDF5_MPI_1_METAWRITEWhen set to 1, parallel HDF5 will write the - metadata via process 0 of each opened parallel HDF5 file. - This should improve I/O throughput. The default is not to - use this optimization.
    -
    - - -

    2. Configuration Parameters

    - - The HDF5 configuration script accepts a list of parameters to control - configuration features when creating the Makefiles for the library. - The command -
    -      configure --help -
    - will display the current list of parameters and their effects. - - -
    -
    -HDF Help Desk -
    - -Last modified: 25 November 1998 +Last modified: 14 October 1999 diff --git a/doc/html/Errors.html b/doc/html/Errors.html index 8085b40..c5c4573 100644 --- a/doc/html/Errors.html +++ b/doc/html/Errors.html @@ -1,7 +1,7 @@ - The Error Handling Interface (H5E) + Error Handling Interface (H5E) @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -80,6 +64,8 @@ And in this document, the next API function which is called (with a few exceptions) resets the stack. +

    2. Error Handling Operations

    +

    In normal circumstances, an error causes the stack to be printed on the standard error stream. The first item, number "#000" is produced by the API function itself and is usually @@ -93,14 +79,14 @@ And in this document, the

    If an application calls H5Tclose on a - predefined data type then the following message is + predefined datatype then the following message is printed on the standard error stream. This is a simple error that has only one component, the API function; other errors may have many components.

     HDF5-DIAG: Error detected in thread 0.  Back trace follows.
    -  #000: H5T.c line 462 in H5Tclose(): predefined data type
    +  #000: H5T.c line 462 in H5Tclose(): predefined datatype
         major(01): Function argument
         minor(05): Bad value
     	      
    @@ -248,7 +234,7 @@ H5Eset_auto (my_hdf5_error_handler, NULL); sequence number beginning at zero (regardless of direction), a pointer to an error description record, and the client_data pointer. If direction - is H5E_WALK_UPWARD then traversal begins at the + is H5E_WALK_UPWARD then traversal begins at the inner-most function that detected the error and concludes with the API function. The opposite order is H5E_WALK_DOWNWARD. @@ -345,69 +331,46 @@ H5Ewalk_cb(int n, H5E_error_t *err_desc, void *client_data) And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - - -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Files.html b/doc/html/Files.html index d371697..1765f2d 100644 --- a/doc/html/Files.html +++ b/doc/html/Files.html @@ -1,7 +1,7 @@ - HDF5 Files + File Interface (H5F) @@ -19,47 +19,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -522,7 +506,7 @@ And in this document, the returns a negative value. On successful return, access_properties will point to a copy of the member access property list which should be closed by calling - H5Pclose() when the application is finished with + H5Pclose() when the application is finished with it. If memb_size is non-null then it will contain the logical size in bytes of each family member. In the future, additional arguments may be added to this function to @@ -573,7 +557,7 @@ And in this document, the returns a negative value. On successful return, meta_properties and raw_properties will point to copies of the meta and raw access property lists - which should be closed by calling H5Pclose() when + which should be closed by calling H5Pclose() when the application is finished with them, but if the meta and/or raw file has no property list then a negative value is returned for that property list handle. Also, if @@ -602,70 +586,46 @@ And in this document, the And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - - -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Filters.html b/doc/html/Filters.html index c2a1961..a7b3ddf 100644 --- a/doc/html/Filters.html +++ b/doc/html/Filters.html @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -535,67 +519,46 @@ H5Z: filter statistics accumulated over life of library: And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - -Last modified: Mon Jan 18 13:32:14 EST 1999 -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/Glossary.html b/doc/html/Glossary.html index 1a9d9c8..204d081 100644 --- a/doc/html/Glossary.html +++ b/doc/html/Glossary.html @@ -6,18 +6,19 @@ HDF5 Glossary
    -HDF5 Reference Manual   -H5   -H5A   -H5D   -H5E   -H5F   -H5G   -H5P   -H5S   -H5T   -H5Z   -Glossary + + + + +
    + Other HDF5 documents and links 
    + Introduction to HDF5  +
    +    + + HDF5 User Guide 
    + HDF5 Reference Manual  +

    @@ -25,77 +26,512 @@ Glossary

    HDF5 Glossary

    -(Under construction! - This is the bare beginning of a Glossary to accompany the HDF5 - documentation; it is by no means complete.) +
    + + + + +
    +
    +
    atomic datatype +
    attribute + +
    chunked layout +
    chunking + +
    compound datatype + +
    contiguous layout + +
    dataset +
    dataspace + + + + +
    datatype +
    +
    atomic + + +
    compound + + +
    enumeration +
    named +
    opaque + +
    variable-length +
    + + + + +
    enumeration datatype +
    file +
    + + +
    group +
    path +
    root group +
    super block +
    +
    +
    +
    +
    file access mode +
    group +
    + +
    member +
    root group +
    +
    hard link + +
    hyperslab +
    identifier +
    link +
    +
    hard +
    soft + + +
    +
    member +
    name +
    named datatype +
    opaque datatype +
    path + +
    property list +
    +
    data transfer +
    dataset access +
    dataset creation +
    file access +
    file creation +
    +
    +
    +
    +
    root group +
    selection +
    +
    hyperslab + +
    +
    serialization +
    soft link + +
    storage layout +
    +
    chunked +
    chunking +
    contiguous +
    +
    super block + + + +
    variable-length datatype +
    +
    +
    - +
    -
    +
    -basic data types: -
      -
    • (Some data types may change substantially en route to - Release 1.0.) -
    • char - 8-bit character (only for ASCII information) -
    • int8 - 8-bit signed integer -
    • uint8 - 8-bit unsigned integer -
    • int16 - 16-bit signed integer -
    • uint16 - 16-bit unsigned integer -
    • int32 - 32-bit signed integer -
    • uint32 - 32-bit unsigned integer -
    • intn - "native" signed integer -
    • uintn - "native" unsigned integer -
    • int64 - 64-bit signed integer (new) -
    • uint64 - 64-bit unsigned integer (new) -
    • float32 - 32-bit IEEE float -
    • float64 - 64-bit IEEE float -
    +
    atomic datatype +
    A datatype which cannot be decomposed into smaller units at the + API level. +

    -Complex data types: -

      -
    • (Some data types may change substantially en route to - Release 1.0.) -
    • hid_t - 32-bit unsigned integer used as ID for memory objects -
    • hoid_t - 32-bit unsigned integer (currently) used as ID for disk-based - objects -
    • hbool_t - boolean to indicate true/false/error codes from functions -
    • herr_t - 32-bit integer to indicate succeed/fail codes from functions -
    +
    attribute +
    A small dataset that can be used to describe the nature and/or + the intended usage of the object it is attached to. +

    + + -disk I/O data types: +

    chunked layout +
    The storage layout of a chunked dataset. +

    + +

    chunking +
    A storage layout where a dataset is partitioned into fixed-size + multi-dimensional chunks. Chunking tends to improve performance + and facilitates dataset extensibility. +

    + +

    compound datatype +
    A collection of one or more atomic types or small arrays of such types. + Similar to a struct in C or a common block in Fortran. +

    + + + +

    contiguous layout +
    The storage layout of a dataset that is not chunked, so that the entire + data portion of the dataset is stored in a single contiguous block. +

    + +

    data transfer property list +
    The data transfer property list is used to control various aspects + of the I/O, such as caching hints or collective I/O information. +

    + +

    dataset +
    A multi-dimensional array of data elements, together with + supporting metadata. +

    + +

    dataset access property list +
    A property list containing information on how a dataset is to be accessed. +

    + +

    dataset creation property list +
    A property list containing information on how + raw data is organized on disk and how the raw data is compressed. + +

    + +

    dataspace +
    An object that describes the dimensionality of the data array. + A dataspace is either a regular N-dimensional array of data points, + called a simple dataspace, or a more general collection of data points + organized in another manner, called a complex dataspace. +

    + +

    datatype +
    An object that describes the storage format of the individual data + points of a data set. + There are two categories of datatypes: atomic and compound datatypes. + An atomic type is a type which cannot be decomposed into smaller + units at the API level. A compound datatype is a collection of one or + more atomic types or small arrays of such types. +

    + + + + + +

    enumeration datatype +
    A one-to-one mapping between a set of symbols and a set of + integer values, and an order is imposed on the symbols by their + integer values. The symbols are passed between the application + and library as character strings and all the values for a + particular enumeration datatype are of the same integer type, + which is not necessarily a native type. +

    + +

    file +
    A container for storing grouped collections of + multi-dimensional arrays containing scientific data. +

    + +

    file access mode +
    Determines whether an existing file will be overwritten, + opened for read-only access, or opened for read/write access. + All newly created files are opened for both reading and + writing. + +

    + +

    file access property list +
    File access property lists are used to control different methods + of performing I/O on files: + +

    + +

    file creation property list +
    The property list used to control file metadata. + +

    + +

    group +
    A structure containing zero or more HDF5 objects, + together with supporting metadata. + The two primary HDF5 objects are datasets and groups. +

    + +

    hard link +
    A direct association between a name and the object where both exist + in a single HDF5 address space. +

    + + + +

    hyperslab +
    A portion of a dataset. A hyperslab selection can be a + logically contiguous collection of points in a dataspace or + a regular pattern of points or blocks in a dataspace. +

    + +

    identifier +
    A unique entity provided by the HDF5 library and used to access + an HDF5 object, such as a file, goup, dataset, datatype, etc. +

    + +

    link +
    An association between a name and the object in an HDF5 file group. +

    + +

    member +
    A group or dataset that is in another dataset, dataset A, + is a member of dataset A. +

    + +

    name +
    A slash-separated list of components that uniquely identifies an + element of an HDF5 file. A name begins that begins with a slash + is an absolute name which is accessed beginning with the root group + of the file; all other names are relative names and the associated + objects are accessed beginning with the current or specified group. +

    + +

    named datatype +
    A datatype that is named and stored in a file. Naming is permanent; + a datatype cannot be changed after being named. +

    + +

    opaque datatype +
    A mechanism for describing data which cannot be otherwise described + by HDF5. The only properties associated with opaque types are a + size in bytes and an ASCII tag. +

    + + + +

    path +
    The slash-separated list of components that forms the name + uniquely identifying an element of an HDF5 file. +

    + +

    property list +
    A collection of name/value pairs that can be passed to other + HDF5 functions to control features that are typically unimportant + or whose default values are usually used. +

    + +

    root group +
    The group that is the entry point to the group graph in an HDF5 file. + Every HDF5 file has exactly one root group. +

    + +

    selection +
    A subset of a dataset or a dataspace, up to the entire dataset or + dataspace. +

    + +

    serialization +
    The flattening of an N-dimensional data object into a + 1-dimensional object so that, for example, the data object can be + transmitted over the network as a 1-dimensional bitstream. +

    + +

    soft link +
    An indirect association between a name and an object in an + HDF5 file group. +

    + +

    storage layout +
    The manner in which a dataset is stored, either contiguous or + chunked, in the HDF5 file. +

    + +

    super block +
    A block of data containing the information required to portably access + HDF5 files on multiple platforms, followed by information about the groups + and datasets in the file. + The super block contains information about the size of offsets, + lengths of objects, the number of entries in group tables, + and additional version information for the file. +

    + + + +

    variable-length datatype +
    A sequence of an existing datatype (atomic, variable-length (VL), + or compound) which are not fixed in length from one dataset location + to another. +

    + +


    -HDF5 Reference Manual   -H5   -H5A   -H5D   -H5E   -H5F   -H5G   -H5P   -H5S   -H5T   -H5Z   -Glossary + + + + +
    + Other HDF5 documents and links 
    + Introduction to HDF5  +
    +    + + HDF5 User Guide 
    + HDF5 Reference Manual  +

    @@ -103,7 +539,7 @@ Glossary HDF Help Desk
    -Last modified: 14 July 1998 +Last modified: 18 October 1999 diff --git a/doc/html/Groups.html b/doc/html/Groups.html index ed09929..8aac8a7 100644 --- a/doc/html/Groups.html +++ b/doc/html/Groups.html @@ -1,7 +1,7 @@ - Groups + Group Interface (H5G) @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -332,69 +316,46 @@ And in this document, the And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - - -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/H5.intro.html b/doc/html/H5.intro.html index 6c32ad7..1b9806d 100644 --- a/doc/html/H5.intro.html +++ b/doc/html/H5.intro.html @@ -7,14 +7,6 @@ - -
    @@ -36,7 +28,7 @@ Introduction to HDF5 
    -

    Introduction to HDF5 Release 1.0

    +

    Introduction to HDF5 Release 1.2

    This is an introduction to the HDF5 data model and programming model. Being a Getting Started or QuickStart document, this Introduction to HDF5 is intended to provide enough information for you to develop a basic understanding of how HDF5 works and is meant to be used. Knowledge of the current version of HDF will make it easier to follow the text, but it is not required. More complete information of the sort you will need to actually use HDF5 is available in the HDF5 documentation. Available documents include the following: @@ -47,7 +39,9 @@ Introduction to HDF5 

    Code examples are available in the source code tree when you install HDF5.

      -
    • The directory hdf5/examples contains the examples used in this document. +
    • The directories hdf5/examples and +hdf5/doc/html/Tutor/examples/ contain the examples +used in this document.
    • The directory hdf5/test contains the development tests used by the HDF5 developers. Since these codes are intended to fully exercise the system, they provide more diverse and sophisticated examples of what HDF5 can do.
    @@ -56,27 +50,30 @@ Introduction to HDF5 
    Table of Contents
    - Introduction to HDF5 Release 1.0

    + + Introduction to HDF5 Release 1.2

    1. What Is HDF5?
    -     Why HDF5?
    -     Limitations of the - Current Release
    -     Changes in the +     Why HDF5?
    +     Limitations of the Current Release
    +     Changes in the + Current Release

    - 2. HDF5 File Organization and Data Model
    + 2. HDF5 File Organization and
    +     Data Model
    -     HDF5 Groups
    -     HDF5 Datasets
    -     HDF5 Attributes
    +     HDF5 Groups
    +     HDF5 Datasets
    +     HDF5 Attributes
    +     The File as Written to Media

    3. The HDF5 API
    -     Naming +     Naming Conventions
    -     Include Files
    -     Programming +     Include Files
    +     Programming Models
             Creating an HDF5 file
    @@ -88,13 +85,6 @@ Introduction to HDF5 
             Getting information about a dataset
    - -

       - - 3. The HDF5 API (continued)
    - -     Programming - Models (continued)
             Reading/writing a portion of a dataset
    @@ -105,14 +95,31 @@ Introduction to HDF5 
    points
             Creating compound - datatypes
    + datatypes + +
       + + 3. The HDF5 API (continued)
    + +     Programming + Models (continued)
             - Creating/writing - extendible datasets
    + Creating/writing extendible and
    +          +          + chunked datasets
             Working with groups
             Working with attributes
    +          + Working with references to + objects
    +          + Working with references to dataset
    +          +          + regions

    4. Example Codes
    @@ -126,8 +133,10 @@ Introduction to HDF5 
             4. Working with compound datatypes
             - 5. Creating and writing an - extendible dataset
    + 5. Creating and writing an extendible
    +          +          + dataset
             6. Reading data
             @@ -135,6 +144,23 @@ Introduction to HDF5 
             8. Writing and reading attributes
    +          + 9. Creating and writing references
    +          +          + to objects
    +          + 10. Reading references to objects
    +          + 11. Creating and writing references
    +          +          + to dataset regions
    +          + 12. Reading references to dataset
    +          +          + regions

    @@ -143,11 +169,19 @@ Introduction to HDF5 

    1. What Is HDF5?

    -

    HDF5 is a new, experimental version of HDF that is designed to address some of the limitations of the current version of HDF (HDF4.x) and to address current and anticipated requirements of modern systems and applications. -

    We urge you to look at this new version of HDF and give us feedback on what you like or do not like about it, and what features you would like to see added to it. +

    HDF5 is a completely new Hierarchical Data Format +product consisting of a data format specification and a +supporting library implementation. HDF5 is designed to address some +of the limitations of the older HDF product and to address current and +anticipated requirements of modern systems and applications. +1 +

    We urge you to look at HDF5, the format and the library, and give us +feedback on what you like or do not like about it, and what features +you would like to see added to it.

    Why HDF5? -The development of HDF5 is motivated by a number of limitations in the current HDF format, as well as limitations in the library. Some of these limitations are: +The development of HDF5 is motivated by a number of limitations in the +older HDF format and library. Some of these limitations are:

    • A single file cannot store more than 20,000 complex objects, and a single file cannot be larger than 2 gigabytes. @@ -161,27 +195,45 @@ The development of HDF5 is motivated by a number of limitations in the current H
    • A simpler, more comprehensive data model that includes only two basic structures: a multidimensional array of record structures, and a grouping structure.
    • A simpler, better-engineered library and API, with improved support for parallel I/O, threads, and other requirements imposed by modern systems and applications.
    + +1. +Note that HDF and HDF5 are two different products. +HDF is a data format first developed in the 1980s and currently +in Release 4.x (HDF Release 4.x). +HDF5 is a new data format first released in Beta in 1998 and +designed to better meet the ever-increasing demands of scientific computing +and to take better advantage of the ever-increasing capabilities of +computing systems. +HDF5 is currently in Release 1.x (HDF5 Release 1.x). + +

    Limitations of the Current Release

    This release includes the basic functionality that was planned for the HDF5 library. However, the library does not implement all of the features detailed in the format and API specifications. Here is a listing of some of the limitations of the current release:

    • Data compression is supported, though only GZIP is implemented. GZIP, or GNU Zip, is a compression function from the GNU Project. -
    • Some functions for manipulating dataspaces have not been implemented. -
    • Some number types, including user-defined number types are not supported. -
    • The library is not currently thread aware although we have planned for that possibility and intend eventually to implement it. -
    • The only reference supported in this release is an object reference.

    Changes in the Current Release

    -

    A detailed listing of changes in HDF5 since the last release (HDF5 1.0 Beta) can be found in the file hdf5/RELEASE in the code installation. Important changes include: +

    A detailed list of changes in HDF5 since the last release, +HDF5 Release 1.0, can be found in the file hdf5/RELEASE +in the source code installation. At a higher level, those changes include:

      -
    • An object reference has been implemented. -
    • Union selection (unions of hyperslabs) has been implemented. -
    • Fill values have been implemented. +
    • Support for bitfield, opaque, enumeration, and variable-length datatypes +
    • Support for object and dataset region pointers +
    • Improved parallel performance and support for additional parallel platforms +
    • Improved and expanded documentation +
    • Enhancements to the h5ls and h5dump tools + and a new HDF5 to HDF4 conversion tool, h5toh4 +
    • Over 30 new API functions
    +

    The changes as HDF5 has evolved from the first Alpha release +to the present are summarized in the file hdf5/HISTORY +in the source code installation. +

    (Return to TOC)


    2. HDF5 File Organization and Data Model

    @@ -231,12 +283,12 @@ Atomic datatypes can also be system-specific, or NATIVE, and
  6. Strings.

    -NATIVE datatypes. Although it is possible to describe nearly any kind of atomic data type, most applications will use predefined datatypes that are supported by their compiler. In HDF5 these are called native datatypes. NATIVE datatypes are C-like datatypes that are generally supported by the hardware of the machine on which the library was compiled. In order to be portable, applications should almost always use the NATIVE designation to describe data values in memory. +NATIVE datatypes. Although it is possible to describe nearly any kind of atomic datatype, most applications will use predefined datatypes that are supported by their compiler. In HDF5 these are called native datatypes. NATIVE datatypes are C-like datatypes that are generally supported by the hardware of the machine on which the library was compiled. In order to be portable, applications should almost always use the NATIVE designation to describe data values in memory.

    The NATIVE architecture has base names which do not follow the same rules as the others. Instead, native type names are similar to the C type names. The following figure shows several examples.

    -Examples of Native Data Types and Corresponding C Types
    +Examples of Native Datatypes and Corresponding C Types
    @@ -336,7 +388,7 @@ Atomic datatypes can also be system-specific, or NATIVE, and

    A compound datatype is one in which a collection of simple datatypes are represented as a single unit, similar to a struct in C. The parts of a compound datatype are called members. The members of a compound datatype may be of any datatype, including another compound datatype. It is possible to read members from a compound type without reading the whole type.

    -

    Named datatypes. Normally each dataset has its own datatype, but sometimes we may want to share a datatype among several datasets. This can be done using a named datatype. A named data type is stored in the file independently of any dataset, and referenced by all datasets that have that datatype. Named datatypes may have an associated attributes list. +

    Named datatypes. Normally each dataset has its own datatype, but sometimes we may want to share a datatype among several datasets. This can be done using a named datatype. A named datatype is stored in the file independently of any dataset, and referenced by all datasets that have that datatype. Named datatypes may have an associated attributes list. See Datatypes in the HDF User’s Guide for further information.

    Dataspace. A dataset dataspace describes the dimensionality of the dataset. The dimensions of a dataset can be fixed (unchanging), or they may be unlimited, which means that they are extendible (i.e. they can grow larger).

    Properties of a dataspace consist of the rank (number of dimensions) of the data array, the actual sizes of the dimensions of the array, and the maximum sizes of the dimensions of the array. For a fixed-dimension dataset, the actual size is the same as the maximum size of a dimension. When a dimension is unlimited, the maximum size is set to the value H5P_UNLIMITED. (An example below shows how to create extendible datasets.) @@ -363,10 +415,87 @@ See Datatypes in t See Datasets and Dataset Chunking Issues in the HDF User’s Guide for further information. We particularly encourage you to read Dataset Chunking Issues since the issue is complex and beyond the scope of this document.

    HDF5 Attributes

    -Attributes are small named datasets that are attached to primary datasets, groups, or named datatypes. Attributes can be used to describe the nature and/or the intended usage of a dataset or group. An attribute has two parts: (1) a name and (2) a value. The value part contains one or more data entries of the same data type. +Attributes are small named datasets that are attached to primary datasets, groups, or named datatypes. Attributes can be used to describe the nature and/or the intended usage of a dataset or group. An attribute has two parts: (1) a name and (2) a value. The value part contains one or more data entries of the same datatype.

    The Attribute API (H5A) is used to read or write attribute information. When accessing attributes, they can be identified by name or by an index value. The use of an index value makes it possible to iterate through all of the attributes associated with a given object.

    The HDF5 format and I/O library are designed with the assumption that attributes are small datasets. They are always stored in the object header of the object they are attached to. Because of this, large datasets should not be stored as attributes. How large is "large" is not defined by the library and is up to the user's interpretation. (Large datasets with metadata can be stored as supplemental datasets in a group with the primary dataset.)

    See Attributes in the HDF User’s Guide for further information. + + +

    The File as Written to Media

    + +

    For those who are interested, this section takes a look at + the low-level elements of the file as the file is written to disk + (or other storage media) and the relation of those low-level + elements to the higher level elements with which users typically + are more familiar. The HDF5 API generally exposes only the + high-level elements to the user; the low-level elements are + often hidden. + The rest of this Introduction does not assume + an understanding of this material. + +

    The format of an HDF5 file on disk encompasses several + key ideas of the HDF4 and AIO file formats as well as + addressing some shortcomings therein. The new format is + more self-describing than the HDF4 format and is more + uniformly applied to data objects in the file. + +

    Example

    + +
    +
    + HDF5 Groups +
     
    + Figure 1: Relationships among the + HDF5 root group, other groups, and objects +
    +
     
    + + +

    An HDF5 file appears to the user as a directed graph. + The nodes of this graph are the higher-level HDF5 objects + that are exposed by the HDF5 APIs: + +

      +
    • Groups +
    • Datasets +
    • Datatypes +
    • Dataspaces +
    + +

    At the lowest level, as information is actually written to the disk, + an HDF5 file is made up of the following objects: +

      +
    • A boot block +
    • B-tree nodes (containing either symbol nodes or raw data chunks) +
    • Object headers + + + +
        +
      + HDF5 Objects +
        + Figure 2: HDF5 objects -- datasets, datatypes, or dataspaces +
      +
      + +
    • Collections +
    • Local heaps +
    • Free space +
    + + The HDF5 library uses these lower-level objects to represent the + higher-level objects that are then presented to the user or + to applications through the APIs. + For instance, a group is an object header that contains a message that + points to a local heap and to a B-tree which points to symbol nodes. + A dataset is an object header that contains messages that describe + datatype, space, layout, filters, external files, fill value, etc + with the layout message pointing to either a raw data chunk or to a + B-tree that points to raw data chunks. + +

    See the HDF5 File Format + Specification for further information.

    (Return to TOC)


    @@ -381,7 +510,7 @@ Example: H5Fopen, which opens an HDF5 file.
  7. H5G: Group functions, for creating and operating on groups of objects.
    Example: H5Gset,which sets the working group to the specified group.
  8. H5T: DataType functions, for creating and operating on simple and compound datatypes to be used as the elements in data arrays.
    -
    Example: H5Tcopy,which creates a copy of an existing data type. +Example: H5Tcopy,which creates a copy of an existing datatype.
  9. H5S: DataSpace functions, which create and manipulate the dataspace in which the elements of a data array are stored.
    Example: H5Screate_simple, which creates simple dataspaces.
  10. H5D: Dataset functions, which manipulate the data within datasets and determine how the data is to be stored in the file.
    @@ -419,7 +548,7 @@ Example: H5Iget_type, which retrieves the type of an object.
  11. Work with attributes. -

    How to create an HDF5 file

    +

    How to create an HDF5 file

    This programming model shows how to create a file and also how to close the file.

      @@ -441,7 +570,7 @@ status = H5Fclose(file);
       
      -

      How to create and initialize the essential components of a dataset for writing to a file

      +

      How to create and initialize the essential components of a dataset for writing to a file

      Recall that datatypes and dimensionality (dataspace) are independent objects, which are created separately from any dataset that they might be attached to. Because of this the creation of a dataset requires, at a minimum, separate definitions of datatype, dimensionality, and dataset. Hence, to create a dataset the following steps need to be taken:

      1. Create and initialize a dataspace for the dataset to be written. @@ -472,12 +601,12 @@ status = H5Tset_order(datatype, H5T_ORDER_LE); * to little endian is not needed. */ dataset = H5Dcreate(file, DATASETNAME, datatype, dataspace, H5P_DEFAULT); -

        How to discard objects when they are no longer needed

        +

        How to discard objects when they are no longer needed

        The datatype, dataspace and dataset objects should be released once they are no longer needed by a program. Since each is an independent object, the must be released (or closed) separately. The following lines of code close the datatype, dataspace, and datasets that were created in the preceding section.

        H5Tclose(datatype);

        H5Dclose(dataset);

        H5Sclose(dataspace); -

        How to write a dataset to a new file

        +

        How to write a dataset to a new file

        Having defined the datatype, dataset, and dataspace parameters, you write out the data with a call to H5Dwrite.

        /*
         * Write the data to the dataset using default transfer
        @@ -488,7 +617,7 @@ status = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL,
         

        The third and fourth parameters of H5Dwrite in the example describe the dataspaces in memory and in the file, respectively. They are set to the value H5S_ALL to indicate that an entire dataset is to be written. In a later section we look at how we would access a portion of a dataset.

        Example 1 contains a program that creates a file and a dataset, and writes the dataset to the file.

        Reading is analogous to writing. If, in the previous example, we wish to read an entire dataset, we would use the same basic calls with the same parameters. Of course, the routine H5Dread would replace H5Dwrite. -

        Getting information about a dataset

        +

        Getting information about a dataset

        Although reading is analogous to writing, it is often necessary to query a file to obtain information about a dataset. For instance, we often need to know about the datatype associated with a dataset, as well dataspace information (e.g. rank and dimensions). There are several "get" routines for obtaining this information. The following code segment illustrates how we would get this kind of information:

        /*
         * Get datatype and dataspace identifiers and then query
        @@ -508,7 +637,7 @@ dataspace = H5Dget_space(dataset);    /* dataspace identifier */
         rank      = H5Sget_simple_extent_ndims(dataspace);
         status_n  = H5Sget_simple_extent_dims(dataspace, dims_out);
         printf("rank %d, dimensions %d x %d \n", rank, dims_out[0], dims_out[1]);
        -

        Reading and writing a portion of a dataset

        +

        Reading and writing a portion of a dataset

        In the previous discussion, we describe how to access an entire dataset with one write (or read) operation. HDF5 also supports access to portions (or selections) of a dataset in one read/write operation. Currently selections are limited to hyperslabs, their unions, and the lists of independent points. Both types of selection will be discussed in the following sections. Several sample cases of selection reading/writing are shown on the following figure.

        @@ -1746,7 +1875,7 @@ the previous selection example. -

        Creating compound datatypes

        +

        Creating compound datatypes

        Properties of compound datatypes. A compound datatype is similar to a struct in C or a common block in Fortran. It is a collection of one or more atomic types or small arrays of such types. To create and use of a compound datatype you need to refer to various properties of the data compound datatype:

          @@ -1755,17 +1884,17 @@ the previous selection example.
        • It consists of zero or more members (defined in any order) with unique names and which occupy non-overlapping regions within the datum.
        • Each member has its own datatype.
        • Each member is referenced by an index number between zero and N-1, where N is the number of members in the compound datatype. -
        • Each member has a name which is unique among its siblings in a compound data type. +
        • Each member has a name which is unique among its siblings in a compound datatype.
        • Each member has a fixed byte offset, which is the first byte (smallest byte address) of that member in a compound datatype.
        • Each member can be a small array of up to four dimensions.
        -

        Properties of members of a compound data type are defined when the member is added to the compound type and cannot be subsequently modified. -

        Defining compound datatypes. Compound datatypes must be built out of other datatypes. First, one creates an empty compound data type and specifies its total size. Then members are added to the compound data type in any order. -

        Member names. Each member must have a descriptive name, which is the key used to uniquely identify the member within the compound data type. A member name in an HDF5 data type does not necessarily have to be the same as the name of the corresponding member in the C struct in memory, although this is often the case. Nor does one need to define all members of the C struct in the HDF5 compound data type (or vice versa). +

        Properties of members of a compound datatype are defined when the member is added to the compound type and cannot be subsequently modified. +

        Defining compound datatypes. Compound datatypes must be built out of other datatypes. First, one creates an empty compound datatype and specifies its total size. Then members are added to the compound datatype in any order. +

        Member names. Each member must have a descriptive name, which is the key used to uniquely identify the member within the compound datatype. A member name in an HDF5 datatype does not necessarily have to be the same as the name of the corresponding member in the C struct in memory, although this is often the case. Nor does one need to define all members of the C struct in the HDF5 compound datatype (or vice versa).

        Offsets. Usually a C struct will be defined to hold a data point in memory, and the offsets of the members in memory will be the offsets of the struct members from the beginning of an instance of the struct. The library defines the macro to compute the offset of a member within a struct:
          HOFFSET(s,m)

        This macro computes the offset of member m within a struct variable s. -

        Here is an example in which a compound data type is created to describe complex numbers whose type is defined by the complex_t struct. +

        Here is an example in which a compound datatype is created to describe complex numbers whose type is defined by the complex_t struct.

        typedef struct {
            double re;   /*real part */
            double im;   /*imaginary part */
        @@ -1777,8 +1906,8 @@ H5Tinsert (complex_id, "real", HOFFSET(tmp,re),
                    H5T_NATIVE_DOUBLE);
         H5Tinsert (complex_id, "imaginary", HOFFSET(tmp,im),
                    H5T_NATIVE_DOUBLE);
        -

        Example 4 shows how to create a compound data type, write an array that has the compound data type to the file, and read back subsets of the members. -

        Creating and writing extendible datasets

        +

        Example 4 shows how to create a compound datatype, write an array that has the compound datatype to the file, and read back subsets of the members. +

        Creating and writing extendible and chunked datasets

        An extendible dataset is one whose dimensions can grow. In HDF5, it is possible to define a dataset to have certain initial dimensions, then later to increase the size of any of the initial dimensions.

        For example, you can create and store the following 3x3 HDF5 dataset:

             1 1 1
        @@ -1854,7 +1983,7 @@ status = H5Dextend (dataset, size);

         

        Example 5 shows how to create a 3x3 extendible dataset, write the dataset, extend the dataset to 10x3, write the dataset again, extend it again to 10x5, write the dataset again.

        Example 6 shows how to read the data written by Example 5. -

        Working with groups in a file

        +

        Working with groups in a file

        Groups provide a mechanism for organizing meaningful and extendible sets of datasets within an HDF5 file. The H5G API contains routines for working with groups.

        Creating a group. To create a group, use H5Gcreate. For example, the following code @@ -1979,7 +2108,7 @@ in the root group, and H5Glink and H5Gunlink to create a new group name and delete the original name. -

        Working with attributes

        +

        Working with attributes

        Think of an attribute as a small datasets that is attached to a normal dataset or group. The H5A API contains routines for working with attributes. Since attributes share many of the characteristics of datasets, the programming model for working with attributes is analogous in many ways to the model for working with datasets. The primary differences are that an attribute must be attached to a dataset or a group, and subsetting operations cannot be performed on attributes.

        To create an attribute belonging to a particular dataset or group, first create a dataspace for the attribute with the call to H5Screate, then create the attribute using H5Acreate. For example, the following code creates an attribute called Integer_attribute that is a member of a dataset whose identifier is dataset. The attribute identifier is attr2. H5Awrite then sets the value of the attribute of that of the integer variable point. H5Aclose then releases the attribute identifier. @@ -2021,7 +2150,7 @@ ret = H5Aread(attr, H5T_NATIVE_INT, &point_out); printf("The value of the attribute \"Integer attribute\" is %d \n", point_out); ret = H5Aclose(attr); -

        Reading an attribute whose characteristics are not known. It may be necessary to query a file to obtain information about an attribute, namely its name, data type, rank and dimensions. The following code opens an attribute by its index value using H5Aopen_index, then reads in information about its datatype. +

        Reading an attribute whose characteristics are not known. It may be necessary to query a file to obtain information about an attribute, namely its name, datatype, rank and dimensions. The following code opens an attribute by its index value using H5Aopen_index, then reads in information about its datatype.

         /*
        @@ -2034,14 +2163,893 @@ ret   = H5Aread(attr, atype, string_out);
         printf("The value of the attribute with the index 2 is %s \n", string_out);
         
        -

        In practice, if the characteristics of attributes are not know, the code involved in accessing and processing the attribute can be quite complex. For this reason, HDF5 includes a function called H5Aiterate, which applies a user-supplied function to each of a set of attributes. The user-supplied function can contain the code that interprets, accesses and processes each attribute. +

        In practice, if the characteristics of attributes are not known, +the code involved in accessing and processing the attribute can be quite +complex. For this reason, HDF5 includes a function called +H5Aiterate, which applies a user-supplied function to each +of a set of attributes. The user-supplied function can contain the code +that interprets, accesses and processes each attribute.

        Example 8 illustrates the use of the H5Aiterate function, as well as the other attribute examples described above. +

        Working with references to objects

        + +In HDF5, objects (i.e. groups, datasets, and named datatypes) are usually +accessed by name. This access method was discussed in previous sections. +There is another way to access stored objects -- by reference. +

        +An object reference is based on the relative file address of the object header +in the file and is constant for the life of the object. Once a reference to +an object is created and stored in a dataset in the file, it can be used +to dereference the object it points to. References are handy for creating +a file index or for grouping related objects by storing references to them in +one dataset. +

        + +

        Creating and Storing References to Objects
        +The following steps are involved in creating and storing file references +to objects: +
          +
        1. Create the objects or open them if they already exist in the file. +
        2. Create a dataset to store the objects' references. +
        3. Create and store references to the objects in a buffer. +
        4. Write a buffer with the references to the dataset. +
        + + +
        Programming Example
        +Description: +The example below [also Example 9] +creates a group and two datasets and a named datatype in the group. +References to these four objects are stored in the dataset in the +root group. + +
        +
        +#include <hdf5.h>
        +
        +#define FILE1   "trefer1.h5"
        +
        +/* 1-D dataset with fixed dimensions */
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK	1
        +#define SPACE1_DIM1	4
        +
        +/* 2-D dataset with fixed dimensions */
        +#define SPACE2_NAME  "Space2"
        +#define SPACE2_RANK	2
        +#define SPACE2_DIM1	10
        +#define SPACE2_DIM2	10
        +
        +int 
        +main(void) {
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dataset;	/* Dataset ID			*/
        +    hid_t		group;      /* Group ID             */
        +    hid_t		sid1;       /* Dataspace ID			*/
        +    hid_t		tid1;       /* Datatype ID			*/
        +    hsize_t		dims1[] = {SPACE1_DIM1};
        +    hobj_ref_t      *wbuf;      /* buffer to write to disk */
        +    int       *tu32;      /* Temporary pointer to int data */
        +    int        i;          /* counting variables */
        +    const char *write_comment="Foo!"; /* Comments for group */
        +    herr_t		ret;		/* Generic return value		*/
        +
        +/* Compound datatype */
        +typedef struct s1_t {
        +    unsigned int a;
        +    unsigned int b;
        +    float c;
        +} s1_t;
        +
        +    /* Allocate write buffers */
        +    wbuf=(hobj_ref_t *)malloc(sizeof(hobj_ref_t)*SPACE1_DIM1);
        +    tu32=malloc(sizeof(int)*SPACE1_DIM1);
        +
        +    /* Create file */
        +    fid1 = H5Fcreate(FILE1, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
        +
        +    /* Create dataspace for datasets */
        +    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
        +
        +    /* Create a group */
        +    group=H5Gcreate(fid1,"Group1",-1);
        +
        +    /* Set group's comment */
        +    ret=H5Gset_comment(group,".",write_comment);
        +
        +    /* Create a dataset (inside Group1) */
        +    dataset=H5Dcreate(group,"Dataset1",H5T_STD_U32LE,sid1,H5P_DEFAULT);
        +
        +    for(i=0; i < SPACE1_DIM1; i++)
        +        tu32[i] = i*3;
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dataset,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,tu32);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Create another dataset (inside Group1) */
        +    dataset=H5Dcreate(group,"Dataset2",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Create a datatype to refer to */
        +    tid1 = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));
        +
        +    /* Insert fields */
        +    ret=H5Tinsert (tid1, "a", HOFFSET(s1_t,a), H5T_NATIVE_INT);
        +
        +    ret=H5Tinsert (tid1, "b", HOFFSET(s1_t,b), H5T_NATIVE_INT);
        +
        +    ret=H5Tinsert (tid1, "c", HOFFSET(s1_t,c), H5T_NATIVE_FLOAT);
        +
        +    /* Save datatype for later */
        +    ret=H5Tcommit (group, "Datatype1", tid1);
        +
        +    /* Close datatype */
        +    ret = H5Tclose(tid1);
        +
        +    /* Close group */
        +    ret = H5Gclose(group);
        +
        +    /* Create a dataset to store references */
        +    dataset=H5Dcreate(fid1,"Dataset3",H5T_STD_REF_OBJ,sid1,H5P_DEFAULT);
        +
        +    /* Create reference to dataset */
        +    ret = H5Rcreate(&wbuf[0],fid1,"/Group1/Dataset1",H5R_OBJECT,-1);
        +
        +    /* Create reference to dataset */
        +    ret = H5Rcreate(&wbuf[1],fid1,"/Group1/Dataset2",H5R_OBJECT,-1);
        +
        +    /* Create reference to group */
        +    ret = H5Rcreate(&wbuf[2],fid1,"/Group1",H5R_OBJECT,-1);
        +
        +    /* Create reference to named datatype */
        +    ret = H5Rcreate(&wbuf[3],fid1,"/Group1/Datatype1",H5R_OBJECT,-1);
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dataset,H5T_STD_REF_OBJ,H5S_ALL,H5S_ALL,H5P_DEFAULT,wbuf);
        +
        +    /* Close disk dataspace */
        +    ret = H5Sclose(sid1);
        +    
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +    free(wbuf);
        +    free(tu32);
        +    return 0;
        +}
        +
        +
        + + +Remarks: + +
          +
        • The following code, +
          +    dataset = H5Dcreate ( fid1,"Dataset3",H5T_STD_REF_OBJ,sid1,H5P_DEFAULT );
          +
          + creates a dataset to store references. Notice that the + H5T_SDT_REF_OBJ datatype is used to specify that + references to objects will be stored. + The datatype H5T_STD_REF_DSETREG is used to store the + dataset region references and is be discussed later. +
        • The next few calls to the H5Rcreate function create + references to the objects and store them in the buffer wbuf. + The signature of the H5Rcreate function is: +
          +   herr_t H5Rcreate ( void* buf, hid_t loc_id, const char *name, 
          +                      H5R_type_t ref_type, hid_t space_id )    
          +
          +
            +
          • The first argument specifies the buffer to store the reference. +
          • The second and third arguments specify the name of the referenced + object. In the example, the file identifier fid1 and + absolute name of the dataset /Group1/Dataset1 + identify the dataset. One could also use the group identifier + of group Group1 and the relative name of the dataset + Dataset1 to create the same reference. +
          • The fourth argument specifies the type of the reference. + The example uses references to the objects (H5R_OBJECT). + Another type of reference, reference to the dataset region + (H5R_DATASET_REGION), is discussed later. +
          • The fifth argument specifies the space identifier. When references + to the objects are created, it should be set to -1. +
          +
        • The H5Dwrite function writes a dataset with the + references to the file. Notice that the H5T_SDT_REF_OBJ + datatype is used to describe the dataset's memory datatype. +
        + +File Contents: +The contents of the trefer1.h5 file created by this example +are as follows: +
        +
        +HDF5 "trefer1.h5" {
        +GROUP "/" {
        +   DATASET "Dataset3" {
        +      DATATYPE { H5T_REFERENCE }
        +      DATASPACE { SIMPLE ( 4 ) / ( 4 ) }
        +      DATA {
        +         DATASET 0:1696, DATASET 0:2152, GROUP 0:1320, DATATYPE 0:2268
        +      }
        +   }
        +   GROUP "Group1" {
        +      DATASET "Dataset1" {
        +         DATATYPE { H5T_STD_U32LE }
        +         DATASPACE { SIMPLE ( 4 ) / ( 4 ) }
        +         DATA {
        +            0, 3, 6, 9
        +         }
        +      }
        +      DATASET "Dataset2" {
        +         DATATYPE { H5T_STD_U8LE }
        +         DATASPACE { SIMPLE ( 4 ) / ( 4 ) }
        +         DATA {
        +            0, 0, 0, 0
        +         }
        +      }
        +      DATATYPE "Datatype1" {
        +         H5T_STD_I32BE "a";
        +         H5T_STD_I32BE "b";
        +         H5T_IEEE_F32BE "c";
        +      }
        +   }
        +}
        +}
        +
        +
        +Notice how the data in dataset Dataset3 is described. +The two numbers with the colon in between represent a unique identifier +of the object. These numbers are constant for the life of the object. + + +
        Reading References and Accessing Objects Using References
        + +The following steps are involved: +
          +
        1. Open the dataset with the references and read them. + The H5T_STD_REF_OBJ datatype must be used to + describe the memory datatype. +
        2. Use the read reference to obtain the identifier of the object the + reference points to. +
        3. Open the dereferenced object and perform the desired operations. +
        4. Close all objects when the task is complete. +
        + +
        Programming Example
        + +Description: +The following example [also Example 10] +below opens and reads dataset Dataset3 from +the file created previously. Then the program dereferences the references +to dataset Dataset1, the group and the named datatype, +and opens those objects. +The program reads and displays the dataset's data, the group's comment, and +the number of members of the compound datatype. + + +
        +
        +#include <stdlib.h>
        +#include <hdf5.h>
        +
        +#define FILE1   "trefer1.h5"
        +
        +/* dataset with fixed dimensions */
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK	1
        +#define SPACE1_DIM1	4
        +
        +int 
        +main(void)
        +{
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dataset,	/* Dataset ID			*/
        +                dset2;      /* Dereferenced dataset ID */
        +    hid_t		group;      /* Group ID             */
        +    hid_t		sid1;       /* Dataspace ID			*/
        +    hid_t		tid1;       /* Datatype ID			*/
        +    hobj_ref_t      *rbuf;      /* buffer to read from disk */
        +    int                *tu32;      /* temp. buffer read from disk */
        +    int        i;          /* counting variables */
        +    char read_comment[10];
        +    herr_t		ret;		/* Generic return value		*/
        +
        +    /* Allocate read buffers */
        +    rbuf = malloc(sizeof(hobj_ref_t)*SPACE1_DIM1);
        +    tu32 = malloc(sizeof(int)*SPACE1_DIM1);
        +
        +    /* Open the file */
        +    fid1 = H5Fopen(FILE1, H5F_ACC_RDWR, H5P_DEFAULT);
        +
        +    /* Open the dataset */
        +    dataset=H5Dopen(fid1,"/Dataset3");
        +
        +    /* Read selection from disk */
        +    ret=H5Dread(dataset,H5T_STD_REF_OBJ,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
        +
        +    /* Open dataset object */
        +    dset2 = H5Rdereference(dataset,H5R_OBJECT,&rbuf[0]);
        +
        +    /* Check information in referenced dataset */
        +    sid1 = H5Dget_space(dset2);
        +
        +    ret=H5Sget_simple_extent_npoints(sid1);
        +
        +    /* Read from disk */
        +    ret=H5Dread(dset2,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,tu32);
        +    printf("Dataset data : \n");
        +     for (i=0; i < SPACE1_DIM1 ; i++) printf (" %d ", tu32[i]);
        +    printf("\n");
        +    printf("\n");
        +
        +    /* Close dereferenced Dataset */
        +    ret = H5Dclose(dset2);
        +
        +    /* Open group object */
        +    group = H5Rdereference(dataset,H5R_OBJECT,&rbuf[2]);
        +
        +    /* Get group's comment */
        +    ret=H5Gget_comment(group,".",10,read_comment);
        +    printf("Group comment is %s \n", read_comment);
        +    printf(" \n");
        +    /* Close group */
        +    ret = H5Gclose(group);
        +
        +    /* Open datatype object */
        +    tid1 = H5Rdereference(dataset,H5R_OBJECT,&rbuf[3]);
        +
        +    /* Verify correct datatype */
        +    {
        +        H5T_class_t tclass;
        +
        +        tclass= H5Tget_class(tid1);
        +        if ((tclass == H5T_COMPOUND))
        +           printf ("Number of compound datatype members is %d \n", H5Tget_nmembers(tid1)); 
        +    printf(" \n");
        +    }
        +
        +    /* Close datatype */
        +    ret = H5Tclose(tid1);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +
        +    /* Free memory buffers */
        +    free(rbuf);
        +    free(tu32);
        +    return 0;
        +}   
        +
        +
        + +The output of this program is as follows: + +
        +
        +Dataset data : 
        + 0  3  6  9 
        +
        +Group comment is Foo! 
        + 
        +Number of compound datatype members is 3 
        +
        + + +Remarks: + +
          +
        • The H5Dread function was used to read dataset + Dataset3 containing the references to the objects. + The H5T_STD_REF_OBJ memory datatype was + used to read references to memory. +
        • H5Rdereference obtains the object's identifier. + The signature of this function is: +
          +         hid_t H5Rdereference (hid_t datatset, H5R_type_t ref_type, void *ref)
          +
          +
            +
          • The first argument is an identifier of the dataset with the + references. +
          • The second argument specifies the reference type. + H5R_OBJECT was used to specify a reference to an + object. Another type, used to specifiy a reference to a dataset + region and discussed later, is H5R_DATASET_REGION. +
          • The third argument is a buffer to store the reference to be read. +
          • The function returns an identifier of the object the reference + points to. In this simplified situation, the type that was + stored in the dataset is known. When the type of the object is + unknown, H5Rget_object_type should be used to + identify the type of object the reference points to. +
          +
        + + + +

        Working with references to dataset regions

        + +A dataset region reference points to the dataset selection by storing the +relative file address of the dataset header and the global heap offset of +the referenced selection. The selection referenced is located by retrieving +the coordinates of the areas in the selection from the global heap. This +internal mechanism of storing and retrieving dataset selections is transparent +to the user. A reference to the dataset selection (region) is constant for +the life of the dataset. + +
        Creating and Storing References to Dataset Regions
        +The following steps are involved in creating and storing references to +the dataset regions: +
          + +
        1. Create a dataset to store the dataset regions (selections). +

          +

        2. Create selections in the dataset(s). Dataset(s) should already exist + in the file. +

          +

        3. Create references to the selections and store them in a buffer. +

          +

        4. Write references to the dataset regions in the file. +

          +

        5. Close all objects. +
        + +
        Programming Example
        +Description: +The example below [also Example 11] +creates a dataset in the file. Then it creates a dataset to store +references to the dataset regions (selections). +The first selection is a 6 x 6 hyperslab. +The second selection is a point selection in the same dataset. +References to both selections are created and stored in the buffer, +and then written to the dataset in the file. + +
        +
        +#include <stdlib.h>
        +#include <hdf5.h>
        +
        +#define FILE2	"trefer2.h5"
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK     1
        +#define SPACE1_DIM1     4
        +
        +/* Dataset with fixed dimensions */
        +#define SPACE2_NAME  "Space2"
        +#define SPACE2_RANK	2
        +#define SPACE2_DIM1	10
        +#define SPACE2_DIM2	10
        +
        +/* Element selection information */
        +#define POINT1_NPOINTS 10
        +
        +int
        +main(void)
        +{
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dset1,	/* Dataset ID			*/
        +                dset2;      /* Dereferenced dataset ID */
        +    hid_t		sid1,       /* Dataspace ID	#1		*/
        +                sid2;       /* Dataspace ID	#2		*/
        +    hsize_t		dims1[] = {SPACE1_DIM1},
        +            	dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
        +    hssize_t	start[SPACE2_RANK];     /* Starting location of hyperslab */
        +    hsize_t		stride[SPACE2_RANK];    /* Stride of hyperslab */
        +    hsize_t		count[SPACE2_RANK];     /* Element count of hyperslab */
        +    hsize_t		block[SPACE2_RANK];     /* Block size of hyperslab */
        +    hssize_t	coord1[POINT1_NPOINTS][SPACE2_RANK]; 
        +                                    /* Coordinates for point selection */
        +    hdset_reg_ref_t      *wbuf;      /* buffer to write to disk */
        +    int     *dwbuf;      /* Buffer for writing numeric data to disk */
        +    int        i;          /* counting variables */
        +    herr_t		ret;		/* Generic return value		*/
        +
        +
        +    /* Allocate write & read buffers */
        +    wbuf=calloc(sizeof(hdset_reg_ref_t), SPACE1_DIM1);
        +    dwbuf=malloc(sizeof(int)*SPACE2_DIM1*SPACE2_DIM2);
        +
        +    /* Create file */
        +    fid1 = H5Fcreate(FILE2, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
        +
        +    /* Create dataspace for datasets */
        +    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
        +
        +    /* Create a dataset */
        +    dset2=H5Dcreate(fid1,"Dataset2",H5T_STD_U8LE,sid2,H5P_DEFAULT);
        +
        +    for(i=0; i < SPACE2_DIM1*SPACE2_DIM2; i++)
        +        dwbuf[i]=i*3;
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dset2,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,dwbuf);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dset2);
        +
        +    /* Create dataspace for the reference dataset */
        +    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
        +
        +    /* Create a dataset */
        +    dset1=H5Dcreate(fid1,"Dataset1",H5T_STD_REF_DSETREG,sid1,H5P_DEFAULT);
        +
        +    /* Create references */
        +
        +    /* Select 6x6 hyperslab for first reference */
        +    start[0]=2; start[1]=2;
        +    stride[0]=1; stride[1]=1;
        +    count[0]=6; count[1]=6;
        +    block[0]=1; block[1]=1;
        +    ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
        +
        +    /* Store first dataset region */
        +    ret = H5Rcreate(&wbuf[0],fid1,"/Dataset2",H5R_DATASET_REGION,sid2);
        +
        +    /* Select sequence of ten points for second reference */
        +    coord1[0][0]=6; coord1[0][1]=9;
        +    coord1[1][0]=2; coord1[1][1]=2;
        +    coord1[2][0]=8; coord1[2][1]=4;
        +    coord1[3][0]=1; coord1[3][1]=6;
        +    coord1[4][0]=2; coord1[4][1]=8;
        +    coord1[5][0]=3; coord1[5][1]=2;
        +    coord1[6][0]=0; coord1[6][1]=4;
        +    coord1[7][0]=9; coord1[7][1]=0;
        +    coord1[8][0]=7; coord1[8][1]=1;
        +    coord1[9][0]=3; coord1[9][1]=3;
        +    ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hssize_t **)coord1);
        +
        +    /* Store second dataset region */
        +    ret = H5Rcreate(&wbuf[1],fid1,"/Dataset2",H5R_DATASET_REGION,sid2);
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dset1,H5T_STD_REF_DSETREG,H5S_ALL,H5S_ALL,H5P_DEFAULT,wbuf);
        +
        +    /* Close all objects */
        +    ret = H5Sclose(sid1);
        +    ret = H5Dclose(dset1);
        +    ret = H5Sclose(sid2);
        +    
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +
        +    free(wbuf);
        +    free(dwbuf);
        +    return 0;
        +}   
        +
        +
        + + +Remarks: +
          +
        • The code, +
          +    dset1=H5Dcreate(fid1,"Dataset1",H5T_STD_REF_DSETREG,sid1,H5P_DEFAULT);
          +
          + creates a dataset to store references to the dataset(s) regions (selections). + Notice that the H5T_STD_REF_DSETREG datatype is used. + +
        • This program uses hyperslab and point selections. The dataspace + handle sid2 is used for the calls to H5Sselect_hyperslab + and H5Sselect_elements. The handle was created when dataset + Dataset2 was created and it describes the dataset's + dataspace. It was not closed when the dataset was closed to decrease + the number of function calls used in the example. + In a real application program, one should open the dataset and determine + its dataspace using the H5Dget_space function. +
        • H5Rcreate is used to create a dataset region reference + and store it in a buffer. The signature of the function is: +
          +     herr_t H5Rcreate(void *buf, hid_t loc_id, const char *name,
          +                      H5R_type_t ref_type, hid_t space_id)
          +
          +
            +
          • The first argument specifies the buffer to store the reference. +
          • The second and third arguments specify the name of the referenced + dataset. In the example, the file identifier fid1 and the + absolute name of the dataset /Dataset2 were + used to identify the dataset. The reference to the region of this + dataset is stored in the buffer buf. + +
          • The fourth argument specifies the type of the reference. Since + the example creates references to the dataset regions, the + H5R_DATASET_REGION datatype is used. +
          • The fifth argument is a dataspace identifier of the referenced + dataset. +
          +
        + +File Contents: +The contents of the file trefer2.h5 created by this program +are as follows: + +
        +HDF5 "trefer2.h5" {
        +GROUP "/" {
        +   DATASET "Dataset1" {
        +      DATATYPE { H5T_REFERENCE }
        +      DATASPACE { SIMPLE ( 4 ) / ( 4 ) }
        +      DATA {
        +         DATASET 0:744 {(2,2)-(7,7)}, DATASET 0:744 {(6,9), (2,2), (8,4), (1,6),
        +          (2,8), (3,2), (0,4), (9,0), (7,1), (3,3)}, NULL, NULL
        +      }
        +   }
        +   DATASET "Dataset2" {
        +      DATATYPE { H5T_STD_U8LE }
        +      DATASPACE { SIMPLE ( 10, 10 ) / ( 10, 10 ) }
        +      DATA {
        +         0, 3, 6, 9, 12, 15, 18, 21, 24, 27,
        +         30, 33, 36, 39, 42, 45, 48, 51, 54, 57,
        +         60, 63, 66, 69, 72, 75, 78, 81, 84, 87,
        +         90, 93, 96, 99, 102, 105, 108, 111, 114, 117,
        +         120, 123, 126, 129, 132, 135, 138, 141, 144, 147,
        +         150, 153, 156, 159, 162, 165, 168, 171, 174, 177,
        +         180, 183, 186, 189, 192, 195, 198, 201, 204, 207,
        +         210, 213, 216, 219, 222, 225, 228, 231, 234, 237,
        +         240, 243, 246, 249, 252, 255, 255, 255, 255, 255,
        +         255, 255, 255, 255, 255, 255, 255, 255, 255, 255
        +      }
        +   }
        +}
        +}
        +
        +Notice how raw data of the dataset with the dataset regions is displayed. +Each element of the raw data consists of a reference to the dataset +(DATASET number1:number2) and its selected region. +If the selection is a hyperslab, the corner coordinates of the hyperslab +are displayed. +For the point selection, the coordinates of each point are displayed. +Since only two selections were stored, the third and fourth elements of the +dataset Dataset1 are set to NULL. +This was done by the buffer inizialization in the program. + +
        Reading references to dataset regions
        + +The following steps are involved in reading references to dataset +regions and referenced dataset regions (selections). +
          +
        1. Open and read the dataset containing references to the dataset regions. + The datatype H5T_STD_REF_DSETREG must be used during + read operation. +
        2. Use H5Rdereference to obtain the dataset identifier + from the read dataset region reference. +
                                 OR
          +    
          + Use H5Rget_region to obtain the dataspace identifier for + the dataset containing the selection from the read dataset region reference. +
        3. With the dataspace identifier, the H5S interface functions, + H5Sget_select_*, can be used to obtain information + about the selection. +
        4. Close all objects when they are no longer needed. +
        + +
        Programming Example
        + +Description: +The following example [also Example 12] +reads a dataset containing dataset region references. +It reads data from the dereferenced dataset and displays the number of +elements and raw data. Then it reads two selections: +a hyperslab selection and a point selection. The program queries a +number of points in the hyperslab and the coordinates and displays them. +Then it queries a number of selected points and their coordinates and +displays the information. + +
        +   
        +#include <stdlib.h>
        +#include <hdf5.h>
        +
        +#define FILE2	"trefer2.h5"
        +#define NPOINTS 10
        + 
        +/* 1-D dataset with fixed dimensions */
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK	1
        +#define SPACE1_DIM1	4
        +
        +/* 2-D dataset with fixed dimensions */
        +#define SPACE2_NAME  "Space2"
        +#define SPACE2_RANK	2
        +#define SPACE2_DIM1	10
        +#define SPACE2_DIM2	10
        +
        +int 
        +main(void)
        +{
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dset1,	/* Dataset ID			*/
        +                dset2;      /* Dereferenced dataset ID */
        +    hid_t		sid1,       /* Dataspace ID	#1		*/
        +                sid2;       /* Dataspace ID	#2		*/
        +    hsize_t *   coords;             /* Coordinate buffer */
        +    hsize_t		low[SPACE2_RANK];   /* Selection bounds */
        +    hsize_t		high[SPACE2_RANK];     /* Selection bounds */
        +    hdset_reg_ref_t      *rbuf;      /* buffer to to read disk */
        +    int    *drbuf;      /* Buffer for reading numeric data from disk */
        +    int        i, j;          /* counting variables */
        +    herr_t		ret;		/* Generic return value		*/
        +
        +    /* Output message about test being performed */
        +
        +    /* Allocate write & read buffers */
        +    rbuf=malloc(sizeof(hdset_reg_ref_t)*SPACE1_DIM1);
        +    drbuf=calloc(sizeof(int),SPACE2_DIM1*SPACE2_DIM2);
        +
        +    /* Open the file */
        +    fid1 = H5Fopen(FILE2, H5F_ACC_RDWR, H5P_DEFAULT);
        +
        +    /* Open the dataset */
        +    dset1=H5Dopen(fid1,"/Dataset1");
        +
        +    /* Read selection from disk */
        +    ret=H5Dread(dset1,H5T_STD_REF_DSETREG,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
        +
        +    /* Try to open objects */
        +    dset2 = H5Rdereference(dset1,H5R_DATASET_REGION,&rbuf[0]);
        +
        +    /* Check information in referenced dataset */
        +    sid1 = H5Dget_space(dset2);
        +
        +    ret=H5Sget_simple_extent_npoints(sid1);
        +    printf(" Number of elements in the dataset is : %d\n",ret);
        +
        +    /* Read from disk */
        +    ret=H5Dread(dset2,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,drbuf);
        +
        +    for(i=0; i < SPACE2_DIM1; i++) {
        +        for (j=0; j < SPACE2_DIM2; j++) printf (" %d ", drbuf[i*SPACE2_DIM2+j]);
        +        printf("\n"); }
        +
        +    /* Get the hyperslab selection */
        +    sid2=H5Rget_region(dset1,H5R_DATASET_REGION,&rbuf[0]);
        +
        +    /* Verify correct hyperslab selected */
        +    ret = H5Sget_select_npoints(sid2);
        +    printf(" Number of elements in the hyperslab is : %d \n", ret);
        +    ret = H5Sget_select_hyper_nblocks(sid2);
        +    coords=malloc(ret*SPACE2_RANK*sizeof(hsize_t)*2); /* allocate space for the hyperslab blocks */
        +    ret = H5Sget_select_hyper_blocklist(sid2,0,ret,coords);
        +    printf(" Hyperslab coordinates are : \n");
        +    printf (" ( %lu , %lu ) ( %lu , %lu ) \n", \
        +(unsigned long)coords[0],(unsigned long)coords[1],(unsigned long)coords[2],(unsigned long)coords[3]); 
        +    free(coords);
        +    ret = H5Sget_select_bounds(sid2,low,high);
        +
        +    /* Close region space */
        +    ret = H5Sclose(sid2);
        +
        +    /* Get the element selection */
        +    sid2=H5Rget_region(dset1,H5R_DATASET_REGION,&rbuf[1]);
        +
        +    /* Verify correct elements selected */
        +    ret = H5Sget_select_elem_npoints(sid2);
        +    printf(" Number of selected elements is : %d\n", ret);
        +
        +    /* Allocate space for the element points */
        +    coords= malloc(ret*SPACE2_RANK*sizeof(hsize_t)); 
        +    ret = H5Sget_select_elem_pointlist(sid2,0,ret,coords);
        +    printf(" Coordinates of selected elements are : \n");
        +    for (i=0; i < 2*NPOINTS; i=i+2) 
        +         printf(" ( %lu , %lu ) \n", (unsigned long)coords[i],(unsigned long)coords[i+1]); 
        +          
        +    free(coords);
        +    ret = H5Sget_select_bounds(sid2,low,high);
        +
        +    /* Close region space */
        +    ret = H5Sclose(sid2);
        +
        +    /* Close first space */
        +    ret = H5Sclose(sid1);
        +
        +    /* Close dereferenced Dataset */
        +    ret = H5Dclose(dset2);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dset1);
        +
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +
        +    /* Free memory buffers */
        +    free(rbuf);
        +    free(drbuf);
        +    return 0;
        +}   
        +
        +
        + +

        +The output of this program is : +

        +
        + Number of elements in the dataset is : 100
        + 0  3  6  9  12  15  18  21  24  27 
        + 30  33  36  39  42  45  48  51  54  57 
        + 60  63  66  69  72  75  78  81  84  87 
        + 90  93  96  99  102  105  108  111  114  117 
        + 120  123  126  129  132  135  138  141  144  147 
        + 150  153  156  159  162  165  168  171  174  177 
        + 180  183  186  189  192  195  198  201  204  207 
        + 210  213  216  219  222  225  228  231  234  237 
        + 240  243  246  249  252  255  255  255  255  255 
        + 255  255  255  255  255  255  255  255  255  255 
        + Number of elements in the hyperslab is : 36 
        + Hyperslab coordinates are : 
        + ( 2 , 2 ) ( 7 , 7 ) 
        + Number of selected elements is : 10
        + Coordinates of selected elements are : 
        + ( 6 , 9 ) 
        + ( 2 , 2 ) 
        + ( 8 , 4 ) 
        + ( 1 , 6 ) 
        + ( 2 , 8 ) 
        + ( 3 , 2 ) 
        + ( 0 , 4 ) 
        + ( 9 , 0 ) 
        + ( 7 , 1 ) 
        + ( 3 , 3 ) 
        + 
        +
        + +Remarks: +
          +
        • The dataset with the region references was read by H5Dread + with the H5T_STD_REF_DSETREG datatype specified. +
        • The read reference can be used to obtain the dataset identifier + with the following call: +
          +    dset2 = H5Rdereference (dset1,H5R_DATASET_REGION,&rbuf[0]);
          +
          + or to obtain spacial information (dataspace and selection) with the call + to H5Rget_region: +
          +    sid2=H5Rget_region(dset1,H5R_DATASET_REGION,&rbuf[0]);
          +
          + The reference to the dataset region has information for both the dataset + itself and its selection. In both functions: +
            +
          • The first parameter is an identifier of the dataset with the + region references. +
          • The second parameter specifies the type of reference stored. + In this example, a reference to the dataset region is stored. +
          • The third parameter is a buffer containing the reference of the + specified type. +
          +
        • This example introduces several H5Sget_select* + functions used to obtain information about selections: + +
            + H5Sget_select_npoints: returns the number of elements in + the hyperslab
            + H5Sget_select_hyper_nblocks: returns the number of blocks + in the hyperslab
            + H5Sget_select_blocklist: returns the "lower left" and + "upper right" coordinates of the blocks in the hyperslab selection
            + H5Sget_select_bounds: returns the coordinates of the + "minimal" block containing a hyperslab selection
            + H5Sget_select_elem_npoints: returns the number of points + in the element selection
            + H5Sget_select_elem_points: returns the coordinates of + the element selection +
          +

        (Return to TOC)


        +

        4. Example Codes

        @@ -2167,7 +3175,7 @@ main (void) hid_t file, dataset; /* handles */ hid_t datatype, dataspace; hid_t memspace; - H5T_class_t class; /* data type class */ + H5T_class_t class; /* datatype class */ H5T_order_t order; /* data order */ size_t size; /* * size of the data element @@ -2501,12 +3509,12 @@ int main (void)

        Example 4. Working with compound datatypes.

        -

        This example shows how to create a compound data type, write an array which has the compound data type to the file, and read back subsets of fields. +

        This example shows how to create a compound datatype, write an array which has the compound datatype to the file, and read back subsets of fields.

         
         /*
        - * This example shows how to create a compound data type,
        - * write an array which has the compound data type to the file,
        + * This example shows how to create a compound datatype,
        + * write an array which has the compound datatype to the file,
          * and read back fields' subsets.
          */
         
        @@ -2568,7 +3576,7 @@ main(void)
             file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
         
             /*
        -     * Create the memory data type. 
        +     * Create the memory datatype. 
              */
             s1_tid = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));
             H5Tinsert(s1_tid, "a_name", HOFFSET(s1_t, a), H5T_NATIVE_INT);
        @@ -2601,7 +3609,7 @@ main(void)
             dataset = H5Dopen(file, DATASETNAME);
         
             /* 
        -     * Create a data type for s2
        +     * Create a datatype for s2
              */
             s2_tid = H5Tcreate(H5T_COMPOUND, sizeof(s2_t));
         
        @@ -2628,7 +3636,7 @@ main(void)
             printf("\n");
         
             /* 
        -     * Create a data type for s3.
        +     * Create a datatype for s3.
              */
             s3_tid = H5Tcreate(H5T_COMPOUND, sizeof(float));
         
        @@ -3470,6 +4478,503 @@ attr_info(hid_t loc_id, const char *name, void *opdata)
         
        +

        Example 9. Creating and storing references to objects.

        +This example creates a group and two datasets and a named datatype +in the group. References to these four objects are stored in the dataset +in the root group. + +
        +
        +#include <hdf5.h>
        +
        +#define FILE1   "trefer1.h5"
        +
        +/* 1-D dataset with fixed dimensions */
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK	1
        +#define SPACE1_DIM1	4
        +
        +/* 2-D dataset with fixed dimensions */
        +#define SPACE2_NAME  "Space2"
        +#define SPACE2_RANK	2
        +#define SPACE2_DIM1	10
        +#define SPACE2_DIM2	10
        +
        +int 
        +main(void) {
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dataset;	/* Dataset ID			*/
        +    hid_t		group;      /* Group ID             */
        +    hid_t		sid1;       /* Dataspace ID			*/
        +    hid_t		tid1;       /* Datatype ID			*/
        +    hsize_t		dims1[] = {SPACE1_DIM1};
        +    hobj_ref_t      *wbuf;      /* buffer to write to disk */
        +    int       *tu32;      /* Temporary pointer to int data */
        +    int        i;          /* counting variables */
        +    const char *write_comment="Foo!"; /* Comments for group */
        +    herr_t		ret;		/* Generic return value		*/
        +
        +/* Compound datatype */
        +typedef struct s1_t {
        +    unsigned int a;
        +    unsigned int b;
        +    float c;
        +} s1_t;
        +
        +    /* Allocate write buffers */
        +    wbuf=(hobj_ref_t *)malloc(sizeof(hobj_ref_t)*SPACE1_DIM1);
        +    tu32=malloc(sizeof(int)*SPACE1_DIM1);
        +
        +    /* Create file */
        +    fid1 = H5Fcreate(FILE1, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
        +
        +    /* Create dataspace for datasets */
        +    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
        +
        +    /* Create a group */
        +    group=H5Gcreate(fid1,"Group1",-1);
        +
        +    /* Set group's comment */
        +    ret=H5Gset_comment(group,".",write_comment);
        +
        +    /* Create a dataset (inside Group1) */
        +    dataset=H5Dcreate(group,"Dataset1",H5T_STD_U32LE,sid1,H5P_DEFAULT);
        +
        +    for(i=0; i < SPACE1_DIM1; i++)
        +        tu32[i] = i*3;
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dataset,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,tu32);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Create another dataset (inside Group1) */
        +    dataset=H5Dcreate(group,"Dataset2",H5T_NATIVE_UCHAR,sid1,H5P_DEFAULT);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Create a datatype to refer to */
        +    tid1 = H5Tcreate (H5T_COMPOUND, sizeof(s1_t));
        +
        +    /* Insert fields */
        +    ret=H5Tinsert (tid1, "a", HOFFSET(s1_t,a), H5T_NATIVE_INT);
        +
        +    ret=H5Tinsert (tid1, "b", HOFFSET(s1_t,b), H5T_NATIVE_INT);
        +
        +    ret=H5Tinsert (tid1, "c", HOFFSET(s1_t,c), H5T_NATIVE_FLOAT);
        +
        +    /* Save datatype for later */
        +    ret=H5Tcommit (group, "Datatype1", tid1);
        +
        +    /* Close datatype */
        +    ret = H5Tclose(tid1);
        +
        +    /* Close group */
        +    ret = H5Gclose(group);
        +
        +    /* Create a dataset to store references */
        +    dataset=H5Dcreate(fid1,"Dataset3",H5T_STD_REF_OBJ,sid1,H5P_DEFAULT);
        +
        +    /* Create reference to dataset */
        +    ret = H5Rcreate(&wbuf[0],fid1,"/Group1/Dataset1",H5R_OBJECT,-1);
        +
        +    /* Create reference to dataset */
        +    ret = H5Rcreate(&wbuf[1],fid1,"/Group1/Dataset2",H5R_OBJECT,-1);
        +
        +    /* Create reference to group */
        +    ret = H5Rcreate(&wbuf[2],fid1,"/Group1",H5R_OBJECT,-1);
        +
        +    /* Create reference to named datatype */
        +    ret = H5Rcreate(&wbuf[3],fid1,"/Group1/Datatype1",H5R_OBJECT,-1);
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dataset,H5T_STD_REF_OBJ,H5S_ALL,H5S_ALL,H5P_DEFAULT,wbuf);
        +
        +    /* Close disk dataspace */
        +    ret = H5Sclose(sid1);
        +    
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +    free(wbuf);
        +    free(tu32);
        +    return 0;
        +}
        +
        +
        + + + +

        Example 10. Reading references to objects.

        +This example opens and reads dataset Dataset3 from +the file created in Example 9. Then the program dereferences the references +to dataset Dataset1, the group and the named datatype, +and opens those objects. +The program reads and displays the dataset's data, the group's comment, and +the number of members of the compound datatype. + + +
        +
        +#include <stdlib.h>
        +#include <hdf5.h>
        +
        +#define FILE1   "trefer1.h5"
        +
        +/* dataset with fixed dimensions */
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK	1
        +#define SPACE1_DIM1	4
        +
        +int 
        +main(void)
        +{
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dataset,	/* Dataset ID			*/
        +                dset2;      /* Dereferenced dataset ID */
        +    hid_t		group;      /* Group ID             */
        +    hid_t		sid1;       /* Dataspace ID			*/
        +    hid_t		tid1;       /* Datatype ID			*/
        +    hobj_ref_t      *rbuf;      /* buffer to read from disk */
        +    int                *tu32;      /* temp. buffer read from disk */
        +    int        i;          /* counting variables */
        +    char read_comment[10];
        +    herr_t		ret;		/* Generic return value		*/
        +
        +    /* Allocate read buffers */
        +    rbuf = malloc(sizeof(hobj_ref_t)*SPACE1_DIM1);
        +    tu32 = malloc(sizeof(int)*SPACE1_DIM1);
        +
        +    /* Open the file */
        +    fid1 = H5Fopen(FILE1, H5F_ACC_RDWR, H5P_DEFAULT);
        +
        +    /* Open the dataset */
        +    dataset=H5Dopen(fid1,"/Dataset3");
        +
        +    /* Read selection from disk */
        +    ret=H5Dread(dataset,H5T_STD_REF_OBJ,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
        +
        +    /* Open dataset object */
        +    dset2 = H5Rdereference(dataset,H5R_OBJECT,&rbuf[0]);
        +
        +    /* Check information in referenced dataset */
        +    sid1 = H5Dget_space(dset2);
        +
        +    ret=H5Sget_simple_extent_npoints(sid1);
        +
        +    /* Read from disk */
        +    ret=H5Dread(dset2,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,tu32);
        +    printf("Dataset data : \n");
        +     for (i=0; i < SPACE1_DIM1 ; i++) printf (" %d ", tu32[i]);
        +    printf("\n");
        +    printf("\n");
        +
        +    /* Close dereferenced Dataset */
        +    ret = H5Dclose(dset2);
        +
        +    /* Open group object */
        +    group = H5Rdereference(dataset,H5R_OBJECT,&rbuf[2]);
        +
        +    /* Get group's comment */
        +    ret=H5Gget_comment(group,".",10,read_comment);
        +    printf("Group comment is %s \n", read_comment);
        +    printf(" \n");
        +    /* Close group */
        +    ret = H5Gclose(group);
        +
        +    /* Open datatype object */
        +    tid1 = H5Rdereference(dataset,H5R_OBJECT,&rbuf[3]);
        +
        +    /* Verify correct datatype */
        +    {
        +        H5T_class_t tclass;
        +
        +        tclass= H5Tget_class(tid1);
        +        if ((tclass == H5T_COMPOUND))
        +           printf ("Number of compound datatype members is %d \n", H5Tget_nmembers(tid1)); 
        +    printf(" \n");
        +    }
        +
        +    /* Close datatype */
        +    ret = H5Tclose(tid1);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dataset);
        +
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +
        +    /* Free memory buffers */
        +    free(rbuf);
        +    free(tu32);
        +    return 0;
        +}   
        +
        +
        + + +

        Example 11. Creating and writing a reference to a region.

        + +This example creates a dataset in the file. Then it creates a dataset +to store references to the dataset regions (selections). +The first selection is a 6 x 6 hyperslab. +The second selection is a point selection in the same dataset. +References to both selections are created and stored in the buffer, +and then written to the dataset in the file. + +
        +#include <stdlib.h>
        +#include <hdf5.h>
        +
        +#define FILE2	"trefer2.h5"
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK     1
        +#define SPACE1_DIM1     4
        +
        +/* Dataset with fixed dimensions */
        +#define SPACE2_NAME  "Space2"
        +#define SPACE2_RANK	2
        +#define SPACE2_DIM1	10
        +#define SPACE2_DIM2	10
        +
        +/* Element selection information */
        +#define POINT1_NPOINTS 10
        +
        +int
        +main(void)
        +{
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dset1,	/* Dataset ID			*/
        +                dset2;      /* Dereferenced dataset ID */
        +    hid_t		sid1,       /* Dataspace ID	#1		*/
        +                sid2;       /* Dataspace ID	#2		*/
        +    hsize_t		dims1[] = {SPACE1_DIM1},
        +            	dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
        +    hssize_t	start[SPACE2_RANK];     /* Starting location of hyperslab */
        +    hsize_t		stride[SPACE2_RANK];    /* Stride of hyperslab */
        +    hsize_t		count[SPACE2_RANK];     /* Element count of hyperslab */
        +    hsize_t		block[SPACE2_RANK];     /* Block size of hyperslab */
        +    hssize_t	coord1[POINT1_NPOINTS][SPACE2_RANK]; 
        +                                    /* Coordinates for point selection */
        +    hdset_reg_ref_t      *wbuf;      /* buffer to write to disk */
        +    int     *dwbuf;      /* Buffer for writing numeric data to disk */
        +    int        i;          /* counting variables */
        +    herr_t		ret;		/* Generic return value		*/
        +
        +
        +    /* Allocate write & read buffers */
        +    wbuf=calloc(sizeof(hdset_reg_ref_t), SPACE1_DIM1);
        +    dwbuf=malloc(sizeof(int)*SPACE2_DIM1*SPACE2_DIM2);
        +
        +    /* Create file */
        +    fid1 = H5Fcreate(FILE2, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
        +
        +    /* Create dataspace for datasets */
        +    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
        +
        +    /* Create a dataset */
        +    dset2=H5Dcreate(fid1,"Dataset2",H5T_STD_U8LE,sid2,H5P_DEFAULT);
        +
        +    for(i=0; i < SPACE2_DIM1*SPACE2_DIM2; i++)
        +        dwbuf[i]=i*3;
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dset2,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,dwbuf);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dset2);
        +
        +    /* Create dataspace for the reference dataset */
        +    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
        +
        +    /* Create a dataset */
        +    dset1=H5Dcreate(fid1,"Dataset1",H5T_STD_REF_DSETREG,sid1,H5P_DEFAULT);
        +
        +    /* Create references */
        +
        +    /* Select 6x6 hyperslab for first reference */
        +    start[0]=2; start[1]=2;
        +    stride[0]=1; stride[1]=1;
        +    count[0]=6; count[1]=6;
        +    block[0]=1; block[1]=1;
        +    ret = H5Sselect_hyperslab(sid2,H5S_SELECT_SET,start,stride,count,block);
        +
        +    /* Store first dataset region */
        +    ret = H5Rcreate(&wbuf[0],fid1,"/Dataset2",H5R_DATASET_REGION,sid2);
        +
        +    /* Select sequence of ten points for second reference */
        +    coord1[0][0]=6; coord1[0][1]=9;
        +    coord1[1][0]=2; coord1[1][1]=2;
        +    coord1[2][0]=8; coord1[2][1]=4;
        +    coord1[3][0]=1; coord1[3][1]=6;
        +    coord1[4][0]=2; coord1[4][1]=8;
        +    coord1[5][0]=3; coord1[5][1]=2;
        +    coord1[6][0]=0; coord1[6][1]=4;
        +    coord1[7][0]=9; coord1[7][1]=0;
        +    coord1[8][0]=7; coord1[8][1]=1;
        +    coord1[9][0]=3; coord1[9][1]=3;
        +    ret = H5Sselect_elements(sid2,H5S_SELECT_SET,POINT1_NPOINTS,(const hssize_t **)coord1);
        +
        +    /* Store second dataset region */
        +    ret = H5Rcreate(&wbuf[1],fid1,"/Dataset2",H5R_DATASET_REGION,sid2);
        +
        +    /* Write selection to disk */
        +    ret=H5Dwrite(dset1,H5T_STD_REF_DSETREG,H5S_ALL,H5S_ALL,H5P_DEFAULT,wbuf);
        +
        +    /* Close all objects */
        +    ret = H5Sclose(sid1);
        +    ret = H5Dclose(dset1);
        +    ret = H5Sclose(sid2);
        +    
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +
        +    free(wbuf);
        +    free(dwbuf);
        +    return 0;
        +}   
        +
        +
        + + +

        Example 12. Reading a reference to a region.

        + +This example reads a dataset containing dataset region references. +It reads data from the dereferenced dataset and displays the number of +elements and raw data. Then it reads two selections: +a hyperslab selection and a point selection. The program queries a +number of points in the hyperslab and the coordinates and displays them. +Then it queries a number of selected points and their coordinates and +displays the information. + +
        +   
        +#include <stdlib.h>
        +#include <hdf5.h>
        +
        +#define FILE2	"trefer2.h5"
        +#define NPOINTS 10
        + 
        +/* 1-D dataset with fixed dimensions */
        +#define SPACE1_NAME  "Space1"
        +#define SPACE1_RANK	1
        +#define SPACE1_DIM1	4
        +
        +/* 2-D dataset with fixed dimensions */
        +#define SPACE2_NAME  "Space2"
        +#define SPACE2_RANK	2
        +#define SPACE2_DIM1	10
        +#define SPACE2_DIM2	10
        +
        +int 
        +main(void)
        +{
        +    hid_t		fid1;		/* HDF5 File IDs		*/
        +    hid_t		dset1,	/* Dataset ID			*/
        +                dset2;      /* Dereferenced dataset ID */
        +    hid_t		sid1,       /* Dataspace ID	#1		*/
        +                sid2;       /* Dataspace ID	#2		*/
        +    hsize_t *   coords;             /* Coordinate buffer */
        +    hsize_t		low[SPACE2_RANK];   /* Selection bounds */
        +    hsize_t		high[SPACE2_RANK];     /* Selection bounds */
        +    hdset_reg_ref_t      *rbuf;      /* buffer to to read disk */
        +    int    *drbuf;      /* Buffer for reading numeric data from disk */
        +    int        i, j;          /* counting variables */
        +    herr_t		ret;		/* Generic return value		*/
        +
        +    /* Output message about test being performed */
        +
        +    /* Allocate write & read buffers */
        +    rbuf=malloc(sizeof(hdset_reg_ref_t)*SPACE1_DIM1);
        +    drbuf=calloc(sizeof(int),SPACE2_DIM1*SPACE2_DIM2);
        +
        +    /* Open the file */
        +    fid1 = H5Fopen(FILE2, H5F_ACC_RDWR, H5P_DEFAULT);
        +
        +    /* Open the dataset */
        +    dset1=H5Dopen(fid1,"/Dataset1");
        +
        +    /* Read selection from disk */
        +    ret=H5Dread(dset1,H5T_STD_REF_DSETREG,H5S_ALL,H5S_ALL,H5P_DEFAULT,rbuf);
        +
        +    /* Try to open objects */
        +    dset2 = H5Rdereference(dset1,H5R_DATASET_REGION,&rbuf[0]);
        +
        +    /* Check information in referenced dataset */
        +    sid1 = H5Dget_space(dset2);
        +
        +    ret=H5Sget_simple_extent_npoints(sid1);
        +    printf(" Number of elements in the dataset is : %d\n",ret);
        +
        +    /* Read from disk */
        +    ret=H5Dread(dset2,H5T_NATIVE_INT,H5S_ALL,H5S_ALL,H5P_DEFAULT,drbuf);
        +
        +    for(i=0; i < SPACE2_DIM1; i++) {
        +        for (j=0; j < SPACE2_DIM2; j++) printf (" %d ", drbuf[i*SPACE2_DIM2+j]);
        +        printf("\n"); }
        +
        +    /* Get the hyperslab selection */
        +    sid2=H5Rget_region(dset1,H5R_DATASET_REGION,&rbuf[0]);
        +
        +    /* Verify correct hyperslab selected */
        +    ret = H5Sget_select_npoints(sid2);
        +    printf(" Number of elements in the hyperslab is : %d \n", ret);
        +    ret = H5Sget_select_hyper_nblocks(sid2);
        +    coords=malloc(ret*SPACE2_RANK*sizeof(hsize_t)*2); /* allocate space for the hyperslab blocks */
        +    ret = H5Sget_select_hyper_blocklist(sid2,0,ret,coords);
        +    printf(" Hyperslab coordinates are : \n");
        +    printf (" ( %lu , %lu ) ( %lu , %lu ) \n", \
        +(unsigned long)coords[0],(unsigned long)coords[1],(unsigned long)coords[2],(unsigned long)coords[3]); 
        +    free(coords);
        +    ret = H5Sget_select_bounds(sid2,low,high);
        +
        +    /* Close region space */
        +    ret = H5Sclose(sid2);
        +
        +    /* Get the element selection */
        +    sid2=H5Rget_region(dset1,H5R_DATASET_REGION,&rbuf[1]);
        +
        +    /* Verify correct elements selected */
        +    ret = H5Sget_select_elem_npoints(sid2);
        +    printf(" Number of selected elements is : %d\n", ret);
        +
        +    /* Allocate space for the element points */
        +    coords= malloc(ret*SPACE2_RANK*sizeof(hsize_t)); 
        +    ret = H5Sget_select_elem_pointlist(sid2,0,ret,coords);
        +    printf(" Coordinates of selected elements are : \n");
        +    for (i=0; i < 2*NPOINTS; i=i+2) 
        +         printf(" ( %lu , %lu ) \n", (unsigned long)coords[i],(unsigned long)coords[i+1]); 
        +          
        +    free(coords);
        +    ret = H5Sget_select_bounds(sid2,low,high);
        +
        +    /* Close region space */
        +    ret = H5Sclose(sid2);
        +
        +    /* Close first space */
        +    ret = H5Sclose(sid1);
        +
        +    /* Close dereferenced Dataset */
        +    ret = H5Dclose(dset2);
        +
        +    /* Close Dataset */
        +    ret = H5Dclose(dset1);
        +
        +    /* Close file */
        +    ret = H5Fclose(fid1);
        +
        +    /* Free memory buffers */
        +    free(rbuf);
        +    free(drbuf);
        +    return 0;
        +}   
        +
        +
        +

          @@ -3500,7 +5005,7 @@ Introduction to HDF5 

        - @@ -90,6 +88,10 @@ with a single print command as follows: + @@ -97,6 +99,10 @@ with a single print command as follows: + @@ -127,7 +133,7 @@ with a single print command as follows:
        HDF Help Desk
        -Last modified: 30 October 1998 +Last modified: 16 October 1999
        Copyright   diff --git a/doc/html/H5.user.PrintGen.html b/doc/html/H5.user.PrintGen.html index be1a537..ca7d5e2 100644 --- a/doc/html/H5.user.PrintGen.html +++ b/doc/html/H5.user.PrintGen.html @@ -55,9 +55,7 @@ with a single print command as follows: A guide to the H5D interface.
        Data Types and -
             - Enumeration Data Types +
        Datatypes A guide to the H5T interface.
        A guide to the H5Z interface.
        Palettes + A guide to the use of palettes + in HDF5. +
        Caching A guide for meta and raw data caching.
        A guide to the issues and pitfalls of dataset chunking.
        Mounting Files + A guide to mounting files containing + external HDF5 datasets. +
        Debugging A guide to debugging HDF5 API calls.
        HDF Help Desk
        -Last modified: 1 June 1999 +Last modified: 22 July 1999
        diff --git a/doc/html/H5.user.PrintTpg.html b/doc/html/H5.user.PrintTpg.html index 1b018e0..c8b9536 100644 --- a/doc/html/H5.user.PrintTpg.html +++ b/doc/html/H5.user.PrintTpg.html @@ -15,7 +15,7 @@
        -A User's Guide for HDF5 +HDF5 User's Guide


        @@ -24,9 +24,9 @@ A User's Guide for HDF5


        -Release 1.0 +Release 1.2
        -January 1999 +October 1999




        @@ -51,21 +51,25 @@ University of Illinois at Urbana-Champaign (UIUC) A Note to the Reader: The primary HDF5 user documents are the online HTML documents distributed with the HDF5 code and binaries and found on the HDF5 website. -Several users have expressed a desire for documents in an alternative format: +These PDF and PostScript versions are generated from the HTML to provide +the following capabilites:
          -
        • Some have requested a version that can be reasonably printed in a +
        • To provide a version that can be reasonably printed in a single print operation. -
        • Others have requested an easily searchable version. +
        • To provide an easily searchable version.
        -This PDF file has been created expressly to meet these needs. -

        -The reader will note that each section of this document looks very much -as the corresponding HTML page would look in a web browser. That is not -accidental as the HTML version remains the HDF5 development team's primary -documentation vehicle. +In this package, you will find four PDF and PostScript documents: +

          +
        • Introduction to HDF5 +
        • A User's Guide for HDF5 +
        • HDF5 Reference Manual +
        • All three of the above documents concatenated into a single file +
        +Note that these versions were created in response to user feedback; +the HDF Group is eager to hear from you so as to improve the delivered +product. -


        diff --git a/doc/html/H5.user.html b/doc/html/H5.user.html index f15e164..f6970be 100644 --- a/doc/html/H5.user.html +++ b/doc/html/H5.user.html @@ -21,51 +21,8 @@ - -
        @@ -88,7 +45,7 @@ And in this document, the A guide to the H5D interface. - Data Types + Datatypes A guide to the H5T interface. @@ -121,6 +78,10 @@ And in this document, the A guide to the H5Z interface. + Palettes + A guide to the use of palettes + in HDF5. + Caching A guide for meta and raw data caching. @@ -128,6 +89,14 @@ And in this document, the A guide to the issues and pitfalls of dataset chunking. + Mounting Files + A guide to mounting files containing + external HDF5 datasets. + + Performance + A guide to performance issues and + analysis tools. + Debugging A guide to debugging HDF5 API calls. @@ -136,7 +105,7 @@ And in this document, the
           Configuration Parameters A list of HDF5 environment variables - and
           configuration parameters. + and configuration
           parameters. DDL for HDF5 A DDL in BNF for HDF5. @@ -190,67 +159,13 @@ And in this document, the - +    -
        - - - -
        @@ -258,7 +173,7 @@ Last modified: Wed Aug 19 15:29:11 PDT 1998 HDF Help Desk
        -Last modified: 30 October 1998 +Last modified: 22 July 1999 Copyright   diff --git a/doc/html/Makefile.in b/doc/html/Makefile.in index cfb7b14..c04597c 100644 --- a/doc/html/Makefile.in +++ b/doc/html/Makefile.in @@ -7,33 +7,45 @@ top_srcdir=@top_srcdir@ top_builddir=../.. srcdir=@srcdir@ +VPATH=.:@srcdir@ @COMMENCE@ # Subdirectories in build-order (not including `examples') SUBDIRS=Tutor DOCDIR=$(docdir)/hdf5 +TRACE=perl $(top_srcdir)/bin/trace + +# Add `-I.' to the C preprocessor flags. +CPPFLAGS=-I. -I@srcdir@ @CPPFLAGS@ + +# Temporary files +MOSTLYCLEAN= + # Public doc files (to be installed)... -PUB_DOCS=Attributes.html Big.html Caching.html Chunking.html Chunk_f1.gif \ +PUB_DOCS= Attributes.html Big.html Caching.html Chunking.html Chunk_f1.gif \ Chunk_f2.gif Chunk_f3.gif Chunk_f4.gif Chunk_f5.gif Chunk_f6.gif \ Coding.html Copyright.html Datasets.html Dataspaces.html \ Datatypes.html ddl.html Debugging.html EnumMap.gif Environment.html \ - Errors.html Files.html Filters.html Glossary.html Groups.html \ - H5.api_map.html H5.format.html H5.intro.html H5.sample_code.html \ - H5.user.html H5.user.PrintGen.html H5.user.PrintTpg.html IH_map1.gif \ - IH_map2.gif IH_map3.gif IH_map4.gif IH_mapFoot.gif IH_mapHead.gif \ - IOPipe.html NCSAfooterlogo.gif Properties.html Ragged.html \ - References.html RM_H5.html RM_H5A.html RM_H5D.html RM_H5E.html \ - RM_H5F.html RM_H5Front.html RM_H5G.html RM_H5I.html RM_H5P.html \ - RM_H5R.html RM_H5RA.html RM_H5S.html RM_H5T.html RM_H5Z.html \ - Tools.html Version.html chunk1.gif compat.html dataset_p1.gif \ - dataset_p1.obj extern1.gif extern2.gif group_p1.gif group_p2.gif \ - group_p3.gif h5s.examples hdf2.jpg ph5design.html ph5example.c \ - ph5implement.txt pipe1.gif pipe2.gif pipe3.gif pipe4.gif pipe5.gif \ - index.html version.gif + Errors.html FF-IH_FileGroup.gif FF-IH_FileObject.gif Files.html \ + Filters.html FF-IH_FileGroup.gif FF-IH_FileObject.gif Glossary.html \ + Groups.html H5.api_map.html H5.format.html H5.intro.html \ + H5.sample_code.html H5.user.html H5.user.PrintGen.html \ + H5.user.PrintTpg.html IH_map1.gif IH_map2.gif IH_map3.gif IH_map4.gif \ + IH_mapFoot.gif IH_mapHead.gif IOPipe.html MountingFiles.html \ + NCSAfooterlogo.gif PaletteExample1.gif Palettes.fm.anc.gif \ + Palettes.html Performance.html Properties.html Ragged.html + References.html RM_H5.html \ + RM_H5A.html RM_H5D.html RM_H5E.html RM_H5F.html RM_H5Front.html \ + RM_H5G.html RM_H5I.html RM_H5P.html RM_H5R.html RM_H5RA.html \ + RM_H5S.html RM_H5T.html RM_H5Z.html Tools.html Version.html chunk1.gif \ + compat.html dataset_p1.gif dataset_p1.obj extern1.gif extern2.gif \ + group_p1.gif group_p2.gif group_p3.gif h5s.examples hdf2.jpg \ + ph5design.html ph5example.c ph5implement.txt pipe1.gif pipe2.gif \ + pipe3.gif pipe4.gif pipe5.gif index.html version.gif # Other doc files (not to be installed)... -PRIVATE_DOCS=Chunk_f1.obj Chunk_f2.obj Chunk_f6.obj CodeReview.html \ +PRIVATE_DOCS= Chunk_f1.obj Chunk_f2.obj Chunk_f6.obj CodeReview.html \ ExternalFiles.html MemoryManagement.html ObjectHeader.txt chunk1.obj \ extern1.obj extern2.obj group_p1.obj group_p2.obj group_p3.obj \ pipe1.obj pipe2.obj pipe3.obj pipe4.obj pipe5.obj heap.txt move.html \ diff --git a/doc/html/Properties.html b/doc/html/Properties.html index 174affc..e84fc6a 100644 --- a/doc/html/Properties.html +++ b/doc/html/Properties.html @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
        + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
        + References   Attributes   Property Lists   Error Handling   +
        Filters   + Palettes   Caching   -
        Chunking   + Mounting Files   +
        + Performance   Debugging   Environment   DDL   +
        Ragged Arrays   -
  12. @@ -146,70 +130,46 @@ And in this document, the And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   -
  13. - - - - -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/RM_H5.html b/doc/html/RM_H5.html index 27c96a3..6457994 100644 --- a/doc/html/RM_H5.html +++ b/doc/html/RM_H5.html @@ -162,11 +162,11 @@ and it users.
    Parameters:
    unsigned *majnum -
    The major version of the library. +
    OUT: The major version of the library.
    unsigned *minnum -
    The minor version of the library. +
    OUT: The minor version of the library.
    unsigned *relnum -
    The release number of the library. +
    OUT: The release number of the library.
    Returns:
    Returns a non-negative value if successful; @@ -187,22 +187,24 @@ and it users.
    Description:
    H5check_version verifies that the arguments match the version numbers compiled into the library. This function is intended - to be called from user to verify that the versions of header files - compiled into the application match the version of the HDF5 library. + to be called by the user to verify that the version of the header files + compiled into the application match the version of the HDF5 library being used.

    Due to the risks of data corruption or segmentation faults, H5check_version causes the application to abort if the version numbers do not match. +

    + If the version numbers of the library do not match + the version numbers in the header files being checked, the library calls the + standard C function abort().

    Parameters:
    -
    unsigned *majnum -
    The major version of the library. -
    unsigned *minnum -
    The minor version of the library. -
    unsigned *relnum -
    The release number of the library. -
    unsigned *patnum -
    The patch number of the library. +
    unsigned majnum +
    IN: The major version of the library. +
    unsigned minnum +
    IN: The minor version of the library. +
    unsigned relnum +
    IN: The release number of the library.
    Returns:
    Returns a non-negative value if successful. diff --git a/doc/html/RM_H5A.html b/doc/html/RM_H5A.html index 0417752..e452644 100644 --- a/doc/html/RM_H5A.html +++ b/doc/html/RM_H5A.html @@ -51,6 +51,9 @@ H5A   These functions create and manipulate attributes and information about attributes. +

    +The C Interfaces: +
      @@ -77,6 +80,47 @@ and information about attributes.

    +The FORTRAN90 Interfaces: + +
    + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + + +
    + +       + +       + +
    + + +

    The Attribute interface, H5A, is primarily designed to easily allow small datasets to be attached to primary datasets as metadata information. Additional goals for the H5A interface include keeping storage requirement @@ -140,6 +184,13 @@ See Attributes in the

    Returns:
    Returns an attribute identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    +
    @@ -172,6 +223,13 @@ See Attributes in the
    Returns:
    Returns attribute identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -205,6 +263,13 @@ See Attributes in the
    Returns:
    Returns attribute identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -243,6 +308,13 @@ See Attributes in the
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -276,11 +348,18 @@ See Attributes in the
    hid_t mem_type_id
    IN: Identifier of the attribute datatype (in memory).
    void *buf -
    IN: Buffer for data to be read. +
    OUT: Buffer for data to be read.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -304,6 +383,13 @@ See Attributes in the
    Returns:
    Returns attribute dataspace identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -333,6 +419,13 @@ See Attributes in the
    Returns:
    Returns a datatype identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -340,7 +433,7 @@ See Attributes in the
    Name: H5Aget_name
    Signature: -
    hssize_t H5Aget_name(hid_t attr_id, +
    ssize_t H5Aget_name(hid_t attr_id, size_t buf_size, char *buf ) @@ -367,6 +460,13 @@ See Attributes in the
    Returns the length of the attribute's name, which may be longer than buf_size, if successful. Otherwise returns a negative value. +
    Non-C API(s): +
    +
    @@ -390,6 +490,13 @@ See Attributes in the
    Returns:
    Returns the number of attributes if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -454,6 +561,14 @@ See Attributes in the
    If successful, returns the return value of the last operator if it was non-zero, or zero if all attributes were processed. Otherwise returns a negative value. + @@ -484,6 +599,13 @@ See Attributes in the
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -507,6 +629,13 @@ See Attributes in the
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -550,7 +679,7 @@ H5A   HDF Help Desk
    -Last modified: 30 October 1998 +Last modified: 20 October 1999 diff --git a/doc/html/RM_H5D.html b/doc/html/RM_H5D.html index 849ec8d..63753c3 100644 --- a/doc/html/RM_H5D.html +++ b/doc/html/RM_H5D.html @@ -51,24 +51,76 @@ H5D   These functions create and manipulate dataset objects, and set and retrieve their constant or persistent properties. +

    +The C Interfaces: + +
                  +
    + +

    +The FORTRAN90 Interfaces: + +
    + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + +
    + +       + +       +
    @@ -121,6 +173,13 @@ and set and retrieve their constant or persistent properties.

    Returns:
    Returns a dataset identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -148,6 +207,13 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a dataset identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -172,6 +238,13 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a dataspace identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -200,6 +273,13 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a datatype identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -225,6 +305,146 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a dataset creation property list identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + + + + +
    +
    +
    Name: H5Dget_storage_size +
    Signature: +
    hsize_t H5Dget_storage_size(hid_t dataset_id + ) +
    Purpose: +
    Returns the amount of storage required for a dataset. +
    Description: +
    H5Dget_storage_size returns the amount of storage + that is required for the specified dataset, dataset_id. + For chunked datasets, this is the number of allocated chunks times + the chunk size. + The return value may be zero if no data has been stored. +
    Parameters: +
    +
    hid_t dataset_id +
    Identifier of the dataset to query. +
    +
    Returns: +
    Returns the amount of storage space allocated for the dataset, + not counting meta data; + otherwise returns a negative value. + +
    + + +
    +
    +
    Name: H5Dget_vlen_buf_size +      (Not yet implemented.) +
    Signature: +
    herr_t H5Dget_vlen_buf_size(hid_t dataset_id, + hid_t type_id, + hid_t space_id, + hsize_t *size + ) +
    Purpose: +
    Determines the number of bytes required to store VL data. +
    Description: +
    H5Dget_vlen_buf_size determines the number of bytes + required to store the VL data from the dataset, using the + space_id for the selection in the dataset on + disk and the type_id for the memory representation + of the VL data in memory. +

    + *size is returned with the number of bytes are + required to store the VL data in memory. +

    Parameters: +
    +
    hid_t dataset_id +
    Identifier of the dataset to query. +
    hid_t type_id +
    Identifier of the datatype. +
    hid_t space_id +
    Identifier of the dataspace. +
    hsize_t *size +
    The size in bytes of the buffer required to store the VL data. +
    +
    Returns: +
    Returns non-negative value if successful; + otherwise returns a negative value. + +
    + + +
    +
    +
    Name: H5Dvlen_reclaim +
    Signature: +
    herr_t H5Dvlen_reclaim(hid_t type_id + hid_t space_id, + hid_t plist_id, + void *buf + ) +
    Purpose: +
    Reclaims VL datatype memory buffers. +
    Description: +
    H5Dvlen_reclaim reclaims memory buffers created to + store VL datatypes. +

    + The type_id must be the datatype stored in the buffer. + The space_id describes the selection for the memory buffer + to free the VL datatypes within. + The plist_id is the dataset transfer property list which + was used for the I/O transfer to create the buffer. + And buf is the pointer to the buffer to be reclaimed. +

    + The VL structures (hvl_t) in the user's buffer are + modified to zero out the VL information after the memory has been reclaimed. +

    + If nested VL datatypes were used to create the buffer, + this routine frees them from the bottom up, releasing all + the memory without creating memory leaks. +

    Parameters: +
    +
    hid_t type_id +
    Identifier of the datatype. +
    hid_t space_id +
    Identifier of the dataspace. +
    hid_t plist_id +
    Identifier of the property list used to create the buffer. +
    void *buf +
    Pointer to the buffer to be reclaimed. +
    +
    Returns: +
    Returns non-negative value if successful; + otherwise returns a negative value. +
    @@ -293,6 +513,13 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -363,6 +590,13 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -391,6 +625,13 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -401,7 +642,7 @@ and set and retrieve their constant or persistent properties.
    hid_t H5Dclose(hid_t dataset_id )
    Purpose: -
    +
    Closes the specified dataset.
    Description:
    H5Dclose ends access to a dataset specified by dataset_id and releases resources used by it. @@ -415,9 +656,74 @@ and set and retrieve their constant or persistent properties.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + + + + +
    +
    +
    Name: H5Diterate +
    Signature: +
    herr_t H5Diterate( + void *buf, + hid_t type_id, + hid_t space_id, + H5D_operator_t operator, + void *operator_data + ) +
    Purpose: +
    Iterates over all selected elements in a dataspace. +
    Description: +
    H5Diterate iterates over all the elements selected + in a memory buffer. The callback function is called once for each + element selected in the dataspace. +

    + The selection in the dataspace is modified so that any elements + already iterated over are removed from the selection if the + iteration is interrupted (by the H5D_operator_t + function returning non-zero) before the iteration is complete; + the iteration may then be re-started by the user where it left off. + +

    Parameters: +
    +
    void *buf +
    IN/OUT: Pointer to the buffer in memory containing the + elements to iterate over. +
    hid_t type_id +
    IN: Datatype identifier for the elements stored in + buf. +
    hid_t space_id +
    IN: Dataspace identifier for buf. + Also contains the selection to iterate over. +
    H5D_operator_t operator +
    IN: Function pointer to the routine to be called + for each element in buf iterated over. +
    void *operator_data +
    IN/OUT: Pointer to any user-defined data associated + with the operation. +
    +
    Returns: +
    Returns the return value of the last operator if it was non-zero, + or zero if all elements have been processed. + Otherwise returns a negative value. +
    +
    @@ -458,7 +764,7 @@ H5D   HDF Help Desk
    -Last modified: 30 October 1998 +Last modified: 20 October 1999 diff --git a/doc/html/RM_H5F.html b/doc/html/RM_H5F.html index 7384532..b4f3044 100644 --- a/doc/html/RM_H5F.html +++ b/doc/html/RM_H5F.html @@ -52,20 +52,23 @@ These functions are designed to provide file-level access to HDF5 files. Further manipulation of objects inside a file is performed through one of APIs documented below. +

    +The C Interfaces: +

                 
      @@ -75,6 +78,47 @@ documented below.
    +

    +The FORTRAN90 Interfaces: + +
    + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + + +
    + +       + +       + +       + +
    +


    @@ -115,14 +159,36 @@ documented below.
    const char *name
    Name of the file to access.
    unsigned flags -
    File access flags. See the H5Fcreate - parameters list for a list of possible values. +
    File access flags. Allowable values include: +
      +
      H5F_ACC_RDWR +
      Allow read and write access to file. +
      H5F_ACC_RDONLY +
      Allow read-only access to file. +
      H5F_ACC_DEBUG +
      Print debug information. + (Used only by HDF5 library developers. + Do not use this flag in applications.) +
    + H5F_ACC_RDWR and H5F_ACC_RDONLY + are mutually exclusive; use exactly one.
    hid_t access_id
    Identifier for the file access properties list. + If parallel file access is desired, this is a collective + call according to the communicator stored in the + access_id. + Use H5P_DEFAULT for default file access properties.
    Returns:
    Returns a file identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -158,12 +224,8 @@ documented below.
    const char *name
    Name of the file to access.
    uintn flags -
    File access flags. Possible values include: +
    File access flags. Allowable values include:
      -
      H5F_ACC_RDWR -
      Allow read and write access to file. -
      H5F_ACC_RDONLY -
      Allow read-only access to file.
      H5F_ACC_TRUNC
      Truncate file, if it already exists, erasing all data previously stored in the file. @@ -171,22 +233,32 @@ documented below.
      Fail if file already exists.
      H5F_ACC_DEBUG
      Print debug information. -
      H5P_DEFAULT -
      Apply default file access and creation properties. + (Used only by HDF5 library developers. + Do not use this flag in applications.)
    + H5F_ACC_TRUNC and H5F_ACC_EXCL + are mutually exclusive; use exactly one.
    hid_t create_id
    File creation property list identifier, used when modifying default file meta-data. + Use H5P_DEFAULT for default file creation properties.
    hid_t access_id
    File access property list identifier. If parallel file access is desired, this is a collective call according to the communicator stored in the access_id. - Use 0 for default access properties. + Use H5P_DEFAULT for default file access properties.
    Returns:
    Returns a file identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -222,7 +294,7 @@ documented below.
    Parameters:
    -
    const char *object_id +
    hid_t object_id
    Identifier of object used to identify the file.
    H5F_scope_t scope
    Specifies the scope of the flushing action. @@ -230,6 +302,14 @@ documented below.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    @@ -237,7 +317,7 @@ documented below.
    Name: H5Fis_hdf5
    Signature: -
    hbool_t H5Fis_hdf5(const char *name +
    htri_t H5Fis_hdf5(const char *name )
    Purpose:
    Determines whether a file is in the HDF5 format. @@ -250,8 +330,16 @@ documented below.
    File name to check format.
    Returns: -
    Returns TRUE or FALSE if successful. +
    When successful, returns a positive value, for TRUE, + or 0 (zero), for FALSE. Otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -284,6 +372,14 @@ documented below.
    Returns:
    Returns a file creation property list identifier if successful; otherwise returns a negative value. + @@ -313,6 +409,14 @@ documented below.
    Returns:
    Returns a file access property list identifier if successful; otherwise returns a negative value. + @@ -337,6 +441,13 @@ documented below.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -357,8 +468,8 @@ documented below. loc_id and name using the mount properties plist_id.

    - Note that loc_id identifies a file or group. - name then specifies a group relative to loc_id. + Note that loc_id is either a file or group identifier + and name is relative to loc_id.

    Parameters:
    hid_t loc_id @@ -376,6 +487,14 @@ documented below.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    @@ -394,23 +513,34 @@ documented below. from the file mounted there. This function does not close either file.

    - The mount point can either be the group in the + The mount point can be either the group in the parent or the root group of the mounted file (both groups have the same name). If the mount point was opened before the mount then it is the group in the parent; if it was opened after the mount then it is the root group of the child. +

    + Note that loc_id is either a file or group identifier + and name is relative to loc_id.

    Parameters:
    hid_t loc_id
    The file or group identifier for the location at which the specified file is to be unmounted.
    const char *name -
    The name of the file to be unmounted. +
    The name of the mount point.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -423,7 +553,7 @@ documented below.
    Purpose:
    Reopens an HDF5 file.
    Description: -
    H5Freopen reopens an HDF5 file. The new + H5Freopen reopens an HDF5 file. The new file identifier which is returned points to the same file as the specified file idetifier, file_id. Both identifiers share caches and other information. @@ -438,6 +568,14 @@ documented below.
    Returns:
    Returns a new file identifier if successful; otherwise returns a negative value. + @@ -481,7 +619,7 @@ H5F   HDF Help Desk
    -Last modified: 30 October 1998 +Last modified: 20 October 1999 diff --git a/doc/html/RM_H5Front.html b/doc/html/RM_H5Front.html index c9741a9..a26b151 100644 --- a/doc/html/RM_H5Front.html +++ b/doc/html/RM_H5Front.html @@ -49,6 +49,28 @@ HDF5 Reference Manual   The HDF5 library provides several interfaces, each of which provides the tools required to meet specific aspects of the HDF5 data-handling requirements. +

    +A note regarding the prototype FORTRAN90 APIs:
    +This version of the
    HDF5 Reference Manual includes a description +of a partial FORTRAN90 prototype API to HDF5. +Prototype Fortran subroutines exist in the H5A, H5D, H5F, H5G, H5P, H5S, and H5T +interfaces and are described on those pages. +

    +In general, each Fortran subroutine performs exactly the same task +as the corresponding C function. The links at the top of each reference manual +section go to the C function descriptions, which serve as general descriptions +for both the C and Fortran APIs. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the Fortran-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. +

    +See README_Fortran90.html, +a copy of the README file in the Fortran prototype source code directory, +for more detailed notes regarding the prototype API. +

    +

    @@ -104,7 +126,7 @@ tools required to meet specific aspects of the HDF5 data-handling requirements.
    - +


    diff --git a/doc/html/RM_H5G.html b/doc/html/RM_H5G.html index 469b26d..818cef8 100644 --- a/doc/html/RM_H5G.html +++ b/doc/html/RM_H5G.html @@ -50,6 +50,8 @@ H5G   The Group interface functions create and manipulate groups of objects in an HDF5 file. +

    +The C Interfaces:
    @@ -76,6 +78,48 @@ of objects in an HDF5 file.

    +The FORTRAN90 Interfaces: + +
    + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + + +
    + +       + +       + +
    + +

    A group associates names with objects and provides a mechanism for mapping a name to an object. Since all objects appear in at least one group (with the possible exception of the root object) @@ -126,7 +170,7 @@ create or access function. then a default size is chosen.

    The return value is a group identifier for the open group. - This group identifier should be closed by calling + This group identifier should be closed by calling H5Gclose() when it is no longer needed.

    Parameters:
    @@ -146,9 +190,20 @@ create or access function.
    Returns:
    Returns a valid group identifier for the open group if successful; otherwise returns a negative value. +
    Non-C API(s): + +
    +
    +
    Name: H5Gopen @@ -178,6 +233,16 @@ create or access function.
    Returns:
    Returns a valid group identifier if successful; otherwise returns a negative value. +
    Non-C API(s): + +
    +
    @@ -202,6 +267,16 @@ create or access function.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): + +
    + @@ -251,6 +326,16 @@ create or access function.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): + +
    + @@ -285,6 +370,13 @@ create or access function.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -355,6 +447,35 @@ create or access function.
    Returns the return value of the last operator if it was non-zero, or zero if all group members were processed. Otherwise returns a negative value. +
    Non-C API(s): +
    There is no direct FORTRAN couterpart for the C function + H5Giterate. + Instead, that functionality is provided by two FORTRAN functions: +
    + + + + +
    + h5gn_members_f. +    + Purpose: + Returns the number of group members. +
    + h5gget_obj_info_idx_f +    + Purpose: + Returns name and type of the group member identified by its index. +
    +
    +
    + @@ -387,6 +508,13 @@ create or access function.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -422,7 +550,7 @@ create or access function. unsigned long fileno[2]; unsigned long objno[2]; unsigned nlink; - H5G_type_t type; + int type; time_t mtime; size_t linklen; } H5G_stat_t @@ -467,6 +595,13 @@ create or access function.
    Returns a non-negative value if successful, with the fields of statbuf (if non-null) initialized. Otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -515,6 +650,13 @@ create or access function.
    Returns a non-negative value, with the link value in value, if successful. Otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -558,6 +700,13 @@ create or access function.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -600,6 +749,13 @@ create or access function. counting the null terminator, if successful; the value returned may be larger than bufsize. Otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -643,7 +799,7 @@ H5G   HDF Help Desk
    -Last modified: 26 April 1999 +Last modified: 20 October 1999 diff --git a/doc/html/RM_H5P.html b/doc/html/RM_H5P.html index f327114..c1170b8 100644 --- a/doc/html/RM_H5P.html +++ b/doc/html/RM_H5P.html @@ -50,7 +50,10 @@ H5P   These functions manipulate property list objects to allow objects which require many different parameters to be easily manipulated. - + +

    +The C Interfaces: +
    @@ -74,11 +77,12 @@ many different parameters to be easily manipulated.
  14. H5Pset_istore_k
  15. H5Pget_istore_k -
      -
    -||   Available only in the -
         -parallel HDF5 library.
    + +

    Variable-length Datatype Properties +

  16.        @@ -101,8 +105,16 @@ parallel HDF5 library.
  17. H5Pget_cache
  18. H5Pset_split
  19. H5Pget_split +
  20. H5Pset_gc_references +
  21. H5Pget_gc_references +
      +
      +
    +||  Available only in the +parallel HDF5 library. +
  22.        Dataset Creation Properties @@ -133,6 +145,10 @@ parallel HDF5 library.
  23. H5Pget_buffer
  24. H5Pset_preserve
  25. H5Pget_preserve +
  26. H5Pset_hyper_cache +
  27. H5Pget_hyper_cache +
  28. H5Pset_btree_ratios +
  29. H5Pget_btree_ratios
  30. H5Pset_xfer   ||
  31. H5Pget_xfer   || @@ -147,8 +163,118 @@ parallel HDF5 library. -->
  32. -

    +The FORTRAN90 Interfaces: + +
    + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + + +
    + + General Property List Operations + + + + + + + + + + + + + + + + + + + + + +       + + +       + + + + + + + + + + + + + + + + + + + + + + + + +       + + Dataset Creation Properties + + + + + + + + + + + + + + + + +

    @@ -197,6 +323,13 @@ parallel HDF5 library.
    Returns:
    Returns a property list identifier (plist) if successful; otherwise Fail (-1). +
    Non-C API(s): +
    +

    @@ -220,6 +353,13 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -244,6 +384,13 @@ parallel HDF5 library.
    Returns:
    Returns a property list class if successful. Otherwise returns H5P_NO_CLASS (-1). +
    Non-C API(s): +
    + @@ -268,6 +415,13 @@ parallel HDF5 library.
    Returns:
    Returns a property list identifier if successful; otherwise returns a negative value. +
    Non-C API(s): +
    + @@ -304,6 +458,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -331,6 +493,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -356,6 +526,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -389,6 +567,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -418,6 +604,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -459,6 +653,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -490,6 +692,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if the file access property list is set to the MPI. Otherwise returns a negative value. + @@ -528,6 +738,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -555,6 +773,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -598,6 +824,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -632,6 +866,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -666,6 +908,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -695,6 +945,14 @@ parallel HDF5 library.
    Returns:
    Returns a non-negative value if successful; otherwise returns a negative value. + @@ -713,7 +971,7 @@ parallel HDF5 library. This function is only valid for dataset creation property lists. Valid parameters for layout are:
      -
      H5D_COMPACT +
      H5D_COMPACT    (Not yet implemented.)
      Store raw data and object header contiguously in file. This should only be used for very small amounts of raw data (suggested less than 1KB). @@ -735,6 +993,14 @@ parallel HDF5 library.
      Returns:
      Returns a non-negative value if successful; otherwise returns a negative value. +
      @@ -750,7 +1016,7 @@ parallel HDF5 library. a dataset. This function is only valid for dataset creation property lists. Valid types for layout are:
        -
        H5D_COMPACT +
        H5D_COMPACT    (Not yet implemented.)
        Raw data and object header stored contiguously in file.
        H5D_CONTIGUOUS
        Raw data stored separately from object header in one @@ -768,6 +1034,14 @@ parallel HDF5 library.
        Returns the layout type of a a dataset creation property list if successful. Otherwise returns H5D_LAYOUT_ERROR (-1). +
        @@ -802,6 +1076,13 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -834,6 +1115,13 @@ parallel HDF5 library.
        Returns:
        Returns chunk dimensionality successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -874,6 +1162,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -905,6 +1201,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -925,10 +1229,16 @@ parallel HDF5 library.

        If a dataset is split across multiple files then the files should be defined in order. The total size of the dataset is - the sum of the SIZE arguments for all the external files. If + the sum of the size arguments for all the external files. If the total size is larger than the size of a dataset then the dataset can be extended (provided the data space also allows the extending). +

        + The size argument specifies number of bytes reserved + for data in the external file. + If size is set to H5F_UNLIMITED, the + external file can be of unlimited size and no more files can be added to + the external files list.

        Parameters:
        hid_t plist @@ -944,6 +1254,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        @@ -966,6 +1284,14 @@ parallel HDF5 library.
        Returns:
        Returns the number of external files if successful; otherwise returns a negative value. + @@ -1015,6 +1341,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        @@ -1059,6 +1393,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + +
        @@ -1094,6 +1436,13 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -1169,6 +1518,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1205,6 +1562,14 @@ parallel HDF5 library.
        Returns:
        Returns the number of filters in the pipeline if successful; otherwise returns a negative value. + @@ -1279,6 +1644,14 @@ parallel HDF5 library.
        Returns:
        Returns the filter identification number if successful. Otherwise returns H5Z_FILTER_ERROR (-1). + @@ -1309,6 +1682,14 @@ parallel HDF5 library.
        Returns:
        Returns a low-level driver identifier if successful. Otherwise returns H5F_LOW_ERROR (-1). + @@ -1332,6 +1713,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1357,6 +1746,14 @@ parallel HDF5 library.
        Returns a non-negative value if the file access property list is set to the stdio driver. Otherwise returns a negative value. + @@ -1381,6 +1778,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1406,6 +1811,14 @@ parallel HDF5 library.
        Returns a non-negative value if the file access property list is set to the sec2 driver. Otherwise returns a negative value. + @@ -1437,12 +1850,20 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        -
        Name: +
        Name: H5Pget_core
        Signature:
        herr_t H5Pget_core(hid_t plist, size_t *increment @@ -1468,6 +1889,14 @@ parallel HDF5 library.
        Returns a non-negative value if the file access property list is set to the core driver. Otherwise returns a negative value. +
        @@ -1513,6 +1942,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1557,8 +1994,8 @@ parallel HDF5 library.
        size_t meta_ext_size
        IN: Number of characters of the meta file extension to be copied to the meta_ext buffer. -
        OUT *meta_ext -
        IN: Meta file extension. +
        char *meta_ext +
        OUT: Meta file extension.
        hid_t *meta_properties
        OUT: Pointer to a copy of the meta file access property list.
        size_t raw_ext_size @@ -1573,51 +2010,94 @@ parallel HDF5 library.
        Returns a non-negative value if the file access property list is set to the split driver. Otherwise returns a negative value. +
        -
        Name: H5Pset_family +
        Name: H5Pset_gc_references
        Signature: -
        herr_t H5Pset_family(hid_t plist, - hsize_t memb_size, - hid_t memb_plist +
        herr_t H5Pset_split(hid_t plist, + unsigned gc_ref )
        Purpose: -
        Sets the file access properties list to the family - driver. +
        Sets garbage collecting references flag.
        Description: -
        Original version. Edited version below. -
        H5Pset_family sets the file access properties - to use the family - driver; any previously defined driver properties are erased - from the property list. Each member of the file family will - use member_properties as its file access property - list. The memb_size argument gives the logical size - in bytes of each family member but the actual size could be - smaller depending on whether the file contains holes. The - member size is only used when creating a new file or - truncating an existing file; otherwise the member size comes - from the size of the first member of the family being - opened. Note: if the size of the off_t type is - four bytes then the maximum family member size is usually - 2^31-1 because the byte at offset 2,147,483,647 is generally - inaccessible. Additional parameters may be added to this - function in the future. +
        H5Pset_gc_references sets the flag for + garbage collecting references for the file. +

        + Dataset region references and other reference types use space + in an HDF5 file's global heap. If garbage collection is on + and the user passes in an uninitialized value in a reference structure, + the heap might get corrupted. When garbage collection is off, however, + and the user re-uses a reference, the previous heap block will be + orphaned and not returned to the free heap space. +

        + When garbage collection is on, the user must initialize the + reference structures to 0 or risk heap corruption. +

        + The default value for garbage collecting references is off.

        Parameters:
        hid_t plist -
        IN: Identifier of the file access property list. -
        hsize_t memb_size -
        IN: Logical size, in bytes, of each family member. -
        hid_t memb_plist -
        IN: Identifier of the file access property list - for each member of the family. +
        IN: File access property list identifier. +
        unsigned gc_ref +
        IN:
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + +
        + +
        +
        +
        Name: H5Pget_gc_references +
        Signature: +
        herr_t H5Pget_split(hid_t plist, + unsigned *gc_ref + ) +
        Purpose: +
        Returns garbage collecting references setting. +
        Description: +
        H5Pget_gc_references returns the current setting + for the garbage collection references property from + the specified file access property list. + The garbage collection references property is set + by H5Pset_gc_references. +
        Parameters: +
        +
        hid_t plist +
        IN: File access property list identifier. +
        unsigned gc_ref +
        OUT: +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. +
        @@ -1633,7 +2113,6 @@ parallel HDF5 library.
        Sets the file access properties list to the family driver.
        Description: -
        Edited version. Original version above.
        H5Pset_family sets the file access properties to use the family driver; any previously defined driver properties are erased from the property list. @@ -1672,6 +2151,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1711,6 +2198,14 @@ parallel HDF5 library.
        Returns a non-negative value if the file access property list is set to the family driver. Otherwise returns a negative value. + @@ -1759,6 +2254,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1793,6 +2296,193 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + + + + +
        +
        +
        Name: H5Pset_hyper_cache +
        Signature: +
        herr_t H5Pset_hyper_cache(hid_t plist, + unsigned cache, + unsigned limit + ) +
        Purpose: +
        Indicates whether to cache hyperslab blocks during I/O. +
        Description: +
        Given a dataset transfer property list, H5Pset_hyper_cache + indicates whether to cache hyperslab blocks during I/O, + a process which can significantly increase I/O speeds. +

        + The parameter limit sets the maximum size of the + hyperslab block to cache. If a block is smaller than that limit, + it may still not be cached if no memory is available. + Setting the limit to 0 (zero) indicates no limitation on the size of + block to attempt to cache. +

        + The default is to cache blocks with no limit on block size + for serial I/O and to not cache blocks for parallel I/O. +

        Parameters: +
        +
        hid_t plist +
        IN: Dataset transfer property list identifier. +
        unsigned cache +
        IN: +
        unsigned limit +
        IN: Maximum size of the hyperslab block to cache. + 0 (zero) indicates no limit. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Pget_hyper_cache +
        Signature: +
        herr_t H5Pget_hyper_cache(hid_t plist, + unsigned cache, + unsigned limit + ) +
        Purpose: +
        Returns information regarding the caching of hyperslab blocks during I/O. +
        Description: +
        Given a dataset transfer property list, H5Pget_hyper_cache + returns instructions regarding the caching of hyperslab blocks during I/O. + These parameters are set with the H5Pset_hyper_cache function. +
        Parameters: +
        +
        hid_t plist +
        IN: Dataset transfer property list identifier. +
        unsigned cache +
        OUT: +
        unsigned limit +
        OUT: Maximum size of the hyperslab block to cache. + 0 (zero) indicates no limit. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Pset_btree_ratios +
        Signature: +
        herr_t H5Pset_btree_ratios(hid_t plist, + double left, + double middle, + double right + ) +
        Purpose: +
        Sets B-tree split ratios for a dataset transfer property list. +
        Description: +
        H5Pset_btree_ratios sets the B-tree split ratios + for a dataset transfer property list. The split ratios determine + what percent of children go in the first node when a node splits. +

        + The ratio left is used when the splitting node is + the left-most node at its level in the tree; + the ratio right is used when the splitting node is + the right-most node at its level; + and the ratio middle is used for all other cases. +

        + A node which is the only node at its level in the tree uses + the ratio right when it splits. +

        + All ratios are real numbers between 0 and 1, inclusive. +

        Parameters: +
        +
        hid_t plist +
        IN: The dataset transfer property list identifier. +
        double left +
        IN: The B-tree split ratio for left-most nodes. +
        double right +
        IN: The B-tree split ratio for right-most nodes and lone nodes. +
        double middle +
        IN: The B-tree split ratio for all other nodes. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Pget_btree_ratios +
        Signature: +
        herr_t H5Pget_btree_ratios(hid_t plist, + double *left, + double *middle, + double *right + ) +
        Purpose: +
        Gets B-tree split ratios for a dataset transfer property list. +
        Description: +
        H5Pget_btree_ratios returns the B-tree split ratios + for a dataset transfer property list. +

        + The B-tree split ratios are returned through the non-NULL + arguments left, middle, and right, + as set by the H5Pset_btree_ratios function. +

        Parameters: +
        +
        hid_t plist +
        IN: The dataset transfer property list identifier. +
        double left +
        OUT: The B-tree split ratio for left-most nodes. +
        double right +
        OUT: The B-tree split ratio for right-most nodes and lone nodes. +
        double middle +
        OUT: The B-tree split ratio for all other nodes. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. +
        @@ -1811,15 +2501,21 @@ parallel HDF5 library.
        Given a dataset transfer property list, H5Pset_buffer sets the maximum size for the type conversion buffer and background buffer and - optionally supply pointers to application-allocated buffers. + optionally supplies pointers to application-allocated buffers. If the buffer size is smaller than the entire amount of data - being transferred between application and file, and a type - conversion buffer or background buffer is required then - strip mining will be used. However, certain restrictions - apply for the size of buffer which can be used for strip - mining. For instance, when strip mining a 100x200x300 - hyperslab of a simple data space the buffer must be large - enough to hold a 1x200x300 slab. + being transferred between the application and the file, and a type + conversion buffer or background buffer is required, then + strip mining will be used. +

        + Note that there are minimum size requirements for the buffer. + Strip mining can only break the data up along the first dimension, + so the buffer must be large enough to accommodate a complete slice + that encompasses all of the remaining dimensions. + For example, when strip mining a 100x200x300 hyperslab + of a simple data space, the buffer must be large enough to + hold 1x200x300 data elements. + When strip mining a 100x200x300x150 hyperslab of a simple data space, + the buffer must be large enough to hold 1x200x300x150 data elements.

        If tconv and/or bkg are null pointers, then buffers will be allocated and freed during the data transfer. @@ -1839,6 +2535,14 @@ parallel HDF5 library.

        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1869,6 +2573,14 @@ parallel HDF5 library.
        Returns:
        Returns buffer size if successful; otherwise 0 on failure. + @@ -1901,6 +2613,14 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1922,6 +2642,14 @@ parallel HDF5 library.
        Returns:
        Returns TRUE or FALSE if successful; otherwise returns a negative value. + @@ -1975,6 +2703,11 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + + --> @@ -2015,6 +2748,11 @@ parallel HDF5 library.
        Returns:
        Returns compression method if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + + --> @@ -2032,7 +2770,7 @@ parallel HDF5 library.
        Description:
        H5Pset_deflate sets the compression method for a dataset creation property list to H5D_COMPRESS_DEFLATE - and the compression level to level<>/code>, which should + and the compression level to level, which should be a value from zero to nine, inclusive. Lower compression levels are faster but result in less compression. This is the same algorithm as used by the GNU gzip program. @@ -2046,6 +2784,13 @@ parallel HDF5 library.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -2071,12 +2816,146 @@ parallel HDF5 library.
        Returns:
        Returns compression level, a value between 0 and 9, if successful. Otherwise returns a negative value. +
        Non-C API(s): +
        + + -->
        +
        +
        Name: H5Pset_vlen_mem_manager +
        Signature: +
        herr_t H5Pset_vlen_mem_manager(hid_t plist, + H5MM_allocate_t alloc, + void *alloc_info, + H5MM_free_t free, + void *free_info + ) +
        Purpose: +
        Sets the memory manager for variable-length datatype allocation in + H5Dread and H5Dvlen_reclaim. +
        Description: +
        H5Pset_vlen_mem_manager sets the memory manager for + variable-length datatype allocation in H5Dread + and free in H5Dvlen_reclaim. +

        + The alloc and free parameters + identify the memory management routines to be used. + If the user has defined custom memory management routines, + alloc and/or free should be set to make + those routine calls (i.e., the name of the routine is used as + the value of the parameter); + if the user prefers to use the system's malloc + and/or free, the alloc and + free parameters, respectively, should be set to + NULL +

        + The prototypes for these user-defined functions would appear as follows: +
             + typedef void *(*H5MM_allocate_t)(size_t size, + void *alloc_info) ; + +
             + typedef void (*H5MM_free_t)(void *mem, + void *free_info) ; +
        + The alloc_info and free_info parameters + can be used to pass along any required information to + the user's memory management routines. +

        + In summary, if the user has defined custom memory management + routines, the name(s) of the routines are passed in the + alloc and free parameters and the + custom routines' parameters are passed in the + alloc_info and free_info parameters. + If the user wishes to use the system malloc and + free functions, the alloc and/or + free parameters are set to NULL + and the alloc_info and free_info + parameters are ignored. +

        Parameters: +
        +
        hid_t plist +
        IN: Identifier for the dataset transfer property list. +
        H5MM_allocate_t alloc +
        IN: User's allocate routine, or   NULL for system   malloc. +
        void *alloc_info +
        IN: Extra parameter for user's allocation routine. + Ignored if preceding parameter is   NULL. +
        H5MM_free_t free +
        IN: User's free routine, or   NULL for system free. +
        void *free_info +
        IN: Extra parameter for user's free routine. + Ignored if preceding parameter is   NULL. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Pget_vlen_mem_manager +
        Signature: +
        herr_t H5Pget_vlen_mem_manager(hid_t plist, + H5MM_allocate_t *alloc, + void **alloc_info, + H5MM_free_t *free, + void **free_info + ) +
        Purpose: +
        Gets the memory manager for variable-length datatype allocation in + H5Dread and H5Treclaim_vlen. +
        Description: +
        H5Pget_vlen_mem_manager is the companion function to + H5Pset_vlen_mem_manager, returning the parameters + set by that function. +
        Parameters: +
        +
        hid_t plist +
        IN: Identifier for the dataset transfer property list. +
        H5MM_allocate_t alloc +
        OUT: User's allocate routine, or   NULL + for system   malloc. +
        void *alloc_info +
        OUT: Extra parameter for user's allocation routine. + Ignored if preceding parameter is   NULL. +
        H5MM_free_t free +
        OUT: User's free routine, or   NULL for + system free. +
        void *free_info +
        OUT: Extra parameter for user's free routine. + Ignored if preceding parameter is   NULL. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        @@ -2116,7 +2995,7 @@ H5P   HDF Help Desk
        -Last modified: 30 October 1998 +Last modified: 20 October 1999 diff --git a/doc/html/RM_H5R.html b/doc/html/RM_H5R.html index d138670..a039d63 100644 --- a/doc/html/RM_H5R.html +++ b/doc/html/RM_H5R.html @@ -57,14 +57,16 @@ to specific objects and data regions in an HDF5 file.
        @@ -129,10 +131,12 @@ to specific objects and data regions in an HDF5 file. opens that object and returns an identifier.

        The parameter ref_type specifies the reference type - of ref. See - Reference Types in - References (H5R) - for a list of valid reference types. + of ref. + ref_type may contain either of the following values: +

          +
        • H5R_OBJECT (0) +
        • H5R_DATASET_REGION (1) +
        Parameters:
        hid_t dataset @@ -151,9 +155,8 @@ to specific objects and data regions in an HDF5 file.
        Name: H5Rget_region -  (Not yet implemented.)
        Signature: -
        H5S_t H5Rget_region(H5D_t dataset, +
        hid_t H5Rget_region(hid_t dataset, H5R_type_t ref_type, void *ref ) @@ -166,10 +169,11 @@ to specific objects and data regions in an HDF5 file. which is the region pointed to.

        The parameter ref_type specifies the reference type - of ref. See - Reference Types in - References (H5R) - for a list of valid reference types. + of ref. + ref_type may contain the following value: +

          +
        • H5R_DATASET_REGION (1) +
        Parameters:
        hid_t dataset, @@ -186,6 +190,34 @@ to specific objects and data regions in an HDF5 file.
        +
        +
        Name: H5Rget_object_type +
        Signature: +
        int H5Rget_object_type(hid_t id, + void *ref + ) +
        Purpose: +
        Retrieves the type of object that an object reference points to. +
        Description: +
        Given a reference to an object ref, + H5Rget_object_type returns the + type of the object pointed to. +
        Parameters: +
        +
        hid_t id, +
        IN: The dataset containing the reference object or + the location identifier of the object that the dataset + is located within. +
        void *ref +
        IN: Reference to query. +
        +
        Returns: +
        Returns an object type as defined in H5Gpublic.h; + otherwise returns H5G_UNKNOWN. +
        + + +
        diff --git a/doc/html/RM_H5S.html b/doc/html/RM_H5S.html index c8f0e04..721822d 100644 --- a/doc/html/RM_H5S.html +++ b/doc/html/RM_H5S.html @@ -51,40 +51,95 @@ H5S   These functions create and manipulate the dataspace in which to store the elements of a dataset. + +

        +The C Interfaces: +
        -       +
      • H5Sget_simple_extent_npoints +
      • H5Sget_simple_extent_type +
      • H5Sextent_copy - -
      •        - +
      • H5Sget_select_hyper_nblocks +
      • H5Sget_select_hyper_blocklist
      •        -

        +The FORTRAN90 Interfaces: + +
        + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + + +
        +
      • h5screate_f +
      • h5scopy_f +
      • h5sclose_f +
      • h5screate_simple_f +
      • h5sis_simple_f +
      • h5soffset_simple_f +
      • h5sget_simple_extent_dims_f +
      •        +
      • h5sget_simple_extent_ndims_f +
      • h5sget_simple_extent_npoints_f +
      • h5sget_simple_extent_type_f + +
      • h5sextent_copy_f +
      • h5sset_extent_simple_f +
      • h5sset_extent_none_f +
      • h5sget_select_npoints_f + + + + + +
      •        +
      • h5sselect_elements_f +
      • h5sselect_all_f +
      • h5sselect_none_f +
      • h5sselect_valid_f +
      • h5sselect_hyperslab_f +
      • + + +

        The following H5S functions are included in the HDF5 specification, but have not yet been implemented. They are described in the The Dataspace Interface (H5S) section @@ -95,11 +150,10 @@ of the HDF5 User's Guide..

      • H5Scommit
      • H5Sis_subspace
      • H5Slock -
      • H5Sopen
      •       
          -
        • H5Sselect_name +
        • H5Sopen
        • H5Sselect_op
        • H5Sselect_order
        @@ -134,6 +188,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a dataspace identifier if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -173,6 +234,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a dataspace identifier if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -197,6 +265,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a dataspace identifier if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -205,7 +280,7 @@ of the HDF5 User's Guide..
        Name: H5Sselect_elements
        Signature:
        herr_t H5Sselect_elements(hid_t space_id, - dh5s_selopt_t op, + H5S_seloper_t op, const size_t num_elements, const hssize_t *coord[ ] ) @@ -248,7 +323,7 @@ of the HDF5 User's Guide..
        hid_t space_id
        Identifier of the dataspace. -
        dh5s_selopt_t op +
        H5S_seloper_t op
        operator specifying how the new selection is to be combined with the existing selection for the dataspace.
        const size_t num_elements @@ -260,6 +335,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        +
        @@ -287,6 +369,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -309,6 +398,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -316,7 +412,7 @@ of the HDF5 User's Guide..
        Name: H5Sselect_valid
        Signature: -
        hbool_t H5Sselect_valid(hid_t space_id) +
        htri_t H5Sselect_valid(hid_t space_id)
        Purpose:
        Verifies that the selection is within the extent of the dataspace.
        Description: @@ -330,10 +426,18 @@ of the HDF5 User's Guide.. selection is being reset.
        Returns: -
        Returns TRUE if the selection is contained within - the extent and FALSE if it is not. - Returns returns a negative value on error conditions +
        Returns a positive value, for TRUE, + if the selection is contained within the extent + or 0 (zero), for FALSE, if it is not. + Returns a negative value on error conditions such as the selection or extent not being defined. +
        Non-C API(s): +
        + @@ -356,6 +460,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns the number of elements in the dataspace if successful; otherwise returns 0. +
        Non-C API(s): +
        + @@ -365,7 +476,7 @@ of the HDF5 User's Guide..
        Signature:
        hssize_t H5Sget_select_npoints(hid_t space_id)
        Purpose: -
        Determines the number of elements in a dataspace. +
        Determines the number of elements in a dataspace selection.
        Description:
        H5Sget_select_npoints determines the number of elements in the current selection of a dataspace. @@ -377,6 +488,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns the number of elements in the selection if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -398,6 +516,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns the number of dimensions in the dataspace if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -427,6 +552,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns the number of dimensions in the dataspace if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -453,6 +585,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a dataspace class name if successful; otherwise H5S_NO_CLASS (-1). +
        Non-C API(s): +
        + @@ -497,6 +636,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a dataspace identifier if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -504,7 +650,7 @@ of the HDF5 User's Guide..
        Name: H5Sis_simple
        Signature: -
        hbool_t H5Sis_simple(hid_t space_id) +
        htri_t H5Sis_simple(hid_t space_id)
        Purpose:
        Determines whether a dataspace is a simple dataspace.
        Description: @@ -517,8 +663,16 @@ of the HDF5 User's Guide..
        Identifier of the dataspace to query
        Returns: -
        Returns TRUE or FALSE if Successful; - otherwise returns a negative value. +
        When successful, returns a positive value, for TRUE, + or 0 (zero), for FALSE. + Otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -552,9 +706,18 @@ of the HDF5 User's Guide..
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + + +
        @@ -605,6 +775,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        +
        @@ -627,6 +804,13 @@ of the HDF5 User's Guide..
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -635,7 +819,7 @@ of the HDF5 User's Guide..
        Name: H5Sselect_hyperslab
        Signature:
        herr_t H5Sselect_hyperslab(hid_t space_id, - h5s_selopt_top, + H5S_seloper_top, const hssize_t *start, const hsize_t *stride const hsize_t *count, @@ -733,6 +917,247 @@ I/O is performed.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + + + + +
        +
        +
        Name: H5Sget_select_hyper_nblocks +
        Signature: +
        hssize_t H5Sget_select_hyper_nblocks(hid_t space_id + ) +
        Purpose: +
        Get number of hyperslab blocks. +
        Description: +
        H5Sget_select_hyper_nblocks returns the + number of hyperslab blocks in the current dataspace selection. +
        Parameters: +
        +
        hid_t space_id +
        IN: Identifier of dataspace to query. +
        +
        Returns: +
        Returns the number of hyperslab blocks in + the current dataspace selection if successful. + Otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Sget_select_hyper_blocklist +
        Signature: +
        herr_t H5Sget_select_hyper_blocklist(hid_t space_id, + hsize_t startblock, + hsize_t numblocks, + hsize_t *buf + ) +
        Purpose: +
        Gets the list of hyperslab blocks currently selected. +
        Description: +
        H5Sget_select_hyper_blocklist returns a list of + the hyperslab blocks currently selected. Starting with the + startblock-th block in the list of blocks, + numblocks blocks are put into the user's buffer. + If the user's buffer fills up before numblocks + blocks are inserted, the buffer will contain only as many + blocks as fit. +

        + The block coordinates have the same dimensionality (rank) + as the dataspace they are located within. The list of blocks + is formatted as follows: +
             + <"start" coordinate>, immediately followed by +
             + <"opposite" corner coordinate>, followed by +
             + the next "start" and "opposite" coordinates, +
             + etc. +
        + until all of the selected blocks have been listed. +

        + No guarantee is implied as the order in which blocks are listed. +

        Parameters: +
        +
        hid_t space_id +
        IN: Dataspace identifier of selection to query. +
        hsize_t startblock +
        IN: Hyperslab block to start with. +
        hsize_t numblocks +
        IN: Number of hyperslab blocks to get. +
        hsize_t *buf +
        OUT: List of hyperslab blocks selected. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + + +
        +
        +
        Name: H5Sget_select_elem_npoints +
        Signature: +
        hssize_t H5Sget_select_elem_npoints(hid_t space_id + ) +
        Purpose: +
        Gets the number of element points in the current selection. +
        Description: +
        H5Sget_select_elem_npoints returns + the number of element points in the current dataspace selection. +
        Parameters: +
        +
        hid_t space_id +
        IN: Identifier of dataspace to query. +
        +
        Returns: +
        Returns the number of element points in the current dataspace selection if successful. + Otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Sget_select_elem_pointlist +
        Signature: +
        herr_t H5Sget_select_elem_pointlist(hid_t space_id + hsize_t startpoint, + hsize_t numpoints, + hsize_t *buf + ) +
        Purpose: +
        Gets the list of element points currently selected. +
        Description: +
        H5Sget_select_elem_pointlist returns the list of + element points in the current dataspace selection. Starting with + the startpoint-th point in the list of points, + numpoints points are put into the user's buffer. + If the user's buffer fills up before numpoints + points are inserted, the buffer will contain only as many + points as fit. +

        + The element point coordinates have the same dimensionality (rank) + as the dataspace they are located within. The list of element points + is formatted as follows: +
             + <coordinate>, followed by +
             + the next coordinate, +
             + etc. +
        + until all of the selected element points have been listed. +

        + The points are returned in the order they will be iterated through + when the selection is read/written from/to disk. +

        Parameters: +
        +
        hid_t space_id +
        IN: Dataspace identifier of selection to query. +
        hsize_t startpoint +
        IN: Element point to start with. +
        hsize_t numpoints +
        IN: Number of element points to get. +
        hsize_t *buf +
        OUT: List of element points selected. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + + +
        +
        +
        Name: H5Sget_select_bounds +
        Signature: +
        herr_t H5Sget_select_bounds(hid_t space_id + hsize_t *start, + hsize_t *end + ) +
        Purpose: +
        Gets the bounding box containing the current selection. +
        Description: +
        H5Sget_select_bounds retrieves the coordinates of + the bounding box containing the current selection and places + them into user-supplied buffers. +

        + The start and end buffers must be large + enough to hold the dataspace rank number of coordinates. +

        + The bounding box exactly contains the selection. + I.e., if a 2-dimensional element selection is currently + defined as containing the points (4,5), (6,8), and (10,7), + then the bounding box will be (4, 5), (10, 8). +

        + The bounding box calculation includes the current offset of the + selection within the dataspace extent. +

        + Calling this function on a none selection will + return FAIL. +

        Parameters: +
        +
        hid_t space_id +
        IN: Identifier of dataspace to query. +
        hsize_t *start +
        OUT: Starting coordinates of the bounding box. +
        hsize_t *end +
        OUT: Ending coordinates of the bounding box, + i.e., the coordinates of the diagonally opposite corner. +
        +
        Returns: +
        Returns a negative value if successful; + otherwise returns a negative value. +
        @@ -757,6 +1182,13 @@ I/O is performed.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -800,7 +1232,7 @@ H5S   HDF Help Desk
        -Last modified: 30 October 1998 +Last modified: 20 October 1999 diff --git a/doc/html/RM_H5T.html b/doc/html/RM_H5T.html index 19c65ac..1ae41cd 100644 --- a/doc/html/RM_H5T.html +++ b/doc/html/RM_H5T.html @@ -51,6 +51,10 @@ H5T   These functions create and manipulate the datatype which describes elements of a dataset. + +

        +The C Interfaces: +
        General Datatype Operations @@ -63,10 +67,19 @@ of a dataset.
      • H5Tlock
      • H5Tget_class
      • H5Tget_size +
      • H5Tget_super
      • H5Tclose

        +Conversion Functions +

      • H5Tconvert +
      • H5Tfind +
      • H5Tset_overflow +
      • H5Tget_overflow +
      • H5Tregister +
      • H5Tunregister
      •        -Atomic Datatype +Atomic Datatype Properties +
      • H5Tset_size
      • H5Tget_order
      • H5Tset_order @@ -78,12 +91,11 @@ of a dataset.
      • H5Tset_pad
      • H5Tget_sign
      • H5Tset_sign -
      • -Properties
      • H5Tget_fields
      • H5Tset_fields
      • H5Tget_ebias
      • H5Tset_ebias +
      • H5Tget_norm
      • H5Tset_norm
      • H5Tget_inpad @@ -92,9 +104,12 @@ of a dataset.
      • H5Tset_cset
      • H5Tget_strpad
      • H5Tset_strpad +
      • +Variable-length Datatypes +

      • H5Tvlen_create
      •        -Properties of Compound Types +Compound Datatype Properties
      • H5Tget_nmembers
      • H5Tget_member_name
      • H5Tget_member_offset @@ -104,18 +119,117 @@ of a dataset.
      • H5Tpack
      • H5Tinsert_array

        -Conversion Functions -

      • H5Tconvert -
      • H5Tfind -
      • H5Tset_overflow -
      • H5Tget_overflow -
      • H5Tregister_hard -
      • H5Tregister_soft -
      • H5Tunregister +Enumeration Datatypes +
      • H5Tenum_create +
      • H5Tenum_insert +
      • H5Tenum_nameof +
      • H5Tenum_valueof +
      • H5Tget_member_value +

        +Opaque Datatypes +

      • H5Tset_tag +
      • H5Tget_tag
      • +The FORTRAN90 Interfaces: +
        + + +In general, each FORTRAN90 subroutine performs exactly the same task +as the corresponding C function. The links below go to the C function +descriptions, which serve as general descriptions for both. A button, +under Non-C API(s) at the end of the C function description, +opens an external browser window displaying the FORTRAN90-specific +information. You will probably want to adjust the size and location of +this external window so that both browser windows are visible and to +facilitate moving easily between them. + + + + +
        +General Datatype Operations + +
      • h5topen_f +
      • h5tcommit_f + +
      • h5tcopy_f + + +
      • +
        +
      • h5tget_class_f +
      • h5tget_size_f + +
      • h5tclose_f + + + + + + + + +
      •        +       +       +Atomic Datatype Properties + +
      • h5tset_size_f +
      • h5tget_order_f +
      • h5tset_order_f + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      • + + +

        The Datatype interface, H5T, provides a mechanism to describe the storage format of individual data points of a data set and is hopefully designed in such a way as to allow new features to be @@ -162,13 +276,20 @@ in the HDF5 User's Guide for further information, including a compl

        Parameters:
        hid_t loc_id -
        A file, group, or datatype identifier. +
        IN: A file or group identifier.
        const char * name -
        A datatype name. +
        IN: A datatype name, defined within the file or group identified by loc_id.
        Returns:
        Returns a named datatype identifier if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -191,15 +312,22 @@ in the HDF5 User's Guide for further information, including a compl
        Parameters:
        hid_t loc_id -
        A file or group identifier. +
        IN: A file or group identifier.
        const char * name -
        A datatype name. +
        IN: A datatype name.
        hid_t type -
        A datatype identifier. +
        IN: A datatype identifier.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -207,7 +335,7 @@ in the HDF5 User's Guide for further information, including a compl
        Name: H5Tcommitted
        Signature: -
        hbool_tH5Tcommitted(hid_t type) +
        htri_tH5Tcommitted(hid_t type)
        Purpose:
        Determines whether a datatype is a named type or a transient type.
        Description: @@ -220,12 +348,22 @@ in the HDF5 User's Guide for further information, including a compl able to share the datatype with other datasets in the same file.
        Parameters:
        -
        hid_t type -
        Datatype identifier. +
        hid_t type +
        IN: Datatype identifier.
        Returns: -
        The successful return values are TRUE if committed, else FALSE. +
        When successful, returns a positive value, for TRUE, + if the datatype has been committed, or 0 (zero), + for FALSE, if the datatype has not been committed. Otherwise returns a negative value. +
        @@ -250,31 +388,51 @@ in the HDF5 User's Guide for further information, including a compl and the size of the array is dim. The new member's name, name, must be unique within the compound datatype. - The offset argument defines the start of the + The offset argument defines the byte offset of the start of the member in an instance of the compound datatype and member_id is the type identifier of the new member. The total member size should be relatively small. +

        + The functionality of the perm parameter has + not yet been implemented. + Currently, perm is best set to NULL. + (When implemented, perm will specify the mapping + of dimensions within a struct. At that time, a + NULL value for perm will mean + no mappiing change is to take place. Thus, using a value + of NULL ensures that application behavior will + remain unchanged upon implementation of this functionality.)

        Parameters:
        hid_t parent_id -
        Identifier of the parent compound datatype. +
        IN: Identifier of the parent compound datatype.
        const char *name -
        Name of new member. +
        IN: Name of new member.
        size_t offset -
        Offset to start of new member within compound datatype. +
        IN: Offset to start of new member within compound datatype.
        int ndims -
        Dimensionality of new member. +
        IN: Dimensionality of new member. + Valid values are 0 (zero) + through 4 (four).
        const size_t *dim -
        Size of new member array. +
        IN: Size of new member array.
        const int *perm -
        Pointer to buffer to store the permutation vector of +
        IN: Pointer to buffer to store the permutation vector of the field.
        hid_t member_id -
        Identifier of the datatype of the new member. +
        IN: Identifier of the datatype of the new member.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -299,15 +457,23 @@ in the HDF5 User's Guide for further information, including a compl
        Parameters:
        hid_t src_id -
        Identifier for the source datatype. +
        IN: Identifier for the source datatype.
        hid_t dst_id -
        Identifier for the destination datatype. +
        IN: Identifier for the destination datatype.
        H5T_cdata_t **pcdata -
        Pointer to type conversion data. +
        IN: Pointer to type conversion data.
        Returns:
        Returns a pointer to a suitable conversion function if successful. Otherwise returns NULL. + @@ -353,6 +519,14 @@ in the HDF5 User's Guide for further information, including a compl
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -386,6 +560,14 @@ in the HDF5 User's Guide for further information, including a compl
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -412,6 +594,14 @@ H5Tget_overflow ()
        Returns a pointer to an application-defined function if successful. Otherwise returns NULL; this can happen if no overflow handling function is registered. + @@ -427,9 +617,16 @@ H5Tget_overflow ()
        Description:
        H5Tcreate creates a new dataype of the specified class with the specified number of bytes. - Currently, only the H5T_COMPOUND datatype class is - supported with this function. Use H5Tcopy - to create integer or floating-point datatypes. +

        + The following datatype classes are supported with this function: +

          +
        • H5T_COMPOUND +
        • H5T_OPAQUE +
        • H5T_ENUM +
        +

        + Use H5Tcopy to create integer or floating-point datatypes. +

        The datatype identifier returned from this function should be released with H5Tclose or resource leaks will result.

        Parameters: @@ -442,6 +639,54 @@ H5Tget_overflow ()
        Returns:
        Returns datatype identifier if successful; otherwise returns a negative value. + + + + +
        +
        +
        Name: H5Tvlen_create +
        Signature: +
        hid_t H5Tvlen_create(hid_t base_type_id + ) +
        Purpose: +
        Creates a new variable-length dataype. +
        Description: +
        H5Tvlen_create creates a new variable-length (VL) dataype. +

        + The base datatype will be the datatype that the sequence is composed of, + characters for character strings, vertex coordinates for polygon lists, etc. + The base type specified for the VL datatype can be of any HDF5 datatype, + including another VL datatype, a compound datatype or an atomic datatype. +

        + When necessary, use H5Tget_super to determine the base type + of the VL datatype. +

        + The datatype identifier returned from this function should be + released with H5Tclose or resource leaks will result. +

        Parameters: +
        +
        hid_t base_type_id +
        Base type of datatype to create. +
        +
        Returns: +
        Returns datatype identifier if successful; + otherwise returns a negative value. +
        @@ -529,6 +774,13 @@ H5Tget_overflow ()
        Returns:
        Returns a datatype identifier if successful; otherwise returns a negative value +
        Non-C API(s): +
        + @@ -536,7 +788,7 @@ H5Tget_overflow ()
        Name: H5Tequal
        Signature: -
        hbool_t H5Tequal(hid_t type_id1, +
        htri_t H5Tequal(hid_t type_id1, hid_ttype_id2 )
        Purpose: @@ -552,9 +804,18 @@ H5Tget_overflow ()
        Identifier of datatype to compare.
        Returns: -
        When successful, returns TRUE if the datatype identifiers - refer to the same datatype, else FALSE. +
        When successful, returns a positive value, for TRUE, + if the datatype identifiers refer to the same datatype, + or 0 (zero), for FALSE. Otherwise returns a negative value. + @@ -581,6 +842,14 @@ H5Tget_overflow ()
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -603,6 +872,8 @@ H5Tget_overflow ()
      • H5T_BITFIELD (4)
      • H5T_OPAQUE (5)
      • H5T_COMPOUND (6) +
      • H5T_ENUM (7) +
      • H5T_REFERENCE (8)
        Parameters:
        @@ -612,6 +883,13 @@ H5Tget_overflow ()
        Returns:
        Returns datatype class identifier if successful; otherwise H5T_NO_CLASS (-1). +
        Non-C API(s): +
        +
        @@ -633,6 +911,13 @@ H5Tget_overflow ()
        Returns:
        Returns the size of the datatype in bytes if successful; otherwise 0. +
        Non-C API(s): +
        + @@ -666,6 +951,45 @@ H5Tget_overflow ()
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + + + + +
        +
        +
        Name: H5Tget_super +
        Signature: +
        hid_t H5Tget_super(hid_t type + ) +
        Purpose: +
        Returns the base datatype from which a datatype is derived. +
        Description: +
        H5Tget_super returns the base datatype from which the + datatype type is derived. +

        + In the case of an enumeration type, the return value is an integer type. +

        Parameters: +
        +
        hid_t type +
        Datatype identifier for the derived datatype. +
        +
        Returns: +
        Returns the datatype identifier for the base datatype if successful; + otherwise returns a negative value. +
        @@ -698,6 +1022,13 @@ H5Tget_overflow ()
        Returns:
        Returns a byte order constant if successful; otherwise H5T_ORDER_ERROR (-1). +
        Non-C API(s): +
        + @@ -731,6 +1062,13 @@ H5Tget_overflow ()
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        + @@ -754,6 +1092,14 @@ H5Tget_overflow ()
        Returns:
        Returns the number of significant bits if successful; otherwise 0. + @@ -788,6 +1134,14 @@ H5Tget_overflow ()
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -855,6 +1209,14 @@ H5Tget_overflow ()
        Returns:
        Returns a positive offset value if successful; otherwise 0. + @@ -932,6 +1294,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -970,6 +1340,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1005,6 +1383,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1033,6 +1419,14 @@ zero.
        Returns:
        Returns a valid sign type if successful; otherwise H5T_SGN_ERROR (-1). + @@ -1063,6 +1457,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1100,6 +1502,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1139,6 +1549,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1160,6 +1578,14 @@ zero.
        Returns:
        Returns the bias if successful; otherwise 0. + @@ -1184,6 +1610,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1214,6 +1648,14 @@ zero.
        Returns:
        Returns a valid normalization type if successful; otherwise H5T_NORM_ERROR (-1). + @@ -1247,6 +1689,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1278,6 +1728,14 @@ zero.
        Returns:
        Returns a valid padding type if successful; otherwise H5T_PAD_ERROR (-1). + @@ -1314,6 +1772,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1340,6 +1806,14 @@ zero.
        Returns:
        Returns a valid character set type if successful; otherwise H5T_CSET_ERROR (-1). + @@ -1372,6 +1846,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1400,6 +1882,14 @@ zero.
        Returns:
        Returns a valid string padding type if successful; otherwise H5T_STR_ERROR (-1). + @@ -1434,6 +1924,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + @@ -1441,7 +1939,7 @@ zero.
        Name: H5Tget_nmembers
        Signature: -
        intn H5Tget_nmembers(hid_t type_id +
        int H5Tget_nmembers(hid_t type_id )
        Purpose:
        Retrieves the number of fields in a compound datatype. @@ -1455,6 +1953,14 @@ zero.
        Returns:
        Returns number of members datatype has if successful; otherwise returns a negative value. +
        @@ -1484,9 +1990,56 @@ zero.
        Returns:
        Returns a valid pointer if successful; otherwise NULL. + + + + +
        +
        +
        Name: H5Tget_member_offset +
        Signature: +
        size_t H5Tget_member_offset(hid_t type_id, + int memb_no + ) +
        Purpose: +
        Retrieves the offset of a field of a compound datatype. +
        Description: +
        H5Tget_member_offset retrieves the + byte offset of the beginning of a field within a + compound datatype with respect to the beginning + of the compound data type datum. +
        Parameters: +
        +
        hid_t type_id +
        Identifier of datatype to query. +
        int memb_no +
        Number of the field whose offset is requested. +
        +
        Returns: +
        Returns the byte offset of the field if successful; + otherwise returns 0 (zero). + Note that zero is a valid offset and that this function + will fail only if a call to H5Tget_member_dims() + fails with the same arguments. +
        +
        Name: H5Tget_member_dims @@ -1521,6 +2074,14 @@ zero.
        Returns the number of dimensions, a number from 0 to 4, if successful. Otherwise returns a negative value. +
        @@ -1547,6 +2108,14 @@ zero.
        Returns the identifier of a copy of the datatype of the field if successful; otherwise returns a negative value. + @@ -1556,7 +2125,7 @@ zero.
        Signature:
        herr_t H5Tinsert(hid_t type_id, const char * name, - off_t offset, + size_t offset, hid_t field_id )
        Purpose: @@ -1569,16 +2138,15 @@ zero. in an instance of the compound datatype, and field_id is the datatype identifier of the new member.

        - Note: All members of a compound datatype must be atomic; a - compound datatype cannot have a member which is a compound - datatype. + Note: Members of a compound datatype do not have to be atomic datatypes; + a compound datatype can have a member which is a compound datatype.

        Parameters:
        hid_t type_id
        Identifier of compound datatype to modify.
        const char * name
        Name of the field to insert. -
        off_t offset +
        size_t offset
        Offset in memory structure of the field to insert.
        hid_t field_id
        Datatype identifier of the field to insert. @@ -1586,6 +2154,14 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        @@ -1608,43 +2184,71 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        -
        Name: H5Tregister_hard +
        Name: H5Tregister
        Signature: -
        herr_t H5Tregister_hard(const char - * name, hid_t src_id, +
        herr_t H5Tregister(H5T_pers_t pers, + const char * name, + hid_t src_id, hid_t dst_id, H5T_conv_t func )
        Purpose: -
        Registers a hard conversion function. +
        Registers a conversion function.
        Description: -
        H5Tregister_hard registers a hard conversion function for a datatype - conversion path. The path is specified by the source and destination - datatypes src_id and dst_id. A conversion - path can only have one hard function, so func replaces any - previous hard function. +
        H5Tregister registers a hard or soft conversion function + for a datatype conversion path. +

        + The parameter pers indicates whether a conversion function + is HARD or SOFT. +

        + A conversion path can have only one hard function. + When pers is HARD, func replaces + any previous hard function. + If pers is HARD and func + is the null pointer, then any hard function registered for this + path is removed. +

        + When pers is SOFT, H5Tregister + adds the function to the end of the master soft list and replaces + the soft function in all applicable existing conversion paths. + Soft functions are used when determining which conversion function + is appropriate for this path. +

        + The name is used only for debugging and should be a + short identifier for the function.

        - If func is the null pointer then any hard function - registered for this path is removed from this path. The soft functions - are then used when determining which conversion function is appropriate - for this path. The name argument is used only - for debugging and should be a short identifier for the function. + The path is specified by the source and destination datatypes + src_id and dst_id. + For soft conversion functions, only the class of these types is important.

        The type of the conversion function pointer is declared as: -
        - typedef herr_t (*H5T_conv_t) (hid_t src_id, +

        +
        typedef herr_t (*H5T_conv_t) + (hid_t src_id, hid_t dst_id, H5T_cdata_t *cdata, size_t nelmts, void *buf, - void *bkg); + void *bkg); +
        Parameters:
        +
        H5T_pers_t pers +
        HARD for hard conversion functions; + SOFT for soft conversion functions.
        const char * name
        Name displayed in diagnostic output.
        hid_t src_id @@ -1657,79 +2261,320 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +

        -
        Name: H5Tregister_soft +
        Name: H5Tunregister
        Signature: -
        herr_t H5Tregister_soft(const char - * name, H5T_class_t src_cls, - H5T_class_t dst_cls, - H5T_conv_t func +
        herr_t H5Tunregister(H5T_conv_t func )
        Purpose: -
        Registers a soft conversion function. +
        Removes a conversion function from all conversion paths.
        Description: -
        H5Tregister_soft registers a soft conversion function by adding it to the - end of the master soft list and replacing the soft function in all - applicable existing conversion paths. The name - is used only for debugging and should be a short identifier - for the function. +
        H5Tunregister removes a conversion function from all conversion paths.

        - The type of the conversion function pointer is declared as: -
        - typedef herr_t (*H5T_conv_t) (hid_t src_id, - hid_t dst_id, - H5T_cdata_t *cdata, - size_t nelmts, - void *buf, - void *bkg); + The conversion function pointer type declaration is described in + H5Tregister.

        Parameters:
        -
        const char * name -
        Name displayed in diagnostic output. -
        H5T_class_t src_cls -
        Identifier of source datatype class. -
        H5T_class_t dst_cls -
        Identifier of destination datatype class.
        H5T_conv_t func -
        Function to convert between source and destination datatypes. +
        Function to remove from conversion paths.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +

        -
        Name: H5Tunregister +
        Name: H5Tenum_create
        Signature: -
        herr_t H5Tunregister(H5T_conv_t func +
        hid_t H5Tenum_create(hid_t parent_id )
        Purpose: -
        Removes a conversion function from all conversion paths. +
        Creates a new enumeration datatype.
        Description: -
        H5Tunregister removes a conversion function from all conversion paths. -

        - The type of the conversion function pointer is declared as: -
        - typedef herr_t (*H5T_conv_t) (hid_t src_id, - hid_t dst_id, - H5T_cdata_t *cdata, - size_t nelmts, - void *buf, - void *bkg); +

        H5Tenum_create creates a new enumeration datatype + based on the specified base datatype, parent_id, + which must be an integer type.
        Parameters:
        -
        H5T_conv_t func -
        Function to remove from conversion paths. +
        hid_t parent_id +
        IN: Datatype identifier for the base datatype. +
        +
        Returns: +
        Returns the datatype identifier for the new enumeration datatype if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Tenum_insert +
        Signature: +
        herr_t H5Tenum_insert(hid_t type, + const char *name, + void *value + ) +
        Purpose: +
        Inserts a new enumeration datatype member. +
        Description: +
        H5Tenum_insert inserts a + new enumeration datatype member into an enumeration datatype. +

        + type is the enumeration datatype, + name is the name of the new member, and + value points to the value of the new member. +

        + name and value must both + be unique within type. +

        + value points to data which is of the + datatype defined when the enumeration datatype was created. +

        Parameters: +
        +
        hid_t type +
        IN: Datatype identifier for the enumeration datatype. +
        const char *name +
        IN: Name of the new member. +
        void *value +
        IN: Pointer to the value of the new member. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Tenum_nameof +
        Signature: +
        herr_t H5Tenum_nameof(hid_t type + void *value, + char *name, + size_t size + ) +
        Purpose: +
        Returns the symbol name corresponding to a specified member of an enumeration datatype. +
        Description: +
        H5Tenum_nameof finds the symbol name that + corresponds to the specified value + of the enumeration datatype type. +

        + At most size characters of the symbol + name are copied into the name buffer. + If the entire symbol name and null terminator + do not fit in the name buffer, then as + many characters as possible are copied + (not null terminated) and the function fails. +

        Parameters: +
        +
        hid_t type +
        IN: Enumeration datatype identifier. +
        void *value, +
        IN: Value of the enumeration datatype. +
        char *name, +
        OUT: Buffer for output of the symbol name. +
        size_t size +
        IN: Anticipated size of the symbol name, in bytes (characters). +
        +
        Returns: +
        Returns a non-negative value if successful. + Otherwise returns a negative value + and, if size allows it, + the first character of name is + set to NULL. + +
        + + +
        +
        +
        Name: H5Tenum_valueof +
        Signature: +
        herr_t H5Tenum_valueof(hid_t type + char *name, + void *value + ) +
        Purpose: +
        Returns the value corresponding to a specified member of an enumeration datatype. +
        Description: +
        H5Tenum_valueof finds the value that + corresponds to the specified name + of the enumeration datatype type. +

        + The value argument should be at least + as large as the value of H5Tget_size(type) + in order to hold the result. +

        Parameters: +
        +
        hid_t type +
        IN: Enumeration datatype identifier. +
        const char *name, +
        IN: Symbol name of the enumeration datatype. +
        void *value, +
        OUT: Buffer for output of the value of the enumeration datatype. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Tget_member_value +
        Signature: +
        hid_t H5Tget_member_value(hid_t type + int memb_no, + void *value + ) +
        Purpose: +
        Returns the value of an enumeration datatype member. +
        Description: +
        H5Tget_member_value returns the value of + the enumeration datatype member memb_no. +

        + The member value is returned in a user-supplied buffer + pointed to by value. +

        Parameters: +
        +
        hid_t type +
        IN: Datatype identifier for the enumeration datatype. +
        int memb_no, +
        IN: Number of the enumeration datatype member. +
        void *value +
        OUT: Pointer to a buffer for output of the + value of the enumeration datatype member.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Tset_tag +
        Signature: +
        herr_t H5Tset_tag(hid_t type_id + const char *tag + ) +
        Purpose: +
        Tags an opaque datatype. +
        Description: +
        H5Tset_tag tags an opaque datatype type_id + with a unique ASCII identifier tag. +
        Parameters: +
        +
        hid_t type_id +
        IN: Datatype identifier for the opaque datatype to be tagged. +
        const char *tag +
        IN: Unique ASCII string with which the opaque datatype is to be tagged. +
        +
        Returns: +
        Returns a non-negative value if successful; + otherwise returns a negative value. + +
        + + +
        +
        +
        Name: H5Tget_tag +
        Signature: +
        char *H5Tget_tag(hid_t type_id + ) +
        Purpose: +
        Gets the tag associated with an opaque datatype. +
        Description: +
        H5Tget_tag returns the tag associated with + the opaque datatype type_id. +

        + The tag is returned via a pointer to an + allocated string, which the caller must free. +

        Parameters: +
        +
        hid_t type_id +
        Datatype identifier for the opaque datatype. +
        +
        Returns: +
        Returns a pointer to an allocated string if successful; + otherwise returns NULL. +
        @@ -1753,6 +2598,13 @@ zero.
        Returns:
        Returns a non-negative value if successful; otherwise returns a negative value. +
        Non-C API(s): +
        +
        @@ -1796,7 +2648,7 @@ H5T   HDF Help Desk
        -Last modified: 30 October 1998 +Last modified: 20 October 1999 diff --git a/doc/html/Ragged.html b/doc/html/Ragged.html index 53d9f04..c8198fc 100644 --- a/doc/html/Ragged.html +++ b/doc/html/Ragged.html @@ -1,7 +1,7 @@ - Ragged Arrays + Ragged Array Experimental Interface (H5RA) @@ -20,47 +20,31 @@
      • And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
        + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
        + References   Attributes   Property Lists   Error Handling   +
        Filters   + Palettes   Caching   -
        Chunking   + Mounting Files   +
        + Performance   Debugging   Environment   DDL   +
        Ragged Arrays   -
        @@ -97,7 +81,7 @@ Do not create any archives using this interface!
        rows. The number of rows and the length of each row can be changed at any time (the current version does not support truncating an array by removing rows). All elements of the - ragged array have the same data type and, as with datasets, the + ragged array have the same datatype and, as with datasets, the data is type-converted between memory buffers and files.

        The current implementation works best when most of the rows are @@ -138,7 +122,7 @@ Do not create any archives using this interface!

    independently). The dataset creation property list plist defines the width of the raw dataset; a nominal row is considered to be the width of a chunk. The - type argument defines the data type which will be + type argument defines the datatype which will be stored in the file. A negative value is returned if the array cannot be created. @@ -172,7 +156,7 @@ Do not create any archives using this interface! *buf[])
    A set of ragged array rows beginning at start_row and continuing for nrows is written to the file, - converting the memory data type type to the file data + converting the memory datatype type to the file data type which was defined when the array was created. The number of elements to write from each row is specified in the size array and the data for each row is pointed to @@ -187,8 +171,8 @@ Do not create any archives using this interface! *buf[])
    A set of ragged array rows beginning at start_row and continuing for nrows is read from the file, - converting from the file data type which was defined when the - array was created to the memory data type type. The + converting from the file datatype which was defined when the + array was created to the memory datatype type. The number of elements to read from each row is specified in the size array and the buffers in which to place the results are pointed to by the buf array. On return, @@ -217,69 +201,46 @@ Do not create any archives using this interface! And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - - - - - -
    HDF Help Desk
    -Last modified: 30 October 1998 + + +Last modified: 14 October 1999 + diff --git a/doc/html/References.html b/doc/html/References.html index e985f8d..bb38f55 100644 --- a/doc/html/References.html +++ b/doc/html/References.html @@ -1,7 +1,7 @@ -References +Reference (H5R) and Identifier Interfaces (H5I) @@ -20,47 +20,31 @@ And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -206,7 +190,7 @@ The H5I function is also useful outside the context of references. H5I_GROUP Group objects H5I_DATATYPE - Data type objects + Datatype objects H5I_DATASPACE Dataspace objects H5I_DATASET @@ -219,7 +203,7 @@ The H5I function is also useful outside the context of references. This function was inspired by the need of users to figure out which type of object closing function (H5Dclose, H5Gclose, etc.) - to call after a call to H5Ddereference, + to call after a call to H5Rdereference, but it is also of general use.

    @@ -494,7 +478,7 @@ Notes:

    Comments

         Reference types are atomic types and may be included as fields in compound
    -        data types.
    +        datatypes.
     
         There are (at least) three levels of reference strength:
             Weak - We allow the user to store any type of reference in an array
    @@ -502,14 +486,14 @@ Notes:
                 could be a mix of Object, Dataset Region and Internal references)
             Medium - We force the user to stick with a particular type of
                 reference within a dataset, but the datasets pointed to (with
    -            Object and Dataset Region references) may be of any data type
    +            Object and Dataset Region references) may be of any datatype
                 or dataspace.
             Strong - We force the user to stick with a particular type of
                 reference and Object and Dataset Region references must point to
    -            datasets with the same data type.
    +            datasets with the same datatype.
             Extra Strong - We force the user to stick with a particular type of
                 reference and Object and Dataset Region references must point to
    -            datasets with the same data type _and_ dataspace.
    +            datasets with the same datatype and dataspace.
     
         The library is currently implemented with "medium" strength references.
     
    @@ -622,47 +606,31 @@ Notes: And in this document, the - HDF5 User's Guide:     - Files   + HDF5 User's Guide:    
    + Files   Datasets   - Data Types   + Datatypes   Dataspaces   Groups   - References  
    + References   Attributes   Property Lists   Error Handling   +
    Filters   + Palettes   Caching   -
    Chunking   + Mounting Files   +
    + Performance   Debugging   Environment   DDL   +
    Ragged Arrays   - @@ -673,7 +641,7 @@ And in this document, the HDF Help Desk -Last modified: 30 October 1998 +Last modified: 14 October 1999 diff --git a/doc/html/Tools.html b/doc/html/Tools.html index 929cfcb..944ae87 100644 --- a/doc/html/Tools.html +++ b/doc/html/Tools.html @@ -176,7 +176,7 @@ These tools enable the user to examine HDF5 files interactively.
    - H5T_IEEE_F32BE, H5T_IEEE_F32LE, H5T_IEEE_F64BE, ...
  33. string type
  34. compound type -
    - named, unamed and transient compound type +
    - named, unnamed and transient compound type
    - integer, floating or string type member
  35. reference type
    - object references diff --git a/doc/html/index.html b/doc/html/index.html index 0ad8191..1ed32ba 100644 --- a/doc/html/index.html +++ b/doc/html/index.html @@ -23,39 +23,64 @@
    -
    +

    HDF Links at NCSA

    HDF Help Desk
    Email to HDF Technical Support

    HDF Home Page +

    -

    HDF Newsletters
    News about HDF and HDF5

    HDF5 FTP Archives
    HDF5 source code archives +

    +

    HDF5 Overview +
    HDF5 library and development effort (slide show) +

    +

    HDF5 Doc Development +
    Bugfixes for this release (if any); Snapshot of the next +

    +

    HDF5 Documentation

    -
    -
    An Introduction to HDF5 +
    An Introduction to HDF5 *
    An introduction to HDF5 programming and an overview of the design goals behind the HDF5 library and file format -
    HDF5 User's Guide +
    HDF5 User's Guide *
    A collection of chapters on the main HDF5 APIs and other supporting information -
    HDF5 Reference Manual +
    HDF5 Reference Manual *
    A complete reference manual for the HDF5 API -
    HDF5 Format Specification +
    HDF5 File Format Specification
    The complete specification of the HDF5 file format +
    HDF5 Glossary * +
    A glossary of terms as they are used in HDF5 +
    +
    + +
    +
    HDF5 Tutorial * +
    A tutorial introduction the HDF5 +
    +
    + +
    +
    Printable and Searchable Docs +
    PDF and PS versions of selected HDF5 docs (*)
    @@ -89,7 +114,7 @@

    HDF Help Desk -Last modified: 16 Sept 1998 +Last modified: 16 October 1999 -- cgit v0.12