/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /***************************************************************************** FILE th5s.cpp - HDF5 C++ testing the functionalities associated with the C dataspace interface (H5S) EXTERNAL ROUTINES/VARIABLES: ***************************************************************************/ #include using std::cerr; using std::endl; #include #include "H5Cpp.h" // C++ API header file using namespace H5; #include "h5test.h" #include "h5cpputil.h" // C++ utilility header file #include "H5srcdir.h" // srcdir querying header file const H5std_string TESTFILE("th5s.h5"); const H5std_string DATAFILE("th5s1.h5"); /* 3-D dataset with fixed dimensions */ const H5std_string SPACE1_NAME("Space1"); const int SPACE1_RANK = 3; const int SPACE1_DIM1 = 3; const int SPACE1_DIM2 = 15; const int SPACE1_DIM3 = 13; /* 4-D dataset with one unlimited dimension */ const H5std_string SPACE2_NAME("Space2"); const int SPACE2_RANK = 4; const int SPACE2_DIM1 = 0; const int SPACE2_DIM2 = 15; const int SPACE2_DIM3 = 13; const int SPACE2_DIM4 = 23; const hsize_t SPACE2_MAX1 = H5S_UNLIMITED; const hsize_t SPACE2_MAX2 = 15; const hsize_t SPACE2_MAX3 = 13; const hsize_t SPACE2_MAX4 = 23; /* Scalar dataset with simple datatype */ const H5std_string SPACE3_NAME("Scalar1"); const int SPACE3_RANK = 0; unsigned space3_data = 65; /* Scalar dataset with compound datatype */ const H5std_string SPACE4_NAME("Scalar2"); const H5std_string SPACE4_FIELDNAME1("c1"); const H5std_string SPACE4_FIELDNAME2("u"); const H5std_string SPACE4_FIELDNAME3("f"); const H5std_string SPACE4_FIELDNAME4("c2"); size_t space4_field1_off = 0; size_t space4_field2_off = 0; size_t space4_field3_off = 0; size_t space4_field4_off = 0; struct space4_struct { char c1; unsigned u; float f; char c2; } space4_data = {'v', 987123, -3.14F, 'g'}; /* Test data for 4th dataspace */ /* Null dataspace */ int space5_data = 7; /*------------------------------------------------------------------------- * Function: test_h5s_basic * * Purpose Test basic H5S (dataspace) code * * Return None *------------------------------------------------------------------------- */ static void test_h5s_basic() { hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2, SPACE2_DIM3, SPACE2_DIM4}; hsize_t dims3[H5S_MAX_RANK + 1]; hsize_t tmax[4]; // Output message about test being performed SUBTEST("Dataspace Manipulation"); try { // Create simple dataspace sid1 DataSpace sid1(SPACE1_RANK, dims1); // Get simple extent npoints of the dataspace sid1 and verify it hssize_t n; // Number of dataspace elements n = sid1.getSimpleExtentNpoints(); verify_val(static_cast(n), SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); // Get the logical rank of dataspace sid1 and verify it int rank; // Logical rank of dataspace rank = sid1.getSimpleExtentNdims(); verify_val(rank, SPACE1_RANK, "DataSpace::getSimpleExtentNdims", __LINE__, __FILE__); // Retrieves dimension size of dataspace sid1 and verify it int ndims; // Number of dimensions hsize_t tdims[4]; // Dimension array to test with ndims = sid1.getSimpleExtentDims(tdims); verify_val(ndims, SPACE1_RANK, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); verify_val(memcmp(tdims, dims1, SPACE1_RANK * sizeof(unsigned)), 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); // Create simple dataspace sid2 hsize_t max2[] = {SPACE2_MAX1, SPACE2_MAX2, SPACE2_MAX3, SPACE2_MAX4}; DataSpace sid2(SPACE2_RANK, dims2, max2); // Get simple extent npoints of dataspace sid2 and verify it n = sid2.getSimpleExtentNpoints(); verify_val(static_cast(n), SPACE2_DIM1 * SPACE2_DIM2 * SPACE2_DIM3 * SPACE2_DIM4, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); // Get the logical rank of dataspace sid2 and verify it rank = sid2.getSimpleExtentNdims(); verify_val(rank, SPACE2_RANK, "DataSpace::getSimpleExtentNdims", __LINE__, __FILE__); // Retrieves dimension size and max size of dataspace sid2 and // verify them ndims = sid2.getSimpleExtentDims(tdims, tmax); verify_val(memcmp(tdims, dims2, SPACE2_RANK * sizeof(unsigned)), 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); verify_val(memcmp(tmax, max2, SPACE2_RANK * sizeof(unsigned)), 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); // Check to be sure we can't create a simple data space that has too // many dimensions. try { DataSpace manydims_ds(H5S_MAX_RANK + 1, dims3, NULL); // Should FAIL but didn't, so throw an invalid action exception throw InvalidActionException("DataSpace constructor", "Library allowed overwrite of existing dataset"); } catch (DataSpaceIException &E) // Simple data space with too many dims { } // do nothing, exception expected /* * Try reading a file that has been prepared that has a dataset with a * higher dimensionality than what the library can handle. * * If this test fails and the H5S_MAX_RANK variable has changed, follow * the instructions in space_overflow.c for regenating the th5s.h5 file. */ char *tmp_str = new char[TESTFILE.length() + 1]; strcpy(tmp_str, TESTFILE.c_str()); const char *testfile = H5_get_srcdir_filename(tmp_str); delete[] tmp_str; // Create file H5File fid1(testfile, H5F_ACC_RDONLY); // Try to open the dataset that has higher dimensionality than // what the library can handle and this operation should fail. try { DataSet dset1 = fid1.openDataSet("dset"); // Should FAIL but didn't, so throw an invalid action exception throw InvalidActionException( "H5File::openDataSet", "Opening a dataset with higher dimensionality than what the library can handle"); } catch (FileIException &E) // catching higher dimensionality dataset { } // do nothing, exception expected // CHECK_I(ret, "H5Fclose"); // leave this here, later, fake a failure // in the p_close see how this will handle it. - BMR // When running in valgrind, this PASSED macro will be missed PASSED(); } // end of try block catch (InvalidActionException &E) { cerr << " FAILED" << endl; cerr << " <<< " << E.getDetailMsg() << " >>>" << endl << endl; } // catch all other exceptions catch (Exception &E) { issue_fail_msg("test_h5s_basic()", __LINE__, __FILE__, E.getCDetailMsg()); } } // test_h5s_basic() /*------------------------------------------------------------------------- * Function: test_h5s_scalar_write * * Purpose Test scalar H5S (dataspace) writing code * * Return None *------------------------------------------------------------------------- */ static void test_h5s_scalar_write() { // Output message about test being performed SUBTEST("Scalar Dataspace Writing"); try { // Create file H5File fid1(DATAFILE, H5F_ACC_TRUNC); // Create scalar dataspace DataSpace sid1(SPACE3_RANK, NULL); // n = H5Sget_simple_extent_npoints(sid1); hssize_t n; // Number of dataspace elements n = sid1.getSimpleExtentNpoints(); verify_val(static_cast(n), 1, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); int rank; // Logical rank of dataspace rank = sid1.getSimpleExtentNdims(); verify_val(rank, SPACE3_RANK, "DataSpace::getSimpleExtentNdims", __LINE__, __FILE__); // Retrieves dimension size of dataspace sid1 and verify it int ndims; // Number of dimensions hsize_t tdims[4]; // Dimension array to test with ndims = sid1.getSimpleExtentDims(tdims); verify_val(ndims, 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); // Verify extent type H5S_class_t ext_type; // Extent type ext_type = sid1.getSimpleExtentType(); verify_val(static_cast(ext_type), static_cast(H5S_SCALAR), "DataSpace::getSimpleExtentType", __LINE__, __FILE__); // Create and write a dataset DataSet dataset = fid1.createDataSet("Dataset1", PredType::NATIVE_UINT, sid1); dataset.write(&space3_data, PredType::NATIVE_UINT); PASSED(); } // end of try block catch (Exception &E) { issue_fail_msg("test_h5s_scalar_write()", __LINE__, __FILE__, E.getCDetailMsg()); } } // test_h5s_scalar_write() /*------------------------------------------------------------------------- * Function: test_h5s_scalar_read * * Purpose Test scalar H5S (dataspace) reading code * * Return None *------------------------------------------------------------------------- */ static void test_h5s_scalar_read() { hsize_t tdims[4]; // Dimension array to test with // Output message about test being performed SUBTEST("Scalar Dataspace Reading"); try { // Open file H5File fid1(DATAFILE, H5F_ACC_RDWR); // Create a dataset DataSet dataset = fid1.openDataSet("Dataset1"); DataSpace sid1 = dataset.getSpace(); // Get the number of dataspace elements hssize_t n = sid1.getSimpleExtentNpoints(); verify_val(static_cast(n), 1, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); // Get the logical rank of the dataspace int ndims = sid1.getSimpleExtentNdims(); verify_val(ndims, SPACE3_RANK, "DataSpace::getSimpleExtentNdims", __LINE__, __FILE__); ndims = sid1.getSimpleExtentDims(tdims); verify_val(ndims, 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); // Read data back and verify it unsigned rdata; // Scalar data read in dataset.read(&rdata, PredType::NATIVE_UINT); verify_val(rdata, space3_data, "DataSet::read", __LINE__, __FILE__); PASSED(); } // end of try block catch (Exception &E) { // all the exceptions caused by negative returned values by C APIs issue_fail_msg("test_h5s_scalar_read()", __LINE__, __FILE__, E.getCDetailMsg()); } } // test_h5s_scalar_read() /*------------------------------------------------------------------------- * Function: test_h5s_null * * Purpose Test null H5S (dataspace) code * * Return None *------------------------------------------------------------------------- */ static void test_h5s_null() { // Output message about test being performed SUBTEST("Null Dataspace Writing"); try { // Create file H5File fid1(DATAFILE, H5F_ACC_TRUNC); // Create scalar dataspace DataSpace sid1(H5S_NULL); hssize_t n; // Number of dataspace elements n = sid1.getSimpleExtentNpoints(); verify_val(static_cast(n), 0, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); // Create a dataset DataSet dataset = fid1.createDataSet("Dataset1", PredType::NATIVE_UINT, sid1); // Try to write nothing to the dataset dataset.write(&space5_data, PredType::NATIVE_INT); // Read the data. Make sure no change to the buffer dataset.read(&space5_data, PredType::NATIVE_INT); verify_val(space5_data, 7, "DataSet::read", __LINE__, __FILE__); PASSED(); } // end of try block catch (Exception &E) { issue_fail_msg("test_h5s_null()", __LINE__, __FILE__, E.getCDetailMsg()); } } // test_h5s_null() /*------------------------------------------------------------------------- * Function: test_h5s_compound_scalar_write * * Purpose Test scalar H5S (dataspace) writing for compound * datatypes * * Return None *------------------------------------------------------------------------- */ static void test_h5s_compound_scalar_write() { // Output message about test being performed SUBTEST("Compound Dataspace Writing"); try { // Create file H5File fid1(DATAFILE, H5F_ACC_TRUNC); // Create the compound datatype. CompType tid1(sizeof(struct space4_struct)); space4_field1_off = HOFFSET(struct space4_struct, c1); tid1.insertMember(SPACE4_FIELDNAME1, space4_field1_off, PredType::NATIVE_SCHAR); space4_field2_off = HOFFSET(struct space4_struct, u); tid1.insertMember(SPACE4_FIELDNAME2, space4_field2_off, PredType::NATIVE_UINT); space4_field3_off = HOFFSET(struct space4_struct, f); tid1.insertMember(SPACE4_FIELDNAME3, space4_field3_off, PredType::NATIVE_FLOAT); space4_field4_off = HOFFSET(struct space4_struct, c2); tid1.insertMember(SPACE4_FIELDNAME4, space4_field4_off, PredType::NATIVE_SCHAR); // Create scalar dataspace DataSpace sid1(SPACE3_RANK, NULL); // Get the number of dataspace elements hssize_t n = sid1.getSimpleExtentNpoints(); verify_val(static_cast(n), 1, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); // Get the logical rank of the dataspace int ndims = sid1.getSimpleExtentNdims(); verify_val(ndims, SPACE3_RANK, "DataSpace::getSimpleExtentNdims", __LINE__, __FILE__); hsize_t tdims[4]; // Dimension array to test with ndims = sid1.getSimpleExtentDims(tdims); verify_val(ndims, 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); // Create and write a dataset DataSet dataset = fid1.createDataSet("Dataset1", tid1, sid1); dataset.write(&space4_data, tid1); PASSED(); } // end of try block catch (Exception &E) { // all the exceptions caused by negative returned values by C APIs issue_fail_msg("test_h5s_compound_scalar_write()", __LINE__, __FILE__, E.getCDetailMsg()); } } // test_h5s_compound_scalar_write() /*------------------------------------------------------------------------- * Function: test_h5s_compound_scalar_read * * Purpose Test scalar H5S (dataspace) reading for compound * datatypes * * Return None *------------------------------------------------------------------------- */ static void test_h5s_compound_scalar_read() { hsize_t tdims[4]; // Dimension array to test with // Output message about test being performed SUBTEST("Compound Dataspace Reading"); try { // Open file H5File fid1(DATAFILE, H5F_ACC_RDWR); // Create a dataset DataSet dataset = fid1.openDataSet("Dataset1"); DataSpace sid1 = dataset.getSpace(); // Get the number of dataspace elements hssize_t n = sid1.getSimpleExtentNpoints(); verify_val(static_cast(n), 1, "DataSpace::getSimpleExtentNpoints", __LINE__, __FILE__); // Get the logical rank of the dataspace int ndims = sid1.getSimpleExtentNdims(); verify_val(ndims, SPACE3_RANK, "DataSpace::getSimpleExtentNdims", __LINE__, __FILE__); ndims = sid1.getSimpleExtentDims(tdims); verify_val(ndims, 0, "DataSpace::getSimpleExtentDims", __LINE__, __FILE__); // Get the datatype of this dataset. CompType type(dataset); struct space4_struct rdata; // Scalar data read in dataset.read(&rdata, type); // Verify read data if (memcmp(&space4_data, &rdata, sizeof(struct space4_struct)) != 0) { cerr << "scalar data different: space4_data.c1=" << space4_data.c1 << ", read_data4.c1=" << rdata.c1 << endl; cerr << "scalar data different: space4_data.u=" << space4_data.u << ", read_data4.u=" << rdata.u << endl; cerr << "scalar data different: space4_data.f=" << space4_data.f << ", read_data4.f=" << rdata.f << endl; TestErrPrintf("scalar data different: space4_data.c1=%c, read_data4.c1=%c\n", space4_data.c1, rdata.c2); } // end if PASSED(); } // end of try block catch (Exception &E) { // all the exceptions caused by negative returned values by C APIs issue_fail_msg("test_h5s_compound_scalar_read()", __LINE__, __FILE__, E.getCDetailMsg()); } } // test_h5s_compound_scalar_read() /*------------------------------------------------------------------------- * Function: test_h5s * * Purpose Main dataspace testing routine * * Return None *------------------------------------------------------------------------- */ extern "C" void test_h5s() { // Output message about test being performed MESSAGE(5, ("Testing Dataspaces\n")); test_h5s_basic(); // Test basic H5S code test_h5s_scalar_write(); // Test scalar H5S writing code test_h5s_scalar_read(); // Test scalar H5S reading code test_h5s_null(); // Test null H5S code test_h5s_compound_scalar_write(); // Test compound datatype scalar H5S writing code test_h5s_compound_scalar_read(); // Test compound datatype scalar H5S reading code } // test_h5s() /*------------------------------------------------------------------------- * Function: cleanup_h5s * * Purpose Cleanup temporary test files * * Return None *------------------------------------------------------------------------- */ extern "C" void cleanup_h5s() { HDremove(DATAFILE.c_str()); } // cleanup_h5s