
Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	1	of	66	

RFC:	VFD	SWMR			

Vailin	Choi	
John	Mainzer	
David	Young	

	

The	purpose	of	the	SWMR	(Single	Writer	Multiple	Reader)	feature	is	to	allow	a	second	
process	 to	 read	 a	HDF5	 file	while	 data	 is	 being	written	 to	 it.	 	Use	 cases	 range	 from	
monitoring	 data	 collection	 and/or	 steering	 experiments	 in	 progress	 to	 financial	
applications.	

The	 existing	 SWMR	 implementation	 touches	 most	 parts	 of	 the	 HDF5	 library,	 and	
therefore	presents	significant	maintenance	issues.		Further,	it	offers	no	guarantees	on	
the	 maximum	 time	 from	 write	 to	 read	 –	 which	 makes	 it	 problematic	 for	 some	
applications.	

The	 primary	 impetus	 behind	VFD	 SWMR	 is	 to	 implement	 SWMR	 in	 a	more	modular	
fashion	 –	 thus	 minimizing	 maintenance	 costs.	 	 Fringe	 benefits	 include	 allowing	 the	
HDF5	 library	 to	make	guarantees	 for	 the	maximum	time	 from	write	 to	availability	of	
data	 for	 read	 (subject	 to	 the	 performance	 limits	 of	 the	 underlying	 file	 system,	 and	
presuming	 that	 the	 writer	 calls	 the	 HDF5	 library	 frequently),	 and	 the	 possibility	 of	
extending	SWMR	to	NFS	and	object	stores.			

	

1 Introduction					
The	existing	implementation	of	SWMR	uses	the	strict	write	ordering	and	the	atomic	write	guarantees	
of	POSIX	I/O	semantics	to	ensure	that	the	reader	always	sees	consistent	metadata.		For	example,	if	a	
B-Tree	must	be	modified,	all	modified	nodes	below	the	top-level	point	of	change	are	first	duplicated,	
modified	as	 required,	and	written	 to	disk.	 	This	done,	 the	 top-level	 (or	 root)	node	of	 the	change	 is	
over	written	in	a	single	atomic	operation.		The	original	versions	of	the	modified	nodes	below	the	root	
are	retained	for	a	time	so	that	a	reader	traversing	the	B-Tree	will	see	a	consistent	(but	out	of	date)	
version	of	the	B-Tree.	

This	 approach	 requires	 that	 the	 metadata	 cache	 clients	 perform	 the	 necessary	 reallocations	 of	
metadata	 and	 specify	 the	 necessary	 write	 ordering	 while	 in	 SWMR	 write	 mode.	 	 Further,	 the	
metadata	cache	must	provide	the	necessary	support	facilities.		

VFD	SWMR	avoids	involving	the	metadata	cache	clients	in	SWMR	by	taking	periodic	snapshots	of	the	
metadata	at	points	when	it	is	known	to	be	consistent.		These	snapshots	are	then	communicated	via	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	2	of	66	

an	out	of	HDF5	file	store1	to	specialized	VFDs	in	the	reader	processes.		These	reader	VFDs	intercept	
metadata	 read	 requests	 and	 satisfy	 them	 from	 the	 snapshots.	 	 This	 has	 the	 advantage	 of	making	
SWMR	 transparent	 to	 all	 layers	 of	 the	 HDF5	 library	 above	 the	metadata	 cache	 –	 thus	 simplifying	
maintenance	 greatly,	 and	 allowing	 non-SWMR	 applications	 to	 avoid	 SWMR	 related	 overhead.		
Further,	since	the	current	state	of	HDF5	metadata	 is	communicated	outside	the	HDF5	file,	 the	VFD	
SWMR	 approach	 opens	 the	 possibility	 of	 implementing	 SWMR	 on	 storage	 systems	 that	 do	 not	
support	 POSIX	 file	 I/O	 semantics.	 	 Finally,	 since	 the	 specialized	 VFD	 SWMR	 reader	 VFD	 is	 easily	
separated	from	the	HDF5	library,	SWMR	support	can	be	marketed	as	an	add-on.		

In	 the	 following,	 keep	 in	mind	 that	no	version	of	 SWMR	makes	guarantees	about	 the	 state	of	 raw	
data.		They	only	guarantee	is	that	the	reader	will	see	a	consistent	view	of	the	metadata	–	not	that	the	
raw	data	read	through	the	use	of	this	metadata	will	have	made	it	to	file	yet.		

1.1 Outline	of	this	Document	

Section	2	 is	an	updated	version	of	 the	sketch	design	of	VFD	SWMR.	 	 It	was	written	to	propose	the	
concept,	and	in	this	context,	it	is	intended	to	provide	a	conceptual	introduction.		Note	that	it	contains	
a	number	of	oversimplifications,	which	are	addressed	in	Section	3.	

Section	 3	 is	 the	 design	 document	 to	which	VFD	 SWMR	 is	 implemented.	 	 It	 should	 fully	 define	 the	
function	and	design	of	all	the	code	necessary	to	 implement	VFD	SWMR.	 	Note	that	this	section	will	
evolve	as	implementation	proceeds,	and	unforeseen	issues	are	addressed.			

When	VFD	SWMR	is	 fully	 implemented,	section	4	will	address	code	organization	details	needed	for	
maintenance	purposes.	

Section	 5	 is	 the	 design	 document	 for	 the	 test	 suite	 needed	 to	 validate	 and	maintain	 VFD	 SWMR.		
Initial	 versions	 will	 mostly	 list	 items	 to	 be	 tested.	 	 As	 implementation	 progresses,	 it	 should	 be	
updated	to	discuss	the	structure	of	the	test	code.	

1.2 Update	Post	Phase	II	Award		

Since	the	above	introduction	was	written,	we	have	implemented	the	initial	proof	of	concept	version	
of	VFD	SWMR	and	won	the	phase	2	contract	to	extend	and	rework	it	into	a	production	version.		We	
expect	this	task	to	be	both	easier	and	harder	than	one	might	expect.	

Easier,	 because	 the	 initial	 implementation	 is	 remarkably	 complete,	 and	 requires	 only	 peripheral	
changes	to	convert	it	into	a	reasonable	initial	production	version.	

Harder,	because	we	piggybacked	on	the	existing	SWMR	test	code,	and	wrote	almost	none	of	our	own.		
While	 this	 was	 sufficient	 to	 demonstrate	 that	 the	 concept	 works,	 it	 is	 quite	 in-adequate	 for	
production	 purposes.	 	 Thus	we	must	write	 a	 complete	 test	 suite	 (unit	 tests,	 integration	 tests,	 and	
performance	tests)	as	one	of	our	first	orders	of	business.	

While	Section	2	of	this	document	remains	largely	unchanged,	Section	3	(VFD	SWMR	Design)	has	been	
reworked	 to	 clean	 up	 many	 of	 the	 short	 cuts	 and	 temporary	 solutions	 that	 were	 necessary	 to	

																																																								
1	In	the	POSIX	case,	this	is	simply	another	file,	separate	from	the	HDF5	file	and	referred	to	later	in	this	
document	as	the	metadata	file.		We	use	this	circumlocution	as	matters	are	more	complex	in	the	NFS	
and	object	store	cases.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	3	of	66	

implement	 the	 prototype	 within	 the	 time	 and	 budget	 allotted.	 	 Note,	 however,	 that	 the	 first	
production	version	must	still	co-exist	with	the	existing	SWMR	implementation.		Only	when	(and	if)	we	
decide	to	commit	to	VFD	SWMR	will	we	be	able	to	begin	the	long	and	tedious	task	of	removing	the	
original	implementation	and	simplify	the	code	accordingly.	

As	of	this	writing	(8/03/19),	Section	4	(Implementation	Details)	remains	empty.		Work	has	started	on	
Section	5	(Testing),	and	will	continue	as	we	specify	and	implement	the	test	suite.	

1.3 Update	for	the	Friendly	User	Release	

Since	the	previous	update,	we	have	addressed	most	of	the	above	mentioned	peripheral	issues	in	the	
initial	 implementation,	 and	 developed	 a	 test	 suite	 that	 exercises	 most	 elements	 of	 the	 HDF5	 file	
format	in	combination	with	VFD	SWMR.	

These	tests	have	exposed	a	number	of	issues.		While	most	of	these	issues	have	been	dealt	with,	the	
following	are	outstanding:	

• At	present,	the	Virtual	Data	Sets	(VDS)	feature	is	not	well	integrated	with	VFD	SWMR.		While	
we	have	a	work	around	that	allowed	us	to	test	VDS	for	more	fundamental	issues,	a	proper	
solution	is	on	hold	pending	availability	of	the	original	developer	of	VDS	later	this	year.			

• The	current	implementation	of	variable	length	fields	in	datasets	is	fundamentally	
incompatible	with	VFD	SWMR	due	to	the	fact	that	variable	length	data	is	currently	stored	in	
global	heaps	accessed	via	the	metadata	cache.		This	is	not	as	big	a	problem	as	it	appears,	as	
the	current	implementation	of	variable	length	data	has	very	poor	performance,	and	thus	is	
not	suitable	for	most	SWMR	applications.		A	re-implementation	of	variable	length	data	is	in	
the	planning	stage.		While	improved	performance	is	the	primary	objective	of	the	new	
implementation,	it	should	also	be	compatible	with	VFD	SWMR.		Unfortunately,	we	have	no	
ETA	for	this	re-implementation.			

Variable	length	attributes	(on	groups	or	datasets)	should	work	with	VFD	SWMR,	but	we	don’t	
have	a	test	for	this	yet.	

• At	present,	the	VFD	SWMR	implementation	is	hard	coded	to	flush	raw	data	at	the	end	of	each	
tick.		While	this	has	greatly	simplified	our	initial	test	suite,	it	imposes	extra	overhead.		Making	
this	configurable,	and	adjusting	our	test	suite	accordingly	is	on	our	to-do	list.	

We	have	run	initial	performance	tests,	comparing	elapsed	time	for	a	given	sequence	of	writes	to	to	a	
file	opened	 for	writing	with	VFD	SWMR,	 to	elapsed	 time	 for	 the	 same	sequence	of	writes	 to	a	 file	
opened	in	normal	read	/	write	mode.		Results	varied	depending	on	the	number	and	size	of	datasets,	
and	the	number	of	extensible	dimensions.			

Best	 results	 were	 obtained	 with	 small	 numbers	 (~5)	 of	 large	 data	 sets,	 where	 the	 VFD	 SWMR	
overhead	was	approximately	zero.	

Worst	results	were	large	numbers	(~1000)	of	small	data	sets	with	two	extensible	dimensions,	where	
overheads	in	the	order	of	100%	were	observed.		

These	 results	 are	 preliminary,	 used	 synthetic	 loads,	 and	 are	 likely	 to	 change	 as	 we	 improve	 our	
performance	tests,	test	on	different	systems,	and	optimize.			

So	far,	we	have	not	attempted	similar	performance	tests	on	the	VFD	SWMR	reader.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	4	of	66	

2 Conceptual	Overview	
Observe	 that	HDF5	metadata	must	be	 in	 a	 consistent	 state	 at	 the	beginning	 and	end	of	API	 calls2.		
Thus	 we	 can	 safely	 make	 snapshots	 of	 HDF5	 metadata	 at	 these	 points.	 	 To	 support	 a	 maximum	
latency	from	a	given	write	to	visibility	of	that	write	on	the	readers,	on	the	writer	side	we	must	take	
snapshots	on	a	regular	basis,	and	on	the	reader	side,	we	must	check	for	updates	regularly	as	well.			

Let	t	be	the	desired	maximum	latency	from	write	to	visibility	on	the	reader	side.		Define	one	tick	to	be	
t/3.	 	With	 this	definition	 in	hand,	consider	 the	 following	outlines	of	 the	cycles	of	operation	 for	 the	
writer	and	readers.			

Note	 that	 these	outlines	assume	that	all	pieces	of	metadata	are	smaller	 than	one	page.	 	While	we	
should	be	able	to	get	very	close	to	this	using	the	latest	file	format,	this	presumption	is	probably	not	
attainable	with	practical	page	sizes.		However,	the	assumption	makes	the	cycle	of	operations	easy	to	
follow,	and	as	shall	be	seen	in	section	3,	the	occasional	exception	can	be	handled	easily	as	long	the	
oversized	pieces	of	metadata	are	not	huge.	

2.1 Writer	Cycle	of	Operation	

Presume	that	the	file	has	been	created	with	paged	allocation,	and	that	all	pieces	of	metadata	are	no	
larger	than	a	single	page.		Further	suppose	that	we	have	modified	the	page	buffer	to	track	pages	of	
metadata	that	have	changed	during	the	current	tick,	and	to	hold	in	memory	any	page	that	has	been	
modified	during	the	current	tick.	

Presume	also	that	the	API	func	enter	/	exit	macros	have	been	modified	to	check	to	see	if	the	current	
tick	has	expired3,	and	invoke	the	“writer_end_of_tick()”	function	if	it	has.	

The	writer_end_of_tick()	function	performs	the	following	activities:	

	

1. Flush	the	metadata	cache	to	the	page	buffer.	
	

2. Write	all	metadata	pages	that	have	been	modified	to	the	out	of	HDF5	file	backing	store.		How	
this	is	done	depends	on	whether	the	backing	store	is	a	POSIX	file	system,	a	NFS	file	system,	or	
an	object	store.		See	below	for	discussions	of	each	of	these	options.	

	

3. Construct	/	update	the	index	mapping	the	base	addresses	of	all	pages	of	metadata	to	
locations	in	the	out	of	HDF5	file	backing	store.		Replace	the	old	version	of	the	index	with	the	
new	version.		How	this	is	done	again	depends	on	the	type	of	out	of	HDF5	file	backing	store	
used.	

	

																																																								
2	This	is	a	bit	of	an	oversimplification,	as	some	API	calls	allow	the	caller	to	specify	callback	routines,	
and	these	callback	routines	can	invoke	HDF5	library	API	calls.		However,	if	we	count	API	call	entries	
and	exits,	and	only	consider	initial	entries	and	final	exits	of	nested	calls,	the	above	statement	is	true.		
3	i.e.	a	tick	(whatever	period	of	time	that	may	be)	has	passed	since	the	current	tick	started.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	5	of	66	

4. Release	space	on	the	out	of	HDF5	file	backing	store	that	contains	pages	and/or	indices	that	
have	been	superseded	more	than	max_lag	ticks	ago,	where	max_lag	is	user	configurable	and	
is	least	10.	

	

5. Make	note	of	the	start	time	of	the	new	tick.	
	

6. Resume	normal	processing.	
	

Note	that	the	writer_end_of_tick()	processing	does	not	require	any	writes	to	the	HDF5	file	proper.		If	
the	quantity	of	metadata	is	small	enough	to	fit	in	the	metadata	cache	and	page	buffer,	there	may	be	
no	metadata	writes	to	the	HDF5	file	until	file	close.	

Observe	also	that	if	an	existing	file	is	opened	for	VFD	SWMR	writing,	there	is	no	requirement	that	all	
metadata	will	 be	written	 to	 the	 out	 of	 HDF5	 file	 backing	 store.	 	 Any	metadata	 that	 has	 not	 been	
altered	will	remain	 in	the	file,	and	will	be	accessed	normally	by	the	reader.	Note	however,	that	 if	a	
pre-existing	piece	of	metadata	is	modified,	it	may	not	be	written	to	the	HDF5	file	for	at	least	max_lag	
ticks	lest	a	lagging	reader	receive	a	“message	from	the	future”.			

Due	to	this	constraint,	it	is	possible	for	a	flush	to	require	up	to	max_lag	ticks	to	complete.		While	the	
flush	raw	data	at	end	of	tick	option	(discussed	in	section	3)	should	remove	most	if	not	all	reasons	to	
flush	a	file	while	it	is	open	for	VFD	SWMR	writing,	this	point	should	be	kept	in	mind.		Since	the	HDF5	
file	must	be	flushed	as	part	of	the	close	process,	closing	a	file	may	take	up	to	max_lag	ticks	as	well.	

2.1.1 Management	of	the	Out	of	HDF5	File	Backing	Store	

2.1.1.1 POSIX	

In	the	case	of	a	POSIX	file	system,	pages	of	metadata	are	written	to	a	metadata	file4	in	such	a	fashion	
as	to	avoid	overwriting	any	page	of	metadata	that	has	been	listed	in	the	metadata	page	index	in	the	
last	max_lag	ticks.		After	all	modified	metadata	pages	are	written	to	the	metadata	file,	the	old	index	is	
overwritten	with	the	new	version.		In	principle,	this	overwrite	(along	with	the	metadata	page	writes)	
should	be	atomic.		However,	past	experience	indicates	that	we	should	include	checksums	to	allow	the	
reader	to	detect	torn	writes,	and	re-try	until	the	torn	write	completes.			

Here	 the	 index	maps	 base	 addresses	 of	metadata	 pages	 in	 the	HDF5	 file	 to	 base	 addresses	 in	 the	
metadata	file.		Note	that	the	metadata	file	need	not	be	on	the	same	physical	file	system	as	the	HDF5	
file	proper	–	which	avoids	any	file	system	contention	between	VFD	SWMR	related	I/O	and	raw	data	
I/O.		If	sufficient	RAM	is	available,	a	small	RAM	disk	would	be	ideal	for	the	metadata	file.	

2.1.1.2 NFS	

NFS	 guarantees	 neither	write	 ordering	 nor	 atomic	writes.	 	 However,	 from	our	 cursory	 research,	 it	
does	guarantee	flush	of	all	buffers	on	file	close.	

																																																								
4	The	metadata	file	is	sometime	referred	to	as	the	“shadow	file”.		The	terms	are	synonymous.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	6	of	66	

This	 suggests	 that,	 for	 NFS,	 the	 writer	 should	 construct	 a	 change	 list	 for	 the	 metadata	 file	 in	 a	
temporary	file,	close	it,	and	then	change	its	name	to	the	next	name	in	some	well	defined	sequence	of	
metadata	file	deltas.	

The	readers	(or	some	helper	process)	would	then	check	for	an	update	every	tick,	and	use	all	updates	
found	to	update	a	local	copy	of	the	metadata	file.	

To	 conserve	 file	 space,	 the	 update	 files	 could	 be	 deleted	 after	 max_lag	 ticks	 –	 although	 a	 large	
max_lag	would	be	advisable	to	allow	for	network	delays.	

2.1.1.3 Object	Store	

The	object	store	case	is	almost	the	same	as	the	NFS	case,	with	each	metadata	file	change	list	being	
written	to	a	new	object.			

2.2 Reader	Cycle	of	Operation	

As	with	the	VFD	SWMR	writer,	the	page	buffer	must	be	used.	

Presume	that	the	VFD	SWMR	reader	VFD	is	stacked	on	top	of	whatever	VFD	is	used	to	read	the	HDF5	
file	proper,	and	intercepts	all	reads	of	metadata	pages	that	are	listed	in	the	index.		These	reads	are	
satisfied	as	directed	by	the	index	into	the	metadata	file.		The	exact	details	of	the	SWMR	VFD	depend	
the	 details	 of	 the	 out	 of	 HDF5	 file	 backing	 store	 –	 as	 before,	 POSIX,	 NFS,	 and	 objects	 stores	 are	
discussed	individually	below.	

Presume	also	 that	 the	metadata	 cache	has	 been	modified	 so	 that	 it	 can	 invalidate	 all	 entries	with	
base	address	within	a	specified	range	of	addresses.		Note	that	this	may	not	be	as	easy	as	it	sounds,	as	
some	metadata	cache	clients	presume	that	metadata	 is	 loaded	 into	 the	cache	 in	a	 specific	order	–	
and	thus	may	not	react	well	to	the	eviction	of	randomly	selected	entries.		The	correct	solution	is	to	
modify	these	cache	clients	to	support	refreshes	of	 internal	entries	from	file5.	 	However,	a	workable	
interim	 solution	 is	 to	 simply	evict	 the	on	disk	data	 structure	of	which	 the	 target	entry	 is	part,	 and	
reload	it	if	it	is	needed.6	

Likewise,	presume	that	the	page	buffer	can	evict	all	pages	listed	as	having	changed	in	the	metadata	
file	index.	

Finally	presume	that	the	API	func	enter	macros	have	been	modified	to	check	to	see	if	the	current	tick	
has	expired,	and	call	the	reader_start_new_tick()	function	if	it	has.	

The	reader_start_new_tick()	function	performs	the	following	activities:	

	

1. Direct	the	reader	VFD	to	reload	the	index,	and	determine	which	pages	have	been	modified	
since	the	last	time	the	index	was	reloaded.		For	each	modified	page:	

o Evict	the	old	version	of	the	page	from	the	page	buffer.	

																																																								
5	Strictly	speaking,	this	violates	the	design	objective	of	making	SWMR	transparent	to	all	layers	above	
the	metadata	cache.			
6	When	last	we	discussed	the	issue,	this	is	the	solution	that	Quincey	was	planning	to	use	for	his	
implementation	of	full	SWMR.		

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	7	of	66	

o Instruct	the	metadata	cache	to	invalidate	all	entries	located	in	the	modified	page.	
	

2. Make	note	of	the	start	time	of	the	new	tick,	so	that	its	end	can	be	detected.	
	

3. Resume	normal	processing.	
	

2.2.1 Management	of	the	Out	of	HDF5	File	Backing	Store	

As	 indicated	above,	 the	details	of	 the	VFD	SWMR	reader	VFD	depend	on	 the	 type	of	backing	store	
used	to	store	the	metadata:	

2.2.1.1 POSIX	

In	the	case	of	POSIX	file	systems,	when	a	page	of	metadata	is	requested	by	the	page	buffer,	use	the	
index	to	find	the	offset	of	the	desired	page	in	the	metadata	file,	read	the	desired	page,	and	pass	it	to	
the	page	buffer.	 	When	reading	either	the	index	or	a	metadata	page,	verify	 its	checksum,	and	retry	
until	the	checksum	is	correct,	or	the	maximum	number	of	retries	is	exceeded.			

Note	that	the	index	must	provide	a	consistent	view	of	the	HDF5	file’s	metadata,	as	on	the	writer,	the	
metadata	cache	was	flushed	to	the	page	buffer	before	the	index	was	created,	and	the	tick	ended	at	
either	 the	beginning	or	end	of	an	API	 call.	 	 Further,	no	metadata	page	 is	overwritten	until	 at	 least	
max_lag	ticks	have	passed	since	the	last	time	the	page	was	mentioned	in	an	index.		Since	the	index	is	
at	most	a	little	over	2	ticks	old,	since	the	page	buffer	is	purged	of	any	superseded	pages	each	time	a	
new	 index	 is	 loaded,	 and	 since	 any	 possibly	 superseded	 entries	 are	 likewise	 evicted	 from	 the	
metadata	cache,	this	precludes	any	inconsistencies.	

2.2.1.2 NFS	

In	 the	 case	 of	 NFS	 file	 system,	 things	 are	 a	 bit	 more	 difficult,	 as	 there	 is	 no	 guarantee	 of	 write	
ordering.	 	 However,	 since	 NFS	 apparently	 guarantees	 full	 flush	 to	 backing	 store	 on	 close,	 the	
metadata	 file	 change	 list	 files	 discussed	 in	 2.1.1.2	 should	 be	 complete	 by	 the	 time	 they	 become	
visible	to	the	reader	SWMR	VFDs.	

When	the	SWMR	VFD	is	directed	to	reload	the	index,	it	must	query	the	NFS	file	system	to	see	if	any	
new	metadata	file	change	list	files	have	become	available.		If	any	have,	it	must	process	these	files	in	
strict	 sequential	 order	 –	 if	 there	 is	 a	 gap,	 subsequent	metadata	 file	 change	 list	 files	must	 not	 be	
processed	until	the	gap	is	filled.7			

Once	the	next	metadata	file	change	list	file	has	been	identified,	the	SWMR	VFD	must	read	it	and	use	
it	 to	update	 its	 local	 copy	of	 the	metadata	 file.8	 	Once	all	 actionable	metadata	 file	 change	 list	 files	
have	been	processed,	the	SWMR	VFD	proceeds	as	per	the	POSIX	case.	

																																																								
7	While	a	gap	need	not	halt	processing	on	the	reader,	if	it	is	not	filled	within	max_lag	ticks,	the	reader	
will	likely	perceive	corruption	in	the	metadata.	
8	While	it	should	not	be	necessary,	it	would	be	prudent	to	include	a	checksum	on	the	metadata	file	
update	files	to	ensure	that	NFS	is	behaving	as	expected.		

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	8	of	66	

Observe	that	if	we	create	a	separate	process	to	monitor	the	NFS	file	system	for	metadata	file	update	
files,	 process	 them	 as	 they	 appear,	 and	maintain	 a	 local	 copy	 of	 the	metadata	 file,	 the	 NFS	 case	
resolves	to	the	POSIX	case	from	the	perspective	of	the	VFD	SWMR	reader.		As	this	reduces	the	load	
on	 the	 SWMR	 VFD	 significantly,	 we	 should	 at	 least	 investigate	 this	 option	 when	 we	 get	 to	 NFS	
support.	

2.2.1.3 Object	Store	

The	object	store	case	is	almost	the	same	as	NFS,	save	that	we	may	not	have	a	way	of	ensuring	atomic	
creation	of	metadata	file	change	list	objects.	 	An	obvious	way	of	addressing	this	 is	to	checksum	the	
metadata	file	change	list	object	and	either	retry	or	wait	a	tick	if	the	checksum	fails.	

2.2.2 A	Hidden	Assumption	

Our	discussion	of	the	VFD	SWMR	reader	 is	not	complete	without	discussing	the	hidden	assumption	
that	the	reader	that	it	will	be	able	to	complete	each	API	call	promptly	–	certainly	within	a	tick.	

This	need	not	be	the	case	on	a	heavily	loaded	system,	where	the	scheduler	and	contention	for	access	
to	the	file	system	can	introduce	arbitrary	delays.9		In	addition	to	breaking	the	real	time	requirement,	
if	 the	 delay	 exceeds	 max_lag	 ticks,	 it	 is	 possible	 that	 the	 reader	 will	 attempt	 to	 read	 a	 page	 of	
metadata	from	the	metadata	file	that	has	been	overwritten	or	deleted.	

Given	that	an	objective	of	VFD	SWMR	is	to	support	real	time	access	to	data	written	to	the	HDF5	file,	
we	could	be	forgiven	for	dismissing	this	problem	on	the	grounds	that	the	host	system	is	not	capable	
of	 meeting	 the	 specified	 real	 time	 constraint,	 and	 thus	 we	 have	 already	 failed,	 and	 we	 need	 not	
concern	ourselves	with	secondary	failures.	

That	said,	not	all	users	require	true	real	time	SWMR,	and	thus	a	brief	discussion	of	possible	solutions	
may	be	useful:	

	

1. Increase	tick	length	–	thereby	reducing	the	load	on	the	host	system.	
	

2. Increase	max_lag	such	that	max_lag	*	(tick	length)	is	greater	than	the	maximum	expected	
delay.	

	

3. Modify	the	metadata	cache	entry	load	code	to	notice	when	more	than	max_lag-1	ticks	have	
passed	since	the	last	time	the	index	was	loaded,	and	force	a	re-try	of	the	API	call	if	it	has.	

	

Options	1	&	2	are	obvious,	easy	to	implement,	and	should	be	supported.		While	option	3	is	a	possible	
solution10,	we	reject	it	because	re-introduces	a	great	deal	of	SWMR	specific	code	and	complexity	into	

																																																								
9	It	is	also	possible	to	construct	HDF5	API	calls	which	require	arbitrarily	large	amounts	of	time	to	
complete	–	for	example	very	large	reads	or	writes,	particularly	on	complex	selections.		Fortunately,	it	
should	always	be	possible	to	avoid	the	problem	by	breaking	such	calls	into	an	equivalent	sequence	of	
calls.	
10	And	one	that	is	used	in	the	existing	SWMR	implementation	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	9	of	66	

the	library,	for	the	purpose	of	supporting	the	user	who	is	attempting	to	run	VFD	SWMR	on	marginal	
hardware	with	an	 insufficiently	capable	backing	store.	 	More	 to	 the	point,	a	major	 impetus	behind	
VFD	SWMR	is	to	minimize	the	amount	of	SWMR	specific	code	in	the	HDF5	library	proper,	and	thereby	
to	simplify	it	and	facilitate	maintenance.		

2.3 	Maximum	Delay	from	Write	to	Read	

If	we	assume	instantaneous	file	system	response,	and	HDF5	API	calls	that	are	frequent	relative	to	the	
tick	frequency,	the	maximum	delay	from	write	to	read	with	the	above	scheme	should	be	a	little	more	
than	two	ticks	–	we	add	the	remainder	of	the	third	tick	to	allow	for	I/O	delays,	delays	between	the	
end	of	a	tick	and	the	next	API	call	on	the	writer,	for	writing	metadata	pages,	and	for	constructing	and	
writing	indices.			

This	should	be	adequate	assuming	a	POSIX	file	system	that	is	not	overloaded,	and	a	tick	size	that	 is	
very	 large	compared	to	the	file	system	response	time.	 	Since	the	file	system	used	for	the	metadata	
file	need	not	be	the	same	as	that	used	for	the	HDF5	file	proper11,	this	latter	constraint	should	be	fairly	
easy	to	meet.	

In	contrast,	this	will	likely	not	be	the	case	with	NFS	and	object	stores	unless	the	tick	size	is	quite	large	
(i.e.	10s	of	 seconds,	or	more),	 since	neither	of	 these	 storage	 systems	are	designed	 for	 speed	or	 to	
guarantee	write	ordering.	

2.4 Parallel	VFD	SWMR	

As	 should	 be	 obvious	 from	 the	 above	 cycles	 of	 operation,	 VFD	 SWMR	 is	 largely	 orthogonal	 to	 the	
normal	 operation	 of	 the	HDF5	 library.	 	 Thus,	 the	 only	major	 additional	 requirement	 for	 using	VFD	
SWMR	with	parallel	computations	is	to	enable	the	page	buffer	in	parallel	HDF5.			

Given	this,	all	that	is	needed	to	implement	the	VFD	SWMR	writer	in	parallel	is	to	run	the	VFD	SWMR	
writer	code	on	one	process	–	probably	process	0.		That	process	then	writes	modified	metadata	pages,	
and	constructs	and	writes	indices	as	per	the	serial	case.		Since	all	processes	in	parallel	HDF5	see	the	
same	sequence	of	dirty	metadata,	this	is	sufficient.			

With	the	extra	processing	on	process	0,	it	may	fall	behind	the	other	processes	between	sync	points12.		
If	 this	 is	an	 issue,	additional	sync	points	could	be	added.	 	However,	 this	will	 likely	delay	the	overall	
computation.	If	a	spare	core	is	available,	much	of	the	VFD	SWMR	writer	overhead	could	be	offloaded	
to	a	thread.		While	this	is	probably	a	good	idea	in	both	the	serial	and	parallel	cases,	it	doesn’t	address	
the	issue	completely.			

																																																								
11	System	resources	permitting,	creating	a	small	RAM	disk	for	the	metadata	file	would	be	ideal.	
12	In	parallel	HDF5,	all	processes	perform	all	actions	that	modify	metadata	collectively,	and	thus	see	
the	same	stream	of	dirty	metadata.		To	allow	the	metadata	caches	to	safely	flush	metadata	entries,	
the	metadata	caches	on	all	processes	count	the	number	of	dirty	bytes	of	metadata	generated,	and	
enter	a	sync	point	every	n	bytes,	where	n	is	user	configurable.		Once	in	the	sync	point,	the	process	0	
metadata	cache	decides	what	entries	to	flush	and	then	coordinates	with	the	other	metadata	caches.		
This	allows	the	metadata	caches	to	flush	and	evict	metadata	without	risking	message	from	the	past	/	
future	bugs.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	10	of	66	

The	 reader	 side	 of	 VFD	 SWMR	 is	 slightly	 more	 complex	 due	 to	 the	 difficulty	 of	 maintaining	 a	
consistent	 timer	across	multiple	processes	 in	a	parallel	 computation.	 	This	makes	 it	hard	 to	ensure	
that	all	processes	read	the	same	index,	and	introduces	the	possibility	of	deadlocks.	

To	sidestep	both	of	the	issues,	it	will	probably	be	necessary	to	require	the	reader	application	to	run	
the	 reader_start_new_tick()	 function	 collectively	 from	 time	 to	 time.	 	 This	 allows	 us	 to	
designate	a	single	process	to	read	the	 index	and	broadcast	 it	 to	the	remaining	processes	–	thereby	
ensuring	 a	 consistent	 view	 of	 the	 index.	 	 As	 the	 frequency	 of	 calls	 to	
reader_start_new_tick()	will	be	under	 the	control	of	 the	application,	max_lag	will	have	to	
be	chosen	to	allow	for	the	longest	expected	delay	between	calls	to	reader_start_new_tick().	

3 VFD	SWMR	Design	
Note:	This	section	of	the	VFD	SWMR	RFC	is	dated.		Briefly,	we	have	made	a	number	of	minor	design	
changes	to	address	issues	encountered	during	our	testing,	and	have	not	been	as	good	at	keeping	this	
document	up	to	date	as	we	should	be.			

For	efficient	maintenance,	this	must	be	repaired	before	production	release.		However,	until	we	do	so,	
expect	minor	discrepancies	between	this	section	and	the	code.	

While	 the	 above	 discussion	 of	 the	 cycle	 of	 operations	 for	 VFD	 SWMR	 should	 provide	 a	 good	
conceptual	overview,	as	mentioned	earlier,	it	contains	one	major	oversimplification.		Simply	put,	the	
HDF5	 file	 format	does	not	make	 it	 easy	 to	 set	 an	upper	 bound	on	 the	 size	 of	 pieces	of	metadata.		
Indeed,	in	older	versions	of	the	file	format,	it	is	possible	to	create	arbitrarily	large	local	heaps.	

Fortunately,	 by	 requiring	 the	 latest	 file	 format	 for	 VFD	 SWMR,	 this	 issue	 can	 be	 largely	 tamed.		
However,	even	 in	 this	 case	and	with	default	 configuration,	pieces	of	metadata	 can	 reach	64	KiB	 in	
size,	and	(under	unusual	circumstances)	exceed	it.	

This	means	that	while	we	can	pick	a	metadata	page	size	that	is	larger	than	the	vast	majority	of	pieces	
of	 metadata,	 we	 cannot	 guarantee	 that	 all	 metadata	 will	 fit	 in	 any	 given	 page	 size.	 	 Thus	 the	
implementation	of	VFD	SWMR	must	be	able	to	handle	this	eventuality.	

Fortunately,	when	paged	allocation	is	enabled,	if	space	for	a	piece	of	metadata	larger	than	one	page	
is	 requested,	 the	 free	 space	 manager	 allocates	 the	 smallest	 integral	 number	 of	 adjacent	 pages	
required,	allocates	the	requested	space	starting	at	the	beginning	of	this	sequence	of	pages,	and	does	
not	allocate	space	from	the	page	fragment	at	the	end.			

This	means	that	 if	a	piece	of	metadata	 larger	than	one	page	is	flushed	from	the	metadata	cache	to	
the	page	buffer	either	during	or	at	the	end	of	a	tick,	it	is	sufficient	for	the	page	buffer	to	retain	a	copy,	
write	 it	 to	 the	 out	 of	 HDF5	 file	 backing	 store,	 and	 include	 it	 in	 the	 index	 in	 the	 usual	 end	 of	 tick	
processing	for	the	VFD	SWMR	writer.		Further,	since	we	know	that	any	space	between	the	end	of	the	
larger	 than	one	page	piece	of	metadata	and	 the	end	of	 the	 last	page	 is	un-allocated,	we	need	not	
concern	ourselves	with	this	file	space.13	

																																																								
13	Unfortunately,	testing	has	revealed	two	cases	in	which	this	is	not	true.		Both	the	fixed	array	and	
extensible	array	indexing	structures	allocate	large	blocks	of	file	space,	and	sub-allocate	metadata	
entries	out	of	it.		This	in	turn	creates	the	situation	in	which	a	metadata	cache	entry	can	be	of	size	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	11	of	66	

Note	however,	that	having	to	deal	with	metadata	entries	larger	than	one	page	does	complicate	free	
space	management	in	the	metadata	file	that	is	maintained	in	the	POSIX	case	(and	likely	the	NFS	and	
Object	store	cases	as	well).	

3.1 API	Additions	

3.1.1 FAPL	Additions	

The	current	SWMR	implementation	allows	the	user	to	shift	to	SWMR	writer	mode	after	the	file	has	
been	 opened.	 	 As	 I	 understand	 it,	 the	 initial	 SWMR	 implementation	 did	 not	 support	 creation	 of	
groups	and	datasets	in	a	SWMR	safe	way,	and	thus	it	was	necessary	to	create	all	needed	groups	and	
datasets	before	allowing	the	file	to	be	read	by	SWMR	readers.		I	gather	that	this	limitation	has	been	
addressed	 as	 part	 of	 Quincey’s	 “Full	 SWMR”	 project,	 which	 is	 an	 extension	 of	 the	 current	 SWMR	
design.	

VFD	SWMR	doesn’t	have	this	issue,	and	thus	we	can	simply	specify	VFD	SWMR	on	file	open	or	create.		
We	will	do	this	with	the	new	FAPL	(File	Access	Property	List)	entry	H5F_VFD_SWMR_CONFIG.	

The	signatures	for	the	calls	for	getting	and	setting	this	property	are:

 herr_t H5Pset_vfd_swmr_config(hid_t plist_id, H5F_vfd_swmr_config_t *config_ptr);

 herr_t H5Pget_vfd_swmr_config(hid_t plist_id, H5F_vfd_swrm_config_t *config_ptr);

Where	H5F_vfd_swmr_config_t	is	defined	as	follows:	

/**
 *
 * struct H5F_vfd_swmr_config_t
 *
 * Instances of H5F_vfd_swmr_config_t are used by VFD SWMR writers and readers
 * to pass necessary configuration data to the HDF5 library on file open (or
 * creation, in the case of writers).
 *
 * Given that the VFD SWMR configuration FAPL property is set, the writer field,
 * (discussed below) must be consistent with the flags passed in to H5Fopen()
 * (either H5F_ACC_RDWR for the VFD SWMR writer, or H5F_ACC_RDONLY for the VFD
 * SWMR readers).
 *
 * If H5Fcreate() is used and the VFD SWMR FAPL property is set, the file will
 * be opened as a VFD SWMR writer (and the writer field must be set to TRUE).
 *
 * It is the user’s responsibility to ensure that there is exactly one VFD SWMR
 * writer for any file that is accessed as a VFD SWMR file.
 *
 * Further, the user must ensure that the VFD SWMR FAPL entries on the writer
 * and reader(s) are consistent – i.e. tick_len, max_lag, md_pages_reserved, and
 * md_file_path must match.
 *
 * The fields of H5F_vfd_swmr_config are discussed below:
 *

																																																																																																																																																																																														

larger	than	one	page,	and	not	be	page	aligned.		While	this	permits	a	minor	reduction	in	the	on	disk	
size	of	these	indices,	as	shall	be	seen,	it	complicates	VFD	SWMR	support	in	the	page	buffer.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	12	of	66	

 * version: Integer field indicating the version of the H5F_vfd_swmr_config
 * structure used. This field must always be set to a known version
 * number. The most recent version of the structure will always be
 * H5F__CURR_VFD_SWMR_CONFIG_VERSION.
 *
 * tick_len: is an integer field containing the length of a tick in tenths of
 * a second. If tick_len is zero, end of tick processing may only be
 * triggered manually via the H5Fvfd_swrm_end_tick() function.
 *
 * max_lag is an integer field indicating the maximum expected lag (in ticks)
 * between the writer and the readers. This value must be at least 3,
 * with 10 being the recommended minimum value.
 *
 * writer: Boolean flag indicating whether the file opened with this FAPL entry
 * will be opened R/W. (i.e. as a VFD SWMR writer)
 *
 * flush_raw_data: Boolean flag indicating whether raw data should be flushed
 * as part of end of end of tick processing. If set to TRUE, raw
 * data will be flushed and thus be consistent with the metadata file.
 * However, this will also greatly increase end of tick I/O, and will
 * likely break any real time guarantees unless a very large tick_len
 * is selected.
 *
 * md_pages_reserved: Integer field indicating the number of pages reserved
 * at the head of the metadata file. This value must be greater than
 * or equal to 1.
 *
 * When the metadata file is created, the specified number of pages is
 * reserved at the head of the metadata file. In the current
 * implementation, the size of the metadata file header plus the
 * index is limited to this size.
 *
 * Further, in the POSIX case, when readers check for an updated index,
 * this check will start with a read of md_pages_reserved pages from
 * the head of the metadata file.
 *
 * md_file_path: In the POSIX case, this field contains the path of the
 * metadata file.
 *
 * In NFS, it contains the path and base name of the metadata file
 * updater files.
 *
 * For an object store, it contains the base URL for the objects used
 * to store metadata file updater objects.
 *
 * log_file_path: path to log file. If defined, this path should be unique to
 * each process. If this field contains the empty string, a log file
 * will not be created.
 *
 * pb_expansion_threshold: During a tick, the page buffer must expand as
 * necessary to retain copies of all modified metadata pages and multi-
 * page metadata entries. This field allows the user to specify a
 * threshold on page buffer size, which if exceeded, will trigger an
 * early end of tick. Note that this is not a limit on the maximum
 * page buffer size, as the metadata cache is flushed as part of end
 * of tick processing.
 *
 * The pb_expansion_threshold is an integer which must be in the range
 * [0, 100].

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	13	of	66	

 *
 * If the pb_ezpansion_threshold is 0, the feature is disabled.
 *
 * For all other values, the page buffer size is multiplied by the
 * pb_expansion_threshold. If this value is exceeded, an early end
 * of tick is triggered.
 *
 ***/

#define H5F__CURR_VFD_SWMR_CONFIG_VERSION 1

typedef struct H5F_vfd_swmr_config_t {

 int32 version;
 int32 tick_len;
 int32 max_lag;
 hbool_t writer;
 hbool_t flush_raw_data;
 int32 md_pages_reserved;
 char[MAX_PATH+1] md_file_path;
 char[MAX_PATH+1] log_file_path;
 int32_t pb_expansion_threshold;

} H5F_vfd_swmr_config_t;

Note	that	if	the	VFD	SWMR	configuration	is	set	in	the	FAPL,	the	file	open	/	create	must	fail	if	any	of	
the	following	conditions	hold:	

• The	call	used	to	open	or	create	the	file	doesn’t	match	the	value	of	the	writer	field	in	the	VFD	
SWMR	FAPL	entry,	

• Paged	allocation	was	not	specified	in	the	FCPL	(File	Creation	Property	List)	on	file	creation,	or		

• Page	buffering	was	not	enabled	in	the	FAPL.	

3.1.2 End	Tick	API	Call	

The	 H5Fvfd_swmr_end_tick()	 API	 call	 exists	 to	 allow	 the	 user	 to	 trigger	 end	 of	 tick	 processing	 on	
either	the	VFD	SWMR	reader	or	writer.		The	signature	of	the	API	call	is	given	below:	

herr_t H5Fvfd_swmr_end_tick(hid_t file_id);

This	call	is	necessary	if	the	user	elects	to	manage	ticks	manually,	and	may	also	be	used	by	the	writer	
to	propagate	changes	early	if	it	knows	that	either	the	HDF5	library	will	not	be	called	for	an	extended	
period,	or	that	no	further	changes	will	be	made	for	a	while.		

This	function	must	fail	 if	the	target	file	is	not	opened	with	VFD	SWMR.		Similarly,	the	function	must	
fail	if	it	is	called	while	end	of	tick	is	disabled	(see	section	3.1.3	below).	

Note	that	this	function	must	be	implemented	in	such	a	way	that	the	end	of	tick	processing	will	only	
be	executed	once	in	cases	where	end	of	tick	would	otherwise	by	triggered	by	the	FUNC	ENTER/EXIT	
macros	(see	below).	

3.1.3 Enable	/	Disable	End	of	Tick	Call	

It	will	sometimes	be	useful	to	allow	the	writer	or	reader	to	briefly	delay	end	of	tick	processing	so	that	
it	 does	 not	 fall	 in	 the	 middle	 of	 a	 sequence	 of	 operations	 that	 are	 best	 viewed	 as	 atomic.	 	 The	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	14	of	66	

H5Fvfd_swmr_disable_end_of_tick()	 and	 H5Fvfd_swmr_enable_end_of_tick()	 calls	 exist	 to	
support	this.		The	signatures	of	these	API	calls	are	given	below:	

herr_t H5Fvfd_swmr_disable_end_of_tick(hid_t file_id)	
herr_t H5Fvfd_swmr_enable_end_of_tick(hid_t file_id)	

If	a	call	to	H5Fvfd_swmr_disable_end_of_tick()is	made	for	a	given	file	ID,	the	end	of	tick	function	
will	not	be	called	until	the	matching	call	to	H5Fvfd_swmr_enable_end_of_tick()is	made.		Note	that	
in	addition	to	re-enabling	tests	for	end	of	tick	on	the	target	file,	the	enable	end	of	tick	must	check	to	
see	if	the	tick	has	expired,	and	trigger	end	of	tick	processing	if	it	has.	

Note	that	these	calls	should	only	effect	the	specified	file,	and	that	it	is	an	error	to	attempt	to	disable	
end	of	tick	processing	for	a	file	for	which	it	is	already	disabled,	and	vice	versa.	

The	user	should	be	cautioned	to	disable	end	of	tick	processing	only	for	periods	of	time	that	are	short	
in	comparison	to	the	current	tick	length.	

It	is	also	an	error	to	call	H5Fvfd_swmr_end_tick()	while	end	of	tick	processing	is	disabled.		

3.2 Modifications	to	Existing	Data	Structures	and	New	Data	Structures	

3.2.1 Additions	to	H5F_file_t	

When	 the	HDF5	 file	 is	 opened	 (or	 created)	with	 VFD	 SWMR,	 it	 is	 necessary	 to	 store	 configuration	
data,	time	of	the	end	of	the	current	tick,	etc.	some	place	convenient	that	is	associated	with	the	target	
file.		Add	the	following	fields	to	H5F_file_t:	

	
 /* VFD SWMR info */
 hbool_t vfd_swmr; /* Boolean flag indicating whether the file has */
 /* been opened with VFD SWMR configured. All */
 /* other fields in this section are undefined */
 /* if this field is FALSE */
 hbool_t vfd_swrm_writer; /* Boolean flag that is set to TRUE iff this is */
 /* is the VFD SWMR writer. */
 H5FD_vfd_swmr_idx_entry_t * md_file_index; /* Pointer to a dynamically */
 /* allocated array of instances of */
 /* H5FD_vfd_swmr_idx_entry_t.
 uint64_t tick_num; /* Number of the current tick. This field is */
 /* initialized to zero, and incremented at the */
 /* end of each tick. */
 struct timespec end_of_tick; /* End time of the current tick. This */
 /* value is initialized at file open, and */
 /* updated at the end of each tick. */
 int vfd_swmr_md_file; /* In the posix case, vfd_swmr_md_file is the */
 /* file descriptor of the metadata file, or -1 */
 /* if the metadata file is not currently open. */
 /* This field is not used and is set to -1 in */
 /* the NFS and object store cases. */
 int vfd_swmr_log_file; /* File descriptor of the VFD SWMR log file if */
 /* defined and open. Otherwise it is set to -1.*/
 H5F_vfd_swmr_config_t vfd_swmr_config; /* copy of the vfd swmr */
 /* configuration from the FAPL use to open the */
 /* file. */

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	15	of	66	

3.2.2 New	Global	Data	Structures	

Some	API	calls	don’t	reference	files,	and	for	those	that	do,	there	is	no	guarantee	that	the	supplied	file	
ID	will	reference	the	VFD	SWMR	file.		Thus,	to	allow	the	API	FUNC	ENTER/EXIT	macros	to	detect	the	
end	of	tick,	and	trigger	end	of	tick	processing	on	the	appropriate	file,	we	must	make	it	possible	for	
the	macros	to	detect	if	a	file	is	opened	in	VFD	SWMR	writer	or	reader	mode,	and	determine	when	the	
current	tick	should	end.	

In	principle,	there	can	be	an	arbitrary	number	of	files	opened	in	an	arbitrary	mix	of	VFD	SWMR	writer,	
VFD	 SWMR	 reader,	 regular	 R/W,	 or	 regular	 R/O	modes.	 	 Thus	 we	must	maintain	 a	 queue	 of	 tick	
expiration	 times	 decorated	 with	 pointers	 to	 the	 associated	 instances	 of	 H5F_file_t	 and	 Booleans	
indicating	either	writer	or	reader	mode.	

Call	 this	 queue	 the	 EOT	 queue,	 and	 implement	 it	 as	 a	 doubly	 linked	 list	 of	 instances	 of	 the	
H5F_vfd_swmr_eot_queue_entry_t	structure	defined	below:	

	
/**
 *
 * struct H5F_vfd_swmr_eot_queue_entry_t
 *
 * Instance of this structure are used to maintain an end of tick time sorted
 * list of files opened in either VFD SWMR write or VFD SWMR read mode. Each
 * structure contains all information required to determine whether the end of
 * tick has arrived for the specified file, and to initiate end of tick
 * processing if it has.
 *
 * Since this list is maintained in increasing end of tick time order, only the
 * first item need be inspected if its end of tick time has not expired.
 *
 * The fields of H5F_vfd_swmr_eot_queue_entry_t are discussed below:
 *
 * vfd_swmr_file: Pointer to the instance of H5F_file_t containing the shared
 * fields of the associated file that has been opened in VFD SWMR mode
 *
 * vfd_swrm_writer: Boolean flag that is set to TRUE if the associated file
 * has been opened in VFD SWMR writer mode, and FALSE if it has been
 * opened in VFD SWMR reader mode.
 *
 * tick_num: Number of the current tick of the target file.
 *
 * end_of_tick: Expiration time of the current tick of the target file.
 *
 * next: Pointer to the next element in the end of tick queue, or NULL if there
 * is no next entry. Note that if next is not NULL, next->end_of_tick
 * must be greater than or equal to end_of_tick.
 *
 * prev: Pointer to the previous element in the end of tick queue, or NULL if
 * there is no previous entry. Note that if prev is not NULL,
 * prev->end_of_tick must be less than or equal to end_of_tick.
 *
 ***/

typedef struct H5F_vfd_swmr_eot_queue_entry_t {

 hbool_t vfd_swrm_writer;

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	16	of	66	

 uint64_t tick_num;

 struct timespec end_of_tick;

 H5F_file_t *vfd_swmr_file;

 H5F_vfd_swmr_eot_queue_entry_t * next;

 H5F_vfd_swmr_eot_queue_entry_t * prev;

} H5F_vfd_swmr_eot_queue_entry_t;
	

Observe	that	there	will	be	exactly	one	instance	of	H5F_vfd_swmr_eot_queue_entry_t	 for	each	file	
opened	in	VFD	SWMR	mode.		This	has	two	implications:	

1. The	same	instance	of	H5F_vfd_swmr_eot_queue_entry_t	can	be	re-used	each	tick,	thus	
avoiding	the	overhead	of	repeated	allocation	and	de-allocation.			

2. Assuming	(as	seems	likely)	that	there	will	be	neither	large	numbers	of	files	opened	in	VFD	
SWMR	mode	in	a	single	process,	nor	large	variations	in	tick	length	between	such	files,	
implementing	the	queue	as	a	doubly	linked	list	should	be	reasonably	efficient.	

The	head	and	tail	of	the	end	of	tick	queue	will	be	maintained	in	the	global	variables:	
H5F_vfd_swmr_eot_queue_entry_t * vfd_swmr_eot_queue_head;

H5F_vfd_swmr_eot_queue_entry_t * vfd_swmr_eot_queue_tail;

To	minimize	overhead,	the	end	of	tick	and	whether	the	target	file	is	a	VFD	SWMR	writer	must	also	be	
cached	in	globals:	

hbool_t vfd_swmr_writer;

struct timespec end_of_tick;

Observe	 that	 it	 is	 sufficient	 to	 test	(vfd_swmr_eot_queue_head != NULL)	 to	 determine	whether	
there	is	a	file	opened	in	VFD	SWMR	mode.	

When	a	file	is	opened	in	VFD	SWMR	mode,	an	instance	of	H5F_vfd_swmr_eot_queue_entry_t	must	
be	 allocated,	 initialized,	 and	 inserted	 on	 the	 EOT	 queue	 in	 the	 appropriate	 location.	 	 Do	 this	 by	
starting	at	the	tail	of	the	queue,	and	 inserting	the	entry	after	the	first	entry	encountered	such	that	
end_of_tick	less	than	or	equal	to	that	of	the	new	entry,	or	at	the	head	of	the	queue	if	no	such	entry	
exists.		In	this	latter	case,	the	global	variables	vfd_swmr_writer	and	end_of_tick	must	also	be	set	
equal	to	the	fields	of	the	same	name	in	the	new	instance.	

Observe	that	this	insertion	algorithm	ensures	that	the	EOT	queue	is	sorted	in	end_of_tick	order.		

When	 a	 file	 that	 has	 been	 opened	 in	 VFD	 SWMR	mode	 is	 closed,	 the	 above	 procedure	 must	 be	
reversed.		The	associated	instance	of	H5F_vfd_swmr_eot_queue_entry_t	must	be	removed	from	the	
EOT	queue	and	discarded.		Further,	if	the	instance	was	at	the	head	of	the	queue,	the	global	variables	
vfd_swmr_writer	and	end_of_tick	must	be	set	equal	 to	 the	 fields	of	 the	same	name	of	 the	next	
instance	of	the	queue,	if	such	an	instance	exists.		If	no	such	instance	exists,	no	action	is	required,	as	
the	vfd_swmr_eot_queue_head	will	be	NULL,	indicating	that	there	are	no	files	opened	in	VFD	SWMR	
mode.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	17	of	66	

3.2.3 Internal	Representation	of	the	Metadata	File	Index	

Arrays	of	the	H5FD_vfd_swmr_idx_entry_t	structure	are	used	to	represent	the	metadata	file	index	
internally,	both	for	the	writer	and	reader.		

The	definition	of	this	structure	is	given	below:	

	
/**
 *
 * struct H5FD_vfd_swmr_idx_entry_t
 *
 * Indices into the VFD SWMR metadata file are maintained in arrays of
 * instances of H5FD_vfd_swmr_idx_entry_t.
 *
 * The fields of H5FD_vfd_swmr_idx_entry_t are discussed below:
 *
 * hdf5_page_offset: Unsigned 64-bit value containing the base address of the
 * metadata page, or multi page metadata entry in the HDF5 file IN
 * PAGES. To obtain byte offset, multiply this value by the page size.
 *
 * WARNING: This value may be stored in a smaller field in the
 * metadata file. When this is done, be sure to make the appropriate
 * conversions.
 *
 * md_file_page_offset: Unsigned 64-bit value containing the base address of
 * the metadata page, or multi page metadata entry in the metadata file
 * IN PAGES. To obtain byte offset, multiply this value by the page
 * size.
 *
 * WARNING: This value may be stored in a smaller field in the
 * metadata file. When this is done, be sure to make the appropriate
 * conversions.
 *
 * length: Unsigned 32-bit value containing the length of the metadata page or
 * multi page metadata entry IN BYTES. If this is a metadata page,
 * the length must equal the page size. If this is an individual multi
 * page cache entry, the length must be greater than the page size, but
 * need not be a multiple of the page size
 *
 * checksum: Checksum of the metadata page or multi-page metadata entry
 * referenced by this index entry. On the writer side, this value
 * is undefined until the referenced entry has been written to the
 * metadata file.
 *
 * entry_ptr: Used by the VFD SWMR writer only. For the reader, this field
 * should always be NULL.
 *
 * If the referenced metadata page or multi-page metadata cache entry
 * was modified in the current tick, this field points to a buffer in
 * the page buffer containing its value.
 *
 * This pointer is used by the metadata file creation / update code to
 * access the metadata pages / multi-page metadata entries so that their
 * current values can be copied into the metadata file. After this copy,
 * the entry_ptr field should be set to NULL.
 *
 * tick_of_last_change: Number of the last tick in which this index entry was
 * changed. This field is only used by the VFD SWMR writer. For

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	18	of	66	

 * readers, it will always be set to 0.
 *
 * clean: Boolean field used only by the writer. It is set to TRUE whenever
 * the referenced metadata page or multi-page metadata cache entry is
 * written to the HDF5 file, and FALSE, whenever it is marked dirty in
 * in the page buffer
 *
 * For the reader, it should always be set to TRUE.
 *
 * tick_of_last_flush: Number of the tick in which this entry was last written
 * to the HDF5 file, or zero if it has never been flushed.
 *
 * This field is used only by the VFD SWMR writer. For the reader, it
 * should always be zero.
 *
 * delayed_flush: If the flush of the referenced metadata page or multi-page
 * metadata cache entry must be delayed, the earliest tick in which it
 * may be flushed, or zero if there is no such constraint.
 *
 * This field is used only by the VFD SWMR writer.
 *
 * Flushes must be delayed whenever an entry:
 *
 * 1) appears in the HDF5 file, and
 *
 * 2) is newly inserted into the metadata file.
 *
 * This is necessary, as if the above conditions occur, the write of
 * the modified page or multi-page metadata cache entry must be delayed
 * for at least max_lag ticks as otherwise a reader using an earlier
 * version of the index may read the target from the HDF5 file and get
 * a message from the future.
 *
 * The above situation can occur when VFD SWMR is used on existing file,
 * or after a flush.
 *
 * moved_to_HDF5_file: Boolean flag that is set to TRUE iff the entry referenced
 * is clean, was written to the HDF5 file more than max_lag ticks ago,
 * and is about to be removed from the index.
 *
 ***/

typedef struct H5FD_vfd_swmr_idx_entry_t {

 uint64_t hdf5_page_offset;
 uint64_t md_file_page_offset;
 uint32_t length;
 uint32_t checksum;
 void * entry_ptr;
 uint64_t tick_of_last_change;
 hbool_t clean;
 uint64_t tick_of_last_flush;
 uint64_t delayed_flush;
 hbool_t moved_to_HDF5_file;

} H5FD_vfd_swmr_idx_entry_t;

The	 VFD	 SWMR	 writer	 maintains	 an	 array	 of	 H5FD_vfd_swmr_idx_entry_t,	 and	 passes	 it	 to	 the	
metadata	file	writer	code	to	handle	the	details	of	creating	/	updating	the	metadata	file.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	19	of	66	

Similarly,	 the	 VFD	 SWMR	 reader	 VFD	 stores	 its	 internal	 representation	 of	 the	 index	 in	 an	 array	 of	
H5FD_vfd_swmr_idx_entry_t,	and	supplies	copies	of	this	array	to	the	reader	end	of	tick	processing	
code	on	request.	 	Finally,	as	discussed	later	in	this	document,	the	reader	must	also	retain	a	copy	of	
the	previous	version	of	the	index	to	direct	metadata	cache	updates	when	a	new	version	of	the	index	
is	read	by	the	VFD	SWMR	reader	VFD.	

3.3 API	FUNC	ENTER	/	EXIT	Macro	Modifications	

When	VFD	SWMR	is	enabled,	on	each	API	call,	the	HDF5	library	must	test	to	see	if	a	tick	has	expired,	
and	trigger	the	appropriate	processing	if	it	has.		At	the	HDF5	library	already	has	the	API	FUNC	ENTER	/	
EXIT	macros	that	are	executed	on	API	function	entry	and	exit,	this	is	the	obvious	place	to	insert	this	
check.			

For	the	VFD	SWMR	writer	case,	the	check	for	end	of	tick	must	be	performed	on	both	API	call	entry	
and	 exit	 so	 as	 to	maximize	 the	 regularity	with	which	 the	metadata	 file	 is	 updated.	 	 Since	 the	VFD	
SWMR	readers	will	not	see	any	changes	to	the	metadata	file	until	the	next	API	call	entry,	there	is	no	
need	to	check	on	API	call	exit14.	

To	this	end,	the	API	FUNC	ENTER	/	EXIT	macros	must	be	modified	as	follows.			

1. Test	to	see	if	VFD	SWMR	is	enabled	(i.e.	if	vfd_swmr_eot_queue_head	is	not	NULL).		If	it	is	
disabled,	we	are	done.		Otherwise,	make	note	of	the	current	value	of	
vfd_swmr_eot_queue_head	and	proceed	to	2.	

2. For	the	API	FUNC	EXIT	macros,	test	to	see	if	we	are	the	VFD	SWMR	writer	(i.e.	if	
vfd_swmr_writer	is	TRUE).	If	we	are	not,	we	are	done.	

3. Test	to	see	if	the	tick	has	expired.		If	it	hasn’t,	we	are	done.	

4. If	vfd_swrm_writer	is	TRUE,	call	the	writer	end	of	tick	function.		Otherwise,	call	the	reader	
end	of	tick	function.	

5. If	we	get	this	far,	it	is	possible	that	there	are	additional	files	open	in	VFD	SWMR	mode	whose	
current	ticks	have	expired.		If	vfd_swmr_eot_queue_head	is	not	NULL,	and	not	equal	to	the	
value	noted	in	step	1,	goto	step	2.		Otherwise	we	are	done.	

Note	that	end	of	tick	function	must:	

1. Remove	the	associated	H5F_vfd_swmr_eot_queue_entry_t	from	the	EOT	queue,		

2. Update	it,		

3. Reinsert	it	in	end_of_tick	order	as	discussed	in	section	3.2.2	above,	and		

4. Set	the	vfd_swmr_writer	and	end_of_tick	globals	to	the	values	of	the	fields	of	the	same	
name	in	the	instance	of	H5F_vfd_swmr_eot_queue_entry_t	at	the	head	of	the	EOT	queue.	

																																																								
14	Note	that	due	to	callbacks	from	HDF5	into	the	host	program,	HDF5	may	receive	additional	API	calls	
before	the	original	API	call	exits.		This	is	a	problem,	as	we	may	not	be	in	a	stable	state	when	one	of	
the	additional	API	calls	is	made.		Handle	this	by	creating	an	API	call	depth	counter,	incrementing	on	
API	FUNC	ENTER,	decrementing	on	API	FUNC	EXIT,	and	only	testing	for	end	of	tick	when	the	depth	
counter	is	zero.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	20	of	66	

Observe	that	above	algorithm	allows	an	expired	writer	end	of	tick	to	be	masked	by	a	reader	end	of	
tick	 that	 precedes	 it	 in	 the	 EOT	 queue	 at	 API	 function	 exit.	 	 Note	 that	 this	 will	 happen	 only	
occasionally,	 and	when	 it	 does,	 it	will	 delay	 the	writer	 EOT	 only	 until	 the	 next	 API	 function	 entry.	
Since	we	don’t	see	many	plausible	use	cases	for	a	single	process	simultaneously	opening	files	in	both	
VFD	SWMR	writer	and	VFD	SWMR	reader	mode,	the	added	overhead	required	to	address	this	issue	
does	not	seem	warranted.		This	judgment	may	or	may	not	be	correct,	and	should	be	documented	in	
the	appropriate	header	comment.		

3.3.1 The	Time	Function	

Since	we	much	check	for	end	of	tick	on	every	API	call	entry	and	exit,	this	test	must	be	done	cheaply.		
For	 the	 first	 cut,	 we	will	 use	 the	 system	 call	 clock_gettime()15	 to	 retrieve	 the	 current	 time	 of	 the	
specified	clock:	

clock_gettime(clockid_t	clk_id,	struct	timespec	*curr_time);	

• Use	CLOCK_MONTONIC	for	clk_id	as	this	is	available	across	Linux,	Solaris	and	Mac	

o Note	the	following:	

§ Certain	clocks	like	CLOCK_MONOTONIC_COARSE	is	not	chosen	because	it	is	
Linux-specific		

§ CLOCK_MONOTIONIC	is	the	alternate	name	for	CLOCK_HIGHRES	on	Solaris	

§ clock_gettime()	is	not	defined	before	macOS	10.12	

• curr_time	is:	 	

struct	timespec	{	
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 }
	

However,	if	this	call	proves	too	expensive,	we	will	have	to	look	at	other	options.		Note	also	that	we	
will	eventually	have	to	get	this	working	on	Windows	as	well.			

3.3.2 The	Function	to	Test	for	End	of	Tick	

Pseudo	code	for	the	function	to	test	for	end	of	tick	is	outlined	below:	
vfd_swmr_test_for_end_of_tick(hbool_t reader_exit)
{
 H5F_vfd_swmr_eot_queue_entry_t init_eot_queue_head = NULL;

 if (vfd_swmr_eot_queue_head != NULL)
 {
 init_eot_queue_head = vfd_swmr_eot_queue_head;

 do {
 // get current time via
 // clock_gettime(CLOCK_MONOTONIC, curr_time);

																																																								
15	Or	possibly	gettimeofday().	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	21	of	66	

 if ((curr_time.tv_sec >= end_of_tick.tv_sec) &&
 (curr_time.tv_nsec >= end_of_tick.tv_nsec))
 {
 if (vfd_swmr_writer)
 // call writer end of tick function
 else if (! reader_exit)
 // call reader end of tick function
 else
 // break out of the do-while loop. This is
 // where it is possible that writer end of tick
 // may be masked by a reader end of tick.
 } else {
 // break out of do-while loop.
 }
 } while ((vfd_swmr_eot_queue_head != NULL) &&
 (vfd_swmr_eot_queue_head != init_eot_queue_head));
 }
}

	

To	avoid	function	call	overhead,	this	function	should	be	implemented	as	a	macro.	

Note	 that	 the	 above	 pseudo	 code	 presumes	 that	 instances	 of	H5F_vfd_swmr_eot_queue_entry_t	
are	recycled,	and	that	end	of	tick	functions	update	the	EOT	queue	and	the	associated	global	variables	
as	discussed	in	section	3.3	above.	

3.3.3 The	API	Entry	Macro	

We	will	invoke	vfd_swmr_test_for_end_of_tick()	towards	the	end	of	the	FUNC_ENTER_API	macro:	
FUNC_ENTER_API_COMMON
FUNC_ENTER_API_INIT(err);
H5E_clear_stack(NULL);
Call vfd_swmr_test_for_end_of_tick(FALSE)
{

There	are	other	forms	of	the	API	entry	macros:		

• FUNC_ENTER_API_NOCLEAR	

o This	macro	is	used	for	API	functions	that	should	not	clear	the	error	stack	like	H5Eprint	
and	H5Ewalk	

o We	will	invoke	vfd_swmr_test_for_end_of_tick()	in	a	similar	way:	
FUNC_ENTER_API_COMMON
FUNC_ENTER_API_INIT(err);
Call vfd_swmr_test_for_end_tick(FALSE)
{

	

• FUNC_ENTER_API_NOINIT	

o This	macro	is	used	for	API	functions	that	do	not	perform	_any_	initialization	of	the	
library	or	an	interface,	just	perform	tracing	etc.		Examples	are:	H5allocate_memory,	
H5is_library_threadsafe,	etc.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	22	of	66	

o No	change	

• FUNC_ENTER_API_NOINIT_NOERR_NOFS	

o This	macro	is	used	for	API	functions	that	do	not	perform	_any_	initialization	of	the	
library	or	an	interface	or	push	themselves	on	the	function	stack,	just	perform	tracing,	
etc.		Examples	are:	H5close,	H5check_version,	etc.	

o No	change	

3.3.4 The	API	Exit	Macro	

We	will	invoke	vfd_swmr_test_for_end_of_tick()	at	the	beginning	of	the	FUNC_LEAVE_API	macro:	
Call vfd_swmr_test_for_end_of_tick(!vfd_swmr_writer)
FUNC_LEAVE_API_COMMON(ret_value);
(void)H5CX_pop();
H5_POP_FUNC
if(err_occurred)

(void)H5E_dump_api_stack(TRUE);
FUNC_LEAVE_API_THREADSAFE
return(ret_value);
	

There	are	other	forms	of	the	API	exit	macros:		

• FUNC_LEAVE_API_NOINIT	

o This	macro	is	used	to	match	the	FUNC_ENTER_API_NOINIT	macro		

o No	change	

• FUNC_LEAVE_API_NOFS	

o This	macro	is	used	to	match	the	FUNC_ENTER_API_NOINIT_NOERR_NOFS	macro	

o No	change	

3.4 Page	Buffer	Re-Design	

The	functional	requirements	for	the	page	buffer	in	VFD	SWMR	are	listed	below:	

1. Retain	copies	of	all	metadata	pages	modified	during	the	current	tick.	Copies	may	be	clean	or	
dirty	(but	see	3	below).	

2. Retain	copies	of	all	multi-page	metadata	writes	during	the	last	tick.	Copies	may	be	clean	or	
dirty	(but	see	3	below).	

3. If	a	page	of	metadata	or	a	multi-page	metadata	entry	exists	in	the	hdf5	file,	and	is	not	
mentioned	in	the	metadata	file	index,	and	is	then	written	to	the	page	buffer,	it	must	not	be	
flushed	to	the	HDF5	file	for	at	least	max_lag	ticks.		This	is	necessary,	as	metadata	reads	not	
listed	in	the	metadata	file	are	satisfied	from	the	HDF5	file.		Thus	writing	the	entry	to	the	HDF5	
file	before	max_lag	ticks	have	elapsed	may	result	in	a	lagging	reader	receiving	a	message	from	
the	future	–	which	will	be	indistinguishable	from	file	corruption.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	23	of	66	

This	situation	can	arise	if	an	existing	file	is	opened	VFD	SWMR	write,	or	if	a	file	that	is	created	
in	VFD	SWMR	write	mode	is	flushed.	

Thus	the	page	buffer	must	provide	mechanisms	for:	

a. Determining	if	a	page	or	multi-page	metadata	entry	has	been	read	from	the	HDF5	file	
since	either	file	open	of	the	last	flush.	

b. If	it	has,	there	must	be	a	mechanism	for	delaying	its	write	to	the	HDF5	file	for	at	least	
max_lag	ticks	since	since	it	appeared	in	the	metadata	file	index.	

NOTE:	 Due	 to	 this	 latter	 requirement,	 a	 flush	 of	 the	 HDF5	 file	 must	 perform	 all	 possible	
flushes,	and	then	repeatedly	sleep	for	a	tick	and	try	again	until	all	write	delays	are	satisfied.	

4. Provide	a	convenient	mechanism	for	locating	all	metadata	pages	and	multi-page	pieces	of	
metadata	that	have	been	modified	in	the	current	tick.	

5. The	page	buffer	must	track	the	total	size	of	the	pages	and/or	multi-page	metadata	entries	
modified	or	inserted	in	the	current	tick.		There	must	also	be	a	facility	for	triggering	the	end	of	
tick	early	if	this	size	exceeds	a	user	provided	limit.	

Observe	 that	 these	 functional	 requirements	necessitate	a	page	buffer	 that	can	handle	variable	size	
entries,	 and	 that	 can	 expand	 and	 contract	 as	 needed.	 	Unfortunately,	 the	pre-existing	 page	buffer	
supports	neither	of	these	facilities,	and	seems	architecturally	un-suited	to	the	task.			

The	initial	thought	was	that	the	metadata	cache	supports	most	of	the	desired	functionality,	and	thus	
should	be	easily	extensible	to	provide	the	missing	features.		However,	during	the	implementation	of	
the	initial	prototype,	time	pressure	and	the	resulting	need	to	avoid	changes	to	the	page	buffer	test	
code	drove	the	decision	to	implement	a	new	page	buffer.		

Extending	the	metadata	cache	so	that	it	can	also	perform	the	roll	of	the	page	buffer	is	still	an	option.		
However,	 the	only	 reason	 for	doing	 so	 is	 to	minimize	maintenance	costs,	 and	 it	 is	not	 clear	 that	 it	
makes	economic	sense	to	do	so.		In	any	case,	there	is	little	point	in	considering	this	until	VFD	SWMR	is	
fully	implemented.	

In	 the	 interim,	 the	 new	page	 buffer	 exists,	 and	 appears	 to	 be	 functional16.	 	 The	 remainder	 of	 this	
section	documents	the	new	page	buffer	internals.	

3.4.1 Metadata	Allocation	and	I/O	Complications	Requiring	Changes	to	the	Page	Buffer	

The	 original	 re-write	 of	 the	 page	 buffer	 assumed	 the	 following	 invariants	 on	 metadata	 space	
allocation	and	I/O:	

1. The	file	space	for	each	metadata	entry	is	allocated	individually.		In	the	context	of	paged	
allocation	this	implies	that:	

a. If	a	piece	of	metadata	is	smaller	than	a	page,	it	does	not	cross	page	boundaries.	

																																																								
16	There	is	an	occasional	assertion	failure	that	appears	in	the	page	buffer	during	existing	VFD	SWMR	
regression	tests.		It	has	not	been	investigated,	as	it	does	not	appear	to	bare	on	the	question	of	the	
viability	of	the	VFD	SWMR	design	concept.		Needless	to	say,	this	issue	must	be	addressed	as	part	of	
phase	2.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	24	of	66	

b. If	it	is	of	page	size	or	larger,	its	base	address	is	page	aligned.	

2. Metadata	entries	are	read	and	written	atomically	–	that	is	to	say	that	the	entire	on	disk	
representation	of	a	metadata	entry	is	read	and	written	in	a	single	I/O	call.	

These	invariants	were	assumed	in	the	initial	re-implementation	of	the	page	buffer	and	the	metadata	
file.		In	the	context	of	the	page	buffer,	they	were	mostly	used	for	sanity	checking,	and	to	permit	easy	
identification	of	multi-page	metadata	entries.		In	the	metadata	file	management	code,	they	are	used	
both	for	sanity	checking	and	to	allow	more	efficient	management	of	multi-page	metadata	entries.			

While	the	above	invariants	have	been	true	historically,	the	recent	extensible	array	(H5EA)	and	fixed	
array	(H5FA)	on	disk	data	structures	violate	the	first	invariant17.		While	there	appears	to	be	no	
developer	level	documentation	of	either	the	fixed	array	or	the	extensible	array	structures	for	indexing	
chunked	datasets,	they	are	discussed	in	some	detail	in	“HDF5	Single-Writer/Multiple-Reader	Feature	
Design	and	Semantics”	(https://support.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-
SWMR-20130629.v5.2.pdf).				

Between	the	above	reference	and	a	scan	of	the	source	code,	it	appears	that	these	chunked	dataset	
indexing	data	structures	construct	 large	on	disk	tables	of	chunk	addresses	and	 lengths.	 	Further,	 to	
minimize	footprint	in	the	metadata	cache,	these	tables	are	broken	into	“pages”	of	size	unrelated	to	
the	page	size	used	 in	paged	allocation.	 	Each	of	 these	“pages”	 is	managed	as	a	 separate	metadata	
entry.	 	 While	 this	 is	 not	 a	 problem	 in	 itself,	 blocks	 of	 these	 “pages”	 are	 allocated	 in	 a	 single	
H5MF_alloc()	 call.	 	 While	 this	 simplifies	 the	 fixed	 and	 extensible	 array	 on	 disk	 data	 structures	 by	
making	it	possible	to	compute	the	base	address	of	each	page	from	the	base	address	of	the	table,	in	
the	context	of	paged	allocation,	it	makes	it	possible	for	these	“pages”	to	either:	

• Be	of	size	less	than	a	paged	allocation	page	and	cross	a	page	boundary,	or	

• Be	of	size	greater	than	or	equal	to	a	paged	allocation	page,	and	not	have	a	base	address	that	is	
a	multiple	of	the	paged	allocation	page	size.	

The	correct	solution	to	this	problem	is	to	modify	the	fixed	and	extensible	array	on	disk	structures	to	
conform	with	 the	 first	 invariant.	 	However,	 this	 requires	a	 file	 format	change	 that	 can’t	be	applied	
until	 HDF5	 1.14.	 	 Further,	we	must	 either	 handle	 the	 current	 versions	 for	 the	 indefinite	 future,	 or	
detect	them	and	throw	an	error	if	the	user	attempts	to	open	a	data	set	that	uses	one	of	them.	

3.4.1.1 Outline	of	Needed	Modifications	to	Fixed	and	Extensible	Array	Data	Structures	

While	 the	 fixed	 and	 extensible	 array	 on	 disk	 data	 structures	 could	 be	 modified	 to	 allocate	 their	
“pages”	 individually,	 and	 maintain	 the	 necessary	 indices	 of	 “page”	 addresses,	 this	 may	 not	 be	
necessary,	as	it	should	be	possible	to	modify	the	existing	scheme	to	conform	to	the	first	invariant	by	
making	 it	 aware	 of	 the	 paged	 allocation	 page	 size,	 and	 inserting	 padding	 as	 necessary	 to	 conform	
with	the	 invariant.	 	 Indeed,	 if	 I	apprehend	the	situation	correctly,	 the	extensible	array	on	disk	data	
structure	already	does	this	as	long	as:	

• The	paged	allocation	page	size	is	a	power	of	two,	and	

• The	file	offset	and	length	fields	are	both	the	same	length,	and	that	length	is	a	power	of	two.	

																																																								
17	This	point	was	recognized	in	late	2019,	with	this	update	to	the	RFC	added	in	January	2020.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	25	of	66	

As	a	page	size	of	4096	bytes	was	used	in	the	prototype	tests,	and	since	the	default	size	of	offsets	and	
lengths	in	8	bytes,	this	may	explain	why	the	issue	was	not	detected	earlier.	

Unfortunately,	 the	 fixed	 array	 on	 disk	 data	 structure	 doesn’t	 make	 things	 this	 easy	 –	 although	
allocating	 the	 header	 and	 the	 table	 of	 chunk	 addresses	 and	 lengths	 separately	 should	 make	 the	
problem	essentially	identical	to	the	extensible	array	case.		

3.4.1.2 Supporting	the	Existing	Versions	of	the	Fixed	and	Extensible	Array	Data	Structures	

		

Be	all	 this	as	 it	may,	we	still	have	to	modify	 the	page	buffer	and	metadata	 file	 to	handle	 fixed	and	
extensible	array	“pages”	that	don’t	conform	to	the	first	invariant.	

In	the	page	buffer,	we	simply	have	to	modify	the	metadata	I/O	code	to	permit	metadata	writes	that	
are	either	less	than	a	page	in	length	and	cross	page	boundaries,	or	that	are	of	length	greater	than	or	
equal	to	the	page	size	and	don’t	start	on	a	page	boundary.		We	already	do	this	for	raw	data,	so	the	
major	issues	should	be	to	break	such	I/O’s	into	two	or	three	pieces	that	respect	the	first	invariant	(i.e.	
either	 start	 on	 a	 page	 boundary	 or	 don’t	 cross	 a	 page	 boundary),	 and	 then	 apply	 them	 as	 before	
(Note	 that	both	 leading	 and	 trailing	page	 fragments	must	be	 treated	as	 individual	 I/O	operations).			
This	 code	 should	 also	 contain	 sanity	 checking	 to	 verify	 that	 the	metadata	 being	 read	 or	written	 is	
either	a	fixed	or	extensible	array	“page”,	and	throw	an	assertion	if	it	isn’t.		It	would	also	be	useful	to	
log	such	I/O	operations	so	we	can	see	how	common	they	are.	

If	we	do	 this,	no	changes	should	be	necessary	 in	 the	metadata	 file	and	 its	 supporting	code.	 	While	
breaking	the	I/O	operations	up	will	increase	the	size	of	the	index,	it	shouldn’t	increase	by	more	than	a	
factor	of	three	–	and	that	should	be	rare.	

It	will	 also	 be	 necessary	 to	 review	 the	 reader	 EOT	 code	 to	 verify	 that	 code	 that	 assumes	 the	 first	
invariant	doesn’t	cause	us	to	skip	evicting	some	entries.		We	will	have	to	review	the	code	to	be	sure,	
but	I	think	any	changes	will	be	minor.		

	

3.4.2 Architectural	Overview	

Architecturally,	the	new	page	buffer	is	similar	to	the	metadata	cache.	

Entries	 are	 indexed	with	 a	hash	 table	with	 chaining.	 	 Like	 the	metadata	 cache,	 the	hash	 table	 size	
must	be	a	power	of	two.		This	permits	a	very	fast	hash	function	on	the	page	offset	(page	base	address	
/	page	size),	that	simply	bit	ands	the	page	address	with	the	hash	table	size	–	1.		This	unusual	design	
decision	 is	 based	 on	 the	 observation	 that	 if	 the	 principle	 of	 locality	 holds,	 collisions	 between	 hot	
pages	are	unlikely	 if	the	hash	function	maps	adjacent	pages	to	adjacent	locations	in	the	hash	table.		
The	new	page	buffer	collects	statistics	allowing	us	to	test	this.	

To	 optimize	 scans	 of	 all	 entries	 in	 the	 page	 buffer,	 all	 entries	 are	 also	 stored	 in	 the	 doubly	 linked	
index	list.	

The	replacement	policy	is	a	modified	version	of	LRU	with	second	pass	for	dirty	entries.		It	differs	from	
the	standard	version	 in	 that	 the	user	 is	allowed	 to	 reserve	a	percentage	of	 the	pages	 for	 raw	data		

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	26	of	66	

and/or	metadata18,	and	when	operating	in	VFD	SWMR	mode,	as	required	by	functional	requirements	
1,	2,	and	3	above.	

When	operating	in	VFD	SWMR	mode,	the	new	buffer	cache	also	maintains	two	additional	lists	--	the	
tick	list,	and	the	delayed	write	list.	

Whenever	a	page	or	multi-page	metadata	entry	is	modified	during	a	tick,	it	is	placed	on	the	tick	list.		
If,	in	addition,	the	write	of	the	entry	must	be	delayed	for	one	or	more	ticks,	the	entry	is	also	removed	
from	the	LRU	and	inserted	on	the	delayed	write	list.	

At	 the	 end	 of	 each	 tick,	 all	 entries	 are	 removed	 from	 the	 tick	 list	 and	 the	metadata	 file	 index	 is	
updated.		Multi-page	metadata	entries	that	are	not	subject	to	delayed	write	constraints	are	flushed	
and	evicted	immediately.			

Also	at	 the	end	of	each	 tick,	 the	delayed	write	 list	 is	 searched	 for	entries	whose	write	delays	have	
expired.		Any	such	multi-page	metadata	entries	are	flushed	and	evicted.		Regular	pages	whose	write	
delays	have	expired	are	simply	moved	to	the	LRU	where	they	may	be	flushed	and	evicted	as	normal.	

While	the	new	page	buffer	tracks	the	total,	clean,	and	dirty	page	buffer	size,	at	present,	it	does	not	
track	additions	since	the	beginning	of	the	current	tick,	or	provide	a	mechanism	to	support	triggering	
the	early	end	of	tick.	

Further	implementation	details	are	discussed	in	the	header	comments	for	main	structure	of	the	new	
page	buffer	 (H5PB_t)	 and	 for	entries	 in	 the	page	buffer	 (H5PB_entry_t).	 	 These	header	 comments	
and	the	associated	definitions	are	reproduced	below.		

/**
 *
 * structure H5PB_t
 *
 * Catchall structure for all variables specific to an instance of the page
 * buffer.
 *
 * At present, the page buffer serves two purposes in the HDF5 library.
 *
 * Under normal operating conditions, it serves as a normal page buffer whose
 * purpose is to minimize and optimize file I/O by aggregating small metadata
 * and raw data writes into pages, and by caching frequently used pages.
 *
 * In addition, when a file is opened for VFD SWMR writing, the page buffer is
 * used to retain copies of all metadata pages and multi-page metadata entries
 * that are written in a given tick, and under certain cases, to delay metadata
 * page and/or multi-page metadata entry writes for some number of ticks.
 * If the entry has not appeared in the VFD SWMR index for at least max_lag
 * ticks, this is necessary to avoid message from the future bugs. See the
 * VFD SWMR RFC for further details.
 *
 * To reflect this, the fields of this structure are divided into three

																																																								
18	This	option	was	introduced	in	the	original	version	of	the	page	buffer.		It	is	supported	in	the	new	
page	buffer	as	doing	so	allowed	us	to	reuse	the	existing	test	code	–	a	time	saver	in	the	phase	1	
implementation.		Whether	this	option	is	of	sufficient	value	as	to	justify	its	retention	is	an	open	
question	to	which	some	thought	should	be	given.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	27	of	66	

 * sections. Specifically fields needed for general operations, fields needed
 * for VFD SWMR, and statistics.
 *
 * FIELDS FOR GENERAL OPERATIONS:
 *
 * magic: Unsigned 32 bit integer that must always be set to
 * H5PB__H5PB_T_MAGIC. This field is used to validate pointers to
 * instances of H5PB_t.
 *
 * page_size: size_t containing the page buffer page size in bytes.
 *
 * max_pages: 64 bit integer containing the nominal maximum number
 * of pages in the page buffer. Note that on creation, the page
 * buffer is empty, and that under certain circumstances (mostly
 * related to VFD SWMR) this limit can be exceeded by large
 * amounts.
 *
 * curr_pages: 64 bit integer containing the current number of pages
 * in the page buffer. curr_pages must always equal the sum of
 * curr_md_pages + curr_rd_pages.
 *
 * Note that in the context of VFD SWMR, this count does NOT
 * include multi-page metadata entries.
 *
 * curr_md_pages: 64 bit integer containing the current number of
 * metadata pages in the page buffer.
 *
 * Note that in the context of VFD SWMR, this count does NOT
 * include multi-page metadata entries.
 *
 * curr_rd_pages: 64 bit integer containing the current number of
 * raw data pages in the page buffer.
 *
 * min_md_pages: 64 bit integer containing the number of pages in the
 * page buffer reserved for metadata. No metadata page may be
 * evicted from the page buffer if curr_md_pages is less than or
 * equal to this value.
 *
 * min_rd_pages: 64 bin integer containing the number of pages in the
 * page buffer reserved for raw data. No page or raw data may be
 * evicted from the page buffer if curr_rd_pages is less than or
 * equal to this value.
 *
 * The FAPL fields are used to store the page buffer configuration data
 * provided to the page buffer in the H5PB_create() call.
 *
 * max_size: Maximum page buffer size supplied by the FAPL.
 *
 * min_meta_perc: Percent of the page buffer reserved for metadata as
 * supplied in the FAPL.
 *
 * min_raw_perc: Percent of the page buffer reserved for metadata as
 * supplied in the FAPL.
 *
 * The purpose of the index is to allow us to efficiently look up all pages
 * (and multi-page metadata entries in the context of VFD SWMR) in the
 * page buffer.
 *
 * This function is provided by a hash table with chaining, albeit with one

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	28	of	66	

 * un-unusual feature.
 *
 * Specifically hash table size must be a power of two, and the hash function
 * simply clips the high order bits off the page offset of the entry.
 *
 * This should work, as space is typically allocated sequentually, and thus
 * via a reverse principle of locality argument, hot pages are unlikely to
 * hash to the same bucket. That said, we must collect statistics to alert
 * us should this not be the case.
 *
 * We also maintain a linked list of all entries in the index to facilitate
 * flush operations.
 *
 * index Array of pointer to H5PB_entry_t of size
 * H5PB__HASH_TABLE_LEN. This size must ba a power of 2,
 * not the usual prime number.
 *
 * index_len: Number of entries currently in the hash table used to index
 * the page buffer. index_len should always equal
 * clean_index_len + dirty_index_len.
 *
 * clean_index_len: Number of clean entries currently in the hash table
 * used to index the page buffer.
 *
 * dirty_index_len: Number of dirty entries currently in the hash table
 * used to index the page buffer.
 *
 * index_size: Number of bytes currently stored in the hash table used to
 * index the page buffer. Under normal circumstances, this
 * value will be index_len * page size. However, if
 * vfd_swmr_writer is TRUE, it may be larger.
 *
 * index_size should always equal clean_index_size +
 * dirty_index_size.
 *
 * clean_index_size: Number of bytes of clean entries currently stored in
 * the hash table used to index the page buffer.
 *
 * dirty_index_size: Number of bytes of dirty entries currently stored in
 * the hash table used to index the page buffer.
 *
 * il_len: Number of entries on the index list.
 *
 * This must always be equal to index_len. As such, this
 * field is redundant. However, the existing linked list
 * management macros expect to maintain a length field, so
 * this field exists primarily to avoid adding complexity to
 * these macros.
 *
 * il_size: Number of bytes of cache entries currently stored in the
 * index list.
 *
 * This must always be equal to index_size. As such, this
 * field is redundant. However, the existing linked list
 * management macros expect to maintain a size field, so
 * this field exists primarily to avoid adding complexity to
 * these macros.
 *
 * il_head: Pointer to the head of the doubly linked list of entries in

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	29	of	66	

 * the index list. Note that cache entries on this list are
 * linked by their il_next and il_prev fields.
 *
 * This field is NULL if the index is empty.
 *
 * il_tail: Pointer to the tail of the doubly linked list of entries in
 * the index list. Note that cache entries on this list are
 * linked by their il_next and il_prev fields.
 *
 * This field is NULL if the index is empty.
 *
 *
 * Fields supporting the modified LRU policy:
 *
 * See most any OS text for a discussion of the LRU replacement policy.
 *
 * Under normal operating circumstances (i.e. vfd_swmr_writer is FALSE)
 * all entries will reside both in the index and in the LRU. Further,
 * all entries will be of size page_size.
 *
 * The VFD SWMR writer case (i.e. vfd_swmr_writer is TRUE) is complicated
 * by the requirements that we:
 *
 * 1) buffer all metadata writes (including multi-page metadata writes) that
 * occur during a tick, and
 *
 * 2) when necessary, delay metadata writes for up to max_lag ticks to
 * avoid message from the future bugs on the VFD SWMR readers.
 *
 * See discussion of fields supporting VFD SWMR below for details.
 *
 * Discussions of the individual fields used by the modified LRU replacement
 * policy follow:
 *
 * LRU_len: Number of page buffer entries currently on the LRU.
 *
 * Observe that LRU_len + dwl_len must always equal
 * index_len.
 *
 * LRU_size: Number of bytes of page buffer entries currently residing
 * on the LRU list.
 *
 * Observe that LRU_size + dwl_size must always equal
 * index_size.
 *
 * LRU_head_ptr: Pointer to the head of the doubly linked LRU list. Page
 * buffer entries on this list are linked by their next and
 * prev fields.
 *
 * This field is NULL if the list is empty.
 *
 * LRU_tail_ptr: Pointer to the tail of the doubly linked LRU list. Page
 * buffer entries on this list are linked by their next and
 * prev fields.
 *
 * This field is NULL if the list is empty.
 *
 *
 * FIELDS SUPPORTING VFD SWMR:

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	30	of	66	

 *
 * If the file is opened as a VFD SWMR writer (i.e. vfd_swmr_writer == TRUE),
 * the page buffer must retain the data necessary to update the metadata
 * file at the end of each tick, and also delay writes as necessary so as
 * to avoid message from the future bugs on the VFD SWMR readers.
 *
 * The tick list exists to allow us to buffer copies of all metadata writes
 * during a tick, and the delayed write list supports delayed writes.
 *
 * If a regular page is written to during a tick, it is placed on the tick
 * list. If there is no reason to delay its write to file (i.e. either
 * it was just allocated, or it has existed in the metadata file index for
 * at least max_lag ticks), it is also placed on the LRU, where it may be
 * flushed, but not evicted. If its write must be delayed, it is placed on
 * the delayed write list, where it must remain until its write delay is
 * satisfied -- at which point it is moved to the LRU.
 *
 * If a multi-page metadata entry is written during a tick, it is placed on
 * the tick list. If, in addition, the write of the entry must be delayed,
 * it is also place on the delayed write list. Note that multi-page metadata
 * entries may never appear on the LRU.
 *
 * At the end of each tick, the tick list is emptied.
 *
 * Regular pages are simply removed from the tick list, as they must already
 * appear on either the LRU or the delayed write list.
 *
 * Multi-page metadata entries that are not also on the delayed write list
 * are simply flushed and evicted.
 *
 * The delayed write list is also scanned at the end of each tick. Regular
 * entries that are now flushable are placed at the head of the LRU. Multi-
 * page metadata entries that are flushable are flushed and evicted.
 *
 * The remainder of this sections contains discussions of the fields and
 * data structures used to support the above operations.
 *
 * vfd_swmr_writer: Boolean flag that is set to TRUE iff the file is
 * the file is opened in VFD SWMR mode. The remaining
 * VFD SWMR fields are defined iff vfd_swmr_writer is TRUE.
 *
 * mpmde_count: int64_t containing the number of multi-page metadata
 * entries currently resident in the page buffer. Observe
 * that index_len should always equal curr_pages + mpmde_count.
 *
 * cur_tick: uint64_t containing the current tick. This is a copy of
 * the same field in the associated instance of H5F_file_t,
 * and is maintained as a convenience.
 *
 * In the context of VFD SWMR the delayed write list allows us to delay
 * metadata writes to the HDF5 file until it appears in all indexes in the
 * last max_lag ticks. This is essential if a version of the page or
 * multi-page metadata entry already exists in the HDF5 file -- failure to
 * delay the write can result in a message from the future which will
 * likely be perciived as file corruption by the reader.
 *
 * To facilitate identification of entries that must be removed from the
 * DWL during the end of tick scan, the list always observes the following
 * invarient for any entry on the list:

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	31	of	66	

 *
 * entry_ptr->next == NULL ||
 * entry_ptr->delay_write_until >= entry_ptr->next->delay_write_until
 *
 * Discussion of the fields used to implement the delayed write list follows:
 *
 * max_delay: Maximum of the delay_write_until fields of the entries on
 * the delayed write list. This must never be more than max_lag
 * ticks in advance of the current tick, and should be set to
 * zero if the delayed write list is empty.
 *
 * dwl_len: Number of page buffer entries currently on the delayed
 * write list.
 *
 * Observe that LRU_len + dwl_len must always equal
 * index_len.
 *
 * dwl_size: Number of bytes of page buffer entries currently residing
 * on the DWL.
 *
 * Observe that LRU_size + dwl_size must always equal
 * index_size.
 *
 * dwl_head_ptr: Pointer to the head of the doubly linked delayed write list.
 * Page buffer entries on this list are linked by their next and
 * prev fields.
 *
 * This field is NULL if the list is empty.
 *
 * dwl_tail_ptr: Pointer to the tail of the doubly linked delayed write list.
 * Page buffer entries on this list are linked by their next and
 * prev fields.
 *
 * This field is NULL if the list is empty.
 *
 * For VFD SWMR to function, copies of all pages modified during a tick must
 * be retained in the page buffer to allow correct updates to the index and
 * metadata file at the end of tick.
 *
 * To implement this, all entries modified during the current tick are placed
 * on the tick list. Entries are removed from the tick list during end of
 * tick processing, so each tick starts with an empty tick list.
 *
 * Unless the entry also resides on the delayed write list, entries on the
 * tick list may be flushed, but they may not be evicted.
 *
 * Discussion of the fields used to implement the tick list follows:
 *
 * tl_len: Number of page buffer entries currently on the tick list
 *
 * tl_size: Number of bytes of page buffer entries currently residing
 * on the tick list.
 *
 * tl_head_ptr: Pointer to the head of the doubly linked tick list.
 * Page buffer entries on this list are linked by their tl_next
 * and tl_prev fields.
 *
 * This field is NULL if the list is empty.
 *

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	32	of	66	

 * tl_tail_ptr: Pointer to the tail of the doubly linked tick list.
 * Page buffer entries on this list are linked by their tl_next
 * and tl_prev fields.
 *
 * This field is NULL if the list is empty.
 *
 *
 * STATISTICS:
 *
 * Multi-page metadata entries (which may only appear in VFD
 * SWMR mode) are NOT counted in the following statistics.
 *
 * Note that all statistics fields contain only data since the last time
 * that statistics were reset.
 *
 * bypasses: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of times that the page buffer has been
 * bypassed for raw data, metadata, and for multi-page
 * metadata entries (VFD SWMR only) as indexed by H5PB__STATS_MD,
 * H5PB__STATS_RD, and H5PB__STATS_MPMDE respectively.
 *
 * accesses: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer accesses for raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by H5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * hits: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer hits for raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * misses: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer misses for raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * loads: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer loads for raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * insertions: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer insertions of raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * flushes: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer flushes of raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * evictions: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer evictions of raw data, metadata,

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	33	of	66	

 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * clears: Array of int64_t of length H5PB__NUM_STAT_TYPES containing
 * the number of page buffer entry clears of raw data, metadata,
 * and for multi-page metadata entries (VFD SWMR only) as
 * indexed by 5PB__STATS_MD, H5PB__STATS_RD, and
 * H5PB__STATS_MPMDE respectively.
 *
 * max_lru_len: int64_t containing the maximum number of entries that
 * have appeared in the LRU.
 *
 * max_lru_size: int64_t containing the maximum size of the LRU.
 *
 * lru_md_skips: When searching for an entry to evict, metadata entries on
 * the LRU must be skipped if the number of metadata pages
 * in the page buffer fails to exceed min_md_pages.
 *
 * This int64_t is used to keep a count of these skips.
 *
 * If this number becomes excessive, it will be necessary to
 * add a holding tank for such entries.
 *
 * lru_rd_skips: When searching for an entry to evict, raw data entries on
 * the LRU must be skipped if the number of raw data pages
 * in the page buffer fails to exceed min_rd_pages.
 *
 * This int64_t is used to keep a count of these skips.
 *
 * If this number becomes excessive, it will be necessary to
 * add a holding tank for such entries.
 *
 * Multi-page metadata entries (which appear only in VFD SWMR mode) are
 * listed in the hash take, and thus they are counted in the following
 * statistics.
 *
 * total_ht_insertions: Number of times entries have been inserted into the
 * hash table.
 *
 * total_ht_deletions: Number of times entries have been deleted from the
 * hash table.
 *
 * successful_ht_searches: int64 containing the total number of successful
 * searches of the hash table.
 *
 * total_successful_ht_search_depth: int64 containing the total number of
 * entries other than the targets examined in successful
 * searches of the hash table.
 *
 * failed_ht_searches: int64 containing the total number of unsuccessful
 * searches of the hash table.
 *
 * total_failed_ht_search_depth: int64 containing the total number of
 * entries examined in unsuccessful searches of the hash
 * table.
 *
 * max_index_len: Largest value attained by the index_len field.
 *

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	34	of	66	

 * max_clean_index_len: Largest value attained by the clean_index_len field.
 *
 * max_dirty_index_len: Largest value attained by the dirty_index_len field.
 *
 * max_index_size: Largest value attained by the index_size field.
 *
 * max_clean_index_size: Largest value attained by the clean_index_size field.
 *
 * max_dirty_index_size: Largest value attained by the dirty_index_size field.
 *
 * max_rd_pages: Maximum number of raw data pages in the page buffer.
 *
 * max_md_pages: Maximum number of metadata pages in the page buffer.
 *
 *
 * Statistics pretaining to VFD SWMR.
 *
 * max_mpmde_count: Maximum number of multi-page metadata entries in the
 * page buffer.
 *
 * lru_tl_skips: When searching for an entry to evict, metadata entries on
 * the LRU must be skipped if they also reside on the tick list.
 *
 * This int64_t is used to keep a count of these skips.
 *
 * If this number becomes excessive, it will be necessary to
 * add a holding tank for such entries.
 *
 * max_tl_len: int64_t containing the maximum value of tl_len.
 *
 * max_tl_size: int64_t containing the maximum value of tl_size.
 *
 * delayed_writes: int64_t containing the total number of delayed writes.
 *
 * total_delay: int64_t containing the total number of ticks by which
 * entry writes have been delayed.
 *
 * max_dwl_len: int64_t containing the maximum value of dwl_len.
 *
 * max_dwl_size: int64_t containing the maximum value of dwl_size.
 *
 * total_dwl_ins_depth: int64_t containing the total insertion depth
 * required to maintain the odering invarient on the
 * delayed write list.
 *
 **/

#define H5PB__H5PB_T_MAGIC 0x01020304

#define H5PB__STATS_MD 0
#define H5PB__STATS_RD 1
#define H5PB__STATS_MPMDE 2
#define H5PB__NUM_STAT_TYPES 3

typedef struct H5PB_t {

 /* Fields for general operations: */

 uint32_t magic;

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	35	of	66	

 size_t page_size;
 int64_t max_pages;
 int64_t curr_pages;
 int64_t curr_md_pages;
 int64_t curr_rd_pages;
 int64_t min_md_pages;
 int64_t min_rd_pages;

 /* FAPL fields */
 size_t max_size;
 unsigned min_meta_perc;
 unsigned min_raw_perc;

 /* index */
 H5PB_entry_t *(ht[H5PB__HASH_TABLE_LEN]);
 int64_t index_len;
 int64_t clean_index_len;
 int64_t dirty_index_len;
 int64_t index_size;
 int64_t clean_index_size;
 int64_t dirty_index_size;
 int64_t il_len;
 int64_t il_size;
 H5PB_entry_t * il_head;
 H5PB_entry_t * il_tail;

 /* LRU */
 int64_t LRU_len;
 int64_t LRU_size;
 H5PB_entry_t * LRU_head_ptr;
 H5PB_entry_t * LRU_tail_ptr;

 /* Fields for VFD SWMR operations: */

 hbool_t vfd_swmr_writer;
 int64_t mpmde_count;
 uint64_t cur_tick;

 /* delayed write list */
 uint64_t max_delay;
 int64_t dwl_len;
 int64_t dwl_size;
 H5PB_entry_t * dwl_head_ptr;
 H5PB_entry_t * dwl_tail_ptr;

 /* tick list */
 int64_t tl_len;
 int64_t tl_size;
 H5PB_entry_t * tl_head_ptr;
 H5PB_entry_t * tl_tail_ptr;

 /* Statistics: */

 /* general operations statistics: */
 /* these statistics count pages only, not multi-page metadata entries
 * (that occur only in the VFD SWMR writer case).
 */
 int64_t bypasses[H5PB__NUM_STAT_TYPES];

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	36	of	66	

 int64_t accesses[H5PB__NUM_STAT_TYPES];
 int64_t hits[H5PB__NUM_STAT_TYPES];
 int64_t misses[H5PB__NUM_STAT_TYPES];
 int64_t loads[H5PB__NUM_STAT_TYPES];
 int64_t insertions[H5PB__NUM_STAT_TYPES];
 int64_t flushes[H5PB__NUM_STAT_TYPES];
 int64_t evictions[H5PB__NUM_STAT_TYPES];
 int64_t clears[H5PB__NUM_STAT_TYPES];
 int64_t max_lru_len;
 int64_t max_lru_size;
 int64_t lru_md_skips;
 int64_t lru_rd_skips;

 /* In the VFD SWMR case, both pages and multi-page metadata entries
 * are stored in the index. Thus mult-page metadata entries are
 * included in the index related statistics.
 */
 int64_t total_ht_insertions;
 int64_t total_ht_deletions;
 int64_t successful_ht_searches;
 int64_t total_successful_ht_search_depth;
 int64_t failed_ht_searches;
 int64_t total_failed_ht_search_depth;
 int64_t max_index_len;
 int64_t max_clean_index_len;
 int64_t max_dirty_index_len;
 int64_t max_index_size;
 int64_t max_clean_index_size;
 int64_t max_dirty_index_size;
 int64_t max_rd_pages;
 int64_t max_md_pages;

 /* vfd swmr statistics */
 int64_t max_mpmde_count;
 int64_t lru_tl_skips;
 int64_t max_tl_len;
 int64_t max_tl_size;
 int64_t delayed_writes;
 int64_t total_delay;
 int64_t max_dwl_len;
 int64_t max_dwl_size;
 int64_t total_dwl_ins_depth;

} H5PB_t;

/**
 *
 * structure H5PB_entry_t
 *
 * Individual instances of the H5PB_entry_t structure are used to manage
 * individual pages in the page buffer. In the case of a VFD SWMR writer,
 * they are also used to manage multi-page metadata entries.
 *
 * The fields of this structure are discussed below:
 *
 * JRM - 9/27/18
 *
 * magic: Unsigned 32 bit integer that must always be set to

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	37	of	66	

 * H5PB__H5PB_ENTRY_T_MAGIC when the entry is valid.
 *
 * pb_ptr: Pointer to the page buffer that contains this entry.
 *
 * addr: Base address of the page in the file.
 *
 * page: Page offset of the page -- i.e. addr / pb_ptr->page_size.
 * Note that addr must always equal page * pb_ptr->page_size.
 *
 * size: Size of the page buffer entry in bytes. Under normal
 * circumstance, this will always be equal to pb_ptr->page_size.
 * However, in the context of a VFD SWMR writer, the page
 * buffer may be used to store multi-page metadata entries
 * until the end of tick, or to delay writes of such entries
 * for up to max_lag ticks.
 *
 * In such cases, size must be greater than pb_ptr->page_size.
 *
 * image_ptr: Pointer to void. When not NULL, this field points to a
 * dynamically allocated block of size bytes in which the
 * on disk image of the page. In the context of VFD SWMR,
 * it points to the image of the multi-page metadata entry.
 *
 * mem_type: Type (H5F_mem_t) of the page buffer entry. This value
 * is needed when reading or writing the entry from/to file.
 *
 * is_metadata: Boolean flag that is set to TRUE iff the associated
 * entry is a page of metadata (or, in the context of VFD
 * SWMR, a multi-page metadata entry).
 *
 * is_dirty: Boolean flag indicating whether the contents of the page
 * buffer entry has been modified since the last time it
 * was written to disk.
 *
 *
 * Fields supporting the hash table:
 *
 * Entries in the page buffer are indexed by a more or less conventional
 * hash table with chaining (see header comment on H5PB_t for futher details).
 * If there are multiple entries in any hash bin, they are stored in a doubly
 * linked list.
 *
 * To facilitate flushing the page buffer, we also maintain a doubly linked
 * list of all entries in the page buffer.
 *
 * ht_next: Next pointer used by the hash table to store multiple
 * entries in a single hash bin. This field points to the
 * next entry in the doubly linked list of entries in the
 * hash bin, or NULL if there is no next entry.
 *
 * ht_prev: Prev pointer used by the hash table to store multiple
 * entries in a single hash bin. This field points to the
 * previous entry in the doubly linked list of entries in
 * the hash bin, or NULL if there is no previuos entry.
 *
 * il_next: Next pointer used by the index to maintain a doubly linked
 * list of all entries in the index (and thus in the page buffer).
 * This field contains a pointer to the next entry in the
 * index list, or NULL if there is no next entry.

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	38	of	66	

 *
 * il_prev: Prev pointer used by the index to maintain a doubly linked
 * list of all entries in the index (and thus in the page buffer).
 * This field contains a pointer to the previous entry in the
 * index list, or NULL if there is no previous entry.
 *
 *
 * Fields supporting replacement policies:
 *
 * The page buffer must have a replacement policy, and it will usually be
 * necessary for this structure to contain fields supporting that policy.
 *
 * At present, only a modified LRU replacement policy is contemplated,
 * (see header comment for H5PB_t for details), for which the following
 * fields are adequate.
 *
 * next: Next pointer in either the LRU, or (in the context of
 * VFD SWMR) the delayed write list. If there is no next entry
 * on the list, this field should be set to NULL.
 *
 * prev: Prev pointer in either the LRU, or (in the context of
 * VFD SWMR) the delayed write list. If there is no previous
 * entry on the list, this field should be set to NULL.
 *
 * Fields supporting VFD SWMR:
 *
 * is_mpmde: Boolean flag that is set to TRUE iff the entry
 * is a multi-page metadata entry. In the absense of VFD
 * SWMR, the field should always be set to FALSE.
 *
 * Observe that:
 *
 * is_mpmde <==> is_metadata && size > pb_ptr->page_size
 *
 * loaded: Boolean flag that is set to TRUE iff the entry was loaded
 * from file. This is a necessary input in determining
 * whether the write of the entry must be delayed.
 *
 * This field is only maintained in the VFD SWMR case
 * and should be false otherwise.
 *
 * modified_this_tick: This field is set to TRUE iff pb_ptr->vfd_swrm_write
 * and the entry has been modified in the current tick. If
 * modified_this_tick is TRUE, the entry must also be in the
 * tick list.
 *
 * delay_write_until: Unsigned 64 bit integer containing the first tick
 * in which the entry may be written to file, or 0 if there
 * is no such constraint. It should be set ot 0 when VFD
 * is not enabled.
 *
 * tl_next: Next pointer on the list of entries modified in the current
 * tick, If the enty is not on the tick list, or if there is
 * no next entry on the list, this field should be set to NULL.
 *
 * tl_prev: Prev pointer on the list of entries modified in the current
 * tick, If the enty is not on the tick list, or if there is
 * no previous entry on the list, this field should be set to
 * NULL.

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	39	of	66	

 *
 **/

#define H5PB__H5PB_ENTRY_T_MAGIC 0x02030405

struct H5PB_entry_t {

 uint32_t magic;
 H5PB_t *pb_ptr;
 haddr_t addr;
 uint64_t page;
 size_t size;
 void *image_ptr;
 H5FD_mem_t mem_type;
 hbool_t is_metadata;
 hbool_t is_dirty;

 /* fields supporting the hash table: */
 struct H5PB_entry_t *ht_next;
 struct H5PB_entry_t *ht_prev;
 struct H5PB_entry_t *il_next;
 struct H5PB_entry_t *il_prev;

 /* fields supporting replacement policies: */
 struct H5PB_entry_t *next;
 struct H5PB_entry_t *prev;

 /* fields supporting VFD SWMR */
 hbool_t is_mpmde;
 hbool_t loaded;
 hbool_t modified_this_tick;
 uint64_t delay_write_until;
 struct H5PB_entry_t *tl_next;
 struct H5PB_entry_t *tl_prev;

}; /* H5PB_entry_t */

3.5 Metadata	File	Management	

3.5.1 Metadata	File	Format	

The	 metadata	 file	 format	 is	 constructed	 so	 as	 to	 allow	 the	 VFD	 SWMR	 reader	 VFD	 to	 intercept	
metadata	page	 reads	and	satisfy	 them	with	a	consistent	 (but	possibly	dated)	view	of	 the	HDF5	 file	
metadata.	 	Further,	this	view	of	the	metadata	must	remain	consistent	even	if	the	reader	falls	up	to	
max_lag	ticks	behind	the	VFD	SWMR	writer.			

Thus,	at	the	metadata	file	level,	we	must:	

• Ensure	that	no	metadata	page	or	multipage	piece	of	metadata	in	the	metadata	file	is	
overwritten	until	it	has	not	appeared	in	the	current	index	for	at	least	max_lag	ticks.	

• Ensure	that	all	metadata	pages	and/or	multipage	pieces	of	metadata	dirtied	in	the	current	tick	
are	written	to	the	metadata	file	before	the	index	for	the	current	tick	becomes	visible.		

As	shall	be	seen,	we	will	use	POSIX	 file	 I/O	semantics	 (combined	with	checksums	and	retries	when	
necessary)	to	guarantee	this	in	the	POSIX	case,	and	atomic	writes	of	metadata	file	change	lists	in	the	
NFS	and	object	store	cases.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	40	of	66	

However,	before	discussing	the	exact	particulars	of	writing	and	reading	the	metadata	file,	we	must	
first	define	its	format	and	free	space	management.	

3.5.1.1 Metadata	File	Header	

The	Metadata	 File	Header	must	 be	 located	 at	 offset	 0	 in	 the	metadata	 file,	 and	 has	 the	 following	
format:	

Metadata	File	Header:	

byte	 byte	 byte	 byte	

Signature	

Page	Size	

Tick	Number	

	

Index	Offset	

	

Index	Length	

	

checksum	

	

The	fields	of	the	metadata	file	header	are	described	in	the	following	table.			

	

Field	Name:	 Description:	

Signature	 Magic	number	 indicating	 that	 this	 is	a	VFD	SWMR	metadata	 file	header.	
Must	be	set	to	'VHDR'.	

Page	Size	 Size	of	pages	in	both	the	HDF5	file	and	the	Metadata	file	in	bytes.	

Tick	Number	 Sequence	number	of	the	current	tick.		This	is	an	unsigned	64	bit	value	that	
is	 initialized	to	zero	on	file	creation	/	open,	and	incremented	by	the	VFD	
SWMR	writer	at	the	end	of	each	tick.	

Index	Offset	 Unsigned	64-bit	 value	 containing	 the	offset	of	 the	 current	metadata	 file	
index	in	the	metadata	file	in	bytes.	

Ideally,	the	index	will	be	located	immediately	after	the	header	–	in	which	
case	this	value	will	be	the	offset	of	the	first	byte	after	the	header.	

However,	 regardless	of	 how	much	 space	 is	 reserved	 for	 the	header	 and	
index,	it	is	always	possible	that	the	index	will	become	too	large	for	it.		In	
this	 case,	 this	 field	contains	 the	page	aligned	base	address	of	 the	 index.		
Note	that	the	index	must	reside	in	a	contiguous	sequence	of	pages.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	41	of	66	

Index	Length	 Unsigned	64-bit	value	containing	the	 length	of	 the	current	metadata	 file	
index	in	bytes.	

checksum	 Checksum	of	the	contents	of	the	Metadata	File	header.	

	

Ideally	the	index	offset	and	length	fields	would	be	of	the	sizes	specified	in	the	superblock	of	the	HDF5	
file	for	offsets	and	lengths.		However,	this	data	may	not	be	available	to	the	reader	when	the	
metadata	file	is	first	read.		Thus	both	of	these	values	are	8	bytes	–	the	maximum	value	with	current	
file	systems.	

Similarly,	the	page	size	stored	in	the	HDF5	file	may	not	be	accessible	to	the	reader	when	the	reader	
VFD	first	accesses	the	metadata	file,	and	thus	must	be	listed	in	the	header.			

3.5.1.2 Metadata	File	Index	

The	 Metadata	 File	 Index	 file	 format	 is	 variable	 length,	 with	 its	 length	 being	 determined	 by	 the	
number	 of	 entries	 in	 the	 index.	 	 The	 top	 level	 of	 the	 format	 is	 shown	 first,	 with	 the	 format	 of	
individual	index	entries	given	subsequently.	

Metadata	File	Index:	

byte	 byte	 byte	 byte	

Signature	

Tick	Number	

	

Number	of	Entries	

Index	Entry	0	

.	

.	

.	

Index	Entry	n	

checksum	

	

The	fields	of	the	top	level	format	are	described	in	the	following	table.		Recall	that	the	“Index	Entry”	
fields	are	a	sub-formats	embedded	in	the	Metadata	File	Index	format.	

	

Field	Name:	 Description:	

Signature	 Magic	 number	 indicating	 that	 this	 is	 a	 VFD	 SWMR	metadata	 file	 index.	
Must	be	set	to	'VIDX'.	

Tick	Number	 Sequence	number	of	the	current	tick.		This	is	an	unsigned	64	bit	value	that	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	42	of	66	

is	 initialized	to	zero	on	file	creation	/	open,	and	incremented	by	the	VFD	
SWMR	writer	at	the	end	of	each	tick.	

Number	of	Entries	 Unsigned	32	bit	value	containing	the	number	of	entries	in	the	index.		Note	
that	 if	 an	existing	 file	 is	 opened	 for	VFD	SWMR	write,	 this	 value	will	 be	
zero	until	such	time	as	metadata	is	modified	by	the	VFD	SWMR	writer.		

Index	Entry	n	 N’th	entry	in	the	index.	

See	“Metadata	File	Index	Entry”	below	for	the	details	of	these	fields.	

Index	entries	must	be	sorted	in	increasing	HDF5	file	page	offset.	

checksum	 Checksum	of	the	contents	of	the	Metadata	File	Index.	

	

The	Metadata	File	Index	Entry	is	a	fixed	length	format.		Its	structure	is	described	below:	

	

Metadata	File	Index	Entry:	

byte	 byte	 byte	 byte	

HDF5	File	Page	Offset	

Metadata	File	Page	Offset	

Length	

	 	 Entry	Checksum	 	

	

	

Field	Name:	 Description:	

HDF5	File	Page	Offset	 Unsigned	32-bit	value	containing	the	base	address	of	the	metadata	page,	
or	multi	page	metadata	entry	 in	the	HDF5	file	 IN	PAGES.	 	To	obtain	byte	
offset,	multiply	this	value	by	Page	Size	in	the	Metadata	File	Header.	

Metadata	 File	 Page	
Offset	

Unsigned	32-bit	value	containing	the	base	address	of	the	metadata	page,	
or	multi	page	metadata	entry	 in	 the	metadata	 file	 IN	PAGES.	 	 To	obtain	
byte	offset,	multiply	this	value	by	Page	Size	in	the	Metadata	File	Header.	

Length	 Unsigned	32-bit	value	containing	the	length	of	the	metadata	page	or	multi	
page	metadata	 entry	 IN	 BYTES.	 	 If	 this	 is	 a	 metadata	 page,	 the	 Length	
must	equal	the	page	size.	 	 If	this	 is	an	 individual	multi	page	cache	entry,	
the	length	must	be	greater	than	the	page	size,	but	need	not	be	a	multiple	
of	the	page	size	

Entry	Checksum	 Unsigned	 32-bit	 value	 containing	 the	 checksum	 of	 the	 referenced	
metadata	page	or	multi-page	metadata	entry.	

	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	43	of	66	

Observe	that	the	offsets	are	listed	in	pages,	not	bytes,	and	that	32	bit	fields	are	used	for	these	values.		
Assuming	a	4	KB	page,	this	means	that	the	maximum	HDF5	file	size	supported	by	this	metadata	file	
index	format	is	16	TB	(2	TB	with	a	512	byte	page	size).		While	this	should	be	sufficient	for	now,	there	
will	be	use	cases	in	which	it	is	insufficient.	

Fortunately,	 the	metadata	 file	 is	discarded	on	HDF5	 file	 close,	 so	 there	are	no	 forward	 /	backward	
compatibility	issues.19			

Minimizing	the	size	of	the	index	is	important	for	performance,	so	we	will	likely	address	this	issue	by	
choosing	the	metadata	file	index	format	based	on	page	size	and	a	user	supplied	hint	on	maximum	file	
size.		TODO:	Work	out	the	details	of	this.		Also	consider	how	we	might	avoid	writing	the	entire	index	
by	publishing	deltas	instead	of	the	entire	index.	

Length	 is	 also	 an	 unsigned	 32-bit	 value,	 which	 limits	 the	 maximum	 size	 of	 mulit-page	 pieces	 of	
metadata	to	4	GB.		Since	the	largest	piece	of	metadata	seen	in	the	wild	was	~100	MB,	this	limitation	
shouldn’t	bite	us	for	quite	a	while.	

3.5.1.3 Metadata	File	Body	

The	metadata	 file	 body	 is	 simply	 a	 page-aligned	 list	 of	 metadata	 pages	 and	multi-page	metadata	
entries.	 	The	current	snapshot	of	the	HDF5	file	metadata	 is	given	by	that	subset	of	these	metadata	
pages	and	multi-page	entries	listed	in	the	current	index.	 	Metadata	pages	and	multi-page	metadata	
entries	 that	 are	 not	 listed	 in	 the	 index	must	 be	 retained	 in	 the	metadata	 file	 until	 they	 have	 not	
appeared	in	the	 index	for	at	 least	max_lag	ticks.	 	This	ensures	that	 indexes	will	be	valid	for	at	 least	
max_lag	ticks.	

3.5.1.4 Metadata	File	Free	Space	Management	

To	copy	a	metadata	page	or	multi-page	metadata	entry	into	the	metadata	file,	we	must	first	allocate	
space	for	it.		Similarly,	to	control	the	size	of	the	metadata	file,	we	must	eventually	reuse	metadata	file	
space	 allocated	 to	 obsolete	 pages	 or	 multi-page	 metadata	 entries.	 	 The	 metadata	 file	 free	 space	
manager	must	support	these	operations	by	allocating	space	and	accepting	freed	space	for	re-use.	

If	a	metadata	page	or	mult-page	metadata	entry	is	modified,	it	must	be	retained	in	the	metadata	file	
for	at	least	max_lag	ticks,	so	as	to	allow	for	readers	that	are	up	to	max_lag	ticks	behind	the	writer.		To	
support	 this,	 the	 offset	 and	 length	 of	 superseded	metadata	 pages	 or	multi-page	metadata	 entries	
must	be	placed	at	the	head	of	a	doubly	 linked	 list,	decorated	with	the	number	of	 the	tick	 in	which	
they	were	superseded.		Call	this	list	the	delayed	free	space	release	linked	list.	

End	of	 tick	processing	 for	 the	VFD	SWMR	 for	 the	writer	must	 scan	 the	delayed	 free	 space	 release	
linked	list	from	the	bottom	up,	release	to	the	metadata	file	free	space	manager	all	the	space	that	has	
resided	on	the	 linked	 list	 for	more	than	max_lag	ticks,	and	remove	the	associated	entries	 from	the	
list.	

3.5.1.4.1 Design	for	Metadata	File	Free	Space	Manager	

The	metadata	file	free	space	manager	must	satisfy	the	following	functional	requirements:	

																																																								
19	True	if	the	reader	and	writer	use	the	same	HDF5	release.		If	we	choose	to	allow	the	case	where	this	
is	not	TRUE,	we	probably	need	to	add	version	and	page	offset	width	fields	to	the	header.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	44	of	66	

• Allocate	the	requested	number	of	contiguous	pages	in	the	metadata	file,	extending	the	file	if	
necessary.	

• Accept	blocks	of	one	or	more	released	pages	and	add	them	to	the	free	list.		Free	space	should	
be	coalesced	where	possible.	

• At	least	for	the	first	allocation,	space	must	be	allocated	at	the	head	of	the	file.		Thus	the	first	
allocation	will	be	for	one	or	more	pages	at	offset	zero	for	the	metadata	file	header	and	index.			

The	HDF5	library	has	already	implemented	the	free-space	module	(H5FS)	for	handling	free-space,	and	
the	existing	clients	are	the	free-space	managers	for	file	space	(H5MF)	and	the	fractal	heap	(H5HF).			

Similarly,	we	will	create	free-space	manager	for	handling	free-space	in	the	metadata	file	(H5MV)	as	a	
client	of	the	H5FS	module.		As	we	will	throw	away	the	metadata	file	when	the	writer	closes	for	VFD	
SWMR,	the	free-space	manager	does	not	need	to	be	persistent.	

3.5.1.4.1.1 Initialization	

• Add	a	field	to	the	H5F_file_t	structure,	which	will	point	to	the	free-space	manager	for	the	
metadata	file:	

o H5FS_t	*mv_fspace	

• Initialize	the	field	to	NULL	in	H5F_new()	in	H5Fint.c	on	file	creation/open	

3.5.1.4.1.2 The	Free-space	Manager	Interface	

3.5.1.4.1.2.1 H5MV_alloc()	

Purpose:	request	space	from	the	metadata	file		

• If	the	free-space	manager	is	initialized,	search	for	the	requested	space	from	the	manager	via	
H5FS_sect_find()	

o If	a	free	section	is	found:	

§ Return	the	address	

§ If	the	section	is	the	same	size	as	the	requested	space,	free	the	section	structure	
via	H5MV__sect_free()		

§ If	the	section	is	larger	than	the	requested	space,	add	the	remaining	space	back	
to	the	free-space	manager	via	H5FS_sect_add()	

• If	the	free-space	manager	is	not	initialized	or	no	free	section	is	found	from	the	manager:	

o For	a	POSIX	file,	allocate	space	by	extending	the	file	and	then	set	the	new	EOA	

3.5.1.4.1.2.2 H5MV_xfree()	

Purpose:	return	free	space	to	the	metadata	file	

• If	the	free-space	manager	is	not	initialized,	check	if	the	released	space	will	allow	us	to	shrink	
the	meta-data	file	via	H5MV_try_shrink()		

• If	the	space	cannot	shrink	the	file,	do	the	following:	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	45	of	66	

o Create	the	free-space	manager	via	H5MV_create()		

o Add	the	space	to	the	free-space	manager	via	H5FS_sect_add()	

3.5.1.4.1.2.3 H5MV_create()	

Purpose:	create	the	free-space	manager	for	the	metadata	file	

• Allocate	and	initialize	the	free-space	structure	via	H5FS_create()		

• The	free-space	manager	will	be	accessed	via	f->shared->mv_fspace	

3.5.1.4.1.2.4 H5MV_try_shrink	

Purpose:	check	if	the	space	to	be	freed	will	shrink	the	size	of	the	metadata	file	

• This	will	be	done	via	the	can_shrink	and	the	shrink	section	callbacks	

3.5.1.4.1.2.5 H5MV_try_extend	

Purpose:	check	if	an	allocated	block	can	be	extended	by	a	requested	size	

• If	the	block	adjoins	the	EOA,	extend	the	file	by	the	requested	size	and	set	the	new	EOA	

• If	the	block	adjoins	an	existing	free-space	section	which	fulfills	the	size	requested,	extend	the	
block	via	H5FS_sect_try_extend()	

3.5.1.4.1.2.6 H5MV_close()	

Purpose:	close	the	free-space	manager	for	the	metadata	file	

• Free	the	free-space	structure	via	H5FS_close(),	which	will	just	destroy	the	section	info	via	
H5FS_sinfo_dest()	

3.5.1.4.1.3 Free-space	Section	Callbacks	

The	section	callbacks	for	the	metadata	file	are	set	up	as	follows:	

• Define	the	section	class	as:	

o H5FS_section_class_t	H5MV_FSPACE_SECT_CLS_SIMPLE[1]		

• Define	callbacks	as	described	below	for	the	can_merge,	merge,	can_shrink,	shrink,	and	free	
class	actions	

• Set	up	the	routine	H5MV_sect_new()	to	create	a	free-space	section	structure	via	
H5FL_MALLOC()	and	initialize	the	section	info	

3.5.1.4.1.3.1 H5MV__sect_can_merge	

• Check	if	the	two	free-space	sections	adjoin	each	other	

• Return	TRUE	or	FALSE	

3.5.1.4.1.3.2 H5MV__sect_merge	

• If	the	can_merge	callback	returns	TRUE,	this	routine	will	add	the	second	section’s	size	to	the	
size	of	the	first	section,	and	will	free	the	second	section’s	structure	via	H5MV__sect_free()	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	46	of	66	

3.5.1.4.1.3.3 H5MV_sect_can_shrink	

• Check	if	the	section	to	be	freed	is	at	EOF	

• Return	TRUE	or	FALSE	

3.5.1.4.1.3.4 H5MV_sect_shrink	

• If	the	can_shrink	callback	returns	TRUE,	reduce	the	file	size	and	set	the	new	EOA	

3.5.1.4.1.3.5 H5MV__sect_free	

• Free	the	section	structure	via	H5FL_free()	

3.5.2 Writing	the	Metadata	File	

When	creating	the	metadata	 file,	we	will	allocate	the	 first	md_pages_reserved	pages	of	 the	 file	 to	
the	header	and	index,	where	md_pages_reserved	is	>=	1.		As	long	as	the	header	and	index	fit	within	
this	allocation,	we	can	write	the	header	and	index	in	a	single	atomic	write.		However,	there	is	always	
the	possibility	that	header	and	index	will	grow	to	the	point	that	it	doesn’t	fit	into	any	fixed	number	of	
pre-allocated	pages	at	the	head	of	the	metadata	file.	

In	the	initial	implementation,	we	handled	this	problem	by	simply	aborting	if	the	index	size	grew	too	
large.	 	 While	 this	 was	 adequate	 for	 the	 proof	 of	 concept,	 it	 is	 not	 an	 acceptable	 solution	 for	 a	
production	version.	

For	the	initial	production	version,	three	solutions	come	to	mind:	

1. Flush	the	HDF5	file	and	replace	the	index	with	an	empty	index.	

If	the	file	was	created	in	VFD	SWMR	write	mode,	and	has	not	been	flushed	previously,	this	can	
be	done	without	penalty,	as	all	metadata	must	be	in	the	metadata	file,	and	listed	in	the	index.		
Thus	there	are	no	concerns	for	message	from	the	future	bus.	

However,	if	and	existing	file	was	opened	in	VFD	SWMR	writer	mode,	or	if	a	file	that	was	
created	in	VFD	SWMR	writer	mode	and	has	already	been	flushed,	there	is	the	possibility	that	
not	all	metadata	is	in	the	metadata	file	and	referenced	by	the	index.		Such	pieces	of	metadata	
are	accessed	via	reads	from	the	HDF5	file	proper.		If	we	flush	the	HDF5	file	and	replace	the	
index	with	an	empty	index,	we	will	create	the	possibility	that	we	will	overwrite	older	versions	
of	metadata	being	referenced	by	any	lagging	readers	–	thus	creating	message	from	the	future	
bugs.	

We	can	solve	this	problem	by	delaying	the	flush	until	all	pieces	of	metadata	in	the	metadata	
file	index	have	resided	in	the	index	for	at	least	max_lag	ticks.		This	avoids	the	possibility	of	
message	from	the	future	bugs20,	but	compromises	any	real	time	guarantees.	

2. Allocate	space	for	the	index	elsewhere	in	the	file.		Note	that	this	implies	that	we	can’t	
overwrite	the	index	in	place	as	the	header	and	index	can	no	longer	be	written	in	a	single	
atomic	action.		Instead,	we	must	allocate	space	for	a	new	index,	write	it	to	the	metadata	file,	
and	then	update	the	header	on	each	tick.		Observe	that	the	old	index	must	not	be	overwritten	

																																																								
20	i.e.	the	possibility	of	reading	metadata	that	was	written	in	a	subsequent	tick.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	47	of	66	

for	some	period	of	time	to	allow	for	the	case	in	which	the	reader	reads	the	header	just	before	
it	is	overwritten.		A	delay	of	max_lag	ticks	is	almost	certainly	excessive,	but	it	simplifies	free	
space	management	in	the	metadata	file,	and	thus	should	be	chosen	unless	we	can	think	of	a	
strong	reason	to	the	contrary.	

3. Track	writes	of	metadata	pages	and	multi-page	metadata	entries	to	the	HDF5	file.		When	this	
happens,	retain	the	page	or	multi-page	entry	in	the	metadata	file	index	for	max_lag	ticks,	and	
then	delete	it	from	the	index	if	there	have	been	no	further	changes21.	

While	 there	 are	 arguments	 for	 all	 of	 these	 options,	 the	 first	 option	 has	 the	 potential	 to	 impose	
irregular	 delays	 in	 end	of	 tick	 processing	 –	which	 is	 inconvenient	 from	a	 real	 time	perspective.	 	 In	
contrast,	2	and	3	should	be	manageable	in	a	well	constrained	amount	of	time	at	the	end	of	each	tick.		

Thus,	for	the	initial	production	version,	we	will	 implement	a	combination	of	2	and	3.	 	Note	that	we	
will	retain	the	reservation	of	space	for	the	index,	and	not	apply	2	unless	this	reservation	becomes	in-
adequate.	 	3)	can	be	 integrated	 into	 the	scan	of	 the	 internal	 representation	of	 the	 index	on	writer	
size,	and	thus	can	be	low	cost.	

This	point	addressed,	recall	that	the	metadata	file	must	be	written	in	such	a	fashion	that:	

1. All	entries	in	the	index	are	in	the	metadata	file	before	the	index	becomes	accessible.			

2. No	entry	is	overwritten	until	it	has	not	been	mentioned	in	the	current	index	for	at	least	
max_lag	ticks.	

We	have	already	dealt	with	 requirement	2	with	 the	delayed	 free	 space	 release	 linked	 list	 and	 free	
space	 manager	 discussed	 above.	 	 This	 leaves	 only	 the	 first	 requirement	 to	 be	 addressed	 in	 this	
section.			As	the	solution	differs	depending	on	whether	we	are	dealing	with	a	POSIX	file	system,	NFS,	
or	an	object	store,	we	address	each	case	in	subsections	below.	

3.5.2.1 POSIX	Case	

In	a	nutshell,	writing	 the	metadata	 file	 in	 the	POSIX	case	uses	 the	atomic	write	and	write	ordering	
guarantees	of	POSIX	file	 I/O	semantics	to	satisfy	requirement	1.	 	Note	that	due	to	past	experience,	
the	VFD	SWMR	metadata	 file	uses	checksums	to	allow	detection	of	 torn	writes,	and	tagging	of	 the	
header	and	index	with	the	current	tick	for	sanity	checking.	

This	in	turn	resolves	to	the	following	protocol	for	updating	the	metadata	file:	

1. Allocate	space	in	the	metadata	file	for	all	metadata	pages	or	multi	page	metadata	entries	
modified	or	created	in	the	current	tick,	and	then	write	the	pages	or	entries	to	their	allocated	
locations.		If	the	page	or	entry	is	an	updated	version	of	a	page	or	entry	currently	listed	in	the	
index,	insert	the	old	metadata	file	base	address	and	length	at	the	head	of	the	delayed	free	
space	release	linked	list	tagged	with	the	current	tick.	

Note:	Consider	using	POSIX	vector	I/O	to	minimize	the	number	of	function	calls.	

																																																								
21	Again,	to	use	the	terminology	of	struct H5FD_vfd_swmr_idx_entry_t	presented	above,	we	can	
remove	from	the	index	any	metadata	page	or	multi-page	metadata	cache	entry	whose	clean	field	is	
TRUE,	and	whose	tick_of_last_flush	is	more	than	max_lag	ticks	in	the	past.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	48	of	66	

2. If	the	header	and	index	fit	within	the	pages	reserved	for	them,	overwrite	the	existing	header	
and	index	in	the	metadata	file	with	the	current	version.	Otherwise:	

a. Allocate	space	for	the	index	and	insert	the	metadata	file	base	address	and	length	of	
the	old	index	at	the	head	of	the	delayed	free	space	release	linked	list	tagged	with	the	
current	tick.	

b. Write	the	index	in	its	newly	allocated	location.	

c. Overwrite	the	existing	header.	

3. Starting	at	the	bottom	of	the	delayed	free	space	release	linked	list,	scan	upwards	and	release	
all	listed	space	that	is	tagged	with	an	index	less	than	or	equal	to	the	current	index	minus	
max_lag.	

While	the	construction	of	the	updated	index	and	the	list	of	new	/	modified	metadata	pages	or	multi-
page	entries	should	be	reasonably	quick,	the	file	 I/O	required	to	update	the	metadata	file	could	be	
significant	if	the	tick	size	is	small,	and	the	updates	to	the	metadata	file	are	large.		To	address	this,	it	
may	be	useful	to	spawn	a	thread	to	handle	the	metadata	file	update.		We	will	not	do	this	in	the	initial	
production	version,	but	we	should	write	the	code	that	implements	the	metadata	file	update	with	this	
in	mind.	

To	facilitate	passing	the	metadata	file	creation	/	update	off	 to	a	separate	thread,	the	metadata	file	
update	should	be	handled	by	a	call	to		

herr_t
H5F_update_vfd_swmr_metadata_file(H5F_file_t f,
 uint32_t index_len_ptr,
 struct H5FD_vfd_swmr_idx_entry_t index[]);

	

which	(in	the	POSIX	case)	will	proceed	as	follows:	

1. Sort	the	index	by	increasing	offset	in	the	HDF5	file	

2. Scan	through	the	sorted	index,	visiting	each	entry	once,	and	taking	the	following	actions:	

a. If	the	entry	in	the	index	has	a	non-NULL	entry_ptr	field:	

i. If	it	exists,	insert	the	location	and	length	of	the	previous	image	of	the	entry	on	
the	delayed	free	space	release	linked	list	

ii. Allocate	space	for	the	entry	in	the	metadata	file	and	update	the	index	

iii. Compute	the	checksum	of	the	entry	and	update	the	index	

iv. Write	the	entry	into	the	metadata	file	

v. Set	the	entry_ptr	field	to	NULL	

b. If	the	entry’s	moved_to_hdf5_file	field	is	FALSE,	and	the	entry	is	clean,	and	its	
tick_of_last_flush	is	more	than	max_lag	ticks	in	the	past,	set	the	
moved_to_hdf5_file	field	to	TRUE.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	49	of	66	

c. If	the	entry’s	moved_to_hdf5_file	field	is	TRUE,	and	either	the	entry	is	dirty,	or	its	
tick_of_last_flush	is	less	than	or	equal	to	curr_tick - max_lag,	set	the	
moved_to_hdf5_file	field	to	FALSE.	

d. If	the	entry’s	moved_to_hdf5_file	field	is	TRUE,	and	the	entry	is	clean,	and	its	
tick_of_last_flush	is	more	than	max_lag	ticks	in	the	past,	delete	the	entry	from	
the	index.		Do	this	by	reducing	the	size	of	the	index,	and	shifting	subsequent	entries	
down	accordingly	as	the	rest	of	the	index	is	scanned.	

3. Construct	the	on	disk	image	of	the	index	

4. Write	the	image	of	the	index	to	the	metadata	file	

5. Update	the	header,	construct	its	on	disk	image,	and	write	the	image	to	the	metadata	file	

6. Release	timed	out	space	from	the	delayed	free	space	release	linked	list	to	the	free	space	
manager	

Modifications	for	the	NFS	and	object	store	cases	are	discussed	below.	

3.5.2.2 NFS	Case	

TBD	

3.5.2.3 Object	Store	Case	

TBD	

Note	that	the	object	store	case	will	likely	be	complicated	by	caching	in	the	object	store	VFD.		If	this	is	
the	case,	the	metadata	file	will	have	to	be	supplemented	by	a	similar	file	 indicating	allocations,	de-
allocations	and	modifications	of	cached	objects	in	the	object	store	VFD.	

3.5.3 Reading	the	Metadata	File	

Reading	the	metadata	file	resolves	into	two	basic	operations:	

1. Reading	the	(possibly	updated)	index	

2. Reading	a	page	of	metadata	or	multi-page	metadata	entry	listed	in	the	index	

The	former	operation	is	directed	mostly	at	determining	if	the	index	has	been	updated,	and	obtaining	
the	latest	version	if	it	has.	

The	second	operation	is	simply	correctly	reading	the	desired	version	of	the	metadata	page	or	multi-
page	entry.		

3.5.3.1 POSIX	Case	

If	we	could	count	on	POSIX	guarantees	in	all	cases,	the	POSIX	case	would	be	much	simpler.		However,	
experience	with	the	current	SWMR	implementation	suggests	 that	we	should	expect	and	be	able	to	
recover	from	torn	writes	(i.e.	writes	that	are	supposed	to	be	atomic,	but	aren’t).		We	are	not	aware	of	
any	difficulties	with	out	of	order	writes,	but	prudence	suggests	that	we	should	design	our	protocols	
to	detect	and	manage	these	as	well.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	50	of	66	

3.5.3.1.1 Reading	the	Index	

In	 the	 initial	 implementation,	 we	 required	 that	 the	 header	 and	 index	 fit	 within	 the	 first	
md_pages_reserved	pages	of	the	metadata	file,	and	aborted	if	this	was	not	the	case.		This	simplified	
the	 protocol	 for	 obtaining	 the	 index	 and	 allowed	us	 to	minimize	 the	 number	 of	 reads	 required	 to	
obtain	the	current	version	of	the	index.	

While	aborting	 if	 the	 index	grows	 too	 large	 is	not	acceptable	 for	a	production	version,	 reading	 the	
header	 and	 index	 in	 a	 single	 read	 has	 performance	 benefits,	 and	 thus	 we	 retain	 the	 ability	 of	
allocating	sufficient	pages	at	the	head	of	the	metadata	file	for	the	header	and	all	expected	indexes.		
However,	we	must	also	allow	for	the	possibility	that	the	reserved	space	will	be	too	small,	 forcing	a	
relocation	of	the	index.	

This	 complicates	 reading	 the	 index,	 as	 may	 be	 seen	 in	 the	 following	 protocol	 for	 performing	 this	
action.	

Define	the	boolean	flag	header_and_index_adjacent	and	initialize	it	to	TRUE.		Proceed	as	follows:	

1. If	header_and_index_adjacent	is	FALSE,	goto	7.			

2. Load	the	first	md_pages_reserved	pages	of	the	metadata	file	into	a	buffer	

3. The	metadata	file	header	must	be	at	the	start	of	this	buffer.		Read	it	from	the	buffer	and	verify	
its	checksum.		If	the	checksum	fails,	log	the	error	in	the	log	file	if	it	exists,	and	return	to	step	2.			

4. If	the	metadata	file	header	indicates	that	the	index	starts	in	the	first	byte	after	the	header,	
verify	that	the	header	and	index	together	fit	in	the	first	md_pages_reserved	pages	of	the	
metadata	file.		If	it	does,	proceed	to	step	5.		If	not,	flag	an	error	and	abort	as	this	condition	
should	not	be	possible.	

If	the	metadata	file	indicates	that	the	header	and	index	are	not	adjacent,	log	this	event	if	the	
log	file	is	defined,	set	header_and_index_adjacent	to	FALSE,	and	goto	step	7.	

5. Read	the	index	from	the	buffer	and	verify	its	checksum.		If	the	checksum	fails,	log	the	error	in	
the	log	file	if	it	exists,	and	return	to	step	2.	

6. Verify	that	the	tick	number	in	the	header	and	index	match.		If	they	do,	goto	step	12.		If	the	tick	
number	in	the	header	is	one	greater	than	that	in	the	index,	we	have	a	very	improbable	torn	
write	–	log	it	and	return	to	step	2.		All	other	tick	number	mis-matches	should	be	un-attainable		
–	flag	the	appropriate	error	and	abort.	

7. Load	the	first	header	size22	bytes	in	the	metadata	file	into	a	buffer.		Note	that	the	remainder	
of	the	first	page	is	un-used	–	although	it	will	probably	be	filled	with	junk	from	the	last	index	to	
fit	in	the	first	md_pages_reserved	pages	of	the	metadata	file.	

8. Read	the	header	from	the	buffer	and	verify	its	checksum.		If	the	checksum	fails,	log	the	error	
in	the	log	file	if	it	exists,	and	return	to	step	7.			

9. Obtain	the	offset	and	length	of	the	index	from	the	header.		Note	that	the	base	address	of	the	
index	must	be	page	aligned.		Load	the	index	into	a	buffer.	

																																																								
22	36	bytes	at	present.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	51	of	66	

10. Read	the	index	from	the	buffer	and	verify	its	checksum.		If	the	checksum	fails,	log	the	error	in	
the	log	file	if	it	exists,	and	abort	as	this	condition	indicates	either	out	of	order	writes	by	the	
POSIX	file	system,	a	bug	in	VFD	SWMR,	or	that	max_lag	has	been	exceeded	during	this	
operation.		

11. Verify	that	the	tick	number	in	the	header	and	index	match.		Abort	if	they	do	not,	as	this	will	
indicate	either	out	of	order	writes	by	the	POSIX	file	system,	a	bug	in	VFD	SWMR,	or	that	
max_lag	has	been	exceeded	during	this	operation.	

12. Return	the	current	tick	number	and	index	to	the	caller.	

Note	that	this	protocol	does	not	address	the	possibility	of	failing	if	a	maximum	number	of	retries	is	
exceeded.		We	probably	want	to	do	this,	but	this	is	probably	an	issue	best	addressed	after	we	have	
some	operational	experience	with	VFD	SWMR.		Hence	it	is	deferred	for	now.	

3.5.3.1.2 Reading	a	Metadata	Page	or	Multi-Page	Metadata	Entry	

Given	the	write	ordering	between	new	versions	of	metadata	pages	or	multi-page	metadata	entries,	
and	 the	 index	 in	which	 they	 first	 appear,	 torn	writes	 should	 be	 impossible,	 and	 the	 only	 possible	
failure	modes	(aside	from	file	system	failure)	should	be:	

• Writes	to	the	metadata	file	completed	out	of	order	in	violation	of	POSIX		file	I/O	semantics.	

• Read	attempted	more	than	max_lag	ticks	after	the	last	reference	to	the	indicated	piece	of	
metadata	in	the	metadata	file	index.	

• Pre-mature	reallocation	of	metadata	file	space	–	i.e.	an	error	in	the	metadata	file	free	space	
management	code.	

In	all	cases,	we	will	treat	this	as	an	un-recoverable	error.		If	write	order	failures	prove	to	be	a	serious	
issue,	we	will	have	to	fall	back	on	some	variation	on	the	NFS	approach.	

Given	the	offset,	 length,	expected	checksum,	and	a	suitably	sized	buffer,	 load	the	specified	page(s)	
from	 the	metadata	 file	 into	 the	buffer,	 and	 compute	 the	 checksum.	 	 If	 the	 checksum	matches	 the	
expected	checksum,	return	success.		If	it	doesn’t,	return	failure.	

3.5.3.2 NFS	Case	

TBD	

3.5.3.3 Object	Store	Case	

TBD	

3.6 Metadata	Cache	Modifications	for	Reader	

When	a	VFD	SWMR	reader	detects	the	start	of	a	new	tick	and	the	associated	updated	index,	it	must	
compare	the	old	index	with	the	new,	and	note	any	new,		or	modified	entries23.		For	each	such	new,	or	

																																																								
23	Deleted	entries	are	not	an	issue,	as	entries	are	only	removed	from	the	index	if	they	are	clean,	were	
last	flushed	to	the	HDF5	file	more	than	max_lag	ticks	ago,	and	are	marked	as	being	moved	to	the	
HDF5	file	in	the	index	prior	to	their	removal.		Thus	a	read	of	the	deleted	metadata	page	or	multipage	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	52	of	66	

modified	page	or	multi-page	metadata	entry,	any	associated	entries	in	the	metadata	cache	must	be	
invalidated,	as	they	may	have	been	modified.	

As	 mentioned	 in	 the	 conceptual	 overview,	 it	 would	 be	 nice	 if	 we	 could	 simply	 evict	 the	 relevant	
entries.	 	However,	some	metadata	cache	clients	are	particular	about	the	order	 in	which	entries	are	
evicted.		Some	of	this	is	due	to	the	nature	of	the	cache	client	in	question,	and	some	is	an	artifact	of	
the	 existing	 SWMR	 implementation.	 	 However,	 unless	 and	 until	 we	 commit	 to	 VFD	 SWMR	 and	
remove	 the	 existing	 SWMR	 implementation	 from	 the	 library,	 we	 have	 to	 work	 with	 the	 existing	
library.	

3.6.1 Identifying	Possibly	Modified	Metadata	Cache	Entries	

The	 first	 step	 in	 evicting	 possibly	 modified	 entries	 from	 the	 metadata	 cache	 is	 mapping	 new	 /	
modified	pages	to	lists	of	entries	in	the	metadata	cache.	

One	obvious	solution	is	to	maintain	a	sorted	list	of	all	entries	in	the	metadata	cache,	and	then	search	
for	entries	whose	base	addresses	fall	within	the	range		

[base	address	of	page,	(base	address	of	page	+	page	size)].			

This	is	should	be	do-able	via	the	current	skip	list	facility.		However,	maintaining	and	searching	this	list	
will	impose	significant	overhead,	as	the	skip	list	is	not	exactly	a	lightweight	data	structure.	

Another	option	 is	 to	construct	and	maintain	a	second	hash	table	with	a	hash	 function	chosen	such	
that	all	entries	in	a	given	page	will	map	to	the	same	bucket.		Call	this	hash	table	the		

page_entry_hash_table.		

The	hash	function	would	be:	

(base_addr_of_MDC_entry	/	page_size)	%	hash_table_size	

Assuming	that	both	the	page	size	and	the	hash	table	sizes	are	powers	of	two,	this	can	be	computed	
very	efficiently.		Use	of	a	free	list	for	hash	table	entries	should	minimize	malloc	/	free	overhead.	

Finally,	maintenance	 of	 this	 hash	 table	 can	 be	 inserted	 in	 the	 existing	metadata	 cache	 hash	 table	
maintenance	macros,	which	should	make	it	very	lightweight	and	easy	to	implement.			

Note,	 however,	 that	 when	 pages	 collide,	 entries	 from	 two	 or	more	 pages	 will	 reside	 in	 the	 same	
bucket.	 	Thus,	when	scanning	the	contents	of	a	hash	bucket,	each	entry	must	be	checked	to	verify	
that	it	resides	in	the	target	page.	

Given	the	advantages	of	the	page_entry_hash_table	approach,	this	solution	was	chosen	for	the	initial	
proof	of	concept	implementation,	and	will	be	retained	in	the	first	production	implementation.	If	for	
whatever	 reason	 it	 proves	 impractical,	 a	 skip	 list	 of	 all	 entries	 in	 the	metadata	 cache	 will	 be	 the	
fallback	approach.	

Note	that	there	is	no	need	for	any	special	provision	for	multi-page	entries	–	if	such	an	entry	is	in	the	
metadata	cache,	a	simple	index	lookup	on	its	base	address	will	reveal	it.	

																																																																																																																																																																																														

metadata	entry	from	the	HDF5	file	must	return	the	exact	same	value	at	the	same	read	from	the	prior	
version	of	the	metadata	file.		For	this	reason,	entry	deletion	can	be	ignored.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	53	of	66	

3.6.2 Evicting	Entries	that	May	Have	Changed	

Before	evicting	possibly	changed	entries	in	the	metadata	cache,	we	must	first	evict	all	entries	in	the	
page	buffer	that	are	referenced	by	new	/	modified	index	entries	to	avoid	the	possibility	of	messages	
from	the	past.		Do	this	before	touching	the	metadata	cache,	as	our	operations	on	it	may	trigger	reads	
from	the	page	buffer.	

Once	we	have	constructed	the	list	of	metadata	cache	entries	that	may	have	changed,	we	must	evict	
them	from	the	metadata	cache.			

If	the	entry	in	question	is	not	pinned,	this	is	trivial	–	we	just	evict	it.	

However,	if	the	entry	is	pinned,	the	client	requires	that	entries	be	evicted	from	the	metadata	cache	in	
some	 specified	 order.	 	 As	 mentioned	 earlier,	 some	 of	 this	 is	 an	 artifact	 of	 the	 existing	 SWMR	
implementation,	and	some	is	simply	due	to	the	structure	of	the	client.			

Several	ways	of	dealing	with	this	issue	present	themselves:	

1. Add	a	refresh()	callback	to	the	list	of	metadata	cache	client	callbacks	which	would	force	the	
client	to	reload	the	target	entry	and	adjust	any	internal	structures	accordingly.	

2. Determine	which	entries	must	be	evicted	before	the	target	entry,	evict	them,	and	then	evict	
the	target.	

3. Via	the	tagging	mechanism,	determine	what	on	disk	data	structure	the	target	entry	is	part	of,	
and	then	evict	the	entire	structure.	

While	 addition	 of	 the	 refresh()	 callback	 does	 some	 violence	 to	 the	 objective	 of	 making	 SWMR	
completely	 transparent	 to	 the	 bulk	 of	 the	 HDF5	 library,	 it	 has	 the	 advantage	 of	 being	 very	 light	
weight.	 	 If	we	adopt	VFD	SWMR	as	our	SWMR	implementation,	we	probably	want	to	go	this	route.		
However,	due	to	the	cost,	there	is	little	point	in	doing	so	until	then.	

Option	 2)	 is	 doable	 for	 clients	 that	 use	 the	 existing	 flush	 dependency	mechanism	 to	 express	 their	
flush	and	eviction	ordering	requirements	to	the	metadata	cache.		While	I’m	not	sure,	this	may	be	all	
of	them	at	present.		If	so,	this	option	should	be	viable.		However,	part	of	the	objective	of	VFD	SWMR	
is	to	remove	the	flush	dependency	facility	–	thus	if	we	use	it,	it	will	be	a	temporary	lash	up.	

In	 principle,	 the	 mechanism	 for	 evicting	 entire	 on	 disk	 data	 structures	 exists	 via	 the	 tagging	
mechanism,	and	 is	 tested	as	part	of	 the	EOC	(Evict	On	Close)	 feature.	 	However,	 if	memory	serves,	
EOC	is	only	implemented	for	groups	and	datasets	–	which	suggests	that	we	may	have	more	work	to	
do	for	the	general	case.			

This	 said,	 option	 3	 was	 clearly	 the	 easiest	 to	 implement,	 and	 thus	 was	 chosen	 for	 the	 initial	
implementation	–	with	the	addition	of	a	refresh	function	for	the	superblock,	which	obviously	can’t	be	
evicted.		While	it	is	heavy	weight,	we	will	retain	it	for	the	initial	production	implementation,	with	the	
addition	of	further	refresh()	functions	should	they	prove	necessary.	 	This	seems	prudent,	as	we	will	
need	to	move	to	the	refresh()	approach	if	we	commit	to	VFD	SWMR	and	remove	the	existing	solution.		
Thus	this	approach	minimizes	wasted	effort.	

3.6.3 Possible	Optimizations	

	One	 obvious	 optimization	 is	 to	 test	 possibly	 modified	 entries	 to	 see	 if	 they	 have	 actually	 been	
modified,	and	not	evict	or	refresh	them	if	they	haven’t.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	54	of	66	

We	could	do	this	by	decorating	metadata	cache	entries	with	the	checksum	of	the	on	disk	image	of	the	
entry	from	which	the	entry	was	loaded.		Since	each	metadata	cache	entry	knows	its	offset	and	length	
on	disk,	we	could	compute	the	checksum	of	the	entry	in	the	modified	metadata	page,	and	only	evict	
(or	eventually	refresh)	the	entry	if	the	checksums	don’t	match.	

This	 implies	 loading	the	page	 from	the	metadata	 file	–	but	given	that	 the	metadata	cache	contains	
one	or	more	entries	from	that	page,	the	chances	are	that	we	will	need	it	anyway.	

Another	possible	option	is	to	mark	entries	as	possibly	invalidated,	and	only	refresh	them	if	they	are	
accessed.		This	has	the	advantage	of	minimizing	reader	end	of	tick	processing,	and	delaying	metadata	
cache	entry	refresh	until	the	entry	is	needed.			

These	notions	are	listed	here	so	they	are	not	forgotten.		However,	there	are	no	plans	to	implement	
them	in	the	first	production	implementation.	

3.7 VFD	SWMR	Reader	VFD	

The	purpose	of	the	reader	VFD	in	VFD	SWMR	is	to	intercept	metadata	page	and	multi-page	metadata	
entry	 reads	 that	 appear	 in	 the	 metadata	 file	 index,	 and	 satisfy	 them	 from	 the	 metadata	 file.		
Metadata	 reads	 that	 don’t	 appear	 in	 the	 metadata	 file	 index	 and	 all	 raw	 data	 read	 requests	 are	
satisfied	from	the	underlying	HDF5	file24.			

Since	the	reader	VFD	must	open	and	access	the	metadata	file,	and	pass	un-satisfied	read	requests	to	
an	underlying	VFD,	the	following	additional	functionality	is	required:	

1. On	open,	it	must:	

a) Wait	until	the	metadata	file	exists	and	contains	a	valid	header	and	index.	

b) Load	the	initial	header	and	index	from	the	metadata	file.		Note	that	in	the	case	of	an	
existing	HDF5	file,	the	tick	0	index	will	be	empty	–	but	there	is	no	requirement	that	the	
reader	open	the	file	as	a	VFD	SWMR	reader	at	tick	0.	

c) Make	the	contents	of	the	initial	header	and	index	available	to	the	VFD	SWMR	reader	
initialization	code.	

d) Initialize	the	specified	VFD	to	access	the	target	HDF5	file,	and	instruct	it	to	open	that	
file	R/O.	

2. On	request,	it	must	obtain	the	current	tick	and	index	from	the	metadata	file.		Note	that	this	
requires	either	an	extension	to	the	VFD	interface,	or	the	addition	of	ad-hoc	functions	as	per	
the	MPIO	VFD.		As	the	VFD	SWMR	Reader	VFD	will	probably	be	sold	as	a	plugin,	an	extension	
to	the	VFD	interface	would	seem	to	be	required	eventually.25	

																																																								
24	If	a	positive	failure	is	desired	when	the	reader	falls	behind	the	writer	by	more	than	max_lag	ticks,	
we	can	require	the	VFD	SWMR	reader	VFD	to	read	the	tick	from	the	metadata	file	header	on	every	
metadata	read,	and	fail	if	the	index	it	is	using	is	more	than	max_lag	ticks	out	of	date.		Need	to	decide	
whether	this	is	worth	the	overhead	in	at	least	some	use	cases.		If	so,	make	it	optional.	
25	This	feature	of	VFD	interface	extension	is	mentioned	as	a	proposed	modification	in	the	VFD	Plugin	
RFC,	to	be	implemented	before	2020	(HDF	version	1.12).	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	55	of	66	

3. On	request,	it	must	use	the	provided	index.		Note	that	this	index	will	be	an	index	that	it	read	
from	the	metadata	file.	

Where	necessary,	the	added	functionality	is	discussed	in	greater	detail	in	the	following	subsections.	

3.7.1 Selection	and	Management	of	the	Underlying	VFD	

Eventually,	 we	 will	 need	 to	 define	 a	 mechanism	 for	 the	 VFD	 SWMR	 Reader	 VFD	 to	 receive	 and	
execute	instructions	specifying	the	underlying	VFD.	

In	 the	 initial	 proof	of	 concept	 implementation,	we	used	hard	wired	 initialization	 code	 for	 the	Sec2	
VFD	and	simply	passed	 it	 the	target	HDF5	file	name.	 	We	will	 retain	 this	until	 Jake’s	pluggable	VFD	
feature	 is	 ready,	 and	 then	 rework	 VFD	 SWMR	 reader	 VFD	 configuration	 to	 use	 his	 configuration	
protocol	developed	for	pluggable	and	stackable	VFDs.	

3.7.2 Index	Management	

As	discussed	above	in	section	3.6	(Metadata	Cache	Modifications	for	Reader),	shifts	from	an	old	index	
to	a	new	one	must	be	coordinated	with	evictions	from	the	metadata	cache	and	from	the	page	buffer	
as	well.	

To	enable	this,	the	VFD	SWMR	reader	VFD	must	be	able	to:	

1. Report	the	initial	tick,	page	size,	and	index	immediately	after	opening	the	metadata	file.	

2. Obtain	the	current	tick	and	index	from	the	metadata	file	on	request.	

3. Use	the	specified	index	when	processing	metadata	page	or	multi-page	metadata	entry	read	
requests.	

The	 internal	 representations	 of	 metadata	 file	 indexes	 are	 simply	 arrays	 of	 instances	 of	 struct	
H5FD_vfd_swmr_idx_entry_t,	 with	 the	 entries	 sorted	 in	 increasing	 hdf5_page_offset.	 	 Such	 an	
index	might	be	declared	as	follows:	

struct H5FD_vfd_swmr_idx_entry_t index[];

In	principle,	the	size	of	the	index	is	variable.		However,	for	the	initial	implementation,	the	size	of	the	
index	was	capped	by:	
(page size * pages_reserved – header_size – index_overhead26) / index_entry_size

and	thus	in	the	initial	implementation,	index	arrays	were	be	allocated	to	match	this	size.		In	the	first	
production	version,	we	will	retain	this	initial	allocation,	but	add	code	to	increase	the	size	of	the	index	
should	the	header	and	index	cease	to	be	adjacent.	

Immediately	after	the	VFD	SWMR	reader	VFD	opens	the	metadata	file,	and	the	underlying	VFD	opens	
the	HDF5	file,	the	reader	needs	to	know	the	current	tick,	the	page	size,	and	the	index.		The	following	
functions	will	support	this:	

herr_t
																																																								
26	20	bytes	in	the	index	format	given	above.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	56	of	66	

H5FD_vfd_swmr_get_page_size(uint32_t *page_size_ptr)
	

If	successful,	H5FD_vfd_swmr_get_page_size()	will	return	the	page	size	read	from	the	metadata	file	
header	in	*page_size_ptr.	

Note	that	this	function	will	only	be	called	during	the	file	open.	

The	following	function	allows	access	to	the	current	tick	and	index.	 	 It	will	be	used	both	at	file	open	
and	in	end	of	tick	processing.	

herr_t
H5FD_vfd_swmr_get_tick_and_idx(hbool_t reload_hdr_and_idx,
 uint64_t *tick_ptr,
 uint32_t index_len_ptr,
 struct H5FD_vfd_swmr_idx_entry_t index[])

	

H5FD_vfd_swmr_get_tick_and_idx() should	proceed	as	follows:	

1. If	reload_hdr_and_idx	is	FALSE,	skip	this	step.	

a. If	reload_hdr_and_idx	is	TRUE,	reload	the	header	from	the	metadata	file	and	check	to	
see	if	the	tick	has	increased	relative	to	the	tick	of	the	reader	VFD’s	local	copies	of	the	
header	and	index.			

b. If	it	has	not,	set	*tick_ptr	to	the	tick	read	and	return.		

c. If	the	tick	has	increased,	reload	the	index.		Replace	the	reader	VFD’s	local	copies	of	the	
header	and	index	with	the	new	versions	read.	

d. If	the	tick	has	decreased,	return	an	error.	

2. Set	*tick_ptr	equal	to	the	current	tick	as	specified	in	the	reader	VFD’s	local	copy	of	the	
header.	

3. Test	to	see	if	*index_len_ptr	is	less	than	the	value	of	the	Number	of	Entries	field	of	the	reader	
VFD’s	local	copy.		If	it	is,	set	*index_len_ptr	equal	to	the	Number	of	Entries	field	of	the	reader	
VFD’s	local	copy,	and	return.	

4. If	index	is	not	NULL,	copy	the	reader	VFD’s	local	copy	of	the	index	into	index[],	set	
*index_len_ptr	equal	to	the	value	of	the	Number	of	Entries	field	of	the	reader	VFD’s	local	
copy,	and	return.	

The	reload_hdr_and_idx	parameter	allows	the	reader	VFD	to	avoid	reloading	the	header	and	 index	
from	the	metadata	file	at	file	open	or	if	the	preceding	invocation	of	the	function	failed	to	return	the	
index	because	the	supplied	index	array	was	too	small.	

If	the	index	has	not	changed,	there	is	nothing	to	do,	and	thus	the	function	can	simply	advise	the	caller	
of	this	fact	and	return.	

In	the	initial	implementation,	we	let	the	reader	VFD	start	using	new	indexes	as	soon	as	they	are	read.		
However,	depending	on	how	we	implement	optimizations	to	minimize	VFD	SWMR	reader	metadata	
cache	evictions	at	tick	start,	it	may	be	necessary	to	delay	use	of	the	new	index	briefly.		If	so,	we	will	
need	a	function	to	set	the	index	in	the	reader	VFD	–	most	likely	something	along	the	lines	of:	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	57	of	66	

herr_t
H5FD_vfd_swmr_set_idx(uint64_t tick, uint32_t index_len,
 struct H5FD_vfd_swmr_idx_entry_t index[])

	

If	so,	we	will	update	this	document	accordingly.	

3.7.3 VFD	Interface	Extensions	

For	 the	 initial	proof	of	concept	 implementation,	we	create	ad-hoc	VFD	API	calls	as	per	 the	existing	
MPIO	 VFD.	 	We	 will	 retain	 these	 until	 Jake’s	 pluggable	 VFD	 feature	 is	 ready,	 and	 then	make	 the	
necessary	additions	to	the	VFD	interface.	

3.7.4 Deltas	for	NFS	

TBD	

3.7.5 Deltas	for	Object	Stores	

TBD	

3.8 File	Open	

VFD	SWMR	has	the	advantage	of	making	no	changes	to	the	HDF5	file,	or	to	the	pattern	of	metadata	
writes	to	the	HDF5	file.27		This	simplifies	matters	for	the	VFD	SWMR	writer,	as	its	file	open	processing	
is	limited	to	initializing	some	variables,	and	creating	the	metadata	file.	

File	open	for	the	VFD	SWMR	reader	is	complicated	by	the	fact	that	both	the	page	buffer	and	the	VFD	
SWMR	 reader	 VFD	 need	 to	 know	 the	 page	 size.	 	 As	 page	 size	 is	 normally	 stored	 in	 a	 superblock	
extension	message,	and	this	message	will	frequently	be	inaccessible	without	the	reader	VFD.	

This	circle	is	squared	by	including	the	page	size	in	the	metadata	file	header,	which	allows	the	reader	
VFD	to	configure	itself	without	prior	access	to	the	superblock	extension	messages.	

3.8.1 File	Open	for	the	VFD	SWMR	Writer	

On	file	create	in	VFD	SWMR	writer	mode,	the	library	must:	

• Initialize	the	VFD	SWMR	related	fields	in	the	associated	instance	of	H5F_file_t.	

• Allocate	and	initialize	an	instance	of	H5F_vfd_swmr_eot_queue_entry_t.			In	particular,	it	
must:		

o Set	vfd_swmr_writer	to	TRUE.	

o Set	tick_num	to	1.28	

																																																								
27	With	the	exception	of	the	metadata	page	/	multi-page	entry	writes	that	must	be	delayed	to	avoid	
message	from	the	future	bugs.		
28	Tick	0	is	reserved	for	use	as	a	canonical	invalid	value.		In	pages	in	the	page	buffer,	a	value	of	zero	in	
the	delay_write_until	field	is	used	to	indicate	that	the	page	(or	multi-page	metadata	entry)	may	
be	written	immediately.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	58	of	66	

o Set	end_of_tick	to	the	current	time	plus	the	tick	length.	

o Set	vfd_swmr_file	to	point	to	the	instance	of	H5F_file_t	of	the	VFD	SWMR	file.	

• Insert	the	new	instance	of	H5F_vfd_swmr_eot_queue_entry_t	into	the	EOT	queue.		If	it	is	at	
the	head	of	the	queue,	copy	its	vfd_swrm_writer	and	end_of_tick	fields	into	the	global	
variables	of	the	same	name.	

• Create	the	metadata	file	but	not	write	anything	to	it.		Note	that	it	is	an	error	if	the	metadata	
file	exists	prior	to	file	create	–	if	it	does,	it	is	possible	that	we	have	multiple	VFD	SWMR	writers	
for	the	file,	and	thus	the	operation	should	fail.	

• Create	the	log	file	if	requested.		If	it	already	exists,	it	must	be	truncated.	

On	file	open	of	an	existing	HDF5	file	in	in	VFD	SWMR	writer	mode,	the	library	must	also:	

• Write	the	header	and	an	empty	index	to	the	metadata	file	

This	is	necessary	to	allow	the	reader	immediate	access	to	the	existing	HDF5	file.	

3.8.2 File	Open	for	the	VFD	SWMR	Reader	

On	file	open	the	VFD	SWMR	reader	must:	

• Wait	until	the	metadata	file	exists	and	contains	a	header	and	an	index.	

• Read	the	header	and	index.		The	index	must	be	saved	for	comparison	with	the	next	index	
read.	

• Configure	the	underlying	VFD	(Sec2	for	now)	and	open	the	target	HDF5	file.	

• Initialize	the	VFD	SWMR	related	fields	in	the	associated	instance	of	H5F_file_t.		

• Allocate	and	initialize	an	instance	of	H5F_vfd_swmr_eot_queue_entry_t.			In	particular,	it	
must:		

o Set	vfd_swmr_writer	to	FALSE.	

o Set	tick_num	to	the	current	tick	read	from	the	metadata	file.	

o Set	end_of_tick	to	the	current	time	plus	the	tick	length.	

o Set	vfd_swmr_file	to	point	to	the	instance	of	H5F_file_t	of	the	VFD	SWMR	file.	

• Insert	the	new	instance	of	H5F_vfd_swmr_eot_queue_entry_t	into	the	EOT	queue.		If	it	is	at	
the	head	of	the	queue,	copy	its	vfd_swrm_writer	and	end_of_tick	fields	into	the	global	
variables	of	the	same	name.	

• Create	the	log	file	if	requested.		If	it	already	exists,	it	must	be	truncated.	

3.9 End	of	Tick	Functions	

The	writer	and	 reader	end	of	 tick	 functions	are	 called	when	 the	end	of	 tick	 is	detected	by	 the	API	
FUNC	ENTER	/	EXIT	macros.	 	These	functions	were	outlined	 in	section	2	above.	 	Now	that	we	have	
discussed	 the	underlying	 functionality	 required	 to	 support	 them,	we	discuss	 them	again	 in	 greater	
detail	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	59	of	66	

3.9.1 Writer	End	of	Tick	Function	

The	writer	end	of	tick	function	performs	the	following	activities:	

1. Flush	the	metadata	cache	to	the	page	buffer.		
	
Metadata	pages	are	flushed	to	the	file	as	normal	unless	they	exist	in	the	HDF5	file,	but	not	in	
the	metadata	file.		Such	entries	must	be	held	for	at	least	max_lag	tick	before	they	are	flushed	
so	as	to	provide	a	consistent	view	of	metadata	for	the	VFD	SWMR	readers.29	

	
Whether	they	are	flushed	or	not,	copies	of	all	metadata	pages	or	multi-page	metadata	entries	
modified	in	the	current	tick	must	be	retained	in	the	page	buffer	until	the	end	of	the	tick,	at	
which	point	they	may	be	flushed	and/or	evicted	as	normal	(with	the	above	proviso).			
	

2. Construct	a	list	of	all	metadata	pages	/	multi-page	metadata	entries	inserted	or	modified	in	
the	current	tick.	
	

3. Allocate	space	for	the	entries	on	this	list	in	the	metadata	file,	and	decorate	the	list	with	the	
metadata	file	offsets,	lengths,	and	checksums.	

	
4. Using	this	list,	and	the	metadata	file	index	from	the	previous	tick,	construct	an	updated	index	

for	the	metadata	file.		In	passing,	remove	entries	from	the	index	if	the	referenced	metadata	
has	been	written	to	the	HDF5	file	and	not	changed	for	at	least	max_lag	ticks	(see	above	for	
details).	

	
5. If	necessary,	allocate	space	for	the	new	index,	and	deallocate	space	for	the	old	index	as	

discussed	above.		Note	that	removing	the	index	from	the	reserved	space	directly	after	the	
metadata	file	header	is	a	one	way	trip	–	once	the	index	grows	large	enough	to	force	this,	the	
index	will	not	be	moved	back	even	if	it	shrinks.	

		
6. Write	the	modified	metadata	pages,	multi-page	metadata	entries,	metadata	file	index,	and	

header	to	the	metadata	file	as	discussed	above.	
	

7. Release	space	in	the	metadata	file	used	by	versions	of	metadata	pages	and/or	multi-page	
metadata	entries	and	possibly	indexes	that	have	been	superseded	more	than	max_lag	ticks	
ago.	

	
Add	the	space	used	by	versions	of	metadata	pages	and/or	multi-page	metadata	entries	(and	
possibly	the	index)	that	were	superseded	in	this	tick	to	the	delayed	free	space	release	linked	
list.	

	

																																																								
29	Observe	that	this	implies	that	the	page	buffer	must	have	access	to	the	metadata	file	index	from	the	
last	tick	so	that	it	can	determine	which	page	/	multi-page	entry	writes	must	be	held	for	max_lag	ticks.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	60	of	66	

8. Remove	the	H5F_vfd_swmr_eot_queue_entry_t	from	the	EOT	queue,	update	its	
end_of_tick	and	tick_num	fields,	and	re-insert	it	in	the	EOT	queue.		Update	the	
end_of_tick	and	tick_num	globals	if	the	head	of	the	EOT	queue	has	changed.		Update	the	
SWMR	related	fields	in	the	associated	instance	of	H5F_file_t.	

	

9. Resume	normal	processing.	
	

For	efficiency,	step	6	above	should	be	managed	by	a	separate	thread	–	however	we	will	not	attempt	
this	in	the	first	production	version.		Note	that	this	optimization	will	raise	dynamically	allocated	buffer	
management	issues	that	the	current	approach	avoids.	

3.9.2 Reader	End	of	Tick	Function	

The	reader	end	of	tick	function	performs	the	following	activities:	

	

1. Direct	the	reader	VFD	to	load	the	current	header	and	tick.		If	the	tick	hasn’t	changed,	do	
nothing	and	exit.	
	

2. Examine	the	new	index,	and	determine	which	pages	and/or	multi-page	entries	have	been	
modified	since	the	last	time	a	new	index	was	reloaded.		Evict	pages	from	the	page	buffer	and	
possibly	modified	entries	from	the	metadata	cache	as	described	above.	

		
3. Remove	the	H5F_vfd_swmr_eot_queue_entry_t	from	the	EOT	queue,	update	its	

end_of_tick	field	and	set	its	tick_num	field	to	the	value	returned	by	the	reader	VFD.		Re-
insert	it	in	the	EOT	queue	and	update	the	end_of_tick	and	tick_num	globals	if	the	head	of	
the	EOT	queue	has	changed.		Update	the	SWMR	related	fields	in	the	associated	instance	of	
H5F_file_t.	

	
4. Resume	normal	processing.	

	

Observe	that	we	do	not	 increment	the	tick	 if	we	don’t	see	a	new	tick	 in	the	metadata	file.	 	 In	such	
cases,	this	implies	that	we	will	query	the	metadata	file	on	each	API	call	entry.		If	this	proves	to	be	a	
problem,	we	should	allow	the	user	to	specify	a	retry	delay.	

3.10 File	Flush	and	Close	
The	major	issue	that	the	VFD	SWMR	writer	has	to	deal	with	on	file	flush	or	close	is	the	possible	need	
to	 delay	 the	 writes	 of	 some	 metadata	 pages	 or	 multi-page	 metadata	 entries.	 	 Recall	 that	 if	 a	
metadata	page	or	multipage	metadata	entry	exists	 in	 the	HDF5	file	and	 is	modified,	 it	must	not	be	
written	to	the	HDF5	file	until	it	has	appeared	in	the	metadata	file	index	for	at	least	max_lag	ticks.			

This	implies	that	on	HDF5	file	flush,	the	VFD	SWMR	writer	must:	

1. Test	to	see	if	the	page	buffer	delayed	write	list	is	empty.		If	it	is,	we	are	done.	

2. Sleep	until	the	end	of	the	current	tick.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	61	of	66	

3. Run	the	writer	end	of	tick	function	

4. Goto	1.	

Needless	to	say,	this	makes	the	H5Fflush()	call	very	expensive,	and	something	to	be	avoided	in	VFD	
SWMR	writer	mode.		Fortunately,	it	is	hard	to	see	any	reason	for	flushing	the	HDF5	file	in	this	context.	

File	close	in	VFD	SWMR	writer	mode	only	adds	slightly	to	the	overhead	of	file	flush.		Here	the	writer	
must	wait	until	the	HDF5	file	is	flushed	and	about	to	close,	and	then:	

1. Increment	the	tick	

2. Write	an	empty	index	to	the	metadata	file.		Note	that	the	header	must	be	updated	as	well.	

3. Close	and	unlink30	the	metadata	file	

While	H5Fclose()	is	also	a	potentially	expensive	operation,	we	would	not	expect	this	to	be	an	issue.	If	
it	 is	a	problem,	 the	overhead	can	be	avoided	by	creating	 the	HDF5	 file	and	not	 flushing	 it	until	 file	
close.31		

Obviously,	the	VFD	SWMR	reader	has	nothing	to	do	on	flush.		When	the	reader	closes	a	file	that	was	
opened	as	a	VFD	SWMR	reader,	the	VFD	SWMR	reader	VFD	must:	

• Relay	the	close	to	the	underlying	VFD	which	accesses	the	HDF5	file,		

• Wait	until	the	close	of	the	HDF5	file	is	complete,	and		

• Close	the	metadata	file	

Observe	that	once	the	VFD	SWMR	writer	and	all	the	readers	have	closed	the	HDF5	file,	the	metadata	
file	will	be	deleted	from	the	file	system.32			

3.11 Logging	
The	purpose	of	the	log	file	is	to	allow	us	to	easily	diagnose	issues	with	VFD	SWMR.		The	set	of	events	
to	be	logged	will	change	over	time,	but	will	likely	include:	

• Time	of	VFD	SWMR	file	open	(writer	or	reader)	

• Time	at	which	end	of	tick	is	triggered	(writer	or	reader)	

• Time	required	for	end	of	tick	processing	(writer	or	reader)	

• Size	of	metadata	file	index	at	end	of	tick	(writer	only)	

• Entries	added,	deleted,	or	modified	in	the	index	in	the	past	tick	(writer	only)	

																																																								
30	Here,	unlink	refers	to	the	UNIX	system	call	of	the	same	name.	
31	Note	that	on	other	than	POSIX	file	systems,	this	approach	may	not	work	due	to	the	possibility	that	
writes	may	not	be	strictly	ordered.		Note	also	the	hidden	assumption	that	no	entries	have	been	
removed	from	the	index.	
32	For	debugging	purposes,	we	should	have	an	option	of	retaining	the	metadata	file	after	HDF5	file	
close.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	62	of	66	

• Count	and	total	size	of	metadata	pages	and/or	multi-page	metadata	entries	added	to	the	
metadata	file	at	end	of	tick	(writer	only)	

• Count	and	total	size	of	metadata	pages	evicted	from	the	page	buffer	at	end	of	tick	(reader	
only)	

• Count	and	total	size	of	metadata	cache	entries	evicted	from	the	metadata	cache	at	end	of	
tick.	(reader	only)	

• Time	of	VFD	SWMR	file	close	(writer	or	reader)	

A	pared	down	version	of	 the	 log	 file	 should	be	 available	 for	 operational	 use	 in	determining	 a	 safe	
value	for	max_lag.	

3.11.1 Structure	of	Log	File	Entries	
While	 the	 exigencies	 of	 implementation	will	 drive	 the	 details	 of	 the	 log	 file,	 we	 can	 specify	 some	
structural	issues	now.	

3.11.1.1 Format	of	Log	File	Entries	

Each	log	file	entry	should	have	the	following	syntax:	
<log_file_entry> ::= <time_stamp> <entry_type_tag> <body> ‘\n’

<time_stamp> ::= time at which log entry was created – format TBD

<entry_type_tag> ::= “FILE_OPEN” | “FILE_CLOSE” | “END_OF_TICK” |
 “EOT_PROCESSING_TIME” | …

<body> ::= text string

As	indicated	above,	the	exact	format	of	the	time	stamp	is	TBD,	with	the	following	constraints.	

• The	overhead	of	obtaining	the	current	time	should	be	minimized.	

• If	practical,	the	time	stamp	should	offer	at	least	0.1	second	resolution.	

The	entry	type	tags	are	used	to	indicate	the	type	of	log	entry,	allowing	us	to	grep	for	series	of	entries	
of	interest.		Note	that	it	must	be	easy	to	add	new	entry	types.	

The	body	is	simply	a	text	string	provided	as	part	of	the	log	entry.	

3.11.1.2 Log	Entry	Reporting	Function	
The	VFD	SWMR	log	entry	function	should	have	a	signature	along	the	lines	of	the	following:	
void H5F_post_vfd_swrm_log_entry(H5F_file_t f; int entry_type_code, char * body);

where:	

f	 is	a	pointer	to	the	instance	of	H5F_file_t	of	the	file	that	has	been	opened	for	either	VFD	SWMR	
write	or	read.	

entry_type_code	 is	an	integer	specifying	the	type	of	the	log	message,	and	indexes	into	an	array	of	
strings	containing	the	entry	type	tags.	

body	is	an	arbitrary	string.	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	63	of	66	

If	the	target	instance	to	H5F_file_t	doesn’t	refer	to	a	file	that	is	open	for	VFD	SWMR	read	or	write,	
or	if	the	log	file	is	undefined,	the	function	is	a	NO-OP.			

Otherwise,	write	the	log	file	entry	to	the	log	file,	using	the	indicated	entry	type,	or	“UNDEFINED”	if	
the	entry_type_code	parameter	is	out	of	range.	

For	the	release	version,	there	should	be	a	switch	allowing	us	to	suppress	all	but	a	small	subset	of	the	
log	file	entries	based	on	the	entry_type_code.		However,	this	is	not	necessary	for	the	first	cut.	

4 Implementation	Details	
TBD	

5 Testing	
TODO:	Update	this	section	to	reflect	the	current	status	of	the	regression	test	code.	

In	 the	proof	of	 concept	 implementation,	we	 re-used	 the	existing	SWMR	tests	 to	avoid	 the	costs	of	
writing	a	proper	test	suite	for	VFD	SWMR.		This	was	reasonable	in	that	context,	and	made	it	possible	
to	 develop	 a	 near	 complete	 proof	 of	 concept	 version	 of	 VFD	 SWMR	 during	 phase	 1.	 	 However,	 a	
comprehensive	 test	 suite	 is	 needed	 both	 to	 validate	 the	 initial	 production	 version,	 and	 to	 verify	
continued	correct	behavior	as	the	initial	version	is	optimized,	and	as	the	existing	version	of	SWMR	is	
removed	from	the	library.	

Testing	for	VFD	SWMR	falls	into	three	categories	–	unit,	integration,	and	performance	testing.		Each	
of	these	is	discussed	in	turn	in	the	following	sections.			

5.1 Unit	Tests	

Unit	tests	are	intended	to	verify	correct	behavior	of	major	components	of	VFD	SWMR.		This	section	
will	have	to	be	expanded	in	the	future,	but	for	now	we	simply	list	the	components	and	behaviors	to	
be	verified.		Expect	this	list	to	expand.	

• New	page	buffer	

o Correct	behavior	in	non-VFD	SWMR	mode	(existing	test	suite	is	weak)	

o Correct	operation	of	tick	list	

o Correct	operation	of	delayed	write	list	

o Page	and	multi-page	metadata	entry	invalidations	work	correctly	

• Metadata	file	creation	and	update	

o Correct	free	space	management	

o Correct	management	of	index	when	index	size	exceeds	space	allocated	for	it	

o Correct	data	and	index	writes	

• VFD	SWMR	reader	VFD	

o Correct	management	of	torn	writes		

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	64	of	66	

o Correct	management	of	header	and	index	with	mismatched	tick	

o Correct	index	lookups	

o Correct	reads	and	pass	throughs	

o Correct	management	of	underlying	VFDs	

• Metadata	cache	modifications	to	support	VFD	SWMR	reader	

o Correct	behavior	of	page	index	

• EOT	Queue	

o Correct	entry	insertion	and	deletion,	and	update	of	vfd_swmr_writer	and	
end_of_tick	globals	

o End	of	tick	functions	triggered	as	expected	(do	this	via	logging	function)	

• Flush	in	VFD	SWMR	writer	mode	

o Verify	correct	delays	to	allow	delayed	write	list	to	drain.		Use	log	file	for	this?	

5.2 Integration	Tests	

Integration	testing	verifies	that	the	major	components	discussed	above	interact	with	each	other	and	
the	existing	HDF5	library	to	yield	the	desired	functionality	–	in	this	case,	full	SWMR.		In	this	case,	full	
SWMR	 implies	 that	 the	 full	 capabilities	of	 the	HDF5	 library	 function	as	expected	while	operating	 in	
VFD	SWMR	writer	mode,	and	that:	

• the	VFD	SWMR	specific	API	calls	perform	as	expected,		

• multiple	VFD	SWMR	files	perform	as	expected,	

• the	files	generated	are	continuously	readable	by	other	processes	that	have	opened	them	in	
VFD	SWMR	reader	mode,	and	

• changes	to	metadata	(and	raw	data	if	the	flush_raw_data	flag	is	set)	are	visible	to	the	reader	
in	no	more	than	3	ticks.	

Conceptually,	this	is	a	daunting	task,	as	at	least	in	principle,	it	requires	us	to	take	most	of	the	existing	
test	suite	and	refactor	 it	 so	 that	 the	writes	 take	place	on	the	VFD	SWMR	writer,	and	that	 the	data	
written	is	verified	on	both	the	VFD	SWMR	reader	and	writer.	

Fortunately,	the	architecture	of	VFD	SWMR	simplifies	this	greatly,	as	makes	no	functional	changes	on	
the	writer	 above	 the	 level	of	 the	metadata	 cache	and	page	buffer.	 	 Thus	 it	 should	be	 sufficient	 to	
exercise	 all	 the	 metadata	 cache	 clients	 on	 the	 VFD	 SWMR	 writer,	 and	 verify	 that	 the	 expected	
changes	 appear	 on	 the	 VFD	 SWMR	 readers	within	 three	 ticks.	 	 The	 existing	 create	 and	 verify	 zoo	
functions	in	the	cache	image	tests	should	provide	a	good	starting	point.			

TODO:	 Flesh	out	 the	details	 of	 the	 integration	 tests.	 	 An	 incomplete	 list	 of	 features	 to	 be	 covered	
follows:	

• VFD	SWMR	specific	API	calls	

• variable	length	data	

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	65	of	66	

• shared	object	header	messages	

• dataset	creation,	extension,	contraction,	and	deletion	

• all	dataset	types	

• all	indexing	methods	

• group	creation,	entry	insertion	and	deletion,	and	group	deletion.		Be	sure	to	cover	the	phase	
shifts	in	internal	representation	used	in	the	latest	version	groups.	

5.3 Performance	Tests	

The	objective	of	the	performance	tests	 is	to	compare	VFD	SWMR	performance	and	existing	SWMR,	
and	to	support	performance	regression	tests.		Consider	the	following	tests:	

• Create	10,000	extensible	datasets	and	round	robin	through	them	10,000	times	adding	small	
amounts	of	data	on	each	pass.		Measure	the	following	metrics:	

o Total	elapsed	time	for	both	creation	and	round	robin	phases	

o Min,	max,	and	average	time	from	data	write	to	visibility.	

o If	practical,	min,	max,	and	average	time	for	dataset	creation	and	write.	

• Create	ten	n	x	1000	x	1000	dataset	of	int32,	where	the	first	dimension	is	extensible	and	the	
chunk	size	is	1	x	1000	x	1000.		Round	robin	between	the	data	sets	writing	a	1	x	1000	x	1000	
plane	on	each	pass,	with	the	first	dimension	starting	at	0	and	increasing	by	1	on	each	pass.		
Measure	the	following	metrics:	

o Write	speed	

o Min,	max,	and	average	time	from	data	write	to	visibility.	

6 Recommendation	
Review	the	current	version	of	the	VFD	SWMR	design	and	point	out	any	issues	discovered.	

Assuming	 that	 no	 fatal	 objections	 are	 raised,	 implement	 changes	 /	 expansions	 of	 the	 initial	
implementation	to	construct	the	initial	production	version.	

Flesh	out	the	design	and	implement	the	needed	test	suite.	

Acknowledgements	
Development	of	the	initial	sketch	design	for	VFD	SWMR	was	supported	by	ECP	(further	ID?).	

Subsequent	design	work	and	implementation	supported	by	a	DOE	SBIR	grant	(further	ID?).	

Revision	History	
		

July	30,	2018:	 Version	1	circulated	for	comment.		

Sept.	16,	2020	 	 RFC	THG	2018-06-10.v5	

Page	66	of	66	

August	3,	2019:	 Version	2	updated	in	preparation	for	phase	2	of	the	SBIR.			Major	updates	
include:	

• Added	design	details	for	supporting	multiple	files	opened	in	VFD	
(reader	or	writer)	mode.		

• Added	enable	/	disable	end	of	tick	API	calls	

• Added	design	overview	of	the	new	page	buffer.	

• Updated	metadata	file	index	management	to	support	floating	
indexes	when	index	size	exceed	metadata	file	allocated	for	it,	and	
removal	of	entries	from	the	metadata	file	index	if	their	referents	
have	been	written	to	the	HDF5	file	and	not	changes	for	more	than	
max_lag	ticks.	

• Corrected	discussion	of	flush	and	close	in	VFD	SWMR	writer	mode.	

• Wrote	first	cut	of	testing	section.	

• Addressed	reviewer	comments.	

September	2,	2019	 Version	3	circulated	for	external	review	and	comment.	

October	27,	2019	 Corrected	error	in	pseudo	code	in	section	3.3.2	

Version	4	circulated	for	external	review	and	comment.	

September	16,	2020	 Incomplete	updates	in	preparation	for	the	Friendly	User	release.		In	
particular,	Section	3	has	become	dated,	and	should	be	brought	into	
conformance	with	the	code	prior	to	production	release.	

	 	

	

