
1

HDF5 C++ User’s Notes

This User’s Note provides an overview of the structure, the availability, and the limitations of the
C++ API of HDF5. It lists the classes and member functions included in the API and provides
some examples of their applications. The C++ API is itself under development and does not have a
complete User’s Guide or Reference Manual. In addition, it is assumed that the reader has
knowledge of the HDF5 file format and its components. For a complete User’s Guide and
Reference Manual of HDF5, please refer to the HDF home page at http://hdf.ncsa.uiuc.edu. At this
time, to effectively utilize the C++ API, please refer to the C++ Interface, off of the Reference
Manual of HDF5 page.

The User’s Note includes an Overview section that gives the overall structure of the API.
Following the Overview section is the Class Description section that briefly describes the classes
and the functions they provide. This section also lists the limitations of the current version and
describes plans for improvement/completion of some of the classes/functions. The final section,
Examples, describes the examples that are provided with the source code distribution.

1. Overview

The HDF5 C++ API consists of the classes listed in the table below. All classes are included in
a namespace called H5.

Class Description
H5Library provides general-purpose library functions
IdComponent is a base class that manage HDF5 object identifier
RefCounter provides reference counting mechanism
CommonFG is a base class for commonalities of H5File and Group
H5File provides functions that access an HDF5 file
H5Object base class for commonalties of all HDF5 objects which

include groups, datasets, datatypes, and attributes
Group is an H5Object; provides functions that access HDF5

groups
AbstractDs base class for commonalities of DataSet and Attribute
DataSet provides functions that access a dataset
Attribute provides functions that access an attribute
DataType is an H5Object; provides functions that access a general

datatype, which can be an enumeration datatype, compound
datatype, or atomic datatype

EnumType is a DataType; provides functions that access an
enumeration datatype

CompType is a DataType; provides functions that access a compound
datatype

AtomType is a DataType; base class for commonalties of HDF5
predefined provides functions that access an enumeration
datatype

PredType is an AtomType; provides the constant PredType objects
for all the predefined datatype provided by the HDF5
library

IntType is an AtomType; provides functions that access an integer
datatype

FloatType is an AtomType; provides functions that access an

2

floating-point datatype
StrType is an AtomType; provides functions that access an string

datatype
DataSpace provides functions that access the HDF5 dataspace
PropList provides common accesses to the property lists
DSetCreatPropList is a PropList; provides accesses to a dataset creation

property list
DSetMemXferPropList is a PropList; provides accesses to a dataset memory and

transfer property list
FileAccPropList is a PropList; provides accesses to a file access

property list
FileCreatPropList is a PropList; provides accesses to a file creation

property list
Exception provides the mechanism for handling errors returned by

the C HDF5 library; it has several subclasses for
specific exceptions

Figure 1 shows the hierarchical relationship between the classes.

3

H5Library

GroupAbstractDs

DataSet Attribute

DataType

AtomTypeEnumType

IntType

CompType

FloatType StrTypePredTypeFileAccPropList DSetCreatPropList DSetMemXferPropListFileCreatPropList

Exception IdComponent

H5File H5Object DataSpacePropList

RefCounter

Figure 1. Class hierarchy of HDF5 C++ API

4

The figure shows that all the classes in the API, except H5Library and Exception, inherit from the
class IdComponent. The elements that are represented by these classes are identified by an
identifier that is defined and manipulated by the HDF5 library. IdComponent relieves the C++ API
users from the concern about properly managing the identifiers of any HDF5 objects. The figure
also illustrates the inheritance relationship between the subclasses of IdComponent.

H5Library is a stand-alone class to provide accesses to the library as a whole. Although Exception
is also showed as having no inheritance relationship, in fact, it has many subclasses. These
subclasses are for the specific exceptions and have no additional members. Thus, they are listed in
the section about Exception class but not shown in the diagram. Another aspect that is not shown
in the figure is that the classes H5File and Group also inherit from another base class, CommonFG,
because of their commonality that does not exist in other subclasses of IdComponent.

The classes of the API and their members are described in the subsequent sections.

2. Classes Description
This section briefly describes the classes that form the C++ API of HDF5. Each subsection
below gives a brief description of a class and provides a table that lists the public services that
the class provides. Where necessary, the subsection also indicates the limitations of the current
implementation of the described class and/or plans for its improvement or completion.

2.1. H5Library
This class provides some services that are used to access the HDF5 library. It is
independent with other classes in the API. Its member functions are static so there is no
need for an instance of this class to exist to use them.

Member Function Purpose
open Initializes the HDF5 library
close Flushes all data to disk and clean up resources
dontAtExit Instructs HDF5 C library not to install atexit clean up

routine; this is helpful when having global objects in the
application because the clean up routine might be executed
before the global destructors and prematurely close any
needed HDF5 components

getLibVersion Retrieves the HDF library release numbers
checkVersion Verifies that the arguments match the version numbers

compiled into the library

2.2. Exception
This class provides services to support user exception handling. All HDF5 C++ API calls
that throw exceptions provide an instance of a class derived from Exception as a parameter.
Thus the user can extract runtime information from it through the use of a corresponding
catch procedure. Currently, Exception is used to derive the subclasses that support specific
types of HDF5 errors that are generated by the C APIs, including H5F, H5G, H5S, H5T,
H5P, H5D, and H5A. All of the functionality provided by these subclasses is inherited
from Exception. These subclasses are listed below:
� FileIException for errors generated by the C API H5F
� GroupIException for errors generated by the C API H5G

5

� DataSpaceIException for errors generated by the C API H5S
� DataTypeIException for errors generated by the C API H5T
� PropListIException for errors generated by the C API H5P
� DataSetIException for errors generated by the C API H5D
� AttributeIException for errors generated by the C API H5A
� LibraryIException for errors generated by the C API H5

The following table lists the services provided by Exception.

Member Function Purpose
Exception Default constructor
Exception Constructor that stores a given detailed message
Exception Copy constructor
getMajorString Returns the character string that describes an error

specified by a major error number
getMinorString Returns the minor error string of the exception
getFuncName Returns the character string that describes an error

specified by a minor error number
getFileName Returns the name of the file in which the error occurs
getDescString Returns the description string provided by the HDF5

library described the nature of the error
getLine Returns the line number where the error occurs
getDetailMesg Returns the user’s detailed message annotating the error
setAutoPrint Turns on the automatic error printing
dontPrint Turns off the automatic error printing
getAutoPrint Retrieves the current settings for the automatic error

stack traversal function and its data
clearErrorStack Clears the error stack for the current thread
walkErrorStack Walks the error stack for the current thread, calling the

specified function
walkDefErrorStack Default error stack traversal callback function that

prints error messages to the specified output stream
printError Displays the error information in the default manner -

Note: this function will be made virtual in the next
release

~Exception missing destructor; will be virtual

2.3. IdComponent
This class provides a mean to ensure proper use of and to manage reference counting for an
identifier of any HDF5 object. Hence, all HDF5 component classes benefit from this class.
IdComponent uses RefCounter for its reference counting mechanism.

Member Function Purpose
setId Sets the identifier of this instance to a new value
getId Gets the identifier of the instance, i.e. the current HDF5

object identifier
incRefCount Increment reference counter
decRefCount Decrement reference counter
getCounter Gets the reference counter to this identifier
noReference Determines whether there is no more reference to this

identifier; note: the reference counter is decremented
before checking

6

reset Resets this instance by deleting its reference counter of
the old identifier; this instance can then be used for
another HDF5 identifier

IdComponent Constructor that takes an HDF5 identifier
IdComponent Copy constructor
~IdComponent Virtual destructor - has a bug

2.4. RefCounter
RefCounter provides a reference counting mechanism. IdComponent uses this class to keep
track of the number of copies of an HDF5 object so that the object’s identifier can be
properly released.

Member Function Purpose
getCounter Returns the value of the counter

noReference Determines whether the counter is back to 0; note: the
counter is decremented before checking

increment Increment the counter
decrement Decrement the counter
RefCounter Default constructor
~RefCounter Destructor - will be virtual

2.5. CommonFG
CommonFG means commonality between file and group. This class is a protocol class. Its
existence is simply to provide the common services that are provided by H5File and Group.
The file or group in the context of this class is referred to as ’location’.

Member Function Purpose
createGroup Creates a new group at this location
openGroup Opens an existing group at this location
createDataSet Creates a new dataset at this location
openDataSet Opens a existing dataset at this location
openDataType Opens a named generic datatype at this location
openEnumType Opens a named enumeration datatype at this location
openCompType Opens a named compound datatype at this location
openIntType Opens a named integer datatype at this location
openFloatType Opens a named floating-point datatype at this location
openStrType Opens a named string datatype at this location
link Creates a link of the specified type from a new name to the

current name; both names are interpreted relative to this
location.

unlink Removes the specified name at this location
move Renames an object within this location
getObjinfo Retrieves information about an object, given its name and

link, at this location
getLinkval Returns the name of the HDF5 object that the given symbolic

link points to
setComment Sets the comment for an object, specified by its name, in

this location
getComment Gets the comment of an object, specified by its name, in

this location
mount Mounts a file, specified by its name, to this location
unmount Unmounts a file, specified by its name, from this location

7

throwException pure virtual - implemented by H5File and Group so that each
class can throw the appropriate exception when an error
occurs within CommonFG

CommonFG Default constructor
~CommonFG Virtual default constructor

2.6. H5File
This class uses a number of functions, which are publicly provided by class CommonFG, to
access HDF5 files. In the context of these functions, a file is considered a location. Refer
to Section 2.5 for the mentioned functions. In addition, H5File provides some functions
that are specific to HDF5 files and not applicable to group. These functions are listed in the
following table.

Member Function Purpose
H5File Creates or opens an HDF5 file
H5File Copy constructor
isHdf5 Determines if a file, specified by its name, is in HDF5

format
reopen Reopens this file
getCreatePlist Gets the creation property list of this file
getAccessPlist Gets the access property list of this file
throwException throws FileIException
~H5File Virtual destructor

2.7. H5Object
This class provides services that are used to access an HDF5 object, which can be a group, a
dataset, an attribute, or a named datatype.

Member Function Purpose
H5Object Copy constructor
flush Flushes all buffers associated with this object, which

belongs to a file, to disk
createAttribute Creates an attribute for this object, which can be a

group, a dataset, or a named datatype
openAttribute Opens an attribute for this object given the attribute’s

name or index; the object can be either a group, a
dataset, or a named datatype

iterateAttrs Iterate user’s function over the attributes of this object
getNumAttrs Determines the number of attributes attached to this

object
removeAttr Removes the named attribute from this object
~H5Object Virtual destructor

8

2.8. Group
Group represents the HDF5 group. As with H5File, this class inherits from CommonFG
those functions that access an HDF5 group, which is called location in that context. It also
inherits from another base class, H5Object, those characteristics of an HDF5 object,
namely, the functions that access HDF5 attributes.

Member Function Purpose
Group Default constructor
Group Copy constructor
Group Constructor that takes an HDF5 identifier
iterateElems Iterates over the elements of this group - C++ style

version not yet implemented
throwException throw GroupIException

Default constructor and copy constructor
~Group Virtual destructor

2.9. AbstractDs
AbstractDs is from the term abstract dataset. Because an HDF5 attribute is similar to a
dataset, this abstract dataset class is introduced to provide their common functionality.
AbstractDs is an abstract base class, from which the classes Attribute and DataSet are
derived. This class also publicily inherits from H5Object and passes down the services that
H5Object provides.

Member Function Purpose
AbstractDs Copy constructor
getSpace Gets the dataspace of this dataset - pure virtual
getTypeClass Gets the class of the datatype that is used by this dataset
getDataType Gets the generic datatype of a dataset or an attribute.
getEnumType Gets the enumeration datatype of a dataset or an attribute.
getCompType Gets the compound datatype of a dataset or an attribute.
getIntType Gets the integer datatype of a dataset or an attribute.
getFloatType Gets the floating-point datatype of a dataset or an

attribute.
getStrType Gets the string datatype of a dataset or an attribute.
~AbstractDs Virtual destructor

Notes on implementation:
2.9.1. getSpace is a pure virtual function. DataSet and Attribute provide their own

implementation.
2.9.2. In the next version of the C++ API, the DataSet and Attribute member functions

read and write might be overloaded and moved up into this base class.

9

2.10. DataSet
This class provides the services that are used to access an HDF5 dataset.

Member Function Purpose
DataSet Default constructor
DataSet Copy constructor
getCreatePlist Gets the creation property list of this dataset
getStorageSize Gets the storage size of this dataset
read Reads the data of this dataset and stores it in the

provided buffer. The memory and file dataspaces and the
transferring property list can be defaults.

write Writes the buffered data to this dataset. The memory and
file dataspaces and the transferring property list can be
defaults

iterateElems Iterates over all selected elements in a dataspace - C++
style version not yet implemented

extend Extends the dataset with unlimited dimension
~DataSet Virtual destructor

Notes on implementation:
2.10.1. read and write may be implemented using operators >> and << in the next

version of the C++ API.
2.10.2. iterateElems is not yet implemented. It may be moved to class DataSpace

since it is iterating over elements that are in a dataspace.

2.11. Attribute
This class provides the services that are used to access an HDF5 object’s attribute.

Member Function Purpose
Attribute Constructor that takes an HDF5 identifier
Attribute Copy constructor
read Reads data from this attribute
write Writes data to this attribute
getName Gets the name of this attribute
~Attribute Virtual destructor

Notes on implementation:
2.11.1. read and write may be implemented using operators >> and << in the next

version of the C++ API.

2.12. DataType
This class provides the services that are used to access an HDF5 generic datatype. Several
subclasses are derived from DataType.

Member Function Purpose
DataType Default constructor
DataType Copy constructor
DataType Constructor that takes an existing identifier
DataType Constructor that takes a datatype’s class and size
copy Copies an existing datatype to this datatype instance

10

getClass Returns the datatype class identifier
commit Commits a transient datatype to a file, creating a new

named datatype
committed Determines whether a datatype is a named type or a

transient type
find Finds a conversion function that can handle the conversion

this datatype to the given datatype, dest.
convert Converts data from between specified datatypes
setOverflow Sets the overflow handler to a specified function
getOverflow Returns a pointer to the current global overflow function
lock Locks a datatype
getSize Returns the size of a datatype
getSuper Returns the base datatype from which a datatype is derived

- not completely implemented yet
registerFunc Registers a conversion function
unregister Removes a conversion function from all conversion paths
setTag Tags an opaque datatype
getTag Gets the tag associated with an opaque datatype
~DataType Virtual destructor

Notes on implementation:
2.12.1. Following is the structure of the subclasses of DataType. Those that are in italic

face are not yet implemented.

DataType
CompType: is a compound datatype.
EnumType: is an enumeration datatype.
AtomType: is an atomic datatype and has the following subclasses.

PredType: is a predefined datatype for integer, float, and string. Note that this
class may need inherit directly from DataType; more study is necessary.

Reference: is predefined datetype for object and region references and is not
yet implemented. Note that once this class is implemented an intermediate
base class might be introduced for PredType and Reference.

IntType: is a user-defined integer datatype.
FloatType: is a user-defined floating-point datatype.
StrType: is a user-defined string datatype.
BitFieldType: is a user-defined bitfield datatype and is not yet implemented.
OpaqueType: is a user-defined opaque datatype and is not yet implemented.

2.12.2. The function getSuper currently only returns the generic datatype. To get the
specific datatype, the user must cast it. In future versions, its implementation will be
improved.

11

2.13. EnumType
This class provides the services that are used to access an enumeration datatype. It is
derived from DataType.

Member Function Purpose
EnumType Default constructor
EnumType Copy constructor
EnumType Creates a new enumeration datatype based on a native signed

integer type, whose size is given by size
EnumType Gets the enumeration datatype of the specified dataset
EnumType Creates a new enum datatype based on an integer datatype
insert Inserts a new member to this enumeration type
nameOf Returns the symbol name corresponding to a specified member

of this enumeration datatype
valueOf Returns the value corresponding to a specified member of

this enumeration datatype
getMemberValue Returns the value of an enumeration datatype member
~EnumType Virtual destructor

2.14. CompType
This class provides the services that are used to access a compound datatype. It is derived
from DataType.

Member Function Purpose
CompType Default constructor
CompType Copy constructor
CompType Creates a new compound datatype given its size
CompType Gets the compound datatype of the specified dataset
getNmembers Gets the number of members in this compound datatype
getMemberName Gets the name of a member of this compound datatype
getMemberOffset Gets the offset of a member of this compound datatype
getMemberDims Gets the dimensionality of the specified member
getMemberClass Gets the type class identifier of the specified member
getMemberDataType Gets the generic datatype of the specified member in

this compound datatype; the subsequent functions are for
the specific sup-types.

getMemberEnumType Gets the enumeration datatype of a dataset or an
attribute.

getMemberCompType Gets the compound datatype of a dataset or an attribute.
getMemberIntType Gets the integer datatype of a dataset or an attribute.
getMemberFloatTyp
e

Gets the floating-point datatype of a dataset or an
attribute.

getMemberStrType Gets the string datatype of a dataset or an attribute.
insertMember Adds a new member to this compound datatype; the ability

to insert an array is removed from this member function
pack Recursively removes padding from within this compound

datatype

12

2.15. AtomType
This class is derived from DataType and, in addition, provides common services to access
predefined types, integer type, floating-point type, and string type.

Member Function Purpose
AtomType Copy constructor
setSize Sets the total size for an atomic datatype
getOrder Returns the byte order of an atomic datatype
setOrder Sets the byte ordering of an atomic datatype
getPrecision Returns the precision of an atomic datatype
setPrecision Sets the precision of an atomic datatype
getOffset Retrieves the bit offset of the first significant bit
setOffset Sets the bit offset of the first significant bit
getPad temporarily removed from this class
setPad temporarily removed from this class
~AtomType Virtual destructor

2.16. PredType
This class contains the definition of objects that correspond to the predefined datatypes
defined in the HDF5 library. Refer to the header file PredType.h for specific names.

2.17. IntType
This class provides the services used to access the user-defined integer datatype. It is
derived from AtomType.

Member Function Purpose
IntType Default constructor
IntType Copy constructor
IntType Creates an IntType using a predefined integer type
IntType Gets the integer datatype of the specified dataset
getSign Returns the sign type for an integer type
setSign Sets the sign property for an integer type
~IntType Virtual destructor

2.18. FloatType
This class provides the services used to access the user-defined floating-point datatype. It is
derived from AtomType.

Member Function Purpose
FloatType Default constructor
FloatType Copy constructor
FloatType Creates a new FloatType using a predefined floating-point

type
FloatType Gets the floating-point datatype of the specified dataset
getFields Retrieves floating point datatype bit field information
setFields Sets locations and sizes of floating point bit fields
getEbias Retrieves the exponent bias of a floating-point type
setEbias Sets the exponent bias of a floating-point type
getNorm Returns the mantissa normalization of a floating-point

datatype
setNorm Sets the mantissa normalization of a floating-point

13

datatype
getInpad Retrieves the internal padding type for unused bits in

floating-point datatypes
setInpad Fills unused internal floating point bits
~FloatType Virtual destructor

2.19. StrType
This class provides the services used to access the user-defined string datatype. It is derived
from AtomType.

Member Function Purpose
StrType Default constructor
StrType Copy constructor
StrType Creates a new StrType datatype using a predefined string

type
StrType Gets the string datatype of the specified dataset
getCset Returns the character set type of this string datatype
setCset Sets character set to be used
getStrpad Retrieves the string padding method for this string

datatype
setStrpad Defines the storage mechanism for character strings
~StrType Virtual destructor

2.20. DataSpace
This class provides services that are used to access an HDF5 dataspace. It inherits the
HDF5 object identifier management from the base class IdComponent.

Member Function Purpose
DataSpace Default constructor
DataSpace Copy constructor
DataSpace Creates a dataspace object given the space type
DataSpace Creates a simple dataspace
copy Makes copy of an existing dataspace instance
isSimple Determines if this dataspace is a simple one
offsetSimple Sets the offset of this simple dataspace
getSimpleExtentDims Retrieves dataspace dimension size and maximum

size
getSimpleExtentNdims Gets the dimensionality of this dataspace
getSimpleExtentNpoints Gets the number of elements in this dataspace
getSimpleExtentType Gets the current class of this dataspace
extentCopy Copies the extent of this dataspace
setExtentSimple Sets or resets the size of this dataspace
setExtentNone Removes the extent from this dataspace
getSelectNpoints Gets the number of elements in this dataspace

selection
getSelectHyperNblocks Get number of hyperslab blocks
getSelectHyperBlocklist Gets the list of hyperslab blocks currently

selected
getSelectElemNpoints Gets the number of element points in the current

selection
getSelectElemPointlist Retrieves the list of element points currently

selected
getSelectBounds Gets the bounding box containing the current

14

selection
selectElements Selects array elements to be included in the

selection
selectAll Selects the entire dataspace
selectNone Resets the selection region to include no elements
selectValid Verifies that the selection is within the extent

of the dataspace
selectHyperslab Selects a hyperslab region to add to the current

selected region

Notes on implementation:
2.20.1. In the next version of the C++ API, this class may be broken into a class hierarchy

that reflects the nature of the dataspace.

2.21. PropList
This class provides the services used to access the HDF5 file and data set property lists. It
inherits the HDF5 object identifier management from the base class IdComponent.

Member Function Purpose
PropList Default constructor
PropList Copy constructor
PropList Creates a property list given its type
copy Makes a copy of the given property list
getClass Gets the type of the property list, i.e, H5P_FILE_CREATE,

H5P_FILE_ACCESS, etc…
~PropList Virtual destructor

2.22. FileCreatPropList
This class is derived from class PropList. It also provides the services specifically used to
access the HDF5 file creation property lists.

Member Function Purpose
FileCreatPropList Default constructor
FileCreatPropList Copy constructor
FileCreatPropList Creates a file creation property list
getVersion Retrieves version information for various parts of a

file.
setUserblock Sets the userblock size field of a file creation

property list.
getUserblock Gets the size of a user block in this file creation

property list.
setSizes Sets file size-of addresses and sizes.
getSizes Retrieves the size-of address and size quantities stored

in a file according to this file creation property list.
setSymk Sets the size of parameters used to control the symbol

table nodes.
setIstorek Sets the size of parameter used to control the B-trees

for indexing chunked datasets.
getIstorek Returns the 1/2 rank of an indexed storage B-tree.
~FileCreatPropList Virtual destructor

15

2.23. FileAccPropList
This class is derived from class PropList. It also provides the services specifically used to
access the HDF5 file access property lists.

Member Function Purpose
FileAccPropList Default constructor
FileAccPropList Copy constructor
FileAccPropList Creates a file access property list
setCache Sets the meta data cache and raw data chunk cache

parameters.
getCache Retrieves maximum sizes of data caches and the preemption

policy value.
setAlignment Sets alignment properties of this file access property

list.
getAlignment Retrieves the current settings for alignment properties

from this file access property list.
setGcReferences Sets garbage collecting references flag
getGcReferences Returns garbage collecting references setting.
~FileAccPropList Virtual destructor
setStdio The following member functions were removed since parallel

mode is not supported by C++ API
getStdio removed
getDriver removed
setSec2 removed
getSec2 removed
setCore removed
getCore removed
setFamily removed
getFamily removed
setSplit removed
getSplit removed

2.24. DSetCreatPropList
This class is derived from class PropList. It also provides the services specifically used to
access the HDF5 dataset creation property lists.

Member Function Purpose
DSetCreatPropList Default constructor
DSetCreatPropList Copy constructor
DSetCreatPropList Creates a dataset creation property list
setLayout Sets the type of storage used to store the raw data for

the dataset that uses this property list
getLayout Gets the layout of the raw data storage of the data

that uses this property list
setChunk Sets the size of the chunks used to store a chunked

layout dataset.
getChunk Retrieves the size of the chunks used to store a

chunked layout dataset.
setDeflate Sets compression method and compression level
setFillValue Sets a dataset fill value
getFillValue Retrieves a dataset fill value
setFilter Adds a filter to the filter pipeline
getNfilters Returns the number of filters in the pipeline

16

getFilter Returns information about a filter in a pipeline
setExternal Adds an external file to the list of external files
getExternalCount Returns the number of external files for a dataset
getExternal Returns information about an external file
~DSetCreatPropList Virtual destructor

2.25. DSetMemXferPropList
This class is derived from class PropList. It also provides the services specifically used to
access the HDF5 data set memory and transfer property lists.

Member Function Purpose
DSetMemXferPropList Default constructor
DSetMemXferPropList Copy constructor
DSetMemXferPropList Creates a dataset memory and transfer property list
setBuffer Sets type conversion and background buffers
getBuffer Reads buffer settings
setPreserve Sets the dataset transfer property list status to TRUE

or FALSE
getPreserve Checks status of the dataset transfer property list
setHyperCache Indicates whether to cache hyperslab blocks during I/O
getHyperCache Returns information regarding the caching of hyperslab

blocks during I/O
setBtreeRatios Sets B-tree split ratios for a dataset transfer

property list
getBtreeRatios Gets B-tree split ratios for a dataset transfer

property list
setVlenMemManager Sets the memory manager for variable-length datatype

allocation in H5Dread and H5Dvlen_reclaim
getVlenMemManager Gets the memory manager for variable-length datatype

allocation in H5Dread and H5Tvlen_reclaim
~DSetMemXferPropList Virtual destructor

17

3. Examples
The following examples show the application of some of the available functionality:

- create.cpp: writes a dataset to an HDF5 file. Specific functions used include:
◊ constructors of H5File, DataSpace, and IntType
◊ H5File::createDataSet to create a new dataset in this file
◊ DataSet::write
◊ DataType::setOrder
◊ exception handlings

- readdata.cpp: obtains dataset information from an HDF5 file and reads selected data from
the file. Specific functions, that are not in the previous example, include:
◊ H5File::openDataSet to open an existing dataset that belongs to this file
◊ DataSet::getTypeClass to get the type class identifier of the datatype of this dataset to

determine what type is to be expected, in this case, it is H5T_INTEGER, i.e. the
datatype is an integer

◊ constructor an empty IntType instance after knowing what the expecting type is; this
IntType object is passed into the subsequent function

◊ DataSet::getType to retrieve the dataset’s datatype which is an integer
◊ IntType::getOrder
◊ IntType::getSize
◊ DataSet::getSpace
◊ DataSpace::getSimpleExtentNdims
◊ DataSpace::getSimpleExtentDims
◊ DataSpace::selectHyperslab
◊ DataSet::read

- writedata.cpp: writes selected data to an HDF5 file. Specific functions that are not in the
previous examples include:
◊ DataSpace::selectNone
◊ DataSpace::selectElements

- compound.cpp: creates a compound datatype, write an array, which has the compound
datatype to the file, and read back fields’ subsets. Specific functions that are not in the
previous examples include:
◊ constructor CompType
◊ CompType::insertMember to insert some members into the compound datatype
◊ CompType::getMemberClass to get the type class identifier to determine what type is to

be expected, in this case, it is H5T_FLOAT, i.e. the member datatype is floating-point
◊ constructor an empty FloatType instance after knowing what the expecting type is; this

FloatType object is passed into the subsequent function.
◊ CompType::getMemberType to retrieve the specific datatype, FloatType
◊ FloatType::getNorm to get the mantissa normalization of the floating-point datatype

18

- extend_ds.cpp: works with extendible dataset. Specific functions that are not in the
previous examples include:
◊ constructor of PropList
◊ DsetCreatPropList::setChunk
◊ DataSet::extend

- chunks.cpp: reads data from a chunked dataset. Specific functions that are not in the
previous examples include:
◊ DataSet::getSpace to get the dataspace in the file of this dataset
◊ DataSet::getCreatePlist to get the dataset creation property list
◊ DsetCreatPropList::getLayout
◊ DsetCreatPropList::getChunk

- h5group.cpp: creates and . Specific functions that are not in the previous examples include:
◊ H5File::createGroup to get a group in the file
◊ constructor of DsetCreatPropList
◊ DsetCreatPropList::setDeflate
◊ H5File::openGroup to open a group in the file
◊ Group::openDataSet to open a dataset in the group
◊ H5File::link to create a hard link to a group
◊ H5File::unlink to remove the hard link

hdfhelp@ncsa.uiuc.edu

Last modified: 19 December 2000

