/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* * Serial HDF5 Performance Testing Code * -------------------------------------- * * Portable code to test performance on the different platforms we support. * This is what the report should look like: * * nprocs = Max#Procs * IO API = POSIXIO * # Files = 1, # of dsets = 1000, Elements per dset = 37000 * Write Results = x MB/s * Read Results = x MB/s * # Files = 1, # of dsets = 3000, Elements per dset = 37000 * Write Results = x MB/s * Read Results = x MB/s * * . . . * * * IO API = HDF5 * # Files = 1, # of dsets = 1000, Elements per dset = 37000 * Write Results = x MB/s * Read Results = x MB/s * # Files = 1, # of dsets = 3000, Elements per dset = 37000 * Write Results = x MB/s * Read Results = x MB/s * * . . . * * * . . . * */ /* system header files */ #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include "hdf5.h" /* our header files */ #include "sio_perf.h" /* useful macros */ #define TAB_SPACE 4 #define ONE_KB 1024 #define ONE_MB (ONE_KB * ONE_KB) #define ONE_GB (ONE_MB * ONE_KB) #define SIO_POSIX 0x1 #define SIO_HDF5 0x4 /* report 0.0 in case t is zero too */ #define MB_PER_SEC(bytes,t) (((t)==0.0) ? 0.0 : ((((double)bytes) / ONE_MB) / (t))) #ifndef TRUE #define TRUE 1 #endif /* TRUE */ #ifndef FALSE #define FALSE (!TRUE) #endif /* FALSE */ /* global variables */ FILE *output; /* output file */ int sio_debug_level = 0;/* The debug level: * 0 - Off * 1 - Minimal * 2 - Some more * 3 - Maximal * 4 - Maximal & then some */ /* local variables */ static const char *progname = "h5perf_serial"; /* * Command-line options: The user can specify short or long-named * parameters. The long-named ones can be partially spelled. When * adding more, make sure that they don't clash with each other. */ /* * It seems that only the options that accept additional information * such as dataset size (-e) require the colon next to it. */ #if 1 static const char *s_opts = "a:A:B:c:Cd:D:e:F:ghi:Imno:p:P:r:stT:v:wx:X:"; #else static const char *s_opts = "a:A:bB:c:Cd:D:e:F:ghi:Imno:p:P:r:stT:wx:X:"; #endif /* 1 */ static struct long_options l_opts[] = { { "align", require_arg, 'a' }, { "alig", require_arg, 'a' }, { "ali", require_arg, 'a' }, { "al", require_arg, 'a' }, { "api", require_arg, 'A' }, { "ap", require_arg, 'A' }, #if 0 /* a sighting of the elusive binary option */ { "binary", no_arg, 'b' }, { "binar", no_arg, 'b' }, { "bina", no_arg, 'b' }, { "bin", no_arg, 'b' }, { "bi", no_arg, 'b' }, #endif /* 0 */ { "block-size", require_arg, 'B' }, { "block-siz", require_arg, 'B' }, { "block-si", require_arg, 'B' }, { "block-s", require_arg, 'B' }, { "block-", require_arg, 'B' }, { "block", require_arg, 'B' }, { "bloc", require_arg, 'B' }, { "blo", require_arg, 'B' }, { "bl", require_arg, 'B' }, { "chunk", no_arg, 'c' }, { "chun", no_arg, 'c' }, { "chu", no_arg, 'c' }, { "ch", no_arg, 'c' }, { "collective", no_arg, 'C' }, { "collectiv", no_arg, 'C' }, { "collecti", no_arg, 'C' }, { "collect", no_arg, 'C' }, { "collec", no_arg, 'C' }, { "colle", no_arg, 'C' }, { "coll", no_arg, 'C' }, { "col", no_arg, 'C' }, { "co", no_arg, 'C' }, { "debug", require_arg, 'D' }, { "debu", require_arg, 'D' }, { "deb", require_arg, 'D' }, { "de", require_arg, 'D' }, { "file-driver", require_arg, 'v' }, { "file-drive", require_arg, 'v' }, { "file-driv", require_arg, 'v' }, { "file-dri", require_arg, 'v' }, { "file-dr", require_arg, 'v' }, { "file-d", require_arg, 'v' }, { "file-", require_arg, 'v' }, { "file", require_arg, 'v' }, { "fil", require_arg, 'v' }, { "fi", require_arg, 'v' }, { "geometry", no_arg, 'g' }, { "geometr", no_arg, 'g' }, { "geomet", no_arg, 'g' }, { "geome", no_arg, 'g' }, { "geom", no_arg, 'g' }, { "geo", no_arg, 'g' }, { "ge", no_arg, 'g' }, { "help", no_arg, 'h' }, { "hel", no_arg, 'h' }, { "he", no_arg, 'h' }, { "interleaved", require_arg, 'I' }, { "interleave", require_arg, 'I' }, { "interleav", require_arg, 'I' }, { "interlea", require_arg, 'I' }, { "interle", require_arg, 'I' }, { "interl", require_arg, 'I' }, { "inter", require_arg, 'I' }, { "inte", require_arg, 'I' }, { "int", require_arg, 'I' }, { "in", require_arg, 'I' }, { "max-num-processes", require_arg, 'P' }, { "max-num-processe", require_arg, 'P' }, { "max-num-process", require_arg, 'P' }, { "max-num-proces", require_arg, 'P' }, { "max-num-proce", require_arg, 'P' }, { "max-num-proc", require_arg, 'P' }, { "max-num-pro", require_arg, 'P' }, { "max-num-pr", require_arg, 'P' }, { "max-num-p", require_arg, 'P' }, { "min-num-processes", require_arg, 'p' }, { "min-num-processe", require_arg, 'p' }, { "min-num-process", require_arg, 'p' }, { "min-num-proces", require_arg, 'p' }, { "min-num-proce", require_arg, 'p' }, { "min-num-proc", require_arg, 'p' }, { "min-num-pro", require_arg, 'p' }, { "min-num-pr", require_arg, 'p' }, { "min-num-p", require_arg, 'p' }, { "max-xfer-size", require_arg, 'X' }, { "max-xfer-siz", require_arg, 'X' }, { "max-xfer-si", require_arg, 'X' }, { "max-xfer-s", require_arg, 'X' }, { "max-xfer", require_arg, 'X' }, { "max-xfe", require_arg, 'X' }, { "max-xf", require_arg, 'X' }, { "max-x", require_arg, 'X' }, { "min-xfer-size", require_arg, 'x' }, { "min-xfer-siz", require_arg, 'x' }, { "min-xfer-si", require_arg, 'x' }, { "min-xfer-s", require_arg, 'x' }, { "min-xfer", require_arg, 'x' }, { "min-xfe", require_arg, 'x' }, { "min-xf", require_arg, 'x' }, { "min-x", require_arg, 'x' }, { "num-bytes", require_arg, 'e' }, { "num-byte", require_arg, 'e' }, { "num-byt", require_arg, 'e' }, { "num-by", require_arg, 'e' }, { "num-b", require_arg, 'e' }, { "num-dsets", require_arg, 'd' }, { "num-dset", require_arg, 'd' }, { "num-dse", require_arg, 'd' }, { "num-ds", require_arg, 'd' }, { "num-d", require_arg, 'd' }, { "num-files", require_arg, 'F' }, { "num-file", require_arg, 'F' }, { "num-fil", require_arg, 'F' }, { "num-fi", require_arg, 'F' }, { "num-f", require_arg, 'F' }, { "num-iterations", require_arg, 'i' }, { "num-iteration", require_arg, 'i' }, { "num-iteratio", require_arg, 'i' }, { "num-iterati", require_arg, 'i' }, { "num-iterat", require_arg, 'i' }, { "num-itera", require_arg, 'i' }, { "num-iter", require_arg, 'i' }, { "num-ite", require_arg, 'i' }, { "num-it", require_arg, 'i' }, { "num-i", require_arg, 'i' }, { "order", require_arg, 'r' }, { "orde", require_arg, 'r' }, { "ord", require_arg, 'r' }, { "or", require_arg, 'r' }, { "output", require_arg, 'o' }, { "outpu", require_arg, 'o' }, { "outp", require_arg, 'o' }, { "out", require_arg, 'o' }, { "ou", require_arg, 'o' }, { "extendable", no_arg, 't' }, { "extendabl", no_arg, 't' }, { "extendab", no_arg, 't' }, { "extenda", no_arg, 't' }, { "extend", no_arg, 't' }, { "exten", no_arg, 't' }, { "exte", no_arg, 't' }, { "ext", no_arg, 't' }, { "ex", no_arg, 't' }, { "threshold", require_arg, 'T' }, { "threshol", require_arg, 'T' }, { "thresho", require_arg, 'T' }, { "thresh", require_arg, 'T' }, { "thres", require_arg, 'T' }, { "thre", require_arg, 'T' }, { "thr", require_arg, 'T' }, { "th", require_arg, 'T' }, { "write-only", require_arg, 'w' }, { "write-onl", require_arg, 'w' }, { "write-on", require_arg, 'w' }, { "write-o", require_arg, 'w' }, { "write", require_arg, 'w' }, { "writ", require_arg, 'w' }, { "wri", require_arg, 'w' }, { "wr", require_arg, 'w' }, { NULL, 0, '\0' } }; struct options { long io_types; /* bitmask of which I/O types to test */ const char *output_file; /* file to print report to */ long num_dsets; /* number of datasets */ long num_files; /* number of files */ off_t num_bpp; /* number of bytes per proc per dset */ int num_iters; /* number of iterations */ off_t dset_size[MAX_DIMS]; /* Dataset size */ size_t buf_size[MAX_DIMS]; /* Buffer size */ size_t chk_size[MAX_DIMS]; /* Chunk size */ int order[MAX_DIMS]; /* Dimension access order */ int dset_rank; /* Rank */ int buf_rank; /* Rank */ int order_rank; /* Rank */ int chk_rank; /* Rank */ int print_times; /* print times as well as throughputs */ int print_raw; /* print raw data throughput info */ off_t h5_alignment; /* alignment in HDF5 file */ off_t h5_threshold; /* threshold for alignment in HDF5 file */ int h5_use_chunks; /* Make HDF5 dataset chunked */ int h5_write_only; /* Perform the write tests only */ int h5_extendable; /* Perform the write tests only */ int verify; /* Verify data correctness */ vfdtype vfd; /* File driver */ }; typedef struct _minmax { double min; double max; double sum; int num; } minmax; /* local functions */ static off_t parse_size_directive(const char *size); static struct options *parse_command_line(int argc, char *argv[]); static void run_test_loop(struct options *options); static int run_test(iotype iot, parameters parms, struct options *opts); static void output_all_info(minmax *mm, int count, int indent_level); static void get_minmax(minmax *mm, double val); static minmax accumulate_minmax_stuff(minmax *mm, int count); static void output_results(const struct options *options, const char *name, minmax *table, int table_size, off_t data_size); static void output_report(const char *fmt, ...); static void print_indent(register int indent); static void usage(const char *prog); static void report_parameters(struct options *opts); /* * Function: main * Purpose: Start things up. * Return: EXIT_SUCCESS or EXIT_FAILURE * Programmer: Bill Wendling, 30. October 2001 * Modifications: */ int main(int argc, char **argv) { int exit_value = EXIT_SUCCESS; struct options *opts = NULL; #ifndef STANDALONE /* Initialize h5tools lib */ h5tools_init(); #endif output = stdout; opts = parse_command_line(argc, argv); if (!opts) { exit_value = EXIT_FAILURE; goto finish; } if (opts->output_file) { if ((output = HDfopen(opts->output_file, "w")) == NULL) { fprintf(stderr, "%s: cannot open output file\n", progname); perror(opts->output_file); goto finish; } } report_parameters(opts); run_test_loop(opts); finish: free(opts); return exit_value; } /* * Function: run_test_loop * Purpose: Run the I/O tests. Write the results to OUTPUT. * * - The slowest changing part of the test is the number of * processors to use. For each loop iteration, we divide that * number by 2 and rerun the test. * * - The second slowest is what type of IO API to perform. We have * three choices: POSIXIO, and HDF5. * * - Then we change the size of the buffer. This information is * inferred from the number of datasets to create and the number * of integers to put into each dataset. The backend code figures * this out. * * Return: Nothing * Programmer: Bill Wendling, 30. October 2001 * Modifications: * Added multidimensional testing (Christian Chilan, April, 2008) */ static void run_test_loop(struct options *opts) { parameters parms; int i; size_t buf_bytes; /* load options into parameter structure */ parms.num_files = opts->num_files; parms.num_dsets = opts->num_dsets; parms.num_iters = opts->num_iters; parms.rank = opts->dset_rank; parms.h5_align = opts->h5_alignment; parms.h5_thresh = opts->h5_threshold; parms.h5_use_chunks = opts->h5_use_chunks; parms.h5_extendable = opts->h5_extendable; parms.h5_write_only = opts->h5_write_only; parms.verify = opts->verify; parms.vfd = opts->vfd; /* load multidimensional options */ parms.num_bytes = 1; buf_bytes = 1; for (i=0; i<parms.rank; i++){ parms.buf_size[i] = opts->buf_size[i]; parms.dset_size[i] = opts->dset_size[i]; parms.chk_size[i] = opts->chk_size[i]; parms.order[i] = opts->order[i]; parms.num_bytes *= opts->dset_size[i]; buf_bytes *= opts->buf_size[i]; } /* print size information */ output_report("Transfer Buffer Size (bytes): %d\n", buf_bytes); output_report("File Size(MB): %.2f\n",((double)parms.num_bytes) / ONE_MB); print_indent(0); if (opts->io_types & SIO_POSIX) run_test(POSIXIO, parms, opts); print_indent(0); if (opts->io_types & SIO_HDF5) run_test(HDF5, parms, opts); } /* * Function: run_test * Purpose: Inner loop call to actually run the I/O test. * Return: Nothing * Programmer: Bill Wendling, 18. December 2001 * Modifications: */ static int run_test(iotype iot, parameters parms, struct options *opts) { results res; register int i, ret_value = SUCCESS; off_t raw_size; minmax *write_sys_mm_table=NULL; minmax *write_mm_table=NULL; minmax *write_gross_mm_table=NULL; minmax *write_raw_mm_table=NULL; minmax *read_sys_mm_table=NULL; minmax *read_mm_table=NULL; minmax *read_gross_mm_table=NULL; minmax *read_raw_mm_table=NULL; minmax write_sys_mm = {0.0, 0.0, 0.0, 0}; minmax write_mm = {0.0, 0.0, 0.0, 0}; minmax write_gross_mm = {0.0, 0.0, 0.0, 0}; minmax write_raw_mm = {0.0, 0.0, 0.0, 0}; minmax read_sys_mm = {0.0, 0.0, 0.0, 0}; minmax read_mm = {0.0, 0.0, 0.0, 0}; minmax read_gross_mm = {0.0, 0.0, 0.0, 0}; minmax read_raw_mm = {0.0, 0.0, 0.0, 0}; raw_size = (off_t)parms.num_bytes; parms.io_type = iot; print_indent(2); output_report("IO API = "); switch (iot) { case POSIXIO: output_report("POSIX\n"); break; case HDF5: output_report("HDF5\n"); break; default: /* unknown request */ HDfprintf(stderr, "Unknown IO type request (%d)\n", (int)iot); HDassert(0 && "Unknown IO tpe"); break; } /* allocate space for tables minmax and that it is sufficient */ /* to initialize all elements to zeros by calloc. */ write_sys_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); write_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); write_gross_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); write_raw_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); if (!parms.h5_write_only) { read_sys_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); read_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); read_gross_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); read_raw_mm_table = calloc((size_t)parms.num_iters , sizeof(minmax)); } /* Do IO iteration times, collecting statistics each time */ for (i = 0; i < parms.num_iters; ++i) { double t; res = do_sio(parms); /* gather all of the "sys write" times */ t = get_time(res.timers, HDF5_MPI_WRITE); get_minmax(&write_sys_mm, t); write_sys_mm_table[i] = write_sys_mm; /* gather all of the "write" times */ t = get_time(res.timers, HDF5_FINE_WRITE_FIXED_DIMS); get_minmax(&write_mm, t); write_mm_table[i] = write_mm; /* gather all of the "write" times from open to close */ t = get_time(res.timers, HDF5_GROSS_WRITE_FIXED_DIMS); get_minmax(&write_gross_mm, t); write_gross_mm_table[i] = write_gross_mm; /* gather all of the raw "write" times */ t = get_time(res.timers, HDF5_RAW_WRITE_FIXED_DIMS); get_minmax(&write_raw_mm, t); write_raw_mm_table[i] = write_raw_mm; if (!parms.h5_write_only) { /* gather all of the "mpi read" times */ t = get_time(res.timers, HDF5_MPI_READ); get_minmax(&read_sys_mm, t); read_sys_mm_table[i] = read_sys_mm; /* gather all of the "read" times */ t = get_time(res.timers, HDF5_FINE_READ_FIXED_DIMS); get_minmax(&read_mm, t); read_mm_table[i] = read_mm; /* gather all of the "read" times from open to close */ t = get_time(res.timers, HDF5_GROSS_READ_FIXED_DIMS); get_minmax(&read_gross_mm, t); read_gross_mm_table[i] = read_gross_mm; /* gather all of the raw "read" times */ t = get_time(res.timers, HDF5_RAW_READ_FIXED_DIMS); get_minmax(&read_raw_mm, t); read_raw_mm_table[i] = read_gross_mm; } sio_time_destroy(res.timers); } /* * Show various statistics */ /* Write statistics */ /* Print the raw data throughput if desired */ if (opts->print_raw) { /* accumulate and output the max, min, and average "raw write" times */ if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("Raw Data Write details:\n"); output_all_info(write_raw_mm_table, parms.num_iters, 4); } output_results(opts,"Raw Data Write",write_raw_mm_table,parms.num_iters,raw_size); } /* end if */ /* show sys write statics */ #if 0 if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("MPI Write details:\n"); output_all_info(write_sys_mm_table, parms.num_iters, 4); } #endif /* We don't currently output the MPI write results */ /* accumulate and output the max, min, and average "write" times */ if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("Write details:\n"); output_all_info(write_mm_table, parms.num_iters, 4); } output_results(opts,"Write",write_mm_table,parms.num_iters,raw_size); /* accumulate and output the max, min, and average "gross write" times */ if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("Write Open-Close details:\n"); output_all_info(write_gross_mm_table, parms.num_iters, 4); } output_results(opts,"Write Open-Close",write_gross_mm_table,parms.num_iters,raw_size); if (!parms.h5_write_only) { /* Read statistics */ /* Print the raw data throughput if desired */ if (opts->print_raw) { /* accumulate and output the max, min, and average "raw read" times */ if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("Raw Data Read details:\n"); output_all_info(read_raw_mm_table, parms.num_iters, 4); } output_results(opts, "Raw Data Read", read_raw_mm_table, parms.num_iters, raw_size); } /* end if */ /* show mpi read statics */ #if 0 if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("MPI Read details:\n"); output_all_info(read_sys_mm_table, parms.num_iters, 4); } #endif /* We don't currently output the MPI read results */ /* accumulate and output the max, min, and average "read" times */ if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("Read details:\n"); output_all_info(read_mm_table, parms.num_iters, 4); } output_results(opts, "Read", read_mm_table, parms.num_iters, raw_size); /* accumulate and output the max, min, and average "gross read" times */ if (sio_debug_level >= 3) { /* output all of the times for all iterations */ print_indent(3); output_report("Read Open-Close details:\n"); output_all_info(read_gross_mm_table, parms.num_iters, 4); } output_results(opts, "Read Open-Close", read_gross_mm_table, parms.num_iters, raw_size); } /* clean up our mess */ free(write_sys_mm_table); free(write_mm_table); free(write_gross_mm_table); free(write_raw_mm_table); if (!parms.h5_write_only) { free(read_sys_mm_table); free(read_mm_table); free(read_gross_mm_table); free(read_raw_mm_table); } return ret_value; } /* * Function: output_all_info * Purpose: * Return: Nothing * Programmer: Bill Wendling, 29. January 2002 * Modifications: */ static void output_all_info(minmax *mm, int count, int indent_level) { int i; for (i = 0; i < count; ++i) { print_indent(indent_level); output_report("Iteration %d:\n", i + 1); print_indent(indent_level + 1); output_report("Minimum Time: %.2fs\n", mm[i].min); print_indent(indent_level + 1); output_report("Maximum Time: %.2fs\n", mm[i].max); } } /* * Function: get_minmax * Purpose: Gather all the min, max and total of val. * Return: Nothing * Programmer: Bill Wendling, 21. December 2001 * Modifications: * Use MPI_Allreduce to do it. -akc, 2002/01/11 */ static void get_minmax(minmax *mm, double val) { mm->max = val; mm->min = val; mm->sum = val; } /* * Function: accumulate_minmax_stuff * Purpose: Accumulate the minimum, maximum, and average of the times * across all processes. * Return: TOTAL_MM - the total of all of these. * Programmer: Bill Wendling, 21. December 2001 * Modifications: * Changed to use seconds instead of MB/s - QAK, 5/9/02 */ static minmax accumulate_minmax_stuff(minmax *mm, int count) { int i; minmax total_mm; total_mm.sum = 0.0; total_mm.max = -DBL_MAX; total_mm.min = DBL_MAX; total_mm.num = count; for (i = 0; i < count; ++i) { double m = mm[i].max; total_mm.sum += m; if (m < total_mm.min) total_mm.min = m; if (m > total_mm.max) total_mm.max = m; } return total_mm; } /* * Function: output_results * Purpose: Print information about the time & bandwidth for a given * minmax & # of iterations. * Return: Nothing * Programmer: Quincey Koziol, 9. May 2002 * Modifications: */ static void output_results(const struct options *opts, const char *name, minmax *table, int table_size,off_t data_size) { minmax total_mm; total_mm = accumulate_minmax_stuff(table, table_size); print_indent(3); output_report("%s (%d iteration(s)):\n", name,table_size); /* Note: The maximum throughput uses the minimum amount of time & vice versa */ print_indent(4); output_report("Maximum Throughput: %6.2f MB/s", MB_PER_SEC(data_size,total_mm.min)); if(opts->print_times) output_report(" (%7.3f s)\n", total_mm.min); else output_report("\n"); print_indent(4); output_report("Average Throughput: %6.2f MB/s", MB_PER_SEC(data_size,total_mm.sum / total_mm.num)); if(opts->print_times) output_report(" (%7.3f s)\n", (total_mm.sum / total_mm.num)); else output_report("\n"); print_indent(4); output_report("Minimum Throughput: %6.2f MB/s", MB_PER_SEC(data_size,total_mm.max)); if(opts->print_times) output_report(" (%7.3f s)\n", total_mm.max); else output_report("\n"); } /* * Function: output_report * Purpose: Print a line of the report. Only do so if I'm the 0 process. * Return: Nothing * Programmer: Bill Wendling, 19. December 2001 * Modifications: */ static void output_report(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(output, fmt, ap); va_end(ap); } /* * Function: print_indent * Purpose: Print spaces to indent a new line of text for pretty printing * things. * Return: Nothing * Programmer: Bill Wendling, 29. October 2001 * Modifications: */ static void print_indent(register int indent) { indent *= TAB_SPACE; for (; indent > 0; --indent) fputc(' ', output); } static void recover_size_and_print(long long val, const char *end) { if (val >= ONE_KB && (val % ONE_KB) == 0) { if (val >= ONE_MB && (val % ONE_MB) == 0) { if (val >= ONE_GB && (val % ONE_GB) == 0) HDfprintf(output, "%" H5_PRINTF_LL_WIDTH "d""GB%s", val / ONE_GB, end); else HDfprintf(output, "%" H5_PRINTF_LL_WIDTH "d""MB%s", val / ONE_MB, end); } else { HDfprintf(output, "%" H5_PRINTF_LL_WIDTH "d""KB%s", val / ONE_KB, end); } } else { HDfprintf(output, "%" H5_PRINTF_LL_WIDTH "d""%s", val, end); } } static void print_io_api(long io_types) { if (io_types & SIO_POSIX) HDfprintf(output, "posix "); if (io_types & SIO_HDF5) HDfprintf(output, "hdf5 "); HDfprintf(output, "\n"); } static void report_parameters(struct options *opts) { int i, rank; rank = opts->dset_rank; print_version("HDF5 Library"); /* print library version */ HDfprintf(output, "==== Parameters ====\n"); HDfprintf(output, "IO API="); print_io_api(opts->io_types); HDfprintf(output, "Number of iterations=%d\n", opts->num_iters); HDfprintf(output, "Dataset size="); for (i=0; i<rank; i++) recover_size_and_print((long long)opts->dset_size[i], " "); HDfprintf(output, "\n"); HDfprintf(output, "Transfer buffer size="); for (i=0; i<rank; i++) recover_size_and_print((long long)opts->buf_size[i], " "); HDfprintf(output, "\n"); HDfprintf(output, "Dimension access order="); for (i=0; i<rank; i++) recover_size_and_print((long long)opts->order[i], " "); HDfprintf(output, "\n"); if (opts->io_types & SIO_HDF5) { HDfprintf(output, "HDF5 data storage method="); if (opts->h5_use_chunks){ HDfprintf(output, "Chunked\n"); HDfprintf(output, "HDF5 chunk size="); for (i=0; i<rank; i++) recover_size_and_print((long long)opts->chk_size[i], " "); HDfprintf(output, "\n"); HDfprintf(output, "HDF5 dataset dimensions="); if (opts->h5_extendable) { HDfprintf(output, "Extendable\n"); } else { HDfprintf(output, "Fixed\n"); } } else { HDfprintf(output, "Contiguous\n"); } HDfprintf(output, "HDF5 file driver="); if (opts->vfd==sec2) { HDfprintf(output, "sec2\n"); } else if (opts->vfd==stdio) { HDfprintf(output, "stdio\n"); } else if (opts->vfd==core) { HDfprintf(output, "core\n"); } else if (opts->vfd==split) { HDfprintf(output, "split\n"); } else if (opts->vfd==multi) { HDfprintf(output, "multi\n"); } else if (opts->vfd==family) { HDfprintf(output, "family\n"); } else if (opts->vfd==direct) { HDfprintf(output, "direct\n"); } } { char *prefix = HDgetenv("HDF5_PREFIX"); HDfprintf(output, "Env HDF5_PREFIX=%s\n", (prefix ? prefix : "not set")); } HDfprintf(output, "==== End of Parameters ====\n"); HDfprintf(output, "\n"); } /* * Function: parse_command_line * Purpose: Parse the command line options and return a STRUCT OPTIONS * structure which will need to be freed by the calling function. * Return: Pointer to an OPTIONS structure * Programmer: Bill Wendling, 31. October 2001 * Modifications: * Added multidimensional testing (Christian Chilan, April, 2008) */ static struct options * parse_command_line(int argc, char *argv[]) { register int opt; struct options *cl_opts; int i, default_rank, actual_rank, ranks[4]; cl_opts = (struct options *)malloc(sizeof(struct options)); cl_opts->output_file = NULL; cl_opts->io_types = 0; /* will set default after parsing options */ cl_opts->num_iters = 1; default_rank = 2; cl_opts->dset_rank = 0; cl_opts->buf_rank = 0; cl_opts->chk_rank = 0; cl_opts->order_rank = 0; for (i=0; i<MAX_DIMS; i++){ cl_opts->buf_size[i]=(i+1)*10; cl_opts->dset_size[i]=(i+1)*100; cl_opts->chk_size[i]=(i+1)*10; cl_opts->order[i]=i+1; } cl_opts->vfd = sec2; cl_opts->print_times = FALSE; /* Printing times is off by default */ cl_opts->print_raw = FALSE; /* Printing raw data throughput is off by default */ cl_opts->h5_alignment = 1; /* No alignment for HDF5 objects by default */ cl_opts->h5_threshold = 1; /* No threshold for aligning HDF5 objects by default */ cl_opts->h5_use_chunks = FALSE; /* Don't chunk the HDF5 dataset by default */ cl_opts->h5_write_only = FALSE; /* Do both read and write by default */ cl_opts->h5_extendable = FALSE; /* Use extendable dataset */ cl_opts->verify = FALSE; /* No Verify data correctness by default */ while ((opt = get_option(argc, (const char **)argv, s_opts, l_opts)) != EOF) { switch ((char)opt) { case 'a': cl_opts->h5_alignment = parse_size_directive(opt_arg); break; case 'A': { const char *end = opt_arg; while (end && *end != '\0') { char buf[10]; memset(buf, '\0', sizeof(buf)); for (i = 0; *end != '\0' && *end != ','; ++end) if (isalnum(*end) && i < 10) buf[i++] = *end; if (!HDstrcasecmp(buf, "hdf5")) { cl_opts->io_types |= SIO_HDF5; } else if (!HDstrcasecmp(buf, "posix")) { cl_opts->io_types |= SIO_POSIX; } else { fprintf(stderr, "sio_perf: invalid --api option %s\n", buf); exit(EXIT_FAILURE); } if (*end == '\0') break; end++; } } break; #if 0 case 'b': /* the future "binary" option */ break; #endif /* 0 */ case 'c': /* Turn on chunked HDF5 dataset creation */ cl_opts->h5_use_chunks = 1; { const char *end = opt_arg; int j = 0; while (end && *end != '\0') { char buf[10]; memset(buf, '\0', sizeof(buf)); for (i = 0; *end != '\0' && *end != ','; ++end) if (isalnum(*end) && i < 10) buf[i++] = *end; cl_opts->chk_size[j] = parse_size_directive(buf); j++; if (*end == '\0') break; end++; } cl_opts->chk_rank = j; } break; case 'D': { const char *end = opt_arg; while (end && *end != '\0') { char buf[10]; memset(buf, '\0', sizeof(buf)); for (i = 0; *end != '\0' && *end != ','; ++end) if (isalnum(*end) && i < 10) buf[i++] = *end; if (strlen(buf) > 1 || isdigit(buf[0])) { size_t j; for (j = 0; j < 10 && buf[j] != '\0'; ++j) if (!isdigit(buf[j])) { fprintf(stderr, "sio_perf: invalid --debug option %s\n", buf); exit(EXIT_FAILURE); } sio_debug_level = atoi(buf); if (sio_debug_level > 4) sio_debug_level = 4; else if (sio_debug_level < 0) sio_debug_level = 0; } else { switch (*buf) { case 'r': /* Turn on raw data throughput info */ cl_opts->print_raw = TRUE; break; case 't': /* Turn on time printing */ cl_opts->print_times = TRUE; break; case 'v': /* Turn on verify data correctness*/ cl_opts->verify = TRUE; break; default: fprintf(stderr, "sio_perf: invalid --debug option %s\n", buf); exit(EXIT_FAILURE); } } if (*end == '\0') break; end++; } } break; case 'e': { const char *end = opt_arg; int j = 0; while (end && *end != '\0') { char buf[10]; memset(buf, '\0', sizeof(buf)); for (i = 0; *end != '\0' && *end != ','; ++end) if (isalnum(*end) && i < 10) buf[i++] = *end; cl_opts->dset_size[j] = parse_size_directive(buf); j++; if (*end == '\0') break; end++; } cl_opts->dset_rank = j; } break; case 'i': cl_opts->num_iters = atoi(opt_arg); break; case 'o': cl_opts->output_file = opt_arg; break; case 'T': cl_opts->h5_threshold = parse_size_directive(opt_arg); break; case 'v': if (!HDstrcasecmp(opt_arg, "sec2")) { cl_opts->vfd=sec2; } else if (!HDstrcasecmp(opt_arg, "stdio")) { cl_opts->vfd=stdio; } else if (!HDstrcasecmp(opt_arg, "core")) { cl_opts->vfd=core; } else if (!HDstrcasecmp(opt_arg, "split")) { cl_opts->vfd=split; } else if (!HDstrcasecmp(opt_arg, "multi")) { cl_opts->vfd=multi; } else if (!HDstrcasecmp(opt_arg, "family")) { cl_opts->vfd=family; } else if (!HDstrcasecmp(opt_arg, "direct")) { cl_opts->vfd=direct; } else { fprintf(stderr, "sio_perf: invalid --api option %s\n", opt_arg); exit(EXIT_FAILURE); } break; case 'w': cl_opts->h5_write_only = TRUE; break; case 't': cl_opts->h5_extendable = TRUE; break; case 'x': { const char *end = opt_arg; int j = 0; while (end && *end != '\0') { char buf[10]; memset(buf, '\0', sizeof(buf)); for (i = 0; *end != '\0' && *end != ','; ++end) if (isalnum(*end) && i < 10) buf[i++] = *end; cl_opts->buf_size[j] = parse_size_directive(buf); j++; if (*end == '\0') break; end++; } cl_opts->buf_rank = j; } break; case 'r': { const char *end = opt_arg; int j = 0; while (end && *end != '\0') { char buf[10]; memset(buf, '\0', sizeof(buf)); for (i = 0; *end != '\0' && *end != ','; ++end) if (isalnum(*end) && i < 10) buf[i++] = *end; cl_opts->order[j] = parse_size_directive(buf); j++; if (*end == '\0') break; end++; } cl_opts->order_rank = j; } break; case 'h': case '?': default: usage(progname); free(cl_opts); return NULL; } } /* perform rank consistency analysis */ actual_rank = 0; ranks[0] = cl_opts->dset_rank; ranks[1] = cl_opts->buf_rank; ranks[2] = cl_opts->order_rank; ranks[3] = cl_opts->chk_rank; for (i=0; i<4; i++) { if (ranks[i]>0) { if (!actual_rank) { actual_rank = ranks[i]; } else { if (actual_rank != ranks[i]) exit(EXIT_FAILURE); } } } if (!actual_rank) actual_rank = default_rank; cl_opts->dset_rank = actual_rank; cl_opts->buf_rank = actual_rank; cl_opts->order_rank = actual_rank; cl_opts->chk_rank = actual_rank; for (i=0; i<actual_rank; i++) { if (cl_opts->order[i] > actual_rank) { exit(EXIT_FAILURE); } } /* set default if none specified yet */ if (!cl_opts->io_types) cl_opts->io_types = SIO_HDF5 | SIO_POSIX; /* run all API */ /* verify parameters sanity. Adjust if needed. */ /* cap xfer_size with bytes per process */ if (cl_opts->num_iters <= 0) cl_opts->num_iters = 1; return cl_opts; } /* * Function: parse_size_directive * Purpose: Parse the size directive passed on the commandline. The size * directive is an integer followed by a size indicator: * * K, k - Kilobyte * M, m - Megabyte * G, g - Gigabyte * * Return: The size as a off_t because this is related to file size. * If an unknown size indicator is used, then the program will * exit with EXIT_FAILURE as the return value. * Programmer: Bill Wendling, 18. December 2001 * Modifications: */ static off_t parse_size_directive(const char *size) { off_t s; char *endptr; s = strtol(size, &endptr, 10); if (endptr && *endptr) { while (*endptr != '\0' && (*endptr == ' ' || *endptr == '\t')) ++endptr; switch (*endptr) { case 'K': case 'k': s *= ONE_KB; break; case 'M': case 'm': s *= ONE_MB; break; case 'G': case 'g': s *= ONE_GB; break; default: fprintf(stderr, "Illegal size specifier '%c'\n", *endptr); exit(EXIT_FAILURE); } } return s; } /* * Function: usage * Purpose: Print a usage message and then exit. * Return: Nothing * Programmer: Bill Wendling, 31. October 2001 * Modifications: */ static void usage(const char *prog) { print_version(prog); printf("usage: %s [OPTIONS]\n", prog); printf(" OPTIONS\n"); printf(" -h Print an usage message and exit\n"); printf(" -A AL Which APIs to test\n"); printf(" [default: all of them]\n"); printf(" -c SL Selects chunked storage and defines chunks dimensions\n"); printf(" and sizes\n"); printf(" [default: Off]\n"); printf(" -e SL Dimensions and sizes of dataset\n"); printf(" [default: 100,200]\n"); printf(" -i N Number of iterations to perform\n"); printf(" [default: 1]\n"); printf(" -r NL Dimension access order (see below for description)\n"); printf(" [default: 1,2]\n"); printf(" -t Selects extendable dimensions for HDF5 dataset\n"); printf(" [default: Off]\n"); printf(" -v VFD Selects file driver for HDF5 access\n"); printf(" [default: sec2]\n"); printf(" -w Perform write tests, not the read tests\n"); printf(" [default: Off]\n"); printf(" -x SL Dimensions and sizes of the transfer buffer\n"); printf(" [default: 10,20]\n"); printf("\n"); printf(" N - is an integer > 0.\n"); printf("\n"); printf(" S - is a size specifier, an integer > 0 followed by a size indicator:\n"); printf(" K - Kilobyte (%d)\n", ONE_KB); printf(" M - Megabyte (%d)\n", ONE_MB); printf(" G - Gigabyte (%d)\n", ONE_GB); printf("\n"); printf(" Example: '37M' is 37 megabytes or %d bytes\n", 37*ONE_MB); printf("\n"); printf(" AL - is an API list. Valid values are:\n"); printf(" hdf5 - HDF5\n"); printf(" posix - POSIX\n"); printf("\n"); printf(" Example: -A posix,hdf5\n"); printf("\n"); printf(" NL - is list of integers (N) separated by commas.\n"); printf("\n"); printf(" Example: 1,2,3\n"); printf("\n"); printf(" SL - is list of size specifiers (S) separated by commas.\n"); printf("\n"); printf(" Example: 2K,2K,3K\n"); printf("\n"); printf(" The example defines an object (dataset, tranfer buffer) with three\n"); printf(" dimensions. Be aware that as the number of dimensions increases, the\n"); printf(" the total size of the object increases exponentially.\n"); printf("\n"); printf(" VFD - is an HDF5 file driver specifier. Valid values are:\n"); printf(" sec2, stdio, core, split, multi, family, direct\n"); printf("\n"); printf(" Dimension access order:\n"); printf(" Data access starts at the cardinal origin of the dataset using the\n"); printf(" transfer buffer. The next access occurs on a dataset region next to\n"); printf(" the previous one. For a multidimensional dataset, there are several\n"); printf(" directions as to where to proceed. This can be specified in the dimension\n"); printf(" access order. For example, -r 1,2 states that the tool should traverse\n"); printf(" dimension 1 first, and then dimension 2.\n"); printf("\n"); printf(" Environment variables:\n"); printf(" HDF5_NOCLEANUP Do not remove data files if set [default remove]\n"); printf(" HDF5_PREFIX Data file prefix\n"); printf("\n"); fflush(stdout); }