HDF5 version 1.11.0 currently under development ================================================================================ INTRODUCTION This document describes the differences between HDF5-1.10.1 and HDF5 1.10.2, and contains information on the platforms tested and known problems in HDF5-1.10.1. For more details check the HISTORY*.txt files in the HDF5 source. Links to HDF5 1.10.1 source code, documentation, and additional materials can be found on The HDF5 web page at: https://support.hdfgroup.org/HDF5/ The HDF5 1.10.1 release can be obtained from: https://support.hdfgroup.org/HDF5/release/obtain5.html User documentation for the snapshot can be accessed directly at this location: https://support.hdfgroup.org/HDF5/doc/ New features in the HDF5-1.10.x release series, including brief general descriptions of some new and modified APIs, are described in the "New Features in HDF5 1.10" document: https://support.hdfgroup.org/HDF5/docNewFeatures/index.html All new and modified APIs are listed in detail in the "HDF5 Software Changes from Release to Release" document, in the section "Release 1.10.1 (current release) versus Release 1.10.0 https://support.hdfgroup.org/HDF5/doc/ADGuide/Changes.html If you have any questions or comments, please send them to the HDF Help Desk: help@hdfgroup.org CONTENTS - New Features - Support for new platforms and languages - Bug Fixes since HDF5-1.10.1 - Supported Platforms - Tested Configuration Features Summary - More Tested Platforms - Known Problems New Features ============ Configuration: ------------- - Library: -------- - Parallel Library: ----------------- - Optimize parallel open/location of the HDF5 super-block Previous releases of PHDF5 allow all parallel ranks to read the starting elements in a file to validate and process the HDF5 super-block. As this is accomplished more or less as a synchronous operation, a large number of processes will likely experience a slowdown due to filesystem contention. As a first step in improving the startup/file-open performance, we allow MPI rank 0 of the associated MPI communicator to locate the base offset of the super-block and then broadcast that result to the remaining ranks in the parallel group. Note that this approach is utilized ONLY during file opens which employ the MPIO file driver in HDF5 by previously having called H5Pset_fapl_mpio(). HDF5 parallel file operations which do not employ multiple ranks e.g. specifiying MPI_COMM_SELF (whose MPI_Comm_size == 1) as opposed to MPI_COMM_WORLD, will not be affected by this optimization. Conversely, parallel file operations on subgroups of MPI_COMM_WORLD are allowed to be run in parallel with each subgroup operating as an independant collection of processes. (RAW – 2017/10/10, HDFFV-10294) - Large MPI-IO transfers Previous releases of PHDF5 would fail when attempting to read or write greater than 2GB of data in a single IO operation. This issue stems principally from an MPI API whose definitions utilize 32 bit integers to describe the number of data elements and datatype that MPI should use to effect a data transfer. Historically, HDF5 has invoked MPI-IO with the number of elements in a contiguous buffer represented as the length of that buffer in bytes. Resolving the issue and thus enabling larger MPI-IO transfers is accomplished first, by detecting when a user IO request would exceed the 2GB limit as described above. Once a transfer request is identified as requiring special handling, PHDF5 now creates a derived datatype consisting of a vector of fixed sized blocks which is in turn wrapped within a single MPI_Type_struct to contain the vector and any remaining data. The newly created datatype is then used in place of MPI_BYTE and can be used to fulfill the original user request without encountering API errors. (RAW – 2017/07/11, HDFFV-8839) Fortran Library: ---------------- - C++ Library: ------------ - Tools: ------ - h5diff h5diff has new option enable-error-stack. Updated h5diff with the --enable-error-stack argument, which enables the display of the hdf5 error stack. This completes the improvement to the main tools; h5copy, h5diff, h5dump, h5ls and h5repack. (ADB - 2017/08/30, HDFFV-9774) High-Level APIs: --------------- - C Packet Table API ------------------ - Internal header file -------------------- - Documentation ------------- - Support for new platforms, languages and compilers. ======================================= - Bug Fixes since HDF5-1.10.1 release ================================== Library ------- - Configuration ------------- - cmake Too many commands for POST_BUILD step caused command line to be too big on windows. Changed foreach of copy command to use a custom command with the use of the HDFTEST_COPY_FILE macro. (ADB - 2017/07/12, HDFFV-10254) Performance ------------- - Fortran -------- - Tools ----- - h5repack h5repack always set the User Defined filter flag to H5Z_FLAG_MANDATORY. Added another parameter to the 'UD=' option to set the flag by default to '0' or H5Z_FLAG_MANDATORY, the other choice is '1' or H5Z_FLAG_OPTIONAL. (ADB - 2017/08/31, HDFFV-10276) - h5ls h5ls generated error on stack when it encountered a H5S_NULL dataspace. Adding checks for H5S_NULL before calling H5Sis_simple (located in the h5tools_dump_mem function) fixed the issue. (ADB - 2017/08/17, HDFFV-10188) - h5dump h5dump segfaulted on output of XML file. Function that escape'd strings used the full buffer length instead of just the length of the replacement string in a strncpy call. Using the correct length fixed the issue. (ADB - 2017/08/01, HDFFV-10256) - h5diff h5diff segfaulted on compare of a NULL variable length string. Improved h5diff compare of strings by adding a check for NULL strings and setting the lengths to zero. (ADB - 2017/07/25, HDFFV-10246) - h5import h5import crashed trying to import data from a subset of a dataset. Improved h5import by adding the SUBSET keyword. h5import understands to use the Count times the Block as the size of the dimensions. Added INPUT_B_ORDER keyword to old-style configuration files. The import from h5dump function expects the binary files to use native types (FILE '-b' option) in the binary file. (ADB - 2017/06/15, HDFFV-10219) - h5repack h5repack did not maintain the creation order flag of the root group. Improved h5repack by reading the creation order and applying the flag to the new root group. Also added arguments to set the order and index direction, which applies to the traversing of the original file, on the command line. (ADB - 2017/05/26, HDFFV-8611) - h5diff h5diff failed to account for strpad type and null terminators of char strings. Also, h5diff failed to account for string length differences and would give a different result depending on file order in the command line. Improved h5diff compare of strings and arrays by adding a check for string lengths and if the strpad was null filled. (ADB - 2017/05/18, HDFFV-9055, HDFFV-10128) High-Level APIs: ------ - Fortran High-Level APIs: ------ - Documentation ------------- - F90 APIs -------- - C++ APIs -------- - Testing ------- - Supported Platforms =================== Linux 2.6.32-573.22.1.el6 GNU C (gcc), Fortran (gfortran), C++ (g++) #1 SMP x86_64 GNU/Linux compilers: (mayll/platypus) Version 4.4.7 20120313 Version 4.8.4 PGI C, Fortran, C++ for 64-bit target on x86-64; Version 16.10-0 Intel(R) C (icc), C++ (icpc), Fortran (icc) compilers: Version 15.0.3.187 (Build 20150407) MPICH 3.1.4 compiled with GCC 4.9.3 Linux 2.6.32-573.18.1.el6.ppc64 gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-4) #1 SMP ppc64 GNU/Linux g++ (GCC) 4.4.7 20120313 (Red Hat 4.4.7-4) (ostrich) GNU Fortran (GCC) 4.4.7 20120313 (Red Hat 4.4.7-4) IBM XL C/C++ V13.1 IBM XL Fortran V15.1 Linux 3.10.0-327.10.1.el7 GNU C (gcc), Fortran (gfortran), C++ (g++) #1 SMP x86_64 GNU/Linux compilers: (kituo/moohan) Version 4.8.5 20150623 (Red Hat 4.8.5-4) Version 4.9.3, Version 5.2.0 Intel(R) C (icc), C++ (icpc), Fortran (icc) compilers: Version 15.0.3.187 Build 20150407 MPICH 3.1.4 compiled with GCC 4.9.3 SunOS 5.11 32- and 64-bit Sun C 5.12 SunOS_sparc (emu) Sun Fortran 95 8.6 SunOS_sparc Sun C++ 5.12 SunOS_sparc Windows 7 Visual Studio 2012 w/ Intel Fortran 15 (cmake) Visual Studio 2013 w/ Intel Fortran 15 (cmake) Visual Studio 2015 w/ Intel Fortran 16 (cmake) Cygwin(CYGWIN_NT-6.1 2.2.1(0.289/5/3) gcc(4.9.3) compiler and gfortran) (cmake and autotools) Windows 7 x64 Visual Studio 2012 w/ Intel Fortran 15 (cmake) Visual Studio 2013 w/ Intel Fortran 15 (cmake) Visual Studio 2015 w/ Intel Fortran 16 (cmake) Visual Studio 2015 w/ Intel Parallel Studio 2017 (cmake) Windows 10 Visual Studio 2015 w/ Intel Fortran 16 (cmake) Windows 10 x64 Visual Studio 2015 w/ Intel Fortran 16 (cmake) Mac OS X Mt. Lion 10.8.5 Apple clang/clang++ version 5.1 from Xcode 5.1 64-bit gfortran GNU Fortran (GCC) 4.8.2 (swallow/kite) Intel icc/icpc/ifort version 15.0.3 Mac OS X Mavericks 10.9.5 Apple clang/clang++ version 6.0 from Xcode 6.2 64-bit gfortran GNU Fortran (GCC) 4.9.2 (wren/quail) Intel icc/icpc/ifort version 15.0.3 Mac OS X Yosemite 10.10.5 Apple clang/clang++ version 6.1 from Xcode 7.0 64-bit gfortran GNU Fortran (GCC) 4.9.2 (osx1010dev/osx1010test) Intel icc/icpc/ifort version 15.0.3 Mac OS X El Capitan 10.11.6 Apple clang/clang++ version 7.3.0 from Xcode 7.3 64-bit gfortran GNU Fortran (GCC) 5.2.0 (osx1010dev/osx1010test) Intel icc/icpc/ifort version 16.0.2 Tested Configuration Features Summary ===================================== In the tables below y = tested n = not tested in this release C = Cluster W = Workstation x = not working in this release dna = does not apply ( ) = footnote appears below second table = testing incomplete on this feature or platform Platform C F90/ F90 C++ zlib SZIP parallel F2003 parallel Solaris2.11 32-bit n y/y n y y y Solaris2.11 64-bit n y/n n y y y Windows 7 y y/y n y y y Windows 7 x64 y y/y y y y y Windows 7 Cygwin n y/n n y y y Windows 7 x64 Cygwin n y/n n y y y Windows 10 y y/y n y y y Windows 10 x64 y y/y n y y y Mac OS X Mountain Lion 10.8.5 64-bit n y/y n y y y Mac OS X Mavericks 10.9.5 64-bit n y/y n y y ? Mac OS X Yosemite 10.10.5 64-bit n y/y n y y ? Mac OS X El Capitan 10.11.6 64-bit n y/y n y y ? CentOS 6.7 Linux 2.6.18 x86_64 GNU n y/y n y y y CentOS 6.7 Linux 2.6.18 x86_64 Intel n y/y n y y y CentOS 6.7 Linux 2.6.32 x86_64 PGI n y/y n y y y CentOS 7.2 Linux 2.6.32 x86_64 GNU y y/y y y y y CentOS 7.2 Linux 2.6.32 x86_64 Intel n y/y n y y y Linux 2.6.32-573.18.1.el6.ppc64 n y/n n y y y Platform Shared Shared Shared Thread- C libs F90 libs C++ libs safe Solaris2.11 32-bit y y y y Solaris2.11 64-bit y y y y Windows 7 y y y y Windows 7 x64 y y y y Windows 7 Cygwin n n n y Windows 7 x64 Cygwin n n n y Windows 10 y y y y Windows 10 x64 y y y y Mac OS X Mountain Lion 10.8.5 64-bit y n y y Mac OS X Mavericks 10.9.5 64-bit y n y y Mac OS X Yosemite 10.10.5 64-bit y n y y Mac OS X El Capitan 10.11.6 64-bit y n y y CentOS 6.7 Linux 2.6.18 x86_64 GNU y y y y CentOS 6.7 Linux 2.6.18 x86_64 Intel y y y n CentOS 6.7 Linux 2.6.32 x86_64 PGI y y y n CentOS 7.2 Linux 2.6.32 x86_64 GNU y y y n CentOS 7.2 Linux 2.6.32 x86_64 Intel y y y n Linux 2.6.32-573.18.1.el6.ppc64 y y y n Compiler versions for each platform are listed in the preceding "Supported Platforms" table. More Tested Platforms ===================== The following platforms are not supported but have been tested for this release. Linux 2.6.32-573.22.1.el6 GNU C (gcc), Fortran (gfortran), C++ (g++) #1 SMP x86_64 GNU/Linux compilers: (mayll/platypus) Version 4.4.7 20120313 Version 4.8.4 PGI C, Fortran, C++ for 64-bit target on x86-64; Version 16.10-0 Intel(R) C (icc), C++ (icpc), Fortran (icc) compilers: Version 15.0.3.187 (Build 20150407) MPICH 3.1.4 compiled with GCC 4.9.3 Linux 3.10.0-327.18.2.el7 GNU C (gcc) and C++ (g++) compilers #1 SMP x86_64 GNU/Linux Version 4.8.5 20150623 (Red Hat 4.8.5-4) (jelly) with NAG Fortran Compiler Release 6.1(Tozai) Intel(R) C (icc) and C++ (icpc) compilers Version 15.0.3.187 (Build 20150407) with NAG Fortran Compiler Release 6.1(Tozai) Linux 2.6.32-573.18.1.el6.ppc64 MPICH mpich 3.1.4 compiled with #1 SMP ppc64 GNU/Linux IBM XL C/C++ for Linux, V13.1 (ostrich) and IBM XL Fortran for Linux, V15.1 Debian 8.4 3.16.0-4-amd64 #1 SMP Debian 3.16.36-1 x86_64 GNU/Linux gcc, g++ (Debian 4.9.2-10) 4.9.2 GNU Fortran (Debian 4.9.2-10) 4.9.2 (cmake and autotools) Fedora 24 4.7.2-201.fc24.x86_64 #1 SMP x86_64 x86_64 x86_64 GNU/Linux gcc, g++ (GCC) 6.1.1 20160621 (Red Hat 6.1.1-3) GNU Fortran (GCC) 6.1.1 20160621 (Red Hat 6.1.1-3) (cmake and autotools) Ubuntu 16.04.1 4.4.0-38-generic #57-Ubuntu SMP x86_64 GNU/Linux gcc, g++ (Ubuntu 5.4.0-6ubuntu1~16.04.2) 5.4.0 20160609 GNU Fortran (Ubuntu 5.4.0-6ubuntu1~16.04.2) 5.4.0 20160609 (cmake and autotools) Known Problems ============== At present, metadata cache images may not be generated by parallel applications. Parallel applications can read files with metadata cache images, but since this is a collective operation, a deadlock is possible if one or more processes do not participate. Known problems in previous releases can be found in the HISTORY*.txt files in the HDF5 source. Please report any new problems found to help@hdfgroup.org.