/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /*------------------------------------------------------------------------- * * Created: H5Cdbg.c * * Purpose: Debugging Routines for the generic cache structure or entries. * *------------------------------------------------------------------------- */ /****************/ /* Module Setup */ /****************/ #include "H5Cmodule.h" /* This source code file is part of the H5C module */ /***********/ /* Headers */ /***********/ #include "H5private.h" /* Generic Functions */ #include "H5ACprivate.h" /* Metadata Cache */ #include "H5Cpkg.h" /* Cache */ #include "H5Eprivate.h" /* Error Handling */ /****************/ /* Local Macros */ /****************/ /******************/ /* Local Typedefs */ /******************/ /********************/ /* Local Prototypes */ /********************/ /*********************/ /* Package Variables */ /*********************/ /*****************************/ /* Library Private Variables */ /*****************************/ /*******************/ /* Local Variables */ /*******************/ #ifndef NDEBUG /*------------------------------------------------------------------------- * Function: H5C_dump_cache * * Purpose: Print a summary of the contents of the metadata cache for * debugging purposes. * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ herr_t H5C_dump_cache(H5C_t *cache_ptr, const char *cache_name) { H5C_cache_entry_t *entry_ptr; H5SL_t *slist_ptr = NULL; int i; /* Local index variable */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) /* Sanity check */ assert(cache_ptr != NULL); assert(cache_name != NULL); /* First, create a skip list */ if (NULL == (slist_ptr = H5SL_create(H5SL_TYPE_HADDR, NULL))) HGOTO_ERROR(H5E_CACHE, H5E_CANTCREATE, FAIL, "can't create skip list"); /* Next, scan the index, and insert all entries in the skip list. * Do this, as we want to display cache entries in increasing address * order. */ for (i = 0; i < H5C__HASH_TABLE_LEN; i++) { entry_ptr = cache_ptr->index[i]; while (entry_ptr != NULL) { if (H5SL_insert(slist_ptr, entry_ptr, &(entry_ptr->addr)) < 0) HGOTO_ERROR(H5E_CACHE, H5E_BADVALUE, FAIL, "can't insert entry in skip list"); entry_ptr = entry_ptr->ht_next; } /* end while */ } /* end for */ /* If we get this far, all entries in the cache are listed in the * skip list -- scan the skip list generating the desired output. */ fprintf(stdout, "\n\nDump of metadata cache \"%s\"\n", cache_name); /* Print header */ fprintf(stdout, "Entry "); fprintf(stdout, "| Address "); fprintf(stdout, "| Tag "); fprintf(stdout, "| Size "); fprintf(stdout, "| Ring "); fprintf(stdout, "| Type "); fprintf(stdout, "| Prot/Pin/Dirty"); fprintf(stdout, "\n"); fprintf(stdout, "--------------------------------------------------------------------------------------" "--------------------------\n"); i = 0; entry_ptr = (H5C_cache_entry_t *)H5SL_remove_first(slist_ptr); while (entry_ptr != NULL) { /* Print entry */ fprintf(stdout, "%s%5d ", cache_ptr->prefix, i); fprintf(stdout, " 0x%16llx ", (long long)(entry_ptr->addr)); if (NULL == entry_ptr->tag_info) fprintf(stdout, " %16s ", "N/A"); else fprintf(stdout, " 0x%16llx ", (long long)(entry_ptr->tag_info->tag)); fprintf(stdout, " %5lld ", (long long)(entry_ptr->size)); fprintf(stdout, " %d ", (int)(entry_ptr->ring)); fprintf(stdout, " %2d %-32s ", (int)(entry_ptr->type->id), (entry_ptr->type->name)); fprintf(stdout, " %d", (int)(entry_ptr->is_protected)); fprintf(stdout, " %d", (int)(entry_ptr->is_pinned)); fprintf(stdout, " %d", (int)(entry_ptr->is_dirty)); fprintf(stdout, "\n"); /* remove the next (first) item in the skip list */ entry_ptr = (H5C_cache_entry_t *)H5SL_remove_first(slist_ptr); i++; } /* end while */ fprintf(stdout, "\n\n"); /* Verify that all the entries were removed from the skip list */ assert(H5SL_count(slist_ptr) == 0); done: /* Discard the skip list */ if (slist_ptr) H5SL_close(slist_ptr); FUNC_LEAVE_NOAPI(ret_value) } /* H5C_dump_cache() */ #endif /* NDEBUG */ #ifndef NDEBUG /*------------------------------------------------------------------------- * Function: H5C_dump_cache_LRU * * Purpose: Print a summary of the contents of the metadata cache * LRU for debugging purposes. * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ herr_t H5C_dump_cache_LRU(H5C_t *cache_ptr, const char *cache_name) { H5C_cache_entry_t *entry_ptr; int i = 0; FUNC_ENTER_NOAPI_NOERR /* Sanity check */ assert(cache_ptr != NULL); assert(cache_name != NULL); fprintf(stdout, "\n\nDump of metadata cache LRU \"%s\"\n", cache_name); fprintf(stdout, "LRU len = %d, LRU size = %d\n", cache_ptr->LRU_list_len, (int)(cache_ptr->LRU_list_size)); fprintf(stdout, "index_size = %d, max_cache_size = %d, delta = %d\n\n", (int)(cache_ptr->index_size), (int)(cache_ptr->max_cache_size), (int)(cache_ptr->max_cache_size) - (int)(cache_ptr->index_size)); /* Print header */ fprintf(stdout, "Entry "); fprintf(stdout, "| Address "); fprintf(stdout, "| Tag "); fprintf(stdout, "| Size "); fprintf(stdout, "| Ring "); fprintf(stdout, "| Type "); fprintf(stdout, "| Dirty"); fprintf(stdout, "\n"); fprintf(stdout, "--------------------------------------------------------------------------------------" "--------------------------\n"); entry_ptr = cache_ptr->LRU_head_ptr; while (entry_ptr != NULL) { /* Print entry */ fprintf(stdout, "%s%5d ", cache_ptr->prefix, i); fprintf(stdout, " 0x%16llx ", (long long)(entry_ptr->addr)); if (NULL == entry_ptr->tag_info) fprintf(stdout, " %16s ", "N/A"); else fprintf(stdout, " 0x%16llx ", (long long)(entry_ptr->tag_info->tag)); fprintf(stdout, " %5lld ", (long long)(entry_ptr->size)); fprintf(stdout, " %d ", (int)(entry_ptr->ring)); fprintf(stdout, " %2d %-32s ", (int)(entry_ptr->type->id), (entry_ptr->type->name)); fprintf(stdout, " %d", (int)(entry_ptr->is_dirty)); fprintf(stdout, "\n"); i++; entry_ptr = entry_ptr->next; } /* end while */ fprintf(stdout, "--------------------------------------------------------------------------------------" "--------------------------\n"); FUNC_LEAVE_NOAPI(SUCCEED) } /* H5C_dump_cache_LRU() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_dump_cache_skip_list * * Purpose: Debugging routine that prints a summary of the contents of * the skip list used by the metadata cache metadata cache to * maintain an address sorted list of dirty entries. * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ #ifndef NDEBUG herr_t H5C_dump_cache_skip_list(H5C_t *cache_ptr, char *calling_fcn) { herr_t ret_value = SUCCEED; /* Return value */ int i; H5C_cache_entry_t *entry_ptr = NULL; H5SL_node_t *node_ptr = NULL; FUNC_ENTER_NOAPI_NOERR assert(cache_ptr != NULL); assert(calling_fcn != NULL); fprintf(stdout, "\n\nDumping metadata cache skip list from %s.\n", calling_fcn); fprintf(stdout, " slist %s.\n", cache_ptr->slist_enabled ? "enabled" : "disabled"); fprintf(stdout, " slist len = %" PRIu32 ".\n", cache_ptr->slist_len); fprintf(stdout, " slist size = %zu.\n", cache_ptr->slist_size); if (cache_ptr->slist_len > 0) { /* If we get this far, all entries in the cache are listed in the * skip list -- scan the skip list generating the desired output. */ fprintf(stdout, "Num: Addr: Len: Prot/Pind: Dirty: Type:\n"); i = 0; node_ptr = H5SL_first(cache_ptr->slist_ptr); if (node_ptr != NULL) entry_ptr = (H5C_cache_entry_t *)H5SL_item(node_ptr); else entry_ptr = NULL; while (entry_ptr != NULL) { fprintf(stdout, "%s%d 0x%016llx %4lld %d/%d %d %s\n", cache_ptr->prefix, i, (long long)(entry_ptr->addr), (long long)(entry_ptr->size), (int)(entry_ptr->is_protected), (int)(entry_ptr->is_pinned), (int)(entry_ptr->is_dirty), entry_ptr->type->name); fprintf(stdout, " node_ptr = %p, item = %p\n", (void *)node_ptr, H5SL_item(node_ptr)); /* increment node_ptr before we delete its target */ node_ptr = H5SL_next(node_ptr); if (node_ptr != NULL) entry_ptr = (H5C_cache_entry_t *)H5SL_item(node_ptr); else entry_ptr = NULL; i++; } /* end while */ } /* end if */ fprintf(stdout, "\n\n"); FUNC_LEAVE_NOAPI(ret_value) } /* H5C_dump_cache_skip_list() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_set_prefix * * Purpose: Set the values of the prefix field of H5C_t. This * filed is used to label some debugging output. * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ herr_t H5C_set_prefix(H5C_t *cache_ptr, char *prefix) { herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) if (cache_ptr == NULL || prefix == NULL || strlen(prefix) >= H5C__PREFIX_LEN) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Bad param(s) on entry"); strncpy(&(cache_ptr->prefix[0]), prefix, (size_t)(H5C__PREFIX_LEN)); cache_ptr->prefix[H5C__PREFIX_LEN - 1] = '\0'; done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C_set_prefix() */ /*------------------------------------------------------------------------- * Function: H5C_stats * * Purpose: Prints statistics about the cache. * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ herr_t H5C_stats(H5C_t *cache_ptr, const char *cache_name, bool #if !H5C_COLLECT_CACHE_STATS H5_ATTR_UNUSED #endif /* H5C_COLLECT_CACHE_STATS */ display_detailed_stats) { #if H5C_COLLECT_CACHE_STATS int i; int64_t total_hits = 0; int64_t total_misses = 0; int64_t total_write_protects = 0; int64_t total_read_protects = 0; int64_t max_read_protects = 0; int64_t total_insertions = 0; int64_t total_pinned_insertions = 0; int64_t total_clears = 0; int64_t total_flushes = 0; int64_t total_evictions = 0; int64_t total_take_ownerships = 0; int64_t total_moves = 0; int64_t total_entry_flush_moves = 0; int64_t total_cache_flush_moves = 0; int64_t total_size_increases = 0; int64_t total_size_decreases = 0; int64_t total_entry_flush_size_changes = 0; int64_t total_cache_flush_size_changes = 0; int64_t total_pins = 0; int64_t total_unpins = 0; int64_t total_dirty_pins = 0; int64_t total_pinned_flushes = 0; int64_t total_pinned_clears = 0; int32_t aggregate_max_accesses = 0; int32_t aggregate_min_accesses = 1000000; int32_t aggregate_max_clears = 0; int32_t aggregate_max_flushes = 0; size_t aggregate_max_size = 0; int32_t aggregate_max_pins = 0; double hit_rate; double prefetch_use_rate; double average_successful_search_depth = 0.0; double average_failed_search_depth = 0.0; double average_entries_skipped_per_calls_to_msic = 0.0; double average_dirty_pf_entries_skipped_per_call_to_msic = 0.0; double average_entries_scanned_per_calls_to_msic = 0.0; #endif /* H5C_COLLECT_CACHE_STATS */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) if (NULL == cache_ptr || NULL == cache_name) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Bad cache_ptr or cache_name"); #if H5C_COLLECT_CACHE_STATS for (i = 0; i <= cache_ptr->max_type_id; i++) { total_hits += cache_ptr->hits[i]; total_misses += cache_ptr->misses[i]; total_write_protects += cache_ptr->write_protects[i]; total_read_protects += cache_ptr->read_protects[i]; if (max_read_protects < cache_ptr->max_read_protects[i]) max_read_protects = cache_ptr->max_read_protects[i]; total_insertions += cache_ptr->insertions[i]; total_pinned_insertions += cache_ptr->pinned_insertions[i]; total_clears += cache_ptr->clears[i]; total_flushes += cache_ptr->flushes[i]; total_evictions += cache_ptr->evictions[i]; total_take_ownerships += cache_ptr->take_ownerships[i]; total_moves += cache_ptr->moves[i]; total_entry_flush_moves += cache_ptr->entry_flush_moves[i]; total_cache_flush_moves += cache_ptr->cache_flush_moves[i]; total_size_increases += cache_ptr->size_increases[i]; total_size_decreases += cache_ptr->size_decreases[i]; total_entry_flush_size_changes += cache_ptr->entry_flush_size_changes[i]; total_cache_flush_size_changes += cache_ptr->cache_flush_size_changes[i]; total_pins += cache_ptr->pins[i]; total_unpins += cache_ptr->unpins[i]; total_dirty_pins += cache_ptr->dirty_pins[i]; total_pinned_flushes += cache_ptr->pinned_flushes[i]; total_pinned_clears += cache_ptr->pinned_clears[i]; #if H5C_COLLECT_CACHE_ENTRY_STATS if (aggregate_max_accesses < cache_ptr->max_accesses[i]) aggregate_max_accesses = cache_ptr->max_accesses[i]; if (aggregate_min_accesses > aggregate_max_accesses) aggregate_min_accesses = aggregate_max_accesses; if (aggregate_min_accesses > cache_ptr->min_accesses[i]) aggregate_min_accesses = cache_ptr->min_accesses[i]; if (aggregate_max_clears < cache_ptr->max_clears[i]) aggregate_max_clears = cache_ptr->max_clears[i]; if (aggregate_max_flushes < cache_ptr->max_flushes[i]) aggregate_max_flushes = cache_ptr->max_flushes[i]; if (aggregate_max_size < cache_ptr->max_size[i]) aggregate_max_size = cache_ptr->max_size[i]; if (aggregate_max_pins < cache_ptr->max_pins[i]) aggregate_max_pins = cache_ptr->max_pins[i]; #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ } /* end for */ if ((total_hits > 0) || (total_misses > 0)) hit_rate = 100.0 * ((double)(total_hits)) / ((double)(total_hits + total_misses)); else hit_rate = 0.0; if (cache_ptr->successful_ht_searches > 0) average_successful_search_depth = ((double)(cache_ptr->total_successful_ht_search_depth)) / ((double)(cache_ptr->successful_ht_searches)); if (cache_ptr->failed_ht_searches > 0) average_failed_search_depth = ((double)(cache_ptr->total_failed_ht_search_depth)) / ((double)(cache_ptr->failed_ht_searches)); fprintf(stdout, "\n%sH5C: cache statistics for %s\n", cache_ptr->prefix, cache_name); fprintf(stdout, "\n"); fprintf(stdout, "%s hash table insertion / deletions = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->total_ht_insertions), (long)(cache_ptr->total_ht_deletions)); fprintf(stdout, "%s HT successful / failed searches = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->successful_ht_searches), (long)(cache_ptr->failed_ht_searches)); fprintf(stdout, "%s Av. HT suc / failed search depth = %f / %f\n", cache_ptr->prefix, average_successful_search_depth, average_failed_search_depth); fprintf(stdout, "%s current (max) index size / length = %ld (%ld) / %lu (%lu)\n", cache_ptr->prefix, (long)(cache_ptr->index_size), (long)(cache_ptr->max_index_size), (unsigned long)(cache_ptr->index_len), (unsigned long)(cache_ptr->max_index_len)); fprintf(stdout, "%s current (max) clean/dirty idx size = %ld (%ld) / %ld (%ld)\n", cache_ptr->prefix, (long)(cache_ptr->clean_index_size), (long)(cache_ptr->max_clean_index_size), (long)(cache_ptr->dirty_index_size), (long)(cache_ptr->max_dirty_index_size)); fprintf(stdout, "%s current (max) slist size / length = %ld (%ld) / %lu (%lu)\n", cache_ptr->prefix, (long)(cache_ptr->slist_size), (long)(cache_ptr->max_slist_size), (unsigned long)(cache_ptr->slist_len), (unsigned long)(cache_ptr->max_slist_len)); fprintf(stdout, "%s current (max) PL size / length = %ld (%ld) / %lu (%lu)\n", cache_ptr->prefix, (long)(cache_ptr->pl_size), (long)(cache_ptr->max_pl_size), (unsigned long)(cache_ptr->pl_len), (unsigned long)(cache_ptr->max_pl_len)); fprintf(stdout, "%s current (max) PEL size / length = %ld (%ld) / %lu (%lu)\n", cache_ptr->prefix, (long)(cache_ptr->pel_size), (long)(cache_ptr->max_pel_size), (unsigned long)(cache_ptr->pel_len), (unsigned long)(cache_ptr->max_pel_len)); fprintf(stdout, "%s current LRU list size / length = %ld / %lu\n", cache_ptr->prefix, (long)(cache_ptr->LRU_list_size), (unsigned long)(cache_ptr->LRU_list_len)); #if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS fprintf(stdout, "%s current clean LRU size / length = %ld / %lu\n", cache_ptr->prefix, (long)(cache_ptr->cLRU_list_size), (unsigned long)(cache_ptr->cLRU_list_len)); fprintf(stdout, "%s current dirty LRU size / length = %ld / %lu\n", cache_ptr->prefix, (long)(cache_ptr->dLRU_list_size), (unsigned long)(cache_ptr->dLRU_list_len)); #endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ fprintf(stdout, "%s Total hits / misses / hit_rate = %ld / %ld / %f\n", cache_ptr->prefix, (long)total_hits, (long)total_misses, hit_rate); fprintf(stdout, "%s Total write / read (max) protects = %ld / %ld (%ld)\n", cache_ptr->prefix, (long)total_write_protects, (long)total_read_protects, (long)max_read_protects); fprintf(stdout, "%s Total clears / flushes = %ld / %ld\n", cache_ptr->prefix, (long)total_clears, (long)total_flushes); fprintf(stdout, "%s Total evictions / take ownerships = %ld / %ld\n", cache_ptr->prefix, (long)total_evictions, (long)total_take_ownerships); fprintf(stdout, "%s Total insertions(pinned) / moves = %ld(%ld) / %ld\n", cache_ptr->prefix, (long)total_insertions, (long)total_pinned_insertions, (long)total_moves); fprintf(stdout, "%s Total entry / cache flush moves = %ld / %ld\n", cache_ptr->prefix, (long)total_entry_flush_moves, (long)total_cache_flush_moves); fprintf(stdout, "%s Total entry size incrs / decrs = %ld / %ld\n", cache_ptr->prefix, (long)total_size_increases, (long)total_size_decreases); fprintf(stdout, "%s Ttl entry/cache flush size changes = %ld / %ld\n", cache_ptr->prefix, (long)total_entry_flush_size_changes, (long)total_cache_flush_size_changes); fprintf(stdout, "%s Total entry pins (dirty) / unpins = %ld (%ld) / %ld\n", cache_ptr->prefix, (long)total_pins, (long)total_dirty_pins, (long)total_unpins); fprintf(stdout, "%s Total pinned flushes / clears = %ld / %ld\n", cache_ptr->prefix, (long)total_pinned_flushes, (long)total_pinned_clears); fprintf(stdout, "%s MSIC: (make space in cache) calls = %lld\n", cache_ptr->prefix, (long long)(cache_ptr->calls_to_msic)); if (cache_ptr->calls_to_msic > 0) average_entries_skipped_per_calls_to_msic = (((double)(cache_ptr->total_entries_skipped_in_msic)) / ((double)(cache_ptr->calls_to_msic))); fprintf(stdout, "%s MSIC: Average/max entries skipped = %lf / %ld\n", cache_ptr->prefix, (double)average_entries_skipped_per_calls_to_msic, (long)(cache_ptr->max_entries_skipped_in_msic)); if (cache_ptr->calls_to_msic > 0) average_dirty_pf_entries_skipped_per_call_to_msic = (((double)(cache_ptr->total_dirty_pf_entries_skipped_in_msic)) / ((double)(cache_ptr->calls_to_msic))); fprintf(stdout, "%s MSIC: Average/max dirty pf entries skipped = %lf / %ld\n", cache_ptr->prefix, average_dirty_pf_entries_skipped_per_call_to_msic, (long)(cache_ptr->max_dirty_pf_entries_skipped_in_msic)); if (cache_ptr->calls_to_msic > 0) average_entries_scanned_per_calls_to_msic = (((double)(cache_ptr->total_entries_scanned_in_msic)) / ((double)(cache_ptr->calls_to_msic))); fprintf(stdout, "%s MSIC: Average/max entries scanned = %lf / %ld\n", cache_ptr->prefix, (double)average_entries_scanned_per_calls_to_msic, (long)(cache_ptr->max_entries_scanned_in_msic)); fprintf(stdout, "%s MSIC: Scanned to make space(evict) = %lld\n", cache_ptr->prefix, (long long)(cache_ptr->entries_scanned_to_make_space)); fprintf(stdout, "%s MSIC: Scanned to satisfy min_clean = %lld\n", cache_ptr->prefix, (long long)(cache_ptr->total_entries_scanned_in_msic - cache_ptr->entries_scanned_to_make_space)); fprintf(stdout, "%s slist/LRU/index scan restarts = %lld / %lld / %lld.\n", cache_ptr->prefix, (long long)(cache_ptr->slist_scan_restarts), (long long)(cache_ptr->LRU_scan_restarts), (long long)(cache_ptr->index_scan_restarts)); fprintf(stdout, "%s cache image creations/reads/loads/size = %d / %d /%d / %" PRIuHSIZE "\n", cache_ptr->prefix, cache_ptr->images_created, cache_ptr->images_read, cache_ptr->images_loaded, cache_ptr->last_image_size); fprintf(stdout, "%s prefetches / dirty prefetches = %lld / %lld\n", cache_ptr->prefix, (long long)(cache_ptr->prefetches), (long long)(cache_ptr->dirty_prefetches)); fprintf(stdout, "%s prefetch hits/flushes/evictions = %lld / %lld / %lld\n", cache_ptr->prefix, (long long)(cache_ptr->prefetch_hits), (long long)(cache_ptr->flushes[H5AC_PREFETCHED_ENTRY_ID]), (long long)(cache_ptr->evictions[H5AC_PREFETCHED_ENTRY_ID])); if (cache_ptr->prefetches > 0) prefetch_use_rate = 100.0 * ((double)(cache_ptr->prefetch_hits)) / ((double)(cache_ptr->prefetches)); else prefetch_use_rate = 0.0; fprintf(stdout, "%s prefetched entry use rate = %lf\n", cache_ptr->prefix, prefetch_use_rate); #if H5C_COLLECT_CACHE_ENTRY_STATS fprintf(stdout, "%s aggregate max / min accesses = %d / %d\n", cache_ptr->prefix, (int)aggregate_max_accesses, (int)aggregate_min_accesses); fprintf(stdout, "%s aggregate max_clears / max_flushes = %d / %d\n", cache_ptr->prefix, (int)aggregate_max_clears, (int)aggregate_max_flushes); fprintf(stdout, "%s aggregate max_size / max_pins = %d / %d\n", cache_ptr->prefix, (int)aggregate_max_size, (int)aggregate_max_pins); #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ if (display_detailed_stats) { for (i = 0; i <= cache_ptr->max_type_id; i++) { fprintf(stdout, "\n"); fprintf(stdout, "%s Stats on %s:\n", cache_ptr->prefix, ((cache_ptr->class_table_ptr))[i]->name); if ((cache_ptr->hits[i] > 0) || (cache_ptr->misses[i] > 0)) hit_rate = 100.0 * ((double)(cache_ptr->hits[i])) / ((double)(cache_ptr->hits[i] + cache_ptr->misses[i])); else hit_rate = 0.0; fprintf(stdout, "%s hits / misses / hit_rate = %ld / %ld / %f\n", cache_ptr->prefix, (long)(cache_ptr->hits[i]), (long)(cache_ptr->misses[i]), hit_rate); fprintf(stdout, "%s write / read (max) protects = %ld / %ld (%d)\n", cache_ptr->prefix, (long)(cache_ptr->write_protects[i]), (long)(cache_ptr->read_protects[i]), (int)(cache_ptr->max_read_protects[i])); fprintf(stdout, "%s clears / flushes = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->clears[i]), (long)(cache_ptr->flushes[i])); fprintf(stdout, "%s evictions / take ownerships = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->evictions[i]), (long)(cache_ptr->take_ownerships[i])); fprintf(stdout, "%s insertions(pinned) / moves = %ld(%ld) / %ld\n", cache_ptr->prefix, (long)(cache_ptr->insertions[i]), (long)(cache_ptr->pinned_insertions[i]), (long)(cache_ptr->moves[i])); fprintf(stdout, "%s entry / cache flush moves = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->entry_flush_moves[i]), (long)(cache_ptr->cache_flush_moves[i])); fprintf(stdout, "%s size increases / decreases = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->size_increases[i]), (long)(cache_ptr->size_decreases[i])); fprintf(stdout, "%s entry/cache flush size changes = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->entry_flush_size_changes[i]), (long)(cache_ptr->cache_flush_size_changes[i])); fprintf(stdout, "%s entry pins / unpins = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->pins[i]), (long)(cache_ptr->unpins[i])); fprintf(stdout, "%s entry dirty pins/pin'd flushes = %ld / %ld\n", cache_ptr->prefix, (long)(cache_ptr->dirty_pins[i]), (long)(cache_ptr->pinned_flushes[i])); #if H5C_COLLECT_CACHE_ENTRY_STATS fprintf(stdout, "%s entry max / min accesses = %d / %d\n", cache_ptr->prefix, cache_ptr->max_accesses[i], cache_ptr->min_accesses[i]); fprintf(stdout, "%s entry max_clears / max_flushes = %d / %d\n", cache_ptr->prefix, cache_ptr->max_clears[i], cache_ptr->max_flushes[i]); fprintf(stdout, "%s entry max_size / max_pins = %d / %d\n", cache_ptr->prefix, (int)(cache_ptr->max_size[i]), (int)(cache_ptr->max_pins[i])); #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ } /* end for */ } /* end if */ fprintf(stdout, "\n"); #endif /* H5C_COLLECT_CACHE_STATS */ done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C_stats() */ /*------------------------------------------------------------------------- * Function: H5C_stats__reset * * Purpose: Reset the stats fields to their initial values. * * Return: void * *------------------------------------------------------------------------- */ void #ifndef NDEBUG H5C_stats__reset(H5C_t *cache_ptr) #else /* NDEBUG */ #if H5C_COLLECT_CACHE_STATS H5C_stats__reset(H5C_t *cache_ptr) #else /* H5C_COLLECT_CACHE_STATS */ H5C_stats__reset(H5C_t H5_ATTR_UNUSED *cache_ptr) #endif /* H5C_COLLECT_CACHE_STATS */ #endif /* NDEBUG */ { #if H5C_COLLECT_CACHE_STATS int i; #endif /* H5C_COLLECT_CACHE_STATS */ assert(cache_ptr); #if H5C_COLLECT_CACHE_STATS for (i = 0; i <= cache_ptr->max_type_id; i++) { cache_ptr->hits[i] = 0; cache_ptr->misses[i] = 0; cache_ptr->write_protects[i] = 0; cache_ptr->read_protects[i] = 0; cache_ptr->max_read_protects[i] = 0; cache_ptr->insertions[i] = 0; cache_ptr->pinned_insertions[i] = 0; cache_ptr->clears[i] = 0; cache_ptr->flushes[i] = 0; cache_ptr->evictions[i] = 0; cache_ptr->take_ownerships[i] = 0; cache_ptr->moves[i] = 0; cache_ptr->entry_flush_moves[i] = 0; cache_ptr->cache_flush_moves[i] = 0; cache_ptr->pins[i] = 0; cache_ptr->unpins[i] = 0; cache_ptr->dirty_pins[i] = 0; cache_ptr->pinned_flushes[i] = 0; cache_ptr->pinned_clears[i] = 0; cache_ptr->size_increases[i] = 0; cache_ptr->size_decreases[i] = 0; cache_ptr->entry_flush_size_changes[i] = 0; cache_ptr->cache_flush_size_changes[i] = 0; } /* end for */ cache_ptr->total_ht_insertions = 0; cache_ptr->total_ht_deletions = 0; cache_ptr->successful_ht_searches = 0; cache_ptr->total_successful_ht_search_depth = 0; cache_ptr->failed_ht_searches = 0; cache_ptr->total_failed_ht_search_depth = 0; cache_ptr->max_index_len = 0; cache_ptr->max_index_size = (size_t)0; cache_ptr->max_clean_index_size = (size_t)0; cache_ptr->max_dirty_index_size = (size_t)0; cache_ptr->max_slist_len = 0; cache_ptr->max_slist_size = (size_t)0; cache_ptr->max_pl_len = 0; cache_ptr->max_pl_size = (size_t)0; cache_ptr->max_pel_len = 0; cache_ptr->max_pel_size = (size_t)0; cache_ptr->calls_to_msic = 0; cache_ptr->total_entries_skipped_in_msic = 0; cache_ptr->total_dirty_pf_entries_skipped_in_msic = 0; cache_ptr->total_entries_scanned_in_msic = 0; cache_ptr->max_entries_skipped_in_msic = 0; cache_ptr->max_dirty_pf_entries_skipped_in_msic = 0; cache_ptr->max_entries_scanned_in_msic = 0; cache_ptr->entries_scanned_to_make_space = 0; cache_ptr->slist_scan_restarts = 0; cache_ptr->LRU_scan_restarts = 0; cache_ptr->index_scan_restarts = 0; cache_ptr->images_created = 0; cache_ptr->images_read = 0; cache_ptr->images_loaded = 0; cache_ptr->last_image_size = (hsize_t)0; cache_ptr->prefetches = 0; cache_ptr->dirty_prefetches = 0; cache_ptr->prefetch_hits = 0; #if H5C_COLLECT_CACHE_ENTRY_STATS for (i = 0; i <= cache_ptr->max_type_id; i++) { cache_ptr->max_accesses[i] = 0; cache_ptr->min_accesses[i] = 1000000; cache_ptr->max_clears[i] = 0; cache_ptr->max_flushes[i] = 0; cache_ptr->max_size[i] = (size_t)0; cache_ptr->max_pins[i] = 0; } /* end for */ #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ #endif /* H5C_COLLECT_CACHE_STATS */ } /* H5C_stats__reset() */ /*------------------------------------------------------------------------- * Function: H5C_flush_dependency_exists() * * Purpose: Test to see if a flush dependency relationship exists * between the supplied parent and child. Both parties * are indicated by addresses so as to avoid the necessity * of protect / unprotect calls prior to this call. * * If either the parent or the child is not in the metadata * cache, the function sets *fd_exists_ptr to false. * * If both are in the cache, the child's list of parents is * searched for the proposed parent. If the proposed parent * is found in the child's parent list, the function sets * *fd_exists_ptr to true. In all other non-error cases, * the function sets *fd_exists_ptr false. * * Return: SUCCEED on success/FAIL on failure. Note that * *fd_exists_ptr is undefined on failure. * *------------------------------------------------------------------------- */ #ifndef NDEBUG herr_t H5C_flush_dependency_exists(H5C_t *cache_ptr, haddr_t parent_addr, haddr_t child_addr, bool *fd_exists_ptr) { bool fd_exists = false; /* whether flush dependency exists */ H5C_cache_entry_t *parent_ptr; /* Ptr to parent entry */ H5C_cache_entry_t *child_ptr; /* Ptr to child entry */ bool ret_value = false; /* Return value */ FUNC_ENTER_NOAPI(NULL) /* Sanity checks */ assert(cache_ptr); assert(H5_addr_defined(parent_addr)); assert(H5_addr_defined(child_addr)); assert(fd_exists_ptr); H5C__SEARCH_INDEX(cache_ptr, parent_addr, parent_ptr, FAIL); H5C__SEARCH_INDEX(cache_ptr, child_addr, child_ptr, FAIL); if (parent_ptr && child_ptr) { if (child_ptr->flush_dep_nparents > 0) { unsigned u; /* Local index variable */ assert(child_ptr->flush_dep_parent); assert(child_ptr->flush_dep_parent_nalloc >= child_ptr->flush_dep_nparents); for (u = 0; u < child_ptr->flush_dep_nparents; u++) { if (child_ptr->flush_dep_parent[u] == parent_ptr) { fd_exists = true; assert(parent_ptr->flush_dep_nchildren > 0); break; } /* end if */ } /* end for */ } /* end if */ } /* end if */ *fd_exists_ptr = fd_exists; done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C_flush_dependency_exists() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_validate_index_list * * Purpose: Debugging function that scans the index list for errors. * * If an error is detected, the function generates a * diagnostic and returns FAIL. If no error is detected, * the function returns SUCCEED. * * Return: FAIL if error is detected, SUCCEED otherwise. * *------------------------------------------------------------------------- */ #ifndef NDEBUG herr_t H5C_validate_index_list(H5C_t *cache_ptr) { H5C_cache_entry_t *entry_ptr = NULL; uint32_t len = 0; int32_t index_ring_len[H5C_RING_NTYPES]; size_t size = 0; size_t clean_size = 0; size_t dirty_size = 0; size_t index_ring_size[H5C_RING_NTYPES]; size_t clean_index_ring_size[H5C_RING_NTYPES]; size_t dirty_index_ring_size[H5C_RING_NTYPES]; int i; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI_NOINIT /* Sanity checks */ assert(cache_ptr); for (i = 0; i < H5C_RING_NTYPES; i++) { index_ring_len[i] = 0; index_ring_size[i] = 0; clean_index_ring_size[i] = 0; dirty_index_ring_size[i] = 0; } /* end if */ if (((cache_ptr->il_head == NULL) || (cache_ptr->il_tail == NULL)) && (cache_ptr->il_head != cache_ptr->il_tail)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index list pointer validation failed"); if ((cache_ptr->index_len == 1) && ((cache_ptr->il_head != cache_ptr->il_tail) || (cache_ptr->il_head == NULL) || (cache_ptr->il_head->size != cache_ptr->index_size))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index list pointer sanity checks failed"); if ((cache_ptr->index_len >= 1) && ((cache_ptr->il_head == NULL) || (cache_ptr->il_head->il_prev != NULL) || (cache_ptr->il_tail == NULL) || (cache_ptr->il_tail->il_next != NULL))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index list length sanity checks failed"); entry_ptr = cache_ptr->il_head; while (entry_ptr != NULL) { if ((entry_ptr != cache_ptr->il_head) && ((entry_ptr->il_prev == NULL) || (entry_ptr->il_prev->il_next != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index list pointers for entry are invalid"); if ((entry_ptr != cache_ptr->il_tail) && ((entry_ptr->il_next == NULL) || (entry_ptr->il_next->il_prev != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index list pointers for entry are invalid"); assert(entry_ptr->ring > 0); assert(entry_ptr->ring < H5C_RING_NTYPES); len++; index_ring_len[entry_ptr->ring] += 1; size += entry_ptr->size; index_ring_size[entry_ptr->ring] += entry_ptr->size; if (entry_ptr->is_dirty) { dirty_size += entry_ptr->size; dirty_index_ring_size[entry_ptr->ring] += entry_ptr->size; } /* end if */ else { clean_size += entry_ptr->size; clean_index_ring_size[entry_ptr->ring] += entry_ptr->size; } /* end else */ entry_ptr = entry_ptr->il_next; } /* end while */ if ((cache_ptr->index_len != len) || (cache_ptr->il_len != len) || (cache_ptr->index_size != size) || (cache_ptr->il_size != size) || (cache_ptr->clean_index_size != clean_size) || (cache_ptr->dirty_index_size != dirty_size) || (clean_size + dirty_size != size)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index, clean and dirty sizes for cache are invalid"); size = 0; clean_size = 0; dirty_size = 0; for (i = 0; i < H5C_RING_NTYPES; i++) { size += clean_index_ring_size[i] + dirty_index_ring_size[i]; clean_size += clean_index_ring_size[i]; dirty_size += dirty_index_ring_size[i]; } /* end for */ if ((cache_ptr->index_size != size) || (cache_ptr->clean_index_size != clean_size) || (cache_ptr->dirty_index_size != dirty_size)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Index, clean and dirty sizes for cache are invalid"); done: if (ret_value != SUCCEED) assert(0); FUNC_LEAVE_NOAPI(ret_value) } /* H5C_validate_index_list() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_get_entry_ptr_from_addr() * * Purpose: Debugging function that attempts to look up an entry in the * cache by its file address, and if found, returns a pointer * to the entry in *entry_ptr_ptr. If the entry is not in the * cache, *entry_ptr_ptr is set to NULL. * * WARNING: This call should be used only in debugging * routines, and it should be avoided when * possible. * * Further, if we ever multi-thread the cache, * this routine will have to be either discarded * or heavily re-worked. * * Finally, keep in mind that the entry whose * pointer is obtained in this fashion may not * be in a stable state. * * Note that this function is only defined if NDEBUG * is not defined. * * As heavy use of this function is almost certainly a * bad idea, the metadata cache tracks the number of * successful calls to this function, and (if * H5C_DO_SANITY_CHECKS is defined) displays any * non-zero count on cache shutdown. * * Return: FAIL if error is detected, SUCCEED otherwise. * *------------------------------------------------------------------------- */ #ifndef NDEBUG herr_t H5C_get_entry_ptr_from_addr(H5C_t *cache_ptr, haddr_t addr, void **entry_ptr_ptr) { H5C_cache_entry_t *entry_ptr = NULL; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) /* Sanity checks */ assert(cache_ptr); assert(H5_addr_defined(addr)); assert(entry_ptr_ptr); H5C__SEARCH_INDEX(cache_ptr, addr, entry_ptr, FAIL); if (entry_ptr == NULL) /* the entry doesn't exist in the cache -- report this * and quit. */ *entry_ptr_ptr = NULL; else { *entry_ptr_ptr = entry_ptr; /* increment call counter */ (cache_ptr->get_entry_ptr_from_addr_counter)++; } /* end else */ done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C_get_entry_ptr_from_addr() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_get_serialization_in_progress * * Purpose: Return the current value of * cache_ptr->serialization_in_progress. * * Return: Current value of cache_ptr->serialization_in_progress. * *------------------------------------------------------------------------- */ #ifndef NDEBUG bool H5C_get_serialization_in_progress(const H5C_t *cache_ptr) { FUNC_ENTER_NOAPI_NOINIT_NOERR /* Sanity check */ assert(cache_ptr); FUNC_LEAVE_NOAPI(cache_ptr->serialization_in_progress) } /* H5C_get_serialization_in_progress() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_cache_is_clean() * * Purpose: Debugging function that verifies that all rings in the * metadata cache are clean from the outermost ring, inwards * to the inner ring specified. * * Returns true if all specified rings are clean, and false * if not. Throws an assertion failure on error. * * Return: true if the indicated ring(s) are clean, and false otherwise. * *------------------------------------------------------------------------- */ #ifndef NDEBUG bool H5C_cache_is_clean(const H5C_t *cache_ptr, H5C_ring_t inner_ring) { H5C_ring_t ring = H5C_RING_USER; bool ret_value = true; /* Return value */ FUNC_ENTER_NOAPI_NOINIT_NOERR /* Sanity checks */ assert(cache_ptr); assert(inner_ring >= H5C_RING_USER); assert(inner_ring <= H5C_RING_SB); while (ring <= inner_ring) { if (cache_ptr->dirty_index_ring_size[ring] > 0) HGOTO_DONE(false); ring++; } /* end while */ done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C_cache_is_clean() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_verify_entry_type() * * Purpose: Debugging function that attempts to look up an entry in the * cache by its file address, and if found, test to see if its * type field contains the expted value. * * If the specified entry is in cache, *in_cache_ptr is set * to true, and *type_ok_ptr is set to true or false depending * on whether the entries type field matches the expected_type * parameter. * * If the target entry is not in cache, *in_cache_ptr is * set to false, and *type_ok_ptr is undefined. * * Note that this function is only defined if NDEBUG * is not defined. * * Return: FAIL if error is detected, SUCCEED otherwise. * *------------------------------------------------------------------------- */ #ifndef NDEBUG herr_t H5C_verify_entry_type(H5C_t *cache_ptr, haddr_t addr, const H5C_class_t *expected_type, bool *in_cache_ptr, bool *type_ok_ptr) { H5C_cache_entry_t *entry_ptr = NULL; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) /* Sanity checks */ assert(cache_ptr); assert(H5_addr_defined(addr)); assert(expected_type); assert(in_cache_ptr); assert(type_ok_ptr); H5C__SEARCH_INDEX(cache_ptr, addr, entry_ptr, FAIL); if (entry_ptr == NULL) /* the entry doesn't exist in the cache -- report this * and quit. */ *in_cache_ptr = false; else { *in_cache_ptr = true; if (entry_ptr->prefetched) *type_ok_ptr = (expected_type->id == entry_ptr->prefetch_type_id); else *type_ok_ptr = (expected_type == entry_ptr->type); } /* end else */ done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C_verify_entry_type() */ #endif /* NDEBUG */ /*------------------------------------------------------------------------- * Function: H5C_def_auto_resize_rpt_fcn * * Purpose: Print results of a automatic cache resize. * * This function should only be used where printf() behaves * well -- i.e. not on Windows. * * Return: void * *------------------------------------------------------------------------- */ void H5C_def_auto_resize_rpt_fcn(H5C_t *cache_ptr, #ifndef NDEBUG int32_t version, #else int32_t H5_ATTR_UNUSED version, #endif double hit_rate, enum H5C_resize_status status, size_t old_max_cache_size, size_t new_max_cache_size, size_t old_min_clean_size, size_t new_min_clean_size) { assert(cache_ptr != NULL); assert(version == H5C__CURR_AUTO_RESIZE_RPT_FCN_VER); switch (status) { case in_spec: fprintf(stdout, "%sAuto cache resize -- no change. (hit rate = %lf)\n", cache_ptr->prefix, hit_rate); break; case increase: assert(hit_rate < cache_ptr->resize_ctl.lower_hr_threshold); assert(old_max_cache_size < new_max_cache_size); fprintf(stdout, "%sAuto cache resize -- hit rate (%lf) out of bounds low (%6.5lf).\n", cache_ptr->prefix, hit_rate, cache_ptr->resize_ctl.lower_hr_threshold); fprintf(stdout, "%scache size increased from (%zu/%zu) to (%zu/%zu).\n", cache_ptr->prefix, old_max_cache_size, old_min_clean_size, new_max_cache_size, new_min_clean_size); break; case flash_increase: assert(old_max_cache_size < new_max_cache_size); fprintf(stdout, "%sflash cache resize(%d) -- size threshold = %zu.\n", cache_ptr->prefix, (int)(cache_ptr->resize_ctl.flash_incr_mode), cache_ptr->flash_size_increase_threshold); fprintf(stdout, "%s cache size increased from (%zu/%zu) to (%zu/%zu).\n", cache_ptr->prefix, old_max_cache_size, old_min_clean_size, new_max_cache_size, new_min_clean_size); break; case decrease: assert(old_max_cache_size > new_max_cache_size); switch (cache_ptr->resize_ctl.decr_mode) { case H5C_decr__off: fprintf(stdout, "%sAuto cache resize -- decrease off. HR = %lf\n", cache_ptr->prefix, hit_rate); break; case H5C_decr__threshold: assert(hit_rate > cache_ptr->resize_ctl.upper_hr_threshold); fprintf(stdout, "%sAuto cache resize -- decrease by threshold. HR = %lf > %6.5lf\n", cache_ptr->prefix, hit_rate, cache_ptr->resize_ctl.upper_hr_threshold); fprintf(stdout, "%sout of bounds high (%6.5lf).\n", cache_ptr->prefix, cache_ptr->resize_ctl.upper_hr_threshold); break; case H5C_decr__age_out: fprintf(stdout, "%sAuto cache resize -- decrease by ageout. HR = %lf\n", cache_ptr->prefix, hit_rate); break; case H5C_decr__age_out_with_threshold: assert(hit_rate > cache_ptr->resize_ctl.upper_hr_threshold); fprintf(stdout, "%sAuto cache resize -- decrease by ageout with threshold. HR = %lf > %6.5lf\n", cache_ptr->prefix, hit_rate, cache_ptr->resize_ctl.upper_hr_threshold); break; default: fprintf(stdout, "%sAuto cache resize -- decrease by unknown mode. HR = %lf\n", cache_ptr->prefix, hit_rate); } fprintf(stdout, "%s cache size decreased from (%zu/%zu) to (%zu/%zu).\n", cache_ptr->prefix, old_max_cache_size, old_min_clean_size, new_max_cache_size, new_min_clean_size); break; case at_max_size: fprintf(stdout, "%sAuto cache resize -- hit rate (%lf) out of bounds low (%6.5lf).\n", cache_ptr->prefix, hit_rate, cache_ptr->resize_ctl.lower_hr_threshold); fprintf(stdout, "%s cache already at maximum size so no change.\n", cache_ptr->prefix); break; case at_min_size: fprintf(stdout, "%sAuto cache resize -- hit rate (%lf) -- can't decrease.\n", cache_ptr->prefix, hit_rate); fprintf(stdout, "%s cache already at minimum size.\n", cache_ptr->prefix); break; case increase_disabled: fprintf(stdout, "%sAuto cache resize -- increase disabled -- HR = %lf.", cache_ptr->prefix, hit_rate); break; case decrease_disabled: fprintf(stdout, "%sAuto cache resize -- decrease disabled -- HR = %lf.\n", cache_ptr->prefix, hit_rate); break; case not_full: assert(hit_rate < cache_ptr->resize_ctl.lower_hr_threshold); fprintf(stdout, "%sAuto cache resize -- hit rate (%lf) out of bounds low (%6.5lf).\n", cache_ptr->prefix, hit_rate, cache_ptr->resize_ctl.lower_hr_threshold); fprintf(stdout, "%s cache not full so no increase in size.\n", cache_ptr->prefix); break; default: fprintf(stdout, "%sAuto cache resize -- unknown status code.\n", cache_ptr->prefix); break; } } /* H5C_def_auto_resize_rpt_fcn() */ /*------------------------------------------------------------------------- * Function: H5C__validate_lru_list * * Purpose: Debugging function that scans the LRU list for errors. * * If an error is detected, the function generates a * diagnostic and returns FAIL. If no error is detected, * the function returns SUCCEED. * * Return: FAIL if error is detected, SUCCEED otherwise. * *------------------------------------------------------------------------- */ #ifdef H5C_DO_EXTREME_SANITY_CHECKS herr_t H5C__validate_lru_list(H5C_t *cache_ptr) { int32_t len = 0; size_t size = 0; H5C_cache_entry_t *entry_ptr = NULL; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_PACKAGE assert(cache_ptr); if (((cache_ptr->LRU_head_ptr == NULL) || (cache_ptr->LRU_tail_ptr == NULL)) && (cache_ptr->LRU_head_ptr != cache_ptr->LRU_tail_ptr)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "LRU list head/tail check failed"); if ((cache_ptr->LRU_list_len == 1) && ((cache_ptr->LRU_head_ptr != cache_ptr->LRU_tail_ptr) || (cache_ptr->LRU_head_ptr == NULL) || (cache_ptr->LRU_head_ptr->size != cache_ptr->LRU_list_size))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "LRU list sanity check failed"); if ((cache_ptr->LRU_list_len >= 1) && ((cache_ptr->LRU_head_ptr == NULL) || (cache_ptr->LRU_head_ptr->prev != NULL) || (cache_ptr->LRU_tail_ptr == NULL) || (cache_ptr->LRU_tail_ptr->next != NULL))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "LRU list sanity check failed"); entry_ptr = cache_ptr->LRU_head_ptr; while (entry_ptr != NULL) { if ((entry_ptr != cache_ptr->LRU_head_ptr) && ((entry_ptr->prev == NULL) || (entry_ptr->prev->next != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "entry has bad prev/next pointers"); if ((entry_ptr != cache_ptr->LRU_tail_ptr) && ((entry_ptr->next == NULL) || (entry_ptr->next->prev != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "entry has bad prev/next pointers"); if (entry_ptr->is_pinned || entry_ptr->pinned_from_client || entry_ptr->pinned_from_cache) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "invalid entry 'pin origin' fields"); len++; size += entry_ptr->size; entry_ptr = entry_ptr->next; } if ((cache_ptr->LRU_list_len != (uint32_t)len) || (cache_ptr->LRU_list_size != size)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "LRU list length/size check failed"); done: if (ret_value != SUCCEED) assert(0); FUNC_LEAVE_NOAPI(ret_value) } /* H5C__validate_lru_list() */ #endif /* H5C_DO_EXTREME_SANITY_CHECKS */ /*------------------------------------------------------------------------- * Function: H5C__validate_pinned_entry_list * * Purpose: Debugging function that scans the pinned entry list for * errors. * * If an error is detected, the function generates a * diagnostic and returns FAIL. If no error is detected, * the function returns SUCCEED. * * Return: FAIL if error is detected, SUCCEED otherwise. * *------------------------------------------------------------------------- */ #ifdef H5C_DO_EXTREME_SANITY_CHECKS herr_t H5C__validate_pinned_entry_list(H5C_t *cache_ptr) { int32_t len = 0; size_t size = 0; H5C_cache_entry_t *entry_ptr = NULL; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_PACKAGE assert(cache_ptr); if (((cache_ptr->pel_head_ptr == NULL) || (cache_ptr->pel_tail_ptr == NULL)) && (cache_ptr->pel_head_ptr != cache_ptr->pel_tail_ptr)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "pinned list head/tail check failed"); if ((cache_ptr->pel_len == 1) && ((cache_ptr->pel_head_ptr != cache_ptr->pel_tail_ptr) || (cache_ptr->pel_head_ptr == NULL) || (cache_ptr->pel_head_ptr->size != cache_ptr->pel_size))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "pinned list sanity check failed"); if ((cache_ptr->pel_len >= 1) && ((cache_ptr->pel_head_ptr == NULL) || (cache_ptr->pel_head_ptr->prev != NULL) || (cache_ptr->pel_tail_ptr == NULL) || (cache_ptr->pel_tail_ptr->next != NULL))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "pinned list sanity check failed"); entry_ptr = cache_ptr->pel_head_ptr; while (entry_ptr != NULL) { if ((entry_ptr != cache_ptr->pel_head_ptr) && ((entry_ptr->prev == NULL) || (entry_ptr->prev->next != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "entry has bad prev/next pointers"); if ((entry_ptr != cache_ptr->pel_tail_ptr) && ((entry_ptr->next == NULL) || (entry_ptr->next->prev != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "entry has bad prev/next pointers"); if (!entry_ptr->is_pinned) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "pinned list contains unpinned entry"); if (!(entry_ptr->pinned_from_client || entry_ptr->pinned_from_cache)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "invalid entry 'pin origin' fields"); len++; size += entry_ptr->size; entry_ptr = entry_ptr->next; } if ((cache_ptr->pel_len != (uint32_t)len) || (cache_ptr->pel_size != size)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "pinned list length/size check failed"); done: if (ret_value != SUCCEED) assert(0); FUNC_LEAVE_NOAPI(ret_value) } /* H5C__validate_pinned_entry_list() */ #endif /* H5C_DO_EXTREME_SANITY_CHECKS */ /*------------------------------------------------------------------------- * Function: H5C__validate_protected_entry_list * * Purpose: Debugging function that scans the protected entry list for * errors. * * If an error is detected, the function generates a * diagnostic and returns FAIL. If no error is detected, * the function returns SUCCEED. * * Return: FAIL if error is detected, SUCCEED otherwise. * *------------------------------------------------------------------------- */ #ifdef H5C_DO_EXTREME_SANITY_CHECKS herr_t H5C__validate_protected_entry_list(H5C_t *cache_ptr) { int32_t len = 0; size_t size = 0; H5C_cache_entry_t *entry_ptr = NULL; herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_PACKAGE assert(cache_ptr); if (((cache_ptr->pl_head_ptr == NULL) || (cache_ptr->pl_tail_ptr == NULL)) && (cache_ptr->pl_head_ptr != cache_ptr->pl_tail_ptr)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "protected list head/tail check failed"); if ((cache_ptr->pl_len == 1) && ((cache_ptr->pl_head_ptr != cache_ptr->pl_tail_ptr) || (cache_ptr->pl_head_ptr == NULL) || (cache_ptr->pl_head_ptr->size != cache_ptr->pl_size))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "protected list sanity check failed"); if ((cache_ptr->pl_len >= 1) && ((cache_ptr->pl_head_ptr == NULL) || (cache_ptr->pl_head_ptr->prev != NULL) || (cache_ptr->pl_tail_ptr == NULL) || (cache_ptr->pl_tail_ptr->next != NULL))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "protected list sanity check failed"); entry_ptr = cache_ptr->pl_head_ptr; while (entry_ptr != NULL) { if ((entry_ptr != cache_ptr->pl_head_ptr) && ((entry_ptr->prev == NULL) || (entry_ptr->prev->next != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "entry has bad prev/next pointers"); if ((entry_ptr != cache_ptr->pl_tail_ptr) && ((entry_ptr->next == NULL) || (entry_ptr->next->prev != entry_ptr))) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "entry has bad prev/next pointers"); if (!entry_ptr->is_protected) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "protected list contains unprotected entry"); if (entry_ptr->is_read_only && (entry_ptr->ro_ref_count <= 0)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "read-only entry has non-positive ref count"); len++; size += entry_ptr->size; entry_ptr = entry_ptr->next; } if ((cache_ptr->pl_len != (uint32_t)len) || (cache_ptr->pl_size != size)) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "protected list length/size check failed"); done: if (ret_value != SUCCEED) assert(0); FUNC_LEAVE_NOAPI(ret_value) } /* H5C__validate_protected_entry_list() */ #endif /* H5C_DO_EXTREME_SANITY_CHECKS */ /*------------------------------------------------------------------------- * Function: H5C__entry_in_skip_list * * Purpose: Debugging function that scans skip list to see if it * is in present. We need this, as it is possible for * an entry to be in the skip list twice. * * Return: false if the entry is not in the skip list, and true * if it is. * *------------------------------------------------------------------------- */ #ifdef H5C_DO_SLIST_SANITY_CHECKS bool H5C__entry_in_skip_list(H5C_t *cache_ptr, H5C_cache_entry_t *target_ptr) { H5SL_node_t *node_ptr; bool in_slist; bool ret_value; FUNC_ENTER_PACKAGE /* Assertions */ assert(cache_ptr); assert(cache_ptr->slist_ptr); node_ptr = H5SL_first(cache_ptr->slist_ptr); in_slist = false; while ((node_ptr != NULL) && (!in_slist)) { H5C_cache_entry_t *entry_ptr; entry_ptr = (H5C_cache_entry_t *)H5SL_item(node_ptr); assert(entry_ptr); assert(entry_ptr->is_dirty); assert(entry_ptr->in_slist); if (entry_ptr == target_ptr) in_slist = true; else node_ptr = H5SL_next(node_ptr); } /* Set return value */ ret_value = in_slist; done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C__entry_in_skip_list() */ #endif /* H5C_DO_SLIST_SANITY_CHECKS */ /*------------------------------------------------------------------------- * Function: H5C__image_stats * * Purpose: Prints statistics specific to the cache image. * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ herr_t #if H5C_COLLECT_CACHE_STATS H5C__image_stats(H5C_t *cache_ptr, bool print_header) #else /* H5C_COLLECT_CACHE_STATS */ H5C__image_stats(H5C_t *cache_ptr, bool H5_ATTR_UNUSED print_header) #endif /* H5C_COLLECT_CACHE_STATS */ { #if H5C_COLLECT_CACHE_STATS int i; int64_t total_hits = 0; int64_t total_misses = 0; double hit_rate; double prefetch_use_rate; #endif /* H5C_COLLECT_CACHE_STATS */ herr_t ret_value = SUCCEED; /* Return value */ FUNC_ENTER_NOAPI(FAIL) if (NULL == cache_ptr) HGOTO_ERROR(H5E_CACHE, H5E_SYSTEM, FAIL, "Bad cache_ptr"); #if H5C_COLLECT_CACHE_STATS for (i = 0; i <= cache_ptr->max_type_id; i++) { total_hits += cache_ptr->hits[i]; total_misses += cache_ptr->misses[i]; } /* end for */ if ((total_hits > 0) || (total_misses > 0)) hit_rate = 100.0 * ((double)(total_hits)) / ((double)(total_hits + total_misses)); else hit_rate = 0.0; if (cache_ptr->prefetches > 0) prefetch_use_rate = 100.0 * ((double)(cache_ptr->prefetch_hits)) / ((double)(cache_ptr->prefetches)); else prefetch_use_rate = 0.0; if (print_header) { fprintf(stdout, "\nhit prefetches prefetch image pf hit\n"); fprintf(stdout, "rate: total: dirty: hits: flshs: evct: size: rate:\n"); } /* end if */ fprintf(stdout, "%3.1lf %5lld %5lld %5lld %5lld %5lld %5lld %3.1lf\n", hit_rate, (long long)(cache_ptr->prefetches), (long long)(cache_ptr->dirty_prefetches), (long long)(cache_ptr->prefetch_hits), (long long)(cache_ptr->flushes[H5AC_PREFETCHED_ENTRY_ID]), (long long)(cache_ptr->evictions[H5AC_PREFETCHED_ENTRY_ID]), (long long)(cache_ptr->last_image_size), prefetch_use_rate); #endif /* H5C_COLLECT_CACHE_STATS */ done: FUNC_LEAVE_NOAPI(ret_value) } /* H5C__image_stats() */