/* * Copyright (C) 1997 NCSA * All rights reserved. * * Programmer: Robb Matzke * Wednesday, October 8, 1997 * * Purpose: Indexed (chunked) I/O functions. The logical * multi-dimensional data space is regularly partitioned into * same-sized "chunks", the first of which is aligned with the * logical origin. The chunks are given a multi-dimensional * index which is used as a lookup key in a B-tree that maps * chunk index to disk address. Each chunk can be compressed * independently and the chunks may move around in the file as * their storage requirements change. * * Cache: Disk I/O is performed in units of chunks and H5MF_alloc() * contains code to optionally align chunks on disk block * boundaries for performance. * * The chunk cache is an extendible hash indexed by a function * of storage B-tree address and chunk N-dimensional offset * within the dataset. Collisions are not resolved -- one of * the two chunks competing for the hash slot must be preempted * from the cache. All entries in the hash also participate in * a doubly-linked list and entries are penalized by moving them * toward the front of the list. When a new chunk is about to * be added to the cache the heap is pruned by preempting * entries near the front of the list to make room for the new * entry which is added to the end of the list. */ #include #include #include #include #include #include #include #include /* * Feature: If this constant is defined then every cache preemption and load * causes a character to be printed on the standard error stream: * * `.': Entry was preempted because it has been completely read or * completely written but not partially read and not partially * written. This is often a good reason for preemption because such * a chunk will be unlikely to be referenced in the near future. * * `:': Entry was preempted because it hasn't been used recently. * * `#': Entry was preempted because another chunk collided with it. This * is usually a relatively bad thing. If there are too many of * these then the number of entries in the cache can be increased. * * c: Entry was preempted because the file is closing. * * w: A chunk read operation was eliminated because the library is * about to write new values to the entire chunk. This is a good * thing, especially on files where the chunk size is the same as * the disk block size, chunks are aligned on disk block boundaries, * and the operating system can also eliminate a read operation. */ /* #define H5F_ISTORE_DEBUG */ /* Interface initialization */ #define PABLO_MASK H5Fistore_mask static intn interface_initialize_g = 0; #define INTERFACE_INIT NULL /* * Given a B-tree node return the dimensionality of the chunks pointed to by * that node. */ #define H5F_ISTORE_NDIMS(X) ((intn)(((X)->sizeof_rkey-8)/8)) /* Raw data chunks are cached. Each entry in the cache is: */ typedef struct H5F_rdcc_ent_t { hbool_t locked; /*entry is locked in cache */ hbool_t dirty; /*needs to be written to disk? */ H5O_layout_t *layout; /*the layout message */ double split_ratios[3];/*B-tree node splitting ratios */ H5O_pline_t *pline; /*filter pipeline message */ hssize_t offset[H5O_LAYOUT_NDIMS]; /*chunk name */ size_t rd_count; /*bytes remaining to be read */ size_t wr_count; /*bytes remaining to be written */ size_t chunk_size; /*size of a chunk */ size_t alloc_size; /*amount allocated for the chunk */ uint8_t *chunk; /*the unfiltered chunk data */ intn idx; /*index in hash table */ struct H5F_rdcc_ent_t *next;/*next item in doubly-linked list */ struct H5F_rdcc_ent_t *prev;/*previous item in doubly-linked list */ } H5F_rdcc_ent_t; /* Private prototypes */ static size_t H5F_istore_sizeof_rkey(H5F_t *f, const void *_udata); static herr_t H5F_istore_new_node(H5F_t *f, H5B_ins_t, void *_lt_key, void *_udata, void *_rt_key, haddr_t *); static intn H5F_istore_cmp2(H5F_t *f, void *_lt_key, void *_udata, void *_rt_key); static intn H5F_istore_cmp3(H5F_t *f, void *_lt_key, void *_udata, void *_rt_key); static herr_t H5F_istore_found(H5F_t *f, const haddr_t *addr, const void *_lt_key, void *_udata, const void *_rt_key); static H5B_ins_t H5F_istore_insert(H5F_t *f, const haddr_t *addr, void *_lt_key, hbool_t *lt_key_changed, void *_md_key, void *_udata, void *_rt_key, hbool_t *rt_key_changed, haddr_t *new_node/*out*/); static herr_t H5F_istore_iterate (H5F_t *f, void *left_key, const haddr_t *addr, void *right_key, void *_udata); static herr_t H5F_istore_decode_key(H5F_t *f, H5B_t *bt, uint8_t *raw, void *_key); static herr_t H5F_istore_encode_key(H5F_t *f, H5B_t *bt, uint8_t *raw, void *_key); static herr_t H5F_istore_debug_key (FILE *stream, intn indent, intn fwidth, const void *key, const void *udata); #ifdef HAVE_PARALLEL static herr_t H5F_istore_get_addr (H5F_t *f, const H5O_layout_t *layout, const hssize_t offset[], void *_udata/*out*/); #endif /* * B-tree key. A key contains the minimum logical N-dimensional address and * the logical size of the chunk to which this key refers. The * fastest-varying dimension is assumed to reference individual bytes of the * array, so a 100-element 1-d array of 4-byte integers would really be a 2-d * array with the slow varying dimension of size 100 and the fast varying * dimension of size 4 (the storage dimensionality has very little to do with * the real dimensionality). * * Only the first few values of the OFFSET and SIZE fields are actually * stored on disk, depending on the dimensionality. * * The chunk's file address is part of the B-tree and not part of the key. */ typedef struct H5F_istore_key_t { size_t nbytes; /*size of stored data */ hssize_t offset[H5O_LAYOUT_NDIMS]; /*logical offset to start*/ uintn filter_mask; /*excluded filters */ } H5F_istore_key_t; typedef struct H5F_istore_ud1_t { H5F_istore_key_t key; /*key values */ haddr_t addr; /*file address of chunk */ H5O_layout_t mesg; /*layout message */ hsize_t total_storage; /*output from iterator */ FILE *stream; /*debug output stream */ } H5F_istore_ud1_t; /* inherits B-tree like properties from H5B */ H5B_class_t H5B_ISTORE[1] = {{ H5B_ISTORE_ID, /*id */ sizeof(H5F_istore_key_t), /*sizeof_nkey */ H5F_istore_sizeof_rkey, /*get_sizeof_rkey */ H5F_istore_new_node, /*new */ H5F_istore_cmp2, /*cmp2 */ H5F_istore_cmp3, /*cmp3 */ H5F_istore_found, /*found */ H5F_istore_insert, /*insert */ FALSE, /*follow min branch? */ FALSE, /*follow max branch? */ NULL, /*remove */ H5F_istore_iterate, /*iterator */ H5F_istore_decode_key, /*decode */ H5F_istore_encode_key, /*encode */ H5F_istore_debug_key, /*debug */ }}; #define H5F_MIXUP(X) { \ (X) += (X)<<12; \ (X) ^= (X)>>22; \ (X) += (X)<<4; \ (X) ^= (X)>>9; \ (X) += (X)<<10; \ (X) ^= (X)>>2; \ (X) += (X)<<7; \ (X) ^= (X)>>12; \ } /*------------------------------------------------------------------------- * Function: H5F_istore_sizeof_rkey * * Purpose: Returns the size of a raw key for the specified UDATA. The * size of the key is dependent on the number of dimensions for * the object to which this B-tree points. The dimensionality * of the UDATA is the only portion that's referenced here. * * Return: Success: Size of raw key in bytes. * * Failure: abort() * * Programmer: Robb Matzke * Wednesday, October 8, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static size_t H5F_istore_sizeof_rkey(H5F_t UNUSED *f, const void *_udata) { const H5F_istore_ud1_t *udata = (const H5F_istore_ud1_t *) _udata; size_t nbytes; assert(udata); assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS); nbytes = 4 + /*storage size */ 4 + /*filter mask */ udata->mesg.ndims*8; /*dimension indices */ return nbytes; } /*------------------------------------------------------------------------- * Function: H5F_istore_decode_key * * Purpose: Decodes a raw key into a native key for the B-tree * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_decode_key(H5F_t UNUSED *f, H5B_t *bt, uint8_t *raw, void *_key) { H5F_istore_key_t *key = (H5F_istore_key_t *) _key; intn i; intn ndims = H5F_ISTORE_NDIMS(bt); FUNC_ENTER(H5F_istore_decode_key, FAIL); /* check args */ assert(f); assert(bt); assert(raw); assert(key); assert(ndims>0 && ndims<=H5O_LAYOUT_NDIMS); /* decode */ UINT32DECODE(raw, key->nbytes); UINT32DECODE(raw, key->filter_mask); for (i=0; ioffset[i]); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_encode_key * * Purpose: Encode a key from native format to raw format. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_encode_key(H5F_t UNUSED *f, H5B_t *bt, uint8_t *raw, void *_key) { H5F_istore_key_t *key = (H5F_istore_key_t *) _key; intn ndims = H5F_ISTORE_NDIMS(bt); intn i; FUNC_ENTER(H5F_istore_encode_key, FAIL); /* check args */ assert(f); assert(bt); assert(raw); assert(key); assert(ndims>0 && ndims<=H5O_LAYOUT_NDIMS); /* encode */ UINT32ENCODE(raw, key->nbytes); UINT32ENCODE(raw, key->filter_mask); for (i=0; ioffset[i]); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_debug_key * * Purpose: Prints a key. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, April 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_debug_key (FILE *stream, intn indent, intn fwidth, const void *_key, const void *_udata) { const H5F_istore_key_t *key = (const H5F_istore_key_t *)_key; const H5F_istore_ud1_t *udata = (const H5F_istore_ud1_t *)_udata; int i; FUNC_ENTER (H5F_istore_debug_key, FAIL); assert (key); HDfprintf(stream, "%*s%-*s %Zd bytes\n", indent, "", fwidth, "Chunk size:", key->nbytes); HDfprintf(stream, "%*s%-*s 0x%08x\n", indent, "", fwidth, "Filter mask:", key->filter_mask); HDfprintf(stream, "%*s%-*s {", indent, "", fwidth, "Logical offset:"); for (i=0; imesg.ndims; i++) { HDfprintf (stream, "%s%Hd", i?", ":"", key->offset[i]); } HDfputs ("}\n", stream); FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_cmp2 * * Purpose: Compares two keys sort of like strcmp(). The UDATA pointer * is only to supply extra information not carried in the keys * (in this case, the dimensionality) and is not compared * against the keys. * * Return: Success: -1 if LT_KEY is less than RT_KEY; * 1 if LT_KEY is greater than RT_KEY; * 0 if LT_KEY and RT_KEY are equal. * * Failure: FAIL (same as LT_KEYmesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS); /* Compare the offsets but ignore the other fields */ cmp = H5V_vector_cmp_s(udata->mesg.ndims, lt_key->offset, rt_key->offset); FUNC_LEAVE(cmp); } /*------------------------------------------------------------------------- * Function: H5F_istore_cmp3 * * Purpose: Compare the requested datum UDATA with the left and right * keys of the B-tree. * * Return: Success: negative if the min_corner of UDATA is less * than the min_corner of LT_KEY. * * positive if the min_corner of UDATA is * greater than or equal the min_corner of * RT_KEY. * * zero otherwise. The min_corner of UDATA is * not necessarily contained within the address * space represented by LT_KEY, but a key that * would describe the UDATA min_corner address * would fall lexicographically between LT_KEY * and RT_KEY. * * Failure: FAIL (same as UDATA < LT_KEY) * * Programmer: Robb Matzke * Wednesday, October 8, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static intn H5F_istore_cmp3(H5F_t UNUSED *f, void *_lt_key, void *_udata, void *_rt_key) { H5F_istore_key_t *lt_key = (H5F_istore_key_t *) _lt_key; H5F_istore_key_t *rt_key = (H5F_istore_key_t *) _rt_key; H5F_istore_ud1_t *udata = (H5F_istore_ud1_t *) _udata; intn cmp = 0; FUNC_ENTER(H5F_istore_cmp3, FAIL); assert(lt_key); assert(rt_key); assert(udata); assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS); if (H5V_vector_lt_s(udata->mesg.ndims, udata->key.offset, lt_key->offset)) { cmp = -1; } else if (H5V_vector_ge_s(udata->mesg.ndims, udata->key.offset, rt_key->offset)) { cmp = 1; } FUNC_LEAVE(cmp); } /*------------------------------------------------------------------------- * Function: H5F_istore_new_node * * Purpose: Adds a new entry to an i-storage B-tree. We can assume that * the domain represented by UDATA doesn't intersect the domain * already represented by the B-tree. * * Return: Success: Non-negative. The address of leaf is returned * through the ADDR argument. It is also added * to the UDATA. * * Failure: Negative * * Programmer: Robb Matzke * Tuesday, October 14, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_new_node(H5F_t *f, H5B_ins_t op, void *_lt_key, void *_udata, void *_rt_key, haddr_t *addr/*out*/) { H5F_istore_key_t *lt_key = (H5F_istore_key_t *) _lt_key; H5F_istore_key_t *rt_key = (H5F_istore_key_t *) _rt_key; H5F_istore_ud1_t *udata = (H5F_istore_ud1_t *) _udata; intn i; FUNC_ENTER(H5F_istore_new_node, FAIL); #ifdef AKC printf("%s: Called\n", FUNC); #endif /* check args */ assert(f); assert(lt_key); assert(rt_key); assert(udata); assert(udata->mesg.ndims > 0 && udata->mesg.ndims < H5O_LAYOUT_NDIMS); assert(addr); /* Allocate new storage */ assert (udata->key.nbytes > 0); #ifdef AKC printf("calling H5MF_alloc for new chunk\n"); #endif if (H5MF_alloc(f, H5MF_RAW, udata->key.nbytes, addr /*out */ ) < 0) { HRETURN_ERROR(H5E_IO, H5E_CANTINIT, FAIL, "couldn't allocate new file storage"); } udata->addr = *addr; /* * The left key describes the storage of the UDATA chunk being * inserted into the tree. */ lt_key->nbytes = udata->key.nbytes; lt_key->filter_mask = udata->key.filter_mask; for (i=0; imesg.ndims; i++) { lt_key->offset[i] = udata->key.offset[i]; } /* * The right key might already be present. If not, then add a zero-width * chunk. */ if (H5B_INS_LEFT != op) { rt_key->nbytes = 0; rt_key->filter_mask = 0; for (i=0; imesg.ndims; i++) { assert (udata->mesg.dim[i] < HSSIZET_MAX); assert (udata->key.offset[i]+(hssize_t)(udata->mesg.dim[i]) > udata->key.offset[i]); rt_key->offset[i] = udata->key.offset[i] + (hssize_t)(udata->mesg.dim[i]); } } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_found * * Purpose: This function is called when the B-tree search engine has * found the leaf entry that points to a chunk of storage that * contains the beginning of the logical address space * represented by UDATA. The LT_KEY is the left key (the one * that describes the chunk) and RT_KEY is the right key (the * one that describes the next or last chunk). * * Note: It's possible that the chunk isn't really found. For * instance, in a sparse dataset the requested chunk might fall * between two stored chunks in which case this function is * called with the maximum stored chunk indices less than the * requested chunk indices. * * Return: Non-negative on success with information about the chunk * returned through the UDATA argument. Negative on failure. * * Programmer: Robb Matzke * Thursday, October 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_found(H5F_t UNUSED *f, const haddr_t *addr, const void *_lt_key, void *_udata, const void UNUSED *_rt_key) { H5F_istore_ud1_t *udata = (H5F_istore_ud1_t *) _udata; const H5F_istore_key_t *lt_key = (const H5F_istore_key_t *) _lt_key; int i; FUNC_ENTER(H5F_istore_found, FAIL); /* Check arguments */ assert(f); assert(addr && H5F_addr_defined(addr)); assert(udata); assert(lt_key); /* Is this *really* the requested chunk? */ for (i=0; imesg.ndims; i++) { if (udata->key.offset[i] >= lt_key->offset[i]+(hssize_t)(udata->mesg.dim[i])) { HRETURN(FAIL); } } /* Initialize return values */ udata->addr = *addr; udata->key.nbytes = lt_key->nbytes; udata->key.filter_mask = lt_key->filter_mask; assert (lt_key->nbytes>0); for (i = 0; i < udata->mesg.ndims; i++) { udata->key.offset[i] = lt_key->offset[i]; } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_insert * * Purpose: This function is called when the B-tree insert engine finds * the node to use to insert new data. The UDATA argument * points to a struct that describes the logical addresses being * added to the file. This function allocates space for the * data and returns information through UDATA describing a * file chunk to receive (part of) the data. * * The LT_KEY is always the key describing the chunk of file * memory at address ADDR. On entry, UDATA describes the logical * addresses for which storage is being requested (through the * `offset' and `size' fields). On return, UDATA describes the * logical addresses contained in a chunk on disk. * * Return: Success: An insertion command for the caller, one of * the H5B_INS_* constants. The address of the * new chunk is returned through the NEW_NODE * argument. * * Failure: H5B_INS_ERROR * * Programmer: Robb Matzke * Thursday, October 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static H5B_ins_t H5F_istore_insert(H5F_t *f, const haddr_t *addr, void *_lt_key, hbool_t UNUSED *lt_key_changed, void *_md_key, void *_udata, void *_rt_key, hbool_t UNUSED *rt_key_changed, haddr_t *new_node/*out*/) { H5F_istore_key_t *lt_key = (H5F_istore_key_t *) _lt_key; H5F_istore_key_t *md_key = (H5F_istore_key_t *) _md_key; H5F_istore_key_t *rt_key = (H5F_istore_key_t *) _rt_key; H5F_istore_ud1_t *udata = (H5F_istore_ud1_t *) _udata; intn i, cmp; H5B_ins_t ret_value = H5B_INS_ERROR; FUNC_ENTER(H5F_istore_insert, H5B_INS_ERROR); #ifdef AKC printf("%s: Called\n", FUNC); #endif /* check args */ assert(f); assert(addr && H5F_addr_defined(addr)); assert(lt_key); assert(lt_key_changed); assert(md_key); assert(udata); assert(rt_key); assert(rt_key_changed); assert(new_node); cmp = H5F_istore_cmp3(f, lt_key, udata, rt_key); assert(cmp <= 0); if (cmp < 0) { /* Negative indices not supported yet */ assert("HDF5 INTERNAL ERROR -- see rpm" && 0); HRETURN_ERROR(H5E_STORAGE, H5E_UNSUPPORTED, H5B_INS_ERROR, "internal error"); } else if (H5V_vector_eq_s (udata->mesg.ndims, udata->key.offset, lt_key->offset) && lt_key->nbytes>0) { /* * Already exists. If the new size is not the same as the old size * then we should reallocate storage. */ if (lt_key->nbytes != udata->key.nbytes) { #ifdef AKC printf("calling H5MF_realloc for new chunk\n"); #endif if (H5MF_realloc (f, H5MF_RAW, lt_key->nbytes, addr, udata->key.nbytes, new_node/*out*/)<0) { HRETURN_ERROR (H5E_STORAGE, H5E_WRITEERROR, H5B_INS_ERROR, "unable to reallocate chunk storage"); } lt_key->nbytes = udata->key.nbytes; lt_key->filter_mask = udata->key.filter_mask; *lt_key_changed = TRUE; udata->addr = *new_node; ret_value = H5B_INS_CHANGE; } else { udata->addr = *addr; ret_value = H5B_INS_NOOP; } } else if (H5V_hyper_disjointp(udata->mesg.ndims, lt_key->offset, udata->mesg.dim, udata->key.offset, udata->mesg.dim)) { assert(H5V_hyper_disjointp(udata->mesg.ndims, rt_key->offset, udata->mesg.dim, udata->key.offset, udata->mesg.dim)); /* * Split this node, inserting the new new node to the right of the * current node. The MD_KEY is where the split occurs. */ md_key->nbytes = udata->key.nbytes; md_key->filter_mask = udata->key.filter_mask; for (i=0; imesg.ndims; i++) { assert(0 == udata->key.offset[i] % udata->mesg.dim[i]); md_key->offset[i] = udata->key.offset[i]; } /* * Allocate storage for the new chunk */ #ifdef AKC printf("calling H5MF_alloc for new chunk\n"); #endif if (H5MF_alloc(f, H5MF_RAW, udata->key.nbytes, new_node/*out*/)<0) { HRETURN_ERROR(H5E_IO, H5E_CANTINIT, H5B_INS_ERROR, "file allocation failed"); } udata->addr = *new_node; ret_value = H5B_INS_RIGHT; } else { assert("HDF5 INTERNAL ERROR -- see rpm" && 0); HRETURN_ERROR(H5E_IO, H5E_UNSUPPORTED, H5B_INS_ERROR, "internal error"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5F_istore_iterate * * Purpose: Simply counts the number of chunks for a dataset. If the * UDATA.STREAM member is non-null then debugging information is * written to that stream. * * Return: Success: Non-negative * * Failure: Negative * * Programmer: Robb Matzke * Wednesday, April 21, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_iterate (H5F_t UNUSED *f, void *_lt_key, const haddr_t UNUSED *addr, void UNUSED *_rt_key, void *_udata) { H5F_istore_ud1_t *bt_udata = (H5F_istore_ud1_t *)_udata; H5F_istore_key_t *lt_key = (H5F_istore_key_t *)_lt_key; int i; FUNC_ENTER(H5F_istore_iterate, FAIL); if (bt_udata->stream) { if (0==bt_udata->total_storage) { fprintf(bt_udata->stream, " Address:\n"); fprintf(bt_udata->stream, " Flags Bytes Address Logical Offset\n"); fprintf(bt_udata->stream, " ========== ======== ========== " "==============================\n"); } HDfprintf(bt_udata->stream, " 0x%08x %8Zu %10a [", lt_key->filter_mask, lt_key->nbytes, addr); for (i=0; imesg.ndims; i++) { HDfprintf(bt_udata->stream, "%s%Hd", i?", ":"", lt_key->offset[i]); } fputs("]\n", bt_udata->stream); } bt_udata->total_storage += lt_key->nbytes; FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_init * * Purpose: Initialize the raw data chunk cache for a file. This is * called when the file handle is initialized. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Monday, May 18, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_init (H5F_t *f) { H5F_rdcc_t *rdcc = &(f->shared->rdcc); FUNC_ENTER (H5F_istore_init, FAIL); HDmemset (rdcc, 0, sizeof(H5F_rdcc_t)); if (f->shared->access_parms->rdcc_nbytes>0 && f->shared->access_parms->rdcc_nelmts>0) { rdcc->nslots = f->shared->access_parms->rdcc_nelmts; rdcc->slot = H5MM_calloc (rdcc->nslots*sizeof(H5F_rdcc_ent_t*)); if (NULL==rdcc->slot) { HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed"); } } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_flush_entry * * Purpose: Writes a chunk to disk. If RESET is non-zero then the * entry is cleared -- it's slightly faster to flush a chunk if * the RESET flag is turned on because it results in one fewer * memory copy. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_flush_entry (H5F_t *f, H5F_rdcc_ent_t *ent, hbool_t reset) { herr_t ret_value=FAIL; /*return value */ H5F_istore_ud1_t udata; /*pass through B-tree */ intn i; /*counters */ void *buf=NULL; /*temporary buffer */ size_t alloc; /*bytes allocated for BUF */ hbool_t point_of_no_return = FALSE; FUNC_ENTER (H5F_istore_flush_entry, FAIL); assert(f); assert(ent); assert (!ent->locked); buf = ent->chunk; if (ent->dirty) { udata.mesg = *(ent->layout); udata.key.filter_mask = 0; H5F_addr_undef(&(udata.addr)); udata.key.nbytes = ent->chunk_size; for (i=0; ilayout->ndims; i++) { udata.key.offset[i] = ent->offset[i]; } alloc = ent->alloc_size; /* Should the chunk be filtered before writing it to disk? */ if (ent->pline && ent->pline->nfilters) { if (!reset) { /* * Copy the chunk to a new buffer before running it through * the pipeline because we'll want to save the original buffer * for later. */ alloc = ent->chunk_size; if (NULL==(buf = H5MM_malloc(alloc))) { HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed for pipeline"); } HDmemcpy(buf, ent->chunk, ent->chunk_size); } else { /* * If we are reseting and something goes wrong after this * point then it's too late to recover because we may have * destroyed the original data by calling H5Z_pipeline(). * The only safe option is to continue with the reset * even if we can't write the data to disk. */ point_of_no_return = TRUE; ent->chunk = NULL; } if (H5Z_pipeline(f, ent->pline, 0, &(udata.key.filter_mask), &(udata.key.nbytes), &alloc, &buf)<0) { HGOTO_ERROR(H5E_PLINE, H5E_WRITEERROR, FAIL, "output pipeline failed"); } } /* * Create the chunk it if it doesn't exist, or reallocate the chunk if * its size changed. Then write the data into the file. */ if (H5B_insert(f, H5B_ISTORE, &(ent->layout->addr), ent->split_ratios, &udata)<0) { HGOTO_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to allocate chunk"); } if (H5F_block_write (f, &(udata.addr), udata.key.nbytes, &H5F_xfer_dflt, buf)<0) { HGOTO_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to write raw data to file"); } /* Mark cache entry as clean */ ent->dirty = FALSE; f->shared->rdcc.nflushes++; } /* Reset, but do not free or removed from list */ if (reset) { point_of_no_return = FALSE; ent->layout = H5O_free(H5O_LAYOUT, ent->layout); ent->pline = H5O_free(H5O_PLINE, ent->pline); if (buf==ent->chunk) buf = NULL; ent->chunk = H5MM_xfree(ent->chunk); } ret_value = SUCCEED; done: /* Free the temp buffer only if it's different than the entry chunk */ if (buf!=ent->chunk) H5MM_xfree(buf); /* * If we reached the point of no return then we have no choice but to * reset the entry. This can only happen if RESET is true but the * output pipeline failed. Do not free the entry or remove it from the * list. */ if (ret_value<0 && point_of_no_return) { ent->layout = H5O_free(H5O_LAYOUT, ent->layout); ent->pline = H5O_free(H5O_PLINE, ent->pline); ent->chunk = H5MM_xfree(ent->chunk); } FUNC_LEAVE (ret_value); } /*------------------------------------------------------------------------- * Function: H5F_istore_preempt * * Purpose: Preempts the specified entry from the cache, flushing it to * disk if necessary. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_preempt (H5F_t *f, H5F_rdcc_ent_t *ent) { H5F_rdcc_t *rdcc = &(f->shared->rdcc); FUNC_ENTER (H5F_istore_preempt, FAIL); assert(f); assert(ent); assert(!ent->locked); assert(ent->idx>=0 && ent->idxnslots); /* Flush */ H5F_istore_flush_entry(f, ent, TRUE); /* Unlink from list */ if (ent->prev) { ent->prev->next = ent->next; } else { rdcc->head = ent->next; } if (ent->next) { ent->next->prev = ent->prev; } else { rdcc->tail = ent->prev; } ent->prev = ent->next = NULL; /* Remove from cache */ rdcc->slot[ent->idx] = NULL; ent->idx = -1; rdcc->nbytes -= ent->chunk_size; --rdcc->nused; /* Free */ H5MM_xfree(ent); FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_flush * * Purpose: Writes all dirty chunks to disk and optionally preempts them * from the cache. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_flush (H5F_t *f, hbool_t preempt) { H5F_rdcc_t *rdcc = &(f->shared->rdcc); intn nerrors=0; H5F_rdcc_ent_t *ent=NULL, *next=NULL; FUNC_ENTER (H5F_istore_flush, FAIL); for (ent=rdcc->head; ent; ent=next) { next = ent->next; if (preempt) { if (H5F_istore_preempt(f, ent)<0) { nerrors++; } } else { if (H5F_istore_flush_entry(f, ent, FALSE)<0) { nerrors++; } } } if (nerrors) { HRETURN_ERROR (H5E_IO, H5E_CANTFLUSH, FAIL, "unable to flush one or more raw data chunks"); } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_dest * * Purpose: Destroy the entire chunk cache by flushing dirty entries, * preempting all entries, and freeing the cache itself. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_dest (H5F_t *f) { H5F_rdcc_t *rdcc = &(f->shared->rdcc); intn nerrors=0; H5F_rdcc_ent_t *ent=NULL, *next=NULL; FUNC_ENTER (H5F_istore_dest, FAIL); for (ent=rdcc->head; ent; ent=next) { #ifdef H5F_ISTORE_DEBUG fputc('c', stderr); fflush(stderr); #endif next = ent->next; if (H5F_istore_preempt(f, ent)<0) { nerrors++; } } if (nerrors) { HRETURN_ERROR (H5E_IO, H5E_CANTFLUSH, FAIL, "unable to flush one or more raw data chunks"); } H5MM_xfree (rdcc->slot); HDmemset (rdcc, 0, sizeof(H5F_rdcc_t)); FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_prune * * Purpose: Prune the cache by preempting some things until the cache has * room for something which is SIZE bytes. Only unlocked * entries are considered for preemption. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_prune (H5F_t *f, size_t size) { intn i, j, nerrors=0; H5F_rdcc_t *rdcc = &(f->shared->rdcc); size_t total = f->shared->access_parms->rdcc_nbytes; const int nmeth=2; /*number of methods */ intn w[1]; /*weighting as an interval */ H5F_rdcc_ent_t *p[2], *cur; /*list pointers */ H5F_rdcc_ent_t *n[2]; /*list next pointers */ FUNC_ENTER (H5F_istore_prune, FAIL); /* * Preemption is accomplished by having multiple pointers (currently two) * slide down the list beginning at the head. Pointer p(N+1) will start * traversing the list when pointer pN reaches wN percent of the original * list. In other words, preemption method N gets to consider entries in * approximate least recently used order w0 percent before method N+1 * where 100% means tha method N will run to completion before method N+1 * begins. The pointers participating in the list traversal are each * given a chance at preemption before any of the pointers are advanced. */ w[0] = rdcc->nused * f->shared->access_parms->rdcc_w0; p[0] = rdcc->head; p[1] = NULL; while ((p[0] || p[1]) && rdcc->nbytes+size>total) { /* Introduce new pointers */ for (i=0; ihead; /* Compute next value for each pointer */ for (i=0; inext : NULL; /* Give each method a chance */ for (i=0; inbytes+size>total; i++) { if (0==i && p[0] && !p[0]->locked && ((0==p[0]->rd_count && 0==p[0]->wr_count) || (0==p[0]->rd_count && p[0]->chunk_size==p[0]->wr_count) || (p[0]->chunk_size==p[0]->rd_count && 0==p[0]->wr_count))) { /* * Method 0: Preempt entries that have been completely written * and/or completely read but not entries that are partially * written or partially read. */ cur = p[0]; #ifdef H5F_ISTORE_DEBUG putc('.', stderr); fflush(stderr); #endif } else if (1==i && p[1] && !p[1]->locked) { /* * Method 1: Preempt the entry without regard to * considerations other than being locked. This is the last * resort preemption. */ cur = p[1]; #ifdef H5F_ISTORE_DEBUG putc(':', stderr); fflush(stderr); #endif } else { /* Nothing to preempt at this point */ cur= NULL; } if (cur) { if (H5F_istore_preempt(f, cur)<0) nerrors++; for (j=0; jshared->rdcc);/*raw data chunk cache*/ H5F_rdcc_ent_t *ent = NULL; /*cache entry */ intn i; /*counters */ H5F_istore_ud1_t udata; /*B-tree pass-through */ size_t chunk_size=0; /*size of a chunk */ size_t chunk_alloc=0; /*allocated chunk size */ herr_t status; /*func return status */ void *chunk=NULL; /*the file chunk */ void *ret_value=NULL; /*return value */ FUNC_ENTER (H5F_istore_lock, NULL); assert(split_ratios); if (rdcc->nslots>0) { /* We don't care about loss of precision in the following statement. */ idx = (uintn)(layout->addr.offset); H5F_MIXUP(idx); for (i=0; indims; i++) { idx += offset[i]; H5F_MIXUP(idx); } idx %= rdcc->nslots; ent = rdcc->slot[idx]; if (ent && layout->ndims==ent->layout->ndims && H5F_addr_eq(&(layout->addr), &(ent->layout->addr))) { for (i=0, found=TRUE; ilayout->ndims; i++) { if (offset[i]!=ent->offset[i]) { found = FALSE; break; } } } } if (found) { /* * Already in the cache. Count a hit. */ rdcc->nhits++; } else if (!found && relax) { /* * Not in the cache, but we're about to overwrite the whole thing * anyway, so just allocate a buffer for it but don't initialize that * buffer with the file contents. Count this as a hit instead of a * miss because we saved ourselves lots of work. */ #ifdef H5F_ISTORE_DEBUG putc('w', stderr); fflush(stderr); #endif rdcc->nhits++; for (i=0, chunk_size=1; indims; i++) { chunk_size *= layout->dim[i]; } chunk_alloc = chunk_size; if (NULL==(chunk=H5MM_malloc (chunk_alloc))) { HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed for raw data chunk"); } } else { /* * Not in the cache. Read it from the file and count this as a miss * if it's in the file or an init if it isn't. */ for (i=0, chunk_size=1; indims; i++) { udata.key.offset[i] = offset[i]; chunk_size *= layout->dim[i]; } chunk_alloc = chunk_size; udata.mesg = *layout; H5F_addr_undef (&(udata.addr)); status = H5B_find (f, H5B_ISTORE, &(layout->addr), &udata); H5E_clear (); if (NULL==(chunk = H5MM_malloc (chunk_alloc))) { HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed for raw data chunk"); } if (status>=0 && H5F_addr_defined (&(udata.addr))) { /* * The chunk exists on disk. */ if (H5F_block_read (f, &(udata.addr), udata.key.nbytes, &H5F_xfer_dflt, chunk)<0) { HGOTO_ERROR (H5E_IO, H5E_READERROR, NULL, "unable to read raw data chunk"); } if (H5Z_pipeline(f, pline, H5Z_FLAG_REVERSE, &(udata.key.filter_mask), &(udata.key.nbytes), &chunk_alloc, &chunk)<0 || udata.key.nbytes!=chunk_size) { HGOTO_ERROR(H5E_PLINE, H5E_READERROR, NULL, "data pipeline read failed"); } rdcc->nmisses++; } else if (fill && fill->buf) { /* * The chunk doesn't exist in the file. Replicate the fill * value throughout the chunk. */ assert(0==chunk_size % fill->size); H5V_array_fill(chunk, fill->buf, fill->size, chunk_size/fill->size); rdcc->ninits++; } else { /* * The chunk doesn't exist in the file and no fill value was * specified. Assume all zeros. */ HDmemset (chunk, 0, chunk_size); rdcc->ninits++; } } assert (found || chunk_size>0); if (!found && rdcc->nslots>0 && chunk_size<=f->shared->access_parms->rdcc_nbytes && (!ent || !ent->locked)) { /* * Add the chunk to the cache only if the slot is not already locked. * Preempt enough things from the cache to make room. */ if (ent) { #ifdef H5F_ISTORE_DEBUG putc('#', stderr); fflush(stderr); #endif #if 0 HDfprintf(stderr, "\ncollision %3d %10a {", idx, &(ent->layout->addr)); for (i=0; indims; i++) { HDfprintf(stderr, "%s%Zu", i?",":"", ent->offset[i]); } HDfprintf(stderr, "}\n %10a {", &(layout->addr)); for (i=0; indims; i++) { HDfprintf(stderr, "%s%Zu", i?",":"", offset[i]); } fprintf(stderr, "}\n"); #endif if (H5F_istore_preempt(f, ent)<0) { HGOTO_ERROR(H5E_IO, H5E_CANTINIT, NULL, "unable to preempt chunk from cache"); } } if (H5F_istore_prune(f, chunk_size)<0) { HGOTO_ERROR(H5E_IO, H5E_CANTINIT, NULL, "unable to preempt chunk(s) from cache"); } /* Create a new entry */ ent = H5MM_malloc(sizeof(H5F_rdcc_ent_t)); ent->locked = 0; ent->dirty = FALSE; ent->chunk_size = chunk_size; ent->alloc_size = chunk_size; ent->layout = H5O_copy(H5O_LAYOUT, layout, NULL); ent->pline = H5O_copy(H5O_PLINE, pline, NULL); for (i=0; indims; i++) { ent->offset[i] = offset[i]; } ent->rd_count = chunk_size; ent->wr_count = chunk_size; ent->chunk = chunk; ent->split_ratios[0] = split_ratios[0]; ent->split_ratios[1] = split_ratios[1]; ent->split_ratios[2] = split_ratios[2]; /* Add it to the cache */ assert(NULL==rdcc->slot[idx]); rdcc->slot[idx] = ent; ent->idx = idx; rdcc->nbytes += chunk_size; rdcc->nused++; /* Add it to the linked list */ ent->next = NULL; if (rdcc->tail) { rdcc->tail->next = ent; ent->prev = rdcc->tail; rdcc->tail = ent; } else { rdcc->head = rdcc->tail = ent; ent->prev = NULL; } found = TRUE; } else if (!found) { /* * The chunk is larger than the entire cache so we don't cache it. * This is the reason all those arguments have to be repeated for the * unlock function. */ ent = NULL; idx = -999; } else if (found) { /* * The chunk is not at the beginning of the cache; move it backward * by one slot. This is how we implement the LRU preemption * algorithm. */ if (ent->next) { if (ent->next->next) { ent->next->next->prev = ent; } else { rdcc->tail = ent; } ent->next->prev = ent->prev; if (ent->prev) { ent->prev->next = ent->next; } else { rdcc->head = ent->next; } ent->prev = ent->next; ent->next = ent->next->next; ent->prev->next = ent; } } /* Lock the chunk into the cache */ if (ent) { assert (!ent->locked); ent->locked = TRUE; chunk = ent->chunk; } if (idx_hint) *idx_hint = idx; ret_value = chunk; done: if (!ret_value) H5MM_xfree (chunk); FUNC_LEAVE (ret_value); } /*------------------------------------------------------------------------- * Function: H5F_istore_unlock * * Purpose: Unlocks a previously locked chunk. The LAYOUT, COMP, and * OFFSET arguments should be the same as for H5F_rdcc_lock(). * The DIRTY argument should be set to non-zero if the chunk has * been modified since it was locked. The IDX_HINT argument is * the returned index hint from the lock operation and BUF is * the return value from the lock. * * The NACCESSED argument should be the number of bytes accessed * for reading or writing (depending on the value of DIRTY). * It's only purpose is to provide additional information to the * preemption policy. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_unlock (H5F_t *f, const H5O_layout_t *layout, const double split_ratios[], const H5O_pline_t *pline, hbool_t dirty, const hssize_t offset[], intn *idx_hint, uint8_t *chunk, size_t naccessed) { H5F_rdcc_t *rdcc = &(f->shared->rdcc); H5F_rdcc_ent_t *ent = NULL; intn i, found = -1; FUNC_ENTER (H5F_istore_unlock, FAIL); if (-999==*idx_hint) { /*not in cache*/ } else { assert(*idx_hint>=0 && *idx_hintnslots); assert(rdcc->slot[*idx_hint]); assert(rdcc->slot[*idx_hint]->chunk==chunk); found = *idx_hint; } if (found<0) { /* * It's not in the cache, probably because it's too big. If it's * dirty then flush it to disk. In any case, free the chunk. * Note: we have to copy the layout and filter messages so we * don't discard the `const' qualifier. */ if (dirty) { H5F_rdcc_ent_t x; HDmemset (&x, 0, sizeof x); x.dirty = TRUE; x.layout = H5O_copy (H5O_LAYOUT, layout, NULL); x.pline = H5O_copy (H5O_PLINE, pline, NULL); for (i=0, x.chunk_size=1; indims; i++) { x.offset[i] = offset[i]; x.chunk_size *= layout->dim[i]; } x.alloc_size = x.chunk_size; x.chunk = chunk; x.split_ratios[0] = split_ratios[0]; x.split_ratios[1] = split_ratios[1]; x.split_ratios[2] = split_ratios[2]; H5F_istore_flush_entry (f, &x, TRUE); } else { H5MM_xfree (chunk); } } else { /* * It's in the cache so unlock it. */ ent = rdcc->slot[found]; assert (ent->locked); if (dirty) { ent->dirty = TRUE; ent->wr_count -= MIN (ent->wr_count, naccessed); } else { ent->rd_count -= MIN (ent->rd_count, naccessed); } ent->locked = FALSE; } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_read * * Purpose: Reads a multi-dimensional buffer from (part of) an indexed raw * storage array. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Wednesday, October 15, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_read(H5F_t *f, const H5F_xfer_t *xfer, const H5O_layout_t *layout, const H5O_pline_t *pline, const H5O_fill_t *fill, const hssize_t offset_f[], const hsize_t size[], void *buf) { hssize_t offset_m[H5O_LAYOUT_NDIMS]; hsize_t size_m[H5O_LAYOUT_NDIMS]; hsize_t idx_cur[H5O_LAYOUT_NDIMS]; hsize_t idx_min[H5O_LAYOUT_NDIMS]; hsize_t idx_max[H5O_LAYOUT_NDIMS]; hsize_t sub_size[H5O_LAYOUT_NDIMS]; hssize_t offset_wrt_chunk[H5O_LAYOUT_NDIMS]; hssize_t sub_offset_m[H5O_LAYOUT_NDIMS]; hssize_t chunk_offset[H5O_LAYOUT_NDIMS]; intn i, carry; size_t naccessed; /*bytes accessed in chnk*/ uint8_t *chunk=NULL; /*ptr to a chunk buffer */ intn idx_hint=0; /*cache index hint */ FUNC_ENTER(H5F_istore_read, FAIL); /* Check args */ assert (f); assert (layout && H5D_CHUNKED==layout->type); assert (layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS); assert (H5F_addr_defined(&(layout->addr))); assert (offset_f); assert (size); assert (buf); /* * For now, a hyperslab of the file must be read into an array in * memory.We do not yet support reading into a hyperslab of memory. */ for (i=0; indims; i++) { offset_m[i] = 0; size_m[i] = size[i]; } #ifndef NDEBUG for (i=0; indims; i++) { assert (offset_f[i]>=0); /*negative offsets not supported*/ assert (offset_m[i]>=0); /*negative offsets not supported*/ assert (size[i]dim[i]>0); } #endif /* * Set up multi-dimensional counters (idx_min, idx_max, and idx_cur) and * loop through the chunks copying each to its final destination in the * application buffer. */ for (i=0; indims; i++) { idx_min[i] = offset_f[i] / layout->dim[i]; idx_max[i] = (offset_f[i]+size[i]-1) / layout->dim[i] + 1; idx_cur[i] = idx_min[i]; } /* Loop over all chunks */ while (1) { for (i=0, naccessed=1; indims; i++) { /* The location and size of the chunk being accessed */ assert (layout->dim[i] < HSSIZET_MAX); chunk_offset[i] = idx_cur[i] * (hssize_t)(layout->dim[i]); /* The offset and size wrt the chunk */ offset_wrt_chunk[i] = MAX(offset_f[i], chunk_offset[i]) - chunk_offset[i]; sub_size[i] = MIN((idx_cur[i]+1)*layout->dim[i], offset_f[i]+size[i]) - (chunk_offset[i] + offset_wrt_chunk[i]); naccessed *= sub_size[i]; /* Offset into mem buffer */ sub_offset_m[i] = chunk_offset[i] + offset_wrt_chunk[i] + offset_m[i] - offset_f[i]; } #ifdef HAVE_PARALLEL /* * If MPIO is used, must bypass the chunk-cache scheme * because other MPI processes could be writing to other * elements in the same chunk. * Do a direct write-through of only the elements requested. */ if (f->shared->access_parms->driver==H5F_LOW_MPIO){ H5F_istore_ud1_t udata; H5O_layout_t l; /* temporary layout */ H5F_xfer_t tmp_xfer = *xfer; if (H5F_istore_get_addr(f, layout, chunk_offset, &udata)<0){ HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to locate raw data chunk"); }; /* * use default transfer mode as we do not support collective * transfer mode since each data write could decompose into * multiple chunk writes and we are not doing the calculation * yet. */ l.type = H5D_CONTIGUOUS; l.ndims = layout->ndims; for (i=l.ndims; i-- > 0;) l.dim[i] = layout->dim[i]; l.addr = udata.addr; tmp_xfer.xfer_mode = H5D_XFER_DFLT; if (H5F_arr_read(f, &tmp_xfer, &l, pline, fill, NULL/*no efl*/, sub_size, size_m, sub_offset_m, offset_wrt_chunk, buf)<0){ HRETURN_ERROR (H5E_IO, H5E_READERROR, FAIL, "unable to read raw data from file"); } } else { #endif #ifdef AKC printf("Locking chunk( "); for (i=0; indims; i++){ printf("%ld ", chunk_offset[i]); } printf(")\n"); #endif /* * Lock the chunk, transfer data to the application, then unlock * the chunk. */ if (NULL==(chunk=H5F_istore_lock (f, layout, xfer->split_ratios, pline, fill, chunk_offset, FALSE, &idx_hint))) { HRETURN_ERROR (H5E_IO, H5E_READERROR, FAIL, "unable to read raw data chunk"); } H5V_hyper_copy(layout->ndims, sub_size, size_m, sub_offset_m, (void*)buf, layout->dim, offset_wrt_chunk, chunk); if (H5F_istore_unlock (f, layout, xfer->split_ratios, pline, FALSE, chunk_offset, &idx_hint, chunk, naccessed)<0) { HRETURN_ERROR (H5E_IO, H5E_READERROR, FAIL, "unable to unlock raw data chunk"); } #ifdef HAVE_PARALLEL } #endif /* Increment indices */ for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) { if (++idx_cur[i]>=idx_max[i]) idx_cur[i] = idx_min[i]; else carry = 0; } if (carry) break; } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_write * * Purpose: Writes a multi-dimensional buffer to (part of) an indexed raw * storage array. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Wednesday, October 15, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_write(H5F_t *f, const H5F_xfer_t *xfer, const H5O_layout_t *layout, const H5O_pline_t *pline, const H5O_fill_t *fill, const hssize_t offset_f[], const hsize_t size[], const void *buf) { hssize_t offset_m[H5O_LAYOUT_NDIMS]; hsize_t size_m[H5O_LAYOUT_NDIMS]; intn i, carry; hsize_t idx_cur[H5O_LAYOUT_NDIMS]; hsize_t idx_min[H5O_LAYOUT_NDIMS]; hsize_t idx_max[H5O_LAYOUT_NDIMS]; hsize_t sub_size[H5O_LAYOUT_NDIMS]; hssize_t chunk_offset[H5O_LAYOUT_NDIMS]; hssize_t offset_wrt_chunk[H5O_LAYOUT_NDIMS]; hssize_t sub_offset_m[H5O_LAYOUT_NDIMS]; uint8_t *chunk=NULL; intn idx_hint=0; size_t chunk_size, naccessed; FUNC_ENTER(H5F_istore_write, FAIL); /* Check args */ assert(f); assert(layout && H5D_CHUNKED==layout->type); assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS); assert(H5F_addr_defined(&(layout->addr))); assert(offset_f); assert(size); assert(buf); /* * For now the source must not be a hyperslab. It must be an entire * memory buffer. */ for (i=0, chunk_size=1; indims; i++) { offset_m[i] = 0; size_m[i] = size[i]; chunk_size *= layout->dim[i]; } #ifndef NDEBUG for (i=0; indims; i++) { assert (offset_f[i]>=0); /*negative offsets not supported*/ assert (offset_m[i]>=0); /*negative offsets not supported*/ assert(size[i]dim[i]>0); } #endif /* * Set up multi-dimensional counters (idx_min, idx_max, and idx_cur) and * loop through the chunks copying each chunk from the application to the * chunk cache. */ for (i=0; indims; i++) { idx_min[i] = offset_f[i] / layout->dim[i]; idx_max[i] = (offset_f[i]+size[i]-1) / layout->dim[i] + 1; idx_cur[i] = idx_min[i]; } /* Loop over all chunks */ while (1) { for (i=0, naccessed=1; indims; i++) { /* The location and size of the chunk being accessed */ assert (layout->dim[i] < HSSIZET_MAX); chunk_offset[i] = idx_cur[i] * (hssize_t)(layout->dim[i]); /* The offset and size wrt the chunk */ offset_wrt_chunk[i] = MAX(offset_f[i], chunk_offset[i]) - chunk_offset[i]; sub_size[i] = MIN((idx_cur[i]+1)*layout->dim[i], offset_f[i]+size[i]) - (chunk_offset[i] + offset_wrt_chunk[i]); naccessed *= sub_size[i]; /* Offset into mem buffer */ sub_offset_m[i] = chunk_offset[i] + offset_wrt_chunk[i] + offset_m[i] - offset_f[i]; } #ifdef HAVE_PARALLEL /* * If MPIO is used, must bypass the chunk-cache scheme * because other MPI processes could be writing to other * elements in the same chunk. * Do a direct write-through of only the elements requested. */ if (f->shared->access_parms->driver==H5F_LOW_MPIO){ H5F_istore_ud1_t udata; H5O_layout_t l; /* temporary layout */ H5F_xfer_t tmp_xfer = *xfer; if (H5F_istore_get_addr(f, layout, chunk_offset, &udata)<0){ HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to locate raw data chunk"); }; /* * use default transfer mode as we do not support collective * transfer mode since each data write could decompose into * multiple chunk writes and we are not doing the calculation * yet. */ l.type = H5D_CONTIGUOUS; l.ndims = layout->ndims; for (i=l.ndims; i-- > 0;) l.dim[i] = layout->dim[i]; l.addr = udata.addr; tmp_xfer.xfer_mode = H5D_XFER_DFLT; if (H5F_arr_write(f, &tmp_xfer, &l, pline, fill, NULL/*no efl*/, sub_size, size_m, sub_offset_m, offset_wrt_chunk, buf)<0){ HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to write raw data to file"); } } else { #endif #ifdef AKC printf("Locking chunk( "); for (i=0; indims; i++){ printf("%ld ", chunk_offset[i]); } printf(")\n"); #endif /* * Lock the chunk, copy from application to chunk, then unlock the * chunk. */ if (NULL==(chunk=H5F_istore_lock (f, layout, xfer->split_ratios, pline, fill, chunk_offset, naccessed==chunk_size, &idx_hint))) { HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to read raw data chunk"); } H5V_hyper_copy(layout->ndims, sub_size, layout->dim, offset_wrt_chunk, chunk, size_m, sub_offset_m, buf); if (H5F_istore_unlock (f, layout, xfer->split_ratios, pline, TRUE, chunk_offset, &idx_hint, chunk, naccessed)<0) { HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "uanble to unlock raw data chunk"); } #ifdef HAVE_PARALLEL } #endif /* Increment indices */ for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) { if (++idx_cur[i]>=idx_max[i]) idx_cur[i] = idx_min[i]; else carry = 0; } if (carry) break; } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_create * * Purpose: Creates a new indexed-storage B-tree and initializes the * istore struct with information about the storage. The * struct should be immediately written to the object header. * * This function must be called before passing ISTORE to any of * the other indexed storage functions! * * Return: Non-negative on success (with the ISTORE argument initialized * and ready to write to an object header). Negative on failure. * * Programmer: Robb Matzke * Tuesday, October 21, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_create(H5F_t *f, H5O_layout_t *layout /*out */ ) { H5F_istore_ud1_t udata; #ifndef NDEBUG int i; #endif FUNC_ENTER(H5F_istore_create, FAIL); /* Check args */ assert(f); assert(layout && H5D_CHUNKED == layout->type); assert(layout->ndims > 0 && layout->ndims <= H5O_LAYOUT_NDIMS); #ifndef NDEBUG for (i = 0; i < layout->ndims; i++) { assert(layout->dim[i] > 0); } #endif udata.mesg.ndims = layout->ndims; if (H5B_create(f, H5B_ISTORE, &udata, &(layout->addr)/*out*/) < 0) { HRETURN_ERROR(H5E_IO, H5E_CANTINIT, FAIL, "can't create B-tree"); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_allocated * * Purpose: Return the number of bytes allocated in the file for storage * of raw data under the specified B-tree (ADDR is the address * of the B-tree). * * Return: Success: Number of bytes stored in all chunks. * * Failure: 0 * * Programmer: Robb Matzke * Wednesday, April 21, 1999 * * Modifications: * *------------------------------------------------------------------------- */ hsize_t H5F_istore_allocated(H5F_t *f, int ndims, haddr_t *addr) { H5F_istore_ud1_t udata; FUNC_ENTER(H5F_istore_nchunks, 0); HDmemset(&udata, 0, sizeof udata); udata.mesg.ndims = ndims; if (H5B_iterate(f, H5B_ISTORE, addr, &udata)<0) { HRETURN_ERROR(H5E_IO, H5E_INTERNAL, 0, "unable to iterate over chunk B-tree"); } FUNC_LEAVE(udata.total_storage); } /*------------------------------------------------------------------------- * Function: H5F_istore_dump_btree * * Purpose: Prints information about the storage B-tree to the specified * stream. * * Return: Success: Non-negative * * Failure: negative * * Programmer: Robb Matzke * Wednesday, April 28, 1999 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_dump_btree(H5F_t *f, FILE *stream, int ndims, haddr_t *addr) { H5F_istore_ud1_t udata; FUNC_ENTER(H5F_istore_dump_btree, FAIL); HDmemset(&udata, 0, sizeof udata); udata.mesg.ndims = ndims; udata.stream = stream; if (H5B_iterate(f, H5B_ISTORE, addr, &udata)<0) { HRETURN_ERROR(H5E_IO, H5E_INTERNAL, 0, "unable to iterate over chunk B-tree"); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_stats * * Purpose: Print raw data cache statistics to the debug stream. If * HEADERS is non-zero then print table column headers, * otherwise assume that the H5AC layer has already printed them. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, May 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_stats (H5F_t *f, hbool_t headers) { H5F_rdcc_t *rdcc = &(f->shared->rdcc); double miss_rate; char ascii[32]; FUNC_ENTER (H5F_istore_stats, FAIL); if (!H5DEBUG(AC)) HRETURN(SUCCEED); if (headers) { fprintf(H5DEBUG(AC), "H5F: raw data cache statistics for file %s\n", f->name); fprintf(H5DEBUG(AC), " %-18s %8s %8s %8s %8s+%-8s\n", "Layer", "Hits", "Misses", "MissRate", "Inits", "Flushes"); fprintf(H5DEBUG(AC), " %-18s %8s %8s %8s %8s-%-8s\n", "-----", "----", "------", "--------", "-----", "-------"); } #ifdef H5AC_DEBUG if (H5DEBUG(AC)) headers = TRUE; #endif if (headers) { if (rdcc->nhits>0 || rdcc->nmisses>0) { miss_rate = 100.0 * rdcc->nmisses / (rdcc->nhits + rdcc->nmisses); } else { miss_rate = 0.0; } if (miss_rate > 100) { sprintf(ascii, "%7d%%", (int) (miss_rate + 0.5)); } else { sprintf(ascii, "%7.2f%%", miss_rate); } fprintf(H5DEBUG(AC), " %-18s %8u %8u %7s %8d+%-9ld\n", "raw data chunks", rdcc->nhits, rdcc->nmisses, ascii, rdcc->ninits, (long)(rdcc->nflushes)-(long)(rdcc->ninits)); } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_debug * * Purpose: Debugs a B-tree node for indexed raw data storage. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * Thursday, April 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5F_istore_debug(H5F_t *f, const haddr_t *addr, FILE * stream, intn indent, intn fwidth, int ndims) { H5F_istore_ud1_t udata; FUNC_ENTER (H5F_istore_debug, FAIL); HDmemset (&udata, 0, sizeof udata); udata.mesg.ndims = ndims; H5B_debug (f, addr, stream, indent, fwidth, H5B_ISTORE, &udata); FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5F_istore_get_addr * * Purpose: Get the file address of a chunk if file space has been * assigned. Save the retrieved information in the udata * supplied. * * Return: Non-negative on success/Negative on failure * * Programmer: Albert Cheng * June 27, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5F_istore_get_addr(H5F_t *f, const H5O_layout_t *layout, const hssize_t offset[], void *_udata/*out*/) { H5F_istore_ud1_t *udata = _udata; intn i; herr_t status; /*func return status */ FUNC_ENTER (H5F_istore_get_addr, FAIL); assert(f); assert(layout && (layout->ndims > 0)); assert(offset); assert(udata); for (i=0; indims; i++) { udata->key.offset[i] = offset[i]; } udata->mesg = *layout; H5F_addr_undef (&(udata->addr)); status = H5B_find (f, H5B_ISTORE, &(layout->addr), udata); H5E_clear (); if (status>=0 && H5F_addr_defined (&(udata->addr))) HRETURN(SUCCEED); FUNC_LEAVE (FAIL); } /*------------------------------------------------------------------------- * Function: H5F_istore_allocate * * Purpose: Allocate file space for all chunks that are not allocated yet. * Return SUCCEED if all needed allocation succeed, otherwise * FAIL. * * Return: Non-negative on success/Negative on failure * * Note: Current implementation relies on cache_size being 0, * thus no chunk is cashed and written to disk immediately * when a chunk is unlocked (via H5F_istore_unlock) * This should be changed to do a direct flush independent * of the cache value. * * Programmer: Albert Cheng * June 26, 1998 * * Modifications: * * rky 980923 * Added barrier to preclude racing with data writes. * * rky 19981207 * Added Wait-Signal wrapper around unlock-lock critical region * to prevent race condition (unlock reads, lock writes the chunk). * *------------------------------------------------------------------------- */ herr_t H5F_istore_allocate (H5F_t *f, const H5O_layout_t *layout, const hsize_t *space_dim, const double split_ratios[], const H5O_pline_t *pline, const H5O_fill_t *fill) { intn i, carry; hssize_t chunk_offset[H5O_LAYOUT_NDIMS]; uint8_t *chunk=NULL; intn idx_hint=0; size_t chunk_size; #ifdef AKC H5F_istore_ud1_t udata; #endif FUNC_ENTER(H5F_istore_allocate, FAIL); #ifdef AKC printf("Enter %s:\n", FUNC); #endif /* Check args */ assert(f); assert(space_dim); assert(pline); assert(layout && H5D_CHUNKED==layout->type); assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS); assert(H5F_addr_defined(&(layout->addr))); /* * Setup indice to go through all chunks. (Future improvement * should allocate only chunks that have no file space assigned yet. */ for (i=0, chunk_size=1; indims; i++) { chunk_offset[i]=0; chunk_size *= layout->dim[i]; } /* Loop over all chunks */ while (1) { #ifdef AKC printf("Checking allocation for chunk( "); for (i=0; indims; i++){ printf("%ld ", chunk_offset[i]); } printf(")\n"); #endif #ifdef NO if (H5F_istore_get_addr(f, layout, chunk_offset, &udata)<0){ #endif /* No file space assigned yet. Allocate it. */ /* The following needs improvement like calling the */ /* allocation directly rather than indirectly using the */ /* allocation effect in the unlock process. */ #ifdef AKC printf("need allocation\n"); #endif /* * Lock the chunk, copy from application to chunk, then unlock the * chunk. */ #ifdef HAVE_PARALLEL /* rky 981207 Serialize access to this critical region. */ if (SUCCEED!= H5PC_Wait_for_left_neighbor(f->shared->access_parms->u.mpio.comm)) { HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to lock the data chunk"); } #endif if (NULL==(chunk=H5F_istore_lock (f, layout, split_ratios, pline, fill, chunk_offset, FALSE, &idx_hint))) { HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to read raw data chunk"); } if (H5F_istore_unlock (f, layout, split_ratios, pline, TRUE, chunk_offset, &idx_hint, chunk, chunk_size)<0) { HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "uanble to unlock raw data chunk"); } #ifdef HAVE_PARALLEL if (SUCCEED!= H5PC_Signal_right_neighbor(f->shared->access_parms->u.mpio.comm)) { HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL, "unable to unlock the data chunk"); } #endif #ifdef NO } else { #ifdef AKC printf("NO need for allocation\n"); printf("udata.addr.offset=%d\n", udata.addr.offset); #endif } #endif /* Increment indices */ for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) { chunk_offset[i] += layout->dim[i]; if (chunk_offset[i] >= (hssize_t)(space_dim[i])) { chunk_offset[i] = 0; } else { carry = 0; } } if (carry) break; } #ifdef HAVE_PARALLEL /* * rky 980923 * * The following barrier is a temporary fix to prevent overwriting real * data caused by a race between one proc's call of H5F_istore_allocate * (from H5D_init_storage, ultimately from H5Dcreate and H5Dextend) and * another proc's call of H5Dwrite. Eventually, this barrier should be * removed, when H5D_init_storage is changed to call H5MF_alloc directly * to allocate space, instead of calling H5F_istore_unlock. */ if (MPI_Barrier( f->shared->access_parms->u.mpio.comm )) { HRETURN_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "MPI_Barrier failed"); } #endif FUNC_LEAVE(SUCCEED); }