/*------------------------------------------------------------------------- * Copyright (C) 1997-2001 National Center for Supercomputing Applications * All rights reserved. * *------------------------------------------------------------------------- * * Created: snode.c * Jun 26 1997 * Robb Matzke <matzke@llnl.gov> * * Purpose: Functions for handling symbol table nodes. A * symbol table node is a small collection of symbol * table entries. A B-tree usually points to the * symbol table nodes for any given symbol table. * * Modifications: * *------------------------------------------------------------------------- */ #define H5G_PACKAGE /*suppress error message about including H5Gpkg.h */ #define H5F_PACKAGE /*suppress error about including H5Fpkg */ /* Packages needed by this file... */ #include "H5private.h" /*library */ #include "H5ACprivate.h" /*cache */ #include "H5Bprivate.h" /*B-link trees */ #include "H5Eprivate.h" /*error handling */ #include "H5Fpkg.h" /*file access */ #include "H5FLprivate.h" /*Free Lists */ #include "H5Gpkg.h" /*me */ #include "H5HLprivate.h" /*local heap */ #include "H5Iprivate.h" /* IDs */ #include "H5MFprivate.h" /*file memory management */ #include "H5MMprivate.h" /*core memory management */ #include "H5Oprivate.h" /*header messages */ #include "H5Pprivate.h" /*property lists */ #include "H5FDmpio.h" /*the MPIO file driver */ #define PABLO_MASK H5G_node_mask /* PRIVATE PROTOTYPES */ static herr_t H5G_node_decode_key(H5F_t *f, H5B_t *bt, uint8_t *raw, void *_key); static herr_t H5G_node_encode_key(H5F_t *f, H5B_t *bt, uint8_t *raw, void *_key); static size_t H5G_node_size(H5F_t *f); static herr_t H5G_node_create(H5F_t *f, H5B_ins_t op, void *_lt_key, void *_udata, void *_rt_key, haddr_t *addr_p/*out*/); static herr_t H5G_node_flush(H5F_t *f, hbool_t destroy, haddr_t addr, H5G_node_t *sym); static H5G_node_t *H5G_node_load(H5F_t *f, haddr_t addr, const void *_udata1, void *_udata2); static int H5G_node_cmp2(H5F_t *f, void *_lt_key, void *_udata, void *_rt_key); static int H5G_node_cmp3(H5F_t *f, void *_lt_key, void *_udata, void *_rt_key); static herr_t H5G_node_found(H5F_t *f, haddr_t addr, const void *_lt_key, void *_udata, const void *_rt_key); static H5B_ins_t H5G_node_insert(H5F_t *f, haddr_t addr, void *_lt_key, hbool_t *lt_key_changed, void *_md_key, void *_udata, void *_rt_key, hbool_t *rt_key_changed, haddr_t *new_node_p/*out*/); static H5B_ins_t H5G_node_remove(H5F_t *f, haddr_t addr, void *lt_key, hbool_t *lt_key_changed, void *udata, void *rt_key, hbool_t *rt_key_changed); static herr_t H5G_node_iterate(H5F_t *f, void *_lt_key, haddr_t addr, void *_rt_key, void *_udata); static size_t H5G_node_sizeof_rkey(H5F_t *f, const void *_udata); /* H5G inherits cache-like properties from H5AC */ const H5AC_class_t H5AC_SNODE[1] = {{ H5AC_SNODE_ID, (H5AC_load_func_t)H5G_node_load, (herr_t (*)(H5F_t*, hbool_t, haddr_t, void*))H5G_node_flush, }}; /* H5G inherits B-tree like properties from H5B */ H5B_class_t H5B_SNODE[1] = {{ H5B_SNODE_ID, /*id */ sizeof(H5G_node_key_t), /*sizeof_nkey */ H5G_node_sizeof_rkey, /*get_sizeof_rkey */ H5G_node_create, /*new */ H5G_node_cmp2, /*cmp2 */ H5G_node_cmp3, /*cmp3 */ H5G_node_found, /*found */ H5G_node_insert, /*insert */ TRUE, /*follow min branch? */ TRUE, /*follow max branch? */ H5G_node_remove, /*remove */ H5G_node_iterate, /*list */ H5G_node_decode_key, /*decode */ H5G_node_encode_key, /*encode */ NULL, /*debug key */ }}; /* Interface initialization */ static int interface_initialize_g = 0; #define INTERFACE_INIT NULL /* Declare a free list to manage the H5G_node_t struct */ H5FL_DEFINE_STATIC(H5G_node_t); /* Declare a free list to manage arrays of H5G_entry_t's */ H5FL_ARR_DEFINE_STATIC(H5G_entry_t,-1); /* Declare a free list to manage blocks of symbol node data */ H5FL_BLK_DEFINE_STATIC(symbol_node); /*------------------------------------------------------------------------- * Function: H5G_node_sizeof_rkey * * Purpose: Returns the size of a raw B-link tree key for the specified * file. * * Return: Success: Size of the key. * * Failure: never fails * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 14 1997 * * Modifications: * *------------------------------------------------------------------------- */ static size_t H5G_node_sizeof_rkey(H5F_t *f, const void * UNUSED udata) { return H5F_SIZEOF_SIZE(f); /*the name offset */ } /*------------------------------------------------------------------------- * Function: H5G_node_decode_key * * Purpose: Decodes a raw key into a native key. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 8 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5G_node_decode_key(H5F_t *f, H5B_t UNUSED *bt, uint8_t *raw, void *_key) { H5G_node_key_t *key = (H5G_node_key_t *) _key; FUNC_ENTER(H5G_node_decode_key, FAIL); assert(f); assert(raw); assert(key); H5F_DECODE_LENGTH(f, raw, key->offset); FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5G_node_encode_key * * Purpose: Encodes a native key into a raw key. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 8 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5G_node_encode_key(H5F_t *f, H5B_t UNUSED *bt, uint8_t *raw, void *_key) { H5G_node_key_t *key = (H5G_node_key_t *) _key; FUNC_ENTER(H5G_node_encode_key, FAIL); assert(f); assert(raw); assert(key); H5F_ENCODE_LENGTH(f, raw, key->offset); FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5G_node_size * * Purpose: Returns the total size of a symbol table node. * * Return: Success: Total size of the node in bytes. * * Failure: Never fails. * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ static size_t H5G_node_size(H5F_t *f) { return H5G_NODE_SIZEOF_HDR(f) + (2 * H5G_node_k(f)) * H5G_SIZEOF_ENTRY(f); } /*------------------------------------------------------------------------- * Function: H5G_node_create * * Purpose: Creates a new empty symbol table node. This function is * called by the B-tree insert function for an empty tree. It * is also called internally to split a symbol node with LT_KEY * and RT_KEY null pointers. * * Return: Success: Non-negative. The address of symbol table * node is returned through the ADDR_P argument. * * Failure: Negative * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5G_node_create(H5F_t *f, H5B_ins_t UNUSED op, void *_lt_key, void UNUSED *_udata, void *_rt_key, haddr_t *addr_p/*out*/) { H5G_node_key_t *lt_key = (H5G_node_key_t *) _lt_key; H5G_node_key_t *rt_key = (H5G_node_key_t *) _rt_key; H5G_node_t *sym = NULL; hsize_t size = 0; FUNC_ENTER(H5G_node_create, FAIL); /* * Check arguments. */ assert(f); assert(H5B_INS_FIRST == op); if (NULL==(sym = H5FL_ALLOC(H5G_node_t,1))) { HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed"); } size = H5G_node_size(f); if (HADDR_UNDEF==(*addr_p=H5MF_alloc(f, H5FD_MEM_BTREE, size))) { H5FL_FREE(H5G_node_t,sym); HRETURN_ERROR(H5E_SYM, H5E_CANTINIT, FAIL, "unable to allocate file space"); } sym->dirty = TRUE; sym->entry = H5FL_ARR_ALLOC(H5G_entry_t,(2*H5G_node_k(f)),1); if (NULL==sym->entry) { H5FL_FREE(H5G_node_t,sym); HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed"); } if (H5AC_set(f, H5AC_SNODE, *addr_p, sym) < 0) { H5FL_ARR_FREE(H5G_entry_t,sym->entry); H5FL_FREE(H5G_node_t,sym); HRETURN_ERROR(H5E_SYM, H5E_CANTINIT, FAIL, "unable to cache symbol table leaf node"); } /* * The left and right symbols in an empty tree are both the * empty string stored at offset zero by the H5G functions. This * allows the comparison functions to work correctly without knowing * that there are no symbols. */ if (lt_key) lt_key->offset = 0; if (rt_key) rt_key->offset = 0; FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5G_node_flush * * Purpose: Flush a symbol table node to disk. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * rky, 1998-08-28 * Only p0 writes metadata to disk. * * Robb Matzke, 1999-07-28 * The ADDR argument is passed by value. *------------------------------------------------------------------------- */ static herr_t H5G_node_flush(H5F_t *f, hbool_t destroy, haddr_t addr, H5G_node_t *sym) { uint8_t *buf = NULL, *p = NULL; size_t size; herr_t status; int i; FUNC_ENTER(H5G_node_flush, FAIL); /* * Check arguments. */ assert(f); assert(H5F_addr_defined(addr)); assert(sym); /* * Look for dirty entries and set the node dirty flag. */ for (i=0; i<sym->nsyms; i++) { if (sym->entry[i].dirty) sym->dirty = TRUE; } /* * Write the symbol node to disk. */ if (sym->dirty) { size = H5G_node_size(f); /* Allocate temporary buffer */ if ((buf=H5FL_BLK_ALLOC(symbol_node,size, 0))==NULL) HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed"); p=buf; /* magic number */ HDmemcpy(p, H5G_NODE_MAGIC, H5G_NODE_SIZEOF_MAGIC); p += 4; /* version number */ *p++ = H5G_NODE_VERS; /* reserved */ *p++ = 0; /* number of symbols */ UINT16ENCODE(p, sym->nsyms); /* entries */ H5G_ent_encode_vec(f, &p, sym->entry, sym->nsyms); HDmemset(p, 0, size - (p - buf)); #ifdef H5_HAVE_PARALLEL if (IS_H5FD_MPIO(f)) H5FD_mpio_tas_allsame(f->shared->lf, TRUE); /*only p0 will write*/ #endif /* H5_HAVE_PARALLEL */ status = H5F_block_write(f, H5FD_MEM_BTREE, addr, size, H5P_DATASET_XFER_DEFAULT, buf); if (status < 0) HRETURN_ERROR(H5E_SYM, H5E_WRITEERROR, FAIL, "unable to write symbol table node to the file"); if (buf) H5FL_BLK_FREE(symbol_node,buf); } /* * Destroy the symbol node? This might happen if the node is being * preempted from the cache. */ if (destroy) { sym->entry = H5FL_ARR_FREE(H5G_entry_t,sym->entry); H5FL_FREE(H5G_node_t,sym); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5G_node_load * * Purpose: Loads a symbol table node from the file. * * Return: Success: Ptr to the new table. * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * Robb Matzke, 1999-07-28 * The ADDR argument is passed by value. *------------------------------------------------------------------------- */ static H5G_node_t * H5G_node_load(H5F_t *f, haddr_t addr, const void * UNUSED _udata1, void * UNUSED _udata2) { H5G_node_t *sym = NULL; size_t size = 0; uint8_t *buf = NULL; const uint8_t *p = NULL; H5G_node_t *ret_value = NULL; /*for error handling */ FUNC_ENTER(H5G_node_load, NULL); /* * Check arguments. */ assert(f); assert(H5F_addr_defined(addr)); assert(!_udata1); assert(NULL == _udata2); /* * Initialize variables. */ size = H5G_node_size(f); if ((buf=H5FL_BLK_ALLOC(symbol_node,size,0))==NULL) HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed for symbol table node"); p=buf; if (NULL==(sym = H5FL_ALLOC(H5G_node_t,1)) || NULL==(sym->entry=H5FL_ARR_ALLOC(H5G_entry_t,(2*H5G_node_k(f)),1))) { HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL, "memory allocation failed"); } if (H5F_block_read(f, H5FD_MEM_BTREE, addr, size, H5P_DATASET_XFER_DEFAULT, buf) < 0) { HGOTO_ERROR(H5E_SYM, H5E_READERROR, NULL, "unabel to read symbol table node"); } /* magic */ if (HDmemcmp(p, H5G_NODE_MAGIC, H5G_NODE_SIZEOF_MAGIC)) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, NULL, "bad symbol table node signature"); } p += 4; /* version */ if (H5G_NODE_VERS != *p++) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, NULL, "bad symbol table node version"); } /* reserved */ p++; /* number of symbols */ UINT16DECODE(p, sym->nsyms); /* entries */ if (H5G_ent_decode_vec(f, &p, sym->entry, sym->nsyms) < 0) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, NULL, "unable to decode symbol table entries"); } ret_value = sym; done: if (buf) H5FL_BLK_FREE(symbol_node,buf); if (!ret_value) { if (sym) { sym->entry = H5FL_ARR_FREE(H5G_entry_t,sym->entry); sym = H5FL_FREE(H5G_node_t,sym); } } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5G_node_cmp2 * * Purpose: Compares two keys from a B-tree node (LT_KEY and RT_KEY). * The UDATA pointer supplies extra data not contained in the * keys (in this case, the heap address). * * Return: Success: negative if LT_KEY is less than RT_KEY. * * positive if LT_KEY is greater than RT_KEY. * * zero if LT_KEY and RT_KEY are equal. * * Failure: FAIL (same as LT_KEY<RT_KEY) * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ static int H5G_node_cmp2(H5F_t *f, void *_lt_key, void *_udata, void *_rt_key) { H5G_bt_ud1_t *udata = (H5G_bt_ud1_t *) _udata; H5G_node_key_t *lt_key = (H5G_node_key_t *) _lt_key; H5G_node_key_t *rt_key = (H5G_node_key_t *) _rt_key; const char *s1, *s2; int cmp; FUNC_ENTER(H5G_node_cmp2, FAIL); assert(udata); assert(lt_key); assert(rt_key); if (NULL == (s1 = H5HL_peek(f, udata->heap_addr, lt_key->offset))) { HRETURN_ERROR(H5E_SYM, H5E_NOTFOUND, FAIL, "unable to read symbol name"); } if (NULL == (s2 = H5HL_peek(f, udata->heap_addr, rt_key->offset))) { HRETURN_ERROR(H5E_SYM, H5E_NOTFOUND, FAIL, "unable to read symbol name"); } cmp = HDstrcmp(s1, s2); FUNC_LEAVE(cmp); } /*------------------------------------------------------------------------- * Function: H5G_node_cmp3 * * Purpose: Compares two keys from a B-tree node (LT_KEY and RT_KEY) * against another key (not necessarily the same type) * pointed to by UDATA. * * Return: Success: negative if the UDATA key is less than * or equal to the LT_KEY * * positive if the UDATA key is greater * than the RT_KEY. * * zero if the UDATA key falls between * the LT_KEY (exclusive) and the * RT_KEY (inclusive). * * Failure: FAIL (same as UDATA < LT_KEY) * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * *------------------------------------------------------------------------- */ static int H5G_node_cmp3(H5F_t *f, void *_lt_key, void *_udata, void *_rt_key) { H5G_bt_ud1_t *udata = (H5G_bt_ud1_t *) _udata; H5G_node_key_t *lt_key = (H5G_node_key_t *) _lt_key; H5G_node_key_t *rt_key = (H5G_node_key_t *) _rt_key; const char *s; FUNC_ENTER(H5G_node_cmp3, FAIL); /* left side */ if (NULL == (s = H5HL_peek(f, udata->heap_addr, lt_key->offset))) { HRETURN_ERROR(H5E_SYM, H5E_NOTFOUND, FAIL, "unable to read symbol name"); } if (HDstrcmp(udata->name, s) <= 0) HRETURN(-1); /* right side */ if (NULL == (s = H5HL_peek(f, udata->heap_addr, rt_key->offset))) { HRETURN_ERROR(H5E_SYM, H5E_NOTFOUND, FAIL, "unable to read symbol name"); } if (HDstrcmp(udata->name, s) > 0) HRETURN(1); FUNC_LEAVE(0); } /*------------------------------------------------------------------------- * Function: H5G_node_found * * Purpose: The B-tree search engine has found the symbol table node * which contains the requested symbol if the symbol exists. * This function should examine that node for the symbol and * return information about the symbol through the UDATA * structure which contains the symbol name on function * entry. * * If the operation flag in UDATA is H5G_OPER_FIND, then * the entry is copied from the symbol table to the UDATA * entry field. Otherwise the entry is copied from the * UDATA entry field to the symbol table. * * Return: Success: Non-negative if found and data returned through * the UDATA pointer. * * Failure: Negative if not found. * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 23 1997 * * Modifications: * Robb Matzke, 1999-07-28 * The ADDR argument is passed by value. *------------------------------------------------------------------------- */ static herr_t H5G_node_found(H5F_t *f, haddr_t addr, const void * UNUSED _lt_key, void *_udata, const void * UNUSED _rt_key) { H5G_bt_ud1_t *bt_udata = (H5G_bt_ud1_t *) _udata; H5G_node_t *sn = NULL; int lt = 0, idx = 0, rt, cmp = 1; const char *s; herr_t ret_value = FAIL; FUNC_ENTER(H5G_node_found, FAIL); /* * Check arguments. */ assert(f); assert(H5F_addr_defined(addr)); assert(bt_udata); /* * Load the symbol table node for exclusive access. */ if (NULL == (sn = H5AC_protect(f, H5AC_SNODE, addr, NULL, NULL))) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, FAIL, "unable to protect symbol table node"); } /* * Binary search. */ rt = sn->nsyms; while (lt < rt && cmp) { idx = (lt + rt) / 2; if (NULL == (s = H5HL_peek(f, bt_udata->heap_addr, sn->entry[idx].name_off))) { HGOTO_ERROR(H5E_SYM, H5E_NOTFOUND, FAIL, "unable to read symbol name"); } cmp = HDstrcmp(bt_udata->name, s); if (cmp < 0) { rt = idx; } else { lt = idx + 1; } } if (cmp) HGOTO_ERROR(H5E_SYM, H5E_NOTFOUND, FAIL, "not found"); switch (bt_udata->operation) { case H5G_OPER_FIND: /* * The caller is querying the symbol entry. Return just a pointer to * the entry. The pointer is valid until the next call to H5AC. */ bt_udata->ent = sn->entry[idx]; break; default: HRETURN_ERROR(H5E_SYM, H5E_UNSUPPORTED, FAIL, "internal erorr (unknown symbol find operation)"); } ret_value = SUCCEED; done: if (sn && H5AC_unprotect(f, H5AC_SNODE, addr, sn) < 0) { HRETURN_ERROR(H5E_SYM, H5E_PROTECT, FAIL, "unable to release symbol table node"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5G_node_insert * * Purpose: The B-tree insertion engine has found the symbol table node * which should receive the new symbol/address pair. This * function adds it to that node unless it already existed. * * If the node has no room for the symbol then the node is * split into two nodes. The original node contains the * low values and the new node contains the high values. * The new symbol table entry is added to either node as * appropriate. When a split occurs, this function will * write the maximum key of the low node to the MID buffer * and return the address of the new node. * * If the new key is larger than RIGHT then update RIGHT * with the new key. * * Return: Success: An insertion command for the caller, one of * the H5B_INS_* constants. The address of the * new node, if any, is returned through the * NEW_NODE_P argument. NEW_NODE_P might not be * initialized if the return value is * H5B_INS_NOOP. * * Failure: H5B_INS_ERROR, NEW_NODE_P might not be * initialized. * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 24 1997 * * Modifications: * Robb Matzke, 1999-07-28 * The ADDR argument is passed by value. *------------------------------------------------------------------------- */ static H5B_ins_t H5G_node_insert(H5F_t *f, haddr_t addr, void UNUSED *_lt_key, hbool_t UNUSED *lt_key_changed, void *_md_key, void *_udata, void *_rt_key, hbool_t UNUSED *rt_key_changed, haddr_t *new_node_p) { H5G_node_key_t *md_key = (H5G_node_key_t *) _md_key; H5G_node_key_t *rt_key = (H5G_node_key_t *) _rt_key; H5G_bt_ud1_t *bt_udata = (H5G_bt_ud1_t *) _udata; H5G_node_t *sn = NULL, *snrt = NULL; size_t offset; /*offset of name in heap */ const char *s; int idx = -1, cmp = 1; int lt = 0, rt; /*binary search cntrs */ H5B_ins_t ret_value = H5B_INS_ERROR; H5G_node_t *insert_into = NULL; /*node that gets new entry*/ FUNC_ENTER(H5G_node_insert, H5B_INS_ERROR); /* * Check arguments. */ assert(f); assert(H5F_addr_defined(addr)); assert(md_key); assert(rt_key); assert(bt_udata); assert(new_node_p); /* * Load the symbol node. */ if (NULL == (sn = H5AC_protect(f, H5AC_SNODE, addr, NULL, NULL))) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, H5B_INS_ERROR, "unable to protect symbol table node"); } /* * Where does the new symbol get inserted? We use a binary search. */ rt = sn->nsyms; while (lt < rt) { idx = (lt + rt) / 2; if (NULL == (s = H5HL_peek(f, bt_udata->heap_addr, sn->entry[idx].name_off))) { HGOTO_ERROR(H5E_SYM, H5E_NOTFOUND, H5B_INS_ERROR, "unable to read symbol name"); } if (0 == (cmp = HDstrcmp(bt_udata->name, s))) { /*already present */ HGOTO_ERROR(H5E_SYM, H5E_CANTINSERT, H5B_INS_ERROR, "symbol is already present in symbol table"); } if (cmp < 0) { rt = idx; } else { lt = idx + 1; } } idx += cmp > 0 ? 1 : 0; /* * Add the new name to the heap. */ offset = H5HL_insert(f, bt_udata->heap_addr, HDstrlen(bt_udata->name)+1, bt_udata->name); bt_udata->ent.name_off = offset; if (0==offset || (size_t)(-1)==offset) { HGOTO_ERROR(H5E_SYM, H5E_CANTINSERT, H5B_INS_ERROR, "unable to insert symbol name into heap"); } if ((size_t)(sn->nsyms) >= 2*H5G_node_k(f)) { /* * The node is full. Split it into a left and right * node and return the address of the new right node (the * left node is at the same address as the original node). */ ret_value = H5B_INS_RIGHT; /* The right node */ if (H5G_node_create(f, H5B_INS_FIRST, NULL, NULL, NULL, new_node_p/*out*/)<0) { HGOTO_ERROR(H5E_SYM, H5E_CANTINIT, H5B_INS_ERROR, "unable to split symbol table node"); } if (NULL==(snrt=H5AC_find(f, H5AC_SNODE, *new_node_p, NULL, NULL))) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, H5B_INS_ERROR, "unable to split symbol table node"); } HDmemcpy(snrt->entry, sn->entry + H5G_node_k(f), H5G_node_k(f) * sizeof(H5G_entry_t)); snrt->nsyms = H5G_node_k(f); snrt->dirty = TRUE; /* The left node */ HDmemset(sn->entry + H5G_node_k(f), 0, H5G_node_k(f) * sizeof(H5G_entry_t)); sn->nsyms = H5G_node_k(f); sn->dirty = TRUE; /* The middle key */ md_key->offset = sn->entry[sn->nsyms - 1].name_off; /* Where to insert the new entry? */ if (idx <= (int)H5G_node_k(f)) { insert_into = sn; if (idx == (int)H5G_node_k(f)) md_key->offset = offset; } else { idx -= H5G_node_k(f); insert_into = snrt; if (idx == (int)H5G_node_k (f)) { rt_key->offset = offset; *rt_key_changed = TRUE; } } } else { /* Where to insert the new entry? */ ret_value = H5B_INS_NOOP; sn->dirty = TRUE; insert_into = sn; if (idx == sn->nsyms) { rt_key->offset = offset; *rt_key_changed = TRUE; } } /* Move entries */ HDmemmove(insert_into->entry + idx + 1, insert_into->entry + idx, (insert_into->nsyms - idx) * sizeof(H5G_entry_t)); insert_into->entry[idx] = bt_udata->ent; insert_into->entry[idx].dirty = TRUE; insert_into->nsyms += 1; done: if (sn && H5AC_unprotect(f, H5AC_SNODE, addr, sn) < 0) { HRETURN_ERROR(H5E_SYM, H5E_PROTECT, H5B_INS_ERROR, "unable to release symbol table node"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5G_node_remove * * Purpose: The B-tree removal engine has found the symbol table node * which should contain the name which is being removed. This * function removes the name from the symbol table and * decrements the link count on the object to which the name * points. * * Return: Success: If all names are removed from the symbol * table node then H5B_INS_REMOVE is returned; * otherwise H5B_INS_NOOP is returned. * * Failure: H5B_INS_ERROR * * Programmer: Robb Matzke * Thursday, September 24, 1998 * * Modifications: * Robb Matzke, 1999-07-28 * The ADDR argument is passed by value. *------------------------------------------------------------------------- */ static H5B_ins_t H5G_node_remove(H5F_t *f, haddr_t addr, void *_lt_key/*in,out*/, hbool_t UNUSED *lt_key_changed/*out*/, void *_udata/*in,out*/, void *_rt_key/*in,out*/, hbool_t *rt_key_changed/*out*/) { H5G_node_key_t *lt_key = (H5G_node_key_t*)_lt_key; H5G_node_key_t *rt_key = (H5G_node_key_t*)_rt_key; H5G_bt_ud1_t *bt_udata = (H5G_bt_ud1_t*)_udata; H5G_node_t *sn = NULL; H5B_ins_t ret_value = H5B_INS_ERROR; int lt=0, rt, idx=0, cmp=1; const char *s = NULL; FUNC_ENTER(H5G_node_remove, H5B_INS_ERROR); /* Check arguments */ assert(f); assert(H5F_addr_defined(addr)); assert(lt_key); assert(rt_key); assert(bt_udata); /* Load the symbol table */ if (NULL==(sn=H5AC_protect(f, H5AC_SNODE, addr, NULL, NULL))) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, H5B_INS_ERROR, "unable to protect symbol table node"); } /* Find the name with a binary search */ rt = sn->nsyms; while (lt<rt && cmp) { idx = (lt+rt)/2; if (NULL==(s=H5HL_peek(f, bt_udata->heap_addr, sn->entry[idx].name_off))) { HGOTO_ERROR(H5E_SYM, H5E_NOTFOUND, H5B_INS_ERROR, "unable to read symbol name"); } cmp = HDstrcmp(bt_udata->name, s); if (cmp<0) { rt = idx; } else { lt = idx+1; } } if (cmp) HGOTO_ERROR(H5E_SYM, H5E_NOTFOUND, H5B_INS_ERROR, "not found"); if (H5G_CACHED_SLINK==sn->entry[idx].type) { /* Remove the symbolic link value */ if ((s=H5HL_peek(f, bt_udata->heap_addr, sn->entry[idx].cache.slink.lval_offset))) { H5HL_remove(f, bt_udata->heap_addr, sn->entry[idx].cache.slink.lval_offset, HDstrlen(s)+1); } H5E_clear(); /*no big deal*/ } else { /* Decrement the reference count */ assert(H5F_addr_defined(sn->entry[idx].header)); if (H5O_link(sn->entry+idx, -1)<0) { HGOTO_ERROR(H5E_SYM, H5E_CANTINIT, H5B_INS_ERROR, "unable to decrement object link count"); } } /* Remove the name from the local heap */ if ((s=H5HL_peek(f, bt_udata->heap_addr, sn->entry[idx].name_off))) { H5HL_remove(f, bt_udata->heap_addr, sn->entry[idx].name_off, HDstrlen(s)+1); } H5E_clear(); /*no big deal*/ /* Remove the entry from the symbol table node */ if (1==sn->nsyms) { /* * We are about to remove the only symbol in this node. Copy the left * key to the right key and mark the right key as dirty. Free this * node and indicate that the pointer to this node in the B-tree * should be removed also. */ assert(0==idx); *rt_key = *lt_key; *rt_key_changed = TRUE; sn->nsyms = 0; sn->dirty = TRUE; if (H5AC_unprotect(f, H5AC_SNODE, addr, sn)<0 || H5AC_flush(f, H5AC_SNODE, addr, TRUE)<0 || H5MF_xfree(f, H5FD_MEM_BTREE, addr, (hsize_t)H5G_node_size(f))<0) { sn = NULL; HGOTO_ERROR(H5E_SYM, H5E_PROTECT, H5B_INS_ERROR, "unable to free symbol table node"); } sn = NULL; ret_value = H5B_INS_REMOVE; } else if (0==idx) { /* * We are about to remove the left-most entry from the symbol table * node but there are other entries to the right. No key values * change. */ sn->nsyms -= 1; sn->dirty = TRUE; HDmemmove(sn->entry+idx, sn->entry+idx+1, (sn->nsyms-idx)*sizeof(H5G_entry_t)); ret_value = H5B_INS_NOOP; } else if (idx+1==sn->nsyms) { /* * We are about to remove the right-most entry from the symbol table * node but there are other entries to the left. The right key * should be changed to reflect the new right-most entry. */ sn->nsyms -= 1; sn->dirty = TRUE; rt_key->offset = sn->entry[sn->nsyms-1].name_off; *rt_key_changed = TRUE; ret_value = H5B_INS_NOOP; } else { /* * We are about to remove an entry from the middle of a symbol table * node. */ sn->nsyms -= 1; sn->dirty = TRUE; HDmemmove(sn->entry+idx, sn->entry+idx+1, (sn->nsyms-idx)*sizeof(H5G_entry_t)); ret_value = H5B_INS_NOOP; } done: if (sn && H5AC_unprotect(f, H5AC_SNODE, addr, sn)<0) { HRETURN_ERROR(H5E_SYM, H5E_PROTECT, H5B_INS_ERROR, "unable to release symbol table node"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5G_node_iterate * * Purpose: This function gets called during a group iterate operation. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * matzke@llnl.gov * Jun 24 1997 * * Modifications: * Robb Matzke, 1999-07-28 * The ADDR argument is passed by value. *------------------------------------------------------------------------- */ static herr_t H5G_node_iterate (H5F_t *f, void UNUSED *_lt_key, haddr_t addr, void UNUSED *_rt_key, void *_udata) { H5G_bt_ud2_t *bt_udata = (H5G_bt_ud2_t *)_udata; H5G_node_t *sn = NULL; int i, nsyms; size_t n, *name_off=NULL; const char *name; char buf[1024], *s; herr_t ret_value = FAIL; FUNC_ENTER(H5G_node_iterate, FAIL); /* * Check arguments. */ assert(f); assert(H5F_addr_defined(addr)); assert(bt_udata); /* * Save information about the symbol table node since we can't lock it * because we're about to call an application function. */ if (NULL == (sn = H5AC_find(f, H5AC_SNODE, addr, NULL, NULL))) { HGOTO_ERROR(H5E_SYM, H5E_CANTLOAD, FAIL, "unable to load symbol table node"); } nsyms = sn->nsyms; if (NULL==(name_off = H5MM_malloc (nsyms*sizeof(name_off[0])))) { HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed"); } for (i=0; i<nsyms; i++) name_off[i] = sn->entry[i].name_off; sn = NULL; /* * Iterate over the symbol table node entries. */ for (i=0, ret_value=0; i<nsyms && 0==ret_value; i++) { if (bt_udata->skip>0) { --bt_udata->skip; } else { name = H5HL_peek (f, bt_udata->group->ent.cache.stab.heap_addr, name_off[i]); assert (name); n = HDstrlen (name); if (n+1>sizeof(buf)) { if (NULL==(s = H5MM_malloc (n+1))) { HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "memory allocation failed"); } } else { s = buf; } HDstrcpy (s, name); ret_value = (bt_udata->op)(bt_udata->group_id, s, bt_udata->op_data); if (s!=buf) H5MM_xfree (s); } /* Increment the number of entries passed through */ /* (whether we skipped them or not) */ bt_udata->final_ent++; } if (ret_value<0) { HERROR (H5E_SYM, H5E_CANTINIT, "iteration operator failed"); } done: name_off = H5MM_xfree (name_off); FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5G_node_debug * * Purpose: Prints debugging information about a symbol table node * or a B-tree node for a symbol table B-tree. * * Return: Non-negative on success/Negative on failure * * Programmer: Robb Matzke * matzke@llnl.gov * Aug 4 1997 * * Modifications: * Robb Matzke, 1999-07-28 * The ADDR and HEAP arguments are passed by value. *------------------------------------------------------------------------- */ herr_t H5G_node_debug(H5F_t *f, haddr_t addr, FILE * stream, int indent, int fwidth, haddr_t heap) { int i; H5G_node_t *sn = NULL; herr_t status; const char *s; FUNC_ENTER(H5G_node_debug, FAIL); /* * Check arguments. */ assert(f); assert(H5F_addr_defined(addr)); assert(stream); assert(indent >= 0); assert(fwidth >= 0); /* * If we couldn't load the symbol table node, then try loading the * B-tree node. */ if (NULL == (sn = H5AC_protect(f, H5AC_SNODE, addr, NULL, NULL))) { H5E_clear(); /*discard that error */ status = H5B_debug(f, addr, stream, indent, fwidth, H5B_SNODE, NULL); if (status < 0) { HRETURN_ERROR(H5E_SYM, H5E_CANTLOAD, FAIL, "unable to debug B-tree node"); } HRETURN(SUCCEED); } fprintf(stream, "%*sSymbol Table Node...\n", indent, ""); fprintf(stream, "%*s%-*s %s\n", indent, "", fwidth, "Dirty:", sn->dirty ? "Yes" : "No"); fprintf(stream, "%*s%-*s %u\n", indent, "", fwidth, "Size of Node (in bytes):", (unsigned)H5G_node_size(f)); fprintf(stream, "%*s%-*s %d of %d\n", indent, "", fwidth, "Number of Symbols:", sn->nsyms, 2 * H5G_node_k(f)); indent += 3; fwidth = MAX(0, fwidth - 3); for (i = 0; i < sn->nsyms; i++) { fprintf(stream, "%*sSymbol %d:\n", indent - 3, "", i); if (H5F_addr_defined(heap) && (s = H5HL_peek(f, heap, sn->entry[i].name_off))) { fprintf(stream, "%*s%-*s `%s'\n", indent, "", fwidth, "Name:", s); } H5G_ent_debug(f, sn->entry + i, stream, indent, fwidth, heap); } H5AC_unprotect(f, H5AC_SNODE, addr, sn); FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5G_node_k * * Purpose: Replaced a macro to retrieve the symbol table leaf size, * now that the generic properties are being used to store * the values. * * Return: Success: Non-negative, and the symbol table leaf size is * returned. * * Failure: Negative (should not happen) * * Programmer: Raymond Lu * slu@ncsa.uiuc.edu * Oct 14 2001 * * Modifications: * Quincey Koziol, 2001-10-15 * Added this header and removed unused ret_value variable. *------------------------------------------------------------------------- */ unsigned H5G_node_k(const H5F_t *f) { unsigned sym_leaf_k; H5P_genplist_t *plist; /* Property list pointer */ FUNC_ENTER(H5G_node_k, UFAIL); assert(f); if(NULL == (plist = H5I_object(f->shared->fcpl_id))) HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, UFAIL, "not a file access property list"); if(H5P_get(plist, H5F_CRT_SYM_LEAF_NAME, &sym_leaf_k) < 0) HRETURN_ERROR(H5E_PLIST, H5E_CANTGET, UFAIL, "can't get rank for symbol table leaf node"); FUNC_LEAVE(sym_leaf_k); }