/*------------------------------------------------------------------------- * Copyright (C) 1997 National Center for Supercomputing Applications. * All rights reserved. * *------------------------------------------------------------------------- * * Created: H5H.c * Jul 16 1997 * Robb Matzke * * Purpose: Heap functions for the global small object heap * and for local symbol table name heaps. * * Modifications: * * Robb Matzke, 5 Aug 1997 * Added calls to H5E. * *------------------------------------------------------------------------- */ #include /*library */ #include /*cache */ #include /*error handling */ #include /*self */ #include /*file memory management */ #include /*core memory management */ #define H5H_FREE_NULL 1 /*end of free list on disk */ #define PABLO_MASK H5H_mask #define H5H_ALIGN(X) (((X)+7)&~0x03) /*align on 8-byte boundary */ typedef struct H5H_free_t { size_t offset; /*offset of free block */ size_t size; /*size of free block */ struct H5H_free_t *prev; /*previous entry in free list */ struct H5H_free_t *next; /*next entry in free list */ } H5H_free_t; typedef struct H5H_t { intn dirty; haddr_t addr; /*address of data */ size_t disk_alloc; /*data bytes allocated on disk */ size_t mem_alloc; /*data bytes allocated in mem */ uint8 *chunk; /*the chunk, including header */ H5H_free_t *freelist; /*the free list */ } H5H_t; /* PRIVATE PROTOTYPES */ static H5H_t *H5H_load(H5F_t *f, const haddr_t *addr, const void *udata1, void *udata2); static herr_t H5H_flush(H5F_t *f, hbool_t dest, const haddr_t *addr, H5H_t *heap); /* * H5H inherits cache-like properties from H5AC */ static const H5AC_class_t H5AC_HEAP[1] = { { H5AC_HEAP_ID, (void *(*)(H5F_t *, const haddr_t *, const void *, void *)) H5H_load, (herr_t (*)(H5F_t *, hbool_t, const haddr_t *, void *)) H5H_flush, }}; /* Interface initialization */ static intn interface_initialize_g = FALSE; #define INTERFACE_INIT NULL /*------------------------------------------------------------------------- * Function: H5H_create * * Purpose: Creates a new heap data structure on disk and caches it * in memory. SIZE_HINT is a hint for the initial size of the * data area of the heap. If size hint is invalid then a * reasonable (but probably not optimal) size will be chosen. * If the heap ever has to grow, then REALLOC_HINT is the * minimum amount by which the heap will grow. * * Return: Success: SUCCEED. The file address of new heap is * returned through the ADDR argument. * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * * Robb Matzke, 5 Aug 1997 * Takes a flag that determines the type of heap that is * created. * *------------------------------------------------------------------------- */ herr_t H5H_create(H5F_t *f, H5H_type_t heap_type, size_t size_hint, haddr_t *addr /*out */ ) { H5H_t *heap = NULL; size_t total_size; /*total heap size on disk */ FUNC_ENTER(H5H_create, FAIL); /* check arguments */ assert(f); assert(addr); if (H5H_GLOBAL == heap_type) { #ifndef NDEBUG fprintf(stderr, "H5H_create: a local heap is used as the global " "heap\n"); #endif } size_hint = MAX(0, size_hint); if (size_hint && size_hint < H5H_SIZEOF_FREE(f)) { size_hint = H5H_SIZEOF_FREE(f); } size_hint = H5H_ALIGN(size_hint); /* allocate file version */ total_size = H5H_SIZEOF_HDR(f) + size_hint; if (H5MF_alloc(f, H5MF_META, total_size, addr /*out */ ) < 0) { HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "unable to allocate file memory"); } /* allocate memory version */ heap = H5MM_xcalloc(1, sizeof(H5H_t)); heap->addr = *addr; H5F_addr_inc(&(heap->addr), H5H_SIZEOF_HDR(f)); heap->disk_alloc = size_hint; heap->mem_alloc = size_hint; heap->chunk = H5MM_xcalloc(1, H5H_SIZEOF_HDR(f) + size_hint); /* free list */ if (size_hint) { heap->freelist = H5MM_xmalloc(sizeof(H5H_free_t)); heap->freelist->offset = 0; heap->freelist->size = size_hint; heap->freelist->prev = heap->freelist->next = NULL; } else { heap->freelist = NULL; } /* add to cache */ heap->dirty = 1; if (H5AC_set(f, H5AC_HEAP, addr, heap) < 0) { heap->chunk = H5MM_xfree(heap->chunk); heap->freelist = H5MM_xfree(heap->freelist); HRETURN_ERROR(H5E_HEAP, H5E_CANTINIT, FAIL, "unable to cache heap"); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_load * * Purpose: Loads a heap from disk. * * Return: Success: Ptr to heap memory data structure. * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ static H5H_t * H5H_load(H5F_t *f, const haddr_t *addr, const void *udata1, void *udata2) { uint8 hdr[20]; const uint8 *p = NULL; H5H_t *heap = NULL; H5H_free_t *fl = NULL, *tail = NULL; size_t free_block = H5H_FREE_NULL; H5H_t *ret_value = NULL; FUNC_ENTER(H5H_load, NULL); /* check arguments */ assert(f); assert(addr && H5F_addr_defined(addr)); assert(H5H_SIZEOF_HDR(f) <= sizeof hdr); assert(!udata1); assert(!udata2); if (H5F_block_read(f, addr, H5H_SIZEOF_HDR(f), hdr) < 0) { HRETURN_ERROR(H5E_HEAP, H5E_READERROR, NULL, "unable to read heap header"); } p = hdr; heap = H5MM_xcalloc(1, sizeof(H5H_t)); /* magic number */ if (HDmemcmp(hdr, H5H_MAGIC, H5H_SIZEOF_MAGIC)) { HGOTO_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap signature"); } p += H5H_SIZEOF_MAGIC; /* heap data size */ H5F_decode_length(f, p, heap->disk_alloc); heap->mem_alloc = heap->disk_alloc; /* free list head */ H5F_decode_length(f, p, free_block); if (free_block != H5H_FREE_NULL && free_block >= heap->disk_alloc) { HGOTO_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap free list"); } /* data */ H5F_addr_decode(f, &p, &(heap->addr)); heap->chunk = H5MM_xcalloc(1, H5H_SIZEOF_HDR(f) + heap->mem_alloc); if (heap->disk_alloc && H5F_block_read(f, &(heap->addr), heap->disk_alloc, heap->chunk + H5H_SIZEOF_HDR(f)) < 0) { HGOTO_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "unable to read heap data"); } /* free list */ while (H5H_FREE_NULL != free_block) { if (free_block >= heap->disk_alloc) { HGOTO_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap free list"); } fl = H5MM_xmalloc(sizeof(H5H_free_t)); fl->offset = free_block; fl->prev = tail; fl->next = NULL; if (tail) tail->next = fl; tail = fl; if (!heap->freelist) heap->freelist = fl; p = heap->chunk + H5H_SIZEOF_HDR(f) + free_block; H5F_decode_length(f, p, free_block); H5F_decode_length(f, p, fl->size); if (fl->offset + fl->size > heap->disk_alloc) { HGOTO_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap free list"); } } ret_value = heap; done: if (!ret_value && heap) { heap->chunk = H5MM_xfree(heap->chunk); H5MM_xfree(heap); for (fl = heap->freelist; fl; fl = tail) { tail = fl->next; H5MM_xfree(fl); } } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5H_flush * * Purpose: Flushes a heap from memory to disk if it's dirty. Optionally * deletes the heap from memory. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5H_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr, H5H_t *heap) { uint8 *p = heap->chunk; H5H_free_t *fl = heap->freelist; haddr_t hdr_end_addr; FUNC_ENTER(H5H_flush, FAIL); /* check arguments */ assert(f); assert(addr && H5F_addr_defined(addr)); assert(heap); if (heap->dirty) { /* * If the heap grew larger than disk storage then move the * data segment of the heap to a larger contiguous block of * disk storage. */ if (heap->mem_alloc > heap->disk_alloc) { haddr_t old_addr = heap->addr, new_addr; if (H5MF_alloc(f, H5MF_META, heap->mem_alloc, &new_addr /*out */ ) < 0) { HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL, "unable to allocate file space for heap"); } heap->addr = new_addr; H5MF_free(f, &old_addr, heap->disk_alloc); H5ECLEAR; /*don't really care if the free failed */ heap->disk_alloc = heap->mem_alloc; } /* * Write the header. */ HDmemcpy(p, H5H_MAGIC, H5H_SIZEOF_MAGIC); p += H5H_SIZEOF_MAGIC; H5F_encode_length(f, p, heap->mem_alloc); H5F_encode_length(f, p, fl ? fl->offset : H5H_FREE_NULL); H5F_addr_encode(f, &p, &(heap->addr)); /* * Write the free list. */ while (fl) { p = heap->chunk + H5H_SIZEOF_HDR(f) + fl->offset; if (fl->next) { H5F_encode_length(f, p, fl->next->offset); } else { H5F_encode_length(f, p, H5H_FREE_NULL); } H5F_encode_length(f, p, fl->size); fl = fl->next; } /* * Copy buffer to disk. */ hdr_end_addr = *addr; H5F_addr_inc(&hdr_end_addr, H5H_SIZEOF_HDR(f)); if (H5F_addr_eq(&(heap->addr), &hdr_end_addr)) { /* The header and data are contiguous */ if (H5F_block_write(f, addr, H5H_SIZEOF_HDR(f) + heap->disk_alloc, heap->chunk) < 0) { HRETURN_ERROR(H5E_HEAP, H5E_WRITEERROR, FAIL, "unable to write heap header and data to disk"); } } else { if (H5F_block_write(f, addr, H5H_SIZEOF_HDR(f), heap->chunk) < 0) { HRETURN_ERROR(H5E_HEAP, H5E_WRITEERROR, FAIL, "unable to write heap header to disk"); } if (H5F_block_write(f, &(heap->addr), heap->disk_alloc, heap->chunk + H5H_SIZEOF_HDR(f)) < 0) { HRETURN_ERROR(H5E_HEAP, H5E_WRITEERROR, FAIL, "unable to write heap data to disk"); } } heap->dirty = 0; } /* * Should we destroy the memory version? */ if (destroy) { heap->chunk = H5MM_xfree(heap->chunk); while (heap->freelist) { fl = heap->freelist; heap->freelist = fl->next; H5MM_xfree(fl); } H5MM_xfree(heap); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_read * * Purpose: Reads some object (or part of an object) from the heap * whose address is ADDR in file F. OFFSET is the byte offset * from the beginning of the heap at which to begin reading * and SIZE is the number of bytes to read. * * If BUF is the null pointer then a buffer is allocated by * this function. * * Attempting to read past the end of an object may cause this * function to fail. * * If the heap address ADDR is the the null pointer then the * address comes from the H5F_t global heap field. * * Return: Success: BUF (or the allocated buffer) * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ void * H5H_read(H5F_t *f, const haddr_t *addr, size_t offset, size_t size, void *buf) { H5H_t *heap = NULL; FUNC_ENTER(H5H_read, NULL); /* check arguments */ assert(f); if (!addr) addr = &(f->shared->smallobj_addr); assert(H5F_addr_defined(addr)); assert(offset >= 0); if (NULL == (heap = H5AC_find(f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "unable to load heap"); } assert(offset < heap->mem_alloc); assert(offset + size <= heap->mem_alloc); if (!buf) buf = H5MM_xmalloc(size); HDmemcpy(buf, heap->chunk + H5H_SIZEOF_HDR(f) + offset, size); FUNC_LEAVE(buf); } /*------------------------------------------------------------------------- * Function: H5H_peek * * Purpose: This function is a more efficient version of H5H_read. * Instead of copying a heap object into a caller-supplied * buffer, this function returns a pointer directly into the * cache where the heap is being held. Thus, the return pointer * is valid only until the next call to the cache. * * The address of the heap is ADDR in file F. OFFSET is the * byte offset of the object from the beginning of the heap and * may include an offset into the interior of the object. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: Ptr to the object. The pointer points to * a chunk of memory large enough to hold the * object from the specified offset (usually * the beginning of the object) to the end * of the object. Do not attempt to read past * the end of the object. * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ const void * H5H_peek(H5F_t *f, const haddr_t *addr, size_t offset) { H5H_t *heap = NULL; const void *retval = NULL; FUNC_ENTER(H5H_peek, NULL); /* check arguments */ assert(f); if (!addr) addr = &(f->shared->smallobj_addr); assert(H5F_addr_defined(addr)); assert(offset >= 0); if (NULL == (heap = H5AC_find(f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR(H5E_HEAP, H5E_CANTLOAD, NULL, "unable to load heap"); } assert(offset < heap->mem_alloc); retval = heap->chunk + H5H_SIZEOF_HDR(f) + offset; FUNC_LEAVE(retval); } /*------------------------------------------------------------------------- * Function: H5H_remove_free * * Purpose: Removes free list element FL from the specified heap and * frees it. * * Return: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ static H5H_free_t * H5H_remove_free(H5H_t *heap, H5H_free_t *fl) { if (fl->prev) fl->prev->next = fl->next; if (fl->next) fl->next->prev = fl->prev; if (!fl->prev) heap->freelist = fl->next; return H5MM_xfree(fl); } /*------------------------------------------------------------------------- * Function: H5H_insert * * Purpose: Inserts a new item into the heap. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: Offset of new item within heap. * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ size_t H5H_insert(H5F_t *f, const haddr_t *addr, size_t buf_size, const void *buf) { H5H_t *heap = NULL; H5H_free_t *fl = NULL, *max_fl = NULL; size_t offset = 0; size_t need_size, old_size, need_more; hbool_t found; #ifndef NDEBUG static nmessages = 0; #endif FUNC_ENTER(H5H_insert, FAIL); /* check arguments */ assert(f); if (!addr) addr = &(f->shared->smallobj_addr); assert(H5F_addr_defined(addr)); assert(buf_size > 0); assert(buf); if (NULL == (heap = H5AC_find(f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR(H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } heap->dirty += 1; /* * In order to keep the free list descriptors aligned on word boundaries, * whatever that might mean, we round the size up to the next multiple of * a word. */ need_size = H5H_ALIGN(buf_size); /* * Look for a free slot large enough for this object and which would * leave zero or at least H5G_SIZEOF_FREE bytes left over. */ for (fl = heap->freelist, found = FALSE; fl; fl = fl->next) { if (fl->size > need_size && fl->size - need_size >= H5H_SIZEOF_FREE(f)) { /* a bigger free block was found */ offset = fl->offset; fl->offset += need_size; fl->size -= need_size; found = TRUE; break; } else if (fl->size == need_size) { /* free block of exact size found */ offset = fl->offset; fl = H5H_remove_free(heap, fl); found = TRUE; break; } else if (!max_fl || max_fl->offset < fl->offset) { /* use worst fit */ max_fl = fl; } } /* * If no free chunk was large enough, then allocate more space and * add it to the free list. If the heap ends with a free chunk, we * can extend that free chunk. Otherwise we'll have to make another * free chunk. If the heap must expand, we double its size. */ if (!found) { need_more = MAX3(need_size, heap->mem_alloc, H5H_SIZEOF_FREE(f)); if (max_fl && max_fl->offset + max_fl->size == heap->mem_alloc) { /* * Increase the size of the maximum free block. */ offset = max_fl->offset; max_fl->offset += need_size; max_fl->size += need_more - need_size; if (max_fl->size < H5H_SIZEOF_FREE(f)) { #ifndef NDEBUG if (max_fl->size) { fprintf(stderr, "H5H_insert: lost %lu bytes at line %d\n", (unsigned long) (max_fl->size), __LINE__); if (0 == nmessages++) { fprintf(stderr, "Messages from H5H_insert() will go away " "when assertions are turned off.\n"); } } #endif max_fl = H5H_remove_free(heap, max_fl); } } else { /* * Create a new free list element large enough that we can * take some space out of it right away. */ offset = heap->mem_alloc; if (need_more - need_size >= H5H_SIZEOF_FREE(f)) { fl = H5MM_xmalloc(sizeof(H5H_free_t)); fl->offset = heap->mem_alloc + need_size; fl->size = need_more - need_size; fl->prev = NULL; fl->next = heap->freelist; if (heap->freelist) heap->freelist->prev = fl; heap->freelist = fl; #ifndef NDEBUG } else if (need_more > need_size) { fprintf(stderr, "H5H_insert: lost %lu bytes at line %d\n", (unsigned long) (need_more - need_size), __LINE__); if (0 == nmessages++) { fprintf(stderr, "Messages from H5H_insert() will go away " "when assertions are turned off.\n"); } #endif } } #ifndef NDEBUG fprintf(stderr, "H5H_insert: resize mem buf from %lu to %lu bytes\n", (unsigned long) (heap->mem_alloc), (unsigned long) (heap->mem_alloc + need_more)); if (0 == nmessages++) { fprintf(stderr, "Messages from H5H_insert() will go away " "when assertions are turned off.\n"); } #endif old_size = heap->mem_alloc; heap->mem_alloc += need_more; heap->chunk = H5MM_xrealloc(heap->chunk, H5H_SIZEOF_HDR(f) + heap->mem_alloc); /* clear new section so junk doesn't appear in the file */ HDmemset(heap->chunk + H5H_SIZEOF_HDR(f) + old_size, 0, need_more); } /* * Copy the data into the heap */ HDmemcpy(heap->chunk + H5H_SIZEOF_HDR(f) + offset, buf, buf_size); FUNC_LEAVE(offset); } /*------------------------------------------------------------------------- * Function: H5H_write * * Purpose: Writes (overwrites) the object (or part of object) stored * in BUF to the heap at file address ADDR in file F. The * writing begins at byte offset OFFSET from the beginning of * the heap and continues for SIZE bytes. * * Do not partially write an object to create it; the first * write for an object must be for the entire object. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5H_write(H5F_t *f, const haddr_t *addr, size_t offset, size_t size, const void *buf) { H5H_t *heap = NULL; FUNC_ENTER(H5H_write, FAIL); /* check arguments */ assert(f); if (!addr) addr = &(f->shared->smallobj_addr); assert(H5F_addr_defined(addr)); assert(offset >= 0); assert(buf); if (NULL == (heap = H5AC_find(f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR(H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } assert(offset < heap->mem_alloc); assert(offset + size <= heap->mem_alloc); heap->dirty += 1; HDmemcpy(heap->chunk + H5H_SIZEOF_HDR(f) + offset, buf, size); FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_remove * * Purpose: Removes an object or part of an object from the heap at * address ADDR of file F. The object (or part) to remove * begins at byte OFFSET from the beginning of the heap and * continues for SIZE bytes. * * Once part of an object is removed, one must not attempt * to access that part. Removing the beginning of an object * results in the object OFFSET increasing by the amount * truncated. Removing the end of an object results in * object truncation. Removing the middle of an object results * in two separate objects, one at the original offset and * one at the first offset past the removed portion. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5H_remove(H5F_t *f, const haddr_t *addr, size_t offset, size_t size) { H5H_t *heap = NULL; H5H_free_t *fl = heap->freelist, *fl2 = NULL; #ifndef NDEBUG static int nmessages = 0; #endif FUNC_ENTER(H5H_remove, FAIL); /* check arguments */ assert(f); if (!addr) addr = &(f->shared->smallobj_addr); assert(H5F_addr_defined(addr)); assert(offset >= 0); assert(size > 0); if (NULL == (heap = H5AC_find(f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR(H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } assert(offset < heap->mem_alloc); assert(offset + size <= heap->mem_alloc); heap->dirty += 1; /* * Check if this chunk can be prepended or appended to an already * free chunk. It might also fall between two chunks in such a way * that all three chunks can be combined into one. */ while (fl) { if (offset + size == fl->offset) { fl->offset = offset; fl->size += size; fl2 = fl->next; while (fl2) { if (fl2->offset + fl2->size == fl->offset) { fl->offset = fl2->offset; fl->size += fl2->size; fl2 = H5H_remove_free(heap, fl2); HRETURN(SUCCEED); } } HRETURN(SUCCEED); } else if (fl->offset + fl->size == offset) { fl->size += size; fl2 = fl->next; while (fl2) { if (fl->offset + fl->size == fl2->offset) { fl->size += fl2->size; fl2 = H5H_remove_free(heap, fl2); HRETURN(SUCCEED); } } HRETURN(SUCCEED); } fl = fl->next; } /* * The amount which is being removed must be large enough to * hold the free list data. If not, the freed chunk is forever * lost. */ if (size < H5H_SIZEOF_FREE(f)) { #ifndef NDEBUG fprintf(stderr, "H5H_remove: lost %lu bytes\n", (unsigned long) size); if (0 == nmessages++) { fprintf(stderr, "Messages from H5H_remove() will go away " "when assertions are turned off.\n"); } #endif HRETURN(SUCCEED); } /* * Add an entry to the free list. */ fl = H5MM_xmalloc(sizeof(H5H_free_t)); fl->offset = offset; fl->size = size; fl->prev = NULL; fl->next = heap->freelist; if (heap->freelist) heap->freelist->prev = fl; heap->freelist = fl; FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_debug * * Purpose: Prints debugging information about a heap. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Aug 1 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5H_debug(H5F_t *f, const haddr_t *addr, FILE * stream, intn indent, intn fwidth) { H5H_t *h = NULL; int i, j, overlap; uint8 c; H5H_free_t *freelist = NULL; uint8 *marker = NULL; size_t amount_free = 0; FUNC_ENTER(H5H_debug, FAIL); /* check arguments */ assert(f); if (!addr) addr = &(f->shared->smallobj_addr); assert(H5F_addr_defined(addr)); assert(stream); assert(indent >= 0); assert(fwidth >= 0); if (NULL == (h = H5AC_find(f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR(H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } fprintf(stream, "%*sHeap...\n", indent, ""); fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth, "Dirty:", (int) (h->dirty)); fprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth, "Data bytes allocated on disk:", (unsigned long) (h->disk_alloc)); fprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth, "Data bytes allocated in core:", (unsigned long) (h->mem_alloc)); /* * Traverse the free list and check that all free blocks fall within * the heap and that no two free blocks point to the same region of * the heap. */ marker = H5MM_xcalloc(h->mem_alloc, 1); for (freelist = h->freelist; freelist; freelist = freelist->next) { fprintf(stream, "%*s%-*s %8lu, %8lu\n", indent, "", fwidth, "Free Block (offset,size):", (unsigned long) (freelist->offset), (unsigned long) (freelist->size)); if (freelist->offset + freelist->size > h->mem_alloc) { fprintf(stream, "***THAT FREE BLOCK IS OUT OF BOUNDS!\n"); } else { for (i = overlap = 0; i < freelist->size; i++) { if (marker[freelist->offset + i]) overlap++; marker[freelist->offset + i] = 1; } if (overlap) { fprintf(stream, "***THAT FREE BLOCK OVERLAPPED A PREVIOUS ONE!\n"); } else { amount_free += freelist->size; } } } if (h->mem_alloc) { fprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth, "Percent of heap used:", (unsigned long) (100 * (h->mem_alloc - amount_free) / h->mem_alloc)); } /* * Print the data in a VMS-style octal dump. */ fprintf(stream, "%*sData follows (`__' indicates free region)...\n", indent, ""); for (i = 0; i < h->disk_alloc; i += 16) { fprintf(stream, "%*s %8d: ", indent, "", i); for (j = 0; j < 16; j++) { if (i + j < h->disk_alloc) { if (marker[i + j]) { fprintf(stream, "__ "); } else { c = h->chunk[H5H_SIZEOF_HDR(f) + i + j]; fprintf(stream, "%02x ", c); } } else { fprintf(stream, " "); } if (7 == j) HDfputc(' ', stream); } for (j = 0; j < 16; j++) { if (i + j < h->disk_alloc) { if (marker[i + j]) { HDfputc(' ', stream); } else { c = h->chunk[H5H_SIZEOF_HDR(f) + i + j]; if (c > ' ' && c < '~') HDfputc(c, stream); else HDfputc('.', stream); } } } HDfputc('\n', stream); } H5MM_xfree(marker); FUNC_LEAVE(SUCCEED); }