/*------------------------------------------------------------------------- * Copyright (C) 1997 National Center for Supercomputing Applications. * All rights reserved. * *------------------------------------------------------------------------- * * Created: H5H.c * Jul 16 1997 * Robb Matzke * * Purpose: Heap functions for the global small object heap * and for local symbol table name heaps. * * Modifications: * * Robb Matzke, 5 Aug 1997 * Added calls to H5E. * *------------------------------------------------------------------------- */ #include /*library */ #include /*cache */ #include /*error handling */ #include /*self */ #include /*file memory management */ #include /*core memory management */ #define H5H_FREE_NULL 1 /*end of free list on disk */ #define PABLO_MASK H5H_mask typedef struct H5H_free_t { size_t offset; /*offset of free block */ size_t size; /*size of free block */ struct H5H_free_t *prev; /*previous entry in free list */ struct H5H_free_t *next; /*next entry in free list */ } H5H_free_t; typedef struct H5H_t { intn dirty; haddr_t addr; /*address of data */ size_t disk_alloc; /*data bytes allocated on disk */ size_t mem_alloc; /*data bytes allocated in mem */ uint8 *chunk; /*the chunk, including header */ H5H_free_t *freelist; /*the free list */ } H5H_t; /* PRIVATE PROTOTYPES */ static H5H_t *H5H_load (H5F_t *f, const haddr_t *addr, const void *udata1, void *udata2); static herr_t H5H_flush (H5F_t *f, hbool_t dest, const haddr_t *addr, H5H_t *heap); /* * H5H inherits cache-like properties from H5AC */ static const H5AC_class_t H5AC_HEAP[1] = {{ H5AC_HEAP_ID, (void*(*)(H5F_t*,const haddr_t*,const void*,void*))H5H_load, (herr_t(*)(H5F_t*,hbool_t,const haddr_t*,void*))H5H_flush, }}; /* Interface initialization */ static intn interface_initialize_g = FALSE; #define INTERFACE_INIT NULL /*------------------------------------------------------------------------- * Function: H5H_create * * Purpose: Creates a new heap data structure on disk and caches it * in memory. SIZE_HINT is a hint for the initial size of the * data area of the heap. If size hint is invalid then a * reasonable (but probably not optimal) size will be chosen. * If the heap ever has to grow, then REALLOC_HINT is the * minimum amount by which the heap will grow. * * Return: Success: SUCCEED. The file address of new heap is * returned through the ADDR argument. * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * * Robb Matzke, 5 Aug 1997 * Takes a flag that determines the type of heap that is * created. * *------------------------------------------------------------------------- */ herr_t H5H_create (H5F_t *f, H5H_type_t heap_type, size_t size_hint, haddr_t *addr/*out*/) { H5H_t *heap = NULL; size_t total_size; /*total heap size on disk */ FUNC_ENTER (H5H_create, FAIL); /* check arguments */ assert (f); assert (addr); if (H5H_GLOBAL==heap_type) { #ifndef NDEBUG fprintf (stderr, "H5H_create: a local heap is used as the global heap\n"); #endif } size_hint = MAX (0, size_hint); if (size_hint && size_hintaddr = *addr; H5F_addr_inc (&(heap->addr), H5H_SIZEOF_HDR (f)); heap->disk_alloc = size_hint; heap->mem_alloc = size_hint; heap->chunk = H5MM_xcalloc (1, H5H_SIZEOF_HDR(f)+size_hint); /* free list */ if (size_hint) { heap->freelist = H5MM_xmalloc (sizeof(H5H_free_t)); heap->freelist->offset = 0; heap->freelist->size = size_hint; heap->freelist->prev = heap->freelist->next = NULL; } else { heap->freelist = NULL; } /* add to cache */ heap->dirty = 1; if (H5AC_set (f, H5AC_HEAP, addr, heap)<0) { heap->chunk = H5MM_xfree (heap->chunk); heap->freelist = H5MM_xfree (heap->freelist); HRETURN_ERROR (H5E_HEAP, H5E_CANTINIT, FAIL, "unable to cache heap"); } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_load * * Purpose: Loads a heap from disk. * * Return: Success: Ptr to heap memory data structure. * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ static H5H_t * H5H_load (H5F_t *f, const haddr_t *addr, const void *udata1, void *udata2) { uint8 hdr[20]; const uint8 *p=NULL; H5H_t *heap=NULL; H5H_free_t *fl=NULL, *tail=NULL; size_t free_block=H5H_FREE_NULL; H5H_t *ret_value=NULL; FUNC_ENTER (H5H_load, NULL); /* check arguments */ assert (f); assert (addr && H5F_addr_defined (addr)); assert (H5H_SIZEOF_HDR(f) <= sizeof hdr); assert (!udata1); assert (!udata2); if (H5F_block_read (f, addr, H5H_SIZEOF_HDR(f), hdr)<0) { HRETURN_ERROR (H5E_HEAP, H5E_READERROR, NULL, "unable to read heap header"); } p = hdr; heap = H5MM_xcalloc (1, sizeof(H5H_t)); /* magic number */ if (HDmemcmp (hdr, H5H_MAGIC, H5H_SIZEOF_MAGIC)) { HGOTO_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap signature"); } p += H5H_SIZEOF_MAGIC; /* heap data size */ H5F_decode_length (f, p, heap->disk_alloc); heap->mem_alloc = heap->disk_alloc; /* free list head */ H5F_decode_length (f, p, free_block); if (free_block!=H5H_FREE_NULL && free_block>=heap->disk_alloc) { HGOTO_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap free list"); } /* data */ H5F_addr_decode (f, &p, &(heap->addr)); heap->chunk = H5MM_xcalloc (1, H5H_SIZEOF_HDR(f) + heap->mem_alloc); if (heap->disk_alloc && H5F_block_read (f, &(heap->addr), heap->disk_alloc, heap->chunk + H5H_SIZEOF_HDR(f))<0) { HGOTO_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "unable to read heap data"); } /* free list */ while (H5H_FREE_NULL!=free_block) { if (free_block>=heap->disk_alloc) { HGOTO_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap free list"); } fl = H5MM_xmalloc (sizeof (H5H_free_t)); fl->offset = free_block; fl->prev = tail; fl->next = NULL; if (tail) tail->next = fl; tail = fl; if (!heap->freelist) heap->freelist = fl; p = heap->chunk + H5H_SIZEOF_HDR(f) + free_block; H5F_decode_length (f, p, free_block); H5F_decode_length (f, p, fl->size); if (fl->offset + fl->size > heap->disk_alloc) { HGOTO_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "bad heap free list"); } } ret_value = heap; done: if (!ret_value && heap) { heap->chunk = H5MM_xfree (heap->chunk); H5MM_xfree (heap); for (fl=heap->freelist; fl; fl=tail) { tail = fl->next; H5MM_xfree (fl); } } FUNC_LEAVE (ret_value); } /*------------------------------------------------------------------------- * Function: H5H_flush * * Purpose: Flushes a heap from memory to disk if it's dirty. Optionally * deletes the heap from memory. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5H_flush (H5F_t *f, hbool_t destroy, const haddr_t *addr, H5H_t *heap) { uint8 *p = heap->chunk; H5H_free_t *fl = heap->freelist; haddr_t hdr_end_addr; FUNC_ENTER (H5H_flush, FAIL); /* check arguments */ assert (f); assert (addr && H5F_addr_defined (addr)); assert (heap); if (heap->dirty) { /* * If the heap grew larger than disk storage then move the * data segment of the heap to a larger contiguous block of * disk storage. */ if (heap->mem_alloc > heap->disk_alloc) { haddr_t old_addr = heap->addr, new_addr; if (H5MF_alloc (f, H5MF_META, heap->mem_alloc, &new_addr/*out*/)<0) { HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL, "unable to allocate file space for heap"); } heap->addr = new_addr; H5MF_free (f, &old_addr, heap->disk_alloc); H5ECLEAR;/*don't really care if the free failed*/ heap->disk_alloc = heap->mem_alloc; } /* * Write the header. */ HDmemcpy (p, H5H_MAGIC, H5H_SIZEOF_MAGIC); p += H5H_SIZEOF_MAGIC; H5F_encode_length (f, p, heap->mem_alloc); H5F_encode_length (f, p, fl?fl->offset:H5H_FREE_NULL); H5F_addr_encode (f, &p, &(heap->addr)); /* * Write the free list. */ while (fl) { p = heap->chunk + H5H_SIZEOF_HDR(f) + fl->offset; if (fl->next) { H5F_encode_length (f, p, fl->next->offset); } else { H5F_encode_length (f, p, H5H_FREE_NULL); } H5F_encode_length (f, p, fl->size); fl = fl->next; } /* * Copy buffer to disk. */ hdr_end_addr = *addr; H5F_addr_inc (&hdr_end_addr, H5H_SIZEOF_HDR (f)); if (H5F_addr_eq (&(heap->addr), &hdr_end_addr)) { /* The header and data are contiguous */ if (H5F_block_write (f, addr, H5H_SIZEOF_HDR(f)+heap->disk_alloc, heap->chunk)<0) { HRETURN_ERROR (H5E_HEAP, H5E_WRITEERROR, FAIL, "unable to write heap header and data to disk"); } } else { if (H5F_block_write (f, addr, H5H_SIZEOF_HDR(f), heap->chunk)<0) { HRETURN_ERROR (H5E_HEAP, H5E_WRITEERROR, FAIL, "unable to write heap header to disk"); } if (H5F_block_write (f, &(heap->addr), heap->disk_alloc, heap->chunk + H5H_SIZEOF_HDR(f))<0) { HRETURN_ERROR (H5E_HEAP, H5E_WRITEERROR, FAIL, "unable to write heap data to disk"); } } heap->dirty = 0; } /* * Should we destroy the memory version? */ if (destroy) { heap->chunk = H5MM_xfree (heap->chunk); while (heap->freelist) { fl = heap->freelist; heap->freelist = fl->next; H5MM_xfree (fl); } H5MM_xfree (heap); } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_read * * Purpose: Reads some object (or part of an object) from the heap * whose address is ADDR in file F. OFFSET is the byte offset * from the beginning of the heap at which to begin reading * and SIZE is the number of bytes to read. * * If BUF is the null pointer then a buffer is allocated by * this function. * * Attempting to read past the end of an object may cause this * function to fail. * * If the heap address ADDR is the the null pointer then the * address comes from the H5F_t global heap field. * * Return: Success: BUF (or the allocated buffer) * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ void * H5H_read (H5F_t *f, const haddr_t *addr, size_t offset, size_t size, void *buf) { H5H_t *heap = NULL; FUNC_ENTER (H5H_read, NULL); /* check arguments */ assert (f); if (!addr) addr = &(f->shared->smallobj_addr); assert (H5F_addr_defined (addr)); assert (offset>=0); if (NULL==(heap=H5AC_find (f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "unable to load heap"); } assert (offsetmem_alloc); assert (offset+size<=heap->mem_alloc); if (!buf) buf = H5MM_xmalloc (size); HDmemcpy (buf, heap->chunk+H5H_SIZEOF_HDR(f)+offset, size); FUNC_LEAVE (buf); } /*------------------------------------------------------------------------- * Function: H5H_peek * * Purpose: This function is a more efficient version of H5H_read. * Instead of copying a heap object into a caller-supplied * buffer, this function returns a pointer directly into the * cache where the heap is being held. Thus, the return pointer * is valid only until the next call to the cache. * * The address of the heap is ADDR in file F. OFFSET is the * byte offset of the object from the beginning of the heap and * may include an offset into the interior of the object. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: Ptr to the object. The pointer points to * a chunk of memory large enough to hold the * object from the specified offset (usually * the beginning of the object) to the end * of the object. Do not attempt to read past * the end of the object. * * Failure: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ const void * H5H_peek (H5F_t *f, const haddr_t *addr, size_t offset) { H5H_t *heap = NULL; const void *retval = NULL; FUNC_ENTER (H5H_peek, NULL); /* check arguments */ assert (f); if (!addr) addr = &(f->shared->smallobj_addr); assert (H5F_addr_defined (addr)); assert (offset>=0); if (NULL==(heap=H5AC_find (f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR (H5E_HEAP, H5E_CANTLOAD, NULL, "unable to load heap"); } assert (offsetmem_alloc); retval = heap->chunk+H5H_SIZEOF_HDR(f)+offset; FUNC_LEAVE (retval); } /*------------------------------------------------------------------------- * Function: H5H_remove_free * * Purpose: Removes free list element FL from the specified heap and * frees it. * * Return: NULL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ static H5H_free_t * H5H_remove_free (H5H_t *heap, H5H_free_t *fl) { if (fl->prev) fl->prev->next = fl->next; if (fl->next) fl->next->prev = fl->prev; if (!fl->prev) heap->freelist = fl->next; return H5MM_xfree (fl); } /*------------------------------------------------------------------------- * Function: H5H_insert * * Purpose: Inserts a new item into the heap. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: Offset of new item within heap. * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 17 1997 * * Modifications: * *------------------------------------------------------------------------- */ size_t H5H_insert (H5F_t *f, const haddr_t *addr, size_t buf_size, const void *buf) { H5H_t *heap=NULL; H5H_free_t *fl=NULL, *max_fl=NULL; size_t offset = 0; size_t old_size, need_more; hbool_t found; #ifndef NDEBUG static nmessages = 0; #endif FUNC_ENTER (H5H_insert, FAIL); /* check arguments */ assert (f); if (!addr) addr = &(f->shared->smallobj_addr); assert (H5F_addr_defined (addr)); assert (buf_size>0); assert (buf); if (NULL==(heap=H5AC_find (f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR (H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } heap->dirty += 1; /* * Look for a free slot large enough for this object and which would * leave zero or at least H5G_SIZEOF_FREE bytes left over. */ for (fl=heap->freelist,found=FALSE; fl; fl=fl->next) { if (fl->size>buf_size && fl->size-buf_size>=H5H_SIZEOF_FREE(f)) { /* a bigger free block was found */ offset = fl->offset; fl->offset += buf_size; fl->size -= buf_size; found = TRUE; break; } else if (fl->size==buf_size) { /* free block of exact size found */ offset = fl->offset; fl = H5H_remove_free (heap, fl); found = TRUE; break; } else if (!max_fl || max_fl->offset < fl->offset) { /* use worst fit */ max_fl = fl; } } /* * If no free chunk was large enough, then allocate more space and * add it to the free list. If the heap ends with a free chunk, we * can extend that free chunk. Otherwise we'll have to make another * free chunk. If the heap must expand, we double its size. */ if (!found) { need_more = MAX3 (buf_size, heap->mem_alloc, H5H_SIZEOF_FREE(f)); if (max_fl && max_fl->offset+max_fl->size==heap->mem_alloc) { /* * Increase the size of the maximum free block. */ offset = max_fl->offset; max_fl->offset += buf_size; max_fl->size += need_more - buf_size; if (max_fl->size < H5H_SIZEOF_FREE(f)) { #ifndef NDEBUG if (max_fl->size) { fprintf (stderr, "H5H_insert: lost %lu bytes at line %d\n", (unsigned long)(max_fl->size), __LINE__); if (0==nmessages++) { fprintf (stderr, "Messages from H5H_insert() will go away " "when assertions are turned off.\n"); } } #endif max_fl = H5H_remove_free (heap, max_fl); } } else { /* * Create a new free list element large enough that we can * take some space out of it right away. */ offset = heap->mem_alloc; if (need_more-buf_size >= H5H_SIZEOF_FREE(f)) { fl = H5MM_xmalloc (sizeof(H5H_free_t)); fl->offset = heap->mem_alloc + buf_size; fl->size = need_more - buf_size; fl->prev = NULL; fl->next = heap->freelist; if (heap->freelist) heap->freelist->prev = fl; heap->freelist = fl; #ifndef NDEBUG } else if (need_more>buf_size) { fprintf (stderr, "H5H_insert: lost %lu bytes at line %d\n", (unsigned long)(need_more-buf_size), __LINE__); if (0==nmessages++) { fprintf (stderr, "Messages from H5H_insert() will go away " "when assertions are turned off.\n"); } #endif } } #ifndef NDEBUG fprintf (stderr, "H5H_insert: resize mem buf from %lu to %lu bytes\n", (unsigned long)(heap->mem_alloc), (unsigned long)(heap->mem_alloc + need_more)); if (0==nmessages++) { fprintf (stderr, "Messages from H5H_insert() will go away " "when assertions are turned off.\n"); } #endif old_size = heap->mem_alloc; heap->mem_alloc += need_more; heap->chunk = H5MM_xrealloc (heap->chunk, H5H_SIZEOF_HDR(f)+heap->mem_alloc); /* clear new section so junk doesn't appear in the file */ HDmemset (heap->chunk+H5H_SIZEOF_HDR(f)+old_size, 0, need_more); } /* * Copy the data into the heap */ HDmemcpy (heap->chunk + H5H_SIZEOF_HDR(f) + offset, buf, buf_size); FUNC_LEAVE (offset); } /*------------------------------------------------------------------------- * Function: H5H_write * * Purpose: Writes (overwrites) the object (or part of object) stored * in BUF to the heap at file address ADDR in file F. The * writing begins at byte offset OFFSET from the beginning of * the heap and continues for SIZE bytes. * * Do not partially write an object to create it; the first * write for an object must be for the entire object. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5H_write (H5F_t *f, const haddr_t *addr, size_t offset, size_t size, const void *buf) { H5H_t *heap = NULL; FUNC_ENTER (H5H_write, FAIL); /* check arguments */ assert (f); if (!addr) addr = &(f->shared->smallobj_addr); assert (H5F_addr_defined (addr)); assert (offset>=0); assert (buf); if (NULL==(heap=H5AC_find (f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR (H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } assert (offsetmem_alloc); assert (offset+size<=heap->mem_alloc); heap->dirty += 1; HDmemcpy (heap->chunk+H5H_SIZEOF_HDR(f)+offset, buf, size); FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_remove * * Purpose: Removes an object or part of an object from the heap at * address ADDR of file F. The object (or part) to remove * begins at byte OFFSET from the beginning of the heap and * continues for SIZE bytes. * * Once part of an object is removed, one must not attempt * to access that part. Removing the beginning of an object * results in the object OFFSET increasing by the amount * truncated. Removing the end of an object results in * object truncation. Removing the middle of an object results * in two separate objects, one at the original offset and * one at the first offset past the removed portion. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Jul 16 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5H_remove (H5F_t *f, const haddr_t *addr, size_t offset, size_t size) { H5H_t *heap = NULL; H5H_free_t *fl = heap->freelist, *fl2 = NULL; #ifndef NDEBUG static int nmessages = 0; #endif FUNC_ENTER (H5H_remove, FAIL); /* check arguments */ assert (f); if (!addr) addr = &(f->shared->smallobj_addr); assert (H5F_addr_defined (addr)); assert (offset>=0); assert (size>0); if (NULL==(heap=H5AC_find (f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR (H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } assert (offsetmem_alloc); assert (offset+size<=heap->mem_alloc); heap->dirty += 1; /* * Check if this chunk can be prepended or appended to an already * free chunk. It might also fall between two chunks in such a way * that all three chunks can be combined into one. */ while (fl) { if (offset + size == fl->offset) { fl->offset = offset; fl->size += size; fl2 = fl->next; while (fl2) { if (fl2->offset + fl2->size == fl->offset) { fl->offset = fl2->offset; fl->size += fl2->size; fl2 = H5H_remove_free (heap, fl2); HRETURN (SUCCEED); } } HRETURN (SUCCEED); } else if (fl->offset + fl->size == offset) { fl->size += size; fl2 = fl->next; while (fl2) { if (fl->offset + fl->size == fl2->offset) { fl->size += fl2->size; fl2 = H5H_remove_free (heap, fl2); HRETURN (SUCCEED); } } HRETURN (SUCCEED); } fl = fl->next; } /* * The amount which is being removed must be large enough to * hold the free list data. If not, the freed chunk is forever * lost. */ if (size < H5H_SIZEOF_FREE(f)) { #ifndef NDEBUG fprintf (stderr, "H5H_remove: lost %lu bytes\n", (unsigned long)size); if (0==nmessages++) { fprintf (stderr, "Messages from H5H_remove() will go away " "when assertions are turned off.\n"); } #endif HRETURN (SUCCEED); } /* * Add an entry to the free list. */ fl = H5MM_xmalloc (sizeof(H5H_free_t)); fl->offset = offset; fl->size = size; fl->prev = NULL; fl->next = heap->freelist; if (heap->freelist) heap->freelist->prev = fl; heap->freelist = fl; FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5H_debug * * Purpose: Prints debugging information about a heap. * * If the heap address ADDR is the null pointer then * the address comes from the H5F_t global heap field. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * matzke@llnl.gov * Aug 1 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5H_debug (H5F_t *f, const haddr_t *addr, FILE *stream, intn indent, intn fwidth) { H5H_t *h = NULL; int i, j, overlap; uint8 c; H5H_free_t *freelist=NULL; uint8 *marker = NULL; size_t amount_free = 0; FUNC_ENTER (H5H_debug, FAIL); /* check arguments */ assert (f); if (!addr) addr = &(f->shared->smallobj_addr); assert (H5F_addr_defined (addr)); assert (stream); assert (indent>=0); assert (fwidth>=0); if (NULL==(h=H5AC_find (f, H5AC_HEAP, addr, NULL, NULL))) { HRETURN_ERROR (H5E_HEAP, H5E_CANTLOAD, FAIL, "unable to load heap"); } fprintf (stream, "%*sHeap...\n", indent, ""); fprintf (stream, "%*s%-*s %d\n", indent, "", fwidth, "Dirty:", (int)(h->dirty)); fprintf (stream, "%*s%-*s %lu\n", indent, "", fwidth, "Data bytes allocated on disk:", (unsigned long)(h->disk_alloc)); fprintf (stream, "%*s%-*s %lu\n", indent, "", fwidth, "Data bytes allocated in core:", (unsigned long)(h->mem_alloc)); /* * Traverse the free list and check that all free blocks fall within * the heap and that no two free blocks point to the same region of * the heap. */ marker = H5MM_xcalloc (h->mem_alloc, 1); for (freelist=h->freelist; freelist; freelist=freelist->next) { fprintf (stream, "%*s%-*s %8lu, %8lu\n", indent, "", fwidth, "Free Block (offset,size):", (unsigned long)(freelist->offset), (unsigned long)(freelist->size)); if (freelist->offset + freelist->size > h->mem_alloc) { fprintf (stream, "***THAT FREE BLOCK IS OUT OF BOUNDS!\n"); } else { for (i=overlap=0; isize; i++) { if (marker[freelist->offset+i]) overlap++; marker[freelist->offset+i] = 1; } if (overlap) { fprintf (stream,"***THAT FREE BLOCK OVERLAPPED A PREVIOUS ONE!\n"); } else { amount_free += freelist->size; } } } if (h->mem_alloc) { fprintf (stream, "%*s%-*s %lu\n", indent, "", fwidth, "Percent of heap used:", (unsigned long)(100 * (h->mem_alloc - amount_free) / h->mem_alloc)); } /* * Print the data in a VMS-style octal dump. */ fprintf (stream, "%*sData follows (`__' indicates free region)...\n", indent, ""); for (i=0; idisk_alloc; i+=16) { fprintf (stream, "%*s %8d: ", indent, "", i); for (j=0; j<16; j++) { if (i+jdisk_alloc) { if (marker[i+j]) { fprintf (stream, "__ "); } else { c = h->chunk[H5H_SIZEOF_HDR(f)+i+j]; fprintf (stream, "%02x ", c); } } else { fprintf (stream, " "); } if (7==j) HDfputc (' ', stream); } for (j=0; j<16; j++) { if (i+jdisk_alloc) { if (marker[i+j]) { HDfputc (' ', stream); } else { c = h->chunk[H5H_SIZEOF_HDR(f)+i+j]; if (c>' ' && c<'~') HDfputc (c, stream); else HDfputc ('.', stream); } } } HDfputc ('\n', stream); } H5MM_xfree (marker); FUNC_LEAVE (SUCCEED); }