/**************************************************************************** * NCSA HDF * * Software Development Group * * National Center for Supercomputing Applications * * University of Illinois at Urbana-Champaign * * 605 E. Springfield, Champaign IL 61820 * * * * For conditions of distribution and use, see the accompanying * * hdf/COPYING file. * * * ****************************************************************************/ #ifdef RCSID static char RcsId[] = "@(#)$Revision$"; #endif /* $Id$ */ #include /* Generic Functions */ #include /* Atom Functions */ #include /* Error handling */ #include /* Memory Management functions */ #include /*object headers */ #include /* Data-space functions */ /* Interface initialization */ #define PABLO_MASK H5P_mask #define INTERFACE_INIT H5P_init_interface static intn interface_initialize_g = FALSE; static herr_t H5P_init_interface(void); static void H5P_term_interface(void); /*-------------------------------------------------------------------------- NAME H5P_init_interface -- Initialize interface-specific information USAGE herr_t H5P_init_interface() RETURNS SUCCEED/FAIL DESCRIPTION Initializes any interface-specific data or routines. --------------------------------------------------------------------------*/ static herr_t H5P_init_interface(void) { herr_t ret_value = SUCCEED; FUNC_ENTER(H5P_init_interface, FAIL); /* Initialize the atom group for the file IDs */ if ((ret_value = H5A_init_group(H5_DATASPACE, H5A_DATASPACEID_HASHSIZE, H5P_RESERVED_ATOMS, (herr_t (*)(void *)) H5P_close)) != FAIL) { ret_value = H5_add_exit(&H5P_term_interface); } FUNC_LEAVE(ret_value); } /*-------------------------------------------------------------------------- NAME H5P_term_interface PURPOSE Terminate various H5P objects USAGE void H5P_term_interface() RETURNS SUCCEED/FAIL DESCRIPTION Release the atom group and any other resources allocated. GLOBAL VARIABLES COMMENTS, BUGS, ASSUMPTIONS Can't report errors... EXAMPLES REVISION LOG --------------------------------------------------------------------------*/ static void H5P_term_interface(void) { H5A_destroy_group(H5_DATASPACE); } /*------------------------------------------------------------------------- * Function: H5Pcreate_simple * * Purpose: Creates a new simple data space object and opens it for * access. The DIMS argument is the size of the simple dataset * and the MAXDIMS argument is the upper limit on the size of * the dataset. MAXDIMS may be the null pointer in which case * the upper limit is the same as DIMS. If an element of * MAXDIMS is zero then the corresponding dimension is unlimited, * otherwise no element of MAXDIMS should be smaller than the * corresponding element of DIMS. * * Return: Success: The ID for the new simple data space object. * * Failure: FAIL * * Errors: * * Programmer: Quincey Koziol * Tuesday, January 27, 1998 * * Modifications: * *------------------------------------------------------------------------- */ hid_t H5Pcreate_simple(int rank, const size_t *dims, const size_t *maxdims) { H5P_t *ds = NULL; hid_t ret_value = FAIL; int i; FUNC_ENTER(H5Pcreate, FAIL); /* Check arguments */ if (rank<0) { HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, FAIL, "dimensionality cannot be negative"); } if (!dims) { HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, FAIL, "no dimensions specified"); } if (maxdims) { for (i=0; itype = H5P_SIMPLE; ds->hslab_def = FALSE; /* no hyperslab defined currently */ /* Initialize rank and dimensions */ ds->u.simple.rank = rank; ds->u.simple.size = H5MM_xcalloc(1, rank*sizeof(size_t)); HDmemcpy(ds->u.simple.size, dims, rank*sizeof(size_t)); if (maxdims) { ds->u.simple.max = H5MM_xcalloc(1, rank*sizeof(size_t)); HDmemcpy (ds->u.simple.max, maxdims, rank*sizeof(size_t)); } /* Register the new data space and get an ID for it */ if ((ret_value = H5A_register(H5_DATASPACE, ds)) < 0) { HGOTO_ERROR(H5E_ATOM, H5E_CANTREGISTER, FAIL, "unable to register data space for ID"); } done: if (ret_value < 0) { H5MM_xfree(ds); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5Pclose * * Purpose: Release access to a data space object. * * Return: Success: SUCCEED * * Failure: FAIL * * Errors: * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5Pclose(hid_t space_id) { FUNC_ENTER(H5Pclose, FAIL); /* Check args */ if (H5_DATASPACE != H5A_group(space_id) || NULL == H5A_object(space_id)) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space"); } /* When the reference count reaches zero the resources are freed */ if (H5A_dec_ref(space_id) < 0) { HRETURN_ERROR(H5E_ATOM, H5E_BADATOM, FAIL, "problem freeing id"); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5P_close * * Purpose: Releases all memory associated with a data space. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5P_close(H5P_t *ds) { FUNC_ENTER(H5P_close, FAIL); assert(ds); switch (ds->type) { case H5P_SCALAR: /*void */ break; case H5P_SIMPLE: H5MM_xfree(ds->u.simple.size); H5MM_xfree(ds->u.simple.max); H5MM_xfree(ds->u.simple.perm); break; case H5P_COMPLEX: /* nothing */ break; default: assert("unknown data space type" && 0); break; } if(ds->hslab_def==TRUE) { H5MM_xfree(ds->h.start); H5MM_xfree(ds->h.count); H5MM_xfree(ds->h.stride); } /* end if */ H5MM_xfree(ds); FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5Pcopy * * Purpose: Copies a dataspace. * * Return: Success: ID of the new dataspace * * Failure: FAIL * * Programmer: Robb Matzke * Friday, January 30, 1998 * * Modifications: * *------------------------------------------------------------------------- */ hid_t H5Pcopy (hid_t space_id) { H5P_t *src = NULL; H5P_t *dst = NULL; hid_t ret_value = FAIL; FUNC_ENTER (H5Pcopy, FAIL); /* Check args */ if (H5_DATASPACE!=H5A_group (space_id) || NULL==(src=H5A_object (space_id))) { HRETURN_ERROR (H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space"); } /* Copy */ if (NULL==(dst=H5P_copy (src))) { HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to copy data space"); } /* Atomize */ if ((ret_value=H5A_register (H5_DATASPACE, dst))<0) { HRETURN_ERROR (H5E_ATOM, H5E_CANTREGISTER, FAIL, "unable to register data space atom"); } FUNC_LEAVE (ret_value); } /*------------------------------------------------------------------------- * Function: H5P_copy * * Purpose: Copies a data space. * * Return: Success: A pointer to a new copy of SRC * * Failure: NULL * * Programmer: Robb Matzke * Thursday, December 4, 1997 * * Modifications: * *------------------------------------------------------------------------- */ H5P_t * H5P_copy(const H5P_t *src) { H5P_t *dst = NULL; int i; FUNC_ENTER(H5P_copy, NULL); dst = H5MM_xmalloc(sizeof(H5P_t)); *dst = *src; switch (dst->type) { case H5P_SCALAR: /*void */ break; case H5P_SIMPLE: if (dst->u.simple.size) { dst->u.simple.size = H5MM_xmalloc(dst->u.simple.rank * sizeof(dst->u.simple.size[0])); for (i = 0; i < dst->u.simple.rank; i++) { dst->u.simple.size[i] = src->u.simple.size[i]; } } if (dst->u.simple.max) { dst->u.simple.max = H5MM_xmalloc(dst->u.simple.rank * sizeof(dst->u.simple.max[0])); for (i = 0; i < dst->u.simple.rank; i++) { dst->u.simple.max[i] = src->u.simple.max[i]; } } if (dst->u.simple.perm) { dst->u.simple.perm = H5MM_xmalloc(dst->u.simple.rank * sizeof(dst->u.simple.perm[0])); for (i = 0; i < dst->u.simple.rank; i++) { dst->u.simple.perm[i] = src->u.simple.perm[i]; } } break; case H5P_COMPLEX: /*void */ break; default: assert("unknown data space type" && 0); break; } FUNC_LEAVE(dst); } /*------------------------------------------------------------------------- * Function: H5Pget_npoints * * Purpose: Determines how many data points a data set has. * * Return: Success: Number of data points in the data set. * * Failure: 0 * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ size_t H5Pget_npoints(hid_t space_id) { H5P_t *ds = NULL; size_t ret_value = 0; FUNC_ENTER(H5Pget_npoints, 0); /* Check args */ if (H5_DATASPACE != H5A_group(space_id) || NULL == (ds = H5A_object(space_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, 0, "not a data space"); } ret_value = H5P_get_npoints(ds); FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5P_get_npoints * * Purpose: Determines how many data points a data set has. * * Return: Success: Number of data points in the data set. * * Failure: 0 * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ size_t H5P_get_npoints(const H5P_t *ds) { size_t ret_value = 0; intn i; FUNC_ENTER(H5P_get_npoints, 0); /* check args */ assert(ds); switch (ds->type) { case H5P_SCALAR: ret_value = 1; break; case H5P_SIMPLE: /* * Count the elements selected by the hypeslab if there is one, * otherwise count all the elements. */ if (ds->hslab_def) { for (ret_value=1, i=0; iu.simple.rank; i++) { ret_value *= ds->h.count[i]; } } else { for (ret_value=1, i=0; iu.simple.rank; i++) { ret_value *= ds->u.simple.size[i]; } } break; case H5P_COMPLEX: HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, 0, "complex data spaces are not supported yet"); default: assert("unknown data space class" && 0); HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, 0, "internal error (unknown data space class)"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5Pget_ndims * * Purpose: Determines the dimensionality of a data space. * * Return: Success: The number of dimensions in a data space. * * Failure: FAIL * * Programmer: Robb Matzke * Thursday, December 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ int H5Pget_ndims(hid_t space_id) { H5P_t *ds = NULL; size_t ret_value = 0; FUNC_ENTER(H5Pget_ndims, FAIL); /* Check args */ if (H5_DATASPACE != H5A_group(space_id) || NULL == (ds = H5A_object(space_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space"); } ret_value = H5P_get_ndims(ds); FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5P_get_ndims * * Purpose: Returns the number of dimensions in a data space. * * Return: Success: Non-negative number of dimensions. Zero * implies a scalar. * * Failure: FAIL * * Programmer: Robb Matzke * Thursday, December 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ intn H5P_get_ndims(const H5P_t *ds) { intn ret_value = FAIL; FUNC_ENTER(H5P_get_ndims, FAIL); /* check args */ assert(ds); switch (ds->type) { case H5P_SCALAR: ret_value = 0; break; case H5P_SIMPLE: ret_value = ds->u.simple.rank; break; case H5P_COMPLEX: HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "complex data spaces are not supported yet"); default: assert("unknown data space class" && 0); HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "internal error (unknown data space class)"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5Pget_dims * * Purpose: Returns the size in each dimension of a data space DS through * the DIMS argument. * * Return: Success: Number of dimensions, the same value as * returned by H5Pget_ndims(). * * Failure: FAIL * * Programmer: Robb Matzke * Thursday, December 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ int H5Pget_dims(hid_t space_id, size_t dims[]/*out*/) { H5P_t *ds = NULL; size_t ret_value = 0; FUNC_ENTER(H5Pget_dims, FAIL); /* Check args */ if (H5_DATASPACE != H5A_group(space_id) || NULL == (ds = H5A_object(space_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space"); } if (!dims) { HRETURN_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "no output buffer"); } ret_value = H5P_get_dims(ds, dims); FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5P_get_dims * * Purpose: Returns the size in each dimension of a data space. This * function may not be meaningful for all types of data spaces. * * Return: Success: Number of dimensions. Zero implies scalar. * * Failure: FAIL * * Programmer: Robb Matzke * Thursday, December 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ intn H5P_get_dims(const H5P_t *ds, size_t dims[]) { intn ret_value = FAIL; intn i; FUNC_ENTER(H5P_get_dims, FAIL); /* check args */ assert(ds); assert(dims); switch (ds->type) { case H5P_SCALAR: ret_value = 0; break; case H5P_SIMPLE: ret_value = ds->u.simple.rank; for (i = 0; i < ret_value; i++) { dims[i] = ds->u.simple.size[i]; } break; case H5P_COMPLEX: HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "complex data spaces are not supported yet"); default: assert("unknown data space class" && 0); HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "internal error (unknown data space class)"); } FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5P_modify * * Purpose: Updates a data space by writing a message to an object * header. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5P_modify(H5G_entry_t *ent, const H5P_t *ds) { FUNC_ENTER(H5P_modify, FAIL); assert(ent); assert(ds); switch (ds->type) { case H5P_SCALAR: HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "scalar data spaces are not implemented yet"); case H5P_SIMPLE: if (H5O_modify(ent, H5O_SDSPACE, 0, 0, &(ds->u.simple)) < 0) { HRETURN_ERROR(H5E_DATASPACE, H5E_CANTINIT, FAIL, "can't update simple data space message"); } break; case H5P_COMPLEX: HRETURN_ERROR(H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "complex data spaces are not implemented yet"); default: assert("unknown data space class" && 0); break; } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5P_read * * Purpose: Reads the data space from an object header. * * Return: Success: Pointer to a new data space. * * Failure: NULL * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ H5P_t * H5P_read(H5F_t *f, H5G_entry_t *ent) { H5P_t *ds = NULL; FUNC_ENTER(H5P_read, NULL); /* check args */ assert(f); assert(ent); ds = H5MM_xcalloc(1, sizeof(H5P_t)); if (H5O_read(ent, H5O_SDSPACE, 0, &(ds->u.simple))) { ds->type = H5P_SIMPLE; } else { ds->type = H5P_SCALAR; } FUNC_LEAVE(ds); } /*------------------------------------------------------------------------- * Function: H5P_cmp * * Purpose: Compares two data spaces. * * Return: Success: 0 if DS1 and DS2 are the same. * <0 if DS1 is less than DS2. * >0 if DS1 is greater than DS2. * * Failure: 0, never fails * * Programmer: Robb Matzke * Wednesday, December 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ intn H5P_cmp(const H5P_t *ds1, const H5P_t *ds2) { intn i; FUNC_ENTER(H5P_cmp, 0); /* check args */ assert(ds1); assert(ds2); /* compare */ if (ds1->type < ds2->type) HRETURN(-1); if (ds1->type > ds2->type) HRETURN(1); switch (ds1->type) { case H5P_SIMPLE: if (ds1->u.simple.rank < ds2->u.simple.rank) HRETURN(-1); if (ds1->u.simple.rank > ds2->u.simple.rank) HRETURN(1); for (i = 0; i < ds1->u.simple.rank; i++) { if (ds1->u.simple.size[i] < ds2->u.simple.size[i]) HRETURN(-1); if (ds1->u.simple.size[i] > ds2->u.simple.size[i]) HRETURN(1); } /* don't compare max dimensions */ for (i = 0; i < ds1->u.simple.rank; i++) { if ((ds1->u.simple.perm ? ds1->u.simple.perm[i] : i) < (ds2->u.simple.perm ? ds2->u.simple.perm[i] : i)) HRETURN(-1); if ((ds1->u.simple.perm ? ds2->u.simple.perm[i] : i) > (ds2->u.simple.perm ? ds2->u.simple.perm[i] : i)) HRETURN(1); } /* Check if we should compare hyperslab definitions */ if(ds1->hslab_def==TRUE && ds2->hslab_def==TRUE) { for (i = 0; i < ds1->u.simple.rank; i++) { if (ds1->h.start[i] < ds2->h.start[i]) HRETURN(-1); if (ds1->h.start[i] > ds2->h.start[i]) HRETURN(1); if (ds1->h.count[i] < ds2->h.count[i]) HRETURN(-1); if (ds1->h.count[i] > ds2->h.count[i]) HRETURN(1); if (ds1->h.stride[i] < ds2->h.stride[i]) HRETURN(-1); if (ds1->h.stride[i] > ds2->h.stride[i]) HRETURN(1); } } else { if(ds1->hslab_def!=ds2->hslab_def) HRETURN(ds1->hslab_def==TRUE ? 1 : -1); } break; default: assert("not implemented yet" && 0); } FUNC_LEAVE(0); } /*-------------------------------------------------------------------------- NAME H5P_is_simple PURPOSE Check if a dataspace is simple (internal) USAGE hbool_t H5P_is_simple(sdim) H5P_t *sdim; IN: Pointer to dataspace object to query RETURNS TRUE/FALSE/FAIL DESCRIPTION This function determines the if a dataspace is "simple". ie. if it has orthogonal, evenly spaced dimensions. --------------------------------------------------------------------------*/ hbool_t H5P_is_simple(const H5P_t *sdim) { hbool_t ret_value = FAIL; FUNC_ENTER(H5P_is_simple, FAIL); /* Check args and all the boring stuff. */ assert(sdim); ret_value = sdim->type == H5P_SIMPLE ? TRUE : FALSE; /* Currently all dataspaces are simple, but check anyway */ FUNC_LEAVE(ret_value); } /*-------------------------------------------------------------------------- NAME H5Pis_simple PURPOSE Check if a dataspace is simple USAGE hbool_t H5Pis_simple(sid) hid_t sid; IN: ID of dataspace object to query RETURNS TRUE/FALSE/FAIL DESCRIPTION This function determines the if a dataspace is "simple". ie. if it has orthogonal, evenly spaced dimensions. --------------------------------------------------------------------------*/ hbool_t H5Pis_simple(hid_t sid) { H5P_t *space = NULL; /* dataspace to modify */ hbool_t ret_value = FAIL; FUNC_ENTER(H5Pis_simple, FAIL); /* Check args and all the boring stuff. */ if ((space = H5A_object(sid)) == NULL) HGOTO_ERROR(H5E_ATOM, H5E_BADATOM, FAIL, "not a data space"); ret_value = H5P_is_simple(space); done: if (ret_value == FAIL) { /* Error condition cleanup */ } /* end if */ /* Normal function cleanup */ FUNC_LEAVE(ret_value); } /*-------------------------------------------------------------------------- NAME H5Pset_space PURPOSE Determine the size of a dataspace USAGE herr_t H5Pset_space(sid, rank, dims) hid_t sid; IN: Dataspace object to query intn rank; IN: # of dimensions for the dataspace const size_t *dims; IN: Size of each dimension for the dataspace RETURNS SUCCEED/FAIL DESCRIPTION This function sets the number and size of each dimension in the dataspace. Setting RANK to a value of zero allows scalar objects to be created. Dimensions are specified from slowest to fastest changing in the DIMS array (i.e. 'C' order). Setting the size of a dimension to zero indicates that the dimension is of unlimited size and should be allowed to expand. Currently, only the first dimension in the array (the slowest) may be unlimited in size. --------------------------------------------------------------------------*/ herr_t H5Pset_space(hid_t sid, int rank, const size_t *dims) { H5P_t *space = NULL; /* dataspace to modify */ intn u; /* local counting variable */ herr_t ret_value = SUCCEED; FUNC_ENTER(H5Pset_space, FAIL); /* Check args */ if ((space = H5A_object(sid)) == NULL) HRETURN_ERROR(H5E_ATOM, H5E_BADATOM, FAIL, "not a data space"); if (rank > 0 && dims == NULL) HRETURN_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "no dimensions specified"); if (rank<0) HRETURN_ERROR (H5E_ARGS, H5E_BADVALUE, FAIL, "invalid rank"); if (dims) { for (u=0; utype) { case H5P_SCALAR: case H5P_SIMPLE: /* do nothing */ break; case H5P_COMPLEX: /* * eventually this will destroy whatever "complex" dataspace info * is retained, right now it's an error */ /* Fall through to report error */ default: HRETURN_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "unknown data space class"); } space->type = H5P_SIMPLE; /* Reset hyperslab definition, if one is defined */ if(space->hslab_def==TRUE) { H5MM_xfree(space->h.start); H5MM_xfree(space->h.count); H5MM_xfree(space->h.stride); space->hslab_def=FALSE; } if (rank == 0) { /* scalar variable */ space->type = H5P_SCALAR; space->u.simple.rank = 0; /* set to scalar rank */ if (space->u.simple.size != NULL) space->u.simple.size = H5MM_xfree(space->u.simple.size); if (space->u.simple.max != NULL) space->u.simple.max = H5MM_xfree(space->u.simple.max); if (space->u.simple.perm != NULL) space->u.simple.max = H5MM_xfree(space->u.simple.perm); } else { /* Free the old space for now */ if (space->u.simple.size != NULL) space->u.simple.size = H5MM_xfree(space->u.simple.size); if (space->u.simple.max != NULL) space->u.simple.max = H5MM_xfree(space->u.simple.max); if (space->u.simple.perm != NULL) space->u.simple.perm = H5MM_xfree(space->u.simple.perm); /* Set the rank and copy the dims */ space->u.simple.rank = rank; space->u.simple.size = H5MM_xcalloc(rank, sizeof(size_t)); HDmemcpy(space->u.simple.size, dims, sizeof(size_t) * rank); } FUNC_LEAVE(ret_value); } /*-------------------------------------------------------------------------- NAME H5Pset_hyperslab PURPOSE Select a hyperslab from a simple dataspace USAGE herr_t H5Pset_hyperslab(sid, start, count, stride) hid_t sid; IN: Dataspace object to select hyperslab from const int *start; IN: Starting location for hyperslab to select const size_t *count; IN: Number of elements in hyperslab const size_t *stride; IN: Packing of elements in hyperslab RETURNS SUCCEED/FAIL DESCRIPTION This function selects a hyperslab from a simple dataspace. The stride array may be used to sub-sample the hyperslab chosen, a value of 1 in each position of the stride array selects contiguous elements in the array, a value of 2 selects every other element, etc. If the stride parameter is set to NULL, a contiguous hyperslab is chosen. The values in the start and count arrays may be negative, to allow for selecting hyperslabs in chunked datasets which extend in arbitrary directions. --------------------------------------------------------------------------*/ herr_t H5Pset_hyperslab(hid_t sid, const int *start, const size_t *count, const size_t *stride) { H5P_t *space = NULL; /* dataspace to modify */ intn *tmp_stride=NULL; /* temp. copy of stride */ intn u; /* local counting variable */ herr_t ret_value = SUCCEED; FUNC_ENTER(H5Pset_hyperslab, FAIL); /* Get the object */ if (H5_DATASPACE != H5A_group(sid) || (space = H5A_object(sid)) == NULL) HGOTO_ERROR(H5E_ATOM, H5E_BADATOM, FAIL, "not a data space"); if (start == NULL || count==NULL) HGOTO_ERROR(H5E_ARGS, H5E_BADVALUE, FAIL, "invalid hyperslab selected"); /* We can't modify other types of dataspaces currently, so error out */ if (space->type!=H5P_SIMPLE) HGOTO_ERROR(H5E_DATASPACE, H5E_BADVALUE, FAIL, "unknown dataspace type"); /* Set up stride values for later use */ tmp_stride= H5MM_xmalloc(space->u.simple.rank*sizeof(intn)); for (u=0; uu.simple.rank; u++) { tmp_stride[u] = stride ? stride[u] : 1; } /* Range check arguments */ for (u=0; uu.simple.rank; u++) { if (start[u]<0 || start[u]>=space->u.simple.size[u]) HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab bounds out of range"); if (start[u]+(SIGN(count[u])*(ABS(count[u])-1)*tmp_stride[u])<0 || (start[u]+(SIGN(count[u])*(ABS(count[u])-1)*tmp_stride[u])>= space->u.simple.size[u])) HGOTO_ERROR(H5E_DATASPACE, H5E_BADRANGE, FAIL, "hyperslab bounds out of range"); } /* end for */ /* Allocate space for the hyperslab information */ if (NULL==space->h.start) { space->h.start= H5MM_xcalloc(space->u.simple.rank,sizeof(size_t)); space->h.count= H5MM_xcalloc(space->u.simple.rank,sizeof(size_t)); space->h.stride= H5MM_xcalloc(space->u.simple.rank,sizeof(size_t)); } /* Build hyperslab */ for(u=0; uu.simple.rank; u++) { /* copy "normalized" (i.e. strictly increasing) values for hyperslab parameters */ space->h.start[u]=MIN(start[u],start[u]+((ABS(count[u])-1)*tmp_stride[u])); space->h.count[u]=ABS(count[u]); space->h.stride[u]=ABS(tmp_stride[u]); } /* end for */ space->hslab_def=TRUE; done: if (ret_value == FAIL) { /* Error condition cleanup */ } /* end if */ /* Normal function cleanup */ H5MM_xfree(tmp_stride); FUNC_LEAVE(ret_value); } /*------------------------------------------------------------------------- * Function: H5Pget_hyperslab * * Purpose: Retrieves information about the hyperslab from a simple data * space. If no hyperslab has been defined then the hyperslab * is the same as the entire array. * * Return: Success: Hyperslab dimensionality. * * Failure: FAIL * * Programmer: Robb Matzke * Wednesday, January 28, 1998 * * Modifications: * *------------------------------------------------------------------------- */ int H5Pget_hyperslab (hid_t sid, int offset[]/*out*/, size_t size[]/*out*/, size_t stride[]/*out*/) { const H5P_t *ds = NULL; intn ret_value = FAIL; FUNC_ENTER (H5Pget_hyperslab, FAIL); /* Check args */ if (H5_DATASPACE!=H5A_group (sid) || NULL==(ds=H5A_object (sid))) { HRETURN_ERROR (H5E_ARGS, H5E_BADTYPE, FAIL, "not a data space"); } /* Get hyperslab info */ if ((ret_value=H5P_get_hyperslab (ds, offset, size, stride))<0) { HRETURN_ERROR (H5E_DATASPACE, H5E_CANTINIT, FAIL, "unable to retrieve hyperslab information"); } FUNC_LEAVE (ret_value); } /*------------------------------------------------------------------------- * Function: H5P_get_hyperslab * * Purpose: Retrieves information about the hyperslab from a simple data * space. If no hyperslab has been defined then the hyperslab * is the same as the entire array. * * Return: Success: Hyperslab dimensionality. * * Failure: FAIL * * Programmer: Robb Matzke * Wednesday, January 28, 1998 * * Modifications: * *------------------------------------------------------------------------- */ intn H5P_get_hyperslab (const H5P_t *ds, int offset[]/*out*/, size_t size[]/*out*/, size_t stride[]/*out*/) { intn i; intn ret_value = FAIL; FUNC_ENTER (H5P_get_hyperslab, FAIL); /* Check args */ assert (ds); switch (ds->type) { case H5P_SCALAR: break; case H5P_SIMPLE: if (ds->hslab_def) { for (i=0; iu.simple.rank; i++) { if (offset) offset[i] = ds->h.start[i]; if (size) size[i] = ds->h.count[i]; if (stride) stride[i] = ds->h.stride[i]; } } else { for (i=0; iu.simple.rank; i++) { if (offset) offset[i] = 0; if (size) size[i] = ds->u.simple.size[i]; if (stride) stride[i] = 1; } } ret_value = ds->u.simple.rank; break; case H5P_COMPLEX: /*fall through*/ default: HRETURN_ERROR (H5E_DATASPACE, H5E_UNSUPPORTED, FAIL, "hyperslabs not supported for this type of space"); } FUNC_LEAVE (ret_value); } /*------------------------------------------------------------------------- * Function: H5P_find * * Purpose: Given two data spaces (MEM_SPACE and FILE_SPACE) this * function locates the data space conversion functions and * initializes CONV to point to them. The CONV contains * function pointers for converting in either direction. * * Return: Success: Pointer to a data space conversion callback * list. * * Failure: NULL * * Programmer: Robb Matzke * Wednesday, January 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ const H5P_conv_t * H5P_find (const H5P_t *mem_space, const H5P_t *file_space) { static H5P_conv_t _conv; static const H5P_conv_t *conv = NULL; FUNC_ENTER (H5P_find, NULL); /* Check args */ assert (mem_space && H5P_SIMPLE==mem_space->type); assert (file_space && H5P_SIMPLE==file_space->type); /* * We can't do conversion if the source and destination select a * different number of data points. */ if (H5P_get_npoints (mem_space) != H5P_get_npoints (file_space)) { HRETURN_ERROR (H5E_DATASPACE, H5E_BADRANGE, NULL, "memory and file data spaces are different sizes"); } /* * Initialize pointers. This will eventually be a table lookup based * on the source and destination data spaces, similar to H5T_find(), but * for now we only support simple data spaces. */ if (!conv) { _conv.init = H5P_simp_init; _conv.fgath = H5P_simp_fgath; _conv.mscat = H5P_simp_mscat; _conv.mgath = H5P_simp_mgath; _conv.fscat = H5P_simp_fscat; conv = &_conv; } FUNC_LEAVE (conv); } /*------------------------------------------------------------------------- * Function: H5P_extend * * Purpose: Extend the dimensions of a data space. * * Return: Success: Number of dimensions whose size increased. * * Failure: FAIL * * Programmer: Robb Matzke * Friday, January 30, 1998 * * Modifications: * *------------------------------------------------------------------------- */ intn H5P_extend (H5P_t *space, const size_t *size) { intn i, ret_value=0; FUNC_ENTER (H5P_extend, FAIL); /* Check args */ assert (space && H5P_SIMPLE==space->type); assert (size); for (i=0; iu.simple.rank; i++) { if (space->u.simple.size[i]u.simple.max && H5P_UNLIMITED!=space->u.simple.max[i] && space->u.simple.max[i]u.simple.rank; i++) { if (space->u.simple.size[i]u.simple.size[i] = size[i]; } } } FUNC_LEAVE (ret_value); }