/* * Copyright (C) 1998 Spizella Software * All rights reserved. * * Programmer: Robb Matzke * Tuesday, January 13, 1998 * * Purpose: Data type conversions. */ #define H5T_PACKAGE /*suppress error about including H5Tpkg */ #include #include #include #include #include /*for ceil() */ /* Conversion data for H5T_conv_struct() */ typedef struct H5T_conv_struct_t { intn *src2dst; /*mapping from src to dst memb ID */ hid_t *src_memb_id; /*source member type ID's */ hid_t *dst_memb_id; /*destination member type ID's */ H5T_conv_t *memb_conv; /*array of membr conversion functions*/ H5T_cdata_t **memb_cdata; /*array of member cdata pointers */ } H5T_conv_struct_t; /* Interface initialization */ static intn interface_initialize_g = FALSE; #define INTERFACE_INIT NULL /*------------------------------------------------------------------------- * Function: H5T_conv_noop * * Purpose: The no-op conversion. The library knows about this * conversion without it being registered. * * Return: Success: SUCCEED * * Failure: never fails * * Programmer: Robb Matzke * Wednesday, January 14, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5T_conv_noop(hid_t __unused__ src_id, hid_t __unused__ dst_id, H5T_cdata_t *cdata, size_t __unused__ nelmts, void __unused__ *buf, void __unused__ *background) { FUNC_ENTER(H5T_conv_noop, FAIL); switch (cdata->command) { case H5T_CONV_INIT: /* Nothing to initialize */ break; case H5T_CONV_CONV: /* Nothing to convert */ break; case H5T_CONV_FREE: /* Nothing to free */ cdata->stats = H5MM_xfree (cdata->stats); break; default: HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unknown conversion command"); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5T_conv_order * * Purpose: Convert one type to another when byte order is the only * difference. * * Note: This is a soft conversion function. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Tuesday, January 13, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5T_conv_order(hid_t src_id, hid_t dst_id, H5T_cdata_t *cdata, size_t nelmts, void *_buf, void __unused__ *background) { uint8 *buf = (uint8 *) _buf; uint8 tmp; H5T_t *src = NULL; H5T_t *dst = NULL; size_t i, j, md; FUNC_ENTER(H5T_conv_order, FAIL); switch (cdata->command) { case H5T_CONV_INIT: /* Capability query */ if (H5_DATATYPE != H5I_group(src_id) || NULL == (src = H5I_object(src_id)) || H5_DATATYPE != H5I_group(dst_id) || NULL == (dst = H5I_object(dst_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } if (src->size != dst->size || 0 != src->u.atomic.offset || 0 != dst->u.atomic.offset || !((H5T_ORDER_BE == src->u.atomic.order && H5T_ORDER_LE == dst->u.atomic.order) || (H5T_ORDER_LE == src->u.atomic.order && H5T_ORDER_BE == dst->u.atomic.order))) { HRETURN_ERROR(H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "conversion not supported"); } switch (src->type) { case H5T_INTEGER: /* nothing to check */ break; case H5T_FLOAT: if (src->u.atomic.u.f.sign != dst->u.atomic.u.f.sign || src->u.atomic.u.f.epos != dst->u.atomic.u.f.epos || src->u.atomic.u.f.esize != dst->u.atomic.u.f.esize || src->u.atomic.u.f.ebias != dst->u.atomic.u.f.ebias || src->u.atomic.u.f.mpos != dst->u.atomic.u.f.mpos || src->u.atomic.u.f.msize != dst->u.atomic.u.f.msize || src->u.atomic.u.f.norm != dst->u.atomic.u.f.norm || src->u.atomic.u.f.pad != dst->u.atomic.u.f.pad) { HRETURN_ERROR(H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "conversion not supported"); } break; default: HRETURN_ERROR(H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "conversion not supported"); } break; case H5T_CONV_CONV: /* The conversion */ if (H5_DATATYPE != H5I_group(src_id) || NULL == (src = H5I_object(src_id)) || H5_DATATYPE != H5I_group(dst_id) || NULL == (dst = H5I_object(dst_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } md = src->size / 2; for (i=0; isize) { for (j=0; jsize-(j+1)]; buf[src->size-(j+1)] = tmp; } } break; case H5T_CONV_FREE: /* Free private data */ break; default: HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unknown conversion command"); } FUNC_LEAVE(SUCCEED); } /*------------------------------------------------------------------------- * Function: H5T_conv_struct_init * * Purpose: Initialize the `priv' field of `cdata' with conversion * information that is relatively constant. If `priv' is * already initialized then the member conversion functions * are recalculated. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Monday, January 26, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5T_conv_struct_init (H5T_t *src, H5T_t *dst, H5T_cdata_t *cdata) { H5T_conv_struct_t *priv = (H5T_conv_struct_t*)(cdata->priv); intn i, j, *src2dst = NULL; H5T_t *type = NULL; hid_t tid; FUNC_ENTER (H5T_conv_struct_init, FAIL); if (!priv) { /* * Notice: the thing marked with `!' below really is `dst' and not * `src' because we're only interested in the members of the * source type that are also in the destination type. */ cdata->priv = priv = H5MM_xcalloc (1, sizeof(H5T_conv_struct_t)); priv->src2dst = H5MM_xmalloc (src->u.compnd.nmembs * sizeof(intn)); priv->src_memb_id = H5MM_xmalloc (/*!*/dst->u.compnd.nmembs * sizeof(hid_t)); priv->dst_memb_id = H5MM_xmalloc (dst->u.compnd.nmembs * sizeof(hid_t)); /* * Insure that members are sorted. */ H5T_sort_by_offset (src); H5T_sort_by_offset (dst); /* * Build a mapping from source member number to destination member * number. If some source member is not a destination member then that * mapping element will be negative. Also create atoms for each * source and destination member data type so we can look up the * member data type conversion functions later. */ for (i=0; iu.compnd.nmembs; i++) { priv->src2dst[i] = -1; for (j=0; ju.compnd.nmembs; j++) { if (!HDstrcmp (src->u.compnd.memb[i].name, dst->u.compnd.memb[j].name)) { priv->src2dst[i] = j; break; } } if (priv->src2dst[i]>=0) { type = H5T_copy (src->u.compnd.memb[i].type, H5T_COPY_ALL); tid = H5I_register (H5_DATATYPE, type); assert (tid>=0); priv->src_memb_id[priv->src2dst[i]] = tid; type = H5T_copy (dst->u.compnd.memb[priv->src2dst[i]].type, H5T_COPY_ALL); tid = H5I_register (H5_DATATYPE, type); assert (tid>=0); priv->dst_memb_id[priv->src2dst[i]] = tid; } } } /* * (Re)build the cache of member conversion functions and pointers to * their cdata entries. */ priv->memb_conv = H5MM_xfree (priv->memb_conv); priv->memb_cdata = H5MM_xfree (priv->memb_cdata); priv->memb_conv = H5MM_xmalloc (dst->u.compnd.nmembs * sizeof(H5T_conv_t)); priv->memb_cdata = H5MM_xcalloc (dst->u.compnd.nmembs, sizeof(H5T_cdata_t*)); src2dst = priv->src2dst; for (i=0; iu.compnd.nmembs; i++) { if (priv->src2dst[i]>=0) { H5T_conv_t tconv_func = H5Tfind (priv->src_memb_id[src2dst[i]], priv->dst_memb_id[src2dst[i]], priv->memb_cdata+src2dst[i]); if (!tconv_func) { H5MM_xfree (priv->src2dst); H5MM_xfree (priv->src_memb_id); H5MM_xfree (priv->dst_memb_id); H5MM_xfree (priv->memb_conv); cdata->priv = priv = H5MM_xfree (priv); HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unable to convert member data type"); } priv->memb_conv[src2dst[i]] = tconv_func; } } cdata->need_bkg = H5T_BKG_TEMP; cdata->recalc = FALSE; FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5T_conv_struct * * Purpose: Converts between compound data types. This is a soft * conversion function. The algorithm is basically: * * For I=1..NUM_MEMBERS do * If sizeof detination type <= sizeof source type then * Convert member to destination type; * Move member as far left as possible; * * For I=NUM_MEMBERS..1 do * If not destination type then * Convert member to destination type; * Move member to correct position in BACKGROUND * * Copy BACKGROUND to BUF * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Thursday, January 22, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5T_conv_struct(hid_t src_id, hid_t dst_id, H5T_cdata_t *cdata, size_t nelmts, void *_buf, void *_bkg) { uint8 *buf = (uint8 *)_buf; /*cast for pointer arithmetic */ uint8 *bkg = (uint8 *)_bkg; /*background pointer arithmetic */ H5T_t *src = NULL; /*source data type */ H5T_t *dst = NULL; /*destination data type */ intn *src2dst = NULL; /*maps src member to dst member */ H5T_member_t *src_memb = NULL; /*source struct member descript.*/ H5T_member_t *dst_memb = NULL; /*destination struct memb desc. */ size_t offset; /*byte offset wrt struct */ size_t src_delta, dst_delta; /*source & destination stride */ uintn elmtno; intn i; /*counters */ H5T_conv_struct_t *priv = (H5T_conv_struct_t *)(cdata->priv); FUNC_ENTER (H5T_conv_struct, FAIL); switch (cdata->command) { case H5T_CONV_INIT: /* * First, determine if this conversion function applies to the * conversion path SRC_ID-->DST_ID. If not, return failure; * otherwise initialize the `priv' field of `cdata' with information * that remains (almost) constant for this conversion path. */ if (H5_DATATYPE != H5I_group(src_id) || NULL == (src = H5I_object(src_id)) || H5_DATATYPE != H5I_group(dst_id) || NULL == (dst = H5I_object(dst_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } assert (H5T_COMPOUND==src->type); assert (H5T_COMPOUND==dst->type); #ifndef LATER /* * Struct members must be scalar for now. */ for (i=0; iu.compnd.nmembs; i++) { if (src->u.compnd.memb[i].ndims>0) { HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "array members are not supported yet"); } } for (i=0; iu.compnd.nmembs; i++) { if (dst->u.compnd.memb[i].ndims>0) { HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "array members are not supported yet"); } } #endif if (H5T_conv_struct_init (src, dst, cdata)<0) { HRETURN_ERROR (H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to initialize conversion data"); } break; case H5T_CONV_FREE: /* * Free the private conversion data. */ H5MM_xfree (priv->src2dst); H5MM_xfree (priv->src_memb_id); H5MM_xfree (priv->dst_memb_id); H5MM_xfree (priv->memb_conv); H5MM_xfree (priv->memb_cdata); cdata->priv = priv = H5MM_xfree (priv); break; case H5T_CONV_CONV: /* * Conversion. */ if (H5_DATATYPE != H5I_group(src_id) || NULL == (src = H5I_object(src_id)) || H5_DATATYPE != H5I_group(dst_id) || NULL == (dst = H5I_object(dst_id))) { HRETURN_ERROR(H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } assert (priv); assert (bkg && cdata->need_bkg>=H5T_BKG_TEMP); if (cdata->recalc && H5T_conv_struct_init (src, dst, cdata)<0) { HRETURN_ERROR (H5E_DATATYPE, H5E_CANTINIT, FAIL, "unable to initialize conversion data"); } /* * Insure that members are sorted. */ H5T_sort_by_offset (src); H5T_sort_by_offset (dst); src2dst = priv->src2dst; /* * Direction of conversion. */ if (dst->size <= src->size) { src_delta = src->size; dst_delta = dst->size; } else { src_delta = -(src->size); dst_delta = -(dst->size); buf += (nelmts-1) * src->size; bkg += (nelmts-1) * dst->size; } for (elmtno=0; elmtnou.compnd.nmembs; i++) { if (src2dst[i]<0) continue; src_memb = src->u.compnd.memb + i; dst_memb = dst->u.compnd.memb + src2dst[i]; if (H5T_get_size (dst_memb->type) <= H5T_get_size (src_memb->type)) { H5T_conv_t tconv_func = priv->memb_conv[src2dst[i]]; H5T_cdata_t *memb_cdata = priv->memb_cdata[src2dst[i]]; memb_cdata->command = H5T_CONV_CONV; (tconv_func)(priv->src_memb_id[src2dst[i]], priv->dst_memb_id[src2dst[i]], memb_cdata, 1, buf + src_memb->offset, bkg + dst_memb->offset); HDmemmove (buf + offset, buf + src_memb->offset, H5T_get_size (dst_memb->type)); offset += H5T_get_size (dst_memb->type); } else { HDmemmove (buf + offset, buf + src_memb->offset, H5T_get_size (src_memb->type)); offset += H5T_get_size (src_memb->type); } } /* * For each source member which will be present in the * destination, convert the member to the destination type if it * is larger than the source type (that is, has not been converted * yet). Then copy the member to the destination offset in the * background buffer. */ for (i=src->u.compnd.nmembs-1; i>=0; --i) { if (src2dst[i]<0) continue; src_memb = src->u.compnd.memb + i; dst_memb = dst->u.compnd.memb + src2dst[i]; offset -= H5T_get_size (dst_memb->type); if (H5T_get_size (dst_memb->type) > H5T_get_size (src_memb->type)) { H5T_conv_t tconv_func = priv->memb_conv[src2dst[i]]; H5T_cdata_t *memb_cdata = priv->memb_cdata[src2dst[i]]; memb_cdata->command = H5T_CONV_CONV; (tconv_func)(priv->src_memb_id[src2dst[i]], priv->dst_memb_id[src2dst[i]], memb_cdata, 1, buf + offset, bkg + dst_memb->offset); } HDmemmove (bkg+dst_memb->offset, buf+offset, H5T_get_size (dst_memb->type)); } assert (0==offset); /* * Update buf and background. */ buf += src_delta; bkg += dst_delta; } /* * Copy the background buffer back into the in-place conversion * buffer. */ HDmemcpy (_buf, _bkg, nelmts*dst->size); break; default: /* Some other command we don't know about yet.*/ HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unknown conversion command"); } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5T_conv_i_i * * Purpose: Convert one integer type to another. This is the catch-all * function for integer conversions and is probably not * particularly fast. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Wednesday, June 10, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5T_conv_i_i (hid_t src_id, hid_t dst_id, H5T_cdata_t *cdata, size_t nelmts, void *buf, void __unused__ *bkg) { H5T_t *src = NULL; /*source data type */ H5T_t *dst = NULL; /*destination data type */ intn direction; /*direction of traversal */ size_t elmtno; /*element number */ size_t half_size; /*half the type size */ size_t olap; /*num overlapping elements */ uint8 *s, *sp, *d, *dp; /*source and dest traversal ptrs*/ uint8 dbuf[64]; /*temp destination buffer */ size_t first; ssize_t sfirst; /*a signed version of `first' */ size_t i; FUNC_ENTER (H5T_conv_i_i, FAIL); switch (cdata->command) { case H5T_CONV_INIT: if (H5_DATATYPE!=H5I_group (src_id) || NULL==(src=H5I_object (src_id)) || H5_DATATYPE!=H5I_group (dst_id) || NULL==(dst=H5I_object (dst_id))) { HRETURN_ERROR (H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } if (H5T_ORDER_LE!=src->u.atomic.order && H5T_ORDER_BE!=src->u.atomic.order) { HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unsupported byte order"); } if (H5T_ORDER_LE!=dst->u.atomic.order && H5T_ORDER_BE!=dst->u.atomic.order) { HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unsupported byte order"); } if (dst->size>sizeof dbuf) { HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "destination size is too large"); } break; case H5T_CONV_FREE: break; case H5T_CONV_CONV: /* Get the data types */ if (H5_DATATYPE!=H5I_group (src_id) || NULL==(src=H5I_object (src_id)) || H5_DATATYPE!=H5I_group (dst_id) || NULL==(dst=H5I_object (dst_id))) { HRETURN_ERROR (H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } /* * Do we process the values from beginning to end or vice versa? Also, * how many of the elements have the source and destination areas * overlapping? */ if (src->size==dst->size) { sp = dp = (uint8*)buf; direction = 1; olap = nelmts; } else if (src->size>=dst->size) { sp = dp = (uint8*)buf; direction = 1; olap = ceil((double)(src->size)/(src->size-dst->size))-1; } else { sp = (uint8*)buf + (nelmts-1) * src->size; dp = (uint8*)buf + (nelmts-1) * dst->size; direction = -1; olap = ceil((double)(dst->size)/(dst->size-src->size))-1; } /* The conversion loop */ for (elmtno=0; elmtno0) { s = sp; d = elmtno= nelmts-olap ? dbuf : dp; } #ifndef NDEBUG /* I don't quite trust the overlap calculations yet --rpm */ if (d==dbuf) { assert ((dp>=sp && dpsize) || (sp>=dp && spsize)); } else { assert ((dpsize<=sp) || (spsize<=dp)); } #endif /* * Put the data in little endian order so our loops aren't so * complicated. We'll do all the conversion stuff assuming * little endian and then we'll fix the order at the end. */ if (H5T_ORDER_BE==src->u.atomic.order) { half_size = src->size/2; for (i=0; isize-(i+1)]; s[src->size-(i+1)] = s[i]; s[i] = tmp; } } /* * What is the bit number for the msb bit of S which is set? The * bit number is relative to the significant part of the number. */ sfirst = H5T_bit_find (s, src->u.atomic.offset, src->u.atomic.prec, H5T_BIT_MSB, TRUE); first = (size_t)sfirst; if (sfirst<0) { /* * The source has no bits set and must therefore be zero. * Set the destination to zero. */ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec, FALSE); } else if (H5T_SGN_NONE==src->u.atomic.u.i.sign && H5T_SGN_NONE==dst->u.atomic.u.i.sign) { /* * Source and destination are both unsigned, but if the * source has more precision bits than the destination then * it's possible to overflow. When overflow occurs the * destination will be set to the maximum possible value. */ if (src->u.atomic.prec <= dst->u.atomic.prec) { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, src->u.atomic.prec); H5T_bit_set (d, dst->u.atomic.offset+src->u.atomic.prec, dst->u.atomic.prec-src->u.atomic.prec, FALSE); } else if (first>=dst->u.atomic.prec) { /*overflow*/ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec, TRUE); } else { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, dst->u.atomic.prec); } } else if (H5T_SGN_2==src->u.atomic.u.i.sign && H5T_SGN_NONE==dst->u.atomic.u.i.sign) { /* * If the source is signed and the destination isn't then we * can have overflow if the source contains more bits than * the destination (destination is set to the maximum * possible value) or underflow if the source is negative * (destination is set to zero). */ if (first+1 == src->u.atomic.prec) { /*underflow*/ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec, FALSE); } else if (src->u.atomic.prec < dst->u.atomic.prec) { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, src->u.atomic.prec-1); H5T_bit_set (d, dst->u.atomic.offset+src->u.atomic.prec-1, (dst->u.atomic.prec-src->u.atomic.prec)+1, FALSE); } else if (first>=dst->u.atomic.prec) { /*overflow*/ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec, TRUE); } else { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, dst->u.atomic.prec); } } else if (H5T_SGN_NONE==src->u.atomic.u.i.sign && H5T_SGN_2==dst->u.atomic.u.i.sign) { /* * If the source is not signed but the destination is then * overflow can occur in which case the destination is set to * the largest possible value (all bits set except the msb). */ if (first+1 >= dst->u.atomic.prec) { /*overflow*/ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec-1, TRUE); H5T_bit_set (d, dst->u.atomic.offset+dst->u.atomic.prec-1, 1, FALSE); } else if (src->u.atomic.precu.atomic.prec) { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, src->u.atomic.prec); H5T_bit_set (d, dst->u.atomic.offset+src->u.atomic.prec, dst->u.atomic.prec-src->u.atomic.prec, FALSE); } else { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, dst->u.atomic.prec); } } else if (first+1 == src->u.atomic.prec) { /* * Both the source and the destination are signed and the * source value is negative. We could experience underflow * if the destination isn't wide enough in which case the * destination is set to a negative number with the largest * possible magnitude. */ ssize_t sfz = H5T_bit_find (s, src->u.atomic.offset, src->u.atomic.prec-1, H5T_BIT_MSB, FALSE); size_t fz = (size_t)sfz; if (sfz>=0 && fz+1>=dst->u.atomic.prec) { /*underflow*/ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec-1, FALSE); H5T_bit_set (d, dst->u.atomic.offset+dst->u.atomic.prec-1, 1, TRUE); } else if (src->u.atomic.precu.atomic.prec) { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, src->u.atomic.prec); H5T_bit_set (d, dst->u.atomic.offset+src->u.atomic.prec, dst->u.atomic.prec-src->u.atomic.prec, TRUE); } else { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, dst->u.atomic.prec); } } else { /* * Source and destination are both signed but the source * value is positive. We could have an overflow in which * case the destination is set to the largest possible * positive value. */ if (first+1>=dst->u.atomic.prec) { /*overflow*/ H5T_bit_set (d, dst->u.atomic.offset, dst->u.atomic.prec-1, TRUE); H5T_bit_set (d, dst->u.atomic.offset+dst->u.atomic.prec-1, 1, FALSE); } else if (src->u.atomic.precu.atomic.prec) { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, src->u.atomic.prec); H5T_bit_set (d, dst->u.atomic.offset+src->u.atomic.prec, dst->u.atomic.prec-src->u.atomic.prec, FALSE); } else { H5T_bit_copy (d, dst->u.atomic.offset, s, src->u.atomic.offset, dst->u.atomic.prec); } } /* * Set padding areas in destination. */ if (dst->u.atomic.offset>0) { assert (H5T_PAD_ZERO==dst->u.atomic.lsb_pad || H5T_PAD_ONE==dst->u.atomic.lsb_pad); H5T_bit_set (d, 0, dst->u.atomic.offset, H5T_PAD_ONE==dst->u.atomic.lsb_pad); } if (dst->u.atomic.offset+dst->u.atomic.prec!=8*dst->size) { assert (H5T_PAD_ZERO==dst->u.atomic.msb_pad || H5T_PAD_ONE==dst->u.atomic.msb_pad); H5T_bit_set (d, dst->u.atomic.offset+dst->u.atomic.prec, 8*dst->size - (dst->u.atomic.offset+ dst->u.atomic.prec), H5T_PAD_ONE==dst->u.atomic.msb_pad); } /* * Put the destination in the correct byte order. See note at * beginning of loop. */ if (H5T_ORDER_BE==dst->u.atomic.order) { half_size = dst->size/2; for (i=0; isize-(i+1)]; d[dst->size-(i+1)] = d[i]; d[i] = tmp; } } /* * If we had used a temporary buffer for the destination then we * should copy the value to the true destination buffer. */ if (d==dbuf) HDmemcpy (dp, d, dst->size); sp += direction * src->size; dp += direction * dst->size; } break; default: HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unknown conversion command"); } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5T_conv_i32le_r64le * * Purpose: Converts 4-byte little-endian integers (signed or unsigned) * to 8-byte litte-endian IEEE floating point. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Wednesday, June 10, 1998 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5T_conv_i32le_r64le (hid_t src_id, hid_t dst_id, H5T_cdata_t *cdata, size_t nelmts, void *buf, void __unused__ *bkg) { uint8 *s=NULL, *d=NULL; /*src and dst buf pointers */ uint8 tmp[8]; /*temporary destination buffer */ H5T_t *src = NULL; /*source data type */ H5T_t *dst = NULL; /*destination data type */ size_t elmtno; /*element counter */ uintn sign; /*sign bit */ uintn cin, cout; /*carry in/out */ uintn mbits=0; /*mantissa bits */ uintn exponent; /*exponent */ intn i; /*counter */ FUNC_ENTER (H5T_conv_i32le_r64le, FAIL); switch (cdata->command) { case H5T_CONV_INIT: assert (sizeof(intn)>=4); break; case H5T_CONV_FREE: /* Free private data */ break; case H5T_CONV_CONV: /* The conversion */ if (H5_DATATYPE!=H5I_group (src_id) || NULL==(src=H5I_object (src_id)) || H5_DATATYPE!=H5I_group (dst_id) || NULL==(dst=H5I_object (dst_id))) { HRETURN_ERROR (H5E_ARGS, H5E_BADTYPE, FAIL, "not a data type"); } s = (uint8*)buf + 4*(nelmts-1); d = (uint8*)buf + 8*(nelmts-1); for (elmtno=0; elmtnou.atomic.u.i.sign) { case H5T_SGN_NONE: sign = 0; break; case H5T_SGN_2: if (s[3] & 0x80) { sign = 1 ; for (i=0,cin=1; i<4; i++,cin=cout) { s[i] = ~s[i] ; cout = ((unsigned)(s[i])+cin > 0xff) ? 1 : 0 ; s[i] += cin ; } } else { sign = 0; } break; default: HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unsupported integer sign method"); } /* * Where is the most significant bit that is set? We could do * this in a loop, but testing it this way might be faster. */ if (s[3]) { if (s[3] & 0x80) mbits = 32 ; else if (s[3] & 0x40) mbits = 31 ; else if (s[3] & 0x20) mbits = 30 ; else if (s[3] & 0x10) mbits = 29 ; else if (s[3] & 0x08) mbits = 28 ; else if (s[3] & 0x04) mbits = 27 ; else if (s[3] & 0x02) mbits = 26 ; else if (s[3] & 0x01) mbits = 25 ; } else if (s[2]) { if (s[2] & 0x80) mbits = 24 ; else if (s[2] & 0x40) mbits = 23 ; else if (s[2] & 0x20) mbits = 22 ; else if (s[2] & 0x10) mbits = 21 ; else if (s[2] & 0x08) mbits = 20 ; else if (s[2] & 0x04) mbits = 19 ; else if (s[2] & 0x02) mbits = 18 ; else if (s[2] & 0x01) mbits = 17 ; } else if (s[1]) { if (s[1] & 0x80) mbits = 16 ; else if (s[1] & 0x40) mbits = 15 ; else if (s[1] & 0x20) mbits = 14 ; else if (s[1] & 0x10) mbits = 13 ; else if (s[1] & 0x08) mbits = 12 ; else if (s[1] & 0x04) mbits = 11 ; else if (s[1] & 0x02) mbits = 10 ; else if (s[1] & 0x01) mbits = 9 ; } else if (s[0]) { if (s[0] & 0x80) mbits = 8 ; else if (s[0] & 0x40) mbits = 7 ; else if (s[0] & 0x20) mbits = 6 ; else if (s[0] & 0x10) mbits = 5 ; else if (s[0] & 0x08) mbits = 4 ; else if (s[0] & 0x04) mbits = 3 ; else if (s[0] & 0x02) mbits = 2 ; else if (s[0] & 0x01) mbits = 1 ; } else { /*zero*/ d[7] = d[6] = d[5] = d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; continue ; } /* * The sign and exponent. */ exponent = (mbits - 1) + 1023 ; d[7] = (sign<<7) | ((exponent>>4) & 0x7f) ; d[6] = (exponent & 0x0f) << 4 ; /* * The mantissa. */ switch (mbits) { case 32: d[5] = d[4] = d[3] = d[1] = d[0] = 0 ; break ; case 31: d[6] |= 0x0f & (s[3]>>2) ; d[5] = (s[3]<<6) | (s[2]>>2) ; d[4] = (s[2]<<6) | (s[1]>>2) ; d[3] = (s[1]<<6) | (s[0]>>2) ; d[2] = (s[0]<<6) ; d[1] = d[0] = 0 ; break ; case 30: d[6] |= 0x0f & (s[3]>>1) ; d[5] = (s[3]<<7) | (s[2]>>1) ; d[4] = (s[2]<<7) | (s[1]>>1) ; d[3] = (s[1]<<7) | (s[0]>>1) ; d[2] = (s[0]<<7) ; d[1] = d[0] = 0 ; break ; case 29: d[6] |= 0x0f & s[3] ; d[5] = s[2] ; d[4] = s[1] ; d[3] = s[0] ; d[2] = d[1] = d[0] = 0 ; break ; case 28: d[6] |= ((s[3]<<1) | (s[2]>>7)) & 0x0f ; d[5] = (s[2]<<1) | (s[1]>>7) ; d[4] = (s[1]<<1) | (s[0]>>7) ; d[3] = (s[0]<<1) ; d[2] = d[1] = d[0] = 0 ; break ; case 27: d[6] |= ((s[3]<<2) | (s[2]>>6)) & 0x0f ; d[5] = (s[2]<<2) | (s[1]>>6) ; d[4] = (s[1]<<2) | (s[0]>>6) ; d[3] = (s[0]<<2) ; d[2] = d[1] = d[0] = 0 ; break ; case 26: d[6] |= ((s[3]<<3) | (s[2]>>5)) & 0x0f ; d[5] = (s[2]<<3) | (s[1]>>5) ; d[4] = (s[1]<<3) | (s[0]>>5) ; d[3] = (s[0]<<3) ; d[2] = d[1] = d[0] = 0 ; break ; case 25: d[6] |= 0x0f & (s[2]>>4) ; d[5] = (s[2]<<4) | (s[1]>>4) ; d[4] = (s[1]<<4) | (s[0]>>4) ; d[3] = (s[0]<<4) ; d[2] = d[1] = d[0] = 0 ; break ; case 24: d[6] |= 0x0f & (s[2]>>3) ; d[5] = (s[2]<<5) | (s[1]>>3) ; d[4] = (s[1]<<5) | (s[0]>>3) ; d[3] = (s[0]<<5) ; d[2] = d[1] = d[0] = 0 ; break ; case 23: d[6] |= 0x0f & (s[2]>>2) ; d[5] = (s[2]<<6) | (s[1]>>2) ; d[4] = (s[1]<<6) | (s[0]>>2) ; d[3] = (s[0]<<6) ; d[2] = d[1] = d[0] = 0 ; break ; case 22: d[6] |= 0x0f & (s[2]>>1) ; d[5] = (s[2]<<7) | (s[1]>>1) ; d[4] = (s[1]<<7) | (s[0]>>1) ; d[3] = (s[0]<<7) ; d[2] = d[1] = d[0] = 0 ; break ; case 21: d[6] |= 0x0f & s[2] ; d[5] = s[1] ; d[4] = s[0] ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 20: d[6] |= ((s[2]<<1) | (s[1]>>7)) & 0x0f ; d[5] = (s[1]<<1) | (s[0]>>7) ; d[4] = (s[0]<<1) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 19: d[6] |= ((s[2]<<2) | (s[1]>>6)) & 0x0f ; d[5] = (s[1]<<2) | (s[0]>>6) ; d[4] = (s[0]<<2) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 18: d[6] |= ((s[2]<<3) | (s[1]>>5)) & 0x0f ; d[5] = (s[1]<<3) | (s[0]>>5) ; d[4] = (s[0]<<3) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 17: d[6] |= 0x0f & (s[1]>>4) ; d[5] = (s[1]<<4) | (s[0]>>4) ; d[4] = (s[0]<<4) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 16: d[6] |= 0x0f & (s[1]>>3) ; d[5] = (s[1]<<5) | (s[0]>>3) ; d[4] = (s[0]<<5) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 15: d[6] |= 0x0f & (s[1]>>2) ; d[5] = (s[1]<<6) | (s[0]>>2) ; d[4] = (s[0]<<6) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 14: d[6] |= 0x0f & (s[1]>>1) ; d[5] = (s[1]<<7) | (s[0]>>1) ; d[4] = (s[0]<<7) ; d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 13: d[6] |= 0x0f & s[1] ; d[5] = s[0] ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 12: d[6] |= ((s[1]<<1) | (s[0]>>7)) & 0x0f ; d[5] = (s[0]<<1) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 11: d[6] |= ((s[1]<<2) | (s[0]>>6)) & 0x0f ; d[5] = (s[0]<<2) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 10: d[6] |= ((s[1]<<3) | (s[0]>>5)) & 0x0f ; d[5] = (s[0]<<3) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 9: d[6] |= 0x0f & (s[0]>>4) ; d[5] = (s[0]<<4) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 8: d[6] |= 0x0f & (s[0]>>3) ; d[5] = (s[0]<<5) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 7: d[6] |= 0x0f & (s[0]>>2) ; d[5] = (s[0]<<6) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 6: d[6] |= 0x0f & (s[0]>>1) ; d[5] = (s[0]<<7) ; d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 5: d[6] |= 0x0f & s[0] ; d[5] = d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 4: d[6] |= (s[0]<<1) & 0x0f ; d[5] = d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 3: d[6] |= (s[0]<<2) & 0x0f ; d[5] = d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 2: d[6] |= (s[0]<<3) & 0x0f ; d[5] = d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; case 1: d[5] = d[4] = d[3] = d[2] = d[1] = d[0] = 0 ; break ; } /* * Copy temp buffer to the destination. This only happens for * the first value in the array, the last value processed. See * beginning of loop. */ if (d==tmp) HDmemcpy (s, d, 8); } break; default: /* Some other command we don't know about yet.*/ HRETURN_ERROR (H5E_DATATYPE, H5E_UNSUPPORTED, FAIL, "unknown conversion command"); } FUNC_LEAVE (SUCCEED); }