/* * Copyright (C) 1997 NCSA * All rights reserved. * * Programmer: Robb Matzke * Friday, October 10, 1997 */ #include #include #include #include #define H5V_HYPER_NDIMS H5O_ISTORE_NDIMS #define PABLO_MASK H5V_mask static hbool_t interface_initialize_g = TRUE; static herr_t H5V_stride_optimize1 (size_t *np, size_t *elmt_size, size_t *size, intn *stride1); static herr_t H5V_stride_optimize2 (size_t *np, size_t *elmt_size, size_t *size, intn *stride1, intn *stride2); /*------------------------------------------------------------------------- * Function: H5V_stride_optimize1 * * Purpose: Given a stride vector which references elements of the * specified size, optimize the dimensionality, the stride * vector, and the element size to minimize the dimensionality * and the number of memory accesses. * * All arguments are passed by reference and their values may be * modified by this function. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5V_stride_optimize1 (size_t *np, size_t *elmt_size, size_t *size, intn *stride1) { FUNC_ENTER (H5V_stride_optimize1, NULL, FAIL); /* * This has to be true because if we optimize the dimensionality down to * zero we still must make one reference. */ assert (1==H5V_vector_reduce_product (0, (void*)1)); /* * Combine adjacent memory accesses */ while (*np && stride1[*np-1]==*elmt_size) { *elmt_size *= size[*np-1]; if (--*np) { stride1[*np-1] += size[*np] * stride1[*np]; } } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5V_stride_optimize2 * * Purpose: Given two stride vectors which reference elements of the * specified size, optimize the dimensionality, the stride * vectors, and the element size to minimize the dimensionality * and the number of memory accesses. * * All arguments are passed by reference and their values may be * modified by this function. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t H5V_stride_optimize2 (size_t *np, size_t *elmt_size, size_t *size, intn *stride1, intn *stride2) { FUNC_ENTER (H5V_stride_optimize2, NULL, FAIL); /* * This has to be true because if we optimize the dimensionality down to * zero we still must make one reference. */ assert (1==H5V_vector_reduce_product (0, (void*)1)); /* * Combine adjacent memory accesses */ while (*np && stride1[*np-1]==*elmt_size && stride2[*np-1]==*elmt_size) { *elmt_size *= size[*np-1]; if (--*np) { stride1[*np-1] += size[*np] * stride1[*np]; stride2[*np-1] += size[*np] * stride2[*np]; } } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5V_hyper_stride * * Purpose: Given a description of a hyperslab, this function returns * (through STRIDE[]) the byte strides appropriate for accessing * all bytes of the hyperslab and the byte offset where the * striding will begin. The SIZE can be passed to the various * stride functions. * * The stride and starting point returned will cause the * hyperslab elements to be referenced in C order. * * Return: Success: Byte offset from beginning of array to start * of striding. * * Failure: abort() -- should never fail * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ size_t H5V_hyper_stride (size_t n, const size_t *size, const size_t *total_size, const size_t *offset, intn *stride /*output arg*/) { size_t skip; /*starting point byte offset */ size_t acc; /*accumulator */ int i; /*counter */ FUNC_ENTER (H5V_hyper_stride, NULL, (abort(),0)); assert (n>=0 && n=0; --i) { stride[i] = acc * (total_size[i+1] - size[i+1]); acc *= total_size[i+1]; skip += acc * (offset?offset[i]:0); } FUNC_LEAVE (skip); } /*------------------------------------------------------------------------- * Function: H5V_hyper_eq * * Purpose: Determines whether two hyperslabs are equal. This function * assumes that both hyperslabs are relative to the same array, * for if not, they could not possibly be equal. * * Return: Success: TRUE if the hyperslabs are equal (that is, * both refer to exactly the same elements of an * array) * * FALSE otherwise. * * Failure: TRUE the rank is zero or if both hyperslabs * are of zero size. * * Programmer: Robb Matzke * Friday, October 17, 1997 * * Modifications: * *------------------------------------------------------------------------- */ hbool_t H5V_hyper_eq (size_t n, const size_t *offset1, const size_t *size1, const size_t *offset2, const size_t *size2) { size_t nelmts1=1, nelmts2=1; intn i; if (n<=0) return TRUE; for (i=0; i0 && n<=H5V_HYPER_NDIMS); assert (_size); assert (total_size); assert (dst); #ifndef NDEBUG for (i=0; i0); assert (total_size[i]>0); } #endif /* Copy the size vector so we can modify it */ H5V_vector_cpy (n, size, _size); /* Compute an optimal destination stride vector */ dst_start = H5V_hyper_stride (n, size, total_size, offset, dst_stride); H5V_stride_optimize1 (&n, &elmt_size, size, dst_stride); /* Copy */ status = H5V_stride_fill (n, elmt_size, size, dst_stride, dst+dst_start, fill_value); FUNC_LEAVE (status); } /*------------------------------------------------------------------------- * Function: H5V_hyper_copy * * Purpose: Copies a hyperslab from the source to the destination. * * A hyperslab is a logically contiguous region of * multi-dimensional size SIZE of an array whose dimensionality * is N and whose total size is DST_TOTAL_SIZE or SRC_TOTAL_SIZE. * The minimum corner of the hyperslab begins at a * multi-dimensional offset from the minimum corner of the DST * (destination) or SRC (source) array. The sizes and offsets * are assumed to be in C order, that is, the first size/offset * varies the slowest while the last varies the fastest in the * mapping from N-dimensional space to linear space. This * function assumes that the array elements are single bytes (if * your array has multi-byte elements then add an additional * dimension whose size is that of your element). * * The SRC and DST array may be the same array, but the results * are undefined if the source hyperslab overlaps the * destination hyperslab. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5V_hyper_copy (size_t n, const size_t *_size, /*destination*/ const size_t *dst_size, const size_t *dst_offset, void *_dst, /*source*/ const size_t *src_size, const size_t *src_offset, const void *_src) { const uint8 *src = (const uint8 *)_src; /*cast for ptr arithmtc */ uint8 *dst = (uint8 *)_dst; /*cast for ptr arithmtc */ size_t size[H5V_HYPER_NDIMS]; /*a modifiable _size */ intn src_stride[H5V_HYPER_NDIMS]; /*source stride info */ intn dst_stride[H5V_HYPER_NDIMS]; /*dest stride info */ size_t dst_start, src_start; /*offset to start at */ size_t elmt_size=1; /*element size in bytes */ herr_t status; /*return status */ #ifndef NDEBUG intn i; #endif FUNC_ENTER (H5V_hyper_copy, NULL, FAIL); /* check args */ assert (n>0 && n<=H5V_HYPER_NDIMS); assert (_size); assert (dst_size); assert (src_size); assert (dst); assert (src); #ifndef NDEBUG for (i=0; i0); assert (dst_size[i]>0); assert (src_size[i]>0); } #endif /* Copy the size vector so we can modify it */ H5V_vector_cpy (n, size, _size); /* Compute stride vectors for source and destination */ dst_start = H5V_hyper_stride (n, size, dst_size, dst_offset, dst_stride); src_start = H5V_hyper_stride (n, size, src_size, src_offset, src_stride); /* Optimize the strides as a pair */ H5V_stride_optimize2 (&n, &elmt_size, size, dst_stride, src_stride); /* Perform the copy in terms of stride */ status = H5V_stride_copy (n, elmt_size, size, dst_stride, dst+dst_start, src_stride, src+src_start); FUNC_LEAVE (status); } /*------------------------------------------------------------------------- * Function: H5V_stride_fill * * Purpose: Fills all bytes of a hyperslab with the same value using * memset(). * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5V_stride_fill (size_t n, size_t elmt_size, const size_t *size, const intn *stride, void *_dst, uint8 fill_value) { uint8 *dst = (uint8 *)_dst; /*cast for ptr arithmetic */ size_t idx[H5V_HYPER_NDIMS]; /*1-origin indices */ size_t nelmts; /*number of elements to fill */ intn i, j; /*counters */ hbool_t carry; /*subtraction carray value */ FUNC_ENTER (H5V_stride_fill, NULL, FAIL); H5V_vector_cpy (n, idx, size); nelmts = H5V_vector_reduce_product (n, size); for (i=0; i=0 && carry; --j) { dst += stride[j]; if (--idx[j]) carry = FALSE; else idx[j] = size[j]; } } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5V_stride_copy * * Purpose: Uses DST_STRIDE and SRC_STRIDE to advance through the arrays * DST and SRC while copying bytes from SRC to DST. This * function minimizes the number of calls to memcpy() by * combining various strides, but it will never touch memory * outside the hyperslab defined by the strides. * * Note: If the src_stride is all zero and elmt_size is one, then it's * probably more efficient to use H5V_stride_fill() instead. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5V_stride_copy (size_t n, size_t elmt_size, const size_t *size, const intn *dst_stride, void *_dst, const intn *src_stride, const void *_src) { uint8 *dst = (uint8 *)_dst; /*cast for ptr arithmetic*/ const uint8 *src = (const uint8 *)_src; /*cast for ptr arithmetic*/ size_t idx[H5V_HYPER_NDIMS]; /*1-origin indices */ size_t nelmts; /*num elements to copy */ intn i, j; /*counters */ hbool_t carry; /*carray for subtraction*/ FUNC_ENTER (H5V_stride_copy, NULL, FAIL); H5V_vector_cpy (n, idx, size); nelmts = H5V_vector_reduce_product (n, size); for (i=0; i=0 && carry; --j) { src += src_stride[j]; dst += dst_stride[j]; if (--idx[j]) carry = FALSE; else idx[j] = size[j]; } } FUNC_LEAVE (SUCCEED); } /*------------------------------------------------------------------------- * Function: H5V_stride_copy2 * * Purpose: Similar to H5V_stride_copy() except the source and * destination each have their own dimensionality and size and * we copy exactly NELMTS elements each of size ELMT_SIZE. The * size counters wrap if NELMTS is more than a size counter. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ herr_t H5V_stride_copy2 (size_t nelmts, size_t elmt_size, /* destination */ size_t dst_n, const size_t *dst_size, const intn *dst_stride, void *_dst, /* source */ size_t src_n, const size_t *src_size, const intn *src_stride, const void *_src) { uint8 *dst = (uint8 *)_dst; const uint8 *src = (const uint8 *)_src; size_t dst_idx[H5V_HYPER_NDIMS]; size_t src_idx[H5V_HYPER_NDIMS]; intn i, j; hbool_t carry; FUNC_ENTER (H5V_stride_copy2, NULL, FAIL); H5V_vector_cpy (dst_n, dst_idx, dst_size); H5V_vector_cpy (src_n, src_idx, src_size); for (i=0; i=0 && carry; --j) { dst += dst_stride[j]; if (--dst_idx[j]) carry = FALSE; else dst_idx[j] = dst_size[j]; } for (j=src_n-1, carry=TRUE; j>=0 && carry; --j) { src += src_stride[j]; if (--src_idx[j]) carry = FALSE; else src_idx[j] = src_size[j]; } } FUNC_LEAVE (SUCCEED); }