/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /*********************************************************** * * Test program: tselect * * Test the Dataspace selection functionality * *************************************************************/ #define H5S_FRIEND /*suppress error about including H5Spkg */ /* Define this macro to indicate that the testing APIs should be available */ #define H5S_TESTING #include "testhdf5.h" #include "hdf5.h" /* #include "H5Spkg.h" */ /* Dataspaces */ #define FILENAME "tselect.h5" /* 3-D dataset with fixed dimensions */ #define SPACE1_NAME "Space1" #define SPACE1_RANK 3 #define SPACE1_DIM1 3 #define SPACE1_DIM2 15 #define SPACE1_DIM3 13 /* 2-D dataset with fixed dimensions */ #define SPACE2_NAME "Space2" #define SPACE2_RANK 2 #define SPACE2_DIM1 30 #define SPACE2_DIM2 26 #define SPACE2A_RANK 1 #define SPACE2A_DIM1 (SPACE2_DIM1 * SPACE2_DIM2) /* 2-D dataset with fixed dimensions */ #define SPACE3_NAME "Space3" #define SPACE3_RANK 2 #define SPACE3_DIM1 15 #define SPACE3_DIM2 26 /* 3-D dataset with fixed dimensions */ #define SPACE4_NAME "Space4" #define SPACE4_RANK 3 #define SPACE4_DIM1 11 #define SPACE4_DIM2 13 #define SPACE4_DIM3 17 /* Number of random hyperslabs to test */ #define NHYPERSLABS 10 /* Number of random hyperslab tests performed */ #define NRAND_HYPER 100 /* 5-D dataset with fixed dimensions */ #define SPACE5_NAME "Space5" #define SPACE5_RANK 5 #define SPACE5_DIM1 10 #define SPACE5_DIM2 10 #define SPACE5_DIM3 10 #define SPACE5_DIM4 10 #define SPACE5_DIM5 10 /* 1-D dataset with same size as 5-D dataset */ #define SPACE6_RANK 1 #define SPACE6_DIM1 (SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5) /* 2-D dataset with easy dimension sizes */ #define SPACE7_NAME "Space7" #define SPACE7_RANK 2 #define SPACE7_DIM1 10 #define SPACE7_DIM2 10 #define SPACE7_FILL 254 #define SPACE7_CHUNK_DIM1 5 #define SPACE7_CHUNK_DIM2 5 #define SPACE7_NPOINTS 8 /* 4-D dataset with fixed dimensions */ #define SPACE8_NAME "Space8" #define SPACE8_RANK 4 #define SPACE8_DIM1 11 #define SPACE8_DIM2 13 #define SPACE8_DIM3 17 #define SPACE8_DIM4 19 /* Another 2-D dataset with easy dimension sizes */ #define SPACE9_RANK 2 #define SPACE9_DIM1 12 #define SPACE9_DIM2 12 /* Element selection information */ #define POINT1_NPOINTS 10 /* Chunked dataset information */ #define DATASETNAME "ChunkArray" #define NX_SUB 87 /* hyperslab dimensions */ #define NY_SUB 61 #define NZ_SUB 181 #define NX 87 /* output buffer dimensions */ #define NY 61 #define NZ 181 #define RANK_F 3 /* File dataspace rank */ #define RANK_M 3 /* Memory dataspace rank */ #define X 87 /* dataset dimensions */ #define Y 61 #define Z 181 #define CHUNK_X 87 /* chunk dimensions */ #define CHUNK_Y 61 #define CHUNK_Z 181 /* Basic chunk size */ #define SPACE10_DIM1 180 #define SPACE10_CHUNK_SIZE 12 /* Information for bounds checking test */ #define SPACE11_RANK 2 #define SPACE11_DIM1 100 #define SPACE11_DIM2 100 #define SPACE11_NPOINTS 4 /* Information for offsets w/chunks test #2 */ #define SPACE12_RANK 1 #define SPACE12_DIM0 25 #define SPACE12_CHUNK_DIM0 5 /* Information for Space rebuild test */ #define SPACERE1_RANK 1 #define SPACERE1_DIM0 20 #define SPACERE2_RANK 2 #define SPACERE2_DIM0 8 #define SPACERE2_DIM1 12 #define SPACERE3_RANK 3 #define SPACERE3_DIM0 8 #define SPACERE3_DIM1 12 #define SPACERE3_DIM2 8 #define SPACERE4_RANK 4 #define SPACERE4_DIM0 8 #define SPACERE4_DIM1 12 #define SPACERE4_DIM2 8 #define SPACERE4_DIM3 12 #define SPACERE5_RANK 5 #define SPACERE5_DIM0 8 #define SPACERE5_DIM1 12 #define SPACERE5_DIM2 8 #define SPACERE5_DIM3 12 #define SPACERE5_DIM4 8 /* Information for Space update diminfo test */ #define SPACEUD1_DIM0 20 #define SPACEUD3_DIM0 9 #define SPACEUD3_DIM1 12 #define SPACEUD3_DIM2 13 /* #defines for shape same / different rank tests */ #define SS_DR_MAX_RANK 5 /* Information for regular hyperslab query test */ #define SPACE13_RANK 3 #define SPACE13_DIM1 50 #define SPACE13_DIM2 50 #define SPACE13_DIM3 50 #define SPACE13_NPOINTS 4 /* Information for testing selection iterators */ #define SEL_ITER_MAX_SEQ 256 /* Defines for test_hyper_io_1d() */ #define DNAME "DSET_1D" #define RANK 1 #define NUMCHUNKS 3 #define CHUNKSZ 20 #define NUM_ELEMENTS NUMCHUNKS *CHUNKSZ /* Location comparison function */ static int compare_size_t(const void *s1, const void *s2); static herr_t test_select_hyper_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_point_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_all_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_none_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *_operator_data); static herr_t test_select_hyper_iter3(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); /**************************************************************** ** ** test_select_hyper_iter1(): Iterator for checking hyperslab iteration ** ****************************************************************/ static herr_t test_select_hyper_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, const hsize_t H5_ATTR_UNUSED *point, void *_operator_data) { uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */ **tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */ if (*tbuf != **tbuf2) return (-1); else { (*tbuf2)++; return (0); } } /* end test_select_hyper_iter1() */ /**************************************************************** ** ** test_select_hyper(): Test basic H5S (dataspace) selection code. ** Tests hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ H5S_class_t ext_type; /* Extent type */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Verify extent type */ ext_type = H5Sget_simple_extent_type(sid1); VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Test selecting stride==0 to verify failure */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 0; stride[1] = 0; stride[2] = 0; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sselect_hyperslab"); /* Test selecting stridebuf + (pnt_info->coord[pnt_info->offset][0] * SPACE2_DIM2) + pnt_info->coord[pnt_info->offset][1]; if (*elem != *tmp) return (-1); else { pnt_info->offset++; return (0); } } /* end test_select_point_iter1() */ /**************************************************************** ** ** test_select_point(): Test basic H5S (dataspace) selection code. ** Tests element selections between dataspaces of various sizes ** and dimensionalities. ** ****************************************************************/ static void test_select_point(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ hsize_t temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ hsize_t temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ struct pnt_iter pi; /* Custom Pointer iterator struct */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Element Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for write buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of ten points for disk dataset */ coord1[0][0] = 0; coord1[0][1] = 10; coord1[0][2] = 5; coord1[1][0] = 1; coord1[1][1] = 2; coord1[1][2] = 7; coord1[2][0] = 2; coord1[2][1] = 4; coord1[2][2] = 9; coord1[3][0] = 0; coord1[3][1] = 6; coord1[3][2] = 11; coord1[4][0] = 1; coord1[4][1] = 8; coord1[4][2] = 13; coord1[5][0] = 2; coord1[5][1] = 12; coord1[5][2] = 0; coord1[6][0] = 0; coord1[6][1] = 14; coord1[6][2] = 2; coord1[7][0] = 1; coord1[7][1] = 0; coord1[7][2] = 4; coord1[8][0] = 2; coord1[8][1] = 1; coord1[8][2] = 6; coord1[9][0] = 0; coord1[9][1] = 3; coord1[9][2] = 8; ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify correct elements selected */ H5Sget_select_elem_pointlist(sid1, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord1); for (i = 0; i < POINT1_NPOINTS; i++) { VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist"); } /* end for */ ret = (int)H5Sget_select_npoints(sid1); VERIFY(ret, 10, "H5Sget_select_npoints"); /* Append another sequence of ten points to disk dataset */ coord1[0][0] = 0; coord1[0][1] = 2; coord1[0][2] = 0; coord1[1][0] = 1; coord1[1][1] = 10; coord1[1][2] = 8; coord1[2][0] = 2; coord1[2][1] = 8; coord1[2][2] = 10; coord1[3][0] = 0; coord1[3][1] = 7; coord1[3][2] = 12; coord1[4][0] = 1; coord1[4][1] = 3; coord1[4][2] = 11; coord1[5][0] = 2; coord1[5][1] = 1; coord1[5][2] = 1; coord1[6][0] = 0; coord1[6][1] = 13; coord1[6][2] = 7; coord1[7][0] = 1; coord1[7][1] = 14; coord1[7][2] = 6; coord1[8][0] = 2; coord1[8][1] = 2; coord1[8][2] = 5; coord1[9][0] = 0; coord1[9][1] = 6; coord1[9][2] = 13; ret = H5Sselect_elements(sid1, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify correct elements selected */ H5Sget_select_elem_pointlist(sid1, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord1); for (i = 0; i < POINT1_NPOINTS; i++) { VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist"); } /* end for */ ret = (int)H5Sget_select_npoints(sid1); VERIFY(ret, 20, "H5Sget_select_npoints"); /* Select sequence of ten points for memory dataset */ coord2[0][0] = 12; coord2[0][1] = 3; coord2[1][0] = 15; coord2[1][1] = 13; coord2[2][0] = 7; coord2[2][1] = 25; coord2[3][0] = 0; coord2[3][1] = 6; coord2[4][0] = 13; coord2[4][1] = 0; coord2[5][0] = 24; coord2[5][1] = 11; coord2[6][0] = 12; coord2[6][1] = 21; coord2[7][0] = 29; coord2[7][1] = 4; coord2[8][0] = 8; coord2[8][1] = 8; coord2[9][0] = 19; coord2[9][1] = 17; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify correct elements selected */ H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2); for (i = 0; i < POINT1_NPOINTS; i++) { VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist"); } /* end for */ /* Save points for later iteration */ /* (these are in the second half of the buffer, because we are prepending */ /* the next list of points to the beginning of the point selection list) */ memcpy(((char *)pi.coord) + sizeof(coord2), coord2, sizeof(coord2)); ret = (int)H5Sget_select_npoints(sid2); VERIFY(ret, 10, "H5Sget_select_npoints"); /* Append another sequence of ten points to memory dataset */ coord2[0][0] = 24; coord2[0][1] = 0; coord2[1][0] = 2; coord2[1][1] = 25; coord2[2][0] = 13; coord2[2][1] = 17; coord2[3][0] = 8; coord2[3][1] = 3; coord2[4][0] = 29; coord2[4][1] = 4; coord2[5][0] = 11; coord2[5][1] = 14; coord2[6][0] = 5; coord2[6][1] = 22; coord2[7][0] = 12; coord2[7][1] = 2; coord2[8][0] = 21; coord2[8][1] = 12; coord2[9][0] = 9; coord2[9][1] = 18; ret = H5Sselect_elements(sid2, H5S_SELECT_PREPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify correct elements selected */ H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2); for (i = 0; i < POINT1_NPOINTS; i++) { VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist"); } /* end for */ ret = (int)H5Sget_select_npoints(sid2); VERIFY(ret, 20, "H5Sget_select_npoints"); /* Save points for later iteration */ memcpy(pi.coord, coord2, sizeof(coord2)); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of points for read dataset */ coord3[0][0] = 0; coord3[0][1] = 2; coord3[1][0] = 4; coord3[1][1] = 8; coord3[2][0] = 13; coord3[2][1] = 13; coord3[3][0] = 14; coord3[3][1] = 20; coord3[4][0] = 7; coord3[4][1] = 9; coord3[5][0] = 2; coord3[5][1] = 0; coord3[6][0] = 9; coord3[6][1] = 19; coord3[7][0] = 1; coord3[7][1] = 22; coord3[8][0] = 12; coord3[8][1] = 21; coord3[9][0] = 11; coord3[9][1] = 6; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify correct elements selected */ H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord3); for (i = 0; i < POINT1_NPOINTS; i++) { VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist"); } /* end for */ ret = (int)H5Sget_select_npoints(sid2); VERIFY(ret, 10, "H5Sget_select_npoints"); /* Append another sequence of ten points to disk dataset */ coord3[0][0] = 14; coord3[0][1] = 25; coord3[1][0] = 0; coord3[1][1] = 0; coord3[2][0] = 11; coord3[2][1] = 11; coord3[3][0] = 5; coord3[3][1] = 14; coord3[4][0] = 3; coord3[4][1] = 5; coord3[5][0] = 2; coord3[5][1] = 2; coord3[6][0] = 7; coord3[6][1] = 13; coord3[7][0] = 9; coord3[7][1] = 16; coord3[8][0] = 12; coord3[8][1] = 22; coord3[9][0] = 13; coord3[9][1] = 9; ret = H5Sselect_elements(sid2, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify correct elements selected */ H5Sget_select_elem_pointlist(sid2, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord3); for (i = 0; i < POINT1_NPOINTS; i++) { VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist"); VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist"); } /* end for */ ret = (int)H5Sget_select_npoints(sid2); VERIFY(ret, 20, "H5Sget_select_npoints"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Check that the values match with a dataset iterator */ pi.buf = wbuf; pi.offset = 0; ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_point_iter1, &pi); CHECK(ret, FAIL, "H5Diterate"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_point() */ /**************************************************************** ** ** test_select_all_iter1(): Iterator for checking all iteration ** ** ****************************************************************/ static herr_t test_select_all_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, const hsize_t H5_ATTR_UNUSED *point, void *_operator_data) { uint8_t *tbuf = (uint8_t *)_elem, /* temporary buffer pointer */ **tbuf2 = (uint8_t **)_operator_data; /* temporary buffer handle */ if (*tbuf != **tbuf2) return (-1); else { (*tbuf2)++; return (0); } } /* end test_select_all_iter1() */ /**************************************************************** ** ** test_select_none_iter1(): Iterator for checking none iteration ** (This is never supposed to be called, so it always returns -1) ** ****************************************************************/ static herr_t test_select_none_iter1(void H5_ATTR_UNUSED *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim, const hsize_t H5_ATTR_UNUSED *point, void H5_ATTR_UNUSED *_operator_data) { return (-1); } /* end test_select_none_iter1() */ /**************************************************************** ** ** test_select_all(): Test basic H5S (dataspace) selection code. ** Tests "all" selections. ** ****************************************************************/ static void test_select_all(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3}; uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j, k; /* Counters */ herr_t ret; /* Generic return value */ H5S_class_t ext_type; /* Extent type */ /* Output message about test being performed */ MESSAGE(5, ("Testing 'All' Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++) for (j = 0; j < SPACE4_DIM2; j++) for (k = 0; k < SPACE4_DIM3; k++) *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE4_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Verify extent type */ ext_type = H5Sget_simple_extent_type(sid1); VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Check that the values match with a dataset iterator */ tbuf = wbuf; ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid1, test_select_all_iter1, &tbuf); CHECK(ret, FAIL, "H5Diterate"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_all() */ /**************************************************************** ** ** test_select_all_hyper(): Test basic H5S (dataspace) selection code. ** Tests "all" and hyperslab selections. ** ****************************************************************/ static void test_select_all_hyper(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ H5S_class_t ext_type; /* Extent type */ /* Output message about test being performed */ MESSAGE(5, ("Testing 'All' Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE3_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Verify extent type */ ext_type = H5Sget_simple_extent_type(sid1); VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Select entire 15x26 extent for disk dataset */ ret = H5Sselect_all(sid1); CHECK(ret, FAIL, "H5Sselect_all"); /* Select 15x26 hyperslab for memory dataset */ start[0] = 15; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select no extent for disk dataset */ ret = H5Sselect_none(sid1); CHECK(ret, FAIL, "H5Sselect_none"); /* Read selection from disk (should fail with no selection defined) */ H5E_BEGIN_TRY { ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Dread"); /* Select entire 15x26 extent for disk dataset */ ret = H5Sselect_all(sid1); CHECK(ret, FAIL, "H5Sselect_all"); /* Read selection from disk (should work now) */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Check that the values match with a dataset iterator */ tbuf = wbuf + (15 * SPACE2_DIM2); ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_all_iter1, &tbuf); CHECK(ret, FAIL, "H5Diterate"); /* A quick check to make certain that iterating through a "none" selection works */ ret = H5Sselect_none(sid2); CHECK(ret, FAIL, "H5Sselect_none"); ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_none_iter1, &tbuf); CHECK(ret, FAIL, "H5Diterate"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_all_hyper() */ /**************************************************************** ** ** test_select_combo(): Test basic H5S (dataspace) selection code. ** Tests combinations of element and hyperslab selections between ** dataspaces of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_combo(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Combination of Hyperslab & Element Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for write buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of ten points for disk dataset */ coord1[0][0] = 0; coord1[0][1] = 10; coord1[0][2] = 5; coord1[1][0] = 1; coord1[1][1] = 2; coord1[1][2] = 7; coord1[2][0] = 2; coord1[2][1] = 4; coord1[2][2] = 9; coord1[3][0] = 0; coord1[3][1] = 6; coord1[3][2] = 11; coord1[4][0] = 1; coord1[4][1] = 8; coord1[4][2] = 13; coord1[5][0] = 2; coord1[5][1] = 12; coord1[5][2] = 0; coord1[6][0] = 0; coord1[6][1] = 14; coord1[6][2] = 2; coord1[7][0] = 1; coord1[7][1] = 0; coord1[7][2] = 4; coord1[8][0] = 2; coord1[8][1] = 1; coord1[8][2] = 6; coord1[9][0] = 0; coord1[9][1] = 3; coord1[9][2] = 8; ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Select 1x10 hyperslab for writing memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 10x1 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < POINT1_NPOINTS; i++) { tbuf = wbuf + i; tbuf2 = rbuf + (i * SPACE3_DIM2); if (*tbuf != *tbuf2) TestErrPrintf("element values don't match!, i=%d\n", i); } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_combo() */ static int compare_size_t(const void *s1, const void *s2) { if (*(const size_t *)s1 < *(const size_t *)s2) return (-1); else if (*(const size_t *)s1 > *(const size_t *)s2) return (1); else return (0); } /**************************************************************** ** ** test_select_hyper_stride(): Test H5S (dataspace) selection code. ** Tests strided hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper_stride(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ size_t loc1[72] = { /* Gruesomely ugly way to make certain hyperslab locations are checked correctly */ 27, 28, 29, 53, 54, 55, 79, 80, 81, /* Block #1 */ 32, 33, 34, 58, 59, 60, 84, 85, 86, /* Block #2 */ 157, 158, 159, 183, 184, 185, 209, 210, 211, /* Block #3 */ 162, 163, 164, 188, 189, 190, 214, 215, 216, /* Block #4 */ 287, 288, 289, 313, 314, 315, 339, 340, 341, /* Block #5 */ 292, 293, 294, 318, 319, 320, 344, 345, 346, /* Block #6 */ 417, 418, 419, 443, 444, 445, 469, 470, 471, /* Block #7 */ 422, 423, 424, 448, 449, 450, 474, 475, 476, /* Block #8 */ }; size_t loc2[72] = { 0, 1, 2, 26, 27, 28, /* Block #1 */ 4, 5, 6, 30, 31, 32, /* Block #2 */ 8, 9, 10, 34, 35, 36, /* Block #3 */ 12, 13, 14, 38, 39, 40, /* Block #4 */ 104, 105, 106, 130, 131, 132, /* Block #5 */ 108, 109, 110, 134, 135, 136, /* Block #6 */ 112, 113, 114, 138, 139, 140, /* Block #7 */ 116, 117, 118, 142, 143, 144, /* Block #8 */ 208, 209, 210, 234, 235, 236, /* Block #9 */ 212, 213, 214, 238, 239, 240, /* Block #10 */ 216, 217, 218, 242, 243, 244, /* Block #11 */ 220, 221, 222, 246, 247, 248, /* Block #12 */ }; int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */ start[0] = 0; start[1] = 0; start[2] = 0; stride[0] = 2; stride[1] = 4; stride[2] = 3; count[0] = 2; count[1] = 3; count[2] = 3; block[0] = 1; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */ start[0] = 1; start[1] = 1; stride[0] = 5; stride[1] = 5; count[0] = 4; count[1] = 2; block[0] = 3; block[1] = 3; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 4; stride[1] = 4; count[0] = 3; count[1] = 4; block[0] = 2; block[1] = 3; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Sort the locations into the proper order */ HDqsort(loc1, (size_t)72, sizeof(size_t), compare_size_t); HDqsort(loc2, (size_t)72, sizeof(size_t), compare_size_t); /* Compare data read with data written out */ for (i = 0; i < 72; i++) { tbuf = wbuf + loc1[i]; tbuf2 = rbuf + loc2[i]; if (*tbuf != *tbuf2) { printf("%d: hyperslab values don't match!, loc1[%d]=%d, loc2[%d]=%d\n", __LINE__, i, (int)loc1[i], i, (int)loc2[i]); printf("wbuf=%p, tbuf=%p, rbuf=%p, tbuf2=%p\n", (void *)wbuf, (void *)tbuf, (void *)rbuf, (void *)tbuf2); TestErrPrintf("*tbuf=%u, *tbuf2=%u\n", (unsigned)*tbuf, (unsigned)*tbuf2); } /* end if */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_stride() */ /**************************************************************** ** ** test_select_hyper_contig(): Test H5S (dataspace) selection code. ** Tests contiguous hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper_contig(hid_t dset_type, hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims2[] = {SPACE2_DIM2, SPACE2_DIM1}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Contiguous Hyperslabs Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 12x10 count with a stride of 1x3 & 3x3 block hyperslab for disk dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 3; count[0] = 12; count[1] = 10; block[0] = 1; block[1] = 3; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 4x5 count with a stride of 3x6 & 3x6 block hyperslab for memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 3; stride[1] = 6; count[0] = 4; count[1] = 5; block[0] = 3; block[1] = 6; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 6x5 count with a stride of 2x6 & 2x6 block hyperslab for disk dataset */ start[0] = 0; start[1] = 0; stride[0] = 2; stride[1] = 6; count[0] = 6; count[1] = 5; block[0] = 2; block[1] = 6; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 3x15 count with a stride of 4x2 & 4x2 block hyperslab for memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 4; stride[1] = 2; count[0] = 3; count[1] = 15; block[0] = 4; block[1] = 2; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ if (memcmp(rbuf, wbuf, sizeof(uint16_t) * 30 * 12) != 0) TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_contig() */ /**************************************************************** ** ** test_select_hyper_contig2(): Test H5S (dataspace) selection code. ** Tests more contiguous hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper_contig2(hid_t dset_type, hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1}; hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */ hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j, k, l; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing More Contiguous Hyperslabs Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4); CHECK_PTR(wbuf, "malloc"); rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE8_DIM1; i++) for (j = 0; j < SPACE8_DIM2; j++) for (k = 0; k < SPACE8_DIM3; k++) for (l = 0; l < SPACE8_DIM4; l++) *tbuf++ = (uint16_t)((i * SPACE8_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select contiguous hyperslab for disk dataset */ start[0] = 0; start[1] = 0; start[2] = 0; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select contiguous hyperslab in memory */ start[0] = 0; start[1] = 0; start[2] = 0; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select contiguous hyperslab in memory */ start[0] = 0; start[1] = 0; start[2] = 0; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select contiguous hyperslab in memory */ start[0] = 0; start[1] = 0; start[2] = 0; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ if (memcmp(rbuf, wbuf, sizeof(uint16_t) * 2 * SPACE8_DIM3 * SPACE8_DIM2 * SPACE8_DIM1) != 0) TestErrPrintf("Error: hyperslab values don't match!\n"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_contig2() */ /**************************************************************** ** ** test_select_hyper_contig3(): Test H5S (dataspace) selection code. ** Tests contiguous hyperslabs of various sizes and dimensionalities. ** This test uses a hyperslab that is contiguous in the lowest dimension, ** not contiguous in a dimension, then has a selection across the entire next ** dimension (which should be "flattened" out also). ** ****************************************************************/ static void test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1}; hsize_t start[SPACE8_RANK]; /* Starting location of hyperslab */ hsize_t count[SPACE8_RANK]; /* Element count of hyperslab */ uint16_t *wbuf, /* Buffer to write to disk */ *rbuf, /* Buffer read from disk */ *tbuf, *tbuf2; /* Temporary buffer pointers */ unsigned i, j, k, l; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Yet More Contiguous Hyperslabs Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4); CHECK_PTR(wbuf, "malloc"); rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE8_DIM4; i++) for (j = 0; j < SPACE8_DIM3; j++) for (k = 0; k < SPACE8_DIM2; k++) for (l = 0; l < SPACE8_DIM1; l++) *tbuf++ = (uint16_t)((k * SPACE8_DIM2) + l); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select semi-contiguous hyperslab for disk dataset */ start[0] = 0; start[1] = 0; start[2] = SPACE8_DIM2 / 2; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2 / 2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select semi-contiguous hyperslab in memory */ start[0] = 0; start[1] = 0; start[2] = SPACE8_DIM2 / 2; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2 / 2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select semi-contiguous hyperslab in memory */ start[0] = 0; start[1] = 0; start[2] = SPACE8_DIM2 / 2; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2 / 2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select semi-contiguous hyperslab in memory */ start[0] = 0; start[1] = 0; start[2] = SPACE8_DIM2 / 2; start[3] = 0; count[0] = 2; count[1] = SPACE8_DIM3; count[2] = SPACE8_DIM2 / 2; count[3] = SPACE8_DIM1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0, tbuf = wbuf, tbuf2 = rbuf; i < SPACE8_DIM4; i++) for (j = 0; j < SPACE8_DIM3; j++) for (k = 0; k < SPACE8_DIM2; k++) for (l = 0; l < SPACE8_DIM1; l++, tbuf++, tbuf2++) if ((i >= start[0] && i < (start[0] + count[0])) && (j >= start[1] && j < (start[1] + count[1])) && (k >= start[2] && k < (start[2] + count[2])) && (l >= start[3] && l < (start[3] + count[3]))) { if (*tbuf != *tbuf2) { printf("Error: hyperslab values don't match!\n"); TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__, i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2); } /* end if */ } /* end if */ else { if (*tbuf2 != 0) { printf("Error: invalid data in read buffer!\n"); TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__, i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2); } /* end if */ } /* end else */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_contig3() */ #if 0 /**************************************************************** ** ** verify_select_hyper_contig_dr__run_test(): Verify data from ** test_select_hyper_contig_dr__run_test() ** ****************************************************************/ static void verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, size_t cube_size, unsigned edge_size, unsigned cube_rank) { const uint16_t *cube_ptr; /* Pointer into the cube buffer */ uint16_t expected_value; /* Expected value in dataset */ unsigned i, j, k, l, m; /* Local index variables */ size_t s; /* Local index variable */ hbool_t mis_match; /* Flag to indicate mismatch in expected value */ assert(cube_buf); assert(cube_size > 0); expected_value = 0; mis_match = FALSE; cube_ptr = cube_buf; s = 0; i = 0; do { j = 0; do { k = 0; do { l = 0; do { m = 0; do { /* Sanity check */ assert(s < cube_size); /* Check for correct value */ if (*cube_ptr != expected_value) mis_match = TRUE; /* Advance to next element */ cube_ptr++; expected_value++; s++; m++; } while ((cube_rank > 0) && (m < edge_size)); l++; } while ((cube_rank > 1) && (l < edge_size)); k++; } while ((cube_rank > 2) && (k < edge_size)); j++; } while ((cube_rank > 3) && (j < edge_size)); i++; } while ((cube_rank > 4) && (i < edge_size)); if (mis_match) TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__); } /* verify_select_hyper_contig_dr__run_test() */ #endif #if 0 /**************************************************************** ** ** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace) ** selection code with contiguous source and target having ** different ranks but the same shape. We have already ** tested H5Sselect_shape_same in isolation, so now we try to do ** I/O. ** ****************************************************************/ static void test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf, unsigned edge_size, unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist) { hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */ hid_t fapl; /* File access property list */ hid_t fid1; /* File ID */ hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */ hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */ hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */ hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ hid_t small_cube_dataset; /* Dataset ID */ hid_t large_cube_dataset; /* Dataset ID */ size_t start_index; /* Offset within buffer to begin inspecting */ size_t stop_index; /* Offset within buffer to end inspecting */ uint16_t expected_value; /* Expected value in dataset */ uint16_t *small_cube_buf_1; /* Buffer for small cube data */ uint16_t *large_cube_buf_1; /* Buffer for large cube data */ uint16_t *ptr_1; /* Temporary pointer into cube data */ hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */ hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */ hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */ hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */ hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */ hsize_t *start_ptr; /* Actual hyperslab start offset */ hsize_t *stride_ptr; /* Actual hyperslab stride */ hsize_t *count_ptr; /* Actual hyperslab count */ hsize_t *block_ptr; /* Actual hyperslab block size */ size_t small_cube_size; /* Number of elements in small cube */ size_t large_cube_size; /* Number of elements in large cube */ unsigned u, v, w, x; /* Local index variables */ size_t s; /* Local index variable */ htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size, chunk_edge_size)); assert(edge_size >= 6); assert(edge_size >= chunk_edge_size); assert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); assert(small_rank > 0); assert(small_rank < large_rank); assert(large_rank <= SS_DR_MAX_RANK); /* Compute cube sizes */ small_cube_size = large_cube_size = (size_t)1; for (u = 0; u < large_rank; u++) { if (u < small_rank) small_cube_size *= (size_t)edge_size; large_cube_size *= (size_t)edge_size; } /* end for */ assert(large_cube_size < (size_t)UINT_MAX); /* set up the start, stride, count, and block pointers */ start_ptr = &(start[SS_DR_MAX_RANK - large_rank]); stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]); count_ptr = &(count[SS_DR_MAX_RANK - large_rank]); block_ptr = &(block[SS_DR_MAX_RANK - large_rank]); /* Allocate buffers */ small_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), small_cube_size); CHECK_PTR(small_cube_buf_1, "calloc"); large_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), large_cube_size); CHECK_PTR(large_cube_buf_1, "calloc"); /* Create a dataset transfer property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Use the 'core' VFD for this test */ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); CHECK(ret, FAIL, "H5Pset_fapl_core"); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); CHECK(fid1, FAIL, "H5Fcreate"); /* Close file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* setup dims: */ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size; /* Create small cube dataspaces */ small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(small_cube_sid, FAIL, "H5Screate_simple"); /* Create large cube dataspace */ mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); /* if chunk edge size is greater than zero, set up the small and * large data set creation property lists to specify chunked * datasets. */ if (chunk_edge_size > 0) { hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */ chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = (hsize_t)chunk_edge_size; small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); } /* end if */ /* create the small cube dataset */ small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default small dataset DCPL */ if (small_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(small_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* create the large cube dataset */ large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default large dataset DCPL */ if (large_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(large_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* write initial data to the on disk datasets */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read initial data from disk and verify that it is as expected. */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank); ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank); /* first, verify that we can read from disk correctly using selections * of different rank that H5Sselect_shape_same() views as being of the * same shape. * * Start by reading small_rank-D slice from the on disk large cube, and * verifying that the data read is correct. Verify that H5Sselect_shape_same() * returns true on the memory and file selections. */ /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ for (u = 0; u < SS_DR_MAX_RANK; u++) { start[u] = 0; stride[u] = 1; count[u] = 1; if ((SS_DR_MAX_RANK - u) > small_rank) block[u] = 1; else block[u] = (hsize_t)edge_size; } /* end for */ u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. */ check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Read selection from disk */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that expected data is retrieved */ mis_match = FALSE; ptr_1 = small_cube_buf_1; expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); for (s = 0; s < small_cube_size; s++) { if (*ptr_1 != expected_value) mis_match = TRUE; ptr_1++; expected_value++; } /* end for */ if (mis_match) TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__); x++; } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* similarly, read the on disk small cube into slices through the in memory * large cube, and verify that the correct data (and only the correct data) * is read. */ /* zero out the in-memory large cube */ memset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t)); u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. */ check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Read selection from disk */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was read. */ start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; assert(start_index < stop_index); assert(stop_index <= large_cube_size); mis_match = FALSE; ptr_1 = large_cube_buf_1; expected_value = 0; for (s = 0; s < start_index; s++) { if (*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ for (; s <= stop_index; s++) { if (*ptr_1 != expected_value) mis_match = TRUE; expected_value++; ptr_1++; } /* end for */ for (; s < large_cube_size; s++) { if (*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ if (mis_match) TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__); /* Zero out the buffer for the next pass */ memset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t)); x++; } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5Sselect_shape_same() views as being of the same shape. * * Start by writing small_rank D slices from the in memory large cube, to * the the on disk small cube dataset. After each write, read the small * cube dataset back from disk, and verify that it contains the expected * data. Verify that H5Sselect_shape_same() returns true on the * memory and file selections. */ u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ /* zero out the on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* select the portion of the in memory large cube from which we * are going to write data. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5Sselect_shape_same() reports the in * memory slice through the cube selection and the * on disk full small cube selections as having the same shape. */ check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* write the slice from the in memory large cube to the on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read the on disk small cube into memory */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that expected data is retrieved */ mis_match = FALSE; ptr_1 = small_cube_buf_1; expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); for (s = 0; s < small_cube_size; s++) { if (*ptr_1 != expected_value) mis_match = TRUE; expected_value++; ptr_1++; } /* end for */ if (mis_match) TestErrPrintf("small cube data don't match! Line=%d\n", __LINE__); x++; } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* Now write the contents of the in memory small cube to slices of * the on disk cube. After each write, read the on disk cube * into memory, and verify that it contains the expected * data. Verify that H5Sselect_shape_same() returns true on * the memory and file selections. */ /* select the entire memory and file cube dataspaces */ ret = H5Sselect_all(mem_large_cube_sid); CHECK(ret, FAIL, "H5Sselect_all"); ret = H5Sselect_all(file_large_cube_sid); CHECK(ret, FAIL, "H5Sselect_all"); u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ /* zero out the on disk cube */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, mem_large_cube_sid, file_large_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* select the portion of the in memory large cube to which we * are going to write data. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5Sselect_shape_same() reports the in * memory full selection of the small cube and the * on disk slice through the large cube selection * as having the same shape. */ check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* write the cube from memory to the target slice of the disk cube */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read the on disk cube into memory */ ret = H5Sselect_all(file_large_cube_sid); CHECK(ret, FAIL, "H5Sselect_all"); ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was read. */ start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; assert(start_index < stop_index); assert(stop_index <= large_cube_size); mis_match = FALSE; ptr_1 = large_cube_buf_1; expected_value = 0; for (s = 0; s < start_index; s++) { if (*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ for (; s <= stop_index; s++) { if (*ptr_1 != expected_value) mis_match = TRUE; expected_value++; ptr_1++; } /* end for */ for (; s < large_cube_size; s++) { if (*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ if (mis_match) TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); x++; } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* Close memory dataspaces */ ret = H5Sclose(small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mem_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(file_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close Datasets */ ret = H5Dclose(small_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Dclose(large_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(small_cube_buf_1); free(large_cube_buf_1); } /* test_select_hyper_contig_dr__run_test() */ #endif #if 0 /**************************************************************** ** ** test_select_hyper_contig_dr(): Test H5S (dataspace) ** selection code with contiguous source and target having ** different ranks but the same shape. We have already ** tested H5Sselect_shape_same in isolation, so now we try to do ** I/O. ** ****************************************************************/ static void test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist) { int test_num = 0; unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ unsigned small_rank; /* Current rank of small dataset */ unsigned large_rank; /* Current rank of large dataset */ uint16_t *cube_buf; /* Buffer for writing cube data */ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ uint16_t *cube_ptr; /* Temporary pointer into cube data */ unsigned max_rank = 5; /* Max. rank to use */ size_t max_cube_size; /* Max. number of elements in largest cube */ size_t s; /* Local index variable */ unsigned u; /* Local index variable */ /* Output message about test being performed */ MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n")); /* Compute max. cube size */ max_cube_size = (size_t)1; for (u = 0; u < max_rank; u++) max_cube_size *= (size_t)edge_size; /* Allocate cube buffer for writing values */ cube_buf = (uint16_t *)malloc(sizeof(uint16_t) * max_cube_size); CHECK_PTR(cube_buf, "malloc"); /* Initialize the cube buffer */ cube_ptr = cube_buf; for (s = 0; s < max_cube_size; s++) *cube_ptr++ = (uint16_t)s; /* Allocate cube buffer for zeroing values on disk */ zero_buf = (uint16_t *)calloc(sizeof(uint16_t), max_cube_size); CHECK_PTR(zero_buf, "calloc"); for (large_rank = 1; large_rank <= max_rank; large_rank++) { for (small_rank = 1; small_rank < large_rank; small_rank++) { chunk_edge_size = 0; test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; chunk_edge_size = 3; test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; } /* for loop on small rank */ } /* for loop on large rank */ free(cube_buf); free(zero_buf); } /* test_select_hyper_contig_dr() */ #endif /**************************************************************** ** ** test_select_hyper_checker_board_dr__select_checker_board(): ** Given an n-cube dataspace with each edge of length ** edge_size, and a checker_edge_size either select a checker ** board selection of the entire cube(if sel_rank == n), ** or select a checker board selection of a ** sel_rank dimensional slice through n-cube parallel to the ** sel_rank fastest changing indices, with origin (in the ** higher indices) as indicated by the start array. ** ** Note that this function, like all its relatives, is ** hard coded to presume a maximum n-cube rank of 5. ** While this maximum is declared as a constant, increasing ** it will require extensive coding in addition to changing ** the value of the constant. ** ** JRM -- 9/9/09 ** ****************************************************************/ #if 0 static void test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, unsigned tgt_n_cube_rank, unsigned edge_size, unsigned checker_edge_size, unsigned sel_rank, const hsize_t sel_start[]) { hbool_t first_selection = TRUE; unsigned n_cube_offset; unsigned sel_offset; hsize_t base_count; hsize_t offset_count; hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */ hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */ hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */ hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */ unsigned i, j, k, l, m; /* Local index variable */ unsigned u; /* Local index variables */ herr_t ret; /* Generic return value */ assert(edge_size >= 6); assert(0 < checker_edge_size); assert(checker_edge_size <= edge_size); assert(0 < sel_rank); assert(sel_rank <= tgt_n_cube_rank); assert(tgt_n_cube_rank <= SS_DR_MAX_RANK); sel_offset = SS_DR_MAX_RANK - sel_rank; n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank; assert(n_cube_offset <= sel_offset); /* First, compute the base count (which assumes start == 0 * for the associated offset) and offset_count (which * assumes start == checker_edge_size for the associated * offset). */ base_count = edge_size / (checker_edge_size * 2); if ((edge_size % (checker_edge_size * 2)) > 0) base_count++; offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2); if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) offset_count++; /* Now set up the stride and block arrays, and portions of the start * and count arrays that will not be altered during the selection of * the checker board. */ u = 0; while (u < n_cube_offset) { /* these values should never be used */ start[u] = 0; stride[u] = 0; count[u] = 0; block[u] = 0; u++; } /* end while */ while (u < sel_offset) { start[u] = sel_start[u]; stride[u] = 2 * edge_size; count[u] = 1; block[u] = 1; u++; } /* end while */ while (u < SS_DR_MAX_RANK) { stride[u] = 2 * checker_edge_size; block[u] = checker_edge_size; u++; } /* end while */ i = 0; do { if (0 >= sel_offset) { if (i == 0) { start[0] = 0; count[0] = base_count; } /* end if */ else { start[0] = checker_edge_size; count[0] = offset_count; } /* end else */ } /* end if */ j = 0; do { if (1 >= sel_offset) { if (j == 0) { start[1] = 0; count[1] = base_count; } /* end if */ else { start[1] = checker_edge_size; count[1] = offset_count; } /* end else */ } /* end if */ k = 0; do { if (2 >= sel_offset) { if (k == 0) { start[2] = 0; count[2] = base_count; } /* end if */ else { start[2] = checker_edge_size; count[2] = offset_count; } /* end else */ } /* end if */ l = 0; do { if (3 >= sel_offset) { if (l == 0) { start[3] = 0; count[3] = base_count; } /* end if */ else { start[3] = checker_edge_size; count[3] = offset_count; } /* end else */ } /* end if */ m = 0; do { if (4 >= sel_offset) { if (m == 0) { start[4] = 0; count[4] = base_count; } /* end if */ else { start[4] = checker_edge_size; count[4] = offset_count; } /* end else */ } /* end if */ if (((i + j + k + l + m) % 2) == 0) { if (first_selection) { first_selection = FALSE; ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_SET, &(start[n_cube_offset]), &(stride[n_cube_offset]), &(count[n_cube_offset]), &(block[n_cube_offset])); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end if */ else { ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_OR, &(start[n_cube_offset]), &(stride[n_cube_offset]), &(count[n_cube_offset]), &(block[n_cube_offset])); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end else */ } /* end if */ m++; } while ((m <= 1) && (4 >= sel_offset)); l++; } while ((l <= 1) && (3 >= sel_offset)); k++; } while ((k <= 1) && (2 >= sel_offset)); j++; } while ((j <= 1) && (1 >= sel_offset)); i++; } while ((i <= 1) && (0 >= sel_offset)); /* Weirdness alert: * * Some how, it seems that selections can extend beyond the * boundaries of the target dataspace -- hence the following * code to manually clip the selection back to the dataspace * proper. */ for (u = 0; u < SS_DR_MAX_RANK; u++) { start[u] = 0; stride[u] = edge_size; count[u] = 1; block[u] = edge_size; } /* end for */ ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* test_select_hyper_checker_board_dr__select_checker_board() */ #endif /**************************************************************** ** ** test_select_hyper_checker_board_dr__verify_data(): ** ** Examine the supplied buffer to see if it contains the ** expected data. Return TRUE if it does, and FALSE ** otherwise. ** ** The supplied buffer is presumed to contain the results ** of read or writing a checkerboard selection of an ** n-cube, or a checkerboard selection of an m (1 <= m < n) ** dimensional slice through an n-cube parallel to the ** fastest changing indices. ** ** It is further presumed that the buffer was zeroed before ** the read, and that the n-cube was initialize with the ** natural numbers listed in order from the origin along ** the fastest changing axis. ** ** Thus for a 10x10x10 3-cube, the value stored in location ** (x, y, z) (assuming that z is the fastest changing index ** and x the slowest) is assumed to be: ** ** (10 * 10 * x) + (10 * y) + z ** ** Thus, if the buffer contains the result of reading a ** checker board selection of a 10x10x10 3-cube, location ** (x, y, z) will contain zero if it is not in a checker, ** and 100x + 10y + z if (x, y, z) is in a checker. ** ** If the buffer contains the result of reading a 3 ** dimensional slice (parallel to the three fastest changing ** indices) through an n cube (n > 3), then the expected ** values in the buffer will be the same, save that we will ** add a constant determined by the origin of the 3-cube ** in the n-cube. ** ** Finally, the function presumes that the first element ** of the buffer resides either at the origin of either ** a selected or an unselected checker. ** ****************************************************************/ #if 0 H5_ATTR_PURE static hbool_t test_select_hyper_checker_board_dr__verify_data(uint16_t *buf_ptr, unsigned rank, unsigned edge_size, unsigned checker_edge_size, uint16_t first_expected_val, hbool_t buf_starts_in_checker) { hbool_t good_data = TRUE; hbool_t in_checker; hbool_t start_in_checker[5]; uint16_t expected_value; uint16_t *val_ptr; unsigned i, j, k, l, m; /* to track position in n-cube */ unsigned v, w, x, y, z; /* to track position in checker */ const unsigned test_max_rank = 5; /* code changes needed if this is increased */ assert(buf_ptr != NULL); assert(0 < rank); assert(rank <= test_max_rank); assert(edge_size >= 6); assert(0 < checker_edge_size); assert(checker_edge_size <= edge_size); assert(test_max_rank <= SS_DR_MAX_RANK); val_ptr = buf_ptr; expected_value = first_expected_val; i = 0; v = 0; start_in_checker[0] = buf_starts_in_checker; do { if (v >= checker_edge_size) { start_in_checker[0] = !start_in_checker[0]; v = 0; } /* end if */ j = 0; w = 0; start_in_checker[1] = start_in_checker[0]; do { if (w >= checker_edge_size) { start_in_checker[1] = !start_in_checker[1]; w = 0; } /* end if */ k = 0; x = 0; start_in_checker[2] = start_in_checker[1]; do { if (x >= checker_edge_size) { start_in_checker[2] = !start_in_checker[2]; x = 0; } /* end if */ l = 0; y = 0; start_in_checker[3] = start_in_checker[2]; do { if (y >= checker_edge_size) { start_in_checker[3] = !start_in_checker[3]; y = 0; } /* end if */ m = 0; z = 0; in_checker = start_in_checker[3]; do { if (z >= checker_edge_size) { in_checker = !in_checker; z = 0; } /* end if */ if (in_checker) { if (*val_ptr != expected_value) good_data = FALSE; } /* end if */ else { if (*val_ptr != 0) good_data = FALSE; } /* end else */ val_ptr++; expected_value++; m++; z++; } while ((rank >= (test_max_rank - 4)) && (m < edge_size)); l++; y++; } while ((rank >= (test_max_rank - 3)) && (l < edge_size)); k++; x++; } while ((rank >= (test_max_rank - 2)) && (k < edge_size)); j++; w++; } while ((rank >= (test_max_rank - 1)) && (j < edge_size)); i++; v++; } while ((rank >= test_max_rank) && (i < edge_size)); return (good_data); } /* test_select_hyper_checker_board_dr__verify_data() */ #endif /**************************************************************** ** ** test_select_hyper_checker_board_dr__run_test(): Test H5S ** (dataspace) selection code with checker board source and ** target selections having different ranks but the same ** shape. We have already tested H5Sselect_shape_same in ** isolation, so now we try to do I/O. ** ****************************************************************/ #if 0 static void test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf, unsigned edge_size, unsigned checker_edge_size, unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist) { hbool_t data_ok; hid_t fapl; /* File access property list */ hid_t fid; /* HDF5 File IDs */ hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */ hid_t mem_small_cube_sid; hid_t file_small_cube_sid; hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */ hid_t mem_large_cube_sid; hid_t file_large_cube_sid; hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ hid_t small_cube_dataset; /* Dataset ID */ hid_t large_cube_dataset; /* Dataset ID */ unsigned small_rank_offset; /* Rank offset of slice */ const unsigned test_max_rank = 5; /* must update code if this changes */ size_t start_index; /* Offset within buffer to begin inspecting */ size_t stop_index; /* Offset within buffer to end inspecting */ uint16_t expected_value; uint16_t *small_cube_buf_1; uint16_t *large_cube_buf_1; uint16_t *ptr_1; size_t small_cube_size; /* Number of elements in small cube */ size_t large_cube_size; /* Number of elements in large cube */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t chunk_dims[SS_DR_MAX_RANK]; hsize_t sel_start[SS_DR_MAX_RANK]; unsigned u, v, w, x; /* Local index variables */ size_t s; /* Local index variable */ htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n", small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size)); assert(edge_size >= 6); assert(checker_edge_size > 0); assert(checker_edge_size <= edge_size); assert(edge_size >= chunk_edge_size); assert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); assert(small_rank > 0); assert(small_rank < large_rank); assert(large_rank <= test_max_rank); assert(test_max_rank <= SS_DR_MAX_RANK); /* Compute cube sizes */ small_cube_size = large_cube_size = (size_t)1; for (u = 0; u < large_rank; u++) { if (u < small_rank) small_cube_size *= (size_t)edge_size; large_cube_size *= (size_t)edge_size; } /* end for */ assert(large_cube_size < (size_t)(UINT_MAX)); small_rank_offset = test_max_rank - small_rank; assert(small_rank_offset >= 1); /* also, at present, we use 16 bit values in this test -- * hence the following assertion. Delete it if we convert * to 32 bit values. */ assert(large_cube_size < (size_t)(64 * 1024)); /* Allocate & initialize buffers */ small_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), small_cube_size); CHECK_PTR(small_cube_buf_1, "calloc"); large_cube_buf_1 = (uint16_t *)calloc(sizeof(uint16_t), large_cube_size); CHECK_PTR(large_cube_buf_1, "calloc"); /* Create a dataset transfer property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Use the 'core' VFD for this test */ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); CHECK(ret, FAIL, "H5Pset_fapl_core"); /* Create file */ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); CHECK(fid, FAIL, "H5Fcreate"); /* Close file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* setup dims: */ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size; /* Create small cube dataspaces */ full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(full_small_cube_sid, FAIL, "H5Screate_simple"); mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple"); file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(file_small_cube_sid, FAIL, "H5Screate_simple"); /* Create large cube dataspace */ full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(full_large_cube_sid, FAIL, "H5Screate_simple"); mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); /* if chunk edge size is greater than zero, set up the small and * large data set creation property lists to specify chunked * datasets. */ if (chunk_edge_size > 0) { chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size; small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); } /* end if */ /* create the small cube dataset */ small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, file_small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default small dataset DCPL */ if (small_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(small_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* create the large cube dataset */ large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default large dataset DCPL */ if (large_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(large_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* write initial data to the on disk datasets */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read initial small cube data from disk and verify that it is as expected. */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank); /* read initial large cube data from disk and verify that it is as expected. */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank); /* first, verify that we can read from disk correctly using selections * of different rank that H5Sselect_shape_same() views as being of the * same shape. * * Start by reading small_rank-D slice from the on disk large cube, and * verifying that the data read is correct. Verify that H5Sselect_shape_same() * returns true on the memory and file selections. * * The first step is to set up the needed checker board selection in the * in memory small small cube */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); /* now read slices from the large, on-disk cube into the small cube. * Note how we adjust sel_start only in the dimensions peculiar to the * large cube. */ u = 0; do { if (small_rank_offset > 0) sel_start[0] = u; v = 0; do { if (small_rank_offset > 1) sel_start[1] = v; w = 0; do { if (small_rank_offset > 2) sel_start[2] = w; x = 0; do { if (small_rank_offset > 3) sel_start[3] = x; /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ assert((sel_start[0] == 0) || (0 < small_rank_offset)); assert((sel_start[1] == 0) || (1 < small_rank_offset)); assert((sel_start[2] == 0) || (2 < small_rank_offset)); assert((sel_start[3] == 0) || (3 < small_rank_offset)); assert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board( file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. */ check = H5Sselect_shape_same(mem_small_cube_sid, file_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* zero the buffer that we will be using for reading */ memset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); /* Read selection from disk */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid, file_large_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank, edge_size, checker_edge_size, expected_value, (hbool_t)TRUE); if (!data_ok) TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__); x++; } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* similarly, read the on disk small cube into slices through the in memory * large cube, and verify that the correct data (and only the correct data) * is read. */ /* select a checker board in the file small cube dataspace */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); u = 0; do { if (0 < small_rank_offset) sel_start[0] = u; v = 0; do { if (1 < small_rank_offset) sel_start[1] = v; w = 0; do { if (2 < small_rank_offset) sel_start[2] = w; x = 0; do { if (3 < small_rank_offset) sel_start[3] = x; /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ assert((sel_start[0] == 0) || (0 < small_rank_offset)); assert((sel_start[1] == 0) || (1 < small_rank_offset)); assert((sel_start[2] == 0) || (2 < small_rank_offset)); assert((sel_start[3] == 0) || (3 < small_rank_offset)); assert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board( mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. */ check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* zero out the in memory large cube */ memset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); /* Read selection from disk */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_small_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was read. */ data_ok = TRUE; ptr_1 = large_cube_buf_1; expected_value = 0; start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; assert(start_index < stop_index); assert(stop_index <= large_cube_size); /* verify that the large cube contains only zeros before the slice */ for (s = 0; s < start_index; s++) { if (*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ assert(s == start_index); data_ok &= test_select_hyper_checker_board_dr__verify_data( ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE); ptr_1 += small_cube_size; s += small_cube_size; assert(s == stop_index + 1); /* verify that the large cube contains only zeros after the slice */ for (s = stop_index + 1; s < large_cube_size; s++) { if (*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ if (!data_ok) TestErrPrintf("large cube read from small cube has bad data! Line=%d\n", __LINE__); x++; } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5Sselect_shape_same() views as being of the same shape. * * Start by writing small_rank D slices from the in memory large cube, to * the the on disk small cube dataset. After each write, read the small * cube dataset back from disk, and verify that it contains the expected * data. Verify that H5Sselect_shape_same() returns true on the * memory and file selections. */ /* select a checker board in the file small cube dataspace */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); u = 0; do { if (small_rank_offset > 0) sel_start[0] = u; v = 0; do { if (small_rank_offset > 1) sel_start[1] = v; w = 0; do { if (small_rank_offset > 2) sel_start[2] = w; x = 0; do { if (small_rank_offset > 3) sel_start[3] = x; /* zero out the on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ assert((sel_start[0] == 0) || (0 < small_rank_offset)); assert((sel_start[1] == 0) || (1 < small_rank_offset)); assert((sel_start[2] == 0) || (2 < small_rank_offset)); assert((sel_start[3] == 0) || (3 < small_rank_offset)); assert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board( mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. */ check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* write the slice from the in memory large cube to the * on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* zero the buffer that we will be using for reading */ memset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); /* read the on disk small cube into memory */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank, edge_size, checker_edge_size, expected_value, (hbool_t)TRUE); if (!data_ok) TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__); x++; } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* Now write checker board selections of the entries in memory * small cube to slices of the on disk cube. After each write, * read the on disk large cube * into memory, and verify that * it contains the expected * data. Verify that * H5Sselect_shape_same() returns true on the memory and file * selections. */ /* select a checker board in the in memory small cube dataspace */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); u = 0; do { if (small_rank_offset > 0) sel_start[0] = u; v = 0; do { if (small_rank_offset > 1) sel_start[1] = v; w = 0; do { if (small_rank_offset > 2) sel_start[2] = w; x = 0; do { if (small_rank_offset > 3) sel_start[3] = x; /* zero out the on disk cube */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, full_large_cube_sid, full_large_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ assert((sel_start[0] == 0) || (0 < small_rank_offset)); assert((sel_start[1] == 0) || (1 < small_rank_offset)); assert((sel_start[2] == 0) || (2 < small_rank_offset)); assert((sel_start[3] == 0) || (3 < small_rank_offset)); assert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board( file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start); /* verify that H5Sselect_shape_same() reports the two * selections as having the same shape. */ check = H5Sselect_shape_same(file_large_cube_sid, mem_small_cube_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* write the checker board selection of the in memory * small cube to a slice through the on disk large * cube. */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid, file_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* zero out the in memory large cube */ memset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); /* read the on disk large cube into memory */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was written to the on disk large * cube. */ data_ok = TRUE; ptr_1 = large_cube_buf_1; expected_value = 0; start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; assert(start_index < stop_index); assert(stop_index <= large_cube_size); /* verify that the large cube contains only zeros before the slice */ for (s = 0; s < start_index; s++) { if (*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ assert(s == start_index); /* verify that the slice contains the expected data */ data_ok &= test_select_hyper_checker_board_dr__verify_data( ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE); ptr_1 += small_cube_size; s += small_cube_size; assert(s == stop_index + 1); /* verify that the large cube contains only zeros after the slice */ for (s = stop_index + 1; s < large_cube_size; s++) { if (*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ if (!data_ok) TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); x++; } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* Close memory dataspaces */ ret = H5Sclose(full_small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(full_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mem_small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mem_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(file_small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(file_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close Datasets */ ret = H5Dclose(small_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Dclose(large_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(small_cube_buf_1); free(large_cube_buf_1); } /* test_select_hyper_checker_board_dr__run_test() */ #endif /**************************************************************** ** ** test_select_hyper_checker_board_dr(): Test H5S (dataspace) ** selection code with checkerboard source and target having ** different ranks but the same shape. We have already ** tested H5Sselect_shape_same in isolation, so now we try to do ** I/O. ** ** This is just an initial smoke check, so we will work ** with a slice through a cube only. ** ****************************************************************/ #if 0 static void test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist) { uint16_t *cube_buf; /* Buffer for writing cube data */ uint16_t *cube_ptr; /* Temporary pointer into cube data */ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ int test_num = 0; unsigned checker_edge_size = 2; /* Size of checkerboard dimension */ unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ unsigned small_rank; /* Current rank of small dataset */ unsigned large_rank; /* Current rank of large dataset */ unsigned max_rank = 5; /* Max. rank to use */ size_t max_cube_size; /* Max. number of elements in largest cube */ size_t s; /* Local index variable */ unsigned u; /* Local index variable */ /* Output message about test being performed */ MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n")); /* Compute max. cube size */ max_cube_size = (size_t)1; for (u = 0; u < max_rank; u++) max_cube_size *= (size_t)(edge_size + 1); /* Allocate cube buffer for writing values */ cube_buf = (uint16_t *)malloc(sizeof(uint16_t) * max_cube_size); CHECK_PTR(cube_buf, "malloc"); /* Initialize the cube buffer */ cube_ptr = cube_buf; for (s = 0; s < max_cube_size; s++) *cube_ptr++ = (uint16_t)s; /* Allocate cube buffer for zeroing values on disk */ zero_buf = (uint16_t *)calloc(sizeof(uint16_t), max_cube_size); CHECK_PTR(zero_buf, "calloc"); for (large_rank = 1; large_rank <= max_rank; large_rank++) { for (small_rank = 1; small_rank < large_rank; small_rank++) { chunk_edge_size = 0; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; chunk_edge_size = 3; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; } /* for loop on small rank */ } /* for loop on large rank */ free(cube_buf); free(zero_buf); } /* test_select_hyper_checker_board_dr() */ #endif /**************************************************************** ** ** test_select_hyper_copy(): Test H5S (dataspace) selection code. ** Tests copying hyperslab selections ** ****************************************************************/ static void test_select_hyper_copy(void) { hid_t fid1; /* HDF5 File IDs */ hid_t data1, data2; /* Dataset IDs */ hid_t sid1, sid2, sid3; /* Dataspace IDs */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* 1st buffer read from disk */ *rbuf2, /* 2nd buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); rbuf2 = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf2, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */ start[0] = 0; start[1] = 0; start[2] = 0; stride[0] = 2; stride[1] = 4; stride[2] = 3; count[0] = 2; count[1] = 3; count[2] = 3; block[0] = 1; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */ start[0] = 1; start[1] = 1; stride[0] = 5; stride[1] = 5; count[0] = 4; count[1] = 2; block[0] = 3; block[1] = 3; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Make a copy of the dataspace to write */ sid3 = H5Scopy(sid2); CHECK(sid3, FAIL, "H5Scopy"); /* Create a dataset */ data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(data1, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create another dataset */ data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(data2, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid3); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 4; stride[1] = 4; count[0] = 3; count[1] = 4; block[0] = 2; block[1] = 3; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Make a copy of the dataspace to read */ sid3 = H5Scopy(sid2); CHECK(sid3, FAIL, "H5Scopy"); /* Read selection from disk */ ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Read selection from disk */ ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ if (memcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0) TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close 2nd memory dataspace */ ret = H5Sclose(sid3); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(data1); CHECK(ret, FAIL, "H5Dclose"); /* Close Dataset */ ret = H5Dclose(data2); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); free(rbuf2); } /* test_select_hyper_copy() */ /**************************************************************** ** ** test_select_point_copy(): Test H5S (dataspace) selection code. ** Tests copying point selections ** ****************************************************************/ static void test_select_point_copy(void) { hid_t fid1; /* HDF5 File IDs */ hid_t data1, data2; /* Dataset IDs */ hid_t sid1, sid2, sid3; /* Dataspace IDs */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* 1st buffer read from disk */ *rbuf2, /* 2nd buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)malloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); rbuf2 = (uint16_t *)calloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf2, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of ten points for disk dataset */ coord1[0][0] = 0; coord1[0][1] = 10; coord1[0][2] = 5; coord1[1][0] = 1; coord1[1][1] = 2; coord1[1][2] = 7; coord1[2][0] = 2; coord1[2][1] = 4; coord1[2][2] = 9; coord1[3][0] = 0; coord1[3][1] = 6; coord1[3][2] = 11; coord1[4][0] = 1; coord1[4][1] = 8; coord1[4][2] = 13; coord1[5][0] = 2; coord1[5][1] = 12; coord1[5][2] = 0; coord1[6][0] = 0; coord1[6][1] = 14; coord1[6][2] = 2; coord1[7][0] = 1; coord1[7][1] = 0; coord1[7][2] = 4; coord1[8][0] = 2; coord1[8][1] = 1; coord1[8][2] = 6; coord1[9][0] = 0; coord1[9][1] = 3; coord1[9][2] = 8; ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Select sequence of ten points for write dataset */ coord2[0][0] = 12; coord2[0][1] = 3; coord2[1][0] = 15; coord2[1][1] = 13; coord2[2][0] = 7; coord2[2][1] = 25; coord2[3][0] = 0; coord2[3][1] = 6; coord2[4][0] = 13; coord2[4][1] = 0; coord2[5][0] = 24; coord2[5][1] = 11; coord2[6][0] = 12; coord2[6][1] = 21; coord2[7][0] = 29; coord2[7][1] = 4; coord2[8][0] = 8; coord2[8][1] = 8; coord2[9][0] = 19; coord2[9][1] = 17; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Make a copy of the dataspace to write */ sid3 = H5Scopy(sid2); CHECK(sid3, FAIL, "H5Scopy"); /* Create a dataset */ data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(data1, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create another dataset */ data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(data2, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid3); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of points for read dataset */ coord3[0][0] = 0; coord3[0][1] = 2; coord3[1][0] = 4; coord3[1][1] = 8; coord3[2][0] = 13; coord3[2][1] = 13; coord3[3][0] = 14; coord3[3][1] = 25; coord3[4][0] = 7; coord3[4][1] = 9; coord3[5][0] = 2; coord3[5][1] = 0; coord3[6][0] = 9; coord3[6][1] = 19; coord3[7][0] = 1; coord3[7][1] = 22; coord3[8][0] = 12; coord3[8][1] = 21; coord3[9][0] = 11; coord3[9][1] = 6; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); CHECK(ret, FAIL, "H5Sselect_elements"); /* Make a copy of the dataspace to read */ sid3 = H5Scopy(sid2); CHECK(sid3, FAIL, "H5Scopy"); /* Read selection from disk */ ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Read selection from disk */ ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ if (memcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2) != 0) TestErrPrintf("point values don't match!\n"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close 2nd memory dataspace */ ret = H5Sclose(sid3); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(data1); CHECK(ret, FAIL, "H5Dclose"); /* Close Dataset */ ret = H5Dclose(data2); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); free(rbuf2); } /* test_select_point_copy() */ /**************************************************************** ** ** test_select_hyper_offset(): Test basic H5S (dataspace) selection code. ** Tests hyperslabs of various sizes and dimensionalities with selection ** offsets. ** ****************************************************************/ static void test_select_hyper_offset(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ hssize_t offset[SPACE1_RANK]; /* Offset of selection */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ htri_t valid; /* Generic boolean return value */ H5S_class_t ext_type; /* Extent type */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with Offsets\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Verify extent type */ ext_type = H5Sget_simple_extent_type(sid1); VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Check a valid offset */ offset[0] = -1; offset[1] = 0; offset[2] = 0; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Check an invalid offset */ offset[0] = 10; offset[1] = 0; offset[2] = 0; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, FALSE, "H5Sselect_valid"); /* Reset offset */ offset[0] = 0; offset[1] = 0; offset[2] = 0; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Select 15x26 hyperslab for memory dataset */ start[0] = 15; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Choose a valid offset for the memory dataspace */ offset[0] = -10; offset[1] = 0; ret = H5Soffset_simple(sid2, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid2); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < SPACE3_DIM1; i++) { tbuf = wbuf + ((i + 5) * SPACE2_DIM2); tbuf2 = rbuf + (i * SPACE3_DIM2); for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n", __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_offset() */ /**************************************************************** ** ** test_select_hyper_offset2(): Test basic H5S (dataspace) selection code. ** Tests optimized hyperslab I/O with selection offsets. ** ****************************************************************/ static void test_select_hyper_offset2(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; hsize_t start[SPACE7_RANK]; /* Starting location of hyperslab */ hsize_t count[SPACE7_RANK]; /* Element count of hyperslab */ hssize_t offset[SPACE7_RANK]; /* Offset of selection */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ htri_t valid; /* Generic boolean return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing More Hyperslab Selection Functions with Offsets\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE7_DIM1 * SPACE7_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++) for (j = 0; j < SPACE7_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 4x10 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; count[0] = 4; count[1] = 10; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Set offset */ offset[0] = 1; offset[1] = 0; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Select 4x10 hyperslab for memory dataset */ start[0] = 1; start[1] = 0; count[0] = 4; count[1] = 10; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Choose a valid offset for the memory dataspace */ offset[0] = 2; offset[1] = 0; ret = H5Soffset_simple(sid2, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid2); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE7_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < 4; i++) { tbuf = wbuf + ((i + 3) * SPACE7_DIM2); tbuf2 = rbuf + ((i + 3) * SPACE7_DIM2); for (j = 0; j < SPACE7_DIM2; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n", __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_offset2() */ /**************************************************************** ** ** test_select_point_offset(): Test basic H5S (dataspace) selection code. ** Tests element selections between dataspaces of various sizes ** and dimensionalities with selection offsets. ** ****************************************************************/ static void test_select_point_offset(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ hssize_t offset[SPACE1_RANK]; /* Offset of selection */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ htri_t valid; /* Generic boolean return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Element Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for write buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of ten points for disk dataset */ coord1[0][0] = 0; coord1[0][1] = 10; coord1[0][2] = 5; coord1[1][0] = 1; coord1[1][1] = 2; coord1[1][2] = 7; coord1[2][0] = 2; coord1[2][1] = 4; coord1[2][2] = 9; coord1[3][0] = 0; coord1[3][1] = 6; coord1[3][2] = 11; coord1[4][0] = 1; coord1[4][1] = 8; coord1[4][2] = 12; coord1[5][0] = 2; coord1[5][1] = 12; coord1[5][2] = 0; coord1[6][0] = 0; coord1[6][1] = 14; coord1[6][2] = 2; coord1[7][0] = 1; coord1[7][1] = 0; coord1[7][2] = 4; coord1[8][0] = 2; coord1[8][1] = 1; coord1[8][2] = 6; coord1[9][0] = 0; coord1[9][1] = 3; coord1[9][2] = 8; ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Check a valid offset */ offset[0] = 0; offset[1] = 0; offset[2] = 1; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Check an invalid offset */ offset[0] = 10; offset[1] = 0; offset[2] = 0; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, FALSE, "H5Sselect_valid"); /* Reset offset */ offset[0] = 0; offset[1] = 0; offset[2] = 0; ret = H5Soffset_simple(sid1, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid1); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Select sequence of ten points for write dataset */ coord2[0][0] = 12; coord2[0][1] = 3; coord2[1][0] = 15; coord2[1][1] = 13; coord2[2][0] = 7; coord2[2][1] = 24; coord2[3][0] = 0; coord2[3][1] = 6; coord2[4][0] = 13; coord2[4][1] = 0; coord2[5][0] = 24; coord2[5][1] = 11; coord2[6][0] = 12; coord2[6][1] = 21; coord2[7][0] = 23; coord2[7][1] = 4; coord2[8][0] = 8; coord2[8][1] = 8; coord2[9][0] = 19; coord2[9][1] = 17; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Choose a valid offset for the memory dataspace */ offset[0] = 5; offset[1] = 1; ret = H5Soffset_simple(sid2, offset); CHECK(ret, FAIL, "H5Soffset_simple"); valid = H5Sselect_valid(sid2); VERIFY(valid, TRUE, "H5Sselect_valid"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select sequence of points for read dataset */ coord3[0][0] = 0; coord3[0][1] = 2; coord3[1][0] = 4; coord3[1][1] = 8; coord3[2][0] = 13; coord3[2][1] = 13; coord3[3][0] = 14; coord3[3][1] = 25; coord3[4][0] = 7; coord3[4][1] = 9; coord3[5][0] = 2; coord3[5][1] = 0; coord3[6][0] = 9; coord3[6][1] = 19; coord3[7][0] = 1; coord3[7][1] = 22; coord3[8][0] = 12; coord3[8][1] = 21; coord3[9][0] = 11; coord3[9][1] = 6; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3); CHECK(ret, FAIL, "H5Sselect_elements"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < POINT1_NPOINTS; i++) { tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1]; tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1]; if (*tbuf != *tbuf2) TestErrPrintf("element values don't match!, i=%d\n", i); } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_point_offset() */ /**************************************************************** ** ** test_select_hyper_union(): Test basic H5S (dataspace) selection code. ** Tests unions of hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper_union(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hid_t xfer; /* Dataset Transfer Property List ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ size_t begin[SPACE2_DIM1] = /* Offset within irregular block */ {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* First ten rows start at offset 0 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; /* Next eighteen rows start at offset 5 */ size_t len[SPACE2_DIM1] = /* Len of each row within irregular block */ {10, 10, 10, 10, 10, 10, 10, 10, /* First eight rows are 10 long */ 20, 20, /* Next two rows are 20 long */ 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; /* Next eighteen rows are 15 long */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Test simple case of one block overlapping another */ /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints"); /* Select 8x26 hyperslab for memory dataset */ start[0] = 15; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 8; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union overlapping 8x26 hyperslab for memory dataset (to form a 15x26 selection) */ start[0] = 22; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 8; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < SPACE3_DIM1; i++) { tbuf = wbuf + ((i + 15) * SPACE2_DIM2); tbuf2 = rbuf + (i * SPACE3_DIM2); for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Test simple case of several block overlapping another */ /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 8x15 hyperslab for memory dataset */ start[0] = 15; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 8; count[1] = 15; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union overlapping 8x15 hyperslab for memory dataset (to form a 15x15 selection) */ start[0] = 22; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 8; count[1] = 15; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union overlapping 15x15 hyperslab for memory dataset (to form a 15x26 selection) */ start[0] = 15; start[1] = 11; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 15; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < SPACE3_DIM1; i++) { tbuf = wbuf + ((i + 15) * SPACE2_DIM2); tbuf2 = rbuf + (i * SPACE3_DIM2); for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Test disjoint case of two non-overlapping blocks */ /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 7x26 hyperslab for memory dataset */ start[0] = 1; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 7; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */ start[0] = 22; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 8; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0; i < SPACE3_DIM1; i++) { /* Jump over gap in middle */ if (i < 7) tbuf = wbuf + ((i + 1) * SPACE2_DIM2); else tbuf = wbuf + ((i + 15) * SPACE2_DIM2); tbuf2 = rbuf + (i * SPACE3_DIM2); for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Test disjoint case of two non-overlapping blocks with hyperslab caching turned off */ /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 7x26 hyperslab for memory dataset */ start[0] = 1; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 7; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */ start[0] = 22; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 8; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); xfer = H5Pcreate(H5P_DATASET_XFER); CHECK(xfer, FAIL, "H5Pcreate"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Close transfer property list */ ret = H5Pclose(xfer); CHECK(ret, FAIL, "H5Pclose"); /* Compare data read with data written out */ for (i = 0; i < SPACE3_DIM1; i++) { /* Jump over gap in middle */ if (i < 7) tbuf = wbuf + ((i + 1) * SPACE2_DIM2); else tbuf = wbuf + ((i + 15) * SPACE2_DIM2); tbuf2 = rbuf + (i * SPACE3_DIM2); for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Test case of two blocks which overlap corners and must be split */ /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 10x10 hyperslab for memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */ start[0] = 8; start[1] = 5; stride[0] = 1; stride[1] = 1; count[0] = 20; count[1] = 15; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0, tbuf2 = rbuf; i < SPACE2_DIM1; i++) { tbuf = wbuf + (i * SPACE2_DIM2) + begin[i]; for (j = 0; j < (int)len[i]; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_union() */ /**************************************************************** ** ** test_select_hyper_union_stagger(): Test basic H5S (dataspace) selection code. ** Tests unions of staggered hyperslabs. (Uses H5Scombine_hyperslab ** and H5Smodify_select instead of H5Sselect_hyperslab) ** ****************************************************************/ static void test_select_hyper_union_stagger(void) { hid_t file_id; /* File ID */ hid_t dset_id; /* Dataset ID */ hid_t dataspace; /* File dataspace ID */ hid_t memspace; /* Memory dataspace ID */ hid_t tmp_space; /* Temporary dataspace ID */ hid_t tmp2_space; /* Another emporary dataspace ID */ hsize_t dimsm[2] = {7, 7}; /* Memory array dimensions */ hsize_t dimsf[2] = {6, 5}; /* File array dimensions */ hsize_t count[2] = {3, 1}; /* 1st Hyperslab size */ hsize_t count2[2] = {3, 1}; /* 2nd Hyperslab size */ hsize_t count3[2] = {2, 1}; /* 3rd Hyperslab size */ hsize_t start[2] = {0, 0}; /* 1st Hyperslab offset */ hsize_t start2[2] = {2, 1}; /* 2nd Hyperslab offset */ hsize_t start3[2] = {4, 2}; /* 3rd Hyperslab offset */ hsize_t count_out[2] = {4, 2}; /* Hyperslab size in memory */ hsize_t start_out[2] = {0, 3}; /* Hyperslab offset in memory */ int data[6][5]; /* Data to write */ int data_out[7][7]; /* Data read in */ int input_loc[8][2] = {{0, 0}, {1, 0}, {2, 0}, {2, 1}, {3, 1}, {4, 1}, {4, 2}, {5, 2}}; int output_loc[8][2] = {{0, 3}, {0, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 3}, {3, 4}}; int dsetrank = 2; /* File Dataset rank */ int memrank = 2; /* Memory Dataset rank */ int i, j; /* Local counting variables */ herr_t error; hsize_t stride[2] = {1, 1}; hsize_t block[2] = {1, 1}; /* Initialize data to write */ for (i = 0; i < 6; i++) for (j = 0; j < 5; j++) data[i][j] = j * 10 + i; /* Create file */ file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(file_id, FAIL, "H5Fcreate"); /* Create File Dataspace */ dataspace = H5Screate_simple(dsetrank, dimsf, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* Create File Dataset */ dset_id = H5Dcreate2(file_id, "IntArray", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dset_id, FAIL, "H5Dcreate2"); /* Write File Dataset */ error = H5Dwrite(dset_id, H5T_NATIVE_INT, dataspace, dataspace, H5P_DEFAULT, data); CHECK(error, FAIL, "H5Dwrite"); /* Close things */ error = H5Sclose(dataspace); CHECK(error, FAIL, "H5Sclose"); error = H5Dclose(dset_id); CHECK(error, FAIL, "H5Dclose"); error = H5Fclose(file_id); CHECK(error, FAIL, "H5Fclose"); /* Initialize input buffer */ memset(data_out, 0, 7 * 7 * sizeof(int)); /* Open file */ file_id = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK(file_id, FAIL, "H5Fopen"); /* Open dataset */ dset_id = H5Dopen2(file_id, "IntArray", H5P_DEFAULT); CHECK(dset_id, FAIL, "H5Dopen2"); /* Get the dataspace */ dataspace = H5Dget_space(dset_id); CHECK(dataspace, FAIL, "H5Dget_space"); /* Select the hyperslabs */ error = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); tmp_space = H5Scombine_hyperslab(dataspace, H5S_SELECT_OR, start2, stride, count2, block); CHECK(tmp_space, FAIL, "H5Scombine_hyperslab"); /* Copy the file dataspace and select hyperslab */ tmp2_space = H5Scopy(dataspace); CHECK(tmp2_space, FAIL, "H5Scopy"); error = H5Sselect_hyperslab(tmp2_space, H5S_SELECT_SET, start3, stride, count3, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Combine the copied dataspace with the temporary dataspace */ error = H5Smodify_select(tmp_space, H5S_SELECT_OR, tmp2_space); CHECK(error, FAIL, "H5Smodify_select"); /* Create Memory Dataspace */ memspace = H5Screate_simple(memrank, dimsm, NULL); CHECK(memspace, FAIL, "H5Screate_simple"); /* Select hyperslab in memory */ error = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, start_out, stride, count_out, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Read File Dataset */ error = H5Dread(dset_id, H5T_NATIVE_INT, memspace, tmp_space, H5P_DEFAULT, data_out); CHECK(error, FAIL, "H5Dread"); /* Verify input data */ for (i = 0; i < 8; i++) { if (data[input_loc[i][0]][input_loc[i][1]] != data_out[output_loc[i][0]][output_loc[i][1]]) { printf("input data #%d is wrong!\n", i); printf("input_loc=[%d][%d]\n", input_loc[i][0], input_loc[i][1]); printf("output_loc=[%d][%d]\n", output_loc[i][0], output_loc[i][1]); printf("data=%d\n", data[input_loc[i][0]][input_loc[i][1]]); TestErrPrintf("data_out=%d\n", data_out[output_loc[i][0]][output_loc[i][1]]); } /* end if */ } /* end for */ /* Close things */ error = H5Sclose(tmp2_space); CHECK(error, FAIL, "H5Sclose"); error = H5Sclose(tmp_space); CHECK(error, FAIL, "H5Sclose"); error = H5Sclose(dataspace); CHECK(error, FAIL, "H5Sclose"); error = H5Sclose(memspace); CHECK(error, FAIL, "H5Sclose"); error = H5Dclose(dset_id); CHECK(error, FAIL, "H5Dclose"); error = H5Fclose(file_id); CHECK(error, FAIL, "H5Fclose"); } /**************************************************************** ** ** test_select_hyper_union_3d(): Test basic H5S (dataspace) selection code. ** Tests unions of hyperslabs in 3-D (Uses H5Scombine_hyperslab ** and H5Scombine_select instead of H5Sselect_hyperslab) ** ****************************************************************/ static void test_select_hyper_union_3d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hid_t tmp_space; /* Temporary Dataspace ID */ hid_t tmp2_space; /* Another temporary Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ struct row_list { size_t z; size_t y; size_t x; size_t l; } rows[] = { /* Array of x,y,z coordinates & length for each row written from memory */ {0, 0, 0, 6}, /* 1st face of 3-D object */ {0, 1, 0, 6}, {0, 2, 0, 6}, {0, 3, 0, 6}, {0, 4, 0, 6}, {1, 0, 0, 6}, /* 2nd face of 3-D object */ {1, 1, 0, 6}, {1, 2, 0, 6}, {1, 3, 0, 6}, {1, 4, 0, 6}, {2, 0, 0, 6}, /* 3rd face of 3-D object */ {2, 1, 0, 10}, {2, 2, 0, 10}, {2, 3, 0, 10}, {2, 4, 0, 10}, {2, 5, 2, 8}, {2, 6, 2, 8}, {3, 0, 0, 6}, /* 4th face of 3-D object */ {3, 1, 0, 10}, {3, 2, 0, 10}, {3, 3, 0, 10}, {3, 4, 0, 10}, {3, 5, 2, 8}, {3, 6, 2, 8}, {4, 0, 0, 6}, /* 5th face of 3-D object */ {4, 1, 0, 10}, {4, 2, 0, 10}, {4, 3, 0, 10}, {4, 4, 0, 10}, {4, 5, 2, 8}, {4, 6, 2, 8}, {5, 1, 2, 8}, /* 6th face of 3-D object */ {5, 2, 2, 8}, {5, 3, 2, 8}, {5, 4, 2, 8}, {5, 5, 2, 8}, {5, 6, 2, 8}, {6, 1, 2, 8}, /* 7th face of 3-D object */ {6, 2, 2, 8}, {6, 3, 2, 8}, {6, 4, 2, 8}, {6, 5, 2, 8}, {6, 6, 2, 8}, {7, 1, 2, 8}, /* 8th face of 3-D object */ {7, 2, 2, 8}, {7, 3, 2, 8}, {7, 4, 2, 8}, {7, 5, 2, 8}, {7, 6, 2, 8}}; uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j, k; /* Counters */ herr_t ret; /* Generic return value */ hsize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of 3-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), SPACE3_DIM1 * SPACE3_DIM2); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++) for (j = 0; j < SPACE4_DIM2; j++) for (k = 0; k < SPACE4_DIM3; k++) *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Test case of two blocks which overlap corners and must be split */ /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE4_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 2x15x13 hyperslab for disk dataset */ start[0] = 1; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 2; count[1] = 15; count[2] = 13; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select 5x5x6 hyperslab for memory dataset */ start[0] = 0; start[1] = 0; start[2] = 0; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 5; count[1] = 5; count[2] = 6; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */ start[0] = 2; start[1] = 1; start[2] = 2; stride[0] = 1; stride[1] = 1; stride[2] = 1; count[0] = 6; count[1] = 6; count[2] = 8; block[0] = 1; block[1] = 1; block[2] = 1; tmp_space = H5Scombine_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(tmp_space, FAIL, "H5Sselect_hyperslab"); /* Combine dataspaces and create new dataspace */ tmp2_space = H5Scombine_select(sid2, H5S_SELECT_OR, tmp_space); CHECK(tmp2_space, FAIL, "H5Scombin_select"); npoints = (hsize_t)H5Sget_select_npoints(tmp2_space); VERIFY(npoints, 15 * 26, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, tmp2_space, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close temporary dataspaces */ ret = H5Sclose(tmp_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(tmp2_space); CHECK(ret, FAIL, "H5Sclose"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 15x26 hyperslab for reading memory dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 15; count[1] = 26; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Compare data read with data written out */ for (i = 0, tbuf2 = rbuf; i < (int)(sizeof(rows) / sizeof(struct row_list)); i++) { tbuf = wbuf + (rows[i].z * SPACE4_DIM3 * SPACE4_DIM2) + (rows[i].y * SPACE4_DIM3) + rows[i].x; for (j = 0; j < (int)rows[i].l; j++, tbuf++, tbuf2++) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); } /* end for */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_union_3d() */ /**************************************************************** ** ** test_select_hyper_valid_combination(): Tests invalid and valid ** combinations of selections on dataspace for H5Scombine_select ** and H5Smodify_select. ** ****************************************************************/ static void test_select_hyper_valid_combination(void) { hid_t single_pt_sid; /* Dataspace ID with single point selection */ hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */ hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */ hid_t non_existent_sid = -1; /* A non-existent space id */ hid_t tmp_sid; /* Temporary dataspace ID */ hsize_t dims2D[] = {SPACE9_DIM1, SPACE9_DIM2}; hsize_t dims3D[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3}; hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */ hsize_t start[SPACE4_RANK]; /* Hyperslab start */ hsize_t stride[SPACE4_RANK]; /* Hyperslab stride */ hsize_t count[SPACE4_RANK]; /* Hyperslab block count */ hsize_t block[SPACE4_RANK]; /* Hyperslab block size */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Selection Combination Validity\n")); assert(SPACE9_DIM2 >= POINT1_NPOINTS); /* Create dataspace for single point selection */ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL); CHECK(single_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord1[0][0] = 2; coord1[0][1] = 2; ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for single hyperslab selection */ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL); CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for single hyperslab selection */ start[0] = 1; start[1] = 1; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = (SPACE9_DIM1 - 2); block[1] = (SPACE9_DIM2 - 2); ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for regular hyperslab selection */ regular_hyper_sid = H5Screate_simple(SPACE4_RANK, dims3D, NULL); CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); /* Select regular, strided hyperslab selection */ start[0] = 2; start[1] = 2; start[2] = 2; stride[0] = 2; stride[1] = 2; stride[2] = 2; count[0] = 5; count[1] = 2; count[2] = 5; block[0] = 1; block[1] = 1; block[2] = 1; ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Test all the selections created */ /* Test the invalid combinations between point and hyperslab */ H5E_BEGIN_TRY { tmp_sid = H5Scombine_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Scombine_select"); H5E_BEGIN_TRY { tmp_sid = H5Smodify_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Smodify_select"); /* Test the invalid combination between two hyperslab but of different dimension size */ H5E_BEGIN_TRY { tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Scombine_select"); H5E_BEGIN_TRY { tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Smodify_select"); /* Test invalid operation inputs to the two functions */ H5E_BEGIN_TRY { tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Scombine_select"); H5E_BEGIN_TRY { tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Smodify_select"); /* Test inputs in case of non-existent space ids */ H5E_BEGIN_TRY { tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Scombine_select"); H5E_BEGIN_TRY { tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid); } H5E_END_TRY; VERIFY(tmp_sid, FAIL, "H5Smodify_select"); /* Close dataspaces */ ret = H5Sclose(single_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(regular_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_select_hyper_valid_combination() */ /**************************************************************** ** ** test_select_hyper_and_2d(): Test basic H5S (dataspace) selection code. ** Tests 'and' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_and_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for disk dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Intersect overlapping 10x10 hyperslab */ start[0] = 5; start[1] = 5; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); /* Select 25 hyperslab for memory dataset */ start[0] = 0; stride[0] = 1; count[0] = 25; block[0] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 5 * 5, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Read entire dataset from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Initialize write buffer */ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { if ((i >= 5 && i <= 9) && (j >= 5 && j <= 9)) { if (*tbuf != *tbuf2) printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); tbuf2++; } /* end if */ else { if (*tbuf != 0) printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, (int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_and_2d() */ /**************************************************************** ** ** test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code. ** Tests 'xor' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_xor_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for disk dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Intersect overlapping 10x10 hyperslab */ start[0] = 5; start[1] = 5; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_XOR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); VERIFY(npoints, 150, "H5Sget_select_npoints"); /* Select 25 hyperslab for memory dataset */ start[0] = 0; stride[0] = 1; count[0] = 150; block[0] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 150, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Read entire dataset from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Initialize write buffer */ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || ((i >= 5 && i <= 9) && ((j >= 0 && j <= 4) || (j >= 10 && j <= 14))) || ((i >= 10 && i <= 14) && (j >= 5 && j <= 14))) { if (*tbuf != *tbuf2) printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); tbuf2++; } /* end if */ else { if (*tbuf != 0) printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, (int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_xor_2d() */ /**************************************************************** ** ** test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code. ** Tests 'notb' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_notb_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for disk dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Intersect overlapping 10x10 hyperslab */ start[0] = 5; start[1] = 5; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTB, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); VERIFY(npoints, 75, "H5Sget_select_npoints"); /* Select 75 hyperslab for memory dataset */ start[0] = 0; stride[0] = 1; count[0] = 75; block[0] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 75, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Read entire dataset from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Initialize write buffer */ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || ((i >= 5 && i <= 9) && (j >= 0 && j <= 4))) { if (*tbuf != *tbuf2) printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); tbuf2++; } /* end if */ else { if (*tbuf != 0) printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, (int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_notb_2d() */ /**************************************************************** ** ** test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code. ** Tests 'nota' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_nota_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for disk dataset */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Intersect overlapping 10x10 hyperslab */ start[0] = 5; start[1] = 5; stride[0] = 1; stride[1] = 1; count[0] = 10; count[1] = 10; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTA, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid1); VERIFY(npoints, 75, "H5Sget_select_npoints"); /* Select 75 hyperslab for memory dataset */ start[0] = 0; stride[0] = 1; count[0] = 75; block[0] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints = H5Sget_select_npoints(sid2); VERIFY(npoints, 75, "H5Sget_select_npoints"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write selection to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Read entire dataset from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Initialize write buffer */ for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++) for (j = 0; j < SPACE2_DIM2; j++, tbuf++) { if (((i >= 10 && i <= 14) && (j >= 5 && j <= 14)) || ((i >= 5 && i <= 9) && (j >= 10 && j <= 14))) { if (*tbuf != *tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__, i, j, (int)*tbuf, (int)*tbuf2); tbuf2++; } /* end if */ else { if (*tbuf != 0) TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j, (int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_nota_2d() */ /**************************************************************** ** ** test_select_hyper_iter2(): Iterator for checking hyperslab iteration ** ****************************************************************/ static herr_t test_select_hyper_iter2(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data) { int *tbuf = (int *)_elem, /* temporary buffer pointer */ **tbuf2 = (int **)_operator_data; /* temporary buffer handle */ unsigned u; /* Local counting variable */ if (*tbuf != **tbuf2) { TestErrPrintf("Error in hyperslab iteration!\n"); printf("location: { "); for (u = 0; u < ndim; u++) { printf("%2d", (int)point[u]); if (u < (ndim - 1)) printf(", "); } /* end for */ printf("}\n"); printf("*tbuf=%d, **tbuf2=%d\n", *tbuf, **tbuf2); return (-1); } /* end if */ else { (*tbuf2)++; return (0); } } /* end test_select_hyper_iter2() */ /**************************************************************** ** ** test_select_hyper_union_random_5d(): Test basic H5S (dataspace) selection code. ** Tests random unions of 5-D hyperslabs ** ****************************************************************/ static void test_select_hyper_union_random_5d(hid_t read_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE5_DIM1, SPACE5_DIM2, SPACE5_DIM3, SPACE5_DIM4, SPACE5_DIM5}; hsize_t dims2[] = {SPACE6_DIM1}; hsize_t start[SPACE5_RANK]; /* Starting location of hyperslab */ hsize_t count[SPACE5_RANK]; /* Element count of hyperslab */ int *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i, j, k, l, m; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints, /* Number of elements in file selection */ npoints2; /* Number of elements in memory selection */ unsigned seed; /* Random number seed for each test */ unsigned test_num; /* Count of tests being executed */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with random unions of 5-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (int *)malloc(sizeof(int) * SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5); CHECK_PTR(wbuf, "malloc"); rbuf = (int *)calloc(sizeof(int), (size_t)(SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5)); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE5_DIM1; i++) for (j = 0; j < SPACE5_DIM2; j++) for (k = 0; k < SPACE5_DIM3; k++) for (l = 0; l < SPACE5_DIM4; l++) for (m = 0; m < SPACE5_DIM5; m++) *tbuf++ = (int)(((((((i * SPACE5_DIM2) + j) * SPACE5_DIM3) + k) * SPACE5_DIM4) + l) * SPACE5_DIM5) + m; /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE5_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create a dataset */ dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write entire dataset to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Create dataspace for reading buffer */ sid2 = H5Screate_simple(SPACE6_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Get initial random # seed */ seed = (unsigned)HDtime(NULL) + (unsigned)HDclock(); /* Crunch through a bunch of random hyperslab reads from the file dataset */ for (test_num = 0; test_num < NRAND_HYPER; test_num++) { /* Save random # seed for later use */ /* (Used in case of errors, to regenerate the hyperslab sequence) */ seed += (unsigned)HDclock(); HDsrandom(seed); for (i = 0; i < NHYPERSLABS; i++) { /* Select random hyperslab location & size for selection */ for (j = 0; j < SPACE5_RANK; j++) { start[j] = ((hsize_t)HDrandom() % dims1[j]); count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1); } /* end for */ /* Select hyperslab */ ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if (ret < 0) { TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed); break; } /* end if */ } /* end for */ /* Get the number of elements selected */ npoints = H5Sget_select_npoints(sid1); CHECK(npoints, 0, "H5Sget_select_npoints"); /* Select linear 1-D hyperslab for memory dataset */ start[0] = 0; count[0] = (hsize_t)npoints; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); npoints2 = H5Sget_select_npoints(sid2); VERIFY(npoints, npoints2, "H5Sget_select_npoints"); /* Read selection from disk */ ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, read_plist, rbuf); CHECK(ret, FAIL, "H5Dread"); if (ret < 0) { TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed); break; } /* end if */ /* Compare data read with data written out */ tbuf = rbuf; ret = H5Diterate(wbuf, H5T_NATIVE_INT, sid1, test_select_hyper_iter2, &tbuf); if (ret < 0) { TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed); break; } /* end if */ /* Set the read buffer back to all zeroes */ memset(rbuf, 0, (size_t)SPACE6_DIM1); } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_union_random_5d() */ /**************************************************************** ** ** test_select_hyper_chunk(): Test basic H5S (dataspace) selection code. ** Tests large hyperslab selection in chunked dataset ** ****************************************************************/ static void test_select_hyper_chunk(hid_t fapl_plist, hid_t xfer_plist) { hsize_t dimsf[3]; /* dataset dimensions */ hsize_t chunk_dimsf[3] = {CHUNK_X, CHUNK_Y, CHUNK_Z}; /* chunk sizes */ short *data; /* data to write */ short *tmpdata; /* data to write */ /* * Data and output buffer initialization. */ hid_t file, dataset; /* handles */ hid_t dataspace; hid_t memspace; hid_t plist; hsize_t dimsm[3]; /* memory space dimensions */ hsize_t dims_out[3]; /* dataset dimensions */ herr_t status; short *data_out; /* output buffer */ short *tmpdata_out; /* output buffer */ hsize_t count[3]; /* size of the hyperslab in the file */ hsize_t offset[3]; /* hyperslab offset in the file */ hsize_t count_out[3]; /* size of the hyperslab in memory */ hsize_t offset_out[3]; /* hyperslab offset in memory */ int i, j, k, status_n, rank; /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab I/O on Large Chunks\n")); /* Allocate the transfer buffers */ data = (short *)malloc(sizeof(short) * X * Y * Z); CHECK_PTR(data, "malloc"); data_out = (short *)calloc((size_t)(NX * NY * NZ), sizeof(short)); CHECK_PTR(data_out, "calloc"); /* * Data buffer initialization. */ tmpdata = data; for (j = 0; j < X; j++) for (i = 0; i < Y; i++) for (k = 0; k < Z; k++) *tmpdata++ = (short)((k + 1) % 256); /* * Create a new file using H5F_ACC_TRUNC access, * the default file creation properties, and the default file * access properties. */ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_plist); CHECK(file, FAIL, "H5Fcreate"); /* * Describe the size of the array and create the dataspace for fixed * size dataset. */ dimsf[0] = X; dimsf[1] = Y; dimsf[2] = Z; dataspace = H5Screate_simple(RANK_F, dimsf, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* * Create a new dataset within the file using defined dataspace and * chunking properties. */ plist = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist, FAIL, "H5Pcreate"); status = H5Pset_chunk(plist, RANK_F, chunk_dimsf); CHECK(status, FAIL, "H5Pset_chunk"); dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* * Define hyperslab in the dataset. */ offset[0] = 0; offset[1] = 0; offset[2] = 0; count[0] = NX_SUB; count[1] = NY_SUB; count[2] = NZ_SUB; status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL); CHECK(status, FAIL, "H5Sselect_hyperslab"); /* * Define the memory dataspace. */ dimsm[0] = NX; dimsm[1] = NY; dimsm[2] = NZ; memspace = H5Screate_simple(RANK_M, dimsm, NULL); CHECK(memspace, FAIL, "H5Screate_simple"); /* * Define memory hyperslab. */ offset_out[0] = 0; offset_out[1] = 0; offset_out[2] = 0; count_out[0] = NX_SUB; count_out[1] = NY_SUB; count_out[2] = NZ_SUB; status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL); CHECK(status, FAIL, "H5Sselect_hyperslab"); /* * Write the data to the dataset using hyperslabs */ status = H5Dwrite(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data); CHECK(status, FAIL, "H5Dwrite"); /* * Close/release resources. */ status = H5Pclose(plist); CHECK(status, FAIL, "H5Pclose"); status = H5Sclose(dataspace); CHECK(status, FAIL, "H5Sclose"); status = H5Sclose(memspace); CHECK(status, FAIL, "H5Sclose"); status = H5Dclose(dataset); CHECK(status, FAIL, "H5Dclose"); status = H5Fclose(file); CHECK(status, FAIL, "H5Fclose"); /************************************************************* This reads the hyperslab from the test.h5 file just created, into a 3-dimensional plane of the 3-dimensional array. ************************************************************/ /* * Open the file and the dataset. */ file = H5Fopen(FILENAME, H5F_ACC_RDONLY, fapl_plist); CHECK(file, FAIL, "H5Fopen"); dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dopen2"); dataspace = H5Dget_space(dataset); /* dataspace handle */ CHECK(dataspace, FAIL, "H5Dget_space"); rank = H5Sget_simple_extent_ndims(dataspace); VERIFY(rank, 3, "H5Sget_simple_extent_ndims"); status_n = H5Sget_simple_extent_dims(dataspace, dims_out, NULL); CHECK(status_n, FAIL, "H5Sget_simple_extent_dims"); VERIFY(dims_out[0], dimsf[0], "Dataset dimensions"); VERIFY(dims_out[1], dimsf[1], "Dataset dimensions"); VERIFY(dims_out[2], dimsf[2], "Dataset dimensions"); /* * Define hyperslab in the dataset. */ offset[0] = 0; offset[1] = 0; offset[2] = 0; count[0] = NX_SUB; count[1] = NY_SUB; count[2] = NZ_SUB; status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL); CHECK(status, FAIL, "H5Sselect_hyperslab"); /* * Define the memory dataspace. */ dimsm[0] = NX; dimsm[1] = NY; dimsm[2] = NZ; memspace = H5Screate_simple(RANK_M, dimsm, NULL); CHECK(memspace, FAIL, "H5Screate_simple"); /* * Define memory hyperslab. */ offset_out[0] = 0; offset_out[1] = 0; offset_out[2] = 0; count_out[0] = NX_SUB; count_out[1] = NY_SUB; count_out[2] = NZ_SUB; status = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL); CHECK(status, FAIL, "H5Sselect_hyperslab"); /* * Read data from hyperslab in the file into the hyperslab in * memory and display. */ status = H5Dread(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data_out); CHECK(status, FAIL, "H5Dread"); /* Compare data written with data read in */ tmpdata = data; tmpdata_out = data_out; for (j = 0; j < X; j++) for (i = 0; i < Y; i++) for (k = 0; k < Z; k++, tmpdata++, tmpdata_out++) { if (*tmpdata != *tmpdata_out) TestErrPrintf("Line %d: Error! j=%d, i=%d, k=%d, *tmpdata=%x, *tmpdata_out=%x\n", __LINE__, j, i, k, (unsigned)*tmpdata, (unsigned)*tmpdata_out); } /* end for */ /* * Close and release resources. */ status = H5Dclose(dataset); CHECK(status, FAIL, "H5Dclose"); status = H5Sclose(dataspace); CHECK(status, FAIL, "H5Sclose"); status = H5Sclose(memspace); CHECK(status, FAIL, "H5Sclose"); status = H5Fclose(file); CHECK(status, FAIL, "H5Fclose"); free(data); free(data_out); } /* test_select_hyper_chunk() */ /**************************************************************** ** ** test_select_point_chunk(): Test basic H5S (dataspace) selection code. ** Tests combinations of hyperslab and point selections on ** chunked datasets. ** ****************************************************************/ static void test_select_point_chunk(void) { hsize_t dimsf[SPACE7_RANK]; /* dataset dimensions */ hsize_t chunk_dimsf[SPACE7_RANK] = {SPACE7_CHUNK_DIM1, SPACE7_CHUNK_DIM2}; /* chunk sizes */ unsigned *data; /* data to write */ unsigned *tmpdata; /* data to write */ /* * Data and output buffer initialization. */ hid_t file, dataset; /* handles */ hid_t dataspace; hid_t pnt1_space; /* Dataspace to hold 1st point selection */ hid_t pnt2_space; /* Dataspace to hold 2nd point selection */ hid_t hyp1_space; /* Dataspace to hold 1st hyperslab selection */ hid_t hyp2_space; /* Dataspace to hold 2nd hyperslab selection */ hid_t dcpl; herr_t ret; /* Generic return value */ unsigned *data_out; /* output buffer */ hsize_t start[SPACE7_RANK]; /* hyperslab offset */ hsize_t count[SPACE7_RANK]; /* size of the hyperslab */ hsize_t points[SPACE7_NPOINTS][SPACE7_RANK]; /* points for selection */ unsigned i, j; /* Local index variables */ /* Output message about test being performed */ MESSAGE(5, ("Testing Point Selections on Chunked Datasets\n")); /* Allocate the transfer buffers */ data = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(data, "malloc"); data_out = (unsigned *)calloc((size_t)(SPACE7_DIM1 * SPACE7_DIM2), sizeof(unsigned)); CHECK_PTR(data_out, "calloc"); /* * Data buffer initialization. */ tmpdata = data; for (i = 0; i < SPACE7_DIM1; i++) for (j = 0; j < SPACE7_DIM1; j++) *tmpdata++ = ((i * SPACE7_DIM2) + j) % 256; /* * Create a new file using H5F_ACC_TRUNC access, * the default file creation properties and file * access properties. */ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(file, FAIL, "H5Fcreate"); /* Create file dataspace */ dimsf[0] = SPACE7_DIM1; dimsf[1] = SPACE7_DIM2; dataspace = H5Screate_simple(SPACE7_RANK, dimsf, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* * Create a new dataset within the file using defined dataspace and * chunking properties. */ dcpl = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl, FAIL, "H5Pcreate"); ret = H5Pset_chunk(dcpl, SPACE7_RANK, chunk_dimsf); CHECK(ret, FAIL, "H5Pset_chunk"); dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Create 1st point selection */ pnt1_space = H5Scopy(dataspace); CHECK(pnt1_space, FAIL, "H5Scopy"); points[0][0] = 3; points[0][1] = 3; points[1][0] = 3; points[1][1] = 8; points[2][0] = 8; points[2][1] = 3; points[3][0] = 8; points[3][1] = 8; points[4][0] = 1; /* In same chunk as point #0, but "earlier" in chunk */ points[4][1] = 1; points[5][0] = 1; /* In same chunk as point #1, but "earlier" in chunk */ points[5][1] = 6; points[6][0] = 6; /* In same chunk as point #2, but "earlier" in chunk */ points[6][1] = 1; points[7][0] = 6; /* In same chunk as point #3, but "earlier" in chunk */ points[7][1] = 6; ret = H5Sselect_elements(pnt1_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create 1st hyperslab selection */ hyp1_space = H5Scopy(dataspace); CHECK(hyp1_space, FAIL, "H5Scopy"); start[0] = 2; start[1] = 2; count[0] = 4; count[1] = 2; ret = H5Sselect_hyperslab(hyp1_space, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Write out data using 1st point selection for file & hyperslab for memory */ ret = H5Dwrite(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data); CHECK(ret, FAIL, "H5Dwrite"); /* Create 2nd point selection */ pnt2_space = H5Scopy(dataspace); CHECK(pnt2_space, FAIL, "H5Scopy"); points[0][0] = 4; points[0][1] = 4; points[1][0] = 4; points[1][1] = 9; points[2][0] = 9; points[2][1] = 4; points[3][0] = 9; points[3][1] = 9; points[4][0] = 2; /* In same chunk as point #0, but "earlier" in chunk */ points[4][1] = 2; points[5][0] = 2; /* In same chunk as point #1, but "earlier" in chunk */ points[5][1] = 7; points[6][0] = 7; /* In same chunk as point #2, but "earlier" in chunk */ points[6][1] = 2; points[7][0] = 7; /* In same chunk as point #3, but "earlier" in chunk */ points[7][1] = 7; ret = H5Sselect_elements(pnt2_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create 2nd hyperslab selection */ hyp2_space = H5Scopy(dataspace); CHECK(hyp2_space, FAIL, "H5Scopy"); start[0] = 2; start[1] = 4; count[0] = 4; count[1] = 2; ret = H5Sselect_hyperslab(hyp2_space, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Write out data using 2nd hyperslab selection for file & point for memory */ ret = H5Dwrite(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data); CHECK(ret, FAIL, "H5Dwrite"); /* Close everything (except selections) */ ret = H5Pclose(dcpl); CHECK(ret, FAIL, "H5Pclose"); ret = H5Sclose(dataspace); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Fclose(file); CHECK(ret, FAIL, "H5Fclose"); /* Re-open file & dataset */ file = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK(file, FAIL, "H5Fopen"); dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dopen2"); /* Read data using 1st point selection for file and hyperslab for memory */ ret = H5Dread(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data_out); CHECK(ret, FAIL, "H5Dread"); /* Verify data (later) */ /* Read data using 2nd hyperslab selection for file and point for memory */ ret = H5Dread(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data_out); CHECK(ret, FAIL, "H5Dread"); /* Verify data (later) */ /* Close everything (including selections) */ ret = H5Sclose(pnt1_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(pnt2_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(hyp1_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(hyp2_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Fclose(file); CHECK(ret, FAIL, "H5Fclose"); free(data); free(data_out); } /* test_select_point_chunk() */ /**************************************************************** ** ** test_select_sclar_chunk(): Test basic H5S (dataspace) selection code. ** Tests using a scalar dataspace (in memory) to access chunked datasets. ** ****************************************************************/ static void test_select_scalar_chunk(void) { hid_t file_id; /* File ID */ hid_t dcpl; /* Dataset creation property list */ hid_t dsid; /* Dataset ID */ hid_t sid; /* Dataspace ID */ hid_t m_sid; /* Memory dataspace */ hsize_t dims[] = {2}; /* Dataset dimensions */ hsize_t maxdims[] = {H5S_UNLIMITED}; /* Dataset maximum dimensions */ hsize_t offset[] = {0}; /* Hyperslab start */ hsize_t count[] = {1}; /* Hyperslab count */ unsigned data = 2; /* Data to write */ herr_t ret; /* Output message about test being performed */ MESSAGE(5, ("Testing Scalar Dataspaces and Chunked Datasets\n")); file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(file_id, FAIL, "H5Fcreate"); dcpl = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl, FAIL, "H5Pcreate"); dims[0] = 1024U; ret = H5Pset_chunk(dcpl, 1, dims); CHECK(ret, FAIL, "H5Pset_chunk"); /* Create 1-D dataspace */ sid = H5Screate_simple(1, dims, maxdims); CHECK(sid, FAIL, "H5Screate_simple"); dsid = H5Dcreate2(file_id, "dset", H5T_NATIVE_UINT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); CHECK(dsid, FAIL, "H5Dcreate2"); /* Select scalar area (offset 0, count 1) */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create scalar memory dataspace */ m_sid = H5Screate(H5S_SCALAR); CHECK(m_sid, FAIL, "H5Screate"); /* Write out data using scalar dataspace for memory dataspace */ ret = H5Dwrite(dsid, H5T_NATIVE_UINT, m_sid, sid, H5P_DEFAULT, &data); CHECK(ret, FAIL, "H5Dwrite"); /* Close resources */ ret = H5Sclose(m_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(dsid); CHECK(ret, FAIL, "H5Dclose"); ret = H5Pclose(dcpl); CHECK(ret, FAIL, "H5Pclose"); ret = H5Fclose(file_id); CHECK(ret, FAIL, "H5Fclose"); } /* test_select_scalar_chunk() */ /**************************************************************** ** ** test_select_valid(): Test basic H5S (dataspace) selection code. ** Tests selection validity ** ****************************************************************/ static void test_select_valid(void) { herr_t error; htri_t valid; hid_t main_space, sub_space; hsize_t safe_start[2] = {1, 1}; hsize_t safe_count[2] = {1, 1}; hsize_t start[2]; hsize_t dims[2], maxdims[2], size[2], count[2]; /* Output message about test being performed */ MESSAGE(5, ("Testing Selection Validity\n")); MESSAGE(8, ("Case 1 : sub_space is not a valid dataspace\n")); dims[0] = dims[1] = H5S_UNLIMITED; H5E_BEGIN_TRY { sub_space = H5Screate_simple(2, dims, NULL); } H5E_END_TRY; VERIFY(sub_space, FAIL, "H5Screate_simple"); H5E_BEGIN_TRY { valid = H5Sselect_valid(sub_space); } H5E_END_TRY; VERIFY(valid, FAIL, "H5Sselect_valid"); /* Set arrays and dataspace for the rest of the cases */ count[0] = count[1] = 1; dims[0] = dims[1] = maxdims[0] = maxdims[1] = 10; main_space = H5Screate_simple(2, dims, maxdims); CHECK(main_space, FAIL, "H5Screate_simple"); MESSAGE(8, ("Case 2 : sub_space is a valid but closed dataspace\n")); sub_space = H5Scopy(main_space); CHECK(sub_space, FAIL, "H5Scopy"); error = H5Sclose(sub_space); CHECK(error, FAIL, "H5Sclose"); H5E_BEGIN_TRY { valid = H5Sselect_valid(sub_space); } H5E_END_TRY; VERIFY(valid, FAIL, "H5Sselect_valid"); MESSAGE(8, ("Case 3 : in the dimensions\nTry offset (4,4) and size(6,6), the original space is of size " "(10,10)\n")); start[0] = start[1] = 4; size[0] = size[1] = 6; sub_space = H5Scopy(main_space); CHECK(sub_space, FAIL, "H5Scopy"); error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size); CHECK(error, FAIL, "H5Sselect_hyperslab"); valid = H5Sselect_valid(sub_space); VERIFY(valid, TRUE, "H5Sselect_valid"); error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL); CHECK(error, FAIL, "H5Sselect_hyperslab"); valid = H5Sselect_valid(sub_space); VERIFY(valid, TRUE, "H5Sselect_valid"); error = H5Sclose(sub_space); CHECK(error, FAIL, "H5Sclose"); MESSAGE(8, ("Case 4 : exceed dimensions by 1\nTry offset (5,5) and size(6,6), the original space is of " "size (10,10)\n")); start[0] = start[1] = 5; size[0] = size[1] = 6; sub_space = H5Scopy(main_space); CHECK(sub_space, FAIL, "H5Scopy"); error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size); CHECK(error, FAIL, "H5Sselect_hyperslab"); valid = H5Sselect_valid(sub_space); VERIFY(valid, FALSE, "H5Sselect_valid"); error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL); CHECK(error, FAIL, "H5Sselect_hyperslab"); valid = H5Sselect_valid(sub_space); VERIFY(valid, FALSE, "H5Sselect_valid"); error = H5Sclose(sub_space); CHECK(error, FAIL, "H5Sclose"); MESSAGE(8, ("Case 5 : exceed dimensions by 2\nTry offset (6,6) and size(6,6), the original space is of " "size (10,10)\n")); start[0] = start[1] = 6; size[0] = size[1] = 6; sub_space = H5Scopy(main_space); CHECK(sub_space, FAIL, "H5Scopy"); error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size); CHECK(error, FAIL, "H5Sselect_hyperslab"); valid = H5Sselect_valid(sub_space); VERIFY(valid, FALSE, "H5Sselect_valid"); error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL); CHECK(error, FAIL, "H5Sselect_hyperslab"); valid = H5Sselect_valid(sub_space); VERIFY(valid, FALSE, "H5Sselect_valid"); error = H5Sclose(sub_space); CHECK(error, FAIL, "H5Sclose"); error = H5Sclose(main_space); CHECK(error, FAIL, "H5Sclose"); } /* test_select_valid() */ /**************************************************************** ** ** test_select_combine(): Test basic H5S (dataspace) selection code. ** Tests combining "all" and "none" selections with hyperslab ** operations. ** ****************************************************************/ static void test_select_combine(void) { hid_t base_id; /* Base dataspace for test */ hid_t all_id; /* Dataspace for "all" selection */ hid_t none_id; /* Dataspace for "none" selection */ hid_t space1; /* Temporary dataspace #1 */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t stride[SPACE7_RANK]; /* Hyperslab stride */ hsize_t count[SPACE7_RANK]; /* Hyperslab count */ hsize_t block[SPACE7_RANK]; /* Hyperslab block */ hsize_t dims[SPACE7_RANK] = {SPACE7_DIM1, SPACE7_DIM2}; /* Dimensions of dataspace */ H5S_sel_type sel_type; /* Selection type */ hssize_t nblocks; /* Number of hyperslab blocks */ hsize_t blocks[16][2][SPACE7_RANK]; /* List of blocks */ herr_t error; /* Output message about test being performed */ MESSAGE(5, ("Testing Selection Combinations\n")); /* Create dataspace for dataset on disk */ base_id = H5Screate_simple(SPACE7_RANK, dims, NULL); CHECK(base_id, FAIL, "H5Screate_simple"); /* Copy base dataspace and set selection to "all" */ all_id = H5Scopy(base_id); CHECK(all_id, FAIL, "H5Scopy"); error = H5Sselect_all(all_id); CHECK(error, FAIL, "H5Sselect_all"); sel_type = H5Sget_select_type(all_id); VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); /* Copy base dataspace and set selection to "none" */ none_id = H5Scopy(base_id); CHECK(none_id, FAIL, "H5Scopy"); error = H5Sselect_none(none_id); CHECK(error, FAIL, "H5Sselect_none"); sel_type = H5Sget_select_type(none_id); VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); /* Copy "all" selection & space */ space1 = H5Scopy(all_id); CHECK(space1, FAIL, "H5Scopy"); /* 'OR' "all" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that it's still "all" selection */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "all" selection & space */ space1 = H5Scopy(all_id); CHECK(space1, FAIL, "H5Scopy"); /* 'AND' "all" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the same at the original block */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify that there is only one block */ nblocks = H5Sget_select_hyper_nblocks(space1); VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); /* Retrieve the block defined */ memset(blocks, -1, sizeof(blocks)); /* Reset block list */ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify that the correct block is defined */ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "all" selection & space */ space1 = H5Scopy(all_id); CHECK(space1, FAIL, "H5Scopy"); /* 'XOR' "all" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is an inversion of the original block */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify that there are two blocks */ nblocks = H5Sget_select_hyper_nblocks(space1); VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks"); /* Retrieve the block defined */ memset(blocks, -1, sizeof(blocks)); /* Reset block list */ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify that the correct block is defined */ VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "all" selection & space */ space1 = H5Scopy(all_id); CHECK(space1, FAIL, "H5Scopy"); /* 'NOTB' "all" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is an inversion of the original block */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify that there are two blocks */ nblocks = H5Sget_select_hyper_nblocks(space1); VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks"); /* Retrieve the block defined */ memset(blocks, -1, sizeof(blocks)); /* Reset block list */ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify that the correct block is defined */ VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist"); VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "all" selection & space */ space1 = H5Scopy(all_id); CHECK(space1, FAIL, "H5Scopy"); /* 'NOTA' "all" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the "none" selection */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "none" selection & space */ space1 = H5Scopy(none_id); CHECK(space1, FAIL, "H5Scopy"); /* 'OR' "none" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the same as the original hyperslab */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify that there is only one block */ nblocks = H5Sget_select_hyper_nblocks(space1); VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); /* Retrieve the block defined */ memset(blocks, -1, sizeof(blocks)); /* Reset block list */ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify that the correct block is defined */ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "none" selection & space */ space1 = H5Scopy(none_id); CHECK(space1, FAIL, "H5Scopy"); /* 'AND' "none" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the "none" selection */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "none" selection & space */ space1 = H5Scopy(none_id); CHECK(space1, FAIL, "H5Scopy"); /* 'XOR' "none" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the same as the original hyperslab */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify that there is only one block */ nblocks = H5Sget_select_hyper_nblocks(space1); VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); /* Retrieve the block defined */ memset(blocks, -1, sizeof(blocks)); /* Reset block list */ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify that the correct block is defined */ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "none" selection & space */ space1 = H5Scopy(none_id); CHECK(space1, FAIL, "H5Scopy"); /* 'NOTB' "none" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the "none" selection */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Copy "none" selection & space */ space1 = H5Scopy(none_id); CHECK(space1, FAIL, "H5Scopy"); /* 'NOTA' "none" selection with another hyperslab */ start[0] = start[1] = 0; stride[0] = stride[1] = 1; count[0] = count[1] = 1; block[0] = block[1] = 5; error = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block); CHECK(error, FAIL, "H5Sselect_hyperslab"); /* Verify that the new selection is the same as the original hyperslab */ sel_type = H5Sget_select_type(space1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify that there is only one block */ nblocks = H5Sget_select_hyper_nblocks(space1); VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks"); /* Retrieve the block defined */ memset(blocks, -1, sizeof(blocks)); /* Reset block list */ error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks); CHECK(error, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify that the correct block is defined */ VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist"); VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist"); /* Close temporary dataspace */ error = H5Sclose(space1); CHECK(error, FAIL, "H5Sclose"); /* Close dataspaces */ error = H5Sclose(base_id); CHECK(error, FAIL, "H5Sclose"); error = H5Sclose(all_id); CHECK(error, FAIL, "H5Sclose"); error = H5Sclose(none_id); CHECK(error, FAIL, "H5Sclose"); } /* test_select_combine() */ /* * Typedef for iteration structure used in the fill value tests */ typedef struct { unsigned short fill_value; /* The fill value to check */ size_t curr_coord; /* Current coordinate to examine */ hsize_t *coords; /* Pointer to selection's coordinates */ } fill_iter_info; /**************************************************************** ** ** test_select_hyper_iter3(): Iterator for checking hyperslab iteration ** ****************************************************************/ static herr_t test_select_hyper_iter3(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data) { unsigned *tbuf = (unsigned *)_elem; /* temporary buffer pointer */ fill_iter_info *iter_info = (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */ hsize_t *coord_ptr; /* Pointer to the coordinate information for a point*/ /* Check value in current buffer location */ if (*tbuf != iter_info->fill_value) return (-1); else { /* Check number of dimensions */ if (ndim != SPACE7_RANK) return (-1); else { /* Check Coordinates */ coord_ptr = iter_info->coords + (2 * iter_info->curr_coord); iter_info->curr_coord++; if (coord_ptr[0] != point[0]) return (-1); else if (coord_ptr[1] != point[1]) return (-1); else return (0); } /* end else */ } /* end else */ } /* end test_select_hyper_iter3() */ /**************************************************************** ** ** test_select_fill_all(): Test basic H5S (dataspace) selection code. ** Tests filling "all" selections ** ****************************************************************/ static void test_select_fill_all(void) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; unsigned fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ hsize_t points[SPACE7_DIM1 * SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'all' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); /* Initialize memory buffer */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Space defaults to "all" selection */ /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) if (*tbuf != fill_value) TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value); /* Set the coordinates of the selection */ for (u = 0; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) { points[(u * SPACE7_DIM2) + v][0] = u; points[(u * SPACE7_DIM2) + v][1] = v; } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ free(wbuf); } /* test_select_fill_all() */ /**************************************************************** ** ** test_select_fill_point(): Test basic H5S (dataspace) selection code. ** Tests filling "point" selections ** ****************************************************************/ static void test_select_fill_point(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t points[5][SPACE7_RANK] = {{2, 4}, {3, 8}, {8, 4}, {7, 5}, {7, 7}}; size_t num_points = 5; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'point' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); /* Initialize memory buffer */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "point" selection */ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points); CHECK(ret, FAIL, "H5Sselect_elements"); if (offset != NULL) { memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { for (w = 0; w < (unsigned)num_points; w++) { if (u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) && v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) { if (*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Add in the offset */ for (u = 0; u < (unsigned)num_points; u++) { points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]); points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ free(wbuf); } /* test_select_fill_point() */ /**************************************************************** ** ** test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code. ** Tests filling "simple" (i.e. one block) hyperslab selections ** ****************************************************************/ static void test_select_fill_hyper_simple(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t count[SPACE7_RANK]; /* Hyperslab block size */ size_t num_points; /* Number of points in selection */ hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); /* Initialize memory buffer */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ start[0] = 3; start[1] = 3; count[0] = 4; count[1] = 4; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if (offset != NULL) { memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { if ((u >= (unsigned)((hssize_t)start[0] + real_offset[0]) && u < (unsigned)((hssize_t)(start[0] + count[0]) + real_offset[0])) && (v >= (unsigned)((hssize_t)start[1] + real_offset[1]) && v < (unsigned)((hssize_t)(start[1] + count[1]) + real_offset[1]))) { if (*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); } /* end if */ else { if (*tbuf != ((unsigned)(u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end else */ } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Set the coordinates of the selection (with the offset) */ for (u = 0, num_points = 0; u < (unsigned)count[0]; u++) for (v = 0; v < (unsigned)count[1]; v++, num_points++) { points[num_points][0] = (hsize_t)((hssize_t)(u + start[0]) + real_offset[0]); points[num_points][1] = (hsize_t)((hssize_t)(v + start[1]) + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ free(wbuf); } /* test_select_fill_hyper_simple() */ /**************************************************************** ** ** test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code. ** Tests filling "regular" (i.e. strided block) hyperslab selections ** ****************************************************************/ static void test_select_fill_hyper_regular(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t stride[SPACE7_RANK]; /* Hyperslab stride size */ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ hsize_t block[SPACE7_RANK]; /* Hyperslab block size */ hsize_t points[16][SPACE7_RANK] = { {2, 2}, {2, 3}, {2, 6}, {2, 7}, {3, 2}, {3, 3}, {3, 6}, {3, 7}, {6, 2}, {6, 3}, {6, 6}, {6, 7}, {7, 2}, {7, 3}, {7, 6}, {7, 7}, }; size_t num_points = 16; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); /* Initialize memory buffer */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ start[0] = 2; start[1] = 2; stride[0] = 4; stride[1] = 4; count[0] = 2; count[1] = 2; block[0] = 2; block[1] = 2; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if (offset != NULL) { memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { for (w = 0; w < (unsigned)num_points; w++) { if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) && v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) { if (*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Add in the offset */ for (u = 0; u < (unsigned)num_points; u++) { points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]); points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ free(wbuf); } /* test_select_fill_hyper_regular() */ /**************************************************************** ** ** test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code. ** Tests filling "irregular" (i.e. combined blocks) hyperslab selections ** ****************************************************************/ static void test_select_fill_hyper_irregular(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ hsize_t points[32][SPACE7_RANK] = { /* Yes, some of the are duplicated.. */ {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 4}, {5, 5}, {5, 6}, {5, 7}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7}, }; hsize_t iter_points[28][SPACE7_RANK] = { /* Coordinates, as iterated through */ {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {5, 7}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7}, }; size_t num_points = 32; /* Number of points selected */ size_t num_iter_points = 28; /* Number of resulting points */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)malloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); /* Initialize memory buffer */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select first "hyperslab" selection */ start[0] = 2; start[1] = 2; count[0] = 4; count[1] = 4; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Combine with second "hyperslab" selection */ start[0] = 4; start[1] = 4; count[0] = 4; count[1] = 4; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if (offset != NULL) { memcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else memset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for (v = 0; v < SPACE7_DIM2; v++, tbuf++) { for (w = 0; w < (unsigned)num_points; w++) { if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) && v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) { if (*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)iter_points; /* Add in the offset */ for (u = 0; u < (unsigned)num_iter_points; u++) { iter_points[u][0] = (hsize_t)((hssize_t)iter_points[u][0] + real_offset[0]); iter_points[u][1] = (hsize_t)((hssize_t)iter_points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ free(wbuf); } /* test_select_fill_hyper_irregular() */ /**************************************************************** ** ** test_select_none(): Test basic H5S (dataspace) selection code. ** Tests I/O on 0-sized point selections ** ****************************************************************/ static void test_select_none(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer to read from disk */ *tbuf; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing I/O on 0-sized Selections\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)malloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf, "malloc"); rbuf = (uint8_t *)calloc(sizeof(uint8_t), SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(rbuf, "calloc"); /* Initialize write buffer */ for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++) for (j = 0; j < SPACE7_DIM2; j++) *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Create a dataset */ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Make "none" selection in both disk and memory datasets */ ret = H5Sselect_none(sid1); CHECK(ret, FAIL, "H5Sselect_none"); ret = H5Sselect_none(sid2); CHECK(ret, FAIL, "H5Sselect_none"); /* Attempt to read "nothing" from disk (before space is allocated) */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Write "nothing" to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Write "nothing" to disk (with a datatype conversion :-) */ ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Write "nothing" to disk (with NULL buffer argument) */ ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL); CHECK(ret, FAIL, "H5Dwrite"); /* Read "nothing" from disk (with NULL buffer argument) */ ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL); CHECK(ret, FAIL, "H5Dread"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_none() */ /**************************************************************** ** ** test_scalar_select(): Test basic H5S (dataspace) selection code. ** Tests selections on scalar dataspaces ** ****************************************************************/ static void test_scalar_select(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ uint8_t *wbuf_uint8, /* buffer to write to disk */ rval_uint8, /* value read back in */ *tbuf_uint8; /* temporary buffer pointer */ unsigned short *wbuf_ushort, /* another buffer to write to disk */ rval_ushort, /* value read back in */ *tbuf_ushort; /* temporary buffer pointer */ int i, j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces\n")); /* Allocate write & read buffers */ wbuf_uint8 = (uint8_t *)malloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf_uint8, "malloc"); wbuf_ushort = (unsigned short *)malloc(sizeof(unsigned short) * SPACE7_DIM1 * SPACE7_DIM2); CHECK_PTR(wbuf_ushort, "malloc"); /* Initialize write buffers */ for (i = 0, tbuf_uint8 = wbuf_uint8, tbuf_ushort = wbuf_ushort; i < SPACE7_DIM1; i++) for (j = 0; j < SPACE7_DIM2; j++) { *tbuf_uint8++ = (uint8_t)((i * SPACE7_DIM2) + j); *tbuf_ushort++ = (unsigned short)((j * SPACE7_DIM2) + i); } /* end for */ /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate(H5S_SCALAR); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL); CHECK(sid2, FAIL, "H5Screate_simple"); /* Create a dataset */ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Select one element in memory with a point selection */ coord1[0] = 0; coord1[1] = 2; ret = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Write single point to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_uint8 != *(wbuf_uint8 + 2)) TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_uint8, (unsigned)*(wbuf_uint8 + 2)); /* Write single point to disk (with a datatype conversion) */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_ushort != *(wbuf_ushort + 2)) TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_ushort, (unsigned)*(wbuf_ushort + 2)); /* Select one element in memory with a hyperslab selection */ start[0] = 4; start[1] = 3; count[0] = 1; count[1] = 1; ret = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Write single hyperslab element to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_uint8 != *(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3)) TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_uint8, (unsigned)*(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3)); /* Write single hyperslab element to disk (with a datatype conversion) */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_ushort != *(wbuf_ushort + (SPACE7_DIM2 * 4) + 3)) TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_ushort, (unsigned)*(wbuf_ushort + (SPACE7_DIM2 * 4) + 3)); /* Select no elements in memory & file with "none" selections */ ret = H5Sselect_none(sid1); CHECK(ret, FAIL, "H5Sselect_none"); ret = H5Sselect_none(sid2); CHECK(ret, FAIL, "H5Sselect_none"); /* Write no data to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8); CHECK(ret, FAIL, "H5Dwrite"); /* Write no data to disk (with a datatype conversion) */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf_uint8); free(wbuf_ushort); } /* test_scalar_select() */ /**************************************************************** ** ** test_scalar_select2(): Tests selections on scalar dataspace, ** verify H5Sselect_hyperslab and H5Sselect_elements fails for ** scalar dataspace. ** ****************************************************************/ static void test_scalar_select2(void) { hid_t sid; /* Dataspace ID */ hsize_t coord1[1]; /* Coordinates for point selection */ hsize_t start[1]; /* Hyperslab start */ hsize_t count[1]; /* Hyperslab block count */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Selections in Scalar Dataspaces\n")); /* Create dataspace for dataset */ sid = H5Screate(H5S_SCALAR); CHECK(sid, FAIL, "H5Screate_simple"); /* Select one element in memory with a point selection */ coord1[0] = 0; H5E_BEGIN_TRY { ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sselect_elements"); /* Select one element in memory with a hyperslab selection */ start[0] = 0; count[0] = 0; H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sselect_hyperslab"); /* Select no elements in memory & file with "none" selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Select all elements in memory & file with "all" selection */ ret = H5Sselect_all(sid); CHECK(ret, FAIL, "H5Sselect_all"); /* Close disk dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_scalar_select2() */ /**************************************************************** ** ** test_scalar_select3(): Test basic H5S (dataspace) selection code. ** Tests selections on scalar dataspaces in memory ** ****************************************************************/ static void test_scalar_select3(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1, sid2; /* Dataspace ID */ hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ uint8_t wval_uint8, /* Value written out */ rval_uint8; /* Value read in */ unsigned short wval_ushort, /* Another value written out */ rval_ushort; /* Another value read in */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces in Memory\n")); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid1 = H5Screate_simple(SPACE7_RANK, dims2, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Create dataspace for writing buffer */ sid2 = H5Screate(H5S_SCALAR); CHECK(sid2, FAIL, "H5Screate_simple"); /* Create a dataset */ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Select one element in file with a point selection */ coord1[0] = 0; coord1[1] = 2; ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Write single point to disk */ wval_uint8 = 12; ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ rval_uint8 = 0; ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_uint8 != wval_uint8) TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8, (unsigned)wval_uint8); /* Write single point to disk (with a datatype conversion) */ wval_ushort = 23; ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ rval_ushort = 0; ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_ushort != wval_ushort) TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort, (unsigned)wval_ushort); /* Select one element in file with a hyperslab selection */ start[0] = 4; start[1] = 3; count[0] = 1; count[1] = 1; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Write single hyperslab element to disk */ wval_uint8 = 92; ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ rval_uint8 = 0; ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_uint8 != wval_uint8) TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8, (unsigned)wval_uint8); /* Write single hyperslab element to disk (with a datatype conversion) */ wval_ushort = 107; ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort); CHECK(ret, FAIL, "H5Dwrite"); /* Read scalar element from disk */ rval_ushort = 0; ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort); CHECK(ret, FAIL, "H5Dread"); /* Check value read back in */ if (rval_ushort != wval_ushort) TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort, (unsigned)wval_ushort); /* Select no elements in memory & file with "none" selections */ ret = H5Sselect_none(sid1); CHECK(ret, FAIL, "H5Sselect_none"); ret = H5Sselect_none(sid2); CHECK(ret, FAIL, "H5Sselect_none"); /* Write no data to disk */ ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8); CHECK(ret, FAIL, "H5Dwrite"); /* Write no data to disk (with a datatype conversion) */ ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort); CHECK(ret, FAIL, "H5Dwrite"); /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* test_scalar_select3() */ /**************************************************************** ** ** test_shape_same(): Tests selections on dataspace, verify that ** "shape same" routine is working correctly. ** ****************************************************************/ static void test_shape_same(void) { hid_t all_sid; /* Dataspace ID with "all" selection */ hid_t none_sid; /* Dataspace ID with "none" selection */ hid_t single_pt_sid; /* Dataspace ID with single point selection */ hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */ hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */ hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab * selection that is the entire dataspace */ hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab * selection that is the same as the single * point selection */ hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */ hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */ hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */ hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */ hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */ hid_t tmp_sid; /* Temporary dataspace ID */ hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2}; hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */ hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */ hsize_t start[SPACE9_RANK]; /* Hyperslab start */ hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */ hsize_t count[SPACE9_RANK]; /* Hyperslab block count */ hsize_t block[SPACE9_RANK]; /* Hyperslab block size */ unsigned u, v; /* Local index variables */ htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Same Shape Comparisons\n")); assert(SPACE9_DIM2 >= POINT1_NPOINTS); /* Create dataspace for "all" selection */ all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(all_sid, FAIL, "H5Screate_simple"); /* Select entire extent for dataspace */ ret = H5Sselect_all(all_sid); CHECK(ret, FAIL, "H5Sselect_all"); /* Create dataspace for "none" selection */ none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(none_sid, FAIL, "H5Screate_simple"); /* Un-Select entire extent for dataspace */ ret = H5Sselect_none(none_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Create dataspace for single point selection */ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord1[0][0] = 2; coord1[0][1] = 2; ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for multiple point selection */ mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(mult_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord2[0][0] = 2; coord2[0][1] = 2; coord2[1][0] = 7; coord2[1][1] = 2; coord2[2][0] = 1; coord2[2][1] = 4; coord2[3][0] = 2; coord2[3][1] = 6; coord2[4][0] = 0; coord2[4][1] = 8; coord2[5][0] = 3; coord2[5][1] = 2; coord2[6][0] = 4; coord2[6][1] = 4; coord2[7][0] = 1; coord2[7][1] = 0; coord2[8][0] = 5; coord2[8][1] = 1; coord2[9][0] = 9; coord2[9][1] = 3; ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for single hyperslab selection */ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for single hyperslab selection */ start[0] = 1; start[1] = 1; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = (SPACE9_DIM1 - 2); block[1] = (SPACE9_DIM2 - 2); ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for single hyperslab selection with entire extent selected */ single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple"); /* Select entire extent for hyperslab selection */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = SPACE9_DIM1; block[1] = SPACE9_DIM2; ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for single hyperslab selection with single point selected */ single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple"); /* Select entire extent for hyperslab selection */ start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for regular hyperslab selection */ regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); /* Select regular, strided hyperslab selection */ start[0] = 2; start[1] = 2; stride[0] = 2; stride[1] = 2; count[0] = 5; count[1] = 2; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for irregular hyperslab selection */ irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple"); /* Create irregular hyperslab selection by OR'ing two blocks together */ start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 4; start[1] = 4; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 3; block[1] = 3; ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for "no" hyperslab selection */ none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(none_hyper_sid, FAIL, "H5Screate_simple"); /* Create "no" hyperslab selection by XOR'ing same blocks together */ start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create scalar dataspace for "all" selection */ scalar_all_sid = H5Screate(H5S_SCALAR); CHECK(scalar_all_sid, FAIL, "H5Screate"); /* Create scalar dataspace for "none" selection */ scalar_none_sid = H5Screate(H5S_SCALAR); CHECK(scalar_none_sid, FAIL, "H5Screate"); /* Un-Select entire extent for dataspace */ ret = H5Sselect_none(scalar_none_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Compare "all" selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(all_sid, all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(all_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(all_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "none" selection */ check = H5Sselect_shape_same(all_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(all_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(all_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(all_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(all_sid, single_hyper_all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(all_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(all_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(all_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(all_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(all_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(all_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare "none" selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(none_sid, none_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(none_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(none_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(none_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(none_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(none_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(none_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(none_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(none_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(none_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(none_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(none_sid, none_hyper_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(none_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(none_sid, scalar_none_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare single point selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(single_pt_sid, single_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(single_pt_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(single_pt_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(single_pt_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(single_pt_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(single_pt_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, single_hyper_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, scalar_all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(single_pt_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare multiple point selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(mult_pt_sid, mult_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(mult_pt_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(mult_pt_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(mult_pt_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(mult_pt_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(mult_pt_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(mult_pt_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare single "normal" hyperslab selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(single_hyper_sid, single_hyper_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(single_hyper_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(single_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(single_hyper_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(single_hyper_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(single_hyper_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(single_hyper_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); #ifdef NOT_YET /* In theory, these two selections are the same shape, but the * H5Sselect_shape_same() routine is just not this sophisticated yet and it * would take too much effort to make this work. The worst case is that the * non-optimized chunk mapping routines will be invoked instead of the more * optimized routines, so this only hurts performance, not correctness */ /* Construct point selection which matches "plain" hyperslab selection */ /* Create dataspace for point selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Select sequence of points for point selection */ for (u = 1; u < (SPACE9_DIM1 - 1); u++) { for (v = 1; v < (SPACE9_DIM2 - 1); v++) { coord2[v - 1][0] = u; coord2[v - 1][1] = v; } /* end for */ ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (SPACE9_DIM2 - 2), coord2); CHECK(ret, FAIL, "H5Sselect_elements"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); #endif /* NOT_YET */ /* Construct hyperslab selection which matches "plain" hyperslab selection */ /* Create dataspace for hyperslab selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Un-select entire extent */ ret = H5Sselect_none(tmp_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Select sequence of rows for hyperslab selection */ for (u = 1; u < (SPACE9_DIM1 - 1); u++) { start[0] = u; start[1] = 1; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = (SPACE9_DIM2 - 2); ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare single "all" hyperslab selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(single_hyper_all_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(single_hyper_all_sid, all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(single_hyper_all_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(single_hyper_all_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(single_hyper_all_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); #ifdef NOT_YET /* In theory, these two selections are the same shape, but the * H5S_select_shape_same() routine is just not this sophisticated yet and it * would take too much effort to make this work. The worst case is that the * non-optimized chunk mapping routines will be invoked instead of the more * optimized routines, so this only hurts performance, not correctness */ /* Construct point selection which matches "all" hyperslab selection */ /* Create dataspace for point selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Select sequence of points for point selection */ for (u = 0; u < SPACE9_DIM1; u++) { for (v = 0; v < SPACE9_DIM2; v++) { coord2[v][0] = u; coord2[v][1] = v; } /* end for */ ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, SPACE9_DIM2, coord2); CHECK(ret, FAIL, "H5Sselect_elements"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); #endif /* NOT_YET */ /* Construct hyperslab selection which matches "all" hyperslab selection */ /* Create dataspace for hyperslab selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Un-select entire extent */ ret = H5Sselect_none(tmp_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Select sequence of rows for hyperslab selection */ for (u = 0; u < SPACE9_DIM2; u++) { start[0] = u; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = SPACE9_DIM2; ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_all_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare single "point" hyperslab selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(single_hyper_pt_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(single_hyper_pt_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, single_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare regular, strided hyperslab selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(regular_hyper_sid, regular_hyper_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(regular_hyper_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(regular_hyper_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(regular_hyper_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(regular_hyper_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(regular_hyper_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Construct point selection which matches regular, strided hyperslab selection */ /* Create dataspace for point selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Select sequence of points for point selection */ for (u = 2; u < 11; u += 2) { for (v = 0; v < 2; v++) { coord2[v][0] = u; coord2[v][1] = (v * 2) + 2; } /* end for */ ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (size_t)2, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Construct hyperslab selection which matches regular, strided hyperslab selection */ /* Create dataspace for hyperslab selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Un-select entire extent */ ret = H5Sselect_none(tmp_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Select sequence of rows for hyperslab selection */ for (u = 2; u < 11; u += 2) { start[0] = u; start[1] = 3; stride[0] = 1; stride[1] = 2; count[0] = 1; count[1] = 2; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Construct regular hyperslab selection with an offset which matches regular, strided hyperslab selection */ /* Create dataspace for hyperslab selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Select regular, strided hyperslab selection at an offset */ start[0] = 1; start[1] = 1; stride[0] = 2; stride[1] = 2; count[0] = 5; count[1] = 2; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Compare against hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(regular_hyper_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare irregular hyperslab selection to all the selections created */ /* Compare against itself */ check = H5Sselect_shape_same(irreg_hyper_sid, irreg_hyper_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(irreg_hyper_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(irreg_hyper_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(irreg_hyper_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(irreg_hyper_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(irreg_hyper_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Construct hyperslab selection which matches irregular hyperslab selection */ /* Create dataspace for hyperslab selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Select sequence of columns for hyperslab selection */ for (u = 0; u < 3; u++) { start[0] = 4; start[1] = u + 4; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 3; block[1] = 1; ret = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Compare against hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(irreg_hyper_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare scalar "all" dataspace with all selections created */ /* Compare against itself */ check = H5Sselect_shape_same(scalar_all_sid, scalar_all_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(scalar_all_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(scalar_all_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(scalar_all_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(scalar_all_sid, none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(scalar_all_sid, single_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(scalar_all_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, single_hyper_pt_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, none_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against scalar "none" hyperslab selection */ check = H5Sselect_shape_same(scalar_all_sid, scalar_none_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare scalar "none" dataspace with all selections created */ /* Compare against itself */ check = H5Sselect_shape_same(scalar_none_sid, scalar_none_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against copy of itself */ tmp_sid = H5Scopy(scalar_none_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check = H5Sselect_shape_same(scalar_none_sid, tmp_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check = H5Sselect_shape_same(scalar_none_sid, all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "none" selection */ check = H5Sselect_shape_same(scalar_none_sid, none_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against single point selection */ check = H5Sselect_shape_same(scalar_none_sid, single_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against multiple point selection */ check = H5Sselect_shape_same(scalar_none_sid, mult_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "plain" single hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, single_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "all" single hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, single_hyper_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "single point" single hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, single_hyper_pt_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against regular, strided hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, regular_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against irregular hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, irreg_hyper_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "no" hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, none_hyper_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Compare against scalar "all" hyperslab selection */ check = H5Sselect_shape_same(scalar_none_sid, scalar_all_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(all_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(none_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mult_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_all_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(regular_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(irreg_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(none_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(scalar_all_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(scalar_none_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same() */ /**************************************************************** ** ** test_shape_same_dr__smoke_check_1(): ** ** Create a square, 2-D dataspace (10 X 10), and select ** all of it. ** ** Similarly, create nine, 3-D dataspaces (10 X 10 X 10), ** and select (10 X 10 X 1) hyperslabs in each, three with ** the slab parallel to the xy plane, three parallel to the ** xz plane, and three parallel to the yz plane. ** ** Assuming that z is the fastest changing dimension, ** H5Sselect_shape_same() should return TRUE when comparing ** the full 2-D space against any hyperslab parallel to the ** yz plane in the 3-D space, and FALSE when comparing the ** full 2-D space against the other two hyperslabs. ** ** Also create two additional 3-D dataspaces (10 X 10 X 10), ** and select a (10 X 10 X 2) hyperslab parallel to the yz ** axis in one of them, and two parallel (10 X 10 X 1) hyper ** slabs parallel to the yz axis in the other. ** H5Sselect_shape_same() should return FALSE when comparing ** each to the 2-D selection. ** ****************************************************************/ static void test_shape_same_dr__smoke_check_1(void) { hid_t small_square_sid; hid_t small_cube_xy_slice_0_sid; hid_t small_cube_xy_slice_1_sid; hid_t small_cube_xy_slice_2_sid; hid_t small_cube_xz_slice_0_sid; hid_t small_cube_xz_slice_1_sid; hid_t small_cube_xz_slice_2_sid; hid_t small_cube_yz_slice_0_sid; hid_t small_cube_yz_slice_1_sid; hid_t small_cube_yz_slice_2_sid; hid_t small_cube_yz_slice_3_sid; hid_t small_cube_yz_slice_4_sid; hsize_t small_cube_dims[] = {10, 10, 10}; hsize_t start[3]; hsize_t stride[3]; hsize_t count[3]; hsize_t block[3]; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, (" Smoke check 1: Slices through a cube.\n")); /* Create the 10 x 10 dataspace */ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); CHECK(small_square_sid, FAIL, "H5Screate_simple"); /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ start[2] = 0; /* z */ /* stride is a bit silly here, since we are only selecting a single */ /* contiguous plane, but include it anyway, with values large enough */ /* to ensure that we will only get the single block selected. */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 10; /* x */ block[1] = 10; /* y */ block[2] = 1; /* z */ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[2] = 5; ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[2] = 9; ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ start[2] = 0; /* z */ /* stride is a bit silly here, since we are only selecting a single */ /* contiguous chunk, but include it anyway, with values large enough */ /* to ensure that we will only get the single chunk. */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 10; /* x */ block[1] = 1; /* y */ block[2] = 10; /* z */ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[1] = 4; ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[1] = 9; ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ start[2] = 0; /* z */ /* stride is a bit silly here, since we are only selecting a single */ /* contiguous chunk, but include it anyway, with values large enough */ /* to ensure that we will only get the single chunk. */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 1; /* x */ block[1] = 10; /* y */ block[2] = 10; /* z */ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 4; ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 9; ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 4; block[0] = 2; ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 3; block[0] = 1; ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 6; ret = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the tests: */ /* Compare against "xy" selection */ check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "xz" selection */ check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "yz" selection */ check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_4_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(small_square_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_3_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_4_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__smoke_check_1() */ /**************************************************************** ** ** test_shape_same_dr__smoke_check_2(): ** ** Create a square, 2-D dataspace (10 X 10), and select ** a "checker board" hyperslab as follows: ** ** * * - - * * - - * * ** * * - - * * - - * * ** - - * * - - * * - - ** - - * * - - * * - - ** * * - - * * - - * * ** * * - - * * - - * * ** - - * * - - * * - - ** - - * * - - * * - - ** * * - - * * - - * * ** * * - - * * - - * * ** ** where asterisks indicate selected elements, and dashes ** indicate unselected elements. ** ** Similarly, create nine, 3-D dataspaces (10 X 10 X 10), ** and select similar (10 X 10 X 1) checker board hyper ** slabs in each, three with the slab parallel to the xy ** plane, three parallel to the xz plane, and three parallel ** to the yz plane. ** ** Assuming that z is the fastest changing dimension, ** H5Sselect_shape_same() should return TRUE when comparing ** the 2-D space checker board selection against a checker ** board hyperslab parallel to the yz plane in the 3-D ** space, and FALSE when comparing the 2-D checkerboard ** selection against two hyperslabs parallel to the xy ** or xz planes. ** ** Also create an additional 3-D dataspaces (10 X 10 X 10), ** and select a checker board parallel with the yz axis, ** save with some squares being on different planes. ** H5Sselect_shape_same() should return FALSE when ** comparing this selection to the 2-D selection. ** ****************************************************************/ static void test_shape_same_dr__smoke_check_2(void) { hid_t small_square_sid; hid_t small_cube_xy_slice_0_sid; hid_t small_cube_xy_slice_1_sid; hid_t small_cube_xy_slice_2_sid; hid_t small_cube_xz_slice_0_sid; hid_t small_cube_xz_slice_1_sid; hid_t small_cube_xz_slice_2_sid; hid_t small_cube_yz_slice_0_sid; hid_t small_cube_yz_slice_1_sid; hid_t small_cube_yz_slice_2_sid; hid_t small_cube_yz_slice_3_sid; hsize_t small_cube_dims[] = {10, 10, 10}; hsize_t start[3]; hsize_t stride[3]; hsize_t count[3]; hsize_t block[3]; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, (" Smoke check 2: Checker board slices through a cube.\n")); /* Create the 10 x 10 dataspace */ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); CHECK(small_square_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ stride[0] = 4; /* x */ stride[1] = 4; /* y */ count[0] = 3; /* x */ count[1] = 3; /* y */ block[0] = 2; /* x */ block[1] = 2; /* y */ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 2; /* x */ start[1] = 2; /* y */ stride[0] = 4; /* x */ stride[1] = 4; /* y */ count[0] = 2; /* x */ count[1] = 2; /* y */ block[0] = 2; /* x */ block[1] = 2; /* y */ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ start[2] = 0; /* z */ stride[0] = 4; /* x */ stride[1] = 4; /* y */ stride[2] = 20; /* z -- large enough that there will only be one slice */ count[0] = 3; /* x */ count[1] = 3; /* y */ count[2] = 1; /* z */ block[0] = 2; /* x */ block[1] = 2; /* y */ block[2] = 1; /* z */ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[2] = 3; ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[2] = 9; ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 2; /* x */ start[1] = 2; /* y */ start[2] = 0; /* z */ stride[0] = 4; /* x */ stride[1] = 4; /* y */ stride[2] = 20; /* z -- large enough that there will only be one slice */ count[0] = 2; /* x */ count[1] = 2; /* y */ count[2] = 1; /* z */ block[0] = 2; /* x */ block[1] = 2; /* y */ block[2] = 1; /* z */ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[2] = 3; ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[2] = 9; ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ start[2] = 0; /* z */ stride[0] = 4; /* x */ stride[1] = 20; /* y -- large enough that there will only be one slice */ stride[2] = 4; /* z */ count[0] = 3; /* x */ count[1] = 1; /* y */ count[2] = 3; /* z */ block[0] = 2; /* x */ block[1] = 1; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[1] = 5; ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[1] = 9; ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 2; /* x */ start[1] = 0; /* y */ start[2] = 2; /* z */ stride[0] = 4; /* x */ stride[1] = 20; /* y -- large enough that there will only be one slice */ stride[2] = 4; /* z */ count[0] = 2; /* x */ count[1] = 1; /* y */ count[2] = 2; /* z */ block[0] = 2; /* x */ block[1] = 1; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[1] = 5; ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[1] = 9; ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple"); start[0] = 0; /* x */ start[1] = 0; /* y */ start[2] = 0; /* z */ stride[0] = 20; /* x -- large enough that there will only be one slice */ stride[1] = 4; /* y */ stride[2] = 4; /* z */ count[0] = 1; /* x */ count[1] = 3; /* y */ count[2] = 3; /* z */ block[0] = 1; /* x */ block[1] = 2; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 8; ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 9; ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 3; ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 0; /* x */ start[1] = 2; /* y */ start[2] = 2; /* z */ stride[0] = 20; /* x -- large enough that there will only be one slice */ stride[1] = 4; /* y */ stride[2] = 4; /* z */ count[0] = 1; /* x */ count[1] = 2; /* y */ count[2] = 2; /* z */ block[0] = 1; /* x */ block[1] = 2; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 8; ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 9; ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 4; /* This test gets the right answer, but it fails the shape same * test in an unexpected point. Bring this up with Quincey, as * the oddness looks like it is not related to my code. * -- JRM */ ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the tests: */ /* Compare against "xy" selection */ check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "xz" selection */ check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "yz" selection */ check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(small_square_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_3_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__smoke_check_2() */ /**************************************************************** ** ** test_shape_same_dr__smoke_check_3(): ** ** Create a square, 2-D dataspace (10 X 10), and select an ** irregular hyperslab as follows: ** ** y ** 9 - - - - - - - - - - ** 8 - - - - - - - - - - ** 7 - - - * * * * - - - ** 6 - - * * * * * - - - ** 5 - - * * - - - - - - ** 4 - - * * - * * - - - ** 3 - - * * - * * - - - ** 2 - - - - - - - - - - ** 1 - - - - - - - - - - ** 0 - - - - - - - - - - ** 0 1 2 3 4 5 6 7 8 9 x ** ** where asterisks indicate selected elements, and dashes ** indicate unselected elements. ** ** Similarly, create nine, 3-D dataspaces (10 X 10 X 10), ** and select similar irregular hyperslabs in each, three ** with the slab parallel to the xy plane, three parallel ** to the xz plane, and three parallel to the yz plane. ** Further, translate the irregular slab in 2/3rds of the ** cases. ** ** Assuming that z is the fastest changing dimension, ** H5Sselect_shape_same() should return TRUE when ** comparing the 2-D irregular hyperslab selection ** against the irregular hyperslab selections parallel ** to the yz plane in the 3-D space, and FALSE when ** comparing it against the irregular hyperslabs ** selections parallel to the xy or xz planes. ** ****************************************************************/ static void test_shape_same_dr__smoke_check_3(void) { hid_t small_square_sid; hid_t small_cube_xy_slice_0_sid; hid_t small_cube_xy_slice_1_sid; hid_t small_cube_xy_slice_2_sid; hid_t small_cube_xz_slice_0_sid; hid_t small_cube_xz_slice_1_sid; hid_t small_cube_xz_slice_2_sid; hid_t small_cube_yz_slice_0_sid; hid_t small_cube_yz_slice_1_sid; hid_t small_cube_yz_slice_2_sid; hsize_t small_cube_dims[] = {10, 10, 10}; hsize_t start[3]; hsize_t stride[3]; hsize_t count[3]; hsize_t block[3]; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, (" Smoke check 3: Offset subsets of slices through a cube.\n")); /* Create the 10 x 10 dataspace */ small_square_sid = H5Screate_simple(2, small_cube_dims, NULL); CHECK(small_square_sid, FAIL, "H5Screate_simple"); start[0] = 2; /* x */ start[1] = 3; /* y */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ count[0] = 1; /* x */ count[1] = 1; /* y */ block[0] = 2; /* x */ block[1] = 4; /* y */ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 3; /* x */ start[1] = 6; /* y */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ count[0] = 1; /* x */ count[1] = 1; /* y */ block[0] = 4; /* x */ block[1] = 2; /* y */ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 5; /* x */ start[1] = 3; /* y */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ count[0] = 1; /* x */ count[1] = 1; /* y */ block[0] = 2; /* x */ block[1] = 2; /* y */ ret = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */ small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 2; /* x */ start[1] = 3; /* y */ start[2] = 5; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 2; /* x */ block[1] = 4; /* y */ block[2] = 1; /* z */ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[0] -= 1; /* x */ start[1] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[1] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 3; /* x */ start[1] = 6; /* y */ start[2] = 5; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 4; /* x */ block[1] = 2; /* y */ block[2] = 1; /* z */ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[0] -= 1; /* x */ start[1] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[1] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 5; /* x */ start[1] = 3; /* y */ start[2] = 5; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 2; /* x */ block[1] = 2; /* y */ block[2] = 1; /* z */ ret = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[0] -= 1; /* x */ start[1] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[1] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */ small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 2; /* x */ start[1] = 5; /* y */ start[2] = 3; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 2; /* x */ block[1] = 1; /* y */ block[2] = 4; /* z */ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[0] -= 1; /* x */ start[2] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[2] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 3; /* x */ start[1] = 5; /* y */ start[2] = 6; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 4; /* x */ block[1] = 1; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[0] -= 1; /* x */ start[2] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[2] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 5; /* x */ start[1] = 5; /* y */ start[2] = 3; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 2; /* x */ block[1] = 1; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[0] -= 1; /* x */ start[2] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[2] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* QAK: Start here. */ /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */ small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple"); small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL); CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple"); start[0] = 8; /* x */ start[1] = 2; /* y */ start[2] = 3; /* z */ stride[0] = 20; /* x -- large enough that there will only be one slice */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 1; /* x */ block[1] = 2; /* y */ block[2] = 4; /* z */ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[1] -= 1; /* x */ start[2] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[2] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 8; /* x */ start[1] = 3; /* y */ start[2] = 6; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 1; /* x */ block[1] = 4; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[1] -= 1; /* x */ start[2] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[2] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 8; /* x */ start[1] = 5; /* y */ start[2] = 3; /* z */ stride[0] = 20; /* x */ stride[1] = 20; /* y */ stride[2] = 20; /* z */ count[0] = 1; /* x */ count[1] = 1; /* y */ count[2] = 1; /* z */ block[0] = 1; /* x */ block[1] = 2; /* y */ block[2] = 2; /* z */ ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the starting point to the origin */ start[1] -= 1; /* x */ start[2] -= 2; /* y */ ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* move the irregular selection to the upper right hand corner */ start[0] += 5; /* x */ start[2] += 5; /* y */ ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the tests: */ /* Compare against "xy" selection */ check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "xz" selection */ check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Compare against "yz" selection */ check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(small_square_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xy_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_xz_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(small_cube_yz_slice_2_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__smoke_check_3() */ /**************************************************************** ** ** test_shape_same_dr__smoke_check_4(): ** ** Create a square, 2-D dataspace (10 X 10), and select ** the entire space. ** ** Similarly, create 3-D and 4-D dataspaces: ** ** (1 X 10 X 10) ** (10 X 1 X 10) ** (10 X 10 X 1) ** (10 X 10 X 10) ** ** (1 X 1 X 10 X 10) ** (1 X 10 X 1 X 10) ** (1 X 10 X 10 X 1) ** (10 X 1 X 1 X 10) ** (10 X 1 X 10 X 1) ** (10 X 10 X 1 X 1) ** (10 X 1 X 10 X 10) ** ** And select these entire spaces as well. ** ** Compare the 2-D space against all the other spaces ** with H5Sselect_shape_same(). The (1 X 10 X 10) & ** (1 X 1 X 10 X 10) should return TRUE. All others ** should return FALSE. ** ****************************************************************/ static void test_shape_same_dr__smoke_check_4(void) { hid_t square_sid; hid_t three_d_space_0_sid; hid_t three_d_space_1_sid; hid_t three_d_space_2_sid; hid_t three_d_space_3_sid; hid_t four_d_space_0_sid; hid_t four_d_space_1_sid; hid_t four_d_space_2_sid; hid_t four_d_space_3_sid; hid_t four_d_space_4_sid; hid_t four_d_space_5_sid; hid_t four_d_space_6_sid; hsize_t dims[] = {10, 10, 10, 10}; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, (" Smoke check 4: Spaces of different dimension but same size.\n")); /* Create the 10 x 10 dataspace */ square_sid = H5Screate_simple(2, dims, NULL); CHECK(square_sid, FAIL, "H5Screate_simple"); /* create (1 X 10 X 10) dataspace */ dims[0] = 1; dims[1] = 10; dims[2] = 10; three_d_space_0_sid = H5Screate_simple(3, dims, NULL); CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple"); /* create (10 X 1 X 10) dataspace */ dims[0] = 10; dims[1] = 1; dims[2] = 10; three_d_space_1_sid = H5Screate_simple(3, dims, NULL); CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple"); /* create (10 X 10 X 1) dataspace */ dims[0] = 10; dims[1] = 10; dims[2] = 1; three_d_space_2_sid = H5Screate_simple(3, dims, NULL); CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple"); /* create (10 X 10 X 10) dataspace */ dims[0] = 10; dims[1] = 10; dims[2] = 10; three_d_space_3_sid = H5Screate_simple(3, dims, NULL); CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple"); /* create (1 X 1 X 10 X 10) dataspace */ dims[0] = 1; dims[1] = 1; dims[2] = 10; dims[3] = 10; four_d_space_0_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple"); /* create (1 X 10 X 1 X 10) dataspace */ dims[0] = 1; dims[1] = 10; dims[2] = 1; dims[3] = 10; four_d_space_1_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple"); /* create (1 X 10 X 10 X 1) dataspace */ dims[0] = 1; dims[1] = 10; dims[2] = 10; dims[3] = 1; four_d_space_2_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple"); /* create (10 X 1 X 1 X 10) dataspace */ dims[0] = 10; dims[1] = 1; dims[2] = 1; dims[3] = 10; four_d_space_3_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple"); /* create (10 X 1 X 10 X 1) dataspace */ dims[0] = 10; dims[1] = 1; dims[2] = 10; dims[3] = 1; four_d_space_4_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple"); /* create (10 X 10 X 1 X 1) dataspace */ dims[0] = 10; dims[1] = 10; dims[2] = 1; dims[3] = 1; four_d_space_5_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple"); /* create (10 X 1 X 10 X 10) dataspace */ dims[0] = 10; dims[1] = 1; dims[2] = 10; dims[3] = 10; four_d_space_6_sid = H5Screate_simple(4, dims, NULL); CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple"); /* setup is done -- run the tests: */ check = H5Sselect_shape_same(three_d_space_0_sid, square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(three_d_space_1_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(three_d_space_2_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(three_d_space_3_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_0_sid, square_sid); VERIFY(check, TRUE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_1_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_2_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_3_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_4_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_5_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); check = H5Sselect_shape_same(four_d_space_6_sid, square_sid); VERIFY(check, FALSE, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(square_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(three_d_space_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(three_d_space_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(three_d_space_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(three_d_space_3_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_1_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_2_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_3_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_4_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_5_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(four_d_space_6_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__smoke_check_4() */ /**************************************************************** ** ** test_shape_same_dr__full_space_vs_slice(): Tests selection ** of a full n-cube dataspace vs an n-dimensional slice of ** of an m-cube (m > n) in a call to H5Sselect_shape_same(). ** Note that this test does not require the n-cube and the ** n-dimensional slice to have the same rank (although ** H5Sselect_shape_same() should always return FALSE if ** they don't). ** ** Per Quincey's suggestion, only test up to 5 dimensional ** spaces. ** ****************************************************************/ static void test_shape_same_dr__full_space_vs_slice(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size, hbool_t dim_selected[], hbool_t expected_result) { char test_desc_0[128]; char test_desc_1[256]; int i; hid_t n_cube_0_sid; /* the fully selected hyper cube */ hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t start[SS_DR_MAX_RANK]; hsize_t *start_ptr; hsize_t stride[SS_DR_MAX_RANK]; hsize_t *stride_ptr; hsize_t count[SS_DR_MAX_RANK]; hsize_t *count_ptr; hsize_t block[SS_DR_MAX_RANK]; hsize_t *block_ptr; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ assert(0 < small_rank); assert(small_rank <= large_rank); assert(large_rank <= SS_DR_MAX_RANK); assert(0 <= offset); assert(offset < large_rank); assert(edge_size > 0); assert(edge_size <= 1000); HDsnprintf(test_desc_0, sizeof(test_desc_0), "\tn-cube slice through m-cube (n <= m) test %d.\n", test_num); MESSAGE(7, ("%s", test_desc_0)); /* This statement must be updated if SS_DR_MAX_RANK is changed */ HDsnprintf(test_desc_1, sizeof(test_desc_1), "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", small_rank, large_rank, offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4]); MESSAGE(7, ("%s", test_desc_1)); /* copy the edge size into the dims array */ for (i = 0; i < SS_DR_MAX_RANK; i++) dims[i] = edge_size; /* Create the small n-cube */ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); /* Create the large n-cube */ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); /* set up start, stride, count, and block for the hyperslab selection */ for (i = 0; i < SS_DR_MAX_RANK; i++) { stride[i] = 2 * edge_size; /* a bit silly in this case */ count[i] = 1; if (dim_selected[i]) { start[i] = 0; block[i] = edge_size; } else { start[i] = (hsize_t)offset; block[i] = 1; } } /* since large rank may be less than SS_DR_MAX_RANK, we may not * use the entire start, stride, count, and block arrays. This * is a problem, since it is inconvenient to set up the dim_selected * array to reflect the large rank, and thus if large_rank < * SS_DR_MAX_RANK, we need to hide the lower index entries * from H5Sselect_hyperslab(). * * Do this by setting up pointers to the first valid entry in start, * stride, count, and block below, and pass these pointers in * to H5Sselect_hyperslab() instead of the array base addresses. */ i = SS_DR_MAX_RANK - large_rank; assert(i >= 0); start_ptr = &(start[i]); stride_ptr = &(stride[i]); count_ptr = &(count[i]); block_ptr = &(block[i]); /* select the hyperslab */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the test: */ check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid); VERIFY(check, expected_result, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(n_cube_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(n_cube_1_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__full_space_vs_slice() */ /**************************************************************** ** ** test_shape_same_dr__run_full_space_vs_slice_tests(): ** ** Run the test_shape_same_dr__full_space_vs_slice() test ** over a variety of ranks and offsets. ** ** At present, we test H5Sselect_shape_same() with ** fully selected 1, 2, 3, and 4 cubes as one parameter, and ** 1, 2, 3, and 4 dimensional slices through a n-cube of rank ** no more than 5 (and at least the rank of the slice). ** We stop at rank 5, as Quincey suggested that it would be ** sufficient. ** ** All the n-cubes will have lengths of the same size, so ** H5Sselect_shape_same() should return true iff: ** ** 1) the rank for the fully selected n cube equals the ** number of dimensions selected in the slice through the ** m-cube (m >= n). ** ** 2) The dimensions selected in the slice through the m-cube ** are the dimensions with the most quickly changing ** indices. ** ****************************************************************/ static void test_shape_same_dr__run_full_space_vs_slice_tests(void) { hbool_t dim_selected[5]; hbool_t expected_result; int i, j; int v, w, x, y, z; int test_num = 0; int small_rank; int large_rank; hsize_t edge_size = 10; for (large_rank = 1; large_rank <= 5; large_rank++) { for (small_rank = 1; small_rank <= large_rank; small_rank++) { v = 0; do { if (v == 0) dim_selected[0] = FALSE; else dim_selected[0] = TRUE; w = 0; do { if (w == 0) dim_selected[1] = FALSE; else dim_selected[1] = TRUE; x = 0; do { if (x == 0) dim_selected[2] = FALSE; else dim_selected[2] = TRUE; y = 0; do { if (y == 0) dim_selected[3] = FALSE; else dim_selected[3] = TRUE; z = 0; do { if (z == 0) dim_selected[4] = FALSE; else dim_selected[4] = TRUE; /* compute the expected result: */ i = 0; j = 4; expected_result = TRUE; while ((i < small_rank) && expected_result) { if (!dim_selected[j]) expected_result = FALSE; i++; j--; } while ((i < large_rank) && expected_result) { if (dim_selected[j]) expected_result = FALSE; i++; j--; } /* everything is set up -- run the tests */ test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, 0, edge_size, dim_selected, expected_result); test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, large_rank / 2, edge_size, dim_selected, expected_result); test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, large_rank - 1, edge_size, dim_selected, expected_result); z++; } while ((z < 2) && (large_rank >= 1)); y++; } while ((y < 2) && (large_rank >= 2)); x++; } while ((x < 2) && (large_rank >= 3)); w++; } while ((w < 2) && (large_rank >= 4)); v++; } while ((v < 2) && (large_rank >= 5)); } /* end for */ } /* end for */ } /* test_shape_same_dr__run_full_space_vs_slice_tests() */ /**************************************************************** ** ** test_shape_same_dr__checkerboard(): Tests selection of a ** "checker board" subset of a full n-cube dataspace vs ** a "checker board" n-dimensional slice of an m-cube (m > n). ** in a call to H5Sselect_shape_same(). ** ** Note that this test does not require the n-cube and the ** n-dimensional slice to have the same rank (although ** H5Sselect_shape_same() should always return FALSE if ** they don't). ** ** Per Quincey's suggestion, only test up to 5 dimensional ** spaces. ** ****************************************************************/ static void test_shape_same_dr__checkerboard(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size, hsize_t checker_size, hbool_t dim_selected[], hbool_t expected_result) { char test_desc_0[128]; char test_desc_1[256]; int i; int dims_selected = 0; hid_t n_cube_0_sid; /* the checker board selected * hyper cube */ hid_t n_cube_1_sid; /* the hyper cube in which a * checkerboard slice is selected */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t base_start[2]; hsize_t start[SS_DR_MAX_RANK]; hsize_t *start_ptr; hsize_t base_stride[2]; hsize_t stride[SS_DR_MAX_RANK]; hsize_t *stride_ptr; hsize_t base_count[2]; hsize_t count[SS_DR_MAX_RANK]; hsize_t *count_ptr; hsize_t base_block[2]; hsize_t block[SS_DR_MAX_RANK]; hsize_t *block_ptr; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ assert(0 < small_rank); assert(small_rank <= large_rank); assert(large_rank <= SS_DR_MAX_RANK); assert(0 < checker_size); assert(checker_size <= edge_size); assert(edge_size <= 1000); assert(0 <= offset); assert(offset < (int)edge_size); for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) if (dim_selected[i] == TRUE) dims_selected++; assert(dims_selected >= 0); assert(dims_selected <= large_rank); HDsnprintf(test_desc_0, sizeof(test_desc_0), "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", test_num); MESSAGE(7, ("%s", test_desc_0)); /* This statement must be updated if SS_DR_MAX_RANK is changed */ HDsnprintf(test_desc_1, sizeof(test_desc_1), "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank, large_rank, (int)edge_size, (int)checker_size, offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4], dims_selected); MESSAGE(7, ("%s", test_desc_1)); /* copy the edge size into the dims array */ for (i = 0; i < SS_DR_MAX_RANK; i++) dims[i] = edge_size; /* Create the small n-cube */ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); /* Select a "checkerboard" pattern in the small n-cube. * * In the 1-D case, the "checkerboard" would look like this: * * * * - - * * - - * * * * and in the 2-D case, it would look like this: * * * * - - * * - - * * * * * - - * * - - * * * - - * * - - * * - - * - - * * - - * * - - * * * - - * * - - * * * * * - - * * - - * * * - - * * - - * * - - * - - * * - - * * - - * * * - - * * - - * * * * * - - * * - - * * * * In both cases, asterisks indicate selected elements, * and dashes indicate unselected elements. * * 3-D and 4-D ascii art is somewhat painful, so I'll * leave those selections to your imagination. :-) * * Note, that since the edge_size and checker_size are * parameters that are passed in, the selection need * not look exactly like the selection shown above. * At present, the function allows checker sizes that * are not even divisors of the edge size -- thus * something like the following is also possible: * * * * * - - - * * * - * * * * - - - * * * - * * * * - - - * * * - * - - - * * * - - - * * - - - * * * - - - * * - - - * * * - - - * * * * * - - - * * * - * * * * - - - * * * - * * * * - - - * * * - * - - - * * * - - - * * * As the above pattern can't be selected in one * call to H5Sselect_hyperslab(), and since the * values in the start, stride, count, and block * arrays will be repeated over all entries in * the selected space case, and over all selected * dimensions in the selected hyperslab case, we * compute these values first and store them in * in the base_start, base_stride, base_count, * and base_block arrays. */ base_start[0] = 0; base_start[1] = checker_size; base_stride[0] = 2 * checker_size; base_stride[1] = 2 * checker_size; /* Note that the following computation depends on the C99 * requirement that integer division discard any fraction * (truncation towards zero) to function correctly. As we * now require C99, this shouldn't be a problem, but noting * it may save us some pain if we are ever obliged to support * pre-C99 compilers again. */ base_count[0] = edge_size / (checker_size * 2); if ((edge_size % (checker_size * 2)) > 0) base_count[0]++; base_count[1] = (edge_size - checker_size) / (checker_size * 2); if (((edge_size - checker_size) % (checker_size * 2)) > 0) base_count[1]++; base_block[0] = checker_size; base_block[1] = checker_size; /* now setup start, stride, count, and block arrays for * the first call to H5Sselect_hyperslab(). */ for (i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = base_start[0]; stride[i] = base_stride[0]; count[i] = base_count[0]; block[i] = base_block[0]; } /* end for */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* if small_rank == 1, or if edge_size == checker_size, we * are done, as either there is no added dimension in which * to place offset selected "checkers". * * Otherwise, set up start, stride, count and block, and * make the additional selection. */ if ((small_rank > 1) && (checker_size < edge_size)) { for (i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = base_start[1]; stride[i] = base_stride[1]; count[i] = base_count[1]; block[i] = base_block[1]; } /* end for */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end if */ /* Weirdness alert: * * Some how, it seems that selections can extend beyond the * boundaries of the target dataspace -- hence the following * code to manually clip the selection back to the dataspace * proper. */ for (i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = 0; stride[i] = edge_size; count[i] = 1; block[i] = edge_size; } /* end for */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the large n-cube */ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); /* Now select the checkerboard selection in the (possibly larger) n-cube. * * Since we have already calculated the base start, stride, count, * and block, re-use the values in setting up start, stride, count, * and block. */ for (i = 0; i < SS_DR_MAX_RANK; i++) { if (dim_selected[i]) { start[i] = base_start[0]; stride[i] = base_stride[0]; count[i] = base_count[0]; block[i] = base_block[0]; } /* end if */ else { start[i] = (hsize_t)offset; stride[i] = (hsize_t)(2 * edge_size); count[i] = 1; block[i] = 1; } /* end else */ } /* end for */ /* Since large rank may be less than SS_DR_MAX_RANK, we may not * use the entire start, stride, count, and block arrays. This * is a problem, since it is inconvenient to set up the dim_selected * array to reflect the large rank, and thus if large_rank < * SS_DR_MAX_RANK, we need to hide the lower index entries * from H5Sselect_hyperslab(). * * Do this by setting up pointers to the first valid entry in start, * stride, count, and block below, and pass these pointers in * to H5Sselect_hyperslab() instead of the array base addresses. */ i = SS_DR_MAX_RANK - large_rank; assert(i >= 0); start_ptr = &(start[i]); stride_ptr = &(stride[i]); count_ptr = &(count[i]); block_ptr = &(block[i]); /* select the hyperslab */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* As before, if the number of dimensions selected is less than or * equal to 1, or if edge_size == checker_size, we are done, as * either there is no added dimension in which to place offset selected * "checkers", or the hyperslab is completely occupied by one * "checker". * * Otherwise, set up start, stride, count and block, and * make the additional selection. */ if ((dims_selected > 1) && (checker_size < edge_size)) { for (i = 0; i < SS_DR_MAX_RANK; i++) { if (dim_selected[i]) { start[i] = base_start[1]; stride[i] = base_stride[1]; count[i] = base_count[1]; block[i] = base_block[1]; } /* end if */ else { start[i] = (hsize_t)offset; stride[i] = (hsize_t)(2 * edge_size); count[i] = 1; block[i] = 1; } /* end else */ } /* end for */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end if */ /* Weirdness alert: * * Again, it seems that selections can extend beyond the * boundaries of the target dataspace -- hence the following * code to manually clip the selection back to the dataspace * proper. */ for (i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = 0; stride[i] = edge_size; count[i] = 1; block[i] = edge_size; } /* end for */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the test: */ check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid); VERIFY(check, expected_result, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(n_cube_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(n_cube_1_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__checkerboard() */ /**************************************************************** ** ** test_shape_same_dr__run_checkerboard_tests(): ** ** In this set of tests, we test H5Sselect_shape_same() ** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as ** one parameter, and 1, 2, 3, and 4 dimensional checkerboard ** slices through a n-cube of rank no more than 5 (and at ** least the rank of the slice). ** ** All the n-cubes will have lengths of the same size, so ** H5Sselect_shape_same() should return true iff: ** ** 1) the rank of the n cube equals the number of dimensions ** selected in the checker board slice through the m-cube ** (m >= n). ** ** 2) The dimensions selected in the checkerboard slice ** through the m-cube are the dimensions with the most ** quickly changing indices. ** ****************************************************************/ static void test_shape_same_dr__run_checkerboard_tests(void) { hbool_t dim_selected[5]; hbool_t expected_result; int i, j; int v, w, x, y, z; int test_num = 0; int small_rank; int large_rank; for (large_rank = 1; large_rank <= 5; large_rank++) { for (small_rank = 1; small_rank <= large_rank; small_rank++) { v = 0; do { if (v == 0) dim_selected[0] = FALSE; else dim_selected[0] = TRUE; w = 0; do { if (w == 0) dim_selected[1] = FALSE; else dim_selected[1] = TRUE; x = 0; do { if (x == 0) dim_selected[2] = FALSE; else dim_selected[2] = TRUE; y = 0; do { if (y == 0) dim_selected[3] = FALSE; else dim_selected[3] = TRUE; z = 0; do { if (z == 0) dim_selected[4] = FALSE; else dim_selected[4] = TRUE; /* compute the expected result: */ i = 0; j = 4; expected_result = TRUE; while ((i < small_rank) && expected_result) { if (!dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ while ((i < large_rank) && expected_result) { if (dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ /* everything is set up -- run the tests */ /* run test with edge size 16, checker * size 1, and a variety of offsets */ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 16, /* checker_size */ 1, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 5, /* edge_size */ 16, /* checker_size */ 1, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 15, /* edge_size */ 16, /* checker_size */ 1, dim_selected, expected_result); /* run test with edge size 10, checker * size 2, and a variety of offsets */ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 10, /* checker_size */ 2, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 5, /* edge_size */ 10, /* checker_size */ 2, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 9, /* edge_size */ 10, /* checker_size */ 2, dim_selected, expected_result); /* run test with edge size 10, checker * size 3, and a variety of offsets */ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 10, /* checker_size */ 3, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 5, /* edge_size */ 10, /* checker_size */ 3, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 9, /* edge_size */ 10, /* checker_size */ 3, dim_selected, expected_result); /* run test with edge size 8, checker * size 8, and a variety of offsets */ test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 8, /* checker_size */ 8, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 4, /* edge_size */ 8, /* checker_size */ 8, dim_selected, expected_result); test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank, /* offset */ 7, /* edge_size */ 8, /* checker_size */ 8, dim_selected, expected_result); z++; } while ((z < 2) && (large_rank >= 1)); y++; } while ((y < 2) && (large_rank >= 2)); x++; } while ((x < 2) && (large_rank >= 3)); w++; } while ((w < 2) && (large_rank >= 4)); v++; } while ((v < 2) && (large_rank >= 5)); } /* end for */ } /* end for */ } /* test_shape_same_dr__run_checkerboard_tests() */ /**************************************************************** ** ** test_shape_same_dr__irregular(): ** ** Tests selection of an "irregular" subset of a full ** n-cube dataspace vs an identical "irregular" subset ** of an n-dimensional slice of an m-cube (m > n). ** in a call to H5Sselect_shape_same(). ** ** Note that this test does not require the n-cube and the ** n-dimensional slice to have the same rank (although ** H5Sselect_shape_same() should always return FALSE if ** they don't). ** ****************************************************************/ static void test_shape_same_dr__irregular(int test_num, int small_rank, int large_rank, int pattern_offset, int slice_offset, hbool_t dim_selected[], hbool_t expected_result) { char test_desc_0[128]; char test_desc_1[256]; int edge_size = 10; int i; int j; int k; int dims_selected = 0; hid_t n_cube_0_sid; /* the hyper cube containing * an irregular selection */ hid_t n_cube_1_sid; /* the hyper cube in which a * slice contains an irregular * selection. */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t start_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 5}; hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_0[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; hsize_t block_0[SS_DR_MAX_RANK] = {2, 2, 2, 2, 3}; hsize_t start_1[SS_DR_MAX_RANK] = {2, 2, 2, 5, 2}; hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_1[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; hsize_t block_1[SS_DR_MAX_RANK] = {2, 2, 2, 3, 2}; hsize_t start_2[SS_DR_MAX_RANK] = {2, 2, 5, 2, 2}; hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_2[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; hsize_t block_2[SS_DR_MAX_RANK] = {2, 2, 3, 2, 2}; hsize_t start_3[SS_DR_MAX_RANK] = {2, 5, 2, 2, 2}; hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_3[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; hsize_t block_3[SS_DR_MAX_RANK] = {2, 3, 2, 2, 2}; hsize_t start_4[SS_DR_MAX_RANK] = {5, 2, 2, 2, 2}; hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_4[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; hsize_t block_4[SS_DR_MAX_RANK] = {3, 2, 2, 2, 2}; hsize_t clip_start[SS_DR_MAX_RANK] = {0, 0, 0, 0, 0}; hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t clip_count[SS_DR_MAX_RANK] = {1, 1, 1, 1, 1}; hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t *(starts[SS_DR_MAX_RANK]) = {start_0, start_1, start_2, start_3, start_4}; hsize_t *(strides[SS_DR_MAX_RANK]) = {stride_0, stride_1, stride_2, stride_3, stride_4}; hsize_t *(counts[SS_DR_MAX_RANK]) = {count_0, count_1, count_2, count_3, count_4}; hsize_t *(blocks[SS_DR_MAX_RANK]) = {block_0, block_1, block_2, block_3, block_4}; hsize_t start[SS_DR_MAX_RANK]; hsize_t *start_ptr; hsize_t stride[SS_DR_MAX_RANK]; hsize_t *stride_ptr; hsize_t count[SS_DR_MAX_RANK]; hsize_t *count_ptr; hsize_t block[SS_DR_MAX_RANK]; hsize_t *block_ptr; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ assert(0 < small_rank); assert(small_rank <= large_rank); assert(large_rank <= SS_DR_MAX_RANK); assert(9 <= edge_size); assert(edge_size <= 1000); assert(0 <= slice_offset); assert(slice_offset < edge_size); assert(-2 <= pattern_offset); assert(pattern_offset <= 2); for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) if (dim_selected[i] == TRUE) dims_selected++; assert(dims_selected >= 0); assert(dims_selected <= large_rank); HDsnprintf(test_desc_0, sizeof(test_desc_0), "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", test_num); MESSAGE(7, ("%s", test_desc_0)); /* This statement must be updated if SS_DR_MAX_RANK is changed */ HDsnprintf(test_desc_1, sizeof(test_desc_1), "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank, large_rank, edge_size, slice_offset, pattern_offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4], dims_selected); MESSAGE(7, ("%s", test_desc_1)); /* copy the edge size into the dims array */ for (i = 0; i < SS_DR_MAX_RANK; i++) dims[i] = (hsize_t)edge_size; /* Create the small n-cube */ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); /* Select an "irregular" pattern in the small n-cube. This * pattern can be though of a set of four 3 x 2 x 2 X 2 * four dimensional prisims, each parallel to one of the * axies and none of them intersecting with the other. * * In the lesser dimensional cases, this 4D pattern is * projected onto the lower dimensional space. * * In the 1-D case, the projection of the pattern looks * like this: * * - - * * - * * * - - * 0 1 2 3 4 5 6 7 8 9 x * * and in the 2-D case, it would look like this: * * * y * 9 - - - - - - - - - - * 8 - - - - - - - - - - * 7 - - * * - - - - - - * 6 - - * * - - - - - - * 5 - - * * - - - - - - * 4 - - - - - - - - - - * 3 - - * * - * * * - - * 2 - - * * - * * * - - * 1 - - - - - - - - - - * 0 - - - - - - - - - - * 0 1 2 3 4 5 6 7 8 9 x * * In both cases, asterisks indicate selected elements, * and dashes indicate unselected elements. * * Note that is this case, since the edge size is fixed, * the pattern does not change. However, we do use the * displacement parameter to allow it to be moved around * within the n-cube or hyperslab. */ /* first, ensure that the small n-cube has no selection */ ret = H5Sselect_none(n_cube_0_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* now, select the irregular pattern */ for (i = 0; i < SS_DR_MAX_RANK; i++) { ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, starts[i], strides[i], counts[i], blocks[i]); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* finally, clip the selection to ensure that it lies fully * within the n-cube. */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the large n-cube */ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); /* Ensure that the large n-cube has no selection */ H5Sselect_none(n_cube_1_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Since large rank may be less than SS_DR_MAX_RANK, we may not * use the entire start, stride, count, and block arrays. This * is a problem, since it is inconvenient to set up the dim_selected * array to reflect the large rank, and thus if large_rank < * SS_DR_MAX_RANK, we need to hide the lower index entries * from H5Sselect_hyperslab(). * * Do this by setting up pointers to the first valid entry in start, * stride, count, and block below, and pass these pointers in * to H5Sselect_hyperslab() instead of the array base addresses. */ i = SS_DR_MAX_RANK - large_rank; assert(i >= 0); start_ptr = &(start[i]); stride_ptr = &(stride[i]); count_ptr = &(count[i]); block_ptr = &(block[i]); /* Now select the irregular selection in the (possibly larger) n-cube. * * Basic idea is to project the pattern used in the smaller n-cube * onto the dimensions selected in the larger n-cube, with the displacement * specified. */ for (i = 0; i < SS_DR_MAX_RANK; i++) { j = 0; for (k = 0; k < SS_DR_MAX_RANK; k++) { if (dim_selected[k]) { start[k] = (starts[i])[j] + (hsize_t)pattern_offset; stride[k] = (strides[i])[j]; count[k] = (counts[i])[j]; block[k] = (blocks[i])[j]; j++; } /* end if */ else { start[k] = (hsize_t)slice_offset; stride[k] = (hsize_t)(2 * edge_size); count[k] = 1; block[k] = 1; } /* end else */ } /* end for */ /* select the hyperslab */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* it is possible that the selection extends beyond the dataspace. * clip the selection to ensure that it doesn't. */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the test: */ check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid); VERIFY(check, expected_result, "H5Sselect_shape_same"); /* Close dataspaces */ ret = H5Sclose(n_cube_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(n_cube_1_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__irregular() */ /**************************************************************** ** ** test_shape_same_dr__run_irregular_tests(): ** ** In this set of tests, we test H5Sselect_shape_same() ** with an "irregular" subselection of 1, 2, 3, and 4 cubes as ** one parameter, and irregular subselections of 1, 2, 3, ** and 4 dimensional slices through a n-cube of rank no more ** than 5 (and at least the rank of the slice) as the other. ** Note that the "irregular" selection may be offset between ** the n-cube and the slice. ** ** All the irregular selections will be identical (modulo rank) ** so H5Sselect_shape_same() should return true iff: ** ** 1) the rank of the n cube equals the number of dimensions ** selected in the irregular slice through the m-cube ** (m >= n). ** ** 2) The dimensions selected in the irregular slice ** through the m-cube are the dimensions with the most ** quickly changing indices. ** ****************************************************************/ static void test_shape_same_dr__run_irregular_tests(void) { hbool_t dim_selected[5]; hbool_t expected_result; int i, j; int v, w, x, y, z; int test_num = 0; int small_rank; int large_rank; for (large_rank = 1; large_rank <= 5; large_rank++) { for (small_rank = 1; small_rank <= large_rank; small_rank++) { v = 0; do { if (v == 0) dim_selected[0] = FALSE; else dim_selected[0] = TRUE; w = 0; do { if (w == 0) dim_selected[1] = FALSE; else dim_selected[1] = TRUE; x = 0; do { if (x == 0) dim_selected[2] = FALSE; else dim_selected[2] = TRUE; y = 0; do { if (y == 0) dim_selected[3] = FALSE; else dim_selected[3] = TRUE; z = 0; do { if (z == 0) dim_selected[4] = FALSE; else dim_selected[4] = TRUE; /* compute the expected result: */ i = 0; j = 4; expected_result = TRUE; while ((i < small_rank) && expected_result) { if (!dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ while ((i < large_rank) && expected_result) { if (dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ /* everything is set up -- run the tests */ test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ -2, /* slice_offset */ 0, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ -2, /* slice_offset */ 4, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ -2, /* slice_offset */ 9, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ 0, /* slice_offset */ 0, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ 0, /* slice_offset */ 6, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ 0, /* slice_offset */ 9, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ 2, /* slice_offset */ 0, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ 2, /* slice_offset */ 5, dim_selected, expected_result); test_shape_same_dr__irregular(test_num++, small_rank, large_rank, /* pattern_offset */ 2, /* slice_offset */ 9, dim_selected, expected_result); z++; } while ((z < 2) && (large_rank >= 1)); y++; } while ((y < 2) && (large_rank >= 2)); x++; } while ((x < 2) && (large_rank >= 3)); w++; } while ((w < 2) && (large_rank >= 4)); v++; } while ((v < 2) && (large_rank >= 5)); } /* end for */ } /* end for */ } /* test_shape_same_dr__run_irregular_tests() */ /**************************************************************** ** ** test_shape_same_dr(): Tests selections on dataspace with ** different ranks, to verify that "shape same" routine ** is now handling this case correctly. ** ****************************************************************/ static void test_shape_same_dr(void) { /* Output message about test being performed */ MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n")); /* first run some smoke checks */ test_shape_same_dr__smoke_check_1(); test_shape_same_dr__smoke_check_2(); test_shape_same_dr__smoke_check_3(); test_shape_same_dr__smoke_check_4(); /* now run more intensive tests. */ test_shape_same_dr__run_full_space_vs_slice_tests(); test_shape_same_dr__run_checkerboard_tests(); test_shape_same_dr__run_irregular_tests(); } /* test_shape_same_dr() */ /**************************************************************** ** ** test_space_rebuild(): Tests selection rebuild routine, ** We will test whether selection in span-tree form can be rebuilt ** into a regular selection. ** ** ****************************************************************/ static void test_space_rebuild(void) { /* regular space IDs in span-tree form */ hid_t sid_reg1, sid_reg2, sid_reg3, sid_reg4, sid_reg5; /* Original regular Space IDs */ hid_t sid_reg_ori1, sid_reg_ori2, sid_reg_ori3, sid_reg_ori4, sid_reg_ori5; /* Irregular space IDs */ hid_t sid_irreg1, sid_irreg2, sid_irreg3, sid_irreg4, sid_irreg5; /* rebuild status state */ #if 0 H5S_diminfo_valid_t rebuild_stat1, rebuild_stat2; htri_t rebuild_check; #endif herr_t ret; /* dimensions of rank 1 to rank 5 */ hsize_t dims1[] = {SPACERE1_DIM0}; hsize_t dims2[] = {SPACERE2_DIM0, SPACERE2_DIM1}; hsize_t dims3[] = {SPACERE3_DIM0, SPACERE3_DIM1, SPACERE3_DIM2}; hsize_t dims4[] = {SPACERE4_DIM0, SPACERE4_DIM1, SPACERE4_DIM2, SPACERE4_DIM3}; hsize_t dims5[] = {SPACERE5_DIM0, SPACERE5_DIM1, SPACERE5_DIM2, SPACERE5_DIM3, SPACERE5_DIM4}; /* The start of the hyperslab */ hsize_t start1[SPACERE1_RANK], start2[SPACERE2_RANK], start3[SPACERE3_RANK], start4[SPACERE4_RANK], start5[SPACERE5_RANK]; /* The stride of the hyperslab */ hsize_t stride1[SPACERE1_RANK], stride2[SPACERE2_RANK], stride3[SPACERE3_RANK], stride4[SPACERE4_RANK], stride5[SPACERE5_RANK]; /* The number of blocks for the hyperslab */ hsize_t count1[SPACERE1_RANK], count2[SPACERE2_RANK], count3[SPACERE3_RANK], count4[SPACERE4_RANK], count5[SPACERE5_RANK]; /* The size of each block for the hyperslab */ hsize_t block1[SPACERE1_RANK], block2[SPACERE2_RANK], block3[SPACERE3_RANK], block4[SPACERE4_RANK], block5[SPACERE5_RANK]; /* Declarations for special test of rebuild */ hid_t sid_spec; /* Output message about test being performed */ MESSAGE(6, ("Testing functionality to rebuild regular hyperslab selection\n")); MESSAGE(7, ("Testing functionality to rebuild 1-D hyperslab selection\n")); /* Create 1-D dataspace */ sid_reg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL); sid_reg_ori1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL); /* Build up the original one dimensional regular selection */ start1[0] = 1; count1[0] = 3; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_reg_ori1, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up one dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start1[0] = 1; count1[0] = 2; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start1[0] = 11; count1[0] = 1; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_reg1, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 and rebuild_stat2 should be * H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (ret != FAIL) { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5Sselect_shape_same(sid_reg1, sid_reg_ori1); CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); } #endif /* For irregular hyperslab */ sid_irreg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL); /* Build up one dimensional irregular selection with H5_SELECT_OR */ start1[0] = 1; count1[0] = 2; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start1[0] = 12; /* Just one position switch */ count1[0] = 1; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_irreg1, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif MESSAGE(7, ("Testing functionality to rebuild 2-D hyperslab selection\n")); /* Create 2-D dataspace */ sid_reg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL); sid_reg_ori2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL); /* Build up the original two dimensional regular selection */ start2[0] = 2; count2[0] = 2; stride2[0] = 7; block2[0] = 5; start2[1] = 1; count2[1] = 3; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_reg_ori2, H5S_SELECT_SET, start2, stride2, count2, block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up two dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start2[1] = 1; count2[1] = 2; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_SET, start2, stride2, count2, block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start2[1] = 7; /* 7 = start(1) + count(2) * stride(3) */ count2[1] = 1; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_OR, start2, stride2, count2, block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_reg2, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 and rebuild_stat2 should be * H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* end if */ if (ret != FAIL) { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5Sselect_shape_same(sid_reg2, sid_reg_ori2); CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); } #endif /* 2-D irregular case */ sid_irreg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL); /* Build up two dimensional irregular selection with H5_SELECT_OR */ start2[0] = 2; count2[0] = 2; stride2[0] = 7; block2[0] = 5; start2[1] = 1; count2[1] = 1; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_SET, start2, stride2, count2, block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start2[1] = 4; count2[1] = 2; stride2[1] = 4; block2[1] = 3; /* Just add one element for the block */ ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_OR, start2, stride2, count2, block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_irreg2, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif MESSAGE(7, ("Testing functionality to rebuild 3-D hyperslab selection\n")); /* Create 3-D dataspace */ sid_reg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL); sid_reg_ori3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL); /* Build up the original three dimensional regular selection */ start3[0] = 2; count3[0] = 2; stride3[0] = 3; block3[0] = 2; start3[1] = 1; count3[1] = 3; stride3[1] = 3; block3[1] = 2; start3[2] = 1; count3[2] = 2; stride3[2] = 4; block3[2] = 2; ret = H5Sselect_hyperslab(sid_reg_ori3, H5S_SELECT_SET, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up three dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start3[2] = 1; count3[2] = 1; stride3[2] = 4; block3[2] = 2; ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_SET, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start3[2] = 5; count3[2] = 1; stride3[2] = 4; block3[2] = 2; ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_OR, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_reg3, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 and rebuild_stat2 should be * H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (ret != FAIL) { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5Sselect_shape_same(sid_reg3, sid_reg_ori3); CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); } #endif sid_irreg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL); /* Build up three dimensional irregular selection with H5_SELECT_OR */ start3[0] = 2; count3[0] = 2; stride3[0] = 3; block3[0] = 2; start3[1] = 1; count3[1] = 3; stride3[1] = 3; block3[1] = 2; start3[2] = 1; count3[2] = 2; stride3[2] = 2; block3[2] = 1; ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_SET, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start3[2] = 3; count3[2] = 2; stride3[2] = 3; /* Just add one element for the stride */ block3[2] = 1; ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_OR, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_irreg3, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif MESSAGE(7, ("Testing functionality to rebuild 4-D hyperslab selection\n")); /* Create 4-D dataspace */ sid_reg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL); sid_reg_ori4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL); /* Build up the original four dimensional regular selection */ start4[0] = 2; count4[0] = 2; stride4[0] = 3; block4[0] = 2; start4[1] = 1; count4[1] = 3; stride4[1] = 3; block4[1] = 2; start4[2] = 1; count4[2] = 2; stride4[2] = 4; block4[2] = 2; start4[3] = 1; count4[3] = 2; stride4[3] = 4; block4[3] = 2; ret = H5Sselect_hyperslab(sid_reg_ori4, H5S_SELECT_SET, start4, stride4, count4, block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start4[3] = 1; count4[3] = 1; stride4[3] = 4; block4[3] = 2; ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_SET, start4, stride4, count4, block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start4[3] = 5; count4[3] = 1; stride4[3] = 4; block4[3] = 2; ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_OR, start4, stride4, count4, block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_reg4, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 and rebuild_stat2 should be * H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (ret != FAIL) { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5Sselect_shape_same(sid_reg4, sid_reg_ori4); CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); } #endif /* Testing irregular selection */ sid_irreg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL); /* Build up four dimensional irregular selection with H5_SELECT_OR */ start4[0] = 2; count4[0] = 2; stride4[0] = 3; block4[0] = 2; start4[1] = 1; count4[1] = 3; stride4[1] = 3; block4[1] = 2; start4[2] = 1; count4[2] = 1; stride4[2] = 4; block4[2] = 2; start4[3] = 1; count4[3] = 2; stride4[3] = 4; block4[3] = 2; /* sub-block is one element difference */ ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_SET, start4, stride4, count4, block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start4[2] = 5; count4[2] = 1; stride4[2] = 4; block4[2] = 2; start4[3] = 1; count4[3] = 2; stride4[3] = 4; block4[3] = 3; /* sub-block is one element difference */ ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_OR, start4, stride4, count4, block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_irreg4, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif MESSAGE(7, ("Testing functionality to rebuild 5-D hyperslab selection\n")); /* Create 5-D dataspace */ sid_reg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL); sid_reg_ori5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL); /* Build up the original five dimensional regular selection */ start5[0] = 2; count5[0] = 2; stride5[0] = 3; block5[0] = 2; start5[1] = 1; count5[1] = 3; stride5[1] = 3; block5[1] = 2; start5[2] = 1; count5[2] = 2; stride5[2] = 4; block5[2] = 2; start5[3] = 1; count5[3] = 2; stride5[3] = 4; block5[3] = 2; start5[4] = 1; count5[4] = 2; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_reg_ori5, H5S_SELECT_SET, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up five dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start5[4] = 1; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_SET, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start5[4] = 5; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_OR, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_reg5, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 and rebuild_stat2 should be * H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (ret != FAIL) { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5Sselect_shape_same(sid_reg5, sid_reg_ori5); CHECK(rebuild_check, FALSE, "H5Sselect_shape_same"); } #endif sid_irreg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL); /* Build up five dimensional irregular selection with H5_SELECT_OR */ start5[0] = 2; count5[0] = 2; stride5[0] = 3; block5[0] = 2; start5[1] = 1; count5[1] = 3; stride5[1] = 3; block5[1] = 2; start5[2] = 1; count5[2] = 2; stride5[2] = 4; block5[2] = 2; start5[3] = 1; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 2; /* One element difference */ count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_SET, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start5[3] = 5; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 1; /* One element difference */ count5[4] = 2; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_OR, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_irreg5, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif /* We use 5-D to test a special case with rebuilding routine TRUE, FALSE and TRUE */ sid_spec = H5Screate_simple(SPACERE5_RANK, dims5, NULL); /* Build up the original five dimensional regular selection */ start5[0] = 2; count5[0] = 2; stride5[0] = 3; block5[0] = 2; start5[1] = 1; count5[1] = 3; stride5[1] = 3; block5[1] = 2; start5[2] = 1; count5[2] = 2; stride5[2] = 4; block5[2] = 2; start5[3] = 1; count5[3] = 2; stride5[3] = 4; block5[3] = 2; start5[4] = 1; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_SET, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 and rebuild_stat2 should both be * H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif /* Adding some selections to make it real irregular */ start5[3] = 1; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 5; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif /* Add more selections to make it regular again */ start5[3] = 5; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 5; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and * rebuild_stat2 should be H5S_DIMINFO_VALID_YES. */ if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* No need to do shape comparison */ #endif H5Sclose(sid_reg1); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg1); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg2); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg2); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg3); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg3); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg4); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg4); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg5); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg5); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_spec); CHECK(ret, FAIL, "H5Sclose"); } /**************************************************************** ** ** test_space_update_diminfo(): Tests selection diminfo update ** routine. We will test whether regular selections can be ** quickly updated when the selection is modified. ** ** ****************************************************************/ static void test_space_update_diminfo(void) { hid_t space_id; /* Dataspace id */ #if 0 H5S_diminfo_valid_t diminfo_valid; /* Diminfo status */ H5S_diminfo_valid_t rebuild_status; /* Diminfo status after rebuid */ #endif H5S_sel_type sel_type; /* Selection type */ herr_t ret; /* Return value */ /* dimensions of rank 1 to rank 5 */ hsize_t dims1[] = {SPACEUD1_DIM0}; hsize_t dims3[] = {SPACEUD3_DIM0, SPACEUD3_DIM1, SPACEUD3_DIM2}; /* The start of the hyperslab */ hsize_t start1[1], start3[3]; /* The stride of the hyperslab */ hsize_t stride1[1], stride3[3]; /* The number of blocks for the hyperslab */ hsize_t count1[1], count3[3]; /* The size of each block for the hyperslab */ hsize_t block1[1], block3[3]; /* Output message about test being performed */ MESSAGE(6, ("Testing functionality to update hyperslab dimension info\n")); MESSAGE(7, ("Testing functionality to update 1-D hyperslab dimension info\n")); /* * Test adding regularly spaced distinct blocks */ /* Create 1-D dataspace */ space_id = H5Screate_simple(1, dims1, NULL); /* Create single block */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block after first, with OR */ start1[0] = 6; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block before first, this time with XOR */ start1[0] = 0; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add two blocks after current block */ start1[0] = 9; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add two blocks overlapping current block, with OR */ start1[0] = 9; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add two blocks partially overlapping current block, with OR */ start1[0] = 12; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add two blocks partially overlapping current block, with XOR */ start1[0] = 15; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO, after rebuild it should be IMPOSSIBLE */ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ if (rebuild_status != H5S_DIMINFO_VALID_IMPOSSIBLE) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* end if */ #endif /* Fill in missing block */ start1[0] = 15; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO, after rebuild it should be YES */ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ if (rebuild_status != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* end if */ #endif /* * Test adding contiguous blocks */ /* Create single block */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block immediately after first, with OR */ start1[0] = 5; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block immediately before first, with XOR */ start1[0] = 1; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add differently size block immediately after current, with OR */ start1[0] = 7; count1[0] = 1; block1[0] = 7; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* * Test adding overlapping blocks */ /* Create single block */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block completely overlapping first, with OR */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block partially overlapping first, with OR */ start1[0] = 4; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block completely enclosing current, with OR */ start1[0] = 2; count1[0] = 1; block1[0] = 5; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add block completely enclosed by current, with OR */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add equally sized block partially overlapping current, with XOR */ start1[0] = 3; count1[0] = 1; block1[0] = 5; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Fill in hole in block */ start1[0] = 3; count1[0] = 1; block1[0] = 4; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO, after rebuild it should be YES */ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ if (rebuild_status != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* end if */ #endif /* Add differently sized block partially overlapping current, with XOR */ start1[0] = 4; count1[0] = 1; block1[0] = 5; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Fill in hole in block */ start1[0] = 4; count1[0] = 1; block1[0] = 4; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO, after rebuild it should be YES */ ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status); CHECK(ret, FAIL, "H5S__get_rebuild_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ if (rebuild_status != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_rebuild"); } /* end if */ #endif /* Add block completely overlapping current, with XOR */ start1[0] = 2; count1[0] = 1; block1[0] = 7; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); sel_type = H5Sget_select_type(space_id); VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type"); /* * Test various conditions that break the fast algorithm */ /* Create multiple blocks */ start1[0] = 3; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create single block with start out of phase */ start1[0] = 8; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks */ start1[0] = 3; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks with start out of phase */ start1[0] = 8; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks */ start1[0] = 3; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks with wrong stride */ start1[0] = 9; stride1[0] = 4; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create single block */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create single block with wrong size */ start1[0] = 6; count1[0] = 1; block1[0] = 1; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create single block */ start1[0] = 3; count1[0] = 1; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks with wrong size */ start1[0] = 6; stride1[0] = 3; count1[0] = 2; block1[0] = 1; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks */ start1[0] = 3; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create single block with wrong size */ start1[0] = 9; count1[0] = 1; block1[0] = 1; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks */ start1[0] = 3; stride1[0] = 3; count1[0] = 2; block1[0] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks with wrong size */ start1[0] = 9; stride1[0] = 3; count1[0] = 2; block1[0] = 1; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif ret = H5Sclose(space_id); CHECK(ret, FAIL, "H5Sclose"); MESSAGE(7, ("Testing functionality to update 3-D hyperslab dimension info\n")); /* Create 3-D dataspace */ space_id = H5Screate_simple(3, dims3, NULL); /* Create multiple blocks */ start3[0] = 0; start3[1] = 1; start3[2] = 2; stride3[0] = 2; stride3[1] = 3; stride3[2] = 4; count3[0] = 4; count3[1] = 3; count3[2] = 2; block3[0] = 1; block3[1] = 2; block3[2] = 3; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add blocks with same values in all dimensions */ ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add blocks with same values in two dimensions */ start3[0] = 8; stride3[0] = 1; count3[0] = 1; block3[0] = 1; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks */ start3[0] = 0; start3[1] = 1; start3[2] = 2; stride3[0] = 2; stride3[1] = 3; stride3[2] = 4; count3[0] = 4; count3[1] = 3; count3[2] = 2; block3[0] = 1; block3[1] = 2; block3[2] = 3; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add blocks with same values in one dimension */ start3[0] = 8; start3[1] = 10; stride3[0] = 1; stride3[1] = 1; count3[0] = 1; count3[1] = 1; block3[0] = 1; block3[1] = 2; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Create multiple blocks */ start3[0] = 0; start3[1] = 1; start3[2] = 2; stride3[0] = 2; stride3[1] = 3; stride3[2] = 4; count3[0] = 4; count3[1] = 3; count3[2] = 2; block3[0] = 1; block3[1] = 2; block3[2] = 3; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be YES */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_YES) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif /* Add blocks with same values in no dimensions */ start3[0] = 8; start3[1] = 10; start3[2] = 10; stride3[0] = 1; stride3[1] = 1; stride3[2] = 1; count3[0] = 1; count3[1] = 1; count3[2] = 1; block3[0] = 1; block3[1] = 2; block3[2] = 3; ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); #if 0 /* diminfo_valid should be NO */ ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid); CHECK(ret, FAIL, "H5S__get_diminfo_status_test"); if (diminfo_valid != H5S_DIMINFO_VALID_NO) { ret = FAIL; CHECK(ret, FAIL, "H5S_hyper_update_diminfo"); } /* end if */ #endif ret = H5Sclose(space_id); CHECK(ret, FAIL, "H5Sclose"); } /* end test_space_update_diminfo() */ /**************************************************************** ** ** test_select_hyper_chunk_offset(): Tests selections on dataspace, ** verify that offsets for hyperslab selections are working in ** chunked datasets. ** ****************************************************************/ #if 0 static void test_select_hyper_chunk_offset(void) { hid_t fid; /* File ID */ hid_t sid; /* Dataspace ID */ hid_t msid; /* Memory dataspace ID */ hid_t did; /* Dataset ID */ const hsize_t mem_dims[1] = {SPACE10_DIM1}; /* Dataspace dimensions for memory */ const hsize_t dims[1] = {0}; /* Dataspace initial dimensions */ const hsize_t maxdims[1] = {H5S_UNLIMITED}; /* Dataspace mam dims */ int *wbuf; /* Buffer for writing data */ int *rbuf; /* Buffer for reading data */ hid_t dcpl; /* Dataset creation property list ID */ hsize_t chunks[1] = {SPACE10_CHUNK_SIZE}; /* Chunk size */ hsize_t start[1] = {0}; /* The start of the hyperslab */ hsize_t count[1] = {SPACE10_CHUNK_SIZE}; /* The size of the hyperslab */ int i, j; /* Local index */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n")); /* Allocate buffers */ wbuf = (int *)malloc(sizeof(int) * SPACE10_DIM1); CHECK_PTR(wbuf, "malloc"); rbuf = (int *)calloc(sizeof(int), SPACE10_DIM1); CHECK_PTR(rbuf, "calloc"); /* Initialize the write buffer */ for (i = 0; i < SPACE10_DIM1; i++) wbuf[i] = i; /* Create file */ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid, FAIL, "H5Fcreate"); /* Create a dataset creation property list */ dcpl = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl, FAIL, "H5Pcreate"); /* Set to chunked storage layout */ ret = H5Pset_layout(dcpl, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); /* Set the chunk size */ ret = H5Pset_chunk(dcpl, 1, chunks); CHECK(ret, FAIL, "H5Pset_chunk"); /* Create dataspace for memory */ msid = H5Screate_simple(1, mem_dims, NULL); CHECK(msid, FAIL, "H5Screate_simple"); /* Select the correct chunk in the memory dataspace */ ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for dataset */ sid = H5Screate_simple(1, dims, maxdims); CHECK(sid, FAIL, "H5Screate_simple"); /* Create the dataset */ did = H5Dcreate2(fid, "fooData", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); CHECK(did, FAIL, "H5Dcreate2"); /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); /* Close the dataset creation property list */ ret = H5Pclose(dcpl); CHECK(ret, FAIL, "H5Pclose"); /* Loop over writing out each chunk */ for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) { hssize_t offset[1]; /* Offset of selection */ hid_t fsid; /* File dataspace ID */ hsize_t size[1]; /* The size to extend the dataset to */ /* Extend the dataset */ size[0] = (hsize_t)i; /* The size to extend the dataset to */ ret = H5Dset_extent(did, size); CHECK(ret, FAIL, "H5Dset_extent"); /* Get the (extended) dataspace from the dataset */ fsid = H5Dget_space(did); CHECK(fsid, FAIL, "H5Dget_space"); /* Select the correct chunk in the dataset */ ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Set the selection offset for the file dataspace */ offset[0] = i - SPACE10_CHUNK_SIZE; ret = H5Soffset_simple(fsid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Set the selection offset for the memory dataspace */ offset[0] = SPACE10_DIM1 - i; ret = H5Soffset_simple(msid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Write the data to the chunk */ ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close the file dataspace copy */ ret = H5Sclose(fsid); CHECK(ret, FAIL, "H5Sclose"); } /* Read the data back in */ ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Verify the information read in */ for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) for (j = 0; j < SPACE10_CHUNK_SIZE; j++) if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j]) TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j, rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]); /* Check with 'OR'ed set of hyperslab selections, which makes certain the * hyperslab spanlist code gets tested. -QAK */ /* Re-initialize the write buffer */ for (i = 0; i < SPACE10_DIM1; i++) wbuf[i] = i * 2; /* Change the selected the region in the memory dataspace */ start[0] = 0; count[0] = SPACE10_CHUNK_SIZE / 3; ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = (2 * SPACE10_CHUNK_SIZE) / 3; ret = H5Sselect_hyperslab(msid, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Loop over writing out each chunk */ for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) { hssize_t offset[1]; /* Offset of selection */ hid_t fsid; /* File dataspace ID */ hsize_t size[1]; /* The size to extend the dataset to */ /* Extend the dataset */ size[0] = (hsize_t)i; /* The size to extend the dataset to */ ret = H5Dset_extent(did, size); CHECK(ret, FAIL, "H5Dset_extent"); /* Get the (extended) dataspace from the dataset */ fsid = H5Dget_space(did); CHECK(fsid, FAIL, "H5Dget_space"); /* Select the correct region in the dataset */ start[0] = 0; ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = (2 * SPACE10_CHUNK_SIZE) / 3; ret = H5Sselect_hyperslab(fsid, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Set the selection offset for the file dataspace */ offset[0] = i - SPACE10_CHUNK_SIZE; ret = H5Soffset_simple(fsid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Set the selection offset for the memory dataspace */ offset[0] = SPACE10_DIM1 - i; ret = H5Soffset_simple(msid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Write the data to the chunk */ ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Soffset_simple"); /* Close the file dataspace copy */ ret = H5Sclose(fsid); CHECK(ret, FAIL, "H5Sclose"); } /* Read the data back in */ ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Soffset_simple"); /* Verify the information read in */ for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) for (j = 0; j < SPACE10_CHUNK_SIZE; j++) /* We're not writing out the "middle" of each chunk, so don't check that */ if (j < (SPACE10_CHUNK_SIZE / 3) || j >= ((2 * SPACE10_CHUNK_SIZE) / 3)) if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j]) TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j, rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]); /* Close the memory dataspace */ ret = H5Sclose(msid); CHECK(ret, FAIL, "H5Sclose"); /* Close the dataset */ ret = H5Dclose(did); CHECK(ret, FAIL, "H5Dclose"); /* Close the file */ ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); /* Free the buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_chunk_offset() */ #endif /**************************************************************** ** ** test_select_hyper_chunk_offset2(): Tests selections on dataspace, ** another test to verify that offsets for hyperslab selections are ** working in chunked datasets. ** ****************************************************************/ #if 0 static void test_select_hyper_chunk_offset2(void) { hid_t file, dataset; /* handles */ hid_t dataspace; hid_t memspace; hid_t dcpl; /* Dataset creation property list */ herr_t status; unsigned data_out[SPACE12_DIM0]; /* output buffer */ unsigned data_in[SPACE12_CHUNK_DIM0]; /* input buffer */ hsize_t dims[SPACE12_RANK] = {SPACE12_DIM0}; /* Dimension size */ hsize_t chunk_dims[SPACE12_RANK] = {SPACE12_CHUNK_DIM0}; /* Chunk size */ hsize_t start[SPACE12_RANK]; /* Start of hyperslab */ hsize_t count[SPACE12_RANK]; /* Size of hyperslab */ hssize_t offset[SPACE12_RANK]; /* hyperslab offset in the file */ unsigned u, v; /* Local index variables */ /* Output message about test being performed */ MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n")); /* Initialize data to write out */ for (u = 0; u < SPACE12_DIM0; u++) data_out[u] = u; /* Create the file */ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(file, FAIL, "H5Fcreate"); /* Create dataspace */ dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* Create dataset creation property list */ dcpl = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl, FAIL, "H5Pcreate"); /* Set chunk sizes */ status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims); CHECK(status, FAIL, "H5Pset_chunk"); /* Create dataset */ dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Close DCPL */ status = H5Pclose(dcpl); CHECK(status, FAIL, "H5Pclose"); /* Write out entire dataset */ status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out); CHECK(status, FAIL, "H5Dclose"); /* Create memory dataspace (same size as a chunk) */ memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* * Define hyperslab in the file dataspace. */ start[0] = 0; count[0] = SPACE12_CHUNK_DIM0; status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(status, FAIL, "H5Sselect_hyperslab"); /* Loop through retrieving data from file, checking it against data written */ for (u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) { /* Set the offset of the file selection */ offset[0] = u; status = H5Soffset_simple(dataspace, offset); CHECK(status, FAIL, "H5Soffset_simple"); /* Read in buffer of data */ status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace, H5P_DEFAULT, data_in); CHECK(status, FAIL, "H5Dread"); /* Check data read in */ for (v = 0; v < SPACE12_CHUNK_DIM0; v++) if (data_out[u + v] != data_in[v]) TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n", (unsigned)(u + v), data_out[u + v], v, data_in[v]); } /* end for */ status = H5Dclose(dataset); CHECK(status, FAIL, "H5Dclose"); status = H5Sclose(dataspace); CHECK(status, FAIL, "H5Sclose"); status = H5Sclose(memspace); CHECK(status, FAIL, "H5Sclose"); status = H5Fclose(file); CHECK(status, FAIL, "H5Fclose"); } /* test_select_hyper_chunk_offset2() */ #endif /**************************************************************** ** ** test_select_bounds(): Tests selection bounds on dataspaces, ** both with and without offsets. ** ****************************************************************/ static void test_select_bounds(void) { hid_t sid; /* Dataspace ID */ const hsize_t dims[SPACE11_RANK] = {SPACE11_DIM1, SPACE11_DIM2}; /* Dataspace dimensions */ hsize_t coord[SPACE11_NPOINTS][SPACE11_RANK]; /* Coordinates for point selection */ hsize_t start[SPACE11_RANK]; /* The start of the hyperslab */ hsize_t stride[SPACE11_RANK]; /* The stride between block starts for the hyperslab */ hsize_t count[SPACE11_RANK]; /* The number of blocks for the hyperslab */ hsize_t block[SPACE11_RANK]; /* The size of each block for the hyperslab */ hssize_t offset[SPACE11_RANK]; /* Offset amount for selection */ hsize_t low_bounds[SPACE11_RANK]; /* The low bounds for the selection */ hsize_t high_bounds[SPACE11_RANK]; /* The high bounds for the selection */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing selection bounds\n")); /* Create dataspace */ sid = H5Screate_simple(SPACE11_RANK, dims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Get bounds for 'all' selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 0, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds"); /* Set offset for selection */ offset[0] = 1; offset[1] = 1; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for 'all' selection with offset (which should be ignored) */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 0, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Set 'none' selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Get bounds for 'none' selection */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set point selection */ coord[0][0] = 3; coord[0][1] = 3; coord[1][0] = 3; coord[1][1] = 96; coord[2][0] = 96; coord[2][1] = 3; coord[3][0] = 96; coord[3][1] = 96; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE11_NPOINTS, (const hsize_t *)coord); CHECK(ret, FAIL, "H5Sselect_elements"); /* Get bounds for point selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 3, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 3, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 4, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 4, "H5Sget_select_bounds"); /* Set bad offset for selection */ offset[0] = 5; offset[1] = -5; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with negative offset */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set valid offset for selection */ offset[0] = 2; offset[1] = -2; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for point selection with offset */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 5, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 1, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 2, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 6, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Set "regular" hyperslab selection */ start[0] = 2; start[1] = 2; stride[0] = 10; stride[1] = 10; count[0] = 4; count[1] = 4; block[0] = 5; block[1] = 5; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Get bounds for hyperslab selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 2, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 2, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 36, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 36, "H5Sget_select_bounds"); /* Set bad offset for selection */ offset[0] = 5; offset[1] = -5; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with negative offset */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set valid offset for selection */ offset[0] = 5; offset[1] = -2; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with offset */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 7, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 41, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 34, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Make "irregular" hyperslab selection */ start[0] = 20; start[1] = 20; stride[0] = 20; stride[1] = 20; count[0] = 2; count[1] = 2; block[0] = 10; block[1] = 10; ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Get bounds for hyperslab selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 2, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 2, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 49, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 49, "H5Sget_select_bounds"); /* Set bad offset for selection */ offset[0] = 5; offset[1] = -5; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with negative offset */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set valid offset for selection */ offset[0] = 5; offset[1] = -2; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with offset */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 7, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 54, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 47, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_select_bounds() */ /**************************************************************** ** ** test_hyper_regular(): Tests query operations on regular hyperslabs ** ****************************************************************/ static void test_hyper_regular(void) { hid_t sid; /* Dataspace ID */ const hsize_t dims[SPACE13_RANK] = {SPACE13_DIM1, SPACE13_DIM2, SPACE13_DIM3}; /* Dataspace dimensions */ hsize_t coord[SPACE13_NPOINTS][SPACE13_RANK]; /* Coordinates for point selection */ hsize_t start[SPACE13_RANK]; /* The start of the hyperslab */ hsize_t stride[SPACE13_RANK]; /* The stride between block starts for the hyperslab */ hsize_t count[SPACE13_RANK]; /* The number of blocks for the hyperslab */ hsize_t block[SPACE13_RANK]; /* The size of each block for the hyperslab */ hsize_t t_start[SPACE13_RANK]; /* Temporary start of the hyperslab */ hsize_t t_count[SPACE13_RANK]; /* Temporary number of blocks for the hyperslab */ hsize_t q_start[SPACE13_RANK]; /* The queried start of the hyperslab */ hsize_t q_stride[SPACE13_RANK]; /* The queried stride between block starts for the hyperslab */ hsize_t q_count[SPACE13_RANK]; /* The queried number of blocks for the hyperslab */ hsize_t q_block[SPACE13_RANK]; /* The queried size of each block for the hyperslab */ htri_t is_regular; /* Whether a hyperslab selection is regular */ unsigned u; /* Local index variable */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing queries on regular hyperslabs\n")); /* Create dataspace */ sid = H5Screate_simple(SPACE13_RANK, dims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Query if 'all' selection is regular hyperslab (should fail) */ H5E_BEGIN_TRY { is_regular = H5Sis_regular_hyperslab(sid); } H5E_END_TRY; VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab"); /* Query regular hyperslab selection info (should fail) */ H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); /* Set 'none' selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Query if 'none' selection is regular hyperslab (should fail) */ H5E_BEGIN_TRY { is_regular = H5Sis_regular_hyperslab(sid); } H5E_END_TRY; VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab"); /* Query regular hyperslab selection info (should fail) */ H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); /* Set point selection */ coord[0][0] = 3; coord[0][1] = 3; coord[0][2] = 3; coord[1][0] = 3; coord[1][1] = 48; coord[1][2] = 48; coord[2][0] = 48; coord[2][1] = 3; coord[2][2] = 3; coord[3][0] = 48; coord[3][1] = 48; coord[3][2] = 48; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE13_NPOINTS, (const hsize_t *)coord); CHECK(ret, FAIL, "H5Sselect_elements"); /* Query if 'point' selection is regular hyperslab (should fail) */ H5E_BEGIN_TRY { is_regular = H5Sis_regular_hyperslab(sid); } H5E_END_TRY; VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab"); /* Query regular hyperslab selection info (should fail) */ H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); /* Set "regular" hyperslab selection */ start[0] = 2; start[1] = 2; start[2] = 2; stride[0] = 5; stride[1] = 5; stride[2] = 5; count[0] = 3; count[1] = 3; count[2] = 3; block[0] = 4; block[1] = 4; block[2] = 4; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */ is_regular = H5Sis_regular_hyperslab(sid); VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab"); /* Retrieve the hyperslab parameters */ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); CHECK(ret, FAIL, "H5Sget_regular_hyperslab"); /* Verify the hyperslab parameters */ for (u = 0; u < SPACE13_RANK; u++) { if (start[u] != q_start[u]) ERROR("H5Sget_regular_hyperslab, start"); if (stride[u] != q_stride[u]) ERROR("H5Sget_regular_hyperslab, stride"); if (count[u] != q_count[u]) ERROR("H5Sget_regular_hyperslab, count"); if (block[u] != q_block[u]) ERROR("H5Sget_regular_hyperslab, block"); } /* end for */ /* 'OR' in another point */ t_start[0] = 0; t_start[1] = 0; t_start[2] = 0; t_count[0] = 1; t_count[1] = 1; t_count[2] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, t_start, NULL, t_count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Query if 'hyperslab' selection is regular hyperslab (should be FALSE) */ is_regular = H5Sis_regular_hyperslab(sid); VERIFY(is_regular, FALSE, "H5Sis_regular_hyperslab"); /* Query regular hyperslab selection info (should fail) */ H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_regular_hyperslab"); /* 'XOR' in the point again, to remove it, which should make it regular again */ t_start[0] = 0; t_start[1] = 0; t_start[2] = 0; t_count[0] = 1; t_count[1] = 1; t_count[2] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, t_start, NULL, t_count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */ is_regular = H5Sis_regular_hyperslab(sid); VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab"); /* Retrieve the hyperslab parameters */ ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); CHECK(ret, FAIL, "H5Sget_regular_hyperslab"); /* Verify the hyperslab parameters */ for (u = 0; u < SPACE13_RANK; u++) { if (start[u] != q_start[u]) ERROR("H5Sget_regular_hyperslab, start"); if (stride[u] != q_stride[u]) ERROR("H5Sget_regular_hyperslab, stride"); if (count[u] != q_count[u]) ERROR("H5Sget_regular_hyperslab, count"); if (block[u] != q_block[u]) ERROR("H5Sget_regular_hyperslab, block"); } /* end for */ /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_hyper_regular() */ /**************************************************************** ** ** test_hyper_unlim(): Tests unlimited hyperslab selections ** ****************************************************************/ static void test_hyper_unlim_check(hid_t sid, hsize_t *dims, hssize_t endpoints, hssize_t enblocks, hsize_t *eblock1, hsize_t *eblock2) { hid_t lim_sid; hsize_t start[3]; H5S_sel_type sel_type; hssize_t npoints; hssize_t nblocks; hsize_t blocklist[12]; herr_t ret; assert(enblocks <= 2); /* Copy sid to lim_sid */ lim_sid = H5Scopy(sid); CHECK(lim_sid, FAIL, "H5Scopy"); /* "And" lim_sid with dims to create limited selection */ memset(start, 0, sizeof(start)); ret = H5Sselect_hyperslab(lim_sid, H5S_SELECT_AND, start, NULL, dims, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Check number of elements */ npoints = H5Sget_select_npoints(lim_sid); CHECK(npoints, FAIL, "H5Sget_select_npoints"); VERIFY(npoints, endpoints, "H5Sget_select_npoints"); /* Get selection type */ sel_type = H5Sget_select_type(lim_sid); CHECK(sel_type, H5S_SEL_ERROR, "H5Sget_select_type"); /* Only examine blocks for hyperslab selection */ if (sel_type == H5S_SEL_HYPERSLABS) { /* Get number of blocks */ nblocks = H5Sget_select_hyper_nblocks(lim_sid); CHECK(nblocks, FAIL, "H5Sget_select_hyper_nblocks"); VERIFY(nblocks, enblocks, "H5Sget_select_hyper_nblocks"); if (nblocks > 0) { /* Get blocklist */ ret = H5Sget_select_hyper_blocklist(lim_sid, (hsize_t)0, (hsize_t)nblocks, blocklist); CHECK(ret, FAIL, "H5Sget_select_hyper_blocklist"); /* Verify blocklist */ if (nblocks == (hssize_t)1) { if (memcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0) ERROR("H5Sget_select_hyper_blocklist"); } /* end if */ else { assert(nblocks == (hssize_t)2); if (memcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])) != 0) { if (memcmp(blocklist, eblock2, 6 * sizeof(eblock2[0])) != 0) ERROR("H5Sget_select_hyper_blocklist"); if (memcmp(&blocklist[6], eblock1, 6 * sizeof(eblock1[0])) != 0) ERROR("H5Sget_select_hyper_blocklist"); } /* end if */ else if (memcmp(&blocklist[6], eblock2, 6 * sizeof(eblock2[0])) != 0) ERROR("H5Sget_select_hyper_blocklist"); } /* end else */ } /* end if */ } /* end if */ else if (sel_type != H5S_SEL_NONE) ERROR("H5Sget_select_type"); /* Close the limited dataspace */ ret = H5Sclose(lim_sid); CHECK(ret, FAIL, "H5Sclose"); } /* end test_hyper_unlim_check() */ static void test_hyper_unlim(void) { hid_t sid; hsize_t dims[3] = {4, 4, 7}; hsize_t mdims[3] = {4, H5S_UNLIMITED, 7}; hsize_t start[3] = {1, 2, 1}; hsize_t stride[3] = {1, 1, 3}; hsize_t count[3] = {1, 1, 2}; hsize_t block[3] = {2, H5S_UNLIMITED, 2}; hsize_t start2[3]; hsize_t count2[3]; hsize_t eblock1[6] = {1, 2, 1, 2, 3, 2}; hsize_t eblock2[6] = {1, 2, 4, 2, 3, 5}; hssize_t offset[3] = {0, -1, 0}; hssize_t ssize_out; herr_t ret; /* Output message about test being performed */ MESSAGE(6, ("Testing unlimited hyperslab selections\n")); /* Create dataspace */ sid = H5Screate_simple(3, dims, mdims); CHECK(sid, FAIL, "H5Screate_simple"); /* Select unlimited hyperslab */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Check with unlimited dimension clipped to 4 */ test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2); /* Check with unlimited dimension clipped to 3 */ dims[1] = 3; eblock1[4] = 2; eblock2[4] = 2; test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)2, eblock1, eblock2); /* Check with unlimited dimension clipped to 2 */ dims[1] = 2; test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2); /* Check with unlimited dimension clipped to 1 */ dims[1] = 1; test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2); /* Check with unlimited dimension clipped to 7 */ dims[1] = 7; eblock1[4] = 6; eblock2[4] = 6; test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2); /* Set offset of selection */ ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Check with adjusted offset (should not affect result) */ test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2); /* Reset offset of selection */ offset[1] = (hssize_t)0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* * Now try with multiple blocks in unlimited dimension */ stride[1] = 3; stride[2] = 1; count[1] = H5S_UNLIMITED; count[2] = 1; block[1] = 2; /* Select unlimited hyperslab */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Check with new selection */ eblock1[1] = 2; eblock1[4] = 3; eblock2[1] = 5; eblock2[2] = 1; eblock2[4] = 6; eblock2[5] = 2; test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2); /* Check with unlimited dimension clipped to 3 */ dims[1] = 3; eblock1[4] = 2; test_hyper_unlim_check(sid, dims, (hssize_t)4, (hssize_t)1, eblock1, eblock2); /* Check with unlimited dimension clipped to 4 */ dims[1] = 4; eblock1[4] = 3; test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2); /* Check with unlimited dimension clipped to 5 */ dims[1] = 5; eblock1[4] = 3; test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2); /* Check with unlimited dimension clipped to 6 */ dims[1] = 6; eblock1[4] = 3; eblock2[4] = 5; test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); /* Set offset of selection */ offset[1] = (hssize_t)-1; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Check with adjusted offset (should not affect result) */ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); /* Set offset of selection */ offset[1] = (hssize_t)3; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Check with adjusted offset (should not affect result) */ test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); /* Reset offset of selection */ offset[1] = (hssize_t)0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* * Now try invalid operations */ H5E_BEGIN_TRY { /* Try multiple unlimited dimensions */ start[0] = 1; start[1] = 2; start[2] = 1; stride[0] = 1; stride[1] = 3; stride[2] = 3; count[0] = 1; count[1] = H5S_UNLIMITED; count[2] = H5S_UNLIMITED; block[0] = 2; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); /* Try unlimited count and block */ count[2] = 2; block[1] = H5S_UNLIMITED; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); } H5E_END_TRY /* Try operations with two unlimited selections */ block[1] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, count, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, NULL, count, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, count, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, count, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, NULL, count, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); } H5E_END_TRY /* Try invalid combination operations */ H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, block, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, block, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, block, NULL); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); } H5E_END_TRY ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, block, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, stride, count, block); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, stride, count, block); VERIFY(ret, FAIL, "H5Sselect_hyperslab"); } H5E_END_TRY /* * Now test valid combination operations */ /* unlim AND non-unlim */ count[0] = 1; count[1] = H5S_UNLIMITED; count[2] = 2; block[0] = 2; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start2[0] = 2; start2[1] = 2; start2[2] = 0; count2[0] = 5; count2[1] = 4; count2[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start2, NULL, count2, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); eblock1[0] = 2; eblock1[3] = 2; eblock1[1] = 2; eblock1[4] = 3; eblock1[2] = 1; eblock1[5] = 1; eblock2[0] = 2; eblock2[3] = 2; eblock2[1] = 5; eblock2[4] = 5; eblock2[2] = 1; eblock2[5] = 1; dims[0] = 50; dims[1] = 50; dims[2] = 50; test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2); /* unlim NOTA non-unlim */ count[0] = 1; count[1] = H5S_UNLIMITED; count[2] = 2; block[0] = 2; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start2[0] = 1; start2[1] = 5; start2[2] = 2; count2[0] = 2; count2[1] = 2; count2[2] = 6; ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start2, NULL, count2, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); eblock1[0] = 1; eblock1[3] = 2; eblock1[1] = 5; eblock1[4] = 6; eblock1[2] = 3; eblock1[5] = 3; eblock2[0] = 1; eblock2[3] = 2; eblock2[1] = 5; eblock2[4] = 6; eblock2[2] = 6; eblock2[5] = 7; dims[0] = 50; dims[1] = 50; dims[2] = 50; test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); /* non-unlim AND unlim */ start2[0] = 2; start2[1] = 2; start2[2] = 0; count2[0] = 5; count2[1] = 4; count2[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); count[0] = 1; count[1] = H5S_UNLIMITED; count[2] = 2; block[0] = 2; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); eblock1[0] = 2; eblock1[3] = 2; eblock1[1] = 2; eblock1[4] = 3; eblock1[2] = 1; eblock1[5] = 1; eblock2[0] = 2; eblock2[3] = 2; eblock2[1] = 5; eblock2[4] = 5; eblock2[2] = 1; eblock2[5] = 1; dims[0] = 50; dims[1] = 50; dims[2] = 50; test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2); /* non-unlim NOTB unlim */ start2[0] = 1; start2[1] = 5; start2[2] = 2; count2[0] = 2; count2[1] = 2; count2[2] = 6; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); count[0] = 1; count[1] = H5S_UNLIMITED; count[2] = 2; block[0] = 2; block[1] = 2; block[2] = 2; ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); eblock1[0] = 1; eblock1[3] = 2; eblock1[1] = 5; eblock1[4] = 6; eblock1[2] = 3; eblock1[5] = 3; eblock2[0] = 1; eblock2[3] = 2; eblock2[1] = 5; eblock2[4] = 6; eblock2[2] = 6; eblock2[5] = 7; dims[0] = 50; dims[1] = 50; dims[2] = 50; test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2); /* Test H5Sget_select_npoints() */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); ssize_out = H5Sget_select_npoints(sid); VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_npoints"); /* Test H5Sget_select_hyper_nblocks() */ H5E_BEGIN_TRY { ssize_out = H5Sget_select_hyper_nblocks(sid); } H5E_END_TRY; VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_hyper_nblocks"); /* Test H5Sget_select_bounds() */ ret = H5Sget_select_bounds(sid, start2, count2); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(start2[0], start[0], "H5Sget_select_bounds"); VERIFY(start2[1], start[1], "H5Sget_select_bounds"); VERIFY(start2[2], start[2], "H5Sget_select_bounds"); VERIFY(count2[0], (long)(start[0] + (stride[0] * (count[0] - 1)) + block[0] - 1), "H5Sget_select_bounds"); VERIFY(count2[1], H5S_UNLIMITED, "H5Sget_select_bounds"); VERIFY(count2[2], (long)(start[2] + (stride[2] * (count[2] - 1)) + block[2] - 1), "H5Sget_select_bounds"); /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* end test_hyper_unlim() */ /**************************************************************** ** ** test_internal_consistency(): Tests selections on dataspace, then ** verify that internal states of data structures of selections are ** consistent. ** ****************************************************************/ static void test_internal_consistency(void) { hid_t all_sid; /* Dataspace ID with "all" selection */ hid_t none_sid; /* Dataspace ID with "none" selection */ hid_t single_pt_sid; /* Dataspace ID with single point selection */ hid_t mult_pt_sid; /* Dataspace ID with multiple point selection */ hid_t single_hyper_sid; /* Dataspace ID with single block hyperslab selection */ hid_t single_hyper_all_sid; /* Dataspace ID with single block hyperslab * selection that is the entire dataspace */ hid_t single_hyper_pt_sid; /* Dataspace ID with single block hyperslab * selection that is the same as the single * point selection */ hid_t regular_hyper_sid; /* Dataspace ID with regular hyperslab selection */ hid_t irreg_hyper_sid; /* Dataspace ID with irregular hyperslab selection */ hid_t none_hyper_sid; /* Dataspace ID with "no hyperslabs" selection */ hid_t scalar_all_sid; /* ID for scalar dataspace with "all" selection */ hid_t scalar_none_sid; /* ID for scalar dataspace with "none" selection */ hid_t tmp_sid; /* Temporary dataspace ID */ hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2}; hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */ hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */ hsize_t start[SPACE9_RANK]; /* Hyperslab start */ hsize_t stride[SPACE9_RANK]; /* Hyperslab stride */ hsize_t count[SPACE9_RANK]; /* Hyperslab block count */ hsize_t block[SPACE9_RANK]; /* Hyperslab block size */ #if 0 htri_t check; /* Shape comparison return value */ #endif herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Consistency of Internal States\n")); assert(SPACE9_DIM2 >= POINT1_NPOINTS); /* Create dataspace for "all" selection */ all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(all_sid, FAIL, "H5Screate_simple"); /* Select entire extent for dataspace */ ret = H5Sselect_all(all_sid); CHECK(ret, FAIL, "H5Sselect_all"); /* Create dataspace for "none" selection */ none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(none_sid, FAIL, "H5Screate_simple"); /* Un-Select entire extent for dataspace */ ret = H5Sselect_none(none_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Create dataspace for single point selection */ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord1[0][0] = 2; coord1[0][1] = 2; ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for multiple point selection */ mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(mult_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord2[0][0] = 2; coord2[0][1] = 2; coord2[1][0] = 7; coord2[1][1] = 2; coord2[2][0] = 1; coord2[2][1] = 4; coord2[3][0] = 2; coord2[3][1] = 6; coord2[4][0] = 0; coord2[4][1] = 8; coord2[5][0] = 3; coord2[5][1] = 2; coord2[6][0] = 4; coord2[6][1] = 4; coord2[7][0] = 1; coord2[7][1] = 0; coord2[8][0] = 5; coord2[8][1] = 1; coord2[9][0] = 9; coord2[9][1] = 3; ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for single hyperslab selection */ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for single hyperslab selection */ start[0] = 1; start[1] = 1; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = (SPACE9_DIM1 - 2); block[1] = (SPACE9_DIM2 - 2); ret = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for single hyperslab selection with entire extent selected */ single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple"); /* Select entire extent for hyperslab selection */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = SPACE9_DIM1; block[1] = SPACE9_DIM2; ret = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for single hyperslab selection with single point selected */ single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple"); /* Select entire extent for hyperslab selection */ start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for regular hyperslab selection */ regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); /* Select regular, strided hyperslab selection */ start[0] = 2; start[1] = 2; stride[0] = 2; stride[1] = 2; count[0] = 5; count[1] = 2; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for irregular hyperslab selection */ irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple"); /* Create irregular hyperslab selection by OR'ing two blocks together */ start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 4; start[1] = 4; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 3; block[1] = 3; ret = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for "no" hyperslab selection */ none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(none_hyper_sid, FAIL, "H5Screate_simple"); /* Create "no" hyperslab selection by XOR'ing same blocks together */ start[0] = 2; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 1; count[1] = 1; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create scalar dataspace for "all" selection */ scalar_all_sid = H5Screate(H5S_SCALAR); CHECK(scalar_all_sid, FAIL, "H5Screate"); /* Create scalar dataspace for "none" selection */ scalar_none_sid = H5Screate(H5S_SCALAR); CHECK(scalar_none_sid, FAIL, "H5Screate"); /* Un-Select entire extent for dataspace */ ret = H5Sselect_none(scalar_none_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Test all the selections created */ /* Test the copy of itself */ tmp_sid = H5Scopy(all_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); #if 0 check = H5S__internal_consistency_test(tmp_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); #endif ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); #if 0 /* Test "none" selection */ check = H5S__internal_consistency_test(none_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test single point selection */ check = H5S__internal_consistency_test(single_pt_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test multiple point selection */ check = H5S__internal_consistency_test(mult_pt_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test "plain" single hyperslab selection */ check = H5S__internal_consistency_test(single_hyper_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test "all" single hyperslab selection */ check = H5S__internal_consistency_test(single_hyper_all_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test "single point" single hyperslab selection */ check = H5S__internal_consistency_test(single_hyper_pt_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test regular, strided hyperslab selection */ check = H5S__internal_consistency_test(regular_hyper_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test irregular hyperslab selection */ check = H5S__internal_consistency_test(irreg_hyper_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test "no" hyperslab selection */ check = H5S__internal_consistency_test(none_hyper_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test scalar "all" hyperslab selection */ check = H5S__internal_consistency_test(scalar_all_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); /* Test scalar "none" hyperslab selection */ check = H5S__internal_consistency_test(scalar_none_sid); VERIFY(check, TRUE, "H5S__internal_consistency_test"); #endif /* Close dataspaces */ ret = H5Sclose(all_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(none_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mult_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_all_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(single_hyper_pt_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(regular_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(irreg_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(none_hyper_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(scalar_all_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(scalar_none_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_internal_consistency() */ /**************************************************************** ** ** test_irreg_io(): Tests unusual selections on datasets, to stress the ** new hyperslab code. ** ****************************************************************/ static void test_irreg_io(void) { hid_t fid; /* File ID */ hid_t did; /* Dataset ID */ hid_t dcpl_id; /* Dataset creation property list ID */ hid_t sid; /* File dataspace ID */ hid_t mem_sid; /* Memory dataspace ID */ hsize_t dims[] = {6, 12}; /* Dataspace dimensions */ hsize_t chunk_dims[] = {2, 2}; /* Chunk dimensions */ hsize_t mem_dims[] = {32}; /* Memory dataspace dimensions */ hsize_t start[2]; /* Hyperslab start */ hsize_t stride[2]; /* Hyperslab stride */ hsize_t count[2]; /* Hyperslab block count */ hsize_t block[2]; /* Hyperslab block size */ unsigned char wbuf[72]; /* Write buffer */ unsigned char rbuf[32]; /* Read buffer */ unsigned u; /* Local index variable */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Irregular Hyperslab I/O\n")); /* Create file */ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid, FAIL, "H5Fcreate"); /* Create dataspace for dataset */ sid = H5Screate_simple(2, dims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Set chunk dimensions for dataset */ dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_chunk(dcpl_id, 2, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); /* Create a dataset */ did = H5Dcreate2(fid, SPACE1_NAME, H5T_NATIVE_UCHAR, sid, H5P_DEFAULT, dcpl_id, H5P_DEFAULT); CHECK(did, FAIL, "H5Dcreate2"); /* Initialize the write buffer */ for (u = 0; u < 72; u++) wbuf[u] = (unsigned char)u; /* Write entire dataset to disk */ ret = H5Dwrite(did, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf); CHECK(ret, FAIL, "H5Dwrite"); /* Close the DCPL */ ret = H5Pclose(dcpl_id); CHECK(ret, FAIL, "H5Pclose"); /* Create dataspace for memory selection */ mem_sid = H5Screate_simple(1, mem_dims, NULL); CHECK(mem_sid, FAIL, "H5Screate_simple"); /* Select 'L'-shaped region within dataset */ start[0] = 0; start[1] = 10; stride[0] = 1; stride[1] = 1; count[0] = 4; count[1] = 2; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 4; start[1] = 0; stride[0] = 1; stride[1] = 1; count[0] = 2; count[1] = 12; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Reset the buffer */ memset(rbuf, 0, sizeof(rbuf)); /* Read selection from disk */ ret = H5Dread(did, H5T_NATIVE_UCHAR, mem_sid, sid, H5P_DEFAULT, rbuf); CHECK(ret, FAIL, "H5Dread"); /* Close everything */ ret = H5Sclose(mem_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(did); CHECK(ret, FAIL, "H5Dclose"); ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); } /* test_irreg_io() */ /**************************************************************** ** ** test_sel_iter(): Test selection iterator API routines. ** ****************************************************************/ static void test_sel_iter(void) { hid_t sid; /* Dataspace ID */ hid_t iter_id; /* Dataspace selection iterator ID */ hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */ hsize_t coord1[POINT1_NPOINTS][2]; /* Coordinates for point selection */ hsize_t start[2]; /* Hyperslab start */ hsize_t stride[2]; /* Hyperslab stride */ hsize_t count[2]; /* Hyperslab block count */ hsize_t block[2]; /* Hyperslab block size */ size_t nseq; /* # of sequences retrieved */ size_t nbytes; /* # of bytes retrieved */ hsize_t off[SEL_ITER_MAX_SEQ]; /* Offsets for retrieved sequences */ size_t len[SEL_ITER_MAX_SEQ]; /* Lengths for retrieved sequences */ H5S_sel_type sel_type; /* Selection type */ unsigned sel_share; /* Whether to share selection with dataspace */ unsigned sel_iter_flags; /* Flags for selection iterator creation */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Dataspace Selection Iterators\n")); /* Create dataspace */ sid = H5Screate_simple(2, dims1, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Try creating selection iterator object with bad parameters */ H5E_BEGIN_TRY { /* Bad dataspace ID */ iter_id = H5Ssel_iter_create(H5I_INVALID_HID, (size_t)1, (unsigned)0); } H5E_END_TRY; VERIFY(iter_id, FAIL, "H5Ssel_iter_create"); H5E_BEGIN_TRY { /* Bad element size */ iter_id = H5Ssel_iter_create(sid, (size_t)0, (unsigned)0); } H5E_END_TRY; VERIFY(iter_id, FAIL, "H5Ssel_iter_create"); H5E_BEGIN_TRY { /* Bad flag(s) */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)0xffff); } H5E_END_TRY; VERIFY(iter_id, FAIL, "H5Ssel_iter_create"); /* Try closing selection iterator, with bad parameters */ H5E_BEGIN_TRY { /* Invalid ID */ ret = H5Ssel_iter_close(H5I_INVALID_HID); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_close"); H5E_BEGIN_TRY { /* Not a selection iterator ID */ ret = H5Ssel_iter_close(sid); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_close"); /* Try with no selection sharing, and with sharing */ for (sel_share = 0; sel_share < 2; sel_share++) { /* Set selection iterator sharing flags */ if (sel_share) sel_iter_flags = H5S_SEL_ITER_SHARE_WITH_DATASPACE; else sel_iter_flags = 0; /* Create selection iterator object */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); CHECK(iter_id, FAIL, "H5Ssel_iter_create"); /* Close selection iterator */ ret = H5Ssel_iter_close(iter_id); CHECK(ret, FAIL, "H5Ssel_iter_close"); /* Try closing selection iterator twice */ H5E_BEGIN_TRY { /* Invalid ID */ ret = H5Ssel_iter_close(iter_id); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_close"); /* Create selection iterator object */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); CHECK(iter_id, FAIL, "H5Ssel_iter_create"); /* Try resetting selection iterator with bad parameters */ H5E_BEGIN_TRY { ret = H5Ssel_iter_reset(H5I_INVALID_HID, sid); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_reset"); H5E_BEGIN_TRY { ret = H5Ssel_iter_reset(iter_id, H5I_INVALID_HID); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_reset"); /* Try retrieving sequences, with bad parameters */ H5E_BEGIN_TRY { /* Invalid ID */ ret = H5Ssel_iter_get_seq_list(H5I_INVALID_HID, (size_t)1, (size_t)1, &nseq, &nbytes, off, len); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); H5E_BEGIN_TRY { /* Invalid nseq pointer */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, NULL, &nbytes, off, len); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); H5E_BEGIN_TRY { /* Invalid nbytes pointer */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, NULL, off, len); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); H5E_BEGIN_TRY { /* Invalid offset array */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, NULL, len); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); H5E_BEGIN_TRY { /* Invalid length array */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, off, NULL); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list"); /* Close selection iterator */ ret = H5Ssel_iter_close(iter_id); CHECK(ret, FAIL, "H5Ssel_iter_close"); /* Test iterators on various basic selection types */ for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) { switch (sel_type) { case H5S_SEL_NONE: /* "None" selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); break; case H5S_SEL_POINTS: /* Point selection */ /* Select sequence of ten points */ coord1[0][0] = 0; coord1[0][1] = 9; coord1[1][0] = 1; coord1[1][1] = 2; coord1[2][0] = 2; coord1[2][1] = 4; coord1[3][0] = 0; coord1[3][1] = 6; coord1[4][0] = 1; coord1[4][1] = 8; coord1[5][0] = 2; coord1[5][1] = 10; coord1[6][0] = 0; coord1[6][1] = 11; coord1[7][0] = 1; coord1[7][1] = 4; coord1[8][0] = 2; coord1[8][1] = 1; coord1[9][0] = 0; coord1[9][1] = 3; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); break; case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ /* Select regular hyperslab */ start[0] = 3; start[1] = 0; stride[0] = 2; stride[1] = 2; count[0] = 2; count[1] = 5; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); break; case H5S_SEL_ALL: /* "All" selection */ ret = H5Sselect_all(sid); CHECK(ret, FAIL, "H5Sselect_all"); break; case H5S_SEL_ERROR: case H5S_SEL_N: default: assert(0 && "Can't occur"); break; } /* end switch */ /* Create selection iterator object */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); CHECK(iter_id, FAIL, "H5Ssel_iter_create"); /* Try retrieving no sequences, with 0 for maxseq & maxbytes */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); /* Try retrieving all sequences */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); /* Check results from retrieving sequence list */ switch (sel_type) { case H5S_SEL_NONE: /* "None" selection */ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_POINTS: /* Point selection */ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_ALL: /* "All" selection */ VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_ERROR: case H5S_SEL_N: default: assert(0 && "Can't occur"); break; } /* end switch */ /* Close selection iterator */ ret = H5Ssel_iter_close(iter_id); CHECK(ret, FAIL, "H5Ssel_iter_close"); } /* end for */ /* Create selection iterator object */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); CHECK(iter_id, FAIL, "H5Ssel_iter_create"); /* Test iterators on various basic selection types using * H5Ssel_iter_reset instead of creating multiple iterators */ for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) { switch (sel_type) { case H5S_SEL_NONE: /* "None" selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); break; case H5S_SEL_POINTS: /* Point selection */ /* Select sequence of ten points */ coord1[0][0] = 0; coord1[0][1] = 9; coord1[1][0] = 1; coord1[1][1] = 2; coord1[2][0] = 2; coord1[2][1] = 4; coord1[3][0] = 0; coord1[3][1] = 6; coord1[4][0] = 1; coord1[4][1] = 8; coord1[5][0] = 2; coord1[5][1] = 10; coord1[6][0] = 0; coord1[6][1] = 11; coord1[7][0] = 1; coord1[7][1] = 4; coord1[8][0] = 2; coord1[8][1] = 1; coord1[9][0] = 0; coord1[9][1] = 3; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); break; case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ /* Select regular hyperslab */ start[0] = 3; start[1] = 0; stride[0] = 2; stride[1] = 2; count[0] = 2; count[1] = 5; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); break; case H5S_SEL_ALL: /* "All" selection */ ret = H5Sselect_all(sid); CHECK(ret, FAIL, "H5Sselect_all"); break; case H5S_SEL_ERROR: case H5S_SEL_N: default: assert(0 && "Can't occur"); break; } /* end switch */ /* Try retrieving no sequences, with 0 for maxseq & maxbytes */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); /* Reset iterator */ ret = H5Ssel_iter_reset(iter_id, sid); CHECK(ret, FAIL, "H5Ssel_iter_reset"); /* Try retrieving all sequences */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); /* Check results from retrieving sequence list */ switch (sel_type) { case H5S_SEL_NONE: /* "None" selection */ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_POINTS: /* Point selection */ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_ALL: /* "All" selection */ VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_ERROR: case H5S_SEL_N: default: assert(0 && "Can't occur"); break; } /* end switch */ /* Reset iterator */ ret = H5Ssel_iter_reset(iter_id, sid); CHECK(ret, FAIL, "H5Ssel_iter_reset"); /* Try retrieving all sequences again */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); /* Check results from retrieving sequence list */ switch (sel_type) { case H5S_SEL_NONE: /* "None" selection */ VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_POINTS: /* Point selection */ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_HYPERSLABS: /* Hyperslab selection */ VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_ALL: /* "All" selection */ VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list"); break; case H5S_SEL_ERROR: case H5S_SEL_N: default: assert(0 && "Can't occur"); break; } /* end switch */ /* Reset iterator */ ret = H5Ssel_iter_reset(iter_id, sid); CHECK(ret, FAIL, "H5Ssel_iter_reset"); } /* end for */ /* Close selection iterator */ ret = H5Ssel_iter_close(iter_id); CHECK(ret, FAIL, "H5Ssel_iter_close"); /* Point selection which will merge into smaller # of sequences */ coord1[0][0] = 0; coord1[0][1] = 9; coord1[1][0] = 0; coord1[1][1] = 10; coord1[2][0] = 0; coord1[2][1] = 11; coord1[3][0] = 0; coord1[3][1] = 6; coord1[4][0] = 1; coord1[4][1] = 8; coord1[5][0] = 2; coord1[5][1] = 10; coord1[6][0] = 0; coord1[6][1] = 11; coord1[7][0] = 1; coord1[7][1] = 4; coord1[8][0] = 1; coord1[8][1] = 5; coord1[9][0] = 1; coord1[9][1] = 6; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create selection iterator object */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); CHECK(iter_id, FAIL, "H5Ssel_iter_create"); /* Try retrieving all sequences */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); /* Reset iterator */ ret = H5Ssel_iter_reset(iter_id, sid); CHECK(ret, FAIL, "H5Ssel_iter_reset"); /* Try retrieving all sequences again */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list"); /* Close selection iterator */ ret = H5Ssel_iter_close(iter_id); CHECK(ret, FAIL, "H5Ssel_iter_close"); /* Select irregular hyperslab, which will merge into smaller # of sequences */ start[0] = 3; start[1] = 0; stride[0] = 2; stride[1] = 2; count[0] = 2; count[1] = 5; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0] = 3; start[1] = 3; stride[0] = 2; stride[1] = 2; count[0] = 2; count[1] = 5; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create selection iterator object */ iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags); CHECK(iter_id, FAIL, "H5Ssel_iter_create"); /* Try retrieving all sequences */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list"); /* Reset iterator */ ret = H5Ssel_iter_reset(iter_id, sid); CHECK(ret, FAIL, "H5Ssel_iter_reset"); /* Try retrieving all sequences again */ ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq, &nbytes, off, len); CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list"); VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list"); VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list"); /* Close selection iterator */ ret = H5Ssel_iter_close(iter_id); CHECK(ret, FAIL, "H5Ssel_iter_close"); } /* end for */ /* Close dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_sel_iter() */ /**************************************************************** ** ** test_select_intersect_block(): Test selections on dataspace, ** verify that "intersect block" routine is working correctly. ** ****************************************************************/ static void test_select_intersect_block(void) { hid_t sid; /* Dataspace ID */ hsize_t dims1[] = {6, 12}; /* 2-D Dataspace dimensions */ hsize_t block_start[] = {1, 3}; /* Start offset for block */ hsize_t block_end[] = {2, 5}; /* End offset for block */ hsize_t block_end2[] = {0, 5}; /* Bad end offset for block */ hsize_t block_end3[] = {2, 2}; /* Another bad end offset for block */ hsize_t block_end4[] = {1, 3}; /* End offset that makes a single element block */ hsize_t coord[10][2]; /* Coordinates for point selection */ hsize_t start[2]; /* Starting location of hyperslab */ hsize_t stride[2]; /* Stride of hyperslab */ hsize_t count[2]; /* Element count of hyperslab */ hsize_t block[2]; /* Block size of hyperslab */ htri_t status; /* Intersection status */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing Dataspace Selection Block Intersection\n")); /* Create dataspace */ sid = H5Screate_simple(2, dims1, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Try intersection calls with bad parameters */ H5E_BEGIN_TRY { /* Bad dataspace ID */ status = H5Sselect_intersect_block(H5I_INVALID_HID, block_start, block_end); } H5E_END_TRY; VERIFY(status, FAIL, "H5Sselect_intersect_block"); H5E_BEGIN_TRY { /* Bad start pointer */ status = H5Sselect_intersect_block(sid, NULL, block_end); } H5E_END_TRY; VERIFY(status, FAIL, "H5Sselect_intersect_block"); H5E_BEGIN_TRY { /* Bad end pointer */ status = H5Sselect_intersect_block(sid, block_start, NULL); } H5E_END_TRY; VERIFY(status, FAIL, "H5Sselect_intersect_block"); H5E_BEGIN_TRY { /* Invalid block */ status = H5Sselect_intersect_block(sid, block_start, block_end2); } H5E_END_TRY; VERIFY(status, FAIL, "H5Sselect_intersect_block"); H5E_BEGIN_TRY { /* Another invalid block */ status = H5Sselect_intersect_block(sid, block_start, block_end3); } H5E_END_TRY; VERIFY(status, FAIL, "H5Sselect_intersect_block"); /* Set selection to 'none' */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Test block intersection with 'none' selection (always false) */ status = H5Sselect_intersect_block(sid, block_start, block_end); VERIFY(status, FALSE, "H5Sselect_intersect_block"); /* Set selection to 'all' */ ret = H5Sselect_all(sid); CHECK(ret, FAIL, "H5Sselect_all"); /* Test block intersection with 'all' selection (always true) */ status = H5Sselect_intersect_block(sid, block_start, block_end); VERIFY(status, TRUE, "H5Sselect_intersect_block"); /* Select sequence of ten points */ coord[0][0] = 0; coord[0][1] = 10; coord[1][0] = 1; coord[1][1] = 2; coord[2][0] = 2; coord[2][1] = 4; coord[3][0] = 0; coord[3][1] = 6; coord[4][0] = 1; coord[4][1] = 8; coord[5][0] = 2; coord[5][1] = 11; coord[6][0] = 0; coord[6][1] = 4; coord[7][0] = 1; coord[7][1] = 0; coord[8][0] = 2; coord[8][1] = 1; coord[9][0] = 0; coord[9][1] = 3; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)10, (const hsize_t *)coord); CHECK(ret, FAIL, "H5Sselect_elements"); /* Test block intersection with 'point' selection */ status = H5Sselect_intersect_block(sid, block_start, block_end); VERIFY(status, TRUE, "H5Sselect_intersect_block"); status = H5Sselect_intersect_block(sid, block_start, block_end4); VERIFY(status, FALSE, "H5Sselect_intersect_block"); /* Select single 4x6 hyperslab block at (2,1) */ start[0] = 2; start[1] = 1; stride[0] = 1; stride[1] = 1; count[0] = 4; count[1] = 6; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Test block intersection with single 'hyperslab' selection */ status = H5Sselect_intersect_block(sid, block_start, block_end); VERIFY(status, TRUE, "H5Sselect_intersect_block"); status = H5Sselect_intersect_block(sid, block_start, block_end4); VERIFY(status, FALSE, "H5Sselect_intersect_block"); /* 'OR' another hyperslab block in, making an irregular hyperslab selection */ start[0] = 3; start[1] = 2; stride[0] = 1; stride[1] = 1; count[0] = 4; count[1] = 6; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Test block intersection with 'hyperslab' selection */ status = H5Sselect_intersect_block(sid, block_start, block_end); VERIFY(status, TRUE, "H5Sselect_intersect_block"); status = H5Sselect_intersect_block(sid, block_start, block_end4); VERIFY(status, FALSE, "H5Sselect_intersect_block"); /* Select regular, strided hyperslab selection */ start[0] = 2; start[1] = 1; stride[0] = 2; stride[1] = 2; count[0] = 2; count[1] = 4; block[0] = 1; block[1] = 1; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Test block intersection with single 'hyperslab' selection */ status = H5Sselect_intersect_block(sid, block_start, block_end); VERIFY(status, TRUE, "H5Sselect_intersect_block"); status = H5Sselect_intersect_block(sid, block_start, block_end4); VERIFY(status, FALSE, "H5Sselect_intersect_block"); /* Close dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_select_intersect_block() */ /**************************************************************** ** ** test_hyper_io_1d(): ** Test to verify all the selected 10th element in the 1-d file ** dataspace is read correctly into the 1-d contiguous memory space. ** This is modeled after the test scenario described in HDFFV-10585 ** that demonstrated the hyperslab slowness. A fix to speed up ** performance is in place to handle the special case for 1-d disjoint ** file dataspace into 1-d single block contiguous memory space. ** ****************************************************************/ static void test_hyper_io_1d(void) { hid_t fid; /* File ID */ hid_t did; /* Dataset ID */ hid_t sid, mid; /* Dataspace IDs */ hid_t dcpl; /* Dataset creation property list ID */ hsize_t dims[1], maxdims[1], dimsm[1]; /* Dataset dimension sizes */ hsize_t chunk_dims[1]; /* Chunk dimension size */ hsize_t offset[1]; /* Starting offset for hyperslab */ hsize_t stride[1]; /* Distance between blocks in the hyperslab selection */ hsize_t count[1]; /* # of blocks in the the hyperslab selection */ hsize_t block[1]; /* Size of block in the hyperslab selection */ unsigned int wdata[CHUNKSZ]; /* Data to be written */ unsigned int rdata[NUM_ELEMENTS / 10]; /* Data to be read */ herr_t ret; /* Generic return value */ unsigned i; /* Local index variable */ /* Output message about test being performed */ MESSAGE(6, ("Testing Hyperslab I/O for 1-d single block memory space\n")); for (i = 0; i < CHUNKSZ; i++) wdata[i] = i; /* Create the file file */ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid, H5I_INVALID_HID, "H5Fcreate"); /* Create file dataspace */ dims[0] = CHUNKSZ; maxdims[0] = H5S_UNLIMITED; sid = H5Screate_simple(RANK, dims, maxdims); CHECK(sid, H5I_INVALID_HID, "H5Pcreate"); /* Create memory dataspace */ dimsm[0] = CHUNKSZ; mid = H5Screate_simple(RANK, dimsm, NULL); CHECK(mid, H5I_INVALID_HID, "H5Pcreate"); /* Set up to create a chunked dataset */ dcpl = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl, H5I_INVALID_HID, "H5Pcreate"); chunk_dims[0] = CHUNKSZ; ret = H5Pset_chunk(dcpl, RANK, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); /* Create a chunked dataset */ did = H5Dcreate2(fid, DNAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT); CHECK(did, H5I_INVALID_HID, "H5Dcreate2"); /* Set up hyperslab selection for file dataspace */ offset[0] = 0; stride[0] = 1; count[0] = 1; block[0] = CHUNKSZ; /* Write to each chunk in the dataset */ for (i = 0; i < NUMCHUNKS; i++) { /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Write to the dataset */ ret = H5Dwrite(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, wdata); CHECK(ret, FAIL, "H5Dwrite"); /* Extend the dataset's dataspace */ if (i < (NUMCHUNKS - 1)) { offset[0] = offset[0] + CHUNKSZ; dims[0] = dims[0] + CHUNKSZ; ret = H5Dset_extent(did, dims); CHECK(ret, FAIL, "H5Dset_extent"); /* Get the dataset's current dataspace */ sid = H5Dget_space(did); CHECK(sid, H5I_INVALID_HID, "H5Dget_space"); } } /* Closing */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(did); CHECK(ret, FAIL, "H5Dclose"); ret = H5Pclose(dcpl); CHECK(ret, FAIL, "H5Pclose"); ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); /* Open the file */ fid = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK(fid, H5I_INVALID_HID, "H5Fopen"); /* Open the dataset */ did = H5Dopen2(fid, DNAME, H5P_DEFAULT); CHECK(did, H5I_INVALID_HID, "H5Dopen"); /* Set up to read every 10th element in file dataspace */ offset[0] = 1; stride[0] = 10; count[0] = NUM_ELEMENTS / 10; block[0] = 1; /* Get the dataset's dataspace */ sid = H5Dget_space(did); CHECK(sid, H5I_INVALID_HID, "H5Dget_space"); ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Set up contiguous memory dataspace for the selected elements */ dimsm[0] = count[0]; mid = H5Screate_simple(RANK, dimsm, NULL); CHECK(mid, H5I_INVALID_HID, "H5Screate_simple"); /* Read all the selected 10th elements in the dataset into "rdata" */ ret = H5Dread(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Verify data read is correct */ for (i = 0; i < 6; i += 2) { VERIFY(rdata[i], 1, "H5Dread\n"); VERIFY(rdata[i + 1], 11, "H5Dread\n"); } /* Closing */ ret = H5Sclose(mid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(did); CHECK(ret, FAIL, "H5Dclose"); ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); } /* test_hyper_io_1d() */ /**************************************************************** ** ** test_h5s_set_extent_none: ** Test to verify the behavior of dataspace code when passed ** a dataspace modified by H5Sset_extent_none(). ** ****************************************************************/ static void test_h5s_set_extent_none(void) { hid_t sid = H5I_INVALID_HID; hid_t dst_sid = H5I_INVALID_HID; hid_t null_sid = H5I_INVALID_HID; int rank = 1; hsize_t current_dims = 123; H5S_class_t cls; int out_rank; hsize_t out_dims; hsize_t out_maxdims; hssize_t out_points; htri_t equal; herr_t ret; /* Specific values here don't matter as we're just going to reset */ sid = H5Screate_simple(rank, ¤t_dims, NULL); CHECK(sid, H5I_INVALID_HID, "H5Screate_simple"); /* Dataspace class will be H5S_NULL after this. * In versions prior to 1.10.7 / 1.12.1 this would produce a * dataspace with the internal H5S_NO_CLASS class. */ ret = H5Sset_extent_none(sid); CHECK(ret, FAIL, "H5Sset_extent_none"); cls = H5Sget_simple_extent_type(sid); VERIFY(cls, H5S_NULL, "H5Sget_simple_extent_type"); /* Extent getters should generate normal results and not segfault. */ out_rank = H5Sget_simple_extent_dims(sid, &out_dims, &out_maxdims); VERIFY(out_rank, 0, "H5Sget_simple_extent_dims"); out_rank = H5Sget_simple_extent_ndims(sid); VERIFY(out_rank, 0, "H5Sget_simple_extent_ndims"); out_points = H5Sget_simple_extent_npoints(sid); VERIFY(out_points, 0, "H5Sget_simple_extent_npoints"); /* Check that copying the new (non-)extent works. */ dst_sid = H5Screate_simple(rank, ¤t_dims, NULL); CHECK(dst_sid, H5I_INVALID_HID, "H5Screate_simple"); ret = H5Sextent_copy(dst_sid, sid); CHECK(ret, FAIL, "H5Sextent_copy"); /* Check that H5Sset_extent_none() produces the same extent as * H5Screate(H5S_NULL). */ null_sid = H5Screate(H5S_NULL); CHECK(null_sid, H5I_INVALID_HID, "H5Screate"); equal = H5Sextent_equal(sid, null_sid); VERIFY(equal, TRUE, "H5Sextent_equal"); /* Close */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(dst_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(null_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_set_extent_none() */ /**************************************************************** ** ** test_select(): Main H5S selection testing routine. ** ****************************************************************/ void test_select(void) { hid_t plist_id; /* Property list for reading random hyperslabs */ hid_t fapl; /* Property list accessing the file */ int mdc_nelmts; /* Metadata number of elements */ size_t rdcc_nelmts; /* Raw data number of elements */ size_t rdcc_nbytes; /* Raw data number of bytes */ double rdcc_w0; /* Raw data write percentage */ hssize_t offset[SPACE7_RANK] = {1, 1}; /* Offset for testing selection offsets */ const char *env_h5_drvr; /* File Driver value from environment */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Selections\n")); /* Get the VFD to use */ env_h5_drvr = HDgetenv(HDF5_DRIVER); if (env_h5_drvr == NULL) env_h5_drvr = "nomatch"; /* Create a dataset transfer property list */ plist_id = H5Pcreate(H5P_DATASET_XFER); CHECK(plist_id, FAIL, "H5Pcreate"); /* test I/O with a very small buffer for reads */ ret = H5Pset_buffer(plist_id, (size_t)59, NULL, NULL); CHECK(ret, FAIL, "H5Pset_buffer"); /* These next tests use the same file */ test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */ test_select_hyper(plist_id); /* Test basic H5S hyperslab selection code */ test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing element selections */ test_select_point(plist_id); /* Test basic H5S element selection code, also tests appending to existing element selections */ test_select_all(H5P_DEFAULT); /* Test basic all & none selection code */ test_select_all(plist_id); /* Test basic all & none selection code */ test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */ test_select_all_hyper(plist_id); /* Test basic all & none selection code */ /* These next tests use the same file */ test_select_combo(); /* Test combined hyperslab & element selection code */ test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */ test_select_hyper_stride(plist_id); /* Test strided hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16LE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16LE, plist_id); /* Test contiguous hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16BE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16BE, plist_id); /* Test contiguous hyperslab selection code */ test_select_hyper_contig2(H5T_STD_U16LE, H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig2(H5T_STD_U16LE, plist_id); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig2(H5T_STD_U16BE, H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig2(H5T_STD_U16BE, plist_id); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16LE, H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16LE, plist_id); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE, H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE, plist_id); /* Test yet more contiguous hyperslab selection cases */ #if 0 test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT); test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id); test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT); test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id); #else printf("** SKIPPED a test due to file creation issues\n"); #endif #if 0 test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT); test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id); test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT); test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id); #else printf("** SKIPPED a test due to assertion in HDF5\n"); #endif test_select_hyper_copy(); /* Test hyperslab selection copying code */ test_select_point_copy(); /* Test point selection copying code */ test_select_hyper_offset(); /* Test selection offset code with hyperslabs */ test_select_hyper_offset2(); /* Test more selection offset code with hyperslabs */ test_select_point_offset(); /* Test selection offset code with elements */ test_select_hyper_union(); /* Test hyperslab union code */ /* Fancy hyperslab API tests */ test_select_hyper_union_stagger(); /* Test hyperslab union code for staggered slabs */ test_select_hyper_union_3d(); /* Test hyperslab union code for 3-D dataset */ test_select_hyper_valid_combination(); /* Test different input combinations */ /* The following tests are currently broken with the Direct VFD */ if (HDstrcmp(env_h5_drvr, "direct") != 0) { test_select_hyper_and_2d(); /* Test hyperslab intersection (AND) code for 2-D dataset */ test_select_hyper_xor_2d(); /* Test hyperslab XOR code for 2-D dataset */ test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */ test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */ } /* test the random hyperslab I/O with the default property list for reading */ test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */ /* test random hyperslab I/O with a small buffer for reads */ test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */ /* Create a dataset transfer property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Get the default file access properties for caching */ ret = H5Pget_cache(fapl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); CHECK(ret, FAIL, "H5Pget_cache"); /* Increase the size of the raw data cache */ rdcc_nbytes = 10 * 1024 * 1024; /* Set the file access properties for caching */ ret = H5Pset_cache(fapl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); CHECK(ret, FAIL, "H5Pset_cache"); /* Test reading in a large hyperslab with a chunked dataset */ test_select_hyper_chunk(fapl, H5P_DEFAULT); /* Test reading in a large hyperslab with a chunked dataset a small amount at a time */ test_select_hyper_chunk(fapl, plist_id); /* Close file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* Close dataset transfer property list */ ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); /* More tests for checking validity of selections */ test_select_valid(); /* Tests for combining "all" and "none" selections with hyperslabs */ test_select_combine(); /* Test filling selections */ /* (Also tests iterating through each selection */ test_select_fill_all(); test_select_fill_point(NULL); test_select_fill_point(offset); test_select_fill_hyper_simple(NULL); test_select_fill_hyper_simple(offset); test_select_fill_hyper_regular(NULL); test_select_fill_hyper_regular(offset); test_select_fill_hyper_irregular(NULL); test_select_fill_hyper_irregular(offset); /* Test 0-sized selections */ test_select_none(); /* Test selections on scalar dataspaces */ test_scalar_select(); test_scalar_select2(); test_scalar_select3(); /* Test "same shape" routine */ test_shape_same(); /* Test "same shape" routine for selections of different rank */ test_shape_same_dr(); /* Test "re-build" routine */ test_space_rebuild(); /* Test "update diminfo" routine */ test_space_update_diminfo(); /* Test point selections in chunked datasets */ test_select_point_chunk(); /* Test scalar dataspaces in chunked datasets */ test_select_scalar_chunk(); #if 0 /* Test using selection offset on hyperslab in chunked dataset */ test_select_hyper_chunk_offset(); test_select_hyper_chunk_offset2(); #else printf("** SKIPPED a test due to assertion in HDF5\n"); #endif /* Test selection bounds with & without offsets */ test_select_bounds(); /* Test 'regular' hyperslab query routines */ test_hyper_regular(); /* Test unlimited hyperslab selections */ test_hyper_unlim(); /* Test the consistency of internal data structures of selection */ test_internal_consistency(); /* Test irregular selection I/O */ test_irreg_io(); /* Test selection iterators */ test_sel_iter(); /* Test selection intersection with block */ test_select_intersect_block(); /* Test reading of 1-d disjoint file space to 1-d single block memory space */ test_hyper_io_1d(); /* Test H5Sset_extent_none() functionality after we updated it to set * the class to H5S_NULL instead of H5S_NO_CLASS. */ test_h5s_set_extent_none(); } /* test_select() */ /*------------------------------------------------------------------------- * Function: cleanup_select * * Purpose: Cleanup temporary test files * * Return: none * *------------------------------------------------------------------------- */ void cleanup_select(void) { H5Fdelete(FILENAME, H5P_DEFAULT); }