/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* Programmer: John Mainzer * 6/9/04 * * This file contains tests for the cache implemented in * H5C.c */ #include "cache_common.h" #include "H5MFprivate.h" H5C_t *saved_cache = NULL; /* store the pointer to the instance of * of H5C_t created by H5Fcreate() * here between test cache setup and * shutdown. */ haddr_t saved_actual_base_addr = HADDR_UNDEF; /* Store the address of the * space allocated for cache items in the file between * cache setup & takedown */ hid_t saved_fapl_id = H5P_DEFAULT; /* store the fapl id here between * cache setup and takedown. Note * that if saved_fapl_id == H5P_DEFAULT, * we assume that there is no fapl to * close. */ hid_t saved_fcpl_id = H5P_DEFAULT; /* store the fcpl id here between * cache setup and takedown. Note * that if saved_fcpl_id == H5P_DEFAULT, * we assume that there is no fcpl to * close. */ hid_t saved_fid = -1; /* store the file id here between cache setup * and takedown. */ hbool_t write_permitted = TRUE; hbool_t try_core_file_driver = FALSE; hbool_t core_file_driver_failed = FALSE; /* global variable declarations: */ const char *FILENAME[] = {"cache_test", NULL}; /* private typedef declarations: */ struct flush_cache_test_spec { int entry_num; int entry_type; int entry_index; hbool_t insert_flag; unsigned int flags; hbool_t expected_deserialized; hbool_t expected_serialized; hbool_t expected_destroyed; }; struct pe_flush_cache_test_spec { int entry_num; int entry_type; int entry_index; hbool_t insert_flag; unsigned int flags; int num_pins; int pin_type[MAX_PINS]; int pin_idx[MAX_PINS]; hbool_t expected_deserialized; hbool_t expected_serialized; hbool_t expected_destroyed; }; struct fo_flush_entry_check { int entry_num; int entry_type; int entry_index; size_t expected_size; hbool_t in_cache; hbool_t at_main_addr; hbool_t is_dirty; hbool_t is_protected; hbool_t is_pinned; hbool_t expected_deserialized; hbool_t expected_serialized; hbool_t expected_destroyed; }; struct fo_flush_cache_test_spec { int entry_num; int entry_type; int entry_index; hbool_t insert_flag; unsigned int flags; hbool_t resize_flag; size_t new_size; int num_pins; int pin_type[MAX_PINS]; int pin_idx[MAX_PINS]; int num_flush_ops; struct flush_op flush_ops[MAX_FLUSH_OPS]; hbool_t expected_deserialized; hbool_t expected_serialized; hbool_t expected_destroyed; }; struct move_entry_test_spec { int entry_type; int entry_index; hbool_t is_pinned; hbool_t is_protected; }; struct pinned_single_entry_test_spec { int test_num; int entry_type; int entry_idx; hbool_t dirty_flag; hbool_t mark_dirty; hbool_t pop_mark_dirty_prot; hbool_t pop_mark_dirty_pinned; hbool_t unprotect_unpin; unsigned int flags; unsigned int flush_flags; hbool_t expected_serialized; hbool_t expected_destroyed; }; /* private function declarations: */ static unsigned smoke_check_1(int express_test, unsigned paged); static unsigned smoke_check_2(int express_test, unsigned paged); static unsigned smoke_check_3(int express_test, unsigned paged); static unsigned smoke_check_4(int express_test, unsigned paged); static unsigned smoke_check_5(int express_test, unsigned paged); static unsigned smoke_check_6(int express_test, unsigned paged); static unsigned smoke_check_7(int express_test, unsigned paged); static unsigned smoke_check_8(int express_test, unsigned paged); static unsigned smoke_check_9(int express_test, unsigned paged); static unsigned smoke_check_10(int express_test, unsigned paged); static unsigned write_permitted_check(int express_test, unsigned paged); static unsigned check_insert_entry(unsigned paged); static unsigned check_flush_cache(unsigned paged); static void check_flush_cache__empty_cache(H5F_t *file_ptr); static void check_flush_cache__multi_entry(H5F_t *file_ptr); static void check_flush_cache__multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, unsigned int spec_size, struct flush_cache_test_spec spec[]); static void check_flush_cache__pe_multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, unsigned int spec_size, struct pe_flush_cache_test_spec spec[]); static void check_flush_cache__single_entry(H5F_t *file_ptr); static void check_flush_cache__single_entry_test(H5F_t *file_ptr, int test_num, int entry_type, int entry_idx, hbool_t insert_flag, unsigned int flags, unsigned int flush_flags, hbool_t expected_deserialized, hbool_t expected_serialized, hbool_t expected_destroyed); static void check_flush_cache__pinned_single_entry_test( H5F_t *file_ptr, int test_num, int entry_type, int entry_idx, hbool_t unprot_dirty_flag, hbool_t mark_dirty, hbool_t pop_mark_dirty_prot, hbool_t pop_mark_dirty_pinned, hbool_t unprotect_unpin, unsigned int flags, unsigned int flush_flags, hbool_t expected_serialized, hbool_t expected_destroyed); static void check_flush_cache__flush_ops(H5F_t *file_ptr); static void check_flush_cache__flush_op_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, int spec_size, const struct fo_flush_cache_test_spec spec[], unsigned init_expected_index_len, size_t init_expected_index_size, unsigned expected_index_len, size_t expected_index_size, int check_size, struct fo_flush_entry_check check[]); static void check_flush_cache__flush_op_eviction_test(H5F_t *file_ptr); static unsigned check_get_entry_status(unsigned paged); static unsigned check_expunge_entry(unsigned paged); static unsigned check_multiple_read_protect(unsigned paged); static unsigned check_move_entry(unsigned paged); static void check_move_entry__run_test(H5F_t *file_ptr, unsigned test_num, struct move_entry_test_spec *spec_ptr); static unsigned check_pin_protected_entry(unsigned paged); static unsigned check_resize_entry(unsigned paged); static unsigned check_evictions_enabled(unsigned paged); static unsigned check_flush_protected_err(unsigned paged); static unsigned check_destroy_pinned_err(unsigned paged); static unsigned check_destroy_protected_err(unsigned paged); static unsigned check_duplicate_insert_err(unsigned paged); static unsigned check_double_pin_err(unsigned paged); static unsigned check_double_unpin_err(unsigned paged); static unsigned check_pin_entry_errs(unsigned paged); static unsigned check_double_protect_err(unsigned paged); static unsigned check_double_unprotect_err(unsigned paged); static unsigned check_mark_entry_dirty_errs(unsigned paged); static unsigned check_expunge_entry_errs(unsigned paged); static unsigned check_move_entry_errs(unsigned paged); static unsigned check_resize_entry_errs(unsigned paged); static unsigned check_unprotect_ro_dirty_err(unsigned paged); static unsigned check_protect_ro_rw_err(unsigned paged); static unsigned check_protect_retries(unsigned paged); static unsigned check_check_evictions_enabled_err(unsigned paged); static unsigned check_auto_cache_resize(hbool_t cork_ageout, unsigned paged); static unsigned check_auto_cache_resize_disable(unsigned paged); static unsigned check_auto_cache_resize_epoch_markers(unsigned paged); static unsigned check_auto_cache_resize_input_errs(unsigned paged); static unsigned check_auto_cache_resize_aux_fcns(unsigned paged); static unsigned check_metadata_blizzard_absence(hbool_t fill_via_insertion, unsigned paged); static unsigned check_flush_deps(unsigned paged); static unsigned check_flush_deps_err(unsigned paged); static unsigned check_flush_deps_order(unsigned paged); static unsigned check_notify_cb(unsigned paged); static unsigned check_metadata_cork(hbool_t fill_via_insertion, unsigned paged); static unsigned check_entry_deletions_during_scans(unsigned paged); static void cedds__expunge_dirty_entry_in_flush_test(H5F_t *file_ptr); static void cedds__H5C_make_space_in_cache(H5F_t *file_ptr); static void cedds__H5C__autoadjust__ageout__evict_aged_out_entries(H5F_t *file_ptr); static void cedds__H5C_flush_invalidate_cache__bucket_scan(H5F_t *file_ptr); static unsigned check_stats(unsigned paged); #if H5C_COLLECT_CACHE_STATS static void check_stats__smoke_check_1(H5F_t *file_ptr); #endif /* H5C_COLLECT_CACHE_STATS */ static H5F_t *setup_cache(size_t max_cache_size, size_t min_clean_size, unsigned paged); static void takedown_cache(H5F_t *file_ptr, hbool_t dump_stats, hbool_t dump_detailed_stats); /**************************************************************************/ /**************************************************************************/ /********************************* tests: *********************************/ /**************************************************************************/ /**************************************************************************/ /*------------------------------------------------------------------------- * Function: smoke_check_1() * * Purpose: A basic functional test, inserts, destroys, and moves in * the mix, along with repeated protects and unprotects. * All entries are marked as clean. * * Return: void * * Programmer: John Mainzer * 6/16/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_1(int express_test, unsigned paged) { hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; int dirty_destroys = FALSE; hbool_t display_stats = FALSE; int32_t lag = 10; int32_t max_index = (10 * 1024) - 1; int mile_stone = 1; H5F_t *file_ptr = NULL; if (paged) TESTING("smoke check #1P -- all clean, ins, dest, ren, 4/2 MB cache") else TESTING("smoke check #1 -- all clean, ins, dest, ren, 4/2 MB cache") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged); if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_1() */ /*------------------------------------------------------------------------- * Function: smoke_check_2() * * Purpose: A basic functional test, with inserts, destroys, and * moves in the mix, along with some repeated protects * and unprotects. About half the entries are marked as * dirty. * * Return: void * * Programmer: John Mainzer * 6/24/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_2(int express_test, unsigned paged) { hbool_t show_progress = FALSE; int dirty_unprotects = TRUE; int dirty_destroys = TRUE; hbool_t display_stats = FALSE; int32_t max_index = (10 * 1024) - 1; int32_t lag = 10; int mile_stone = 1; H5F_t *file_ptr = NULL; if (paged) TESTING("smoke check #2P -- ~1/2 dirty, ins, dest, ren, 4/2 MB cache") else TESTING("smoke check #2 -- ~1/2 dirty, ins, dest, ren, 4/2 MB cache") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged); if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_2() */ /*------------------------------------------------------------------------- * Function: smoke_check_3() * * Purpose: A basic functional test on a tiny cache, with inserts, * destroys, and moves in the mix, along with repeated * protects and unprotects. All entries are marked as clean. * * Return: void * * Programmer: John Mainzer * 6/16/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_3(int express_test, unsigned paged) { hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; int dirty_destroys = FALSE; hbool_t display_stats = FALSE; int32_t max_index = (10 * 1024) - 1; int32_t lag = 10; int mile_stone = 1; H5F_t *file_ptr = NULL; if (paged) TESTING("smoke check #3P -- all clean, ins, dest, ren, 2/1 KB cache") else TESTING("smoke check #3 -- all clean, ins, dest, ren, 2/1 KB cache") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_3() */ /*------------------------------------------------------------------------- * Function: smoke_check_4() * * Purpose: A basic functional test on a tiny cache, with inserts, * destroys, and moves in the mix, along with repeated * protects and unprotects. About half the entries are * marked as dirty. * * Return: void * * Programmer: John Mainzer * 6/24/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_4(int express_test, unsigned paged) { hbool_t show_progress = FALSE; int dirty_unprotects = TRUE; int dirty_destroys = TRUE; hbool_t display_stats = FALSE; int32_t max_index = (10 * 1024) - 1; int32_t lag = 10; int mile_stone = 1; H5F_t *file_ptr = NULL; if (paged) TESTING("smoke check #4P -- ~1/2 dirty, ins, dest, ren, 2/1 KB cache") else TESTING("smoke check #4 -- ~1/2 dirty, ins, dest, ren, 2/1 KB cache") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_4() */ /*------------------------------------------------------------------------- * Function: smoke_check_5() * * Purpose: A basic functional test on a cache with automatic cache * resizing enabled, with inserts in the mix, along with * repeated protects and unprotects. All entries are marked * as clean. * * Return: void * * Programmer: John Mainzer * 10/14/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_5(int express_test, unsigned paged) { herr_t result; hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; hbool_t display_stats = FALSE; int32_t max_index = 1024; int mile_stone = 1; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, #if 1 /* H5C_auto_resize_report_fcn rpt_fcn = */ NULL, #else /* H5C_auto_resize_report_fcn rpt_fcn = */ H5C_def_auto_resize_rpt_fcn, #endif /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (2 * 1024 * 1024), /* double min_clean_fraction = */ 0.1, /* size_t max_size = */ (32 * 1024 * 1025), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 50000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.9, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.5 }; if (paged) TESTING("smoke check #5P -- all clean, ins, prot, unprot, AR cache 1") else TESTING("smoke check #5 -- all clean, ins, prot, unprot, AR cache 1") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_5() */ /*------------------------------------------------------------------------- * Function: smoke_check_6() * * Purpose: A basic functional test on a cache with automatic cache * resizing enabled, with inserts in the mix, along with * repeated protects and unprotects. About one half of all * entries are marked as dirty. * * Return: void * * Programmer: John Mainzer * 10/25/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_6(int express_test, unsigned paged) { herr_t result; hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; hbool_t display_stats = FALSE; int mile_stone = 1; int32_t max_index = 1024; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, #if 1 /* H5C_auto_resize_report_fcn rpt_fcn = */ NULL, #else /* H5C_auto_resize_report_fcn rpt_fcn = */ H5C_def_auto_resize_rpt_fcn, #endif /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (2 * 1024 * 1024), /* double min_clean_fraction = */ 0.1, /* size_t max_size = */ (32 * 1024 * 1025), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 50000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.9, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.05 }; if (paged) TESTING("smoke check #6P -- ~1/2 dirty, ins, prot, unprot, AR cache 1") else TESTING("smoke check #6 -- ~1/2 dirty, ins, prot, unprot, AR cache 1") if (paged && (express_test > 0)) { SKIPPED(); return (0); } pass = TRUE; switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_6() */ /*------------------------------------------------------------------------- * Function: smoke_check_7() * * Purpose: A basic functional test on a cache with automatic cache * resizing enabled, with inserts in the mix, along with * repeated protects and unprotects. All entries are marked * as clean. * * Return: void * * Programmer: John Mainzer * 12/2/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_7(int express_test, unsigned paged) { herr_t result; hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; hbool_t display_stats = FALSE; int mile_stone = 1; int32_t max_index = 1024; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, #if 1 /* H5C_auto_resize_report_fcn rpt_fcn = */ NULL, #else /* H5C_auto_resize_report_fcn rpt_fcn = */ H5C_def_auto_resize_rpt_fcn, #endif /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (2 * 1024 * 1024), /* double min_clean_fraction = */ 0.1, /* size_t max_size = */ (32 * 1024 * 1025), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 100000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (8 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__age_out_with_threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.9, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.1 }; if (paged) TESTING("smoke check #7P -- all clean, ins, prot, unprot, AR cache 2") else TESTING("smoke check #7 -- all clean, ins, prot, unprot, AR cache 2") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_7() */ /*------------------------------------------------------------------------- * Function: smoke_check_8() * * Purpose: A basic functional test on a cache with automatic cache * resizing enabled, with inserts in the mix, along with * repeated protects and unprotects. About one half of all * entries are marked as dirty. * * Return: void * * Programmer: John Mainzer * 10/25/04 * *------------------------------------------------------------------------- */ static unsigned smoke_check_8(int express_test, unsigned paged) { herr_t result; hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; hbool_t display_stats = FALSE; int mile_stone = 1; int32_t max_index = 1024; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, #if 1 /* H5C_auto_resize_report_fcn rpt_fcn = */ NULL, #else /* H5C_auto_resize_report_fcn rpt_fcn = */ H5C_def_auto_resize_rpt_fcn, #endif /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (2 * 1024 * 1024), /* double min_clean_fraction = */ 0.1, /* size_t max_size = */ (32 * 1024 * 1025), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 100000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__age_out_with_threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.9, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.1 }; if (paged) TESTING("smoke check #8P -- ~1/2 dirty, ins, prot, unprot, AR cache 2") else TESTING("smoke check #8 -- ~1/2 dirty, ins, prot, unprot, AR cache 2") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ FALSE); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); hl_col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ FALSE, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_8() */ /*------------------------------------------------------------------------- * Function: smoke_check_9() * * Purpose: A repeat of smoke check 1, only with the cache corked * part of the time. * * Recall that smoke check 1 is a basic functional test, * with inserts, destroys, and moves in the mix, along * with repeated protects and unprotects. All entries are * marked as clean. * * Return: void * * Programmer: John Mainzer * 8/1/07 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned smoke_check_9(int express_test, unsigned paged) { herr_t result; hbool_t show_progress = FALSE; int dirty_unprotects = FALSE; int dirty_destroys = FALSE; hbool_t display_stats = FALSE; hbool_t display_detailed_stats = FALSE; int32_t max_index = (10 * 1024) - 1; int32_t lag = 10; int mile_stone = 1; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; if (paged) TESTING("smoke check #9P -- all clean, ins, dest, ren, 4/2 MB, corked") else TESTING("smoke check #9 -- all clean, ins, dest, ren, 4/2 MB, corked") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged); cache_ptr = file_ptr->shared->cache; /* disable evictions */ if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 1.\n"; } } if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); /* enable evictions */ if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result < 0) { pass = FALSE; failure_mssg = "can't enable evictions 1.\n"; } } if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled \n", FUNC, mile_stone++, (int)pass); row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 2.\n"; } } if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled \n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result < 0) { pass = FALSE; failure_mssg = "can't enable evictions 2.\n"; } } if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled \n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 3.\n"; } } if (show_progress) /* 12 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 13 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 14 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result < 0) { pass = FALSE; failure_mssg = "can't enable evictions 3.\n"; } } if (show_progress) /* 15 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", FUNC, mile_stone++, (int)pass); col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 16 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 4.\n"; } } if (show_progress) /* 17 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 18 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_9() */ /*------------------------------------------------------------------------- * Function: smoke_check_10() * * Purpose: A repeat of smoke check 2, only with the cache corked * part of the time. * * Recall that smoke check 2 is a basic functional test, * with inserts, destroys, and moves in the mix, along * with some repeated protects and unprotects. About half * the entries are marked as dirty. * * Return: void * * Programmer: John Mainzer * 8/1/07 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned smoke_check_10(int express_test, unsigned paged) { herr_t result; hbool_t show_progress = FALSE; int dirty_unprotects = TRUE; int dirty_destroys = TRUE; hbool_t display_stats = FALSE; hbool_t display_detailed_stats = FALSE; int32_t max_index = (10 * 1024) - 1; int32_t lag = 10; int mile_stone = 1; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; if (paged) TESTING("smoke check #10P -- ~1/2 dirty, ins, dest, ren, 4/2 MB, corked") else TESTING("smoke check #10 -- ~1/2 dirty, ins, dest, ren, 4/2 MB, corked") if (paged && (express_test > 0)) { SKIPPED(); return (0); } switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(4 * 1024 * 1024), (size_t)(2 * 1024 * 1024), paged); cache_ptr = file_ptr->shared->cache; if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 1.\n"; } } if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result < 0) { pass = FALSE; failure_mssg = "can't enable evictions 1.\n"; } } if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ dirty_destroys, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 2.\n"; } } if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result < 0) { pass = FALSE; failure_mssg = "can't enable evictions 2.\n"; } } if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 12 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 3.\n"; } } if (show_progress) /* 13 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); /* flush all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ FALSE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 14 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result < 0) { pass = FALSE; failure_mssg = "can't enable evictions 3.\n"; } } if (show_progress) /* 15 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions enabled\n", FUNC, mile_stone++, (int)pass); col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ display_detailed_stats, /* do_inserts */ TRUE, /* dirty_unprotects */ dirty_unprotects); if (show_progress) /* 16 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result < 0) { pass = FALSE; failure_mssg = "can't disable evictions 4.\n"; } } if (show_progress) /* 17 */ HDfprintf(stdout, "%s() - %0d -- pass = %d -- evictions disabled\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 18 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* smoke_check_10() */ /*------------------------------------------------------------------------- * Function: write_permitted_check() * * Purpose: A basic test of the write permitted function. In essence, * we load the cache up with dirty entryies, set * write_permitted to FALSE, and then protect a bunch of * entries. If there are any writes while write_permitted is * FALSE, the test will fail. * * Return: void * * Programmer: John Mainzer * 6/24/04 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned write_permitted_check(int #if !H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS H5_ATTR_UNUSED #endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ express_test, unsigned paged) { #if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS hbool_t show_progress = FALSE; hbool_t display_stats = FALSE; int32_t max_index = (10 * 1024) - 1; int32_t lag = 10; int mile_stone = 1; H5F_t *file_ptr = NULL; #endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ if (paged) TESTING("write permitted check -- 1/0 MB cache (paged aggregation)") else TESTING("write permitted check -- 1/0 MB cache") #if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS switch (express_test) { case 0: max_index = (10 * 1024) - 1; break; case 1: max_index = (1 * 1024) - 1; break; case 2: max_index = (512) - 1; break; default: SKIPPED(); HDfprintf(stdout, " Long tests disabled.\n"); return 0; /* <========== note return */ break; } pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); reset_entries(); if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); file_ptr = setup_cache((size_t)(1 * 1024 * 1024), (size_t)0, paged); if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ TRUE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ TRUE, /* dirty_unprotects */ TRUE); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); write_permitted = FALSE; row_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ FALSE, /* do_moves */ TRUE, /* move_to_main_addr */ TRUE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ FALSE, /* dirty_unprotects */ NO_CHANGE); if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); write_permitted = TRUE; row_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* do_moves */ TRUE, /* move_to_main_addr */ FALSE, /* do_destroys */ FALSE, /* do_mult_ro_protects */ TRUE, /* dirty_destroys */ TRUE, /* dirty_unprotects */ TRUE); if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* flush and destroy all entries in the cache: */ flush_cache(/* file_ptr */ file_ptr, /* destroy_entries */ TRUE, /* dump_stats */ FALSE, /* dump_detailed_stats */ FALSE); if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); col_major_scan_forward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ TRUE, /* dirty_unprotects */ TRUE); if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); write_permitted = FALSE; col_major_scan_backward(/* file_ptr */ file_ptr, /* max_index */ max_index, /* lag */ lag, /* verbose */ FALSE, /* reset_stats */ TRUE, /* display_stats */ display_stats, /* display_detailed_stats */ TRUE, /* do_inserts */ FALSE, /* dirty_unprotects */ NO_CHANGE); write_permitted = TRUE; if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); takedown_cache(file_ptr, display_stats, TRUE); if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); verify_clean(); verify_unprotected(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } #else /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ SKIPPED(); HDfprintf(stdout, " Clean and dirty LRU lists disabled.\n"); #endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ return (unsigned)!pass; } /* write_permitted_check() */ /*------------------------------------------------------------------------- * Function: check_insert_entry() * * Purpose: Verify that H5C_insert_entry behaves as expected. * Test the behaviour with different flags. * * This test was added primarily to test basic insert * pinned entry functionallity, but I through in explicit * tests for other functionallity that is tested implicitly * elsewhere. * * Return: void * * Programmer: John Mainzer * 8/10/06 * * Modifications: * * Updated tests to accommodate the case in which the * slist is disabled. * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static unsigned check_insert_entry(unsigned paged) { int entry_type = PICO_ENTRY_TYPE; int i; herr_t result; hbool_t in_cache; hbool_t is_dirty; hbool_t is_protected; hbool_t is_pinned; size_t entry_size; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; test_entry_t *base_addr; test_entry_t *entry_ptr; struct H5C_cache_entry_t *search_ptr; if (paged) TESTING("H5C_insert_entry() functionality (paged aggregation)") else TESTING("H5C_insert_entry() functionality") pass = TRUE; /* Allocate a cache, and insert entries into it using all * combinations of flags. Verify that the entries are inserted, * and that the flags have the desired effects. * * Note that the dirty parameter in insert_entry is no longer * used, as we have decided that all inserted entries are * dirty by definition. (Which sounds very reasonable, but didn't * used to be the case.) */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); cache_ptr = file_ptr->shared->cache; } if (pass) { insert_entry(file_ptr, entry_type, 0, H5C__NO_FLAGS_SET); insert_entry(file_ptr, entry_type, 1, H5C__SET_FLUSH_MARKER_FLAG); insert_entry(file_ptr, entry_type, 2, H5C__PIN_ENTRY_FLAG); insert_entry(file_ptr, entry_type, 3, (H5C__SET_FLUSH_MARKER_FLAG | H5C__PIN_ENTRY_FLAG)); } /* Verify that the entries are inserted as desired. */ i = 0; base_addr = entries[0]; while (pass && (i < 4)) { entry_ptr = &(base_addr[i]); /* Start by checking everything we can via H5C_get_entry_status() */ result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; failure_mssg = "H5C_get_entry_status() reports failure."; } if (pass) { /* check the universals */ if ((!in_cache) || (!is_dirty) || (is_protected) || (entry_size != entry_sizes[entry_type])) { pass = FALSE; failure_mssg = "Unexpected insert results 1."; } } if (pass) { /* verify that the pinned flag got set correctly */ if ((i == 2) || (i == 3)) { if (!is_pinned) { pass = FALSE; failure_mssg = "Unexpected insert results 2."; } } else if (is_pinned) { pass = FALSE; failure_mssg = "Unexpected insert results 3."; } else if (is_pinned != ((entry_ptr->header).is_pinned)) { pass = FALSE; failure_mssg = "Unexpected insert results 4."; } } /* Thats all we can get from H5C_get_entry_status(). * Now start looking at the cache data structures directly. */ if (pass) { /* Verify that the flush marker got set correctly */ if ((i == 1) || (i == 3)) { if (!((entry_ptr->header).flush_marker)) { pass = FALSE; failure_mssg = "Unexpected insert results 5."; } } else if ((entry_ptr->header).flush_marker) { pass = FALSE; failure_mssg = "Unexpected insert results 6."; } } if (pass) { /* Verify that pinned entries are in the pinned entry list */ if ((entry_ptr->header).is_pinned) { search_ptr = cache_ptr->pel_head_ptr; while ((search_ptr != NULL) && (search_ptr != (struct H5C_cache_entry_t *)entry_ptr)) { search_ptr = search_ptr->next; } if (search_ptr == NULL) { pass = FALSE; failure_mssg = "Unexpected insert results 7."; } } } if (pass) { /* Verify that unpinned entries are in the LRU list */ if (!((entry_ptr->header).is_pinned)) { search_ptr = cache_ptr->LRU_head_ptr; while ((search_ptr != NULL) && (search_ptr != (struct H5C_cache_entry_t *)entry_ptr)) { search_ptr = search_ptr->next; } if (search_ptr == NULL) { pass = FALSE; failure_mssg = "Unexpected insert results 8."; } } } #if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS if (pass) { /* Verify that unpinned entries are in the dirty LRU list */ if (!((entry_ptr->header).is_pinned)) { search_ptr = cache_ptr->dLRU_head_ptr; while ((search_ptr != NULL) && (search_ptr != (struct H5C_cache_entry_t *)entry_ptr)) { search_ptr = search_ptr->aux_next; } if (search_ptr == NULL) { pass = FALSE; failure_mssg = "Unexpected insert results 9."; } } } #endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ i++; } /* while */ /* So much for looking at the individual entries. Now verify * that the various counts and sized in the cache header are * as expected. */ if (pass) { if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * entry_sizes[entry_type]) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 4) || (cache_ptr->slist_size != 4 * entry_sizes[entry_type]))) || (cache_ptr->pl_len != 0) || (cache_ptr->pl_size != (size_t)0) || (cache_ptr->pel_len != 2) || (cache_ptr->pel_size != 2 * entry_sizes[entry_type]) || (cache_ptr->LRU_list_len != 2) || (cache_ptr->LRU_list_size != 2 * entry_sizes[entry_type]) #if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS || (cache_ptr->dLRU_list_len != 2) || (cache_ptr->dLRU_list_size != 2 * entry_sizes[entry_type]) || (cache_ptr->cLRU_list_len != 0) || (cache_ptr->cLRU_list_size != (size_t)0) #endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */ ) { pass = FALSE; failure_mssg = "Unexpected insert results 10."; } } /* Finally, if stats collection is enabled, verify that the expected * stats are collected. */ #if H5C_COLLECT_CACHE_STATS if (pass) { if ((cache_ptr->insertions[entry_type] != 4) || (cache_ptr->pinned_insertions[entry_type] != 2) || (cache_ptr->pins[entry_type] != 2) || (cache_ptr->unpins[entry_type] != 0) || (cache_ptr->dirty_pins[entry_type] != 0) || (cache_ptr->max_index_len != 4) || (cache_ptr->max_index_size != 4 * entry_sizes[entry_type]) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 4) || (cache_ptr->slist_size != 4 * entry_sizes[entry_type]))) || (cache_ptr->max_pl_len != 0) || (cache_ptr->max_pl_size != (size_t)0) || (cache_ptr->max_pel_len != 2) || (cache_ptr->max_pel_size != 2 * entry_sizes[entry_type])) { pass = FALSE; failure_mssg = "Unexpected insert results 11."; } } #endif /* H5C_COLLECT_CACHE_STATS */ /* Unpin the pinned entries so we can take down the cache cleanly. */ if (pass) { unpin_entry(entry_type, 2); unpin_entry(entry_type, 3); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_insert_entry() */ /*------------------------------------------------------------------------- * Function: check_flush_cache() * * Purpose: Verify that flush_cache behaves as expected. In particular, * test the behaviour with different flags. * * Return: void * * Programmer: John Mainzer * 1/10/05 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_flush_cache(unsigned paged) { H5F_t *file_ptr = NULL; if (paged) TESTING("H5C_flush_cache() functionality (paged aggregation)") else TESTING("H5C_flush_cache() functionality") pass = TRUE; /* allocate a cache, and flush it under various circumstances. * To the extent possible, verify that the desired actions took * place. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); } /* first test behaviour on an empty cache. Can't do much sanity * checking in this case, so simply check the return values. */ if (pass) { check_flush_cache__empty_cache(file_ptr); } /* now do a series of similar tests with a cache with a single entry. * Start with a clean entry, with no flags set. */ if (pass) { check_flush_cache__single_entry(file_ptr); } if (pass) { check_flush_cache__multi_entry(file_ptr); } if (pass) { check_flush_cache__flush_ops(file_ptr); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_flush_cache() */ /*------------------------------------------------------------------------- * * Function: check_flush_cache__empty_cache() * * Purpose : Verify that flush_cache behaves as expected with an empty * cache. * * Return: void * * Programmer: John Mainzer * 1/12/05 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void check_flush_cache__empty_cache(H5F_t *file_ptr) { H5C_t *cache_ptr = file_ptr->shared->cache; if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to empty cache case."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at beginning of empty cache case."; } /* Test behaviour on an empty cache. Can't do much sanity * checking in this case, so simply check the return values. * * Check of return values is done in the H5C_FLUSH_CACHE() macro. */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "flush with flags = 0x00 failed on empty cache.\n") } if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "flush with flags = 0x04 failed on empty cache.\n") } if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_CLEAR_ONLY_FLAG, "flush with flags = 0x08 failed on empty cache.\n") } if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_MARKED_ENTRIES_FLAG, "flush with flags = 0x10 failed on empty cache.\n") } } /* check_flush_cache__empty_cache() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__multi_entry() * * Purpose: Verify that flush_cache behaves as expected when the cache * contains multiple elements. * * Return: void * * Programmer: John Mainzer * 1/14/05 * * Modifications: * * JRM -- 4/5/06 * Added pinned entry tests. * *------------------------------------------------------------------------- */ static void check_flush_cache__multi_entry(H5F_t *file_ptr) { H5C_t *cache_ptr = file_ptr->shared->cache; if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to multi entry case."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at beginning of multi entry case."; } if (pass) { int test_num = 1; unsigned int flush_flags = H5C__NO_FLAGS_SET; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 2; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 3; unsigned int flush_flags = H5C__FLUSH_CLEAR_ONLY_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 4; unsigned int flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 5; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 6; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 7; unsigned int flush_flags = H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 8; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG; unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } /* verify that all other flags are ignored */ if (pass) { int test_num = 9; unsigned int flush_flags = (unsigned)~(H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG); unsigned int spec_size = 8; struct flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}}; check_flush_cache__multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } /* Now do pinned entry tests: * * For the most part, this test is directed at testing the ability * of the flush routine to unravel collections of pinned entries. */ if (pass) { int test_num = 1; unsigned int flush_flags = H5C__NO_FLAGS_SET; unsigned int spec_size = 8; struct pe_flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 2, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 3, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 4, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 5, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, 10, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 6, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, 10, 20, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 7, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, 10, 20, 30, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}}; check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 2; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; unsigned int spec_size = 8; struct pe_flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 2, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 3, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {MONSTER_ENTRY_TYPE, -1, -1, -1, -1 - 1, -1, -1}, /* pin_idx[MAX_PINS] = */ {10, -1, -1, -1 - 1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 2, /* pin_type[MAX_PINS] = */ {MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {10, 20, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 3, /* pin_type[MAX_PINS] = */ {MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, MONSTER_ENTRY_TYPE, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {10, 20, 30, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}}; check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 3; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG; unsigned int spec_size = 8; struct pe_flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}}; check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 4; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG; unsigned int spec_size = 8; struct pe_flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* num_pins = */ 4, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 4, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, PICO_ENTRY_TYPE, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, 75, 25, 50, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}}; check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } if (pass) { int test_num = 5; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG; unsigned int spec_size = 8; struct pe_flush_cache_test_spec spec[8] = { {/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 0, /* pin_type[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {-1, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 75, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 25, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 4, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 5, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 6, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 30, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}, {/* entry_num = */ 7, /* entry_type = */ MONSTER_ENTRY_TYPE, /* entry_index = */ 40, /* insert_flag = */ TRUE, /* flags = */ H5C__SET_FLUSH_MARKER_FLAG, /* num_pins = */ 1, /* pin_type[MAX_PINS] = */ {PICO_ENTRY_TYPE, -1, -1, -1, -1, -1, -1, -1}, /* pin_idx[MAX_PINS] = */ {100, -1, -1, -1, -1, -1, -1, -1}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}}; check_flush_cache__pe_multi_entry_test(file_ptr, test_num, flush_flags, spec_size, spec); } } /* check_flush_cache__multi_entry() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__multi_entry_test() * * Purpose : Run a multi entry flush cache test. * * Return: void * * Programmer: John Mainzer * 1/13/05 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void check_flush_cache__multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, unsigned int spec_size, struct flush_cache_test_spec spec[]) { H5C_t *cache_ptr = file_ptr->shared->cache; static char msg[128]; unsigned u; size_t total_entry_size = 0; test_entry_t *base_addr; test_entry_t *entry_ptr; #if 0 /* JRM */ /* This gets used a lot, so lets leave it in. */ HDfprintf(stdout, "check_flush_cache__multi_entry_test: test %d\n", test_num); #endif /* JRM */ if (cache_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to single entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache not empty at beginning of multi entry test #%d.", test_num); failure_mssg = msg; } else if ((spec_size < 1) || (spec == NULL)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "missing/bad test spec on entry to multi entry test #%d.", test_num); failure_mssg = msg; } u = 0; while (pass && (u < spec_size)) { if (((unsigned)spec[u].entry_num != u) || (spec[u].entry_type < 0) || (spec[u].entry_type >= NUMBER_OF_ENTRY_TYPES) || (spec[u].entry_index < 0) || (spec[u].entry_index > max_indices[spec[u].entry_type])) { pass = FALSE; HDsnprintf(msg, (size_t)128, "bad data in spec[%u] on entry to multi entry test #%d.", u, test_num); failure_mssg = msg; } u++; } u = 0; while (pass && (u < spec_size)) { if (spec[u].insert_flag) { insert_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags); } else { protect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index); unprotect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags); } total_entry_size += entry_sizes[spec[u].entry_type]; u++; } if (pass) { H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message.\n") if (!pass) { HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in multi entry test #%d.", flush_flags, test_num); failure_mssg = msg; } } u = 0; while (pass && (u < spec_size)) { base_addr = entries[spec[u].entry_type]; entry_ptr = &(base_addr[spec[u].entry_index]); if ((entry_ptr->deserialized != spec[u].expected_deserialized) || (entry_ptr->serialized != spec[u].expected_serialized) || (entry_ptr->destroyed != spec[u].expected_destroyed)) { #if 0 /* This is useful debugging code. Lets keep it around. */ HDfprintf(stdout, "deslzd = %d(%d), slzd = %d(%d), dest = %d(%d)\n", (int)(entry_ptr->deserialized), (int)(spec[u].expected_deserialized), (int)(entry_ptr->serialized), (int)(spec[u].expected_serialized), (int)(entry_ptr->destroyed), (int)(spec[u].expected_destroyed)); #endif pass = FALSE; HDsnprintf(msg, (size_t)128, "Bad status on entry %u after flush in multi entry test #%d.", u, test_num); failure_mssg = msg; } u++; } if (pass) { if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) && ((cache_ptr->index_len != spec_size) || (cache_ptr->index_size != total_entry_size))) || (((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in multi entry test #%d.", test_num); failure_mssg = msg; } } /* clean up the cache to prep for the next test */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg.\n") if (!pass) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in multi entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after cleanup in multi entry test #%d.", test_num); failure_mssg = msg; } } u = 0; while (pass && (u < spec_size)) { base_addr = entries[spec[u].entry_type]; entry_ptr = &(base_addr[spec[u].entry_index]); entry_ptr->deserialized = FALSE; entry_ptr->serialized = FALSE; entry_ptr->destroyed = FALSE; u++; } } /* check_flush_cache__multi_entry_test() */ /*------------------------------------------------------------------------- * * Function: check_flush_cache__pe_multi_entry_test() * * Purpose: Run a multi entry flush cache test. * * Return: void * * Programmer: John Mainzer * 4/5/06 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/16/20 * *------------------------------------------------------------------------- */ static void check_flush_cache__pe_multi_entry_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, unsigned int spec_size, struct pe_flush_cache_test_spec spec[]) { H5C_t *cache_ptr = file_ptr->shared->cache; static char msg[128]; unsigned u; int j; size_t total_entry_size = 0; test_entry_t *base_addr; test_entry_t *entry_ptr; #if 0 /* JRM */ /* This is useful debugging code. Leave it in for now. */ HDfprintf(stdout, "check_flush_cache__pe_multi_entry_test: test %d\n", test_num); #endif /* JRM */ if (cache_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to pe multi entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache not empty at beginning of pe multi entry test #%d.", test_num); failure_mssg = msg; } else if ((spec_size < 1) || (spec == NULL)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "missing/bad test spec on entry to pe multi entry test #%d.", test_num); failure_mssg = msg; } u = 0; while (pass && (u < spec_size)) { if (((unsigned)spec[u].entry_num != u) || (spec[u].entry_type < 0) || (spec[u].entry_type >= NUMBER_OF_ENTRY_TYPES) || (spec[u].entry_index < 0) || (spec[u].entry_index > max_indices[spec[u].entry_type]) || (spec[u].num_pins < 0) || (spec[u].num_pins > MAX_PINS)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "bad data in spec[%u] on entry to pe multi entry test #%d.", u, test_num); failure_mssg = msg; } u++; } u = 0; while (pass && (u < spec_size)) { if (spec[u].insert_flag) { insert_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags); } else { protect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index); unprotect_entry(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].flags); } total_entry_size += entry_sizes[spec[u].entry_type]; for (j = 0; j < spec[u].num_pins; j++) { create_pinned_entry_dependency(file_ptr, spec[u].entry_type, spec[u].entry_index, spec[u].pin_type[j], spec[u].pin_idx[j]); } u++; } if (pass) { H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message.\n") if (!pass) { HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in pe multi entry test #%d.", flush_flags, test_num); failure_mssg = msg; } } u = 0; while (pass && (u < spec_size)) { base_addr = entries[spec[u].entry_type]; entry_ptr = &(base_addr[spec[u].entry_index]); if ((entry_ptr->deserialized != spec[u].expected_deserialized) || (entry_ptr->serialized != spec[u].expected_serialized) || (entry_ptr->destroyed != spec[u].expected_destroyed)) { #if 0 /* This is useful debugging code. Lets keep it around. */ HDfprintf(stdout, "desrlzd = %d(%d), srlzd = %d(%d), dest = %d(%d)\n", (int)(entry_ptr->deserialized), (int)(spec[u].expected_deserialized), (int)(entry_ptr->serialized), (int)(spec[u].expected_serialized), (int)(entry_ptr->destroyed), (int)(spec[u].expected_destroyed)); #endif pass = FALSE; HDsnprintf(msg, (size_t)128, "Bad status on entry %u after flush in pe multi entry test #%d.", u, test_num); failure_mssg = msg; } u++; } if (pass) { if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) && ((cache_ptr->index_len != spec_size) || (cache_ptr->index_size != total_entry_size))) || (((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in pe multi entry test #%d.", test_num); failure_mssg = msg; } } /* clean up the cache to prep for the next test */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg.\n") if (!pass) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in pe multi entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after cleanup in pe multi entry test #%d.", test_num); failure_mssg = msg; } } u = 0; while (pass && (u < spec_size)) { base_addr = entries[spec[u].entry_type]; entry_ptr = &(base_addr[spec[u].entry_index]); entry_ptr->deserialized = FALSE; entry_ptr->serialized = FALSE; entry_ptr->destroyed = FALSE; u++; } } /* check_flush_cache__pe_multi_entry_test() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__flush_ops() * * Purpose: Run the flush ops cache tests. * * These are tests that test the cache's ability to handle * the case in which the flush callback dirties, resizes, * and/or moves entries. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 9/3/06 * * Modifications: * *------------------------------------------------------------------------- */ static void check_flush_cache__flush_ops(H5F_t *file_ptr) { const int max_num_spec = 10; const int max_num_check = 4; struct fo_flush_cache_test_spec *spec = NULL; struct fo_flush_entry_check *checks = NULL; H5C_t *cache_ptr = file_ptr->shared->cache; if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to flush ops test."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at beginning of flush ops test."; } spec = HDmalloc((size_t)max_num_spec * sizeof(struct fo_flush_cache_test_spec)); if (spec == NULL) { pass = FALSE; failure_mssg = "couldn't allocate flush ops test spec array"; } checks = HDmalloc((size_t)max_num_check * sizeof(struct fo_flush_entry_check)); if (checks == NULL) { pass = FALSE; failure_mssg = "couldn't allocate flush ops test check array"; } if (pass) /* test #1 */ { /* start with a very simple test, in which there are two entries * resident in cache, and the second entry dirties the first in * the flush callback. No size changes, and no flush flags. */ int test_num = 1; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 2; int check_size = 0; unsigned init_expected_index_len = 2; size_t init_expected_index_size = 2 * PICO_ENTRY_SIZE; unsigned expected_index_len = 2; size_t expected_index_size = 2 * PICO_ENTRY_SIZE; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ 0, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #2 */ { /* Same as test 1, only this time set the flush invalidate flag. * Note that we must repeat all tests with the flush invalidate flag * as this triggers a different set of code to execute the flush. * * Create two entries resident in cache, and have the second entry * dirty the first in the flush callback. */ int test_num = 2; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 2; int check_size = 0; unsigned init_expected_index_len = 2; size_t init_expected_index_size = 2 * PICO_ENTRY_SIZE; unsigned expected_index_len = 0; size_t expected_index_size = 0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr*/ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #3 */ { /* Single entry test verifying that the cache can handle the case in * which the call back function resizes the entry for which it has * been called. */ int test_num = 3; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 0; unsigned init_expected_index_len = 1; size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 4; unsigned expected_index_len = 1; size_t expected_index_size = VARIABLE_ENTRY_SIZE / 2; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 4, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr:*/ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #4 */ { /* Repeat test #4 with the flush invalidate flag. * * Single entry test verifying that the cache can handle the case in * which the call back function resizes the entry for which it has * been called. */ int test_num = 4; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 1; int check_size = 0; unsigned init_expected_index_len = 1; size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 4; unsigned expected_index_len = 0; size_t expected_index_size = 0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 4, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #5 & #6 */ { /* Single entry test verifying that the cache can handle the case in * which the call back function first resizes and then moves the * entry for which it has been called. * * Run this entry twice, as the first run moves the entry to its * alternate address, and the second moves it back. * * 10/8/07 -- JRM * Added a resize operation to this test to satisfy the new * requiremnt that any resize of an entry on flush will always * be accompanied by a resize. Note that as a result, this * test becomes redundant with later tests. */ int test_num = 5; /* and 6 */ unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 0; unsigned init_expected_index_len = 1; size_t init_expected_index_size = VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 1; size_t expected_index_size = VARIABLE_ENTRY_SIZE / 2; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 2, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); /* this change forces the move to move the target entry back to its * main address. The first test moved it to its alternate address. * * Note that these two tests are not the same, as in the first test, * the moved entry is moved forward in the slist. In the second * it is moved backwards. * * Since there is only one entry in the cache, this doesn't really * matter in this case. But we will do similar tests later with * other entries in the cache. */ if (pass) { spec[0].flush_ops[1].flag = TRUE; test_num = 6; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } } if (pass) /* test #7 & #8 */ { /* Run tests 5 & 6 again, using the flush invalidate flag on the * second test. * * Single entry test verifying that the cache can handle the case in * which the call back function moves the entry for which it has * been called. * * Run this entry twice, as the first run moves the entry to its * alternate address, and the second moves it back. * * 10/8/07 -- JRM * Added a resize operation to this test to satisfy the new * requiremnt that any resize of an entry on flush will always * be accompanied by a resize. Note that as a result, this * test becomes redundant with later tests. */ int test_num = 7; /* and 8 */ unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 0; unsigned init_expected_index_len = 1; size_t init_expected_index_size = VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 1; size_t expected_index_size = VARIABLE_ENTRY_SIZE / 2; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 2, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); /* this change forces the move to move the target entry back to its * main address. The first test moved it to its alternate address. * * Note that these two tests are not the same, as in the first test, * the moved entry is moved forward in the slist. In the second * it is moved backwards. * * Since there is only one entry in the cache, this doesn't really * matter in this case. But we will do similar tests later with * other entries in the cache. */ if (pass) { test_num = 8; flush_flags = H5C__FLUSH_INVALIDATE_FLAG; expected_index_len = 0; expected_index_size = 0; spec[0].flush_ops[1].flag = TRUE; spec[0].expected_destroyed = TRUE; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } } if (pass) /* test #9 & #10 */ { /* Single entry test verifying that the cache can handle the case in * which the call back function both resizes and moves the entry * for which it has been called. * * Again, we run this entry twice, as the first run moves the entry * to its alternate address, and the second moves it back. */ int test_num = 9; /* and 10 */ unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 0; unsigned init_expected_index_len = 1; size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 2; unsigned expected_index_len = 1; size_t expected_index_size = VARIABLE_ENTRY_SIZE / 4; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 2, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 2, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); /* this change forces the move to move the target entry back to its * main address. The first test moved it to its alternate address. * * Note that these two tests are not the same, as in the first test, * the moved entry is moved forward in the slist. In the second * it is moved backwards. * * Since there is only one entry in the cache, this doesn't really * matter in this case. But we will do similar tests later with * other entries in the cache. */ if (pass) { spec[0].flush_ops[1].flag = TRUE; test_num = 10; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } } if (pass) /* test #11 & #12 */ { /* Repeat the previous test with the flush invalidate flag on the * second test. * * Single entry test verifying that the cache can handle the case in * which the call back function both resizes and moves the entry * for which it has been called. * * Again, we run this entry twice, as the first run moves the entry to its * alternate address, and the second moves it back. */ int test_num = 11; /* and 12 */ unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 0; unsigned init_expected_index_len = 1; size_t init_expected_index_size = VARIABLE_ENTRY_SIZE / 2; unsigned expected_index_len = 1; size_t expected_index_size = VARIABLE_ENTRY_SIZE / 4; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 2, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 2, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); /* this change forces the move to move the target entry back to its * main address. The first test moved it to its alternate address. * * Note that these two tests are not the same, as in the first test, * the moved entry is moved forward in the slist. In the second * it is moved backwards. * * Since there is only one entry in the cache, this doesn't really * matter in this case. But we will do similar tests later with * other entries in the cache. */ if (pass) { test_num = 12; flush_flags = H5C__FLUSH_INVALIDATE_FLAG; expected_index_len = 0; expected_index_size = 0; spec[0].flush_ops[1].flag = TRUE; spec[0].expected_destroyed = TRUE; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } } if (pass) /* test #13 */ { /* Test the ability of the cache to handle the case in which * the flush function of an entry that is resident in cache * dirties two entries that are not in cache. No size * changes. * * At present, I am assured that this case will never occur, but * lets make sure we can handle it regardless. */ int test_num = 13; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 2; unsigned init_expected_index_len = 1; size_t init_expected_index_size = 1 * PICO_ENTRY_SIZE; unsigned expected_index_len = 3; size_t expected_index_size = 3 * PICO_ENTRY_SIZE; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 2, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, 0, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ PICO_ENTRY_SIZE, /* in_cache = */ TRUE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ PICO_ENTRY_SIZE, /* in_cache = */ TRUE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #14 */ { /* Repeat previous test with the flush invalidate flag. * * Test the ability of the cache to handle the case in which * the flush function of an entry that is resident in cache * dirties two entries that are not in cache. No size * changes. * * At present, I am assured that this case will never occur, but * lets make sure we can handle it regardless. */ int test_num = 14; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 1; int check_size = 2; unsigned init_expected_index_len = 1; size_t init_expected_index_size = 1 * PICO_ENTRY_SIZE; unsigned expected_index_len = 0; size_t expected_index_size = (size_t)0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 2, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, 0, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ PICO_ENTRY_SIZE, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ PICO_ENTRY_SIZE, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #15 */ { /* Test the ability of the cache to handle the case in which * the flush function of an entry that is resident in cache * resizes and dirties two entries that are not in cache. * * At present, I am assured that this case will never occur, but * lets make sure we can handle it regardless. */ int test_num = 15; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 2; unsigned init_expected_index_len = 1; size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 3; size_t expected_index_size = VARIABLE_ENTRY_SIZE + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2); HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 4, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ TRUE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #16 */ { /* Repeat previous test with the flush invalidate flag. * * Test the ability of the cache to handle the case in which * the flush function of an entry that is resident in cache * resizes and dirties two entries that are not in cache. * * At present, I am assured that this case will never occur, but * lets make sure we can handle it regardless. */ int test_num = 16; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 1; int check_size = 2; unsigned init_expected_index_len = 1; size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 0; size_t expected_index_size = (size_t)0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 4, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #17 & #18 */ { /* Test the ability of the cache to handle the case in which * the flush function of an entry that is resident in cache * resizes, dirties, and moves two entries that are not in cache. * * At present, I am assured that this case will never occur, but * lets make sure we can handle it regardless. */ int test_num = 17; /* and 18 */ unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 2; unsigned init_expected_index_len = 1; size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 3; size_t expected_index_size = VARIABLE_ENTRY_SIZE + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2); HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); /* this change forces the moves to move the target entries back to * their main address. The first test moved them to their alternate * address. * * Note that these two tests are not the same, as in the first test, * the moved entries are moved forward in the slist. In the second * they are moved backwards. */ if (pass) { test_num = 18; spec[0].flush_ops[2].flag = TRUE; spec[0].flush_ops[5].flag = TRUE; checks[0].at_main_addr = TRUE; checks[1].at_main_addr = TRUE; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } } if (pass) /* test #19 & #20 */ { /* Repeat the above test with the flush invalidate flag on the * second test. * * Test the ability of the cache to handle the case in which * the flush function of an entry that is resident in cache * resizes, dirties, and moves two entries that are not in cache. * * At present, I am assured that this case will never occur, but * lets make sure we can handle it regardless. */ int test_num = 19; /* and 20 */ unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 1; int check_size = 2; unsigned init_expected_index_len = 1; size_t init_expected_index_size = 1 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 3; size_t expected_index_size = VARIABLE_ENTRY_SIZE + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2); HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); /* this change forces the moves to move the target entries back to * their main address. The first test moved them to their alternate * address. * * Note that these two tests are not the same, as in the first test, * the moved entries are moved forward in the slist. In the second * they are moved backwards. */ if (pass) { test_num = 20; flush_flags = H5C__FLUSH_INVALIDATE_FLAG; expected_index_len = 0; expected_index_size = (size_t)0; spec[0].expected_destroyed = TRUE; spec[0].flush_ops[2].flag = TRUE; spec[0].flush_ops[5].flag = TRUE; checks[0].at_main_addr = TRUE; checks[0].in_cache = FALSE; checks[0].expected_destroyed = TRUE; checks[1].at_main_addr = TRUE; checks[1].in_cache = FALSE; checks[1].expected_destroyed = TRUE; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } } if (pass) /* test #21 */ { /* Now mix things up a bit. * * Load several entries, two of which have flush functions that * resize, dirty, and move two entries that are not in the * cache. Mark only one of these entries, and then flush the * cache with the flush marked entries flag. * * This is the only test in which we test the * H5C__FLUSH_MARKED_ENTRIES_FLAG. The hope is that since * we test the two features extensively by themselves, so * it should be sufficient to verify that they play together * as expected. */ int test_num = 21; unsigned int flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG; int spec_size = 4; int check_size = 4; unsigned init_expected_index_len = 4; size_t init_expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (2 * PICO_ENTRY_SIZE); unsigned expected_index_len = 6; size_t expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (VARIABLE_ENTRY_SIZE / 4) + (VARIABLE_ENTRY_SIZE / 2) + (2 * PICO_ENTRY_SIZE); HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 11, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 10, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 12, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ TRUE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ TRUE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 10, /* expected_size = */ VARIABLE_ENTRY_SIZE, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; checks[3] = (struct fo_flush_entry_check){/* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 12, /* expected_size = */ VARIABLE_ENTRY_SIZE, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } if (pass) /* test #22 */ { /* Mix things up some more. * * Load lots of entries, some of which have flush functions that * resize, dirty, and move two entries that are not in the * cache. * * Also load entries that have flush ops on entries that are in * cache. */ int test_num = 22; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 6; int check_size = 4; unsigned init_expected_index_len = 6; size_t init_expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (4 * PICO_ENTRY_SIZE); unsigned expected_index_len = 10; size_t expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (2 * (VARIABLE_ENTRY_SIZE / 4)) + (2 * (VARIABLE_ENTRY_SIZE / 2)) + (4 * PICO_ENTRY_SIZE); HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 11, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 10, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 12, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; spec[4] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 4, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[5] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 5, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 10, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[3] = (struct fo_flush_entry_check){/* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 12, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } if (pass) /* test #23 */ { /* Repeat test #23 with the flush invalidate flag set. * * Mix things up some more. * * Load lots of entries, some of which have flush functions that * resize, dirty, and move two entries that are not in the * cache. * * Also load entries that have flush ops on entries that are in * cache. */ int test_num = 23; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 6; int check_size = 4; unsigned init_expected_index_len = 6; size_t init_expected_index_size = (2 * VARIABLE_ENTRY_SIZE) + (4 * PICO_ENTRY_SIZE); unsigned expected_index_len = 0; size_t expected_index_size = 0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 11, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 6, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 10, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 10, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 12, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 12, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 0, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 1, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ TRUE}; spec[4] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 4, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 10, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[5] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 5, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 20, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 0, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 10, /* expected_size = */ VARIABLE_ENTRY_SIZE / 4, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[3] = (struct fo_flush_entry_check){/* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 12, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } /* So much for tests involving only flush operations. * * Now create some tests mixing flush ops and pins. */ if (pass) /* test #24 */ { /* Pico entries 50 and 150 pin pico entry 100, and also dirty * pico entry 100 on flush. */ int test_num = 24; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 3; int check_size = 0; unsigned init_expected_index_len = 3; size_t init_expected_index_size = 3 * PICO_ENTRY_SIZE; unsigned expected_index_len = 3; size_t expected_index_size = 3 * PICO_ENTRY_SIZE; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 1, /* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 150, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 1, /* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #25 */ { /* Repeat the previous test with the flush invalidate flag. * * Pico entries 50 and 150 pin pico entry 100, and also dirty * pico entry 100 on flush. */ int test_num = 25; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 3; int check_size = 0; unsigned init_expected_index_len = 3; size_t init_expected_index_size = 3 * PICO_ENTRY_SIZE; unsigned expected_index_len = 0; size_t expected_index_size = (size_t)0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 50, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 1, /* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ PICO_ENTRY_TYPE, /* entry_index = */ 150, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 1, /* pin_type = */ {PICO_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 1, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, PICO_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ (size_t)0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); } if (pass) /* test #26 */ { /* This one is complex. * * In the following overvies table, VET stands for * VARIABLE_ENTRY_TYPE. * * In trying to follow what happens when we flush the * set of entries constructed below, recall that each * flush operation is executed the first time the * entry is flushed, and then not executed again. * This may be a weakness in the tests, but that * is the way it is for now. * * After thinking about it for a while, I'm not sure that * the interaction between pins and flush operations needs * all that much testing, as the two are essentially * orthoginal. Thus this is a bit of a smoke check to * verify that we get the expected results. * * (VET, 100) initially not resident in cache * * (VET, 200) initially clean and resident in cache * * (VET, 300) initially not resident in cache * * (VET, 2100) initially clean and resident in cache * * (VET, 2200) initially not resident in cache * * (VET, 2300) initially clean and resident in cache * * (VET, 1000) initially clean, and in cache * dirties (VET, 100) * resizes (VET, 200) * dirty (VET, 300) -- dirty first to bring into cache. * moves (VET, 300) * * (VET, 2000) initially clean, and in cache * dirties (VET, 2100) * resizes (VET, 2200) * moves (VET, 2300) * * (VET, 350) initially clean, and in cache * pins (VET, 1000) * dirties (VET, 1000) * resizes (VET, 350) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 450) initially dirty, and in cache * pins (VET, 1000) * dirties (VET, 1000) * moves (VET, 450) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 650) initially clean, and in cache * pins (VET, 1000) * dirties (VET, 1000) * resizes (VET, 650) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 750) initially dirty, and in cache * pins (VET, 1000) * dirties (VET, 1000) * resizes (VET, 750) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 500) initially dirty, and in cache * dirties (VET, 350) * dirties (VET, 450) * dirties (VET, 650) * dirties (VET, 750) */ int test_num = 26; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 10; int check_size = 3; unsigned init_expected_index_len = 10; size_t init_expected_index_size = 10 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 13; size_t expected_index_size = 9 * VARIABLE_ENTRY_SIZE; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 200, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2300, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1000, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 4, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[4] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 4, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2000, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2300, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[5] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 5, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 350, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 350, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[6] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 6, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 450, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 450, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[7] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 7, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 650, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 650, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[8] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 8, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 750, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 750, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[9] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 9, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 500, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 4, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 350, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 450, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 650, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 750, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 100, /* expected_size = */ VARIABLE_ENTRY_SIZE, /* in_cache = */ TRUE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 300, /* expected_size = */ VARIABLE_ENTRY_SIZE, /* in_cache = */ TRUE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2200, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ TRUE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } if (pass) /* test #27 */ { /* Repeat test #26 with the flush invalidate flag. * * In the following overview table, VET stands for * VARIABLE_ENTRY_TYPE. * * In trying to follow what happens when we flush the * set of entries constructed below, recall that each * flush operation is executed the first time the * entry is flushed, and then not executed again. * This may be a weakness in the tests, but that * is the way it is for now. * * After thinking about it for a while, I'm not sure that * the interaction between pins and flush operations needs * all that much testing, as the two are essentially * orthoginal. The big thing is to verify that flushes of * pinned entries with flush ops result in the expected * updates of the cache. * * Thus this is a bit of a smoke check to * verify that we * get the expected results. * * (VET, 100) initially not resident in cache * * (VET, 200) initially clean and resident in cache * * (VET, 300) initially not resident in cache * * (VET, 2100) initially clean and resident in cache * * (VET, 2200) initially not resident in cache * * (VET, 2300) initially clean and resident in cache * * (VET, 1000) initially clean, and in cache * dirties (VET, 100) * resizes (VET, 200) * dirty (VET, 300) -- dirty first to bring into cache. * moves (VET, 300) * * (VET, 2000) initially clean, and in cache * dirties (VET, 2100) * resizes (VET, 2200) * moves (VET, 2300) * * (VET, 350) initially clean, and in cache * pins (VET, 1000) * dirties (VET, 1000) * resizes (VET, 350) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 450) initially dirty, and in cache * pins (VET, 1000) * dirties (VET, 1000) * moves (VET, 450) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 650) initially clean, and in cache * pins (VET, 1000) * dirties (VET, 1000) * resizes (VET, 650) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 750) initially dirty, and in cache * pins (VET, 1000) * dirties (VET, 1000) * resizes (VET, 750) * pins (VET, 2000) * dirties (VET, 2000) * * (VET, 500) initially dirty, and in cache * dirties (VET, 350) * dirties (VET, 450) * dirties (VET, 650) * dirties (VET, 750) */ int test_num = 27; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 10; int check_size = 3; unsigned init_expected_index_len = 10; size_t init_expected_index_size = 10 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 0; size_t expected_index_size = (size_t)0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 200, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2300, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 1000, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 4, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[4] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 4, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2000, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 2200, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 2300, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[5] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 5, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 350, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 350, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[6] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 6, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 450, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 450, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[7] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 7, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 650, /* insert_flag = */ TRUE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 650, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ FALSE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[8] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 8, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 750, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 2, /* pin_type = */ {VARIABLE_ENTRY_TYPE, VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {1000, 2000, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 1000, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 2000, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 750, FALSE, VARIABLE_ENTRY_SIZE / 4, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[9] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 9, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 500, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 4, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 350, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 450, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 650, FALSE, 0, NULL}, {FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 750, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 100, /* expected_size = */ VARIABLE_ENTRY_SIZE, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[1] = (struct fo_flush_entry_check){/* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 300, /* expected_size = */ VARIABLE_ENTRY_SIZE, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[2] = (struct fo_flush_entry_check){/* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 2200, /* expected_size = */ VARIABLE_ENTRY_SIZE / 2, /* in_cache = */ FALSE, /* at_main_addr = */ TRUE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } if (pass) /* test #28 */ { /* Test the expected fheap case, in which an entry dirties * and resizes itself, and dirties an entry which it has * pinned. */ int test_num = 28; unsigned int flush_flags = H5C__NO_FLAGS_SET; int spec_size = 5; int check_size = 0; unsigned init_expected_index_len = 5; size_t init_expected_index_size = 3 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 5; size_t expected_index_size = 4 * VARIABLE_ENTRY_SIZE; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 200, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 2, /* num_pins = */ 1, /* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 200, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 300, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 4, /* num_pins = */ 1, /* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {400, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 400, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 300, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 400, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; spec[4] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 4, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 500, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 4, /* num_pins = */ 1, /* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 500, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 500, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ FALSE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ 0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } if (pass) /* test #29 */ { /* Repeat test #28 with the flush invalidate flag. * * Test the expected fheap case, in which an entry dirties * and resizes itself, and dirties an entry which it has * pinned. */ int test_num = 29; unsigned int flush_flags = H5C__FLUSH_INVALIDATE_FLAG; int spec_size = 5; int check_size = 0; unsigned init_expected_index_len = 5; size_t init_expected_index_size = 3 * VARIABLE_ENTRY_SIZE; unsigned expected_index_len = 0; size_t expected_index_size = 0; HDassert(spec_size <= max_num_spec); HDassert(check_size <= max_num_check); spec[0] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 0, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 100, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[1] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 1, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 200, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 2, /* num_pins = */ 1, /* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 200, FALSE, VARIABLE_ENTRY_SIZE, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 200, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[2] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 2, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 300, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 4, /* num_pins = */ 1, /* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {400, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 400, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 300, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 300, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[3] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 3, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 400, /* insert_flag = */ FALSE, /* flags = */ H5C__NO_FLAGS_SET, /* resize_flag = */ FALSE, /* new_size = */ 0, /* num_pins = */ 0, /* pin_type = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {0, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 0, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; spec[4] = (struct fo_flush_cache_test_spec){ /* entry_num = */ 4, /* entry_type = */ VARIABLE_ENTRY_TYPE, /* entry_index = */ 500, /* insert_flag = */ FALSE, /* flags = */ H5C__DIRTIED_FLAG, /* resize_flag = */ TRUE, /* new_size = */ VARIABLE_ENTRY_SIZE / 4, /* num_pins = */ 1, /* pin_type = */ {VARIABLE_ENTRY_TYPE, 0, 0, 0, 0, 0, 0, 0}, /* pin_idx = */ {100, 0, 0, 0, 0, 0, 0, 0}, /* num_flush_ops = */ 3, /* flush_ops = */ /* op_code: type: idx: flag: size: order_ptr: */ {{FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 100, FALSE, 0, NULL}, {FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 500, FALSE, VARIABLE_ENTRY_SIZE / 2, NULL}, {FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 500, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}, {FLUSH_OP__NO_OP, 0, 0, FALSE, 0, NULL}}, /* expected_deserialized = */ TRUE, /* expected_serialized = */ TRUE, /* expected_destroyed = */ TRUE}; checks[0] = (struct fo_flush_entry_check){/* entry_num = */ 0, /* entry_type = */ 0, /* entry_index = */ 0, /* expected_size = */ 0, /* in_cache = */ FALSE, /* at_main_addr = */ FALSE, /* is_dirty = */ FALSE, /* is_protected = */ FALSE, /* is_pinned = */ FALSE, /* expected_deserialized = */ FALSE, /* expected_serialized = */ FALSE, /* expected_destroyed = */ FALSE}; check_flush_cache__flush_op_test(file_ptr, test_num, flush_flags, spec_size, spec, init_expected_index_len, init_expected_index_size, expected_index_len, expected_index_size, check_size, checks); reset_entries(); } HDfree(checks); HDfree(spec); /* finally finish up with the flush ops eviction test */ check_flush_cache__flush_op_eviction_test(file_ptr); } /* check_flush_cache__flush_ops() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__flush_op_test() * * Purpose: Run a flush op flush cache test. Of the nature of * flush operations, this is a multi-entry test. * * Return: void * * Programmer: John Mainzer * 9/3/06 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/16/20 * *------------------------------------------------------------------------- */ static void check_flush_cache__flush_op_test(H5F_t *file_ptr, int test_num, unsigned int flush_flags, int spec_size, const struct fo_flush_cache_test_spec spec[], unsigned init_expected_index_len, size_t init_expected_index_size, unsigned expected_index_len, size_t expected_index_size, int check_size, struct fo_flush_entry_check check[]) { H5C_t *cache_ptr = file_ptr->shared->cache; static char msg[128]; int i; int j; test_entry_t *base_addr; test_entry_t *entry_ptr; #if 0 /* This is useful debugging code -- lets keep it around. */ HDfprintf(stdout, "check_flush_cache__flush_op_test: test %d\n", test_num); #endif if (cache_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to flush op test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache not empty at beginning of flush op test #%d.", test_num); failure_mssg = msg; } else if ((spec_size < 1) || (spec == NULL)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "missing/bad test spec on entry to flush op test #%d.", test_num); failure_mssg = msg; } i = 0; while (pass && (i < spec_size)) { if ((spec[i].entry_num != i) || (spec[i].entry_type < 0) || (spec[i].entry_type >= NUMBER_OF_ENTRY_TYPES) || (spec[i].entry_index < 0) || (spec[i].entry_index > max_indices[spec[i].entry_type]) || (spec[i].num_pins < 0) || (spec[i].num_pins > MAX_PINS) || (spec[i].num_flush_ops < 0) || (spec[i].num_flush_ops > MAX_FLUSH_OPS)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "bad data in spec[%d] on entry to flush op test #%d.", i, test_num); failure_mssg = msg; } i++; } i = 0; while (pass && (i < check_size)) { if ((check[i].entry_num != i) || (check[i].entry_type < 0) || (check[i].entry_type >= NUMBER_OF_ENTRY_TYPES) || (check[i].entry_index < 0) || (check[i].entry_index > max_indices[check[i].entry_type]) || (check[i].expected_size <= (size_t)0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "bad data in check[%d] on entry to flush op test #%d.", i, test_num); failure_mssg = msg; } i++; } i = 0; while (pass && (i < spec_size)) { if (spec[i].insert_flag) { insert_entry(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].flags); } else { protect_entry(file_ptr, spec[i].entry_type, spec[i].entry_index); if (spec[i].resize_flag) resize_entry(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].new_size, TRUE); unprotect_entry(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].flags); } for (j = 0; j < spec[i].num_pins; j++) { create_pinned_entry_dependency(file_ptr, spec[i].entry_type, spec[i].entry_index, spec[i].pin_type[j], spec[i].pin_idx[j]); } for (j = 0; j < spec[i].num_flush_ops; j++) { add_flush_op(spec[i].entry_type, spec[i].entry_index, spec[i].flush_ops[j].op_code, spec[i].flush_ops[j].type, spec[i].flush_ops[j].idx, spec[i].flush_ops[j].flag, spec[i].flush_ops[j].size, spec[i].flush_ops[j].order_ptr); } i++; } if (pass) { if ((cache_ptr->index_len != init_expected_index_len) || (cache_ptr->index_size != init_expected_index_size)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size before flush in flush op test #%d.", test_num); failure_mssg = msg; } } if (pass) { H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message") if (!pass) { pass = FALSE; HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in flush op test #%d.", flush_flags, test_num); failure_mssg = msg; } } i = 0; while (pass && (i < spec_size)) { base_addr = entries[spec[i].entry_type]; entry_ptr = &(base_addr[spec[i].entry_index]); if ((entry_ptr->deserialized != spec[i].expected_deserialized) || (entry_ptr->serialized != spec[i].expected_serialized) || (entry_ptr->destroyed != spec[i].expected_destroyed)) { #if 0 /* This is useful debugging code. Lets keep it around. */ HDfprintf(stdout, "desrlzd = %d(%d), srlzd = %d(%d), dest = %d(%d)\n", (int)(entry_ptr->deserialized), (int)(spec[i].expected_deserialized), (int)(entry_ptr->serialized), (int)(spec[i].expected_serialized), (int)(entry_ptr->destroyed), (int)(spec[i].expected_destroyed)); HDfprintf(stdout, "entry_ptr->header.is_dirty = %d\n", (int)(entry_ptr->header.is_dirty)); #endif pass = FALSE; HDsnprintf(msg, (size_t)128, "Bad status on entry %d after flush op test #%d.", i, test_num); failure_mssg = msg; } i++; } if (pass) { i = 0; while (pass && (i < check_size)) { if (check[i].in_cache != entry_in_cache(cache_ptr, check[i].entry_type, check[i].entry_index)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Check1 failed on entry %d after flush op test #%d.", i, test_num); failure_mssg = msg; } base_addr = entries[check[i].entry_type]; entry_ptr = &(base_addr[check[i].entry_index]); if ((entry_ptr->size != check[i].expected_size) || ((!entry_ptr->header.destroy_in_progress) && (check[i].in_cache) && (entry_ptr->header.size != check[i].expected_size)) || (entry_ptr->at_main_addr != check[i].at_main_addr) || (entry_ptr->is_dirty != check[i].is_dirty) || (entry_ptr->header.is_dirty != check[i].is_dirty) || (entry_ptr->is_protected != check[i].is_protected) || (entry_ptr->header.is_protected != check[i].is_protected) || (entry_ptr->is_pinned != check[i].is_pinned) || (entry_ptr->header.is_pinned != check[i].is_pinned) || (entry_ptr->deserialized != check[i].expected_deserialized) || (entry_ptr->serialized != check[i].expected_serialized) || (entry_ptr->destroyed != check[i].expected_destroyed)) { #if 0 /* This is useful debugging code. Lets keep it around for a while. */ if ( entry_ptr->size != check[i].expected_size ) { HDfprintf(stdout, "entry_ptr->size (expected) = %d (%d).\n", (int)(entry_ptr->size), (int)(check[i].expected_size)); } if ( ( ! entry_ptr->header.destroy_in_progress ) && ( check[i].in_cache ) && ( entry_ptr->header.size != check[i].expected_size ) ) { HDfprintf(stdout, "(!destroy in progress and in cache and size (expected) = %d (%d).\n", (int)(entry_ptr->header.size), (int)(check[i].expected_size)); } if ( entry_ptr->at_main_addr != check[i].at_main_addr ) { HDfprintf(stdout, "(%d,%d) at main addr (expected) = %d (%d).\n", (int)(check[i].entry_type), (int)(check[i].entry_index), (int)(entry_ptr->at_main_addr), (int)(check[i].at_main_addr)); } if ( entry_ptr->is_dirty != check[i].is_dirty ) { HDfprintf(stdout, "entry_ptr->is_dirty (expected) = %d (%d).\n", (int)(entry_ptr->is_dirty), (int)(check[i].is_dirty)); } if ( entry_ptr->header.is_dirty != check[i].is_dirty ) { HDfprintf(stdout, "entry_ptr->header.is_dirty (expected) = %d (%d).\n", (int)(entry_ptr->header.is_dirty), (int)(check[i].is_dirty)); } if ( entry_ptr->is_protected != check[i].is_protected ) { HDfprintf(stdout, "entry_ptr->is_protected (expected) = %d (%d).\n", (int)(entry_ptr->is_protected), (int)(check[i].is_protected)); } if ( entry_ptr->header.is_protected != check[i].is_protected ) { HDfprintf(stdout, "entry_ptr->header.is_protected (expected) = %d (%d).\n", (int)(entry_ptr->is_protected), (int)(check[i].is_protected)); } if ( entry_ptr->is_pinned != check[i].is_pinned ) { HDfprintf(stdout, "entry_ptr->is_pinned (expected) = %d (%d).\n", (int)(entry_ptr->is_pinned), (int)(check[i].is_pinned)); } if ( entry_ptr->header.is_pinned != check[i].is_pinned ) { HDfprintf(stdout, "entry_ptr->header.is_pinned (expected) = %d (%d).\n", (int)(entry_ptr->header.is_pinned), (int)(check[i].is_pinned)); } if ( entry_ptr->deserialized != check[i].expected_deserialized ) { HDfprintf(stdout, "entry_ptr->deserialized (expected) = %d (%d).\n", (int)(entry_ptr->deserialized), (int)(check[i].expected_deserialized)); } if ( entry_ptr->serialized != check[i].expected_serialized ) { HDfprintf(stdout, "entry_ptr->serialized (expected) = %d (%d).\n", (int)(entry_ptr->serialized), (int)(check[i].expected_serialized)); } if ( entry_ptr->destroyed != check[i].expected_destroyed ) { HDfprintf(stdout, \ "entry_ptr->destroyed (expected) = %d (%d).\n", (int)(entry_ptr->destroyed), (int)(check[i].expected_destroyed)); } #endif pass = FALSE; HDsnprintf(msg, (size_t)128, "Check2 failed on entry %d after flush op test #%d.", i, test_num); failure_mssg = msg; } i++; } } if (pass) { if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) && ((cache_ptr->index_len != expected_index_len) || (cache_ptr->index_size != expected_index_size))) || (((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in flush op test #%d.", test_num); failure_mssg = msg; } } /* clean up the cache to prep for the next test */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg.") if (!pass) { HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in flush op test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->clean_index_size != 0) || (cache_ptr->dirty_index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size/cs/ds after cleanup in flush op test #%d.", test_num); failure_mssg = msg; } } i = 0; while (pass && (i < spec_size)) { base_addr = entries[spec[i].entry_type]; entry_ptr = &(base_addr[spec[i].entry_index]); entry_ptr->size = entry_sizes[spec[i].entry_type]; entry_ptr->deserialized = FALSE; entry_ptr->serialized = FALSE; entry_ptr->destroyed = FALSE; i++; } i = 0; while (pass && (i < check_size)) { base_addr = entries[check[i].entry_type]; entry_ptr = &(base_addr[check[i].entry_index]); entry_ptr->size = entry_sizes[check[i].entry_type]; entry_ptr->deserialized = FALSE; entry_ptr->serialized = FALSE; entry_ptr->destroyed = FALSE; i++; } } /* check_flush_cache__flush_op_test() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__flush_op_eviction_test() * * Purpose: Verify that flush operations work as expected when an * entry is evicted. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 10/3/06 * * Modifications: * * Updated test for minor changes in the behaviour * of H5C__flush_single_entry(). * * JRM -- 2/16/15 * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/16/20 * *------------------------------------------------------------------------- */ static void check_flush_cache__flush_op_eviction_test(H5F_t *file_ptr) { struct expected_entry_status *expected = NULL; H5C_t *cache_ptr = file_ptr->shared->cache; int i; const int num_variable_entries = 10; const int num_monster_entries = 31; int num_large_entries = 14; const int num_total_entries = num_variable_entries + num_monster_entries + num_large_entries; test_entry_t *entry_ptr; test_entry_t *base_addr; expected = HDmalloc((size_t)num_total_entries * sizeof(struct expected_entry_status)); if (expected == NULL) { pass = FALSE; failure_mssg = "couldn't allocate expected entry status array\n"; } if (expected) { /* the expected array is used to maintain a table of the expected status of every * entry used in this test. Note that since the function that processes this * array only processes as much of it as it is told to, we don't have to * worry about maintaining the status of entries that we haven't used yet. */ for (i = 0; i < num_variable_entries; i++) { expected[i].entry_type = VARIABLE_ENTRY_TYPE; expected[i].entry_index = (int)(i); expected[i].size = VARIABLE_ENTRY_SIZE; expected[i].in_cache = TRUE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = TRUE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = TRUE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type)); HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx)); expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } /* NOTE: special cases for particular variable entries */ expected[0].size = VARIABLE_ENTRY_SIZE / 4; expected[0].is_pinned = TRUE; expected[1].size = VARIABLE_ENTRY_SIZE / 4; expected[2].is_dirty = FALSE; expected[3].size = VARIABLE_ENTRY_SIZE / 4; expected[4].is_dirty = FALSE; expected[5].size = VARIABLE_ENTRY_SIZE / 4; expected[6].size = VARIABLE_ENTRY_SIZE / 2; expected[7].size = VARIABLE_ENTRY_SIZE / 2; expected[8].is_dirty = FALSE; expected[9].is_dirty = FALSE; expected[9].is_pinned = TRUE; for (; i < num_variable_entries + num_monster_entries; i++) { expected[i].entry_type = MONSTER_ENTRY_TYPE; expected[i].entry_index = (int)(i - num_variable_entries); expected[i].size = MONSTER_ENTRY_SIZE; expected[i].in_cache = TRUE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = TRUE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = TRUE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type)); HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx)); expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } for (; i < num_total_entries; i++) { expected[i].entry_type = LARGE_ENTRY_TYPE; expected[i].entry_index = (int)(i - num_monster_entries - num_variable_entries); expected[i].size = LARGE_ENTRY_SIZE; expected[i].in_cache = TRUE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = TRUE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = TRUE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type)); HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx)); expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } HDassert(i == num_total_entries); pass = TRUE; } if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to flush ops test."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at start of flush ops eviction test."; } else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "unexpected cache config at start of flush op eviction test."; } else { /* set min clean size to zero for this test as it simplifies * computing the expected cache size after each operation. */ cache_ptr->min_clean_size = 0; } } if (pass) { /* the basic idea in this test is to insert a bunch of entries * with flush operations associated with them, and then load * other entries into the cache until the cache is full. At * that point, load yet more entries into the cache, and see * if the flush operations are performed as expected. * * To make things a bit more interesting, we also include a * couple of pins. */ /* reset the stats before we start. If stats are enabled, we will * check to see if they are as expected at the end. */ H5C_stats__reset(cache_ptr); /* load a few entries with pin relationships and flush ops. * Start by just loading the entries. */ protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 0); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 0, (VARIABLE_ENTRY_SIZE / 4), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 1); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 1, (VARIABLE_ENTRY_SIZE / 4), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 2); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 3); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 3, (VARIABLE_ENTRY_SIZE / 4), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 3, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 4); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 4, H5C__NO_FLAGS_SET); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 5); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 5, (VARIABLE_ENTRY_SIZE / 4), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 5, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 6); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 6, (VARIABLE_ENTRY_SIZE / 2), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 6, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 7); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 7, (VARIABLE_ENTRY_SIZE / 2), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 7, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8, H5C__NO_FLAGS_SET); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9, H5C__NO_FLAGS_SET); if ((cache_ptr->index_len != 10) || (cache_ptr->index_size != (4 * (VARIABLE_ENTRY_SIZE / 4)) + (2 * (VARIABLE_ENTRY_SIZE / 2)) + (4 * VARIABLE_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 1."; } } if (pass) { /* Now set up the pinning relationships: * * Briefly, (VET, 0) is pinned by (VET, 1), (VET, 3), and (VET, 5) * (VET, 9) is pinned by (VET, 5), and (VET, 7) */ create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 1, VARIABLE_ENTRY_TYPE, 0); create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 3, VARIABLE_ENTRY_TYPE, 0); create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 5, VARIABLE_ENTRY_TYPE, 0); create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 5, VARIABLE_ENTRY_TYPE, 9); create_pinned_entry_dependency(file_ptr, VARIABLE_ENTRY_TYPE, 7, VARIABLE_ENTRY_TYPE, 9); /* Next, set up the flush operations: * * Briefly, (VET, 1) dirties (VET, 0) * resizes (VET, 0) to 3/4 VARIABLE_ENTRY_SIZE * * (VET, 3) dirties (VET, 0) * resizes (VET, 0) to VARIABLE_ENTRY_SIZE * moves (VET, 0) to its alternate address * * (VET, 5) dirties (VET, 0) * resizes itself to VARIABLE_ENTRY_SIZE / 2 * * (VET, 7) dirties (VET, 9) * * (VET, 9) dirties (VET, 8) */ add_flush_op(VARIABLE_ENTRY_TYPE, 1, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 1, FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, TRUE, 3 * VARIABLE_ENTRY_SIZE / 4, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 3, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 3, FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 0, TRUE, VARIABLE_ENTRY_SIZE, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 3, FLUSH_OP__MOVE, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 5, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 5, FLUSH_OP__RESIZE, VARIABLE_ENTRY_TYPE, 5, TRUE, VARIABLE_ENTRY_SIZE / 2, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 7, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 9, FALSE, (size_t)0, NULL); add_flush_op(VARIABLE_ENTRY_TYPE, 9, FLUSH_OP__DIRTY, VARIABLE_ENTRY_TYPE, 8, FALSE, (size_t)0, NULL); } if (pass) { /* to summarize, at present the following variable size entries * are in cache with the following characteristics: * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 2.5 KB Y Y - - * * (VET, 1) Y 2.5 KB Y N 0 dirty (VET, 0), * resize (VET, 0) to 7.5 KB * * (VET, 2) Y 10 KB N N - - * * * (VET, 3) Y 2.5 KB N N 0 dirty (VET, 0) * resize (VET, 0) to 10 KB * move (VET, 0) to its alternate address * * (VET, 4) Y 10 KB N N - - * * * (VET, 5) Y 2.5 KB Y N 0, 9 dirty (VET, 0) * resize (VET, 5) to 5 KB * * (VET, 6) Y 5 KB Y N - - * * (VET, 7) Y 5 KB Y N 9 dirty (VET, 9) * * (VET, 8) Y 10 KB N N - - * * (VET, 9) Y 10 KB N N - dirty (VET, 8) * * Recall that in this test bed, flush operations are excuted the * first time the associated entry is flushed, and are then * deleted. */ /* Now fill up the cache with other, unrelated entries */ for (i = 0; i < 31; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } for (i = 0; i < 1; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* The cache should now be exactly full */ if ((cache_ptr->index_len != 42) || (cache_ptr->index_size != 2 * 1024 * 1024) || (cache_ptr->index_size != ((4 * VARIABLE_ENTRY_SIZE / 4) + (2 * VARIABLE_ENTRY_SIZE / 2) + (4 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (1 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 2."; } else { /* verify the expected status of all entries we have loaded to date: */ num_large_entries = 1; verify_entry_status(cache_ptr, 0, (num_variable_entries + num_monster_entries + num_large_entries), expected); } } if (pass) { /* Now load a large entry. This should result in the eviction * of (VET,2), and the increase in the size of (VET, 0) from .25 * VARIABLE_ENTRY_SIZE to .75 VARIABLE_ENTRY_SIZE. * * The following table illustrates the intended state of affairs * after the eviction: * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 7.5 KB Y Y - - * * (VET, 1) Y 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) Y 2.5 KB Y N 0 dirty (VET, 0) * resize (VET, 0) to 10 KB * move (VET, 0) to its alternate address * * (VET, 4) Y 10 KB N N - - * * (VET, 5) Y 2.5 KB Y N 0, 9 dirty (VET, 0) * resize (VET, 5) to 5 KB * * (VET, 6) Y 5 KB Y N - - * * (VET, 7) Y 5 KB Y N 9 dirty (VET, 9) * * (VET, 8) Y 10 KB N N - - * * (VET, 9) Y 10 KB N Y - dirty (VET, 8) * * Start by updating the expected table for the expected changes in entry status: */ expected[0].size = 3 * VARIABLE_ENTRY_SIZE / 4; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[2].in_cache = FALSE; expected[2].destroyed = TRUE; num_large_entries = 2; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG); if ((cache_ptr->index_len != 42) || (cache_ptr->index_size != (2 * 1024 * 1024) - (VARIABLE_ENTRY_SIZE) + (VARIABLE_ENTRY_SIZE / 2) + (LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((1 * (3 * VARIABLE_ENTRY_SIZE / 4)) + (3 * VARIABLE_ENTRY_SIZE / 4) + (2 * VARIABLE_ENTRY_SIZE / 2) + (3 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (2 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 3."; } /* verify entry status */ verify_entry_status(cache_ptr, 1, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* Now load another large entry. This should result in the eviction * of (VET, 4), the increase in the size of (VET, 0) from .75 * VARIABLE_ENTRY_SIZE to 1.0 VARIABLE_ENTRY_SIZE, and the renaming * of (VET, 0) to its alternate address. * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 10 KB Y Y - - * * (VET, 1) Y 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) Y 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) Y 2.5 KB Y N 0, 9 dirty (VET, 0) * resize (VET, 5) to 5 KB * * (VET, 6) Y 5 KB Y N - - * * (VET, 7) Y 5 KB Y N 9 dirty (VET, 9) * * (VET, 8) Y 10 KB N N - - * * (VET, 9) Y 10 KB N Y - dirty (VET, 8) * * Start by updating the expected table for the expected changes in entry status: */ expected[0].size = VARIABLE_ENTRY_SIZE; expected[0].at_main_addr = FALSE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[4].in_cache = FALSE; expected[4].destroyed = TRUE; num_large_entries = 3; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__DIRTIED_FLAG); if ((cache_ptr->index_len != 42) || (cache_ptr->index_size != (2 * 1024 * 1024) - (2 * VARIABLE_ENTRY_SIZE) + (3 * VARIABLE_ENTRY_SIZE / 4) + (2 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((3 * VARIABLE_ENTRY_SIZE / 4) + (2 * VARIABLE_ENTRY_SIZE / 2) + (3 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (3 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 4."; } /* verify entry status */ verify_entry_status(cache_ptr, 2, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* load two more large entries. This should result in (VET, 5) being * flushed, and increasing its size from 1/4 VARIABLE_ENTRY_SIZE to * VARIABLE_ENTRY_SIZE. * * As a result of this size increase, the cache will have to look * for another entry to evict. After flushing (VET, 6) and (VET, 7), * it should evict (VET, 8), yielding the needed memory and dirtying * (VET, 9). * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 10 KB Y Y - - * * (VET, 1) Y 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) Y 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) Y 5 KB N N 0, 9 - * * (VET, 6) Y 5 KB N N - - * * (VET, 7) Y 5 KB N N 9 - * * (VET, 8) N 10 KB N N - - * * (VET, 9) Y 10 KB N Y - dirty (VET, 8) * * Start by updating the expected table for the expected changes in entry status: */ expected[5].size = VARIABLE_ENTRY_SIZE / 2; expected[5].is_dirty = FALSE; expected[5].serialized = TRUE; expected[6].is_dirty = FALSE; expected[6].serialized = TRUE; expected[7].is_dirty = FALSE; expected[7].serialized = TRUE; expected[8].in_cache = FALSE; expected[8].destroyed = TRUE; expected[9].is_dirty = TRUE; num_large_entries = 5; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__DIRTIED_FLAG); protect_entry(file_ptr, LARGE_ENTRY_TYPE, 4); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 4, H5C__DIRTIED_FLAG); /* verify cache size */ if ((cache_ptr->index_len != 43) || (cache_ptr->index_size != (2 * 1024 * 1024) - (3 * VARIABLE_ENTRY_SIZE) + (1 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 4) + (4 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((2 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (5 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 5."; } /* verify entry status */ verify_entry_status(cache_ptr, 3, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* now touch all the non VARIABLE_ENTRY_TYPE entries in the * cache to bring all the VARIABLE_ENTRY_TYPE entries to the * end of the LRU list. * * Note that we don't have to worry about (VET, 0) and (VET, 9) * as they are pinned and thus not in the LRU list to begin with. */ for (i = 0; i < 31; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } for (i = 0; i < 5; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 43) || (cache_ptr->index_size != (2 * 1024 * 1024) - (3 * VARIABLE_ENTRY_SIZE) + (1 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 4) + (4 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((2 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (5 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 6."; } /* verify entry status */ verify_entry_status(cache_ptr, 4, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* Now load three more large entries. This should result * in the evictions of (VET, 1), (VET, 3), and (VET, 5), and the * unpinning of (VET, 0) * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 10 KB Y N - - * * (VET, 1) N 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) N 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) N 5 KB N N - - * * (VET, 6) Y 5 KB N N - - * * (VET, 7) Y 5 KB N N 9 - * * (VET, 8) N 10 KB N N - - * * (VET, 9) Y 10 KB N Y - dirty (VET, 8) * * Start by updating the expected table for the expected changes in entry status: */ expected[0].is_pinned = FALSE; expected[1].in_cache = FALSE; expected[1].destroyed = TRUE; expected[3].in_cache = FALSE; expected[3].destroyed = TRUE; expected[5].in_cache = FALSE; expected[5].destroyed = TRUE; num_large_entries = 8; for (i = 5; i < 8; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 43) || (cache_ptr->index_size != (2 * 1024 * 1024) - (4 * VARIABLE_ENTRY_SIZE) + (1 * VARIABLE_ENTRY_SIZE / 4) + (3 * VARIABLE_ENTRY_SIZE / 4) + (7 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((2 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (8 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 7."; } /* verify entry status */ verify_entry_status(cache_ptr, 5, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* load another large entry. (VET, 6) should be evicted. * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 10 KB Y N - - * * (VET, 1) N 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) N 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) N 5 KB N N - - * * (VET, 6) N 5 KB N N - - * * (VET, 7) Y 5 KB N N 9 - * * (VET, 8) N 10 KB N N - - * * (VET, 9) Y 10 KB N Y - dirty (VET, 8) * * Start by updating the expected table for the expected changes in entry status: */ expected[6].in_cache = FALSE; expected[6].destroyed = TRUE; num_large_entries = 9; for (i = 8; i < 9; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 43) || (cache_ptr->index_size != (2 * 1024 * 1024) - (3 * VARIABLE_ENTRY_SIZE) - (VARIABLE_ENTRY_SIZE / 2) + (8 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((1 * VARIABLE_ENTRY_SIZE / 2) + (2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (9 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 8."; } /* verify entry status */ verify_entry_status(cache_ptr, 6, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* Load another large entry. * * (VET, 7) should be evicted, and (VET, 9) should be unpinned. * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) Y 10 KB Y N - - * * (VET, 1) N 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) N 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) N 5 KB N N - - * * (VET, 6) N 5 KB N N - - * * (VET, 7) N 5 KB N N - - * * (VET, 8) N 10 KB N N - - * * (VET, 9) Y 10 KB Y N - dirty (VET, 8) * * Start by updating the expected table for the expected changes in entry status: */ expected[7].in_cache = FALSE; expected[7].destroyed = TRUE; expected[9].is_pinned = FALSE; num_large_entries = 10; for (i = 9; i < 10; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 43) || (cache_ptr->index_size != (2 * 1024 * 1024) - (4 * VARIABLE_ENTRY_SIZE) + (9 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (10 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 9."; } /* verify entry status */ verify_entry_status(cache_ptr, 7, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* Again, touch all the non VARIABLE_ENTRY_TYPE entries in the * cache to bring all the VARIABLE_ENTRY_TYPE entries to the * end of the LRU list. * * Both (VET, 0) and (VET, 7) have been unpinned, so they are * now in the LRU list. */ for (i = 0; i < 31; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } for (i = 0; i < 10; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 43) || (cache_ptr->index_size != (2 * 1024 * 1024) - (4 * VARIABLE_ENTRY_SIZE) + (9 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((2 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (10 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 10."; } /* verify entry status */ verify_entry_status(cache_ptr, 8, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* load two more large entries. Things get a bit complicated here, * so I'll go through the operation step by step. * * Initially, the cache has 4 KB of empty space, so the first entry * (LET, 10) is loaded via calls to H5C_protect() H5C_unprotect() * without causing any evictions. * * However, this is not the case for the call of H5C_protect() on * (LET, 11). * * Before inserting (LET, 11), H5C_protect(LET, 11) must try to * free up at least 4 KB of space. To do this, it starts scanning * up the LRU list to find entries to evict. * * (VET, 0) is at the bottom of the LRU list, and thus is the first * entry considered. However, it is dirty, so it flushed to disk, * moved to the top of the LRU list, and marked clean. * * (VET, 9) is the next entry on the bottom of the LRU list. It is * dirty too, calls its serialize callback function to construct an * on disk image of the entry, and moves it to the top of the LRU * list after the serialize callback returns. * * However, (VET 9)'s serialize function needs to modify (VET, 8), * which is currently not in cache. Thus it calls H5C_protect(VET, 8) * to gain access to it. H5C_protect(VET, 8) loads (VET, 8), and * then attempts to evict entries to make space for it. * * However, H5C_make_space_in_cache() now exits without taking * any action on re-entrant calls. Thus H5C_protect(VET, 8) simply * loads the entry into the cache -- resulting in a cache that is * 10 KB oversize. The subsequent unprotect puts (VET, 8) at the * head of the LRU and marks it dirty. * * After (VET, 9) is serialized, it is flushed, and moved to the * head of the LRU. * * At this point, the H5C_make_space_in_cache() call made by * H5C_protect(LET, 11) now has 14 KB of space to make. * * The next entries on the LRU are (MET, 0) thru (MET, 30), * (LET, 0) thru (LET, 10), and (VET, 8) -- all of which are dirty, * and are therefore flushed and moved to the head of the LRU list. * * The next entry on the bottom of the LRU list is (VET, 0), which * is clean, and is therefore evicted, leaving H5C_make_space_in_cache() * with 4 KB of space to create. * * This space is sufficient, so H5C_protect(VET, 8) inserts * (VET, 8) into the cache's index, marks it as protected, and * returns to the serialize function for (VET, 9). * * When the serialize function for (VET, 9) is done with (VET, 8), it * calls H5C_unprotect(VET, 8), which markes (VET, 8) as dirty and * unprotected, and places it at the head of the LRU. * * (VET, 0) is the next item on the LRU -- it is clean and is therefore * evicted -- leaving 6 KB of free space after (LET, 11) is inserted * into the cache. * * H5C_unprotect(LET, 11) marks (LET, 11) as unprotected, and then * returns as well. * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) N 10 KB N N - - * * (VET, 1) N 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) N 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) N 5 KB N N - - * * (VET, 6) N 5 KB N N - - * * (VET, 7) N 5 KB N N - - * * (VET, 8) Y 10 KB N N - - * * (VET, 9) N 10 KB N N - - * * Start by updating the expected table for the expected changes in * entry status: * * Note that we reset the loaded, flushed, and destroyed * fields of (VET,8) so we can track what is happening. */ base_addr = entries[VARIABLE_ENTRY_TYPE]; entry_ptr = &(base_addr[8]); entry_ptr->deserialized = FALSE; entry_ptr->deserialized = FALSE; entry_ptr->destroyed = FALSE; expected[0].in_cache = FALSE; expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].destroyed = TRUE; expected[8].in_cache = TRUE; expected[8].is_dirty = FALSE; expected[8].deserialized = TRUE; expected[8].serialized = TRUE; expected[8].destroyed = FALSE; expected[9].in_cache = FALSE; expected[9].is_dirty = FALSE; expected[9].serialized = TRUE; expected[9].destroyed = TRUE; expected[10].in_cache = TRUE; expected[10].is_dirty = FALSE; expected[10].serialized = TRUE; expected[10].destroyed = FALSE; num_large_entries = 12; for (i = num_variable_entries; i < num_variable_entries + num_monster_entries + num_large_entries - 1; i++) { expected[i].is_dirty = FALSE; expected[i].serialized = TRUE; } for (i = 10; i < 12; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 44) || (cache_ptr->index_size != (2 * 1024 * 1024) - (2 * 1024) - (1 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((1 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (12 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 11."; } /* verify entry status */ verify_entry_status(cache_ptr, 9, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* protect and unprotect VET 9 to evict MET 0 */ protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 9, H5C__NO_FLAGS_SET); /* protect and unprotect VET 8 to dirty it and move it to the * top of the LRU. Since we are dirtying it again, reset its * serialized flag. */ base_addr = entries[VARIABLE_ENTRY_TYPE]; entry_ptr = &(base_addr[8]); entry_ptr->serialized = FALSE; protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 8, H5C__DIRTIED_FLAG); /* Again, touch all the non VARIABLE_ENTRY_TYPE entries in the * cache to evict VET 9 and move VET 8 to the bottom of the LRU. * * Must do this twice to get the desired result. */ /* skip MET 0 in first pass so that we evict VET 9 when we * reload MET 0 * * Since we are reloading MET 0, reset its destroyed flag. */ base_addr = entries[MONSTER_ENTRY_TYPE]; entry_ptr = &(base_addr[0]); entry_ptr->destroyed = FALSE; for (i = 1; i < num_monster_entries; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } for (i = 0; i < num_large_entries; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } for (i = 0; i < num_monster_entries; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } for (i = 0; i < num_large_entries; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* update the expected array to mark all these entries dirty again. */ for (i = num_variable_entries; i < num_variable_entries + num_monster_entries + num_large_entries - 1; i++) { expected[i].is_dirty = TRUE; } /* update MET 0 to set its in cache flag, and reset * its destroyed flag */ expected[10].in_cache = TRUE; /* pass through non variable entries will flush VET 8, and evict VET 9. * Update accordingly. */ expected[8].in_cache = TRUE; expected[8].is_dirty = TRUE; expected[8].serialized = FALSE; expected[8].destroyed = FALSE; expected[9].in_cache = FALSE; expected[9].is_dirty = FALSE; expected[9].serialized = TRUE; expected[9].destroyed = TRUE; /* verify cache size */ if ((cache_ptr->index_len != 44) || (cache_ptr->index_size != (2 * 1024 * 1024) - (5 * VARIABLE_ENTRY_SIZE) + (11 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((1 * VARIABLE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE) + (12 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 12."; } /* modifications to the H5C__flush_single_entry() function have * changed the behavior of the cache slightly, causing * this test to fail. Comment out for now -- come back and * fix if all goes well. */ /* verify entry status */ verify_entry_status(cache_ptr, 10, (num_variable_entries + num_monster_entries + num_large_entries), expected); } if (pass) { /* Load two more large entries. * * Since (VET, 8) is dirty, at first this will just cause (VET, 8) * to be flushed. * * But all other entries in the cache are dirty, so the cache will * flush them all, and then evict (VET, 8) on the second pass. * * The following table shows the expected states of the variable * size entries after the test. * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (VET, 0) N 10 KB N N - - * * (VET, 1) N 2.5 KB N N - - * * (VET, 2) N 10 KB N N - - * * (VET, 3) N 2.5 KB N N - - * * (VET, 4) N 10 KB N N - - * * (VET, 5) N 5 KB N N - - * * (VET, 6) N 5 KB N N - - * * (VET, 7) N 5 KB N N - - * * (VET, 8) N 10 KB N N - - * * (VET, 9) N 10 KB N N - - * * Start by updating the expected table for the expected changes in * entry status: */ expected[8].in_cache = FALSE; expected[8].is_dirty = FALSE; expected[8].serialized = TRUE; expected[8].destroyed = TRUE; num_large_entries = 14; /* a newly loaded entry is not inserted in the cache until after * space has been made for it. Thus (LET, 13) will not be flushed. */ for (i = num_variable_entries; i < num_variable_entries + num_monster_entries + num_large_entries - 1; i++) { expected[i].is_dirty = FALSE; expected[i].serialized = TRUE; } for (i = 12; i < 14; i++) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* verify cache size */ if ((cache_ptr->index_len != 45) || (cache_ptr->index_size != (2 * 1024 * 1024) - (6 * VARIABLE_ENTRY_SIZE) + (13 * LARGE_ENTRY_SIZE)) || (cache_ptr->index_size != ((31 * MONSTER_ENTRY_SIZE) + (14 * LARGE_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in flush op eviction test 13."; } /* modifications to the H5C__flush_single_entry() function have * changed the behavior of the cache slightly, causing * this test to fail. Comment out for now -- come back and * fix if all goes well. */ /* verify entry status */ verify_entry_status(cache_ptr, 11, (num_variable_entries + num_monster_entries + num_large_entries), expected); } /* at this point we have cycled all the variable size entries through * the cache. * * flush the cache and end the test. */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "Cache flush invalidate failed after flush op eviction test") if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) { pass = FALSE; failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test"; } } #if H5C_COLLECT_CACHE_STATS /* If we are collecting stats, check to see if we get the expected * values. * * Testing the stats code is fairly new, but given the extent * to which I find myself depending on the stats, I've decided * to start testing the stats whenever it is convenient to do * so. */ if (pass) { if ((cache_ptr->insertions[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->clears[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->flushes[VARIABLE_ENTRY_TYPE] != 9) || (cache_ptr->evictions[VARIABLE_ENTRY_TYPE] != 12) || (cache_ptr->take_ownerships[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->moves[VARIABLE_ENTRY_TYPE] != 1) || (cache_ptr->entry_flush_moves[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->pins[VARIABLE_ENTRY_TYPE] != 2) || (cache_ptr->unpins[VARIABLE_ENTRY_TYPE] != 2) || (cache_ptr->dirty_pins[VARIABLE_ENTRY_TYPE] != 2) || (cache_ptr->pinned_flushes[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[VARIABLE_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[VARIABLE_ENTRY_TYPE] != 3) || (cache_ptr->size_decreases[VARIABLE_ENTRY_TYPE] != 6) || (cache_ptr->entry_flush_size_changes[VARIABLE_ENTRY_TYPE] != 1) || (cache_ptr->cache_flush_size_changes[VARIABLE_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected variable size entry stats in check_flush_cache__flush_op_eviction_test()."; } } if (pass) { if ((cache_ptr->insertions[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->clears[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->flushes[LARGE_ENTRY_TYPE] != 25) || (cache_ptr->evictions[LARGE_ENTRY_TYPE] != 14) || (cache_ptr->take_ownerships[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->moves[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->pins[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->unpins[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[LARGE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[LARGE_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected large entry stats in check_flush_cache__flush_op_eviction_test()."; } } if (pass) { if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 62) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry stats in check_flush_cache__flush_op_eviction_test()."; } } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { reset_entries(); } HDfree(expected); } /* check_flush_cache__flush_op_eviction_test() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__single_entry() * * Purpose: Verify that flush_cache behaves as expected when the cache * contains only one element. * * Return: void * * Programmer: John Mainzer * 1/12/05 * * Modifications: * * JRM -- 3/29/06 * Added tests for pinned entries. * * JRM -- 5/17/06 * Complete reqrite of pinned entry tests to accomodate * the new H5C_mark_entry_dirty() call. * *------------------------------------------------------------------------- */ static void check_flush_cache__single_entry(H5F_t *file_ptr) { H5C_t *cache_ptr = file_ptr->shared->cache; if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to single entry case."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at beginning of single entry case."; } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 1, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 2, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 3, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 4, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 5, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 6, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 7, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 8, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 9, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 10, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 11, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 12, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 13, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 14, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 15, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 16, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 17, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 18, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 19, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 20, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 21, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 22, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 23, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 24, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 25, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 26, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 27, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 28, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 29, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 30, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 31, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 32, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ FALSE, /* flags */ H5C__DIRTIED_FLAG | H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ TRUE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 33, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 34, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 35, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 36, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 37, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 38, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 39, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 40, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 41, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 42, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 43, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 44, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 45, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 46, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 47, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 48, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__NO_FLAGS_SET, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 49, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 50, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__NO_FLAGS_SET, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 51, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 52, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 53, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 54, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 55, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 56, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 57, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 58, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 59, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 60, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ FALSE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 61, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 62, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_INVALIDATE_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ TRUE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 63, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } if (pass) { check_flush_cache__single_entry_test( /* file_ptr */ file_ptr, /* test_num */ 64, /* entry_type */ PICO_ENTRY_TYPE, /* entry_idx */ 0, /* insert_flag */ TRUE, /* flags */ H5C__SET_FLUSH_MARKER_FLAG, /* flush_flags */ H5C__FLUSH_INVALIDATE_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG | H5C__FLUSH_MARKED_ENTRIES_FLAG, /* expected_deserialized */ FALSE, /* expected_serialized */ FALSE, /* expected_destroyed */ TRUE); } /* Now run single entry tests for pinned entries. Test all combinations * of: * * 1) Unpin by unprotect vs. unpin by call to H5C_unpin_entry(). * * 2) Marked dirty by unprotect or not. * * 3) Marked dirty by call to H5C_mark_entry_dirty() or not. * * 4) Marked dirty by call to H5C_mark_entry_dirty() while protected * or not. * * 5) Marked dirty by call to H5C_mark_entry_dirty() while pinned or not. * * 6) Entry marked for flush or not. * * 7) Call flush with H5C__FLUSH_MARKED_ENTRIES_FLAG or not. * * 8) Call flush with H5C__FLUSH_CLEAR_ONLY_FLAG or not. * * This yields a total of 256 tests. * * The tests and their expected results are given in the spec table * below. The values assigned to the expected_serialized, * and expected_destroyed fields are somewhat arcane, so the following * overview may be useful. * * In addition to simply checking to see if the test case runs, * we also check to see if the desired operations take place on the * cache entry. Thus expected_serialized is set to TRUE if we * we expect the entry to be flushed, and expected_destroyed is set * to TRUE if we expect the entry to be destroyed. * * In this test, we are working with pinned entries which can't be * evicted, so expected_destroyed is always FALSE. We could pull it * from the table, but it is a hold over from the code this test * was adapted from, and it doesn't do any particular harm. * * In general, we expect an entry to be flushed if it is dirty, and * flush in invoked WITHOUT the H5C__FLUSH_CLEAR_ONLY_FLAG. However, * there are exceptions: If flush is invoked with the * H5C__FLUSH_MARKED_ENTRIES_FLAG, only marked entries will be flushed. * * Further, unprotecting an entry with the H5C__SET_FLUSH_MARKER_FLAG * will NOT mark the entry unless the entry has either been marked * dirty either before or durting the unprotect call. This results in * some counterintuitive entries in the table. It make be useful to * look in the test code to see the exact order of operations. * * Similarly, we expect an entry to be cleared if it is dirty, and * flush is invoked WITH the H5C__FLUSH_CLEAR_ONLY_FLAG. Again, there * are exceptions -- If flush is also invoked with the * H5C__FLUSH_MARKED_ENTRIES_FLAG, only the marked entries will be * cleared. * * The above comments about applying unprotect with the * H5C__SET_FLUSH_MARKER_FLAG apply here as well. */ if (pass) { struct pinned_single_entry_test_spec *spec = NULL; size_t i; spec = HDmalloc(256 * sizeof(struct pinned_single_entry_test_spec)); if (spec == NULL) { pass = FALSE; failure_mssg = "couldn't allocated pinned single entry test spec array"; } for (i = 0; i < 256; i++) { int test_num; int entry_type; int entry_idx; hbool_t dirty_flag; hbool_t mark_dirty; hbool_t pop_mark_dirty_prot; hbool_t pop_mark_dirty_pinned; hbool_t unprotect_unpin; unsigned int flags; unsigned int flush_flags; hbool_t expected_serialized; hbool_t expected_destroyed; test_num = (int)(i + 1); entry_type = PICO_ENTRY_TYPE; entry_idx = 0; /* Generate alternating sequences of TRUE/FALSE */ dirty_flag = (i / 16) % 2; mark_dirty = (i / 8) % 2; pop_mark_dirty_prot = (i / 4) % 2; pop_mark_dirty_pinned = (i / 2) % 2; unprotect_unpin = i % 2; /* Generate alternating sequences of H5C__NO_FLAGS_SET * and H5C__SET_FLUSH_MARKER_FLAG */ if ((i / 32) % 2) flags = H5C__SET_FLUSH_MARKER_FLAG; else flags = H5C__NO_FLAGS_SET; /* * Generate sequences of H5C__NO_FLAGS_SET, * H5C__FLUSH_MARKED_ENTRIES_FLAG, H5C__FLUSH_CLEAR_ONLY_FLAG * and H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG */ switch (i / 64) { case 0: flush_flags = H5C__NO_FLAGS_SET; break; case 1: flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG; break; case 2: flush_flags = H5C__FLUSH_CLEAR_ONLY_FLAG; break; case 3: flush_flags = H5C__FLUSH_MARKED_ENTRIES_FLAG | H5C__FLUSH_CLEAR_ONLY_FLAG; break; default: flush_flags = H5C__NO_FLAGS_SET; break; } expected_serialized = FALSE; if (0 == (flush_flags & H5C__FLUSH_CLEAR_ONLY_FLAG)) { if (flush_flags & H5C__FLUSH_MARKED_ENTRIES_FLAG) { if (flags & H5C__SET_FLUSH_MARKER_FLAG) { if (mark_dirty && pop_mark_dirty_prot) { expected_serialized = TRUE; } else if (dirty_flag || pop_mark_dirty_prot) { expected_serialized = TRUE; } } } else { if (dirty_flag || mark_dirty || pop_mark_dirty_prot || pop_mark_dirty_pinned) expected_serialized = TRUE; } } expected_destroyed = FALSE; spec[i] = (struct pinned_single_entry_test_spec){ test_num, entry_type, entry_idx, dirty_flag, mark_dirty, pop_mark_dirty_prot, pop_mark_dirty_pinned, unprotect_unpin, flags, flush_flags, expected_serialized, expected_destroyed, }; } i = 0; while (pass && (i < 256)) { check_flush_cache__pinned_single_entry_test( /* file_ptr */ file_ptr, /* test_num */ spec[i].test_num, /* entry_type */ spec[i].entry_type, /* entry_idx */ spec[i].entry_idx, /* dirty_flag */ spec[i].dirty_flag, /* mark_dirty */ spec[i].mark_dirty, /* pop_mark_dirty_prot */ spec[i].pop_mark_dirty_prot, /* pop_mark_dirty_pinned */ spec[i].pop_mark_dirty_pinned, /* unprotect_unpin */ spec[i].unprotect_unpin, /* flags */ spec[i].flags, /* flush_flags */ spec[i].flush_flags, /* expected_serialized */ spec[i].expected_serialized, /* expected_destroyed */ spec[i].expected_destroyed); i++; } HDfree(spec); } } /* check_flush_cache__single_entry() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__single_entry_test() * * Purpose: Run a single entry flush cache test. * * Return: void * * Programmer: John Mainzer * 1/12/05 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void check_flush_cache__single_entry_test(H5F_t *file_ptr, int test_num, int entry_type, int entry_idx, hbool_t insert_flag, unsigned int flags, unsigned int flush_flags, hbool_t expected_deserialized, hbool_t expected_serialized, hbool_t expected_destroyed) { H5C_t *cache_ptr = file_ptr->shared->cache; static char msg[128]; test_entry_t *base_addr; test_entry_t *entry_ptr = NULL; if (cache_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to single entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache not empty at beginning of single entry test #%d.", test_num); failure_mssg = msg; } else if ((entry_type < 0) || (entry_type >= NUMBER_OF_ENTRY_TYPES) || (entry_idx < 0) || (entry_idx > max_indices[entry_type])) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Bad parameters on entry to single entry test #%d.", test_num); failure_mssg = msg; } if (pass) { base_addr = entries[entry_type]; entry_ptr = &(base_addr[entry_idx]); if (insert_flag) { insert_entry(file_ptr, entry_type, entry_idx, flags); } else { protect_entry(file_ptr, entry_type, entry_idx); unprotect_entry(file_ptr, entry_type, entry_idx, flags); } } if (pass) { H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure mssg.") if (!pass) { /* construct and set actual failure message */ HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in single entry test #%d.", flush_flags, test_num); failure_mssg = msg; } else if ((entry_ptr->deserialized != expected_deserialized) || (entry_ptr->serialized != expected_serialized) || (entry_ptr->destroyed != expected_destroyed)) { #if 0 /* This is useful debugging code -- lets keep it for a while */ HDfprintf(stdout, "desrlzd = %d(%d), srlzd = %d(%d), dest = %d(%d)\n", (int)(entry_ptr->deserialized), (int)expected_deserialized, (int)(entry_ptr->serialized), (int)expected_serialized, (int)(entry_ptr->destroyed), (int)expected_destroyed); #endif pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry status after flush in single entry test #%d.", test_num); failure_mssg = msg; } else if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) && ((cache_ptr->index_len != 1) || (cache_ptr->index_size != entry_sizes[entry_type]))) || (((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in single entry test #%d.", test_num); failure_mssg = msg; } } /* clean up the cache to prep for the next test */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy failure mssg.") if (!pass) { /* construct and set actual failure message */ HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in single entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after cleanup in single entry test #%d.", test_num); failure_mssg = msg; } else { entry_ptr->deserialized = FALSE; entry_ptr->serialized = FALSE; entry_ptr->destroyed = FALSE; } } } /* check_flush_cache__single_entry_test() */ /*------------------------------------------------------------------------- * Function: check_flush_cache__pinned_single_entry_test() * * Purpose: Run a pinned single entry flush cache test. * * Return: void * * Programmer: John Mainzer * 3/28/06 * * Modifications: * * JRM -- 5/17/06 * Added the pop_mark_dirty_prot and pop_mark_dirty_pinned * flags and supporting code to allow us to test the * H5C_mark_entry_dirty() call. Use the * call to mark the entry dirty while the entry is protected * if pop_mark_dirty_prot is TRUE, and to mark the entry * dirty while it is pinned if pop_mark_dirty_pinned is TRUE. * * JRM -- 5/14/20 * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * *------------------------------------------------------------------------- */ static void check_flush_cache__pinned_single_entry_test(H5F_t *file_ptr, int test_num, int entry_type, int entry_idx, hbool_t unprot_dirty_flag, hbool_t mark_dirty, hbool_t pop_mark_dirty_prot, hbool_t pop_mark_dirty_pinned, hbool_t unprotect_unpin, unsigned int flags, unsigned int flush_flags, hbool_t expected_serialized, hbool_t expected_destroyed) { H5C_t *cache_ptr = file_ptr->shared->cache; static char msg[128]; hbool_t expected_deserialized = TRUE; test_entry_t *base_addr; test_entry_t *entry_ptr = NULL; if (cache_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to pinned single entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache not empty at beginning of pinned single entry test #%d.", test_num); failure_mssg = msg; } else if ((entry_type < 0) || (entry_type >= NUMBER_OF_ENTRY_TYPES) || (entry_idx < 0) || (entry_idx > max_indices[entry_type])) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Bad parameters on entry to pinned single entry test #%d.", test_num); failure_mssg = msg; } if (pass) { base_addr = entries[entry_type]; entry_ptr = &(base_addr[entry_idx]); protect_entry(file_ptr, entry_type, entry_idx); if (pop_mark_dirty_prot) { mark_entry_dirty(entry_type, entry_idx); } unprotect_entry(file_ptr, entry_type, entry_idx, (unprot_dirty_flag ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) | (flags | H5C__PIN_ENTRY_FLAG)); if (mark_dirty) { mark_entry_dirty(entry_type, entry_idx); } if (pop_mark_dirty_pinned) { mark_entry_dirty(entry_type, entry_idx); } } if (pass) { H5C_FLUSH_CACHE(file_ptr, flush_flags, "dummy failure message\n") if (!pass) { /* construct and set the correct failure message */ HDsnprintf(msg, (size_t)128, "flush with flags 0x%x failed in pinned single entry test #%d.", flush_flags, test_num); failure_mssg = msg; } else if ((entry_ptr->deserialized != expected_deserialized) || (entry_ptr->serialized != expected_serialized) || (entry_ptr->destroyed != expected_destroyed)) { #if 0 /* this is useful debugging code -- keep it around */ HDfprintf(stdout, "desrlzd = %d(%d), srlzd = %d(%d), dest = %d(%d)\n", (int)(entry_ptr->deserialized), (int)expected_deserialized, (int)(entry_ptr->serialized), (int)expected_serialized, (int)(entry_ptr->destroyed), (int)expected_destroyed); #endif pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry status after flush in pinned single entry test #%d.", test_num); failure_mssg = msg; } else if ((((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) == 0) && ((cache_ptr->index_len != 1) || (cache_ptr->index_size != entry_sizes[entry_type]))) || (((flush_flags & H5C__FLUSH_INVALIDATE_FLAG) != 0) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after flush in pinned single entry test #%d.", test_num); failure_mssg = msg; } } /* clean up the cache to prep for the next test */ if (pass) { if (unprotect_unpin) { protect_entry(file_ptr, entry_type, entry_idx); unprotect_entry(file_ptr, entry_type, entry_idx, (unprot_dirty_flag ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) | H5C__UNPIN_ENTRY_FLAG); } else { unpin_entry(entry_type, entry_idx); } } if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "dummy mssg\n") if (!pass) { HDsnprintf(msg, (size_t)128, "Flush failed on cleanup in pinned single entry test #%d.", test_num); failure_mssg = msg; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache len/size after cleanup in pinned single entry test #%d.", test_num); failure_mssg = msg; } else { entry_ptr->deserialized = FALSE; entry_ptr->serialized = FALSE; entry_ptr->destroyed = FALSE; } } } /* check_flush_cache__pinned_single_entry_test() */ /*------------------------------------------------------------------------- * Function: check_get_entry_status() * * Purpose: Verify that H5C_get_entry_status() behaves as expected. * * Return: void * * Programmer: John Mainzer * 4/28/06 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_get_entry_status(unsigned paged) { static char msg[128]; herr_t result; hbool_t in_cache; hbool_t is_dirty; hbool_t is_protected; hbool_t is_pinned; size_t entry_size; H5F_t *file_ptr = NULL; test_entry_t *base_addr = NULL; test_entry_t *entry_ptr = NULL; if (paged) TESTING("H5C_get_entry_status() functionality (paged aggregation)") else TESTING("H5C_get_entry_status() functionality") pass = TRUE; if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "file_ptr NULL from setup_cache."; } else { base_addr = entries[0]; entry_ptr = &(base_addr[0]); } } if (pass) { /* entry not in cache -- only in_cache should be touched by * the call. Thus, only check that boolean. */ result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 1."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2."); failure_mssg = msg; } else if (!in_cache || is_dirty || is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 2."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, 0, 0); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3."); failure_mssg = msg; } else if (!in_cache || is_dirty || !is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 3."); failure_mssg = msg; } } if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4."); failure_mssg = msg; } else if (!in_cache || is_dirty || is_protected || !is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 4."); failure_mssg = msg; } } if (pass) { mark_entry_dirty(0, 0); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || !is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 5."); failure_mssg = msg; } } if (pass) { unpin_entry(0, 0); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 6."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 6."); failure_mssg = msg; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_get_entry_status() */ /*------------------------------------------------------------------------- * Function: check_expunge_entry() * * Purpose: Verify that H5C_expunge_entry() behaves as expected. * * Return: void * * Programmer: John Mainzer * 7/5/06 * * Modifications: * * *------------------------------------------------------------------------- */ static unsigned check_expunge_entry(unsigned paged) { static char msg[128]; herr_t result; hbool_t in_cache; hbool_t is_dirty; hbool_t is_protected; hbool_t is_pinned; size_t entry_size; H5F_t *file_ptr = NULL; test_entry_t *base_addr; test_entry_t *entry_ptr; if (paged) TESTING("H5C_expunge_entry() functionality (paged aggregation)") else TESTING("H5C_expunge_entry() functionality") pass = TRUE; if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); base_addr = entries[0]; entry_ptr = &(base_addr[0]); } if (pass) { /* entry not in cache -- only in_cache should be touched by * the status call. Thus, only check that boolean. */ result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 1."); failure_mssg = msg; } else if ((entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 1."); failure_mssg = msg; } } /* protect an entry to force the cache to load it, and then unprotect * it without marking it dirty. */ if (pass) { protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2."); failure_mssg = msg; } else if (!in_cache || is_dirty || is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 2."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 2."); failure_mssg = msg; } } /* Expunge the entry and then verify that it is no longer in the cache. * Also verify that the entry was loaded and destroyed, but * not flushed. */ if (pass) { expunge_entry(file_ptr, 0, 0); } if (pass) { /* entry shouldn't be in cache -- only in_cache should be touched * by the status call. Thus, only check that boolean. */ result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 3."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 3."); failure_mssg = msg; } } /* now repeat the process with a different entry. On unprotect * mark the entry as dirty. Verify that it is not flushed. */ base_addr = entries[0]; entry_ptr = &(base_addr[1]); if (pass) { /* entry not in cache -- only in_cache should be touched by * the status call. Thus, only check that boolean. */ result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 4."); failure_mssg = msg; } else if ((entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 4."); failure_mssg = msg; } } /* protect the entry to force the cache to load it, and then unprotect * it with the dirty flag set. */ if (pass) { protect_entry(file_ptr, 0, 1); unprotect_entry(file_ptr, 0, 1, H5C__DIRTIED_FLAG); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 5."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 5."); failure_mssg = msg; } } /* Expunge the entry and then verify that it is no longer in the cache. * Also verify that the entry was loaded and destroyed, but not * flushed. */ if (pass) { expunge_entry(file_ptr, 0, 1); } if (pass) { /* entry shouldn't be in cache -- only in_cache should be touched * by the status call. Thus, only check that boolean. */ result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 6."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 6."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 6."); failure_mssg = msg; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_expunge_entry() */ /*------------------------------------------------------------------------- * Function: check_multiple_read_protect() * * Purpose: Verify that multiple, simultaneous read protects of a * single entry perform as expectd. * * Return: void * * Programmer: John Mainzer * 4/1/07 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_multiple_read_protect(unsigned paged) { H5F_t *file_ptr = NULL; #if H5C_COLLECT_CACHE_STATS H5C_t *cache_ptr = NULL; #endif /* H5C_COLLECT_CACHE_STATS */ test_entry_t *entry_ptr; if (paged) TESTING("multiple read only protects on a single entry (paged aggr)") else TESTING("multiple read only protects on a single entry") pass = TRUE; /* allocate a cache. Should succeed. * * Then to start with, proceed as follows: * * Read protect an entry. * * Then read protect the entry again. Should succeed. * * Read protect yet again. Should succeed. * * Unprotect with no changes, and then read protect twice again. * Should succeed. * * Now unprotect three times. Should succeed. * * If stats are enabled, verify that correct stats are collected at * every step. * * Also, verify internal state of read protects at every step. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); #if H5C_COLLECT_CACHE_STATS cache_ptr = file_ptr->shared->cache; #endif /* H5C_COLLECT_CACHE_STATS */ entry_ptr = &((entries[0])[0]); if ((entry_ptr->header.is_protected) || (entry_ptr->header.is_read_only) || (entry_ptr->header.ro_ref_count != 0)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 1.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 0) || (cache_ptr->max_read_protects[0] != 0)) { pass = FALSE; failure_mssg = "Unexpected protect stats 1.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { protect_entry_ro(file_ptr, 0, 0); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 1)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 2.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 1) || (cache_ptr->max_read_protects[0] != 1)) { pass = FALSE; failure_mssg = "Unexpected protect stats 2.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { protect_entry_ro(file_ptr, 0, 0); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 2)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 3.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 2) || (cache_ptr->max_read_protects[0] != 2)) { pass = FALSE; failure_mssg = "Unexpected protect stats 3.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 1)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 4.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 2) || (cache_ptr->max_read_protects[0] != 2)) { pass = FALSE; failure_mssg = "Unexpected protect stats 4.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { protect_entry_ro(file_ptr, 0, 0); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 2)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 5.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 3) || (cache_ptr->max_read_protects[0] != 2)) { pass = FALSE; failure_mssg = "Unexpected protect stats 5.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { protect_entry_ro(file_ptr, 0, 0); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 3)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 6.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 6.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 2)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 7.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 7.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); if ((!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count != 1)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 8.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 8.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); if ((entry_ptr->header.is_protected) || (entry_ptr->header.is_read_only) || (entry_ptr->header.ro_ref_count != 0)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 9.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 0) || (cache_ptr->read_protects[0] != 4) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 9.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ /* If we get this far, do a write protect and unprotect to verify * that the stats are getting collected properly here as well. */ if (pass) { protect_entry(file_ptr, 0, 0); if ((!(entry_ptr->header.is_protected)) || (entry_ptr->header.is_read_only) || (entry_ptr->header.ro_ref_count != 0)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 10.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 1) || (cache_ptr->read_protects[0] != 4) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 10.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); if ((entry_ptr->header.is_protected) || (entry_ptr->header.is_read_only) || (entry_ptr->header.ro_ref_count != 0)) { pass = FALSE; failure_mssg = "Unexpected ro protected status 11.\n"; } } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 1) || (cache_ptr->read_protects[0] != 4) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 11.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ /* Finally, mix things up a little, using a mix of reads and * and writes on different entries. Also include a pin to verify * that it works as well. * * Stats are looking OK, so we will only test them one more time * at the end to ensure that all is at it should be. */ if (pass) { protect_entry(file_ptr, 0, 2); /* (0,2) write */ protect_entry_ro(file_ptr, 0, 4); /* (0,4) read only (1) */ protect_entry(file_ptr, 0, 6); /* (0,6) write */ unprotect_entry(file_ptr, 0, 2, /* (0,2) unprotect */ H5C__NO_FLAGS_SET); protect_entry_ro(file_ptr, 0, 2); /* (0,2) read only (1) */ protect_entry(file_ptr, 0, 1); /* (0,1) write */ protect_entry_ro(file_ptr, 0, 4); /* (0,4) read only (2) */ protect_entry(file_ptr, 0, 0); /* (0,0) write */ protect_entry_ro(file_ptr, 0, 2); /* (0,2) read only (2) */ unprotect_entry(file_ptr, 0, 2, /* (0,2) read only (1) pin */ H5C__PIN_ENTRY_FLAG); unprotect_entry(file_ptr, 0, 6, /* (0,6) unprotect */ H5C__NO_FLAGS_SET); protect_entry_ro(file_ptr, 0, 4); /* (0,4) read only (3) */ unprotect_entry(file_ptr, 0, 2, /* (0,2) unprotect */ H5C__NO_FLAGS_SET); unprotect_entry(file_ptr, 0, 1, /* (0,1) unprotect */ H5C__NO_FLAGS_SET); if (pass) { entry_ptr = &((entries[0])[4]); if (H5C_pin_protected_entry((void *)entry_ptr) < 0) { pass = FALSE; failure_mssg = "H5C_pin_protected_entry() failed.\n"; } else if (!(entry_ptr->header.is_pinned)) { pass = FALSE; failure_mssg = "entry (0,4) not pinned.\n"; } else { /* keep test bed sanity checks happy */ entry_ptr->is_pinned = TRUE; } } unprotect_entry(file_ptr, 0, 4, /* (0,4) read only (2) */ H5C__NO_FLAGS_SET); unprotect_entry(file_ptr, 0, 4, /* (0,4) read only (1) */ H5C__UNPIN_ENTRY_FLAG); if (pass && (entry_ptr->header.is_pinned)) { pass = FALSE; failure_mssg = "enty (0,4) still pinned.\n"; } unprotect_entry(file_ptr, 0, 4, /* (0,4) unprotect */ H5C__NO_FLAGS_SET); unprotect_entry(file_ptr, 0, 0, /* (0,0) unprotect */ H5C__NO_FLAGS_SET); unpin_entry(0, 2); } #if H5C_COLLECT_CACHE_STATS if ((cache_ptr->write_protects[0] != 5) || (cache_ptr->read_protects[0] != 9) || (cache_ptr->max_read_protects[0] != 3)) { pass = FALSE; failure_mssg = "Unexpected protect stats 11.\n"; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_multiple_read_protect() */ /*------------------------------------------------------------------------- * Function: check_move_entry() * * Purpose: Verify that H5C_move_entry behaves as expected. In * particular, verify that it works correctly with pinned * entries. * * Return: void * * Programmer: John Mainzer * 4/26/06 * *------------------------------------------------------------------------- */ static unsigned check_move_entry(unsigned paged) { unsigned u; H5F_t *file_ptr = NULL; struct move_entry_test_spec test_specs[4] = { {/* int entry_type = */ PICO_ENTRY_TYPE, /* int entry_index = */ 10, /* hbool_t is_pinned = */ FALSE, /* hbool_t is_protected = */ FALSE}, {/* int entry_type = */ PICO_ENTRY_TYPE, /* int entry_index = */ 20, /* hbool_t is_pinned = */ TRUE, /* hbool_t is_protected = */ FALSE}, {/* int entry_type = */ PICO_ENTRY_TYPE, /* int entry_index = */ 30, /* hbool_t is_pinned = */ FALSE, /* hbool_t is_protected = */ TRUE}, {/* int entry_type = */ PICO_ENTRY_TYPE, /* int entry_index = */ 40, /* hbool_t is_pinned = */ TRUE, /* hbool_t is_protected = */ TRUE}, }; if (paged) TESTING("H5C_move_entry() functionality (paged aggregation)") else TESTING("H5C_move_entry() functionality") pass = TRUE; /* allocate a cache, load entries into it, and then move * them. To the extent possible, verify that the desired * actions took place. * * At present, we should do the following tests: * * 1) Move an unprotected, unpinned entry. * * 2) Move an unprotected, pinned entry. * * 3) Move a protected, unpinned entry. * * 4) Move a protected, pinned entry. * * In all cases, the entry should have moved to its * new location, and have been marked dirty if it wasn't * already. * * Unpinned entries should have been moved to the head * of the LRU list. * * Pinned entries should remain untouched on the pinned entry * list. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); } u = 0; while (pass && (u < NELMTS(test_specs))) { check_move_entry__run_test(file_ptr, u, &(test_specs[u])); u++; } if (pass) takedown_cache(file_ptr, FALSE, FALSE); if (pass) PASSED(); else H5_FAILED() if (!pass) HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); return (unsigned)!pass; } /* check_move_entry() */ /*------------------------------------------------------------------------- * Function: check_move_entry__run_test() * * Purpose: Run a move entry test. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/27/06 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static void check_move_entry__run_test(H5F_t *file_ptr, unsigned test_num, struct move_entry_test_spec *spec_ptr) { H5C_t *cache_ptr = file_ptr->shared->cache; static char msg[128]; unsigned int flags = H5C__NO_FLAGS_SET; test_entry_t *base_addr; test_entry_t *entry_ptr = NULL; H5C_cache_entry_t *test_ptr = NULL; if (cache_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "cache_ptr NULL on entry to move test #%u.", test_num); failure_mssg = msg; } else if (spec_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "spec_ptr NULL on entry to move test #%u.", test_num); failure_mssg = msg; } if (pass) { base_addr = entries[spec_ptr->entry_type]; entry_ptr = &(base_addr[spec_ptr->entry_index]); if ((entry_ptr->self != entry_ptr) || ((entry_ptr->cache_ptr != cache_ptr) && (entry_ptr->cache_ptr != NULL)) || (!(entry_ptr->at_main_addr)) || (entry_ptr->addr != entry_ptr->main_addr)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "bad entry_ptr in move test #%u.", test_num); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, spec_ptr->entry_type, spec_ptr->entry_index); if (spec_ptr->is_pinned) pin_entry(spec_ptr->entry_type, spec_ptr->entry_index); if (!spec_ptr->is_protected) unprotect_entry(file_ptr, spec_ptr->entry_type, spec_ptr->entry_index, flags); move_entry(cache_ptr, spec_ptr->entry_type, spec_ptr->entry_index, FALSE); } if (pass) { /* verify that the move took place, and that the cache's internal * structures are as expected. Note that some sanity checking is * done by move_entry(), so we don't have to repeat it here. */ if (spec_ptr->is_pinned) { if (!(entry_ptr->header.is_pinned)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Pinned entry not pinned after move in test #%u.", test_num); failure_mssg = msg; } if (pass) { if (spec_ptr->is_protected) { } /* end if */ else { /* Scan through the pinned entry list, looking for the entry */ test_ptr = cache_ptr->pel_head_ptr; while ((test_ptr != NULL) && (test_ptr != (H5C_cache_entry_t *)entry_ptr)) test_ptr = test_ptr->next; if (test_ptr == NULL) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Pinned entry not in pel after move in test #%u.", test_num); failure_mssg = msg; } } /* end else */ } unpin_entry(spec_ptr->entry_type, spec_ptr->entry_index); } else { if (entry_ptr->header.is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unpinned entry pinned after move in test #%u.", test_num); failure_mssg = msg; } if (spec_ptr->is_protected) { } /* end if */ else { if ((entry_ptr->header.prev != NULL) || (cache_ptr->LRU_head_ptr != (H5C_cache_entry_t *)entry_ptr)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Entry not at head of LRU after move in test #%u.", test_num); failure_mssg = msg; } } /* end else */ } if (spec_ptr->is_protected) { if (!(entry_ptr->header.is_protected)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Protected entry not protected after move in test #%u.", test_num); failure_mssg = msg; } unprotect_entry(file_ptr, spec_ptr->entry_type, spec_ptr->entry_index, flags); } /* end if */ else { if (entry_ptr->header.is_protected) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unprotected entry not unprotected after move in test #%u.", test_num); failure_mssg = msg; } } /* end else */ } /* put the entry back where it started from */ move_entry(cache_ptr, spec_ptr->entry_type, spec_ptr->entry_index, TRUE); } /* check_move_entry__run_test() */ /*------------------------------------------------------------------------- * Function: check_pin_protected_entry() * * Purpose: Verify that H5C_pin_protected_entry behaves as expected. * * Return: void * * Programmer: John Mainzer * 4/28/06 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_pin_protected_entry(unsigned paged) { static char msg[128]; herr_t result; H5F_t *file_ptr = NULL; test_entry_t *base_addr; test_entry_t *entry_ptr; if (paged) TESTING("H5C_pin_protected_entry() functionality (paged aggregation)") else TESTING("H5C_pin_protected_entry() functionality") pass = TRUE; /* Create a cache, protect an entry, and then use H5C_pin_protected_entry() * to pin it. Verify that the entry is in fact pined. Unprotect the entry * to unpin it, and then destroy the cache. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "file_ptr NULL from setup_cache."; } } if (pass) { protect_entry(file_ptr, 0, 0); } if (pass) { base_addr = entries[0]; entry_ptr = &(base_addr[0]); result = H5C_pin_protected_entry((void *)entry_ptr); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_pin_protected_entry() reports failure."); failure_mssg = msg; } else if (!(entry_ptr->header.is_pinned)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "entry not pinned when it should be."); failure_mssg = msg; } else { entry_ptr->is_pinned = TRUE; } } unprotect_entry(file_ptr, 0, 0, H5C__UNPIN_ENTRY_FLAG); if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_pin_protected_entry() */ /*------------------------------------------------------------------------- * Function: check_resize_entry() * * Purpose: Verify that H5C_resize_entry() and H5C_unprotect() resize * entries as expected. * * Return: void * * Programmer: John Mainzer * 7/7/06 * * Modifications: * * Updated function to allow for disabling of the slist. * * JRM -- 5/18/20 * *------------------------------------------------------------------------- */ static unsigned check_resize_entry(unsigned paged) { static char msg[128]; herr_t result; hbool_t in_cache; hbool_t is_dirty; hbool_t is_protected; hbool_t is_pinned; size_t entry_size; size_t reported_entry_size; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; test_entry_t *base_addr; test_entry_t *entry_ptr = NULL; if (paged) TESTING("entry resize functionality (paged aggregation)") else TESTING("entry resize functionality") /* Setup a cache and verify that it is empty. * * Then force the load of an entry by protecting it, and verify that * the entry and cache have the expected sizes. * * Then unprotect the entry with the size changed flag and a reduced * size. Verify that the entry and cache have the expected expected * sizes. * * Use a second protect/unprotect cycle to restore the entry to * its original size. Verify that the entry and cache have the * expected sizes. * * Protect and unprotect the entry again to pin it. Use * H5C_resize_entry to reduce its size. Verify that the entry * and cache have the expected sizes. * * Use H5C_resize_entry again to restore the entry to its original * size. Verify that the entry and cache have the expected sizes. * * Use a protect / unprotect cycle to unpin and destroy the entry. * Verify that the entry and cache have the expected sizes. * * * Obesrve that all the above tests have been done with only one * entry in the cache. Repeat the tests with several entries in * the cache. */ pass = TRUE; /* tests with only one entry in the cache: */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "file_ptr NULL from setup_cache."; } else { cache_ptr = file_ptr->shared->cache; base_addr = entries[LARGE_ENTRY_TYPE]; entry_ptr = &(base_addr[0]); entry_size = LARGE_ENTRY_SIZE; } } if (pass) { if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 1."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); } if (pass) { if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) || (cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 2."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1."); failure_mssg = msg; } else if (!in_cache || is_dirty || !is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 1."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 1."); failure_mssg = msg; } } if (pass) { result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 2)); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry()."); failure_mssg = msg; } else { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 1."); failure_mssg = msg; } else { /* tidy up so we play nice with the standard protect / unprotect * calls. */ entry_ptr->is_protected = FALSE; entry_ptr->is_dirty = TRUE; entry_ptr->size = LARGE_ENTRY_SIZE / 2; } } } if (pass) { if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != (LARGE_ENTRY_SIZE / 2)) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != (LARGE_ENTRY_SIZE / 2))))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 3."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || is_pinned || (reported_entry_size != (LARGE_ENTRY_SIZE / 2))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 2."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 2."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); } if (pass) { result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry()."); failure_mssg = msg; } else { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 2."); failure_mssg = msg; } else { /* tidy up so we play nice with the standard protect / unprotect * calls. */ entry_ptr->is_protected = FALSE; entry_ptr->is_dirty = TRUE; entry_ptr->size = LARGE_ENTRY_SIZE; } } } if (pass) { if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 4."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || is_pinned || (reported_entry_size != LARGE_ENTRY_SIZE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 3."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 3."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__PIN_ENTRY_FLAG); } if (pass) { result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 4)); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 1."); failure_mssg = msg; } } if (pass) { if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != (LARGE_ENTRY_SIZE / 4)) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != (LARGE_ENTRY_SIZE / 4))))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 5."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || !is_pinned || (reported_entry_size != (LARGE_ENTRY_SIZE / 4))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 4."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 4."); failure_mssg = msg; } } if (pass) { result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 2."); failure_mssg = msg; } } if (pass) { if ((cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 6."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || !is_pinned || (reported_entry_size != LARGE_ENTRY_SIZE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 5."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 5."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__UNPIN_ENTRY_FLAG | H5C__DELETED_FLAG); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 6."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 6."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 6."); failure_mssg = msg; } } if (pass) { if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 7."); failure_mssg = msg; } } /* now repeat the above tests with several entries in the cache: */ if (pass) { if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 8."); failure_mssg = msg; } base_addr = entries[LARGE_ENTRY_TYPE]; entry_ptr = &(base_addr[3]); entry_size = LARGE_ENTRY_SIZE; } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG); protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET); } if (pass) { if ((cache_ptr->index_len != 3) || (cache_ptr->index_size != 3 * LARGE_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 9."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3); } if (pass) { if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * LARGE_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 10."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 7."); failure_mssg = msg; } else if (!in_cache || is_dirty || !is_protected || is_pinned) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 7."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 7."); failure_mssg = msg; } } if (pass) { result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 2)); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry()."); failure_mssg = msg; } else { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 3."); failure_mssg = msg; } else { /* tidy up so we play nice with the standard protect / unprotect * calls. */ entry_ptr->is_protected = FALSE; entry_ptr->is_dirty = TRUE; entry_ptr->size = LARGE_ENTRY_SIZE / 2; } } } if (pass) { if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != ((3 * LARGE_ENTRY_SIZE) + (LARGE_ENTRY_SIZE / 2))) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != (LARGE_ENTRY_SIZE + (LARGE_ENTRY_SIZE / 2)))))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 11."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 8."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || is_pinned || (reported_entry_size != (LARGE_ENTRY_SIZE / 2))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 8."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 8."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3); } if (pass) { result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "error(s) in H5C_resize_entry()."); failure_mssg = msg; } else { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_unprotect() reports failure 4."); failure_mssg = msg; } else { /* tidy up so we play nice with the standard protect / unprotect * calls. */ entry_ptr->is_protected = FALSE; entry_ptr->is_dirty = TRUE; entry_ptr->size = LARGE_ENTRY_SIZE; } } } if (pass) { if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * LARGE_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * LARGE_ENTRY_SIZE)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 12."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 9."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || is_pinned || (reported_entry_size != LARGE_ENTRY_SIZE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 9."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 9."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__PIN_ENTRY_FLAG); } if (pass) { result = H5C_resize_entry((void *)entry_ptr, (LARGE_ENTRY_SIZE / 4)); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 3."); failure_mssg = msg; } } if (pass) { if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != ((3 * LARGE_ENTRY_SIZE) + (LARGE_ENTRY_SIZE / 4))) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != (LARGE_ENTRY_SIZE + (LARGE_ENTRY_SIZE / 4)))))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 13."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 10."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || !is_pinned || (reported_entry_size != (LARGE_ENTRY_SIZE / 4))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 10."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 10."); failure_mssg = msg; } } if (pass) { result = H5C_resize_entry((void *)entry_ptr, LARGE_ENTRY_SIZE); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_resize_entry() reports failure 4."); failure_mssg = msg; } } if (pass) { if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != (4 * LARGE_ENTRY_SIZE)) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != (2 * LARGE_ENTRY_SIZE))))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 14."); failure_mssg = msg; } } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &reported_entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 11."); failure_mssg = msg; } else if (!in_cache || !is_dirty || is_protected || !is_pinned || (reported_entry_size != LARGE_ENTRY_SIZE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 11."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 11."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__UNPIN_ENTRY_FLAG | H5C__DELETED_FLAG); } if (pass) { result = H5C_get_entry_status(file_ptr, entry_ptr->addr, &entry_size, &in_cache, &is_dirty, &is_protected, &is_pinned, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 12."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 12."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 12."); failure_mssg = msg; } } if (pass) { if ((cache_ptr->index_len != 3) || (cache_ptr->index_size != (3 * LARGE_ENTRY_SIZE)) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != LARGE_ENTRY_SIZE)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 15."); failure_mssg = msg; } } if (pass) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__DELETED_FLAG); protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__DELETED_FLAG); protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__DELETED_FLAG); } if (pass) { if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0)))) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 16."); failure_mssg = msg; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_resize_entry() */ /*------------------------------------------------------------------------- * Function: check_evictions_enabled() * * Purpose: Verify that H5C_get_evictions_enabled() and * H5C_set_evictions_enabled() functions perform as expected. * * Return: void * * Programmer: John Mainzer * 8/2/07 * * Modifications: * * Updated function to allow for disabling of the slist. * * JRM -- 5/18/20 * *------------------------------------------------------------------------- */ static unsigned check_evictions_enabled(unsigned paged) { static char msg[128]; herr_t result; hbool_t show_progress = FALSE; hbool_t evictions_enabled; hbool_t in_cache; int i; int mile_stone = 1; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; test_entry_t *base_addr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("evictions enabled/disabled functionality (paged aggregation)") else TESTING("evictions enabled/disabled functionality") /* Setup a cache and verify that it is empty. * * Use H5C_get_evictions_enabled() to determine if evictions are * currently enabled -- they should be. * * Load entries until the cache is full. Load one more. Verify that * this caused an entry to be evicted. * * Insert an entry. Verify that this cases and entry to be evicted. * * Used H5C_set_evictions_enabled() to disable evictions. Verify * with a call to H5C_get_evictions_enabled(). * * Load another entry -- verify that this does not cause an entry * to be evicted. * * Insert an entry -- verify that this does not cause an entry to * be evicted. * * Use H5C_set_evictions_enabled() to re-enable evictions. Verify * with a call to H5C_get_evictions_enabled(). * * Protect and unprotect some of the entries in the cache. Verify * that there are no evictions (since we only try to make space * when we either insert or load a new entry). * * Protect an entry not in the cache. Verify that this causes * two evictions. * * Used H5C_set_evictions_enabled() to disable evictions again. * Verify with a call to H5C_get_evictions_enabled(). * * Now flush and discard the cache -- should succeed. */ pass = TRUE; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* create the cache */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(1 * 1024 * 1024), (size_t)(512 * 1024), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "file_ptr NULL from setup_cache."; } else { cache_ptr = file_ptr->shared->cache; base_addr = entries[MONSTER_ENTRY_TYPE]; } } if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that it is empty */ if (pass) { if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 1."); failure_mssg = msg; } } if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that H5C_get_evictions_enabled() returns the expected value */ if (pass) { result = H5C_get_evictions_enabled(cache_ptr, &evictions_enabled); if ((result != SUCCEED) || (evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected evictions enabled 1."); failure_mssg = msg; } } if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* fill the cache */ for (i = 0; i < 16; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } } if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that the cache is full */ if (pass) { if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 2."); failure_mssg = msg; } } if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* protect and unprotect another entry */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 16); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 16, H5C__NO_FLAGS_SET); } if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that an entry has been evicted */ if (pass) { if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 0) || (cache_ptr->slist_size != 0))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 3."); failure_mssg = msg; } } if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { entry_ptr = &(base_addr[0]); result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 1."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 1."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 1."); failure_mssg = msg; } } if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* insert an entry */ insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 17, H5C__NO_FLAGS_SET); } if (show_progress) /* 10 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that another entry has been evicted */ if (pass) { if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 4."); failure_mssg = msg; } } if (show_progress) /* 11 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { entry_ptr = &(base_addr[1]); result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 2."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 2."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 2."); failure_mssg = msg; } } if (show_progress) /* 12 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* disable evictions */ if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result != SUCCEED) { pass = FALSE; HDsnprintf(msg, (size_t)128, "can't disable evictions 1."); failure_mssg = msg; } } if (show_progress) /* 13 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that evictions are disabled */ if (pass) { if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != FALSE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 5."); failure_mssg = msg; } } if (show_progress) /* 14 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* protect and unprotect another entry */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 18); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 18, H5C__NO_FLAGS_SET); } if (show_progress) /* 15 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that no entry has been evicted */ if (pass) { if ((cache_ptr->index_len != 17) || (cache_ptr->index_size != 17 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 1) || (cache_ptr->slist_size != MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != FALSE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 6."); failure_mssg = msg; } } if (show_progress) /* 16 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* insert another entry */ insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 19, H5C__NO_FLAGS_SET); } if (show_progress) /* 17 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that no entry has been evicted */ if (pass) { if ((cache_ptr->index_len != 18) || (cache_ptr->index_size != 18 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != FALSE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 7."); failure_mssg = msg; } } if (show_progress) /* 18 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* re-enable evictions */ if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result != SUCCEED) { pass = FALSE; HDsnprintf(msg, (size_t)128, "can't enable evictions 1."); failure_mssg = msg; } } if (show_progress) /* 19 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* protect and unprotect an entry that is in the cache */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 19); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 19, H5C__NO_FLAGS_SET); } if (show_progress) /* 20 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that no entries have been evicted */ if (pass) { if ((cache_ptr->index_len != 18) || (cache_ptr->index_size != 18 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 8."); failure_mssg = msg; } } if (show_progress) /* 21 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* protect and unprotect an entry that isn't in the cache */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 20); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 20, H5C__NO_FLAGS_SET); } if (show_progress) /* 22 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that the entries have been evicted to bring the * cache back down to its normal size. */ if (pass) { if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 9."); failure_mssg = msg; } } if (show_progress) /* 23 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { entry_ptr = &(base_addr[2]); result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 3."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 3."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 3."); failure_mssg = msg; } } if (show_progress) /* 24 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { entry_ptr = &(base_addr[3]); result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 4."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 4."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 4."); failure_mssg = msg; } } if (show_progress) /* 25 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* disable evictions again */ if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result != SUCCEED) { pass = FALSE; HDsnprintf(msg, (size_t)128, "can't disable evictions 2."); failure_mssg = msg; } } if (show_progress) /* 26 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* protect and unprotect an entry that isn't in the cache, forcing * the cache to grow. */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 21); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 21, H5C__NO_FLAGS_SET); } if (show_progress) /* 27 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that the cache has grown */ if (pass) { if ((cache_ptr->index_len != 17) || (cache_ptr->index_size != 17 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 2) || (cache_ptr->slist_size != 2 * MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != FALSE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 10."); failure_mssg = msg; } } if (show_progress) /* 28 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* re-enable evictions again */ if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result != SUCCEED) { pass = FALSE; HDsnprintf(msg, (size_t)128, "can't enable evictions 2."); failure_mssg = msg; } } if (show_progress) /* 29 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* insert an entry */ insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 22, H5C__NO_FLAGS_SET); } if (show_progress) /* 30 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* verify that the cache has returned to its maximum size */ if (pass) { if ((cache_ptr->index_len != 16) || (cache_ptr->index_size != 16 * MONSTER_ENTRY_SIZE) || ((cache_ptr->slist_enabled) && ((cache_ptr->slist_len != 3) || (cache_ptr->slist_size != 3 * MONSTER_ENTRY_SIZE))) || (cache_ptr->evictions_enabled != TRUE)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected cache status 11."); failure_mssg = msg; } } if (show_progress) /* 31 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { entry_ptr = &(base_addr[4]); result = H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (result < 0) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5C_get_entry_status() reports failure 5."); failure_mssg = msg; } else if (in_cache) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected status 5."); failure_mssg = msg; } else if ((!entry_ptr->deserialized) || (entry_ptr->serialized) || (!entry_ptr->destroyed)) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected entry history 5."); failure_mssg = msg; } } if (show_progress) /* 32 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* disable evictions one last time before we shut down */ if (pass) { result = H5C_set_evictions_enabled(cache_ptr, FALSE); if (result != SUCCEED) { pass = FALSE; HDsnprintf(msg, (size_t)128, "can't disable evictions 3."); failure_mssg = msg; } } if (show_progress) /* 33 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (show_progress) /* 34 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_evictions_enabled() */ /*------------------------------------------------------------------------- * Function: check_flush_protected_err() * * Purpose: Verify that an attempt to flush the cache when it contains * a protected entry will generate an error. * * Return: void * * Programmer: John Mainzer * 6/24/04 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static unsigned check_flush_protected_err(unsigned paged) { H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; if (paged) TESTING("flush cache with protected entry error (paged aggregation)") else TESTING("flush cache with protected entry error") pass = TRUE; /* allocate a cache, protect an entry, and try to flush. This * should fail. Unprotect the entry and flush again -- should * succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); if (pass) { cache_ptr = file_ptr->shared->cache; } protect_entry(file_ptr, 0, 0); /* enable slist prior to flush */ if ((pass) && (H5C_set_slist_enabled(cache_ptr, TRUE, FALSE) < 0)) { pass = FALSE; failure_mssg = "unable to enable slist prior to flush.\n"; } if ((pass) && (H5C_flush_cache(file_ptr, H5C__NO_FLAGS_SET) >= 0)) { pass = FALSE; failure_mssg = "flush succeeded on cache with protected entry.\n"; } /* disable the slist after the flush */ if ((pass) && (H5C_set_slist_enabled(cache_ptr, FALSE, FALSE) < 0)) { pass = FALSE; failure_mssg = "unable to disable slist after flush.\n"; } unprotect_entry(file_ptr, 0, 0, H5C__DIRTIED_FLAG); if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "flush failed after unprotect.\n") } takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_flush_protected_err() */ /*------------------------------------------------------------------------- * Function: check_destroy_pinned_err() * * Purpose: Verify that an attempt to destroy the cache when it contains * a pinned entry that can't be unpined during the flush destroy * will generate an error. * * Return: void * * Programmer: John Mainzer * 4/7/06 * * Modifications: * * *------------------------------------------------------------------------- */ static unsigned check_destroy_pinned_err(unsigned paged) { H5F_t *file_ptr = NULL; if (paged) TESTING("destroy cache with permanently pinned entry error (pgd aggr)") else TESTING("destroy cache with permanently pinned entry error") pass = TRUE; /* allocate a cache, pin an entry, and try to flush destroy. This * should fail. Unpin the entry and flush destroy again -- should * succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG); if (H5C_prep_for_file_close(file_ptr) < 0) { pass = FALSE; failure_mssg = "unexpected failure of prep for file close.\n"; } /* end if */ if (H5C_dest(file_ptr) >= 0) { pass = FALSE; failure_mssg = "destroy succeeded on cache with pinned entry.\n"; } /* end if */ else { unpin_entry(0, 0); if (H5C_dest(file_ptr) < 0) { pass = FALSE; failure_mssg = "destroy failed after unpin.\n"; } /* end if */ else file_ptr->shared->cache = NULL; } /* end else */ if (saved_cache != NULL) { file_ptr->shared->cache = saved_cache; saved_cache = NULL; } /* end if */ /* call takedown_cache() with a NULL file_ptr parameter. * This causes the function to close and delete the file, * while skipping the call to H5C_dest(). */ takedown_cache(NULL, FALSE, FALSE); } /* end if */ if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); return (unsigned)!pass; } /* check_destroy_pinned_err() */ /*------------------------------------------------------------------------- * Function: check_destroy_protected_err() * * Purpose: Verify that an attempt to destroy the cache when it contains * a protected entry will generate an error. * * Return: void * * Programmer: John Mainzer * 6/24/04 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_destroy_protected_err(unsigned paged) { H5F_t *file_ptr = NULL; if (paged) TESTING("destroy cache with protected entry error (paged aggregation)") else TESTING("destroy cache with protected entry error") pass = TRUE; /* allocate a cache, protect an entry, and try to flush. This * should fail. Unprotect the entry and flush again -- should * succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); /* Note: normally this call would go just before the series of * flushes prior to file close -- in particular, all entries * should be unprotected when this call is made. * * Thus H5C_prep_for_file_close() contains an assert to verify * this. Since this assert would be triggered by the condition * we are trying to test, put the call to H5C_prep_for_file_close() * prior to the final protect call. */ if (H5C_prep_for_file_close(file_ptr) < 0) { pass = FALSE; failure_mssg = "unexpected failure of prep for file close.\n"; } /* end if */ protect_entry(file_ptr, 0, 0); if (H5C_dest(file_ptr) >= 0) { pass = FALSE; failure_mssg = "destroy succeeded on cache with protected entry.\n"; } /* end if */ else { unprotect_entry(file_ptr, 0, 0, H5C__DIRTIED_FLAG); if (H5C_dest(file_ptr) < 0) { pass = FALSE; failure_mssg = "destroy failed after unprotect.\n"; } /* end if */ else { file_ptr->shared->cache = NULL; } /* end else */ } /* end else */ if (saved_cache != NULL) { file_ptr->shared->cache = saved_cache; saved_cache = NULL; } /* end if */ /* call takedown_cache() with a NULL file_ptr parameter. * This causes the function to close and delete the file, * while skipping the call to H5C_dest(). */ takedown_cache(NULL, FALSE, FALSE); } /* end if */ if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); return (unsigned)!pass; } /* check_destroy_protected_err() */ /*------------------------------------------------------------------------- * Function: check_duplicate_insert_err() * * Purpose: Verify that an attempt to insert and entry that is * alread in the cache will generate an error. * * Return: void * * Programmer: John Mainzer * 6/24/04 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_duplicate_insert_err(unsigned paged) { herr_t result = -1; H5F_t *file_ptr = NULL; test_entry_t *base_addr; test_entry_t *entry_ptr; if (paged) TESTING("duplicate entry insertion error (paged aggregation)") else TESTING("duplicate entry insertion error") pass = TRUE; /* allocate a cache, protect an entry, and then try to insert * the entry again. This should fail. Unprotect the entry and * destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); if (pass) { base_addr = entries[0]; entry_ptr = &(base_addr[0]); result = H5C_insert_entry(file_ptr, types[0], entry_ptr->addr, (void *)entry_ptr, H5C__NO_FLAGS_SET); if (result >= 0) { pass = FALSE; failure_mssg = "insert of duplicate entry succeeded.\n"; } else { unprotect_entry(file_ptr, 0, 0, H5C__DIRTIED_FLAG); takedown_cache(file_ptr, FALSE, FALSE); } } } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_duplicate_insert_err() */ /*------------------------------------------------------------------------- * Function: check_double_pin_err() * * Purpose: Verify that an attempt to pin an entry that is already * pinned will generate an error. * * Return: void * * Programmer: John Mainzer * 4/24/06 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_double_pin_err(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("pin a pinned entry error (paged aggregation)") else TESTING("pin a pinned entry error") pass = TRUE; /* allocate a cache, protect an entry, unprotect it with the pin flag, * protect it again, and then try to unprotect it again with the pin * flag. This should fail. Unpin the entry and destroy the cache * -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG); protect_entry(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__PIN_ENTRY_FLAG); if (result > 0) { pass = FALSE; failure_mssg = "attempt to pin a pinned entry succeeded.\n"; } else { unprotect_entry(file_ptr, 0, 0, H5C__UNPIN_ENTRY_FLAG); } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_double_pin_err() */ /*------------------------------------------------------------------------- * Function: check_double_unpin_err() * * Purpose: Verify that an attempt to unpin an unpinned entry will * generate an error. * * Return: void * * Programmer: John Mainzer * 4/24/06 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_double_unpin_err(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("unpin an unpinned entry error (paged aggregation)") else TESTING("unpin an unpinned entry error") pass = TRUE; /* allocate a cache, protect an entry, unprotect it with the unpin flag. * -- This should fail. * * Try again with H5C_unpin_entry -- this should also fail. * * Destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__UNPIN_ENTRY_FLAG); if (result > 0) { pass = FALSE; failure_mssg = "attempt to unpin an unpinned entry succeeded 1.\n"; } else { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } } if (pass) { result = H5C_unpin_entry((void *)entry_ptr); if (result > 0) { pass = FALSE; failure_mssg = "attempt to unpin an unpinned entry succeeded 2.\n"; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_double_unpin_err() */ /*------------------------------------------------------------------------- * Function: check_pin_entry_errs() * * Purpose: Verify that invalid calls to H5C_pin_protected_entry() * generate errors as expected. * * Return: void * * Programmer: John Mainzer * 4/24/06 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_pin_entry_errs(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("pin entry related errors (paged aggregation)") else TESTING("pin entry related errors") pass = TRUE; /* Allocate a cache, protect an entry, unprotect it with no flags, * and then call H5C_pin_protected_entry() to pin it -- This should fail. * * Protect the entry again, unprotect it with a pin flag, protect it * again, and then call H5C_pin_protected_entry() to pin it -- This * should fail also. * * Unprotect the entry with the unpin flag. * * Destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_pin_protected_entry((void *)entry_ptr); if (result > 0) { pass = FALSE; failure_mssg = "attempt to pin an unprotected entry succeeded.\n"; } else { protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG); protect_entry(file_ptr, 0, 0); } } if (pass) { result = H5C_pin_protected_entry((void *)entry_ptr); if (result > 0) { pass = FALSE; failure_mssg = "attempt to pin a pinned, protected entry succeeded.\n"; } else { unprotect_entry(file_ptr, 0, 0, H5C__UNPIN_ENTRY_FLAG); } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_pin_entry_errs() */ /*------------------------------------------------------------------------- * Function: check_double_protect_err() * * Purpose: Verify that an attempt to protect an entry that is already * protected will generate an error. * * Return: void * * Programmer: John Mainzer * 6/24/04 * *------------------------------------------------------------------------- */ static unsigned check_double_protect_err(unsigned paged) { H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; H5C_cache_entry_t *cache_entry_ptr; if (paged) TESTING("protect a protected entry error (paged aggregation)") else TESTING("protect a protected entry error") pass = TRUE; /* allocate a cache, protect an entry, and then try to protect * the entry again. This should fail. Unprotect the entry and * destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } if (pass) { cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[0], entry_ptr->addr, &entry_ptr->addr, H5C__NO_FLAGS_SET); if (cache_entry_ptr != NULL) { pass = FALSE; failure_mssg = "attempt to protect a protected entry succeeded.\n"; } } if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_double_protect_err() */ /*------------------------------------------------------------------------- * Function: check_double_unprotect_err() * * Purpose: Verify that an attempt to unprotect an entry that is already * unprotected will generate an error. * * Return: void * * Programmer: John Mainzer * 6/24/04 * *------------------------------------------------------------------------- */ static unsigned check_double_unprotect_err(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("unprotect an unprotected entry error (paged aggregation)") else TESTING("unprotect an unprotected entry error") pass = TRUE; /* allocate a cache, protect an entry, unprotect it, and then try to * unprotect the entry again. This should fail. Destroy the cache * -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__NO_FLAGS_SET); if (result > 0) { pass = FALSE; failure_mssg = "attempt to unprotect an unprotected entry succeeded 1.\n"; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_double_unprotect_err() */ /*------------------------------------------------------------------------- * Function: check_mark_entry_dirty_errs() * * Purpose: Verify that: * * 1) a call to H5C_mark_entry_dirty with * and unpinned and unprotected entry will generate an * error. * * Return: void * * Programmer: John Mainzer * 5/17/06 * *------------------------------------------------------------------------- */ static unsigned check_mark_entry_dirty_errs(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("mark entry dirty related errors (paged aggregation)") else TESTING("mark entry dirty related errors") pass = TRUE; /* allocate a cache, protect an entry, unprotect the entry without * pinning it, and try to mark it dirty -- this should fail. * * Destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry(file_ptr, 0, 0); unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_mark_entry_dirty((void *)entry_ptr); if (result > 0) { pass = FALSE; failure_mssg = "attempt to dirty a unpinned and unprotected entry succeeded.\n"; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_mark_entry_dirty_errs() */ /*------------------------------------------------------------------------- * Function: check_expunge_entry_errs() * * Purpose: Verify that invalid calls to H5C_expunge_entry() * generate errors as expected. * * Return: void * * Programmer: John Mainzer * 7/6/06 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_expunge_entry_errs(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("expunge entry related errors (paged aggregation)") else TESTING("expunge entry related errors") pass = TRUE; /* Allocate a cache, protect an entry, and then call H5C_expunge_entry() * to expunge it -- this should fail * * Unprotect the entry with the pinned flag, and then call * H5C_expunge_entry() again. This should fail too. * * Finally, unpin the entry and call H5C_expunge_entry() yet again. * This should succeed. * * Destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); entry_ptr = &((entries[0])[0]); protect_entry(file_ptr, 0, 0); } if (pass) { result = H5C_expunge_entry(file_ptr, types[0], entry_ptr->addr, H5C__NO_FLAGS_SET); if (result > 0) { pass = FALSE; failure_mssg = "attempt to expunge a protected entry succeeded.\n"; } else { unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG); } } if (pass) { result = H5C_expunge_entry(file_ptr, types[0], entry_ptr->addr, H5C__NO_FLAGS_SET); if (result > 0) { pass = FALSE; failure_mssg = "attempt to expunge a pinned entry succeeded.\n"; } else { unpin_entry(0, 0); } } if (pass) { result = H5C_expunge_entry(file_ptr, types[0], entry_ptr->addr, H5C__NO_FLAGS_SET); if (result < 0) { pass = FALSE; failure_mssg = "attempt to expunge an unpinned and unprotected entry failed.\n"; } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_expunge_entry_errs() */ /*------------------------------------------------------------------------- * Function: check_move_entry_errs() * * Purpose: Verify that invalid calls to H5C_move_entry() * generates errors as expected. * * Return: void * * Programmer: Quincey Koziol * 12/10/16 * *------------------------------------------------------------------------- */ static unsigned check_move_entry_errs(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; test_entry_t *entry_ptr = NULL; test_entry_t *entry_0_0_ptr; test_entry_t *entry_0_1_ptr; test_entry_t *entry_1_0_ptr; if (paged) TESTING("move entry related errors (paged aggregation)") else TESTING("move entry related errors") pass = TRUE; /* allocate a cache, and insert several entries. Try to move * entries to other entries resident in the cache. This should * fail. Destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; insert_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); insert_entry(file_ptr, 0, 1, H5C__NO_FLAGS_SET); insert_entry(file_ptr, 1, 0, H5C__NO_FLAGS_SET); entry_0_0_ptr = &((entries[0])[0]); entry_0_1_ptr = &((entries[0])[1]); entry_1_0_ptr = &((entries[1])[0]); } /* end if */ if (pass) { result = H5C_move_entry(cache_ptr, types[0], entry_0_0_ptr->addr, entry_0_1_ptr->addr); if (result >= 0) { pass = FALSE; failure_mssg = "move to addr of same type succeeded.\n"; } /* end if */ } /* end if */ if (pass) { result = H5C_move_entry(cache_ptr, types[0], entry_0_0_ptr->addr, entry_1_0_ptr->addr); if (result >= 0) { pass = FALSE; failure_mssg = "move to addr of different type succeeded.\n"; } /* end if */ } /* end if */ if (pass) takedown_cache(file_ptr, FALSE, FALSE); /* Allocate a cache, protect an entry R/O, and then call * H5C_move_entry() to move it -- this should fail. * * Finally, unprotect the entry and destroy the cache. * This should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; insert_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); protect_entry_ro(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } /* end if */ if (pass) { result = H5C_move_entry(cache_ptr, types[0], entry_ptr->header.addr, entry_ptr->header.addr + 10); if (result >= 0) { pass = FALSE; failure_mssg = "Call to H5C_move_entry on a R/O protected entry succeeded.\n"; } /* end if */ else unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } /* end if */ if (pass) takedown_cache(file_ptr, FALSE, FALSE); if (pass) PASSED(); else { H5_FAILED() HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } /* end else */ return (unsigned)!pass; } /* check_move_entry_errs() */ /*------------------------------------------------------------------------- * Function: check_resize_entry_errs() * * Purpose: Verify that invalid calls to H5C_resize_entry() * generates errors as expected. * * Return: void * * Programmer: John Mainzer * 7/7/06 * *------------------------------------------------------------------------- */ static unsigned check_resize_entry_errs(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("resize entry related errors (paged aggregation)") else TESTING("resize entry related errors") pass = TRUE; /* Allocate a cache, protect an entry, and then call * H5C_resize_entry() to resize it -- this should succeed. * * Unprotect the entry with the pinned flag, and then call * H5C_resize_entry() again with new size of zero. * This should fail. * * Finally, unpin the entry and destroy the cache. * This should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); entry_ptr = &((entries[0])[0]); protect_entry(file_ptr, 0, 0); } if (pass) { result = H5C_resize_entry((void *)entry_ptr, (size_t)1); if (result < 0) { pass = FALSE; failure_mssg = "Call to H5C_resize_entry on a protected entry failed.\n"; } else { unprotect_entry(file_ptr, 0, 0, H5C__PIN_ENTRY_FLAG); } } if (pass) { result = H5C_resize_entry((void *)entry_ptr, (size_t)0); if (result >= 0) { pass = FALSE; failure_mssg = "Call to H5C_resize_entry with 0 new size succeeded.\n"; } else { unpin_entry(0, 0); } } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_resize_entry_errs() */ /*------------------------------------------------------------------------- * Function: check_unprotect_ro_dirty_err() * * Purpose: If an entry is protected read only, verify that unprotecting * it dirty will generate an error. * * Return: void * * Programmer: John Mainzer * 4/3/07 * *------------------------------------------------------------------------- */ static unsigned check_unprotect_ro_dirty_err(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; if (paged) TESTING("unprotect a read only entry dirty error (paged aggregation)") else TESTING("unprotect a read only entry dirty error") pass = TRUE; /* allocate a cache, protect an entry read only, and then unprotect it * with the dirtied flag set. This should fail. Destroy the cache * -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry_ro(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG); if (result >= 0) { pass = FALSE; failure_mssg = "attempt to unprotect a ro entry dirty succeeded 1.\n"; } } if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } /* allocate a another cache, protect an entry read only twice, and * then unprotect it with the dirtied flag set. This should fail. * Unprotect it with no flags set twice and then destroy the cache. * This should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry_ro(file_ptr, 0, 0); protect_entry_ro(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } if (pass) { result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, H5C__DIRTIED_FLAG); if (result > 0) { pass = FALSE; failure_mssg = "attempt to unprotect a ro entry dirty succeeded 2.\n"; } } if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_unprotect_ro_dirty_err() */ /*------------------------------------------------------------------------- * Function: check_protect_ro_rw_err() * * Purpose: If an entry is protected read only, verify that protecting * it rw will generate an error. * * Return: void * * Programmer: John Mainzer * 4/9/07 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_protect_ro_rw_err(unsigned paged) { H5F_t *file_ptr = NULL; test_entry_t *entry_ptr; void *thing_ptr = NULL; if (paged) TESTING("protect a read only entry rw error (paged aggregation)") else TESTING("protect a read only entry rw error") pass = TRUE; /* allocate a cache, protect an entry read only, and then try to protect * it again rw. This should fail. * * Unprotect the entry and destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); protect_entry_ro(file_ptr, 0, 0); entry_ptr = &((entries[0])[0]); } if (pass) { thing_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[0], entry_ptr->addr, &entry_ptr->addr, H5C__NO_FLAGS_SET); if (thing_ptr != NULL) { pass = FALSE; failure_mssg = "attempt to protect a ro entry rw succeeded.\n"; } } if (pass) { unprotect_entry(file_ptr, 0, 0, H5C__NO_FLAGS_SET); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_protect_ro_rw_err() */ /*------------------------------------------------------------------------- * Function: check_protect_retries() * * Purpose: To exercise checksum verification retries for an entry with * a speculative load. * * Return: * * Programmer: * *------------------------------------------------------------------------- */ static unsigned check_protect_retries(unsigned paged) { H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; test_entry_t *base_addr = NULL; test_entry_t *entry_ptr = NULL; H5C_cache_entry_t *cache_entry_ptr = NULL; int32_t type; int32_t idx; if (paged) TESTING("protect an entry to verify retries (paged aggregation)") else TESTING("protect an entry to verify retries") pass = TRUE; /* Set up the cache */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); /* Set up read attempts for verifying checksum */ file_ptr->shared->read_attempts = 10; file_ptr->shared->retries_nbins = 1; } /* Test only for this type which has a speculative load */ type = VARIABLE_ENTRY_TYPE; idx = 0; if (pass) { cache_ptr = file_ptr->shared->cache; base_addr = entries[type]; entry_ptr = &(base_addr[idx]); /* test case (1): * --actual_len is smaller the initial length from get_load_size() * --verify_chksum() returns TRUE after max_verify_ct is reached * */ entry_ptr->actual_len = entry_ptr->size / 2; entry_ptr->max_verify_ct = 3; entry_ptr->verify_ct = 0; cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[type], entry_ptr->addr, &entry_ptr->addr, H5C__READ_ONLY_FLAG); if ((cache_entry_ptr != (void *)entry_ptr) || (!(entry_ptr->header.is_protected)) || (!(entry_ptr->header.is_read_only)) || (entry_ptr->header.ro_ref_count <= 0) || (entry_ptr->header.type != types[type]) || (entry_ptr->size != entry_ptr->header.size) || (entry_ptr->addr != entry_ptr->header.addr) || (entry_ptr->verify_ct != entry_ptr->max_verify_ct)) { pass = FALSE; failure_mssg = "error from H5C_protect()."; } else { HDassert((entry_ptr->cache_ptr == NULL) || (entry_ptr->cache_ptr == cache_ptr)); entry_ptr->cache_ptr = cache_ptr; entry_ptr->file_ptr = file_ptr; entry_ptr->is_protected = TRUE; entry_ptr->is_read_only = TRUE; entry_ptr->ro_ref_count++; } HDassert(((entry_ptr->header).type)->id == type); } if (pass) unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, idx, H5C__NO_FLAGS_SET); if (pass) { entry_ptr = &(base_addr[++idx]); /* test case (2): * --actual_len is greater the initial length from get_load_size() * --verify_chksum() returns FALSE even after all tries is reached * (file_ptr->shared->read_attempts is smaller then max_verify_ct) */ entry_ptr->actual_len = entry_ptr->size * 2; entry_ptr->max_verify_ct = 11; entry_ptr->verify_ct = 0; cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, types[type], entry_ptr->addr, &entry_ptr->addr, H5C__READ_ONLY_FLAG); /* H5C_protect() should fail after all retries fail */ if (cache_entry_ptr != NULL) pass = FALSE; } takedown_cache(file_ptr, FALSE, FALSE); reset_entries(); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_msg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_protect_retries() */ /*------------------------------------------------------------------------- * Function: check_evictions_enabled_err() * * Purpose: Verify that H5C_get_evictions_enabled() and * H5C_set_evictions_enabled() generate errors as expected. * * Return: void * * Programmer: John Mainzer * 8/3/07 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_check_evictions_enabled_err(unsigned paged) { herr_t result; hbool_t evictions_enabled; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; if (paged) TESTING("get/set evictions enabled errors (paged aggregation)") else TESTING("get/set evictions enabled errors") pass = TRUE; /* allocate a cache. * * Call H5C_get_evictions_enabled(), passing it a NULL cache_ptr, * should fail. * * Repeat with a NULL evictions_enabled_ptr, should fail as well. * * Configure the cache to use auto cache resize. Call * H5C_set_evictions_enabled() to disable evictions. Should fail. * * Unprotect the entry and destroy the cache -- should succeed. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; } if (pass) { result = H5C_get_evictions_enabled(NULL, &evictions_enabled); if (result == SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_evictions_enabled succeeded() 1.\n"; } } if (pass) { result = H5C_get_evictions_enabled(cache_ptr, NULL); if (result == SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_evictions_enabled succeeded() 2.\n"; } } if (pass) { result = H5C_set_evictions_enabled(cache_ptr, TRUE); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_evictions_enabled failed().\n"; } } if (pass) { (cache_ptr->resize_ctl).incr_mode = H5C_incr__threshold; result = H5C_get_evictions_enabled(cache_ptr, FALSE); if (result == SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_evictions_enabled succeeded() 1.\n"; } else if (cache_ptr->evictions_enabled == TRUE) { } (cache_ptr->resize_ctl).incr_mode = H5C_incr__off; } if (pass) { (cache_ptr->resize_ctl).decr_mode = H5C_decr__threshold; result = H5C_get_evictions_enabled(cache_ptr, FALSE); if (result == SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_evictions_enabled succeeded() 2.\n"; } (cache_ptr->resize_ctl).decr_mode = H5C_decr__off; } if (cache_ptr) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_evictions_enabled_err() */ /*------------------------------------------------------------------------- * Function: check_auto_cache_resize() * * Purpose: Exercise the automatic cache resizing functionality. * The objective is to operate the auto-resize code in * all possible modes. Unfortunately, there are quite * a few of them. * * Return: void * * Programmer: John Mainzer * 10/29/04 * *------------------------------------------------------------------------- */ hbool_t rpt_fcn_called = FALSE; enum H5C_resize_status rpt_status; static void test_rpt_fcn(H5_ATTR_UNUSED H5C_t *cache_ptr, H5_ATTR_UNUSED int32_t version, H5_ATTR_UNUSED double hit_rate, enum H5C_resize_status status, H5_ATTR_UNUSED size_t old_max_cache_size, H5_ATTR_UNUSED size_t new_max_cache_size, H5_ATTR_UNUSED size_t old_min_clean_size, H5_ATTR_UNUSED size_t new_min_clean_size) { rpt_fcn_called = TRUE; rpt_status = status; } static unsigned check_auto_cache_resize(hbool_t cork_ageout, unsigned paged) { hbool_t show_progress = FALSE; herr_t result; int32_t i; int32_t checkpoint = 0; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, /* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn, /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (512 * 1024), /* double min_clean_fraction = */ 0.5, /* size_t max_size = */ (14 * 1024 * 1024), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 1000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.1, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.05}; if (paged) TESTING("automatic cache resizing (paged aggregation)") else TESTING("automatic cache resizing") pass = TRUE; if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* allocate a cache, enable automatic cache resizing, and then force * the cache through all its operational modes. Verify that all * performs as expected. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; } if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after initialization.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache not full -- should result in not * full status. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, PICO_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 1.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full -- should result in increase * of cache size from .5 to 1 meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 2.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache not full -- should result in not * full status. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, PICO_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 3.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full again -- should result in increase * of cache size from 1 to 2 meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 4.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full again -- should result in increase * of cache size from 2 to 4 meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 5.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full again -- should result in increase * of cache size from 4 to 8 meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 6.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full again -- should result in increase * of cache size from 8 to 12 meg. Note that max increase reduced the * size of the increase. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (12 * 1024 * 1024)) || (cache_ptr->min_clean_size != (6 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 7.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full again -- should result in increase * of cache size from 12 to 14 meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (14 * 1024 * 1024)) || (cache_ptr->min_clean_size != (7 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 8.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full and at maximum size -- should * in no change in size and a result of at_max_size. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (14 * 1024 * 1024)) || (cache_ptr->min_clean_size != (7 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 9.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate with cache full and at maximum size -- should * result in a decrease from 14 to 13 Meg -- note that max decrease * reduced the size of the reduction */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (13 * 1024 * 1024)) || (cache_ptr->min_clean_size != (6 * 1024 * 1024 + 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 10.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* the current cache configuration is inconvenient for testing cache * size reduction, so lets change it some something easier to work * with. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1000 * 1000 + 10; auto_size_ctl.min_clean_fraction = 0.1; auto_size_ctl.max_size = 8 * 1000 * 1000; auto_size_ctl.min_size = 500 * 1000; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1000 * 1000); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1000 * 1000); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1000 * 1000 + 10)) || (cache_ptr->min_clean_size != (400 * 1000 + 1))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 1.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should result in a decrease from ~4 to ~3 * M -- note that max decrease reduces the size of the reduction */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (3 * 1000 * 1000 + 10)) || (cache_ptr->min_clean_size != (300 * 1000 + 1))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 11.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should result in a decrease from ~3 * to ~2 M -- again note that max decrease reduces the size of the * reduction. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2 * 1000 * 1000 + 10)) || (cache_ptr->min_clean_size != (200 * 1000 + 1))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 12.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should result in a decrease from ~2 * to ~1 M -- again note that max decrease reduces the size of the * reduction, but only by five bites. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1 * 1000 * 1000 + 10)) || (cache_ptr->min_clean_size != (100 * 1000 + 1))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 13.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should result in a decrease from ~1 * to ~0.5 M -- max decrease is no longer a factor. New size is five * bytes above the minimum. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (500 * 1000 + 5)) || (cache_ptr->min_clean_size != (50 * 1000))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 14.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should result in a decrease of five * bytes to the minimum cache size. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (500 * 1000)) || (cache_ptr->min_clean_size != (50 * 1000))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 15.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- Already at minimum size so no change in * cache size and result should be at_min_size. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (500 * 1000)) || (cache_ptr->min_clean_size != (50 * 1000))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 16.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force in range hit rate -- should be no change in cache size, * and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 900)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i + 1000); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i + 1000, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (500 * 1000)) || (cache_ptr->min_clean_size != (50 * 1000))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 17.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full -- should * increase cache size from .5 to 1 M. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (1 * 1000 * 1000)) || (cache_ptr->min_clean_size != (100 * 1000))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 18.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should result in a decrease to the * minimum cache size. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (500 * 1000)) || (cache_ptr->min_clean_size != (50 * 1000))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 19.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /****************************************************************** * now do some tests with the maximum increase and decrease sizes * disabled. ******************************************************************/ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 4.0; auto_size_ctl.apply_max_increment = FALSE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.25; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 3.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 2.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should result in a decrease to the * minimum cache size. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 20.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full -- should increase cache size * from 1 to 4 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 21.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate again with cache full -- should increase cache * size from 4 to 16 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (16 * 1024 * 1024)) || (cache_ptr->min_clean_size != (8 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 22.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should result in a decrease cache size from * 16 to 4 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 23.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /****************************************************************** * We have tested the threshold increment and decrement modes. * must now test the ageout decrement mode. * * Reconfigure the cache for this testing. ******************************************************************/ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 4.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 3.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (cork_ageout) cork_entry_type(file_ptr, MEDIUM_ENTRY_TYPE); /* fill the cache with 1024 byte entries -- nothing should happen * for three epochs while the markers are inserted into the cache * * Note that hit rate will be zero, so the cache will attempt to * increase its size. Since we are already at max size, it will * not be able to. */ if (pass) { /* first epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 24.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* second epoch */ rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 25.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* third epoch */ rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 26.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fourth epoch -- If the hit rate were above the lower threshold, * we would see cache size reduction now. However, nothing will * happen until we get the hit rate above the lower threshold. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 27.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fifth epoch -- force the hit rate to 100%. We should see cache size * reduction now. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2001 * 1024)) || (cache_ptr->min_clean_size != (int)(2001 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 28.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* sixth epoch -- force the hit rate to 100% again. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1001 * 1024)) || (cache_ptr->min_clean_size != (int)(1001 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 29.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* seventh epoch -- force the hit rate to 100% again. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1000 * 1024)) || (cache_ptr->min_clean_size != (int)(1000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 30.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* eigth epoch -- force the hit rate to 100% again -- should be steady * state. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1000 * 1024)) || (cache_ptr->min_clean_size != (int)(1000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 31.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* now just bang on one entry -- after three epochs, this should * get all entries other than the one evicted, and the cache size * should be decreased to the minimum. */ if (pass) { /* ninth epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1000 * 1024)) || (cache_ptr->min_clean_size != (int)(1000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 32.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* tenth epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1000 * 1024)) || (cache_ptr->min_clean_size != (int)(1000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 33.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* eleventh epoch -- cache size reduction */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 34.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* twelth epoch -- at minimum size so no more ageouts */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 35.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (cork_ageout) uncork_entry_type(file_ptr, MEDIUM_ENTRY_TYPE); /* repeat the above test, but with max_decrement enabled to see * if that features works as it should. Note that this will change * the structure of the test a bit. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 5.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 4.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fill the cache with 1024 byte entries -- nothing should happen * for three epochs while the markers are inserted into the cache * * Note that hit rate will be zero, so the cache will attempt to * increase its size. Since we are already at max size, it will * not be able to. */ if (pass) { /* first epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 36.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* second epoch */ rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 37.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* third epoch */ rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 38.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fourth epoch -- If the hit rate were above the lower threshold, * we would see cache size reduction now. However, nothing will * happen until we get the hit rate above the lower threshold. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 39.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fifth epoch -- force the hit rate to 100%. We should see cache size * reduction now. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (7 * 1024 * 1024)) || (cache_ptr->min_clean_size != (7 * 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 40.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* sixth epoch -- force the hit rate to 100% again. */ if (pass) { rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (6 * 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 41.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* seventh epoch -- keep hit rate at 100%, and keep 2K entries active. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (5 * 1024 * 1024)) || (cache_ptr->min_clean_size != (5 * 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 42.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* eigth epoch -- still 100% hit rate */ if (pass) { rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 43.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* ninth epoch --hit rate at 100%. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (3 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 44.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* tenth epoch -- still 100% hit rate */ if (pass) { rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 512 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 45.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* eleventh epoch -- hit rate at 100% -- starting to stableize */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (int)(2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 46.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* twelth epoch -- force the hit rate to 100% again -- should be steady * state. */ if (pass) { rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (int)(2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 47.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* now just bang on one entry -- after three epochs, this should * get all entries other than the one evicted, and the cache size * should be decreased to the minimum. */ if (pass) { /* thirteenth epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (int)(2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 48.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* fourteenth epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1001 * 1024 + MONSTER_ENTRY_SIZE)) || (cache_ptr->min_clean_size != (1001 * 512 + MONSTER_ENTRY_SIZE / 2))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 49.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* fifteenth epoch -- cache size reduction */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 50.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* sixteenth epoch -- at minimum size so no more ageouts */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 51.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* repeat the test yet again, this time with empty reserve enabled. * Again, some structural changes in the test are necessary. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */ result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 6.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 5.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fill the cache with 1024 byte entries -- nothing should happen * for three epochs while the markers are inserted into the cache * * Note that hit rate will be zero, so the cache will attempt to * increase its size. Since we are already at max size, it will * not be able to. */ if (pass) { /* first epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 52.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* second epoch */ rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 53.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* third epoch */ rpt_fcn_called = FALSE; i = 2000; while (pass && (i < 3000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 54.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fourth epoch -- If the hit rate were above the lower threshold, * we would see cache size reduction now. However, nothing will * happen until we get the hit rate above the lower threshold. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 55.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fifth epoch -- force the hit rate to 100%. We should see cache size * reduction now. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (4002 * 1024)) || (cache_ptr->min_clean_size != (int)(4002 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 56.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* sixth epoch -- force the hit rate to 100% again. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2002 * 1024)) || (cache_ptr->min_clean_size != (int)(2002 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 57.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* seventh epoch -- force the hit rate to 100% again. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (int)(2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 58.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* eigth epoch -- force the hit rate to 100% again -- should be steady * state. */ if (pass) { rpt_fcn_called = FALSE; i = 3000; while (pass && (i < 4000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (int)(2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 59.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* now just bang on one entry -- after three epochs, this should * get all entries other than the one evicted, and the cache size * should be decreased to the minimum. */ if (pass) { /* ninth epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (int)(2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 60.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* tenth epoch */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2000 * 1024)) || (cache_ptr->min_clean_size != (2000 * 512))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 61.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* eleventh epoch -- cache size reduction */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 62.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* twelth epoch -- at minimum size so no more ageouts */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_min_size) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 63.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Repeat the test again, this time using the age out with threshold * mode. To simplify the testing, set epochs to eviction to 1. * * Again, there are some minor structural changes in the test. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; /* NOTE: upper_hr_threshold MUST be type double (not float) * or the cache test will fail on 64-bit systems. */ auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */ auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 7.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 6.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fill the cache with 4K byte entries -- increment mode is off, * so cache size reduction should kick in as soon as we get the * hit rate above .999. */ if (pass) { /* first epoch -- hit rate 0 */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 64.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* second epoch -- hit rate 0 */ rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 65.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* third epoch -- hit rate 1.0 -- should see decrease */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) || (cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 66.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fourth epoch -- load up the cache again -- hit rate 0 */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) || (cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 67.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fifth epoch -- still loading up the cache -- hit rate 0 */ if (pass) { rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) || (cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 68.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* sixth epoch -- force hit rate to .998 -- should be no reduction */ if (pass) { rpt_fcn_called = FALSE; i = 1002; while (pass && (i < 2002)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (1001 * LARGE_ENTRY_SIZE)) || (cache_ptr->min_clean_size != (1001 * LARGE_ENTRY_SIZE / 2))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 69.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* seventh epoch -- force hit rate to .999 -- should see reduction */ if (pass) { rpt_fcn_called = FALSE; i = 1003; while (pass && (i < 2003)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (1000 * MEDIUM_ENTRY_SIZE)) || (cache_ptr->min_clean_size != (1000 * MEDIUM_ENTRY_SIZE / 2))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 70.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* We have now tested all the major ageout modes individually. * Lets try them all together to look for unexpected interactions * and/or bugs. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1000 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1000 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1000 * 1024); auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */ auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */ result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 8.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 7.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fill the cache with 4K byte entries -- increment mode is threshold, * so the decrease code will not be executed until the hit rate exceeds * .75. */ if (pass) { /* first epoch -- hit rate 0 */ rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 71.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* second epoch -- hit rate 0 */ rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 72.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* third epoch -- force the hit rate to 1.0. Should be no change * in the cache size due to the combination of the empty reserve * and the max decrease. Max decrease will limit the evictions * in any one epoch, and the empty reserve will not permit cache * size reduction unless the specified empty reserve is maintained. * * In this epoch, all we should see is a reduction in the index size. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (7 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 73.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fourth epoch -- hit rate still 1.0. Index size should decrease, * but otherwise no change expected. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (6 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 74.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fifth epoch -- hit rate still 1.0. Index size should decrease, * but otherwise no change expected. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (5 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 75.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* sixth epoch -- hit rate still 1.0. Index size should decrease, * but otherwise no change expected. Note that the cache size is * now just on the edge of meeting the clean reserve. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (4 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 76.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* seventh epoch -- hit rate still 1.0. No change in index size expected. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, LARGE_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (4 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 77.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* eighth epoch -- start loading 1 KB entries. Hit rate 0 so * decrease code shouldn't be called. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != at_max_size) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (5 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 78.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* ninth epoch -- access the 1 KB entries again, driving the hit rate * to 1.0. Decrease code should be triggered, but the max decrease * should prevent the empty reserve from being met in this epoch. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1000 * 1024)) || (cache_ptr->min_clean_size != (4 * 1000 * 1024)) || (cache_ptr->index_size != (4 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 79.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* tenth epoch -- access the 1 KB entries yet again, forcing hit rate * to 1.0. Decrease code should be triggered, and the empty reserve * should finally be met. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (7 * 1000 * 1024)) || (cache_ptr->min_clean_size != (7 * 1000 * 1024 / 2)) || (cache_ptr->index_size != (3 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 80.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* eleventh epoch -- access the 1 KB entries yet again, forcing hit rate * to 1.0. Decrease code should be triggered, and the empty reserve * should be met again. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (6 * 1000 * 1024)) || (cache_ptr->min_clean_size != (3 * 1000 * 1024)) || (cache_ptr->index_size != (2 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 81.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* twelth epoch -- hit rate 1.0 -- decrease as before. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (5 * 1000 * 1024)) || (cache_ptr->min_clean_size != (5 * 1000 * 1024 / 2)) || (cache_ptr->index_size != (1 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 82.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* thirteenth epoch -- hit rate 1.0 -- decrease as before. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (4 * 1000 * 1024)) || (cache_ptr->min_clean_size != (2 * 1000 * 1024)) || (cache_ptr->index_size != (1 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 83.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fourteenth epoch -- hit rate 1.0 -- decrease as before. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (3 * 1000 * 1024)) || (cache_ptr->min_clean_size != (3 * 1000 * 1024 / 2)) || (cache_ptr->index_size != (1 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 84.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* fifteenth epoch -- hit rate 1.0 -- decrease as before. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2 * 1000 * 1024)) || (cache_ptr->min_clean_size != (1 * 1000 * 1024)) || (cache_ptr->index_size != (1 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 85.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* sixteenth epoch -- hit rate 1.0 -- should be stable now */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2 * 1000 * 1024)) || (cache_ptr->min_clean_size != (1 * 1000 * 1024)) || (cache_ptr->index_size != (1 * 1000 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 86.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* now test the flash cache size increment code. At least at present, * there should be no interaction between the regular auto-resize * code and the flash cache size increment code other than a reset * of the counter and stats collection used by the regular auto-resize * code. Thus we do only limited tests of the two pieces of code * operating together. * * Start with simple test to verify that the flash cache increment * code increases the cache size when and as expected. */ if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Place the cache in a known state via a flush-destroy on the cache * to clear out all entries, and then a reset on all the entries. * Then configure the cache for the flash cache size increase tests, * and force the flash size increase code through all its operational * modes. Verify that all perform as expected. */ if (pass) { flush_cache(file_ptr, TRUE, FALSE, FALSE); reset_entries(); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* now repeat the above tests using the add space flash cache size * increment algorithm. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 64 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 1024 * 1024; auto_size_ctl.min_size = 5 * 1024; auto_size_ctl.epoch_length = 100; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (32 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space; auto_size_ctl.flash_multiple = 1.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1000 * 1024); auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */ auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */ result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 12.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)) { pass = FALSE; failure_mssg = "Unexpected cache config (0).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Load a huge entry into the cache */ if (pass) { protect_entry(file_ptr, HUGE_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) || (cache_ptr->index_size != HUGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (1).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now load a monster entry. Since a monster entry is larger than * half the size of the cache, and there is not sufficient space * for a monster entry in the cache, we will add space to the * cache to make room for the entry. */ if (pass) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (80 * 1024)) || (cache_ptr->min_clean_size != (40 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != (HUGE_ENTRY_SIZE + MONSTER_ENTRY_SIZE)) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (2).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Load a second monster entry. Since the monster entry is larger * than half the size of the cache yet again, and there is not * sufficient space for the monster entry in the cache, we again * add space to the cache to make space for the entry. */ if (pass) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (144 * 1024)) || (cache_ptr->min_clean_size != (72 * 1024)) || (cache_ptr->index_len != 3) || (cache_ptr->index_size != ((2 * MONSTER_ENTRY_SIZE) + HUGE_ENTRY_SIZE)) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (3).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Load a third moster entry. Should be no cache size increase this * time. */ if (pass) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 2); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (144 * 1024)) || (cache_ptr->min_clean_size != (72 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != (2 * MONSTER_ENTRY_SIZE)) || (cache_ptr->cache_accesses != 2)))) { pass = FALSE; failure_mssg = "Unexpected cache config (4).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* delete existing entries to prepare for next test, and reset * the size of the cache. */ if (pass) { expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 1); expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 2); if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 13.\n"; } } if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (5).\n"; } } /* repeat the above basic test, only this time, use inserts to add * entries to the cache, not protects. */ if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* insert a huge entry into the cache */ if (pass) { insert_entry(file_ptr, HUGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET); /* protect and unprotect a couple times to increment cache_accesses */ protect_entry(file_ptr, HUGE_ENTRY_TYPE, 1); unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET); protect_entry(file_ptr, HUGE_ENTRY_TYPE, 1); unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) || (cache_ptr->index_size != HUGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 2)))) { pass = FALSE; failure_mssg = "Unexpected cache config (6).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now insert a monster entry. Since a monster entry is larger than * half the size of the cache, and there is not sufficient space * for a monster entry in the cache, we will add space to the * cache to make room for the entry. */ if (pass) { insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 4, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (80 * 1024)) || (cache_ptr->min_clean_size != (40 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != HUGE_ENTRY_SIZE + MONSTER_ENTRY_SIZE) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (7).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Insert a second monster entry. Cache size should increase again. */ if (pass) { insert_entry(file_ptr, MONSTER_ENTRY_TYPE, 5, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (144 * 1024)) || (cache_ptr->min_clean_size != (72 * 1024)) || (cache_ptr->index_len != 3) || (cache_ptr->index_size != 2 * MONSTER_ENTRY_SIZE + HUGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (8).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Insert a third monster entry. Should be no cache size increase this * time. */ if (pass) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 6); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 6, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (144 * 1024)) || (cache_ptr->min_clean_size != (72 * 1024)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != (2 * MONSTER_ENTRY_SIZE)) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (9).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* delete existing entries to prepare for next test, and reset * the size of the cache. We must also change the size of the needed * variable entries before we run the test, so will protect and * unprotect them now so as to get the correct initial size. */ if (pass) { expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 5); expunge_entry(file_ptr, MONSTER_ENTRY_TYPE, 6); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 1024, TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, 1024, TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, 1024, TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13, 1024, TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13, H5C__DIRTIED_FLAG); flush_cache(file_ptr, TRUE, FALSE, FALSE); if (pass) { auto_size_ctl.initial_size = 6 * 1024; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 13.\n"; } } if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (10).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now load the variable entries into the cache */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__NO_FLAGS_SET); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__NO_FLAGS_SET); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__NO_FLAGS_SET); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * 1024) || (cache_ptr->cache_accesses != 4)))) { pass = FALSE; failure_mssg = "Unexpected cache config (11).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect a variable entry, and re-size it to 3K. Should be * no effect on the size of the cache. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (3 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG); if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 6 * 1024) || (cache_ptr->cache_accesses != 5)))) { pass = FALSE; failure_mssg = "Unexpected cache config (12).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect the variable entry again, and re-size it to 10K. Should * resize the cache to 13 KB. Note that cache_accesses will be 0 * in this case, since cache_accesses is incremented on the protect. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (10 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG); if (pass && (((cache_ptr->max_cache_size != (13 * 1024)) || (cache_ptr->min_clean_size != (13 * 512)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 13 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (13).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect a second variable entry, and re-size it to 10K. Should * resize to 22 KB. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, (10 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 22 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (14).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect a third variable entry, and re-size it to 10K. Should * be no change in cache size. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, (10 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (15).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* re-size the variable entries back down to their initial size, and * restore the cache to its initial size as well, in preparation * for the next test. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (1 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, (1 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, (1 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG); if (pass) { auto_size_ctl.initial_size = 6 * 1024; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 14.\n"; } } if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (16).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now test flash cache resizes with pinned entries... */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__PIN_ENTRY_FLAG); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 2 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (6 * 512)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 5 * 1024) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (17).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 10 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (13 * 1024)) || (cache_ptr->min_clean_size != (13 * 512)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 13 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (18).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__PIN_ENTRY_FLAG); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, 10 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 22 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (19).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__PIN_ENTRY_FLAG); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, 10 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (20).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Unpin the entries. Note that no entries are evicted as we don't * load any entries. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__UNPIN_ENTRY_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__UNPIN_ENTRY_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__UNPIN_ENTRY_FLAG); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 4)))) { pass = FALSE; failure_mssg = "Unexpected cache config (21).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* re-size the variable entries back down to their initial size, and * restore the cache to its initial size as well, in preparation * for the next test. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, (1 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, (1 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__DIRTIED_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, (1 * 1024), TRUE); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__DIRTIED_FLAG); if (pass) { auto_size_ctl.initial_size = 6 * 1024; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 15.\n"; } } if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 4 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (22).\n"; } } if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__PIN_ENTRY_FLAG); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 2 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (6 * 1024)) || (cache_ptr->min_clean_size != (6 * 512)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 5 * 1024) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (23).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, 10 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (13 * 1024)) || (cache_ptr->min_clean_size != (13 * 512)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 13 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (24).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__PIN_ENTRY_FLAG); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, 10 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 22 * 1024) || (cache_ptr->cache_accesses != 0)))) { pass = FALSE; failure_mssg = "Unexpected cache config (25).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__PIN_ENTRY_FLAG); resize_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, 10 * 1024, TRUE); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 1)))) { pass = FALSE; failure_mssg = "Unexpected cache config (26).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Unpin the entries. Note that no entries are evicted as we don't * load any entries. */ if (pass) { protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10, H5C__UNPIN_ENTRY_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11, H5C__UNPIN_ENTRY_FLAG); protect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); unprotect_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12, H5C__UNPIN_ENTRY_FLAG); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 4) || (cache_ptr->index_size != 31 * 1024) || (cache_ptr->cache_accesses != 4)))) { pass = FALSE; failure_mssg = "Unexpected cache config (27).\n"; } } /* We have finished a basic check of the flash cache size increment * code. Tidy up for a more extensive test... */ if (pass) { expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 10); expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 11); expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 12); expunge_entry(file_ptr, VARIABLE_ENTRY_TYPE, 13); if (pass && (((cache_ptr->max_cache_size != (22 * 1024)) || (cache_ptr->min_clean_size != (11 * 1024)) || (cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 4)))) { pass = FALSE; failure_mssg = "Unexpected cache config (28).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* ...and then reconfigure. Note that we change the flash_multiple * and flash_threshold just to make sure that such changed perform * as expected. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 20 * 1024; auto_size_ctl.min_size = 4 * 1024; auto_size_ctl.epoch_length = 100; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.4; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; auto_size_ctl.upper_hr_threshold = 0.999; /* for ease of testing */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (2 * 1024); auto_size_ctl.epochs_before_eviction = 1; /* for ease of testing */ auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.5; /* for ease of testing */ result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 15.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024)) || (cache_ptr->min_clean_size != (4 * 512)) || (cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->cache_accesses != 0)) { pass = FALSE; failure_mssg = "bad cache after initialization 15.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect and unprotect a large entry -- no change in cache size since * a large entry will just fill the available space in the cache. */ if (pass) { rpt_fcn_called = FALSE; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (4 * 1024)) || (cache_ptr->min_clean_size != (4 * 512)) || (cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 1) || (rpt_fcn_called == TRUE)))) { pass = FALSE; failure_mssg = "Unexpected cache config (29).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect and unprotect another a large entry -- should trigger a * flash cache size increase to 12 KB (remember that flash_multiple is * set to 2.0). */ if (pass) { rpt_fcn_called = FALSE; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 1); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 1, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (12 * 1024)) || (cache_ptr->min_clean_size != (12 * 512)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != 2 * LARGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 1) || (rpt_fcn_called != TRUE)))) { pass = FALSE; failure_mssg = "Unexpected cache config (30).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* protect and unprotect two more large entries -- shouldnt trigger a * flash cache size increase. */ if (pass) { rpt_fcn_called = FALSE; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 2); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 2, H5C__NO_FLAGS_SET); protect_entry(file_ptr, LARGE_ENTRY_TYPE, 3); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 3, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (12 * 1024)) || (cache_ptr->min_clean_size != (12 * 512)) || (cache_ptr->index_len != 3) || (cache_ptr->index_size != 3 * LARGE_ENTRY_SIZE) || (cache_ptr->cache_accesses != 3) || (rpt_fcn_called != FALSE)))) { pass = FALSE; failure_mssg = "Unexpected cache config (31).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* do many accesses of a single entry to talk the cache into reducing * its size to the minimum. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, TINY_ENTRY_TYPE, 0); if (pass) unprotect_entry(file_ptr, TINY_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); i++; } if ((!rpt_fcn_called) || (cache_ptr->max_cache_size != (4 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024)) || (cache_ptr->index_size != (1 * TINY_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "Unexpected cache config (32).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Force another flash increase */ if (pass) { rpt_fcn_called = FALSE; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (4 * 1024 + 128)) || (cache_ptr->min_clean_size != (2 * 1024 + 64)) || (cache_ptr->index_len != 2) || (cache_ptr->index_size != LARGE_ENTRY_SIZE + TINY_ENTRY_SIZE) || (cache_ptr->cache_accesses != 1) || (rpt_fcn_called == FALSE) || (rpt_status != flash_increase)))) { pass = FALSE; failure_mssg = "Unexpected cache config (33).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force regular size increase up to maximum */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 500)) { protect_entry(file_ptr, TINY_ENTRY_TYPE, i); if (pass) unprotect_entry(file_ptr, TINY_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); i++; } if ((cache_ptr->max_cache_size != (20 * 1024)) || (cache_ptr->min_clean_size != (10 * 1024)) || (rpt_fcn_called == FALSE) || (rpt_status != at_max_size)) { pass = FALSE; failure_mssg = "Unexpected cache config (34).\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { PASSED(); } /* end if */ else { H5_FAILED(); } /* end else */ if (!pass) HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); return (unsigned)!pass; } /* check_auto_cache_resize() */ /*------------------------------------------------------------------------- * Function: check_auto_cache_resize_disable() * * Purpose: Test the various ways in which the resize code can * be disabled. Unfortunately, there are quite a few of them. * * Return: void * * Programmer: John Mainzer * 12/16/04 * * Modifications: * * Added code to include the flash cache size increment * code in this test. * JRM -- 1/10/08 * *------------------------------------------------------------------------- */ static unsigned check_auto_cache_resize_disable(unsigned paged) { hbool_t show_progress = FALSE; herr_t result; int32_t i; int32_t checkpoint = 0; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, /* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn, /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (512 * 1024), /* double min_clean_fraction = */ 0.5, /* size_t max_size = */ (14 * 1024 * 1024), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 1000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 1.0, /* double flash_threshold = */ 0.25, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.1, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.05}; if (paged) TESTING("automatic cache resize disable (paged aggregation)") else TESTING("automatic cache resize disable") pass = TRUE; if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* allocate a cache, enable automatic cache resizing, and then force * the cache through all its operational modes. Verify that all * performs as expected. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "file_ptr NULL from setup_cache."; } else { cache_ptr = file_ptr->shared->cache; } } if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after initialization.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /****************************************************************** * So far, we have forced the auto cache resize through all modes * other than increase_disabled and decrease_disabled. Force these * modes now. Note that there are several ways we can reach these * modes. ******************************************************************/ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 1.0; /* disable size increases */ auto_size_ctl.apply_max_increment = FALSE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 1.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full -- increase disabled so should * be no change in cache size, and result should be increase_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != increase_disabled) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 1.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- make sure that we haven't disabled decreases. * should result in a decrease cache size from 4 to 2 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 2.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate again -- increase disabled so should * be no change in cache size, and result should be increase_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != increase_disabled) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 3.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Repeat the above tests, disabling increase through the lower * threshold instead of the increment. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.0; /* disable size increases */ auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = FALSE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 3.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 2.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full -- increase disabled so should * be no change in cache size, and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 4.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- make sure that we haven't disabled decreases. * should result in a decrease cache size from 4 to 2 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 5.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate again -- increase disabled so should * be no change in cache size, and result should be increase_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 6.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Repeat the above tests yet again, disabling increase through the * incr_mode. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = FALSE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 4.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 3.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate with cache full -- increase disabled so should * be no change in cache size, and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 7.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- make sure that we haven't disabled decreases. * should result in a decrease cache size from 4 to 2 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 8.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate again -- increase disabled so should * be no change in cache size, and result should be increase_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_increase_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 9.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now, disable size decreases, and repeat the above tests. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 1.0; /* disable size decreases */ auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 5.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 4.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no change in cache size, * and result should be decrease_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 10.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- cache size should increase from 4 to 6 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 11.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should be no change in cache size, * and result should be decrease_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 12.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Repeat the above tests, disabling decrease through the upper * threshold instead of the decrement. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 1.0; /* disable size decreases */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 6.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 5.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no change in cache size, * and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 13.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- cache size should increase from 4 to 6 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 14.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should be no change in cache size, * and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 15.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Repeat the above tests, disabling decrease through the decr_mode. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__off; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 7.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 6.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no change in cache size, * and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 16.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- cache size should increase from 4 to 6 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 17.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate again -- should be no change in cache size, * and result should be in_spec. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 18.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now do tests disabling size decrement in age out mode. * * Start by disabling size decrement by setting max_decrement to zero. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = 0; /* disable decrement */ auto_size_ctl.epochs_before_eviction = 1; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 8.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 7.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* flush the cache and destroy all entries so we start from a known point */ flush_cache(file_ptr, TRUE, FALSE, FALSE); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* load up the cache with small entries. Note that it will take an * epoch for the ageout code to initialize itself if it is enabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 19.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Load up some more small entries. */ if (pass) { rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 20.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now force a high hit rate so that the size increase code is * is satisfied. We would see a decrease here if decrease were * possible. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 21.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- cache size should increase from 4 to 6 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 22.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* just bang on a single entry. This will see to it that there are * many entries that could be aged out were decreases enabled. * Should be no change in cache size, and result should be * decrease_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 23.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now disable size decrement in age out mode via the empty reserve. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 1; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 1.0; /* disable decrement */ result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 9.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 8.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* flush the cache and destroy all entries so we start from a known point */ flush_cache(file_ptr, TRUE, FALSE, FALSE); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* load up the cache with small entries. Note that it will take an * epoch for the ageout code to initialize itself if it is enabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 24.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Load up some more small entries. */ if (pass) { rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 25.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now force a high hit rate so that the size increase code is * is satisfied. We would see a decrease here if decrease were * possible. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 26.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- cache size should increase from 4 to 6 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 27.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* just bang on a single entry. This will see to it that there are * many entries that could be aged out were decreases enabled. * Should be no change in cache size, and result should be * decrease_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 28.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now work with age out with threshold. One can argue that we should * repeat the above age out tests with age out with threshold, but the * same code is executed in both cases so I don't see the point. If * that ever changes, this test should be updated. * * There is only one way of disabling decrements that is peculiar * to age out with threshold, which is to set the upper threshold * to 1.0. Test this now. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; auto_size_ctl.upper_hr_threshold = 1.0; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 1; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 10.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 9.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { /* flush the cache and destroy all entries so we start from a known point */ flush_cache(file_ptr, TRUE, FALSE, FALSE); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* load up the cache with small entries. Note that it will take an * epoch for the ageout code to initialize itself if it is enabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 29.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Load up some more small entries. */ if (pass) { rpt_fcn_called = FALSE; i = 1000; while (pass && (i < 2000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != not_full) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 30.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now force a high hit rate so that the size increase code is * is satisfied. We would see a decrease here if decrease were * possible, but the upper threshold cannot be met, so no decrease. * * rpt_status should be decrease_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024)) || (cache_ptr->index_len != 2000) || (cache_ptr->index_size != 2000 * SMALL_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 31.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- cache size should increase from 4 to 6 Meg. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != increase) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 32.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* just bang on a single entry. This keeps the hit rate high, and sees * to it that there are many entries that could be aged out were * decreases enabled. * * Should be no change in cache size, and result should be * decrease_disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 999); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 999, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (cache_ptr->size_decrease_possible) || (rpt_status != decrease_disabled) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 33.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /********************************************************************* * Finally, use the auto cache resize code to set the size of the * cache and keep it there. Again, due to the complexity of the * interface, there are lots of ways of doing this. We have to * check them all. *********************************************************************/ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 2 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.0; /* disable size increases */ auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 1.0; /* disable size decreases */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 11.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 10.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 34.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 35.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.25; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 1.0; /* disable size increment */ auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 1.0; /* disable size decrement */ auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 12.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 11.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 36.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 37.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = FALSE; auto_size_ctl.initial_size = 2 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 6 * 1024 * 1024; /* no resize */ auto_size_ctl.min_size = 6 * 1024 * 1024; /* no resize */ auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 13.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 12.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 38.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (6 * 1024 * 1024)) || (cache_ptr->min_clean_size != (3 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 39.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.25; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 1.0; /* disable size increment */ auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 1.0; /* disable size decrement */ auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 14.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 13.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 40.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 41.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.0; /* disable size increment */ auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 1.0; /* disable size decrement */ auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 15.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 14.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 42.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 43.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 4 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 16 * 1024 * 1024; auto_size_ctl.min_size = 1 * 1024 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__off; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 16.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 15.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force low hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 44.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* force high hit rate -- should be no response as the auto-resize * code should be disabled. */ if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } if ((rpt_fcn_called) || (cache_ptr->resize_enabled) || (cache_ptr->size_increase_possible) || (cache_ptr->size_decrease_possible) || (cache_ptr->max_cache_size != (4 * 1024 * 1024)) || (cache_ptr->min_clean_size != (2 * 1024 * 1024))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 45.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now test the flash cache size increment code to verify that it * is disabled when it should be. * * Since the flash size increase code doesn't look at hit rate, or * use epochs (other than to start a new epoch if a flash cache size * increase is triggered), we go about these tests somewhat differently * than the rest of the tests in this function. * * As of this writing, there is only one flash cache size increment * mode (add space), which is triggered whenever the size of a newly * loaded or inserted entry, or the delta between old and new entry * sizes exceeds some fraction of the current maximum cache size, and * the cache doesn't have enough free space to accomodate the new/ * resize entry without performing evictions. The range of permissible * values for the flash_threshold (0.1 to 1.0 as of this writing), and * for the flash_multiple (0.1 to 10.0) do not permit the facility to * be turned off by configuration. Thus, flash cache size increases * can be disabled only via the flash_incr_mode, and by setting the * current max_cache_size equal to max_size. * * We have already tested the latter in check_auto_cache_resize(), so * we need only thest the former here. Do this by disabling flash * cache size increments via the flash_incr_mode, and then creating * situations that would trigger flash cache size increases were that * code enabled. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 64 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 256 * 1024; auto_size_ctl.min_size = 32 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__threshold; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (2 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 1.0; auto_size_ctl.flash_threshold = 0.25; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = TRUE; auto_size_ctl.max_decrement = (1 * 1024); auto_size_ctl.epochs_before_eviction = 3; auto_size_ctl.apply_empty_reserve = TRUE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 17.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 16.\n"; } } /* We have reduced the max cache size to well below the current index * size. Protect and unprotect an entry to allow the cache to evict * entries and get within bounds */ if (pass) { rpt_fcn_called = FALSE; protect_entry(file_ptr, LARGE_ENTRY_TYPE, 0); unprotect_entry(file_ptr, LARGE_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) || (cache_ptr->index_size != LARGE_ENTRY_SIZE) || (rpt_fcn_called != FALSE)))) { HDfprintf(stdout, "\nmax_cache_size = %ld.\n", (long)(cache_ptr->max_cache_size)); HDfprintf(stdout, "min_clean_size = %ld.\n", (long)(cache_ptr->min_clean_size)); HDfprintf(stdout, "index_len = %ld.\n", (long)(cache_ptr->index_len)); HDfprintf(stdout, "index_size = %ld.\n", (long)(cache_ptr->index_size)); HDfprintf(stdout, "rpt_fcn_called = %ld.\n", (long)(rpt_fcn_called)); pass = FALSE; failure_mssg = "Unexpected cache size change results 46.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now protect and unprotect a monster entry. If the flash cache * size increment code was active, this would trigger an increase. * Verify that it doesn't. * * This finishes the additional tests needed for the flash cache * size increase code. */ if (pass) { rpt_fcn_called = FALSE; protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); if (pass && (((cache_ptr->max_cache_size != (64 * 1024)) || (cache_ptr->min_clean_size != (32 * 1024)) || (cache_ptr->index_len != 1) || (cache_ptr->index_size != MONSTER_ENTRY_SIZE) || (rpt_fcn_called != FALSE)))) { HDfprintf(stdout, "\nmax_cache_size = %ld.\n", (long)(cache_ptr->max_cache_size)); HDfprintf(stdout, "min_clean_size = %ld.\n", (long)(cache_ptr->min_clean_size)); HDfprintf(stdout, "index_len = %ld.\n", (long)(cache_ptr->index_len)); HDfprintf(stdout, "index_size = %ld.\n", (long)(cache_ptr->index_size)); HDfprintf(stdout, "rpt_fcn_called = %ld.\n", (long)(rpt_fcn_called)); pass = FALSE; failure_mssg = "Unexpected cache size change results 47.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_auto_cache_resize_disable() */ /*------------------------------------------------------------------------- * Function: check_auto_cache_resize_epoch_markers() * * Purpose: Verify that the auto-resize code manages epoch markers * correctly. * * Return: void * * Programmer: John Mainzer * 12/16/04 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_auto_cache_resize_epoch_markers(unsigned paged) { hbool_t show_progress = FALSE; herr_t result; int32_t i; int32_t j; int32_t checkpoint = 0; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, /* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn, /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (512 * 1024), /* double min_clean_fraction = */ 0.5, /* size_t max_size = */ (14 * 1024 * 1024), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 1000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.1, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.05}; if (paged) TESTING("automatic cache resize epoch marker management (paged aggr)") else TESTING("automatic cache resize epoch marker management") pass = TRUE; if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; } if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after initialization.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Now make sure that we are managing the epoch markers correctly. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 10; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 1.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Since we just created the cache, there should be no epoch markers * active. Verify that this is true. */ if (pass) { if (cache_ptr->epoch_markers_active != 0) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 1.\n"; } } if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, MEDIUM_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024)) || (cache_ptr->index_size != (1 * 1000 * MEDIUM_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 0.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { j = 2; while (pass && (j <= 10)) { rpt_fcn_called = FALSE; i = (j - 2) * 1000; while (pass && (i < (j - 1) * 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->epoch_markers_active != j)) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 2.\n"; } j++; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* we now have a full complement of epoch markers -- see if * we get the expected reduction. */ if (pass) { rpt_fcn_called = FALSE; i = 9000; while (pass && (i < 10000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (10 * 1000 * SMALL_ENTRY_SIZE + MEDIUM_ENTRY_SIZE)) || (cache_ptr->min_clean_size != ((10 * 1000 * SMALL_ENTRY_SIZE + MEDIUM_ENTRY_SIZE) / 2)) || (cache_ptr->index_size != (10 * 1000 * SMALL_ENTRY_SIZE + MEDIUM_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 1.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* now reduce the epochs before eviction, and see if the cache * deletes the extra markers */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 1; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 3.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 2.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* There should be exactly one active epoch marker at present. */ if (pass) { if (cache_ptr->epoch_markers_active != 1) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 3.\n"; } } /* Now do an epochs worth of accesses, and verify that everything * not accessed in this epoch gets evicted, and the cache size * is reduced. */ if (pass) { rpt_fcn_called = FALSE; i = 9000; while (pass && (i < 10000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != decrease) || (cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024)) || (cache_ptr->index_size != (1 * 1000 * SMALL_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "Unexpected cache size change results 2.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* There should be exactly one active epoch marker at present... */ if (pass) { if (cache_ptr->epoch_markers_active != 1) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 4.\n"; } } /* shift the decrement mode to threshold, and verify that we remove * all epoch markers. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 1; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 4.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after set resize re-config 3.\n"; } } /* ... and now there should be none. */ if (pass) { if (cache_ptr->epoch_markers_active != 0) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 5.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* shift the decrement mode to age out with threshold. Set epochs * before eviction to 10 again. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 10; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 5.\n"; } } /* Verify that there are no active epoch markers. */ if (pass) { if (cache_ptr->epoch_markers_active != 0) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 6.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* build up a full set of epoch markers. */ if (pass) { j = 1; while (pass && (j <= 10)) { rpt_fcn_called = FALSE; i = (j - 1) * 1000; while (pass && (i < j * 1000)) { protect_entry(file_ptr, SMALL_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, SMALL_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } if ((!rpt_fcn_called) || (rpt_status != in_spec) || (cache_ptr->epoch_markers_active != j)) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 7.\n"; } j++; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* Verify that there are now 10 active epoch markers. */ if (pass) { if (cache_ptr->epoch_markers_active != 10) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 8.\n"; } } /* shift the decrement mode to off. This should cause all epoch * markers to be removed. */ if (pass) { auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; auto_size_ctl.rpt_fcn = test_rpt_fcn; auto_size_ctl.set_initial_size = TRUE; auto_size_ctl.initial_size = 8 * 1024 * 1024; auto_size_ctl.min_clean_fraction = 0.5; auto_size_ctl.max_size = 8 * 1024 * 1024; auto_size_ctl.min_size = 512 * 1024; auto_size_ctl.epoch_length = 1000; auto_size_ctl.incr_mode = H5C_incr__off; auto_size_ctl.lower_hr_threshold = 0.75; auto_size_ctl.increment = 2.0; auto_size_ctl.apply_max_increment = TRUE; auto_size_ctl.max_increment = (4 * 1024 * 1024); auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; auto_size_ctl.flash_multiple = 2.0; auto_size_ctl.flash_threshold = 0.5; auto_size_ctl.decr_mode = H5C_decr__off; auto_size_ctl.upper_hr_threshold = 0.995; auto_size_ctl.decrement = 0.5; auto_size_ctl.apply_max_decrement = FALSE; auto_size_ctl.max_decrement = (1 * 1024 * 1024); auto_size_ctl.epochs_before_eviction = 10; auto_size_ctl.apply_empty_reserve = FALSE; auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 6.\n"; } } /* Verify that there are now no active epoch markers. */ if (pass) { if (cache_ptr->epoch_markers_active != 0) { pass = FALSE; failure_mssg = "Unexpected # of epoch markers 9.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); /* verify that we still have the expected number of entries in the cache, * and that the cache is of the expected size. */ if (pass) { if ((cache_ptr->max_cache_size != (8 * 1024 * 1024)) || (cache_ptr->min_clean_size != (4 * 1024 * 1024)) || (cache_ptr->index_size != (10 * 1000 * SMALL_ENTRY_SIZE)) || (cache_ptr->index_len != 10000)) { pass = FALSE; failure_mssg = "Unexpected cache size change results 3.\n"; } } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (show_progress) HDfprintf(stderr, "check point %d\n", checkpoint++); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_auto_cache_resize_epoch_markers() */ /*------------------------------------------------------------------------- * Function: check_auto_cache_resize_input_errs() * * Purpose: Verify that H5C_set_cache_auto_resize_config() detects * and rejects invalid input. * * Return: void * * Programmer: John Mainzer * 10/29/04 * * Modifications: * * Added code to verify that errors in the flash cache size * increment related fields are caught as well. * * JRM -- 1/17/08 * *------------------------------------------------------------------------- */ static unsigned check_auto_cache_resize_input_errs(unsigned paged) { herr_t result; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5C_auto_size_ctl_t ref_auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, /* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn, /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (512 * 1024), /* double min_clean_fraction = */ 0.5, /* size_t max_size = */ (16 * 1024 * 1024), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 1000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__threshold, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.1, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.05}; H5C_auto_size_ctl_t invalid_auto_size_ctl; H5C_auto_size_ctl_t test_auto_size_ctl; if (paged) TESTING("automatic cache resize input errors (paged aggregation)") else TESTING("automatic cache resize input errors") pass = TRUE; /* allocate a cache, and set a reference automatic cache control * configuration. Then feed H5C_set_cache_auto_resize_config() * invalid input, and verify that the correct error is returned, * and that the configuration is not modified. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; } if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &ref_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (512 * 1024)) || (cache_ptr->min_clean_size != (256 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after initialization.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 1."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 1."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.7; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(NULL, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted NULL cache_ptr.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 2."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 2."; } } /* check bad version rejection. */ if (pass) { invalid_auto_size_ctl.version = -1; /* INVALID */ invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.7; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad version.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 3."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 3."; } } /* check bad initial size rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 16 * 1024 * 1024 + 1; /* INVALID */ invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad init size 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 4."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 4."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 1 * 1024 * 1024 - 1; /* INVALID */ invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad init size 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 5."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 5."; } } /* test for invalid min clean fraction rejection. */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 1.00001; /* INVALID */ invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad min clean frac 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 6."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 6."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = -0.00001; /* INVALID */ invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad min clean frac 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 7."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 7."; } } /* test for invalid max_size and/or min_size rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = H5C__MAX_MAX_CACHE_SIZE + 1; /* INVALID */ invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad max_size.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 8."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 8."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 1 * 1024 * 1024; /* INVALID */ invalid_auto_size_ctl.min_size = 1 * 1024 * 1024 + 1; /*PAIR */ invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad size pair.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 9."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 9."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = H5C__MIN_MAX_CACHE_SIZE - 1; /* INVALID */ invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad min_size.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 10."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 10."; } } /* test for invalid epoch_length rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = H5C__MAX_AR_EPOCH_LENGTH + 1; /* INVALID */ invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epoch len 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 11."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 11."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = H5C__MIN_AR_EPOCH_LENGTH - 1; /* INVALID */ invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epoch len 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 12."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 12."; } } /* test for bad incr_mode rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = (enum H5C_cache_incr_mode) - 1; /* INVALID */ invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad incr_mode 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 13."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 13."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = (enum H5C_cache_incr_mode)2; /* INVALID */ invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad incr_mode 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 14."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 14."; } } /* check for bad upper and/or lower threshold rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.7; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 1.01; /* INVALID */ invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad upper threshold.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 15."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 15."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.8; /* INVALID */ invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.7; /* INVALID */ invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad threshold pair.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 16."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 16."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.5; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = -0.0001; /* INVALID */ invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad lower threshold.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 17."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 17."; } } /* test for bad increment rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 0.99999; /* INVALID */ invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.5; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad increment.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 18."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 18."; } } /* test for bad flash_incr_mode rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = (enum H5C_cache_flash_incr_mode) - 1; /* INVALID */ invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_incr_mode.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 19."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 19."; } } /* test for bad flash_multiple rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space; invalid_auto_size_ctl.flash_multiple = 0.09; /* INVALID */ invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_multiple(1).\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 20."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 20."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space; invalid_auto_size_ctl.flash_multiple = 10.01; /* INVALID */ invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_multiple(2).\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 21."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 21."; } } /* test for bad flash_threshold rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space; invalid_auto_size_ctl.flash_multiple = 1.0; invalid_auto_size_ctl.flash_threshold = 0.09; /* INVALID */ invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_threshold(1).\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 22."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 22."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__add_space; invalid_auto_size_ctl.flash_multiple = 1.0; invalid_auto_size_ctl.flash_threshold = 1.001; /* INVALID */ invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad flash_threshold(2).\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 23."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 23."; } } /* test for bad decr_mode rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = (enum H5C_cache_decr_mode) - 1; /* INVALID */ invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decr_mode 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 24."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 24."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = (enum H5C_cache_decr_mode)4; /* INVALID */ invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decr_mode 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 25."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 25."; } } /* check for bad decrement rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 1.000001; /* INVALID */ invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decrement 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 26."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 26."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = -0.000001; /* INVALID */ invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad decrement 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 27."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 27."; } } /* check for rejection of bad epochs_before_eviction */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__age_out; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 0; /* INVALID */ invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epochs_before_eviction 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 28."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 28."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = H5C__MAX_EPOCH_MARKERS + 1; /* INVALID */ invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad epochs_before_eviction 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 29."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 29."; } } /* Check for bad apply_empty_reserve rejection */ if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__age_out; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = 3; invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = -0.0000001; /* INVALID */ result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad empty_reserve 1.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 30."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 30."; } } if (pass) { invalid_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; invalid_auto_size_ctl.rpt_fcn = NULL; invalid_auto_size_ctl.set_initial_size = TRUE; invalid_auto_size_ctl.initial_size = 4 * 1024 * 1024; invalid_auto_size_ctl.min_clean_fraction = 0.1; invalid_auto_size_ctl.max_size = 16 * 1024 * 1024; invalid_auto_size_ctl.min_size = 1 * 1024 * 1024; invalid_auto_size_ctl.epoch_length = 5000; invalid_auto_size_ctl.incr_mode = H5C_incr__threshold; invalid_auto_size_ctl.lower_hr_threshold = 0.75; invalid_auto_size_ctl.increment = 2.0; invalid_auto_size_ctl.apply_max_increment = TRUE; invalid_auto_size_ctl.max_increment = (2 * 1024 * 1024); invalid_auto_size_ctl.flash_incr_mode = H5C_flash_incr__off; invalid_auto_size_ctl.flash_multiple = 2.0; invalid_auto_size_ctl.flash_threshold = 0.5; invalid_auto_size_ctl.decr_mode = H5C_decr__age_out_with_threshold; invalid_auto_size_ctl.upper_hr_threshold = 0.999; invalid_auto_size_ctl.decrement = 0.9; invalid_auto_size_ctl.apply_max_decrement = TRUE; invalid_auto_size_ctl.max_decrement = (1 * 1024 * 1024); invalid_auto_size_ctl.epochs_before_eviction = H5C__MAX_EPOCH_MARKERS + 1; /* INVALID */ invalid_auto_size_ctl.apply_empty_reserve = TRUE; invalid_auto_size_ctl.empty_reserve = 0.05; result = H5C_set_cache_auto_resize_config(cache_ptr, &invalid_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config accepted bad empty_reserve 2.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed 31."; } else if (!resize_configs_are_equal(&test_auto_size_ctl, &ref_auto_size_ctl, FALSE)) { pass = FALSE; failure_mssg = "Unexpected auto resize config 31."; } } /* finally, before we finish, try feeding * H5C_get_cache_auto_resize_config invalid data. */ if (pass) { result = H5C_get_cache_auto_resize_config(NULL, &test_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config accepted NULL cache_ptr.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config((const H5C_t *)&test_auto_size_ctl, &test_auto_size_ctl); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config accepted bad cache_ptr.\n"; } } if (pass) { result = H5C_get_cache_auto_resize_config(cache_ptr, NULL); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config accepted NULL config ptr.\n"; } } if (cache_ptr) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_auto_cache_resize_input_errs() */ /*------------------------------------------------------------------------- * Function: check_auto_cache_resize_aux_fcns() * * Purpose: Verify that the auxilary functions associated with * the automatic cache resize capability are operating * correctly. These functions are: * * H5C_get_cache_size() * H5C_get_cache_hit_rate() * H5C_reset_cache_hit_rate_stats() * * Return: void * * Programmer: John Mainzer * 11/4/04 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_auto_cache_resize_aux_fcns(unsigned paged) { herr_t result; int32_t i; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; double hit_rate; size_t max_size; size_t min_clean_size; size_t cur_size; uint32_t cur_num_entries; H5C_auto_size_ctl_t auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, #if 1 /* H5C_auto_resize_report_fcn rpt_fcn = */ NULL, #else /* H5C_auto_resize_report_fcn rpt_fcn = */ H5C_def_auto_resize_rpt_fcn, #endif /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (1 * 1024 * 1024), /* double min_clean_fraction = */ 0.5, /* size_t max_size = */ (16 * 1024 * 1025), /* size_t min_size = */ (512 * 1024), /* int64_t epoch_length = */ 50000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__off, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__off, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.9, /* hbool_t apply_max_decrement = */ TRUE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 3, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.5 }; if (paged) TESTING("automatic cache resize auxilary functions (paged aggregation)") else TESTING("automatic cache resize auxilary functions") pass = TRUE; /* allocate a cache, and then test the various auxilary functions. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; } if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (pass) { if ((cache_ptr->max_cache_size != (1 * 1024 * 1024)) || (cache_ptr->min_clean_size != (512 * 1024))) { pass = FALSE; failure_mssg = "bad cache size after initialization.\n"; } } /* lets start with the H5C_get_cache_hit_rate(), * H5C_reset_cache_hit_rate_stats() pair. */ if (pass) { if ((H5C_get_cache_hit_rate(NULL, &hit_rate) != FAIL) || (H5C_get_cache_hit_rate(cache_ptr, NULL) != FAIL)) { pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate accepts bad params.\n"; } } if (pass) { result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate failed.\n"; } else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.0)) { /* i.e. hit_rate != 0.0 */ pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 1.\n"; } } if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, PICO_ENTRY_TYPE, i); if (pass) { unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } i++; } } if (pass) { result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate failed.\n"; } else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.0)) { /* i.e. hit_rate != 0.0 */ pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 2.\n"; } else if ((cache_ptr->cache_accesses != 1000) || (cache_ptr->cache_hits != 0)) { pass = FALSE; failure_mssg = "Unexpected cache hit rate stats.\n"; } else if (rpt_fcn_called) { pass = FALSE; failure_mssg = "Report function called?.\n"; } } if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, PICO_ENTRY_TYPE, 0); if (pass) { unprotect_entry(file_ptr, PICO_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } i++; } } if (pass) { result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate failed.\n"; } else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.5)) { /* i.e. hit_rate != 0.5 */ pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 3.\n"; } else if ((cache_ptr->cache_accesses != 2000) || (cache_ptr->cache_hits != 1000)) { pass = FALSE; failure_mssg = "Unexpected cache hit rate stats.\n"; } else if (rpt_fcn_called) { pass = FALSE; failure_mssg = "Report function called?.\n"; } } if (pass) { result = H5C_reset_cache_hit_rate_stats(NULL); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_reset_cache_hit_rate_stats accepted NULL cache_ptr.\n"; } else if ((cache_ptr->cache_accesses != 2000) || (cache_ptr->cache_hits != 1000)) { pass = FALSE; failure_mssg = "Failed call to H5C_reset_cache_hit_rate_stats altered stats?\n"; } } if (pass) { result = H5C_reset_cache_hit_rate_stats(cache_ptr); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_reset_cache_hit_rate_stats failed.\n"; } else if ((cache_ptr->cache_accesses != 0) || (cache_ptr->cache_hits != 0)) { pass = FALSE; failure_mssg = "Unexpected cache hit rate stats.\n"; } } if (pass) { rpt_fcn_called = FALSE; i = 0; while (pass && (i < 1000)) { protect_entry(file_ptr, PICO_ENTRY_TYPE, i + 500); if (pass) { unprotect_entry(file_ptr, PICO_ENTRY_TYPE, i + 500, H5C__NO_FLAGS_SET); } i++; } } if (pass) { result = H5C_get_cache_hit_rate(cache_ptr, &hit_rate); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate failed.\n"; } else if (!H5_DBL_ABS_EQUAL(hit_rate, 0.5)) { /* i.e. hit_rate != 0.5 */ pass = FALSE; failure_mssg = "H5C_get_cache_hit_rate returned unexpected hit rate 4.\n"; } else if ((cache_ptr->cache_accesses != 1000) || (cache_ptr->cache_hits != 500)) { pass = FALSE; failure_mssg = "Unexpected cache hit rate stats.\n"; } else if (rpt_fcn_called) { pass = FALSE; failure_mssg = "Report function called?.\n"; } } /*************************************************** * So much for testing H5C_get_cache_hit_rate() and * H5C_reset_cache_hit_rate_stats(). Now on to * H5C_get_cache_size(). ***************************************************/ if (pass) { result = H5C_get_cache_size(NULL, &max_size, &min_clean_size, &cur_size, &cur_num_entries); if (result != FAIL) { pass = FALSE; failure_mssg = "H5C_get_cache_size accepted NULL cache_ptr.\n"; } } if (pass) { max_size = 0; min_clean_size = 0; cur_size = 0; cur_num_entries = 0; result = H5C_get_cache_size(cache_ptr, &max_size, &min_clean_size, &cur_size, &cur_num_entries); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_size failed 1.\n"; } else if (max_size != (1 * 1024 * 1024)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected max_size 1.\n"; } else if (min_clean_size != (512 * 1024)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected min_clean_size 1.\n"; } else if (cur_size != (1500 * PICO_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected cur_size 1.\n"; } else if (cur_num_entries != 1500) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected cur_num_entries 1.\n"; } } /* read a larger entry so that cur_size and cur_num_entries will be * different. */ if (pass) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); } if (pass) { unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__NO_FLAGS_SET); } if (pass) { max_size = 0; min_clean_size = 0; cur_size = 0; cur_num_entries = 0; result = H5C_get_cache_size(cache_ptr, &max_size, &min_clean_size, &cur_size, &cur_num_entries); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_size failed 2.\n"; } else if (max_size != (1 * 1024 * 1024)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected max_size 2.\n"; } else if (min_clean_size != (512 * 1024)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected min_clean_size 2.\n"; } else if (cur_size != ((1500 * PICO_ENTRY_SIZE) + MONSTER_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected cur_size 2.\n"; } else if (cur_num_entries != 1501) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected cur_num_entries 2.\n"; } } if (pass) { max_size = 0; result = H5C_get_cache_size(cache_ptr, &max_size, NULL, NULL, NULL); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_size failed 3.\n"; } else if (max_size != (1 * 1024 * 1024)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected max_size 3.\n"; } } if (pass) { min_clean_size = 0; result = H5C_get_cache_size(cache_ptr, NULL, &min_clean_size, NULL, NULL); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_size failed 4.\n"; } else if (min_clean_size != (512 * 1024)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected min_clean_size 4.\n"; } } if (pass) { cur_size = 0; result = H5C_get_cache_size(cache_ptr, NULL, NULL, &cur_size, NULL); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_size failed 5.\n"; } else if (cur_size != ((1500 * PICO_ENTRY_SIZE) + MONSTER_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected cur_size 5.\n"; } } if (pass) { cur_num_entries = 0; result = H5C_get_cache_size(cache_ptr, NULL, NULL, NULL, &cur_num_entries); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_size failed 6.\n"; } else if (cur_num_entries != 1501) { pass = FALSE; failure_mssg = "H5C_get_cache_size reports unexpected cur_num_entries 2.\n"; } } if (cache_ptr) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s: failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_auto_cache_resize_aux_fcns() */ /*------------------------------------------------------------------------- * Function: check_metadata_blizzard_absence() * * Purpose: Test to verify that a 'metadata blizzard' can not occur * upon insertion into the cache. * * A 'metadata blizzard' in this context occurs when the cache * gets completely filled with all dirty entries. Upon needing * to make space in the cache, the cache then has no clean * entries ready to evict, and must clean every dirty entry * in the cache first, due to the second chance replacement * policy. (i.e. after cleaning an entry, it is bumped to the * top of the LRU to make a second pass before eviction). * The massive amount of sequential writes to disk while * flushing the entire cache is what constitutes a 'metadata * blizzard'. * * Return: void * * Programmer: Mike McGreevy * 12/16/08 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_metadata_blizzard_absence(hbool_t fill_via_insertion, unsigned paged) { struct expected_entry_status *expected = NULL; int entry_type = HUGE_ENTRY_TYPE; size_t entry_size = HUGE_ENTRY_SIZE; /* 16 KB */ H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; hbool_t show_progress = FALSE; int32_t checkpoint = 0; int32_t entry_idx = 0; int32_t i; /* Expected deserialized status of entries depends on how they get into * the cache. Insertions = not deserialized, protect/unprotect = deserialized. */ hbool_t deserialized = (hbool_t) !(fill_via_insertion); expected = HDmalloc(150 * sizeof(struct expected_entry_status)); if (expected == NULL) { pass = FALSE; failure_mssg = "couldn't allocate expected entry status array\n"; } if (expected) { /* Set up the expected array. This is used to maintain a table of the * expected status of every entry used in this test. */ for (i = 0; i < 150; i++) { expected[i].entry_type = HUGE_ENTRY_TYPE; expected[i].entry_index = (int)i; expected[i].size = HUGE_ENTRY_SIZE; expected[i].in_cache = FALSE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = FALSE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = FALSE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type)); HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx)); expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } pass = TRUE; } reset_entries(); if (fill_via_insertion) { if (paged) TESTING("to ensure metadata blizzard absence when inserting (pgd aggr)") else TESTING("to ensure metadata blizzard absence when inserting") } /* end if */ else { if (paged) TESTING("to ensure metadata blizzard absence on protect/unprotect (pa)") else TESTING("to ensure metadata blizzard absence on protect/unprotect") } /* end else */ if (show_progress) /* 0 */ HDfprintf(stdout, "\n%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Set up the cache. * * The max_cache_size should have room for 50 entries. * The min_clean_size is half of that, or 25 entries. */ file_ptr = setup_cache((size_t)(50 * entry_size), (size_t)(25 * entry_size), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "bad return from cache intialization.\n"; } else cache_ptr = file_ptr->shared->cache; } if (show_progress) /* 1 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 1: * * Inserting dirty entries into an empty cache, until the cache * violates the min_clean_size requirement. The expected result is * that none of the inserted entries during this phase will get * flushed or evicted. * * This verifies that while maintaining min_clean_size, we don't go * overboard and flush entries that we don't need to flush. * * ======================================================================== * ======================================================================== */ if (pass) { /* Insert 26 entries (indexes 0 through 25) into the cache. * * Note that we are inserting 26 entries, and not 25, because the cache * will only try to adhere to the min_clean_size if it's currently * being violated. Thus, on insertion of the 26th entry, since the * min_clean_size will not be violated, it will accept the insertion * without having to make clean space. */ for (entry_idx = 0; entry_idx < 26; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Change expected values, and verify the status of the entries * after each insertion */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } } if (show_progress) /* 2 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 2: * * Inserting entries into a cache that violates the min_clean_size, * until the cache is full. The expected result is that each insertion * will result in the flushing of a dirty entry in the cache. * * This verifies that we maintain the min_clean_size. By doing so, we * prevent building the situation in which a 'metadata blizzard' would * occur (i.e., the cache being completely filled with dirty entries). * * ======================================================================== * ======================================================================== */ if (pass) { /* Insert the 27th entry (index = 26) into the cache. * * This should cause the cache to flush its least recently used entry * before the insertion because it doesn't satisfy the min_clean_size * constraint. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. * * Expected status is that there are 27 entries in the cache, and * entry number 0 has been cleaned. * * Changes from last entry verification: * - entry w/ index 0 has now been flushed and is now clean. * - entry w/ index 26 is now in the cache and dirty. */ /* entry w/ index 0 has now been flushed and is now clean. */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; /* entry w/ index 26 is now in the cache and dirty. */ expected[26].in_cache = TRUE; expected[26].is_dirty = TRUE; expected[26].deserialized = (unsigned char)deserialized; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 26, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 3 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Insert the 28th entry (index = 27) into the cache. * * This should, once again, cause the cache to flush its least * recently used entry before the insertion as it again does not * satisfy the min_clean_size constraint. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. * * Expected status is that there are 28 entries in the cache, and * entry numbers 0 and 1 have been cleaned. * * Changes from last entry verification: * - entry w/ index 1 has now been flushed and is now clean. * - entry w/ index 27 is now in the cache and dirty. */ /* entry w/ index 1 has now been flushed and is now clean. */ expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; /* entry w/ index 27 is now in the cache and dirty. */ expected[27].in_cache = TRUE; expected[27].is_dirty = TRUE; expected[27].deserialized = (unsigned char)deserialized; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 27, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 4 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Fill out the rest of the cache with entries */ /* Verify expected status of entries after each insertion */ for (; entry_idx < 50; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Expected staus is that after each insertion, the entry * inserted 26 insertions ago has been flushed, and the * entry currently getting inserted is now in the cache and * dirty. */ expected[entry_idx - 26].is_dirty = FALSE; expected[entry_idx - 26].serialized = TRUE; expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } /* Verify that the cache is now full */ if (cache_ptr->cache_full != TRUE) { pass = FALSE; failure_mssg = "cache not completely filled.\n"; } } if (show_progress) /* 5 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 3: * * Inserting entries into a cache that is completely full. Insertions * of new entries will force evictions of old entries, but since the * min_clean_size has been maintained, doing so will not result in * the entire cache getting flushed in order to evict a single entry, * as a clean entry will be available to flush reasonably close to * the bottom of the LRU. * * This verifies that with a maintained min_clean_size, a metadata * blizzard does not occur on insertion. * * ======================================================================== * ======================================================================== */ if (pass) { /* Insert the 51st entry (index = 50) into the cache. * * The cache is full prior to the insertion, so it will * have to evict in order to make room for the new entry. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. * * Changes from last entry verification: * - entry w/ index 0 has been evicted. * - entries w/ indices 24,25 have now been flushed and are clean. * - entry w/ index 50 is now in the cache and dirty. */ /* entry w/ index 0 has been evicted. */ expected[0].in_cache = FALSE; expected[0].destroyed = TRUE; /* entries w/ indices 24,25 have now been flushed and are clean. */ expected[24].is_dirty = FALSE; expected[24].serialized = TRUE; expected[25].is_dirty = FALSE; expected[25].serialized = TRUE; /* entry w/ index 50 is now in the cache and dirty */ expected[50].in_cache = TRUE; expected[50].is_dirty = TRUE; expected[50].deserialized = (unsigned char)deserialized; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 50, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 6 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Insert 49 more entries (indices 51-99) into the cache. * * The cache will be flushing an entry on each insertion, and * evicting an entry on each insertion. * * After each insertion, verify the expected status of the * entries in the cache. */ for (; entry_idx < 100; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* This past inserted entry is now in the cache and dirty */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; /* The entry inserted 50 insertions ago has been evicted */ expected[entry_idx - 50].in_cache = FALSE; expected[entry_idx - 50].destroyed = TRUE; /* If the newly inserted entry is among the first 24 * insertions in this loop, then the insertion will * have resulted in a flush of the entry inserted * 25 insertions ago. */ if (entry_idx < 75) { expected[entry_idx - 25].is_dirty = FALSE; expected[entry_idx - 25].serialized = TRUE; } /* If the newly inserted entry is among the last * 25 insertions in this loop, then the insertion will * have resulted in a flush of the entry inserted 26 * insertions ago. This switch is because there was two * consecutive clean entries in the cache (due to 51/49 * dirty/clean ratio when full), so instead of * flush-then-evict, it switches to evict-then-flush. */ else { expected[entry_idx - 26].is_dirty = FALSE; expected[entry_idx - 26].serialized = TRUE; } /* Verify this expected status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } } if (show_progress) /* 7 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 4: * * Flushing the entire cache, and then inserting entries into a cache * that is completely full, but all clean. * * Phases 1 and 2 are then repeated. Rather than inserting dirty entries * into an empty cache, we're inserting into a full cache that's all * clean, thus an eviction occurs before each insertion. * * When the cache finally hits the point of violating the * min_clean_size, the bottom half of the LRU will be filled with * clean entries and the top half will be filled with recently inserted * dirty entries. We'll then verify that an insertion will only evict * one entry and flush one entry, and no more. * * ======================================================================== * ======================================================================== */ if (pass) { /* Flush the cache. * * We're doing this so we can repeat the above insertions, but * starting from a cache filled with clean entries as opposed * to an empty cache. */ flush_cache(file_ptr, /* H5F_t * file_ptr */ FALSE, /* hbool_t destory_entries */ FALSE, /* hbool_t dump_stats */ FALSE); /* hbool_t dump_detailed_stats */ /* Verify that the cache is clean */ verify_clean(); /* Verify the status of the entries. * * Changes from last entry verification: * - entries w/ indices 74-99 have been flushed. */ /* entries w/ indices 74-99 have been flushed. */ for (i = 74; i < 100; i++) { expected[i].is_dirty = FALSE; expected[i].serialized = TRUE; } verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 0, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 8 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Insert 26 entries (indexes 100 through 125) into the cache. * * The cache will evict 26 entries since it's currently full with * all clean entries. None of the entries we're inserting now * will get cleaned, however. */ for (entry_idx = 100; entry_idx < 126; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* This past inserted entry is now in the cache and dirty */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; /* The entry with ID minus 50 will have been evicted */ expected[entry_idx - 50].in_cache = FALSE; expected[entry_idx - 50].destroyed = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } } if (show_progress) /* 9 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Insert the 127th entry (index = 126) into the cache. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. * * Changes from last entry verification: * - entry w/ index 76 is evicted. * - entry w/ index 100 is cleaned. * - entry w/ index 126 is now in the cache and dirty. */ /* entry w/ index 76 has been evicted. */ expected[76].in_cache = FALSE; expected[76].destroyed = TRUE; /* entry w/ index 100 has now been flushed and is now clean. */ expected[100].is_dirty = FALSE; expected[100].serialized = TRUE; /* entry w/ index 26 is now in the cache and dirty. */ expected[126].in_cache = TRUE; expected[126].is_dirty = TRUE; expected[126].deserialized = (unsigned char)deserialized; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 126, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 10 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (pass) { /* Insert entries w/ indices 127 through 149 into the cache */ for (entry_idx = 127; entry_idx < 150; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* This past inserted entry is now in the cache and dirty */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; /* The entry with ID minus 50 will have been evicted */ expected[entry_idx - 50].in_cache = FALSE; expected[entry_idx - 50].destroyed = TRUE; /* The entry with ID minus 26 will now be clean */ expected[entry_idx - 26].is_dirty = FALSE; expected[entry_idx - 26].serialized = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } } if (show_progress) /* 11 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); if (cache_ptr) { /* We're done with testing. We can take down the cache. */ takedown_cache(file_ptr, FALSE, FALSE); reset_entries(); } if (show_progress) /* 12 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", FUNC, checkpoint++, pass); HDfree(expected); if (pass) { PASSED(); } else { H5_FAILED(); } return (unsigned)!pass; } /* check_metadata_blizzard_absence() */ /*------------------------------------------------------------------------- * Function: check_flush_deps() * * Purpose: Exercise the flush dependency routines. * * Return: 0 on success, non-zero on failure * * Programmer: Quincey Koziol * 3/12/09 * *------------------------------------------------------------------------- */ static unsigned check_flush_deps(unsigned paged) { H5F_t *file_ptr = NULL; /* File for this test */ H5C_t *cache_ptr = NULL; /* Metadata cache for this test */ test_entry_t *base_addr; /* Base address of entries for test */ int entry_type = PICO_ENTRY_TYPE; /* Use very small entry size (size of entries doesn't matter) */ unsigned u; /* Local index variable */ /* clang-format off */ struct expected_entry_status expected[5] = { /* entry entry in at main flush dep flush dep child flush flush flush */ /* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */ { PICO_ENTRY_TYPE, 0, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 1, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 2, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 3, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 4, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE} }; /* clang-format on */ if (paged) TESTING("flush dependencies (paged aggregation)") else TESTING("flush dependencies") pass = TRUE; /* allocate a cache, build up flush dependency hierarchy and tear it down. * Verify that all performs as expected. */ reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; base_addr = entries[entry_type]; if (!pass) CACHE_ERROR("setup_cache failed") /* Insert entries to work with into the cache */ for (u = 0; u < 5; u++) { insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET); if (!pass) CACHE_ERROR("insert_entry failed") /* Change expected values, and verify the status of the entries * after each insertion */ expected[u].in_cache = TRUE; expected[u].is_dirty = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ /* Test Case #1 - Single flush dependency relationship */ /* Create flush dependency between entries 0 (child) & 1 (parent) */ { hbool_t in_cache, is_flush_dep_parent, is_flush_dep_child; test_entry_t *entry_ptr; protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") /* Check the parent's entry status */ entry_ptr = &(base_addr[1]); if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, &is_flush_dep_parent, &is_flush_dep_child, NULL) < 0) CACHE_ERROR("H5C_get_entry_status() failed") if (!in_cache || is_flush_dep_parent || is_flush_dep_child) CACHE_ERROR("invalid entry status") /* Check the child's entry status */ entry_ptr = &(base_addr[0]); if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, &is_flush_dep_parent, &is_flush_dep_child, NULL) < 0) CACHE_ERROR("H5C_get_entry_status() failed") if (!in_cache || is_flush_dep_parent || is_flush_dep_child) CACHE_ERROR("invalid entry status") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Check the parent's entry status */ entry_ptr = &(base_addr[1]); if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, &is_flush_dep_parent, &is_flush_dep_child, NULL) < 0) CACHE_ERROR("H5C_get_entry_status() failed") if (!in_cache || !is_flush_dep_parent || is_flush_dep_child) CACHE_ERROR("invalid entry status") /* Check the child's entry status */ entry_ptr = &(base_addr[0]); if (H5C_get_entry_status(file_ptr, entry_ptr->addr, NULL, &in_cache, NULL, NULL, NULL, NULL, &is_flush_dep_parent, &is_flush_dep_child, NULL) < 0) CACHE_ERROR("H5C_get_entry_status() failed") if (!in_cache || is_flush_dep_parent || !is_flush_dep_child) CACHE_ERROR("invalid entry status") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries 0 (child) & 1 (parent) */ { destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #2 - Multiple children for one parent flush dependency relationship */ /* Create flush dependency between entries 0, 1 (children) & 2 (parent) */ { protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 2; expected[0].flush_dep_npar = 1; expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 2; expected[2].flush_dep_ndirty_chd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries 0, 1 (children) & 2 (parent) */ { destroy_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].flush_dep_npar = 0; expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #3a1 - Single chain of flush dependencies, 4 entries tall * created from the "bottom up" and destroyed from the "top down" */ /* Create flush dependency between entries (child) 0->1->2->3 (parent) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 3; expected[2].flush_dep_npar = 1; expected[3].is_protected = TRUE; expected[3].is_pinned = TRUE; expected[3].flush_dep_nchd = 1; expected[3].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, from the "top down" */ { destroy_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[3].is_protected = FALSE; expected[3].is_pinned = FALSE; expected[3].flush_dep_nchd = 0; expected[3].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #3a2 - Single chain of flush dependencies, 4 entries tall * created from the "bottom up" and destroyed from the "bottom up" */ /* Create flush dependency between entries (child) 0->1->2->3 (parent) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 3; expected[2].flush_dep_npar = 1; expected[3].is_protected = TRUE; expected[3].is_pinned = TRUE; expected[3].flush_dep_nchd = 1; expected[3].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, from the "bottom up" */ { destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[3].is_protected = FALSE; expected[3].is_pinned = FALSE; expected[3].flush_dep_nchd = 0; expected[3].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #3b1 - Single chain of flush dependencies, 4 entries tall * created from the "top down" and destroyed from the "top down" */ /* Create flush dependency between entries (child) 0->1->2->3 (parent) */ { protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 3; expected[2].flush_dep_npar = 1; expected[3].is_protected = TRUE; expected[3].is_pinned = TRUE; expected[3].flush_dep_nchd = 1; expected[3].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, from the "top down" */ { destroy_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[3].is_protected = FALSE; expected[3].is_pinned = FALSE; expected[3].flush_dep_nchd = 0; expected[3].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #3b2 - Single chain of flush dependencies, 4 entries tall * created from the "top down" and destroyed from the "bottom up" */ /* Create flush dependency between entries (child) 0->1->2->3 (parent) */ { protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 3; expected[2].flush_dep_npar = 1; expected[3].is_protected = TRUE; expected[3].is_pinned = TRUE; expected[3].flush_dep_nchd = 1; expected[3].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, from the "bottom up" */ { destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[3].is_protected = FALSE; expected[3].is_pinned = FALSE; expected[3].flush_dep_nchd = 0; expected[3].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #4 - Multiple children for a single parent */ /* Create flush dependency between entries (child) 0,1,2,3->4 (parent) */ { protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") for (u = 0; u < 4; u++) { create_flush_dependency(entry_type, 4, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[u].flush_dep_par_type[0] = entry_type; expected[u].flush_dep_par_idx[0] = 4; expected[u].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd++; expected[4].flush_dep_ndirty_chd++; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ } /* Destroy flush dependency between entries */ { for (u = 0; u < 4; u++) { destroy_flush_dependency(entry_type, 4, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[u].flush_dep_npar = 0; expected[4].flush_dep_nchd--; expected[4].flush_dep_ndirty_chd--; /* Check for destroying flush dependency on last entry */ if (3 == u) { unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].is_protected = FALSE; expected[4].is_pinned = FALSE; } /* end if */ /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ } /* Test Case #5a - Join two flush dependency chains together, creating a single * un-forked dependency chain */ /* Create flush dependency between entries (child) 0->1 and 3->4 (parent) * then add entry 4 as a child of 0 */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 4; expected[3].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = 1; expected[4].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[4].flush_dep_par_type[0] = entry_type; expected[4].flush_dep_par_idx[0] = 0; expected[4].flush_dep_npar = 1; expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = 1; expected[0].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, detaching 3->4 from 0 first */ { destroy_flush_dependency(entry_type, 0, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].flush_dep_npar = 0; expected[0].is_protected = FALSE; expected[0].is_pinned = FALSE; expected[0].flush_dep_nchd = 0; expected[0].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[4].is_protected = FALSE; expected[4].is_pinned = FALSE; expected[4].flush_dep_nchd = 0; expected[4].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #5b - Join two flush dependency chains together, creating a * forked dependency chain */ /* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent) * then add entry 4 as a child of 1 */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5F_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 4; expected[3].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = 1; expected[4].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 1, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[4].flush_dep_par_type[0] = entry_type; expected[4].flush_dep_par_idx[0] = 1; expected[4].flush_dep_npar = 1; expected[1].flush_dep_nchd = 2; expected[1].flush_dep_ndirty_chd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, detaching 3->4 from 1 first */ { destroy_flush_dependency(entry_type, 1, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].flush_dep_npar = 0; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[4].is_protected = FALSE; expected[4].is_pinned = FALSE; expected[4].flush_dep_nchd = 0; expected[4].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #5c - Join two flush dependency chains together, creating a * forked dependency chain */ /* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent) * then add entry 4 as a child of 2 */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 4; expected[3].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = 1; expected[4].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 2, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[4].flush_dep_par_type[0] = entry_type; expected[4].flush_dep_par_idx[0] = 2; expected[4].flush_dep_npar = 1; expected[2].flush_dep_nchd = 2; expected[2].flush_dep_ndirty_chd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, detaching 3->4 from 2 first */ { destroy_flush_dependency(entry_type, 2, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].flush_dep_npar = 0; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[4].is_protected = FALSE; expected[4].is_pinned = FALSE; expected[4].flush_dep_nchd = 0; expected[4].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #6a - Make certain that flush dependency relationship with parent * already pinned works (unpin ater destroying flush dependency) */ /* Create flush dependency between entries 0 (child) & 1 (parent) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") pin_entry(entry_type, 1); if (!pass) CACHE_ERROR("pin_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Unpin entry & destroy flush dependency between entries 0 (child) & 1 (parent) */ { destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unpin_entry(entry_type, 1); if (!pass) CACHE_ERROR("unpin_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #6b - Make certain that flush dependency relationship with parent * already pinned works (unpin before destroying flush dependency) */ /* Create flush dependency between entries 0 (child) & 1 (parent) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") pin_entry(entry_type, 1); if (!pass) CACHE_ERROR("pin_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Unpin entry & destroy flush dependency between entries 0 (child) & 1 (parent) */ { unpin_entry(entry_type, 1); if (!pass) CACHE_ERROR("unpin_entry failed") /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #7 - Simple multiple parents */ /* Create flush dependency between entries (child) 0 and 1, 2 (parents) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[1] = entry_type; expected[0].flush_dep_par_idx[1] = 2; expected[0].flush_dep_npar = 2; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[2].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries */ { destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 2; expected[0].flush_dep_npar = 1; expected[1].is_protected = FALSE; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[1].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[2].is_protected = FALSE; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[2].flush_dep_ndirty_chd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } done: if (file_ptr) takedown_cache(file_ptr, FALSE, FALSE); if (pass) PASSED(); else { H5_FAILED(); HDfprintf(stdout, "%s.\n", failure_mssg); } /* end else */ return (unsigned)!pass; } /* check_flush_deps() */ /*------------------------------------------------------------------------- * Function: check_flush_deps_err() * * Purpose: Check the flush dependency routines for error conditions. * * Return: 0 on success, non-zero on failure * * Programmer: Quincey Koziol * 3/16/09 * *------------------------------------------------------------------------- */ static unsigned check_flush_deps_err(unsigned paged) { H5F_t *file_ptr = NULL; /* File for this test */ int entry_type = PICO_ENTRY_TYPE; /* Use very small entry size (size of entries doesn't matter) */ unsigned test_count; /* Test iteration variable */ if (paged) TESTING("flush dependency errors (paged aggregation)") else TESTING("flush dependency errors") pass = TRUE; /* Loop over test cases, check for various errors in configuring flush * dependencies. Verify that all performs as expected. */ for (test_count = 0; test_count < 7; test_count++) { unsigned u; /* Local index variable */ herr_t result; /* Generic return value */ /* Allocate a cache */ reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); if (!pass) CACHE_ERROR("setup_cache failed") /* Insert entries to work with into the cache */ for (u = 0; u < 10; u++) { insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET); if (!pass) CACHE_ERROR("insert_entry failed") } /* end for */ /* Various test cases */ switch (test_count) { /* Verify that parent entry in flush dependency must be protected */ case 0: result = H5C_create_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[1])); if (result != FAIL) CACHE_ERROR("Creating flush dependency with unprotected entry succeeded") break; /* Verify that entry can't have flush dependency on itself */ case 1: protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") result = H5C_create_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[0])); if (result != FAIL) CACHE_ERROR("Creating flush dependency with parent == child") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") break; /* Verify that parent entry must be protected */ case 2: result = H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[1])); if (result != FAIL) CACHE_ERROR("Destroying [non-existant] dependency when parent isn't protected") break; /* Verify that parent entry has flush dependency */ case 3: protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") result = H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[1])); if (result != FAIL) CACHE_ERROR("Destroying dependency when parent isn't in relationship") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") break; /* Verify that child entry is in flush dependency relationship */ case 4: protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") result = H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[2])); if (result != FAIL) CACHE_ERROR("Destroying dependency when child isn't in relationship") destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") break; /* Verify that parent has child as direct descendant */ case 5: protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") result = H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[4])); if (result != FAIL) CACHE_ERROR("Destroying dependency when child is not a direct descendant has no children " "at child's height") destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") destroy_flush_dependency(entry_type, 1, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") destroy_flush_dependency(entry_type, 3, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") break; /* Verify that child entry is child of parent */ case 6: protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") result = H5C_destroy_flush_dependency(&((entries[entry_type])[0]), &((entries[entry_type])[3])); if (result != FAIL) CACHE_ERROR("Destroying dependency when child isn't in relationship") destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") destroy_flush_dependency(entry_type, 2, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") break; default: CACHE_ERROR("Unknown test case!") } /* end switch */ takedown_cache(file_ptr, FALSE, FALSE); if (!pass) CACHE_ERROR("takedown_cache failed") file_ptr = NULL; } /* end for */ done: if (file_ptr) takedown_cache(file_ptr, FALSE, FALSE); if (pass) PASSED(); else { H5_FAILED(); HDfprintf(stdout, "%s.\n", failure_mssg); } /* end else */ return (unsigned)!pass; } /* check_flush_deps_err() */ /*------------------------------------------------------------------------- * Function: check_flush_deps_order() * * Purpose: Verify that the order that entries with flush dependencies * is correct * * Return: 0 on success, non-zero on failure * * Programmer: Quincey Koziol * 3/17/09 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static unsigned check_flush_deps_order(unsigned paged) { H5F_t *file_ptr = NULL; /* File for this test */ H5C_t *cache_ptr = NULL; /* Metadata cache for this test */ int entry_type = PICO_ENTRY_TYPE; /* Use very small entry size (size of entries doesn't matter) */ unsigned u; /* Local index variable */ unsigned flush_order; /* Index for tracking flush order */ /* clang-format off */ struct expected_entry_status expected[5] = { /* entry entry in at main flush dep flush dep child flush flush flush */ /* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */ { PICO_ENTRY_TYPE, 0, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 1, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 2, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 3, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { PICO_ENTRY_TYPE, 4, PICO_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE} }; /* clang-format on */ if (paged) TESTING("flush dependencies flush order (paged aggregation)") else TESTING("flush dependencies flush order") pass = TRUE; /* allocate a cache, build up flush dependency hierarchy and tear it down. * Verify that all performs as expected. */ reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); cache_ptr = file_ptr->shared->cache; if (!pass) CACHE_ERROR("setup_cache failed") /* Insert entries to work with into the cache */ for (u = 0; u < 5; u++) { insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET); if (!pass) CACHE_ERROR("insert_entry failed") /* Change expected values, and verify the status of the entries * after each insertion */ expected[u].in_cache = TRUE; expected[u].is_dirty = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ /* Test Case #1a - Single flush dependency relationship, increasing addr order */ /* Create flush dependency between entries 0 (child) & 1 (parent) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[1].flush_dep_ndirty_chd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 1; expected[1].is_protected = FALSE; expected[1].flush_dep_ndirty_chd = 0; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[4].is_dirty = FALSE; expected[4].serialized = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries 0 (child) & 1 (parent) */ { destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #1b - Single flush dependency relationship, decreasing addr order */ /* Create flush dependency between entries 0 (child) & 1 (parent) */ { protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = 1; expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 0; expected[1].flush_dep_npar = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0 & 1 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, TRUE); dirty_entry(file_ptr, entry_type, 1, FALSE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 1; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries 0 (child) & 1 (parent) */ { destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_pinned = FALSE; expected[0].flush_dep_nchd = 0; expected[1].flush_dep_npar = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #2a - Multiple children for one parent flush dependency relationship * increasing addr order */ /* Create flush dependency between entries 0, 1 (children) & 2 (parent) */ { protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 2; expected[0].flush_dep_npar = 1; expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0, 1 & 2 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, FALSE); dirty_entry(file_ptr, entry_type, 2, TRUE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 1; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 2; expected[2].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries 0, 1 (children) & 2 (parent) */ { destroy_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].flush_dep_npar = 0; expected[1].flush_dep_npar = 0; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #2b - Multiple children for one parent flush dependency relationship * decreasing addr order */ /* Create flush dependency between entries 1, 2 (children) & 0 (parent) */ { protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") create_flush_dependency(entry_type, 0, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = 2; expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 0; expected[1].flush_dep_npar = 1; expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 0; expected[2].flush_dep_npar = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0, 1 & 2 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, TRUE); dirty_entry(file_ptr, entry_type, 1, FALSE); dirty_entry(file_ptr, entry_type, 2, FALSE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 2; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 0; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries 1, 2 (children) & 0 (parent) */ { destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") destroy_flush_dependency(entry_type, 0, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_pinned = FALSE; expected[0].flush_dep_nchd = 0; expected[1].flush_dep_npar = 0; expected[2].flush_dep_npar = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #3a - Single chain of flush dependencies, 4 entries tall, * increasing addr order */ /* Create flush dependency between entries (child) 0->1->2->3 (parent) */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 3; expected[2].flush_dep_npar = 1; expected[3].is_protected = TRUE; expected[3].is_pinned = TRUE; expected[3].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-3 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 2, TRUE); dirty_entry(file_ptr, entry_type, 3, TRUE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 1; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 2; expected[2].is_protected = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 3; expected[3].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, from the "top down" */ { destroy_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[3].is_pinned = FALSE; expected[3].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #3b - Single chain of flush dependencies, 4 entries tall * decreasing addr order */ /* Create flush dependency between entries (child) 0->1->2->3 (parent) */ { protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = 1; expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 0; expected[1].flush_dep_npar = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 1; expected[2].flush_dep_npar = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 2; expected[3].flush_dep_npar = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-3 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, TRUE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 2, TRUE); dirty_entry(file_ptr, entry_type, 3, FALSE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 3; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 2; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 1; expected[2].is_protected = FALSE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, from the "bottom up" */ { destroy_flush_dependency(entry_type, 2, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; expected[3].flush_dep_npar = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; expected[2].flush_dep_npar = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].is_pinned = FALSE; expected[0].flush_dep_nchd = 0; expected[1].flush_dep_npar = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #4a - Multiple children for a single parent, increasing addr order */ /* Create flush dependency between entries (child) 0,1,2,3->4 (parent) */ { protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") for (u = 0; u < 4; u++) { create_flush_dependency(entry_type, 4, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[u].flush_dep_par_type[0] = entry_type; expected[u].flush_dep_par_idx[0] = 4; expected[u].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = u + 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-4 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, FALSE); dirty_entry(file_ptr, entry_type, 2, FALSE); dirty_entry(file_ptr, entry_type, 3, FALSE); dirty_entry(file_ptr, entry_type, 4, TRUE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; expected[4].serialized = FALSE; expected[4].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 1; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 2; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 3; expected[4].is_dirty = FALSE; expected[4].serialized = TRUE; expected[4].flush_order = 4; expected[4].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries */ { for (u = 0; u < 4; u++) { destroy_flush_dependency(entry_type, 4, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[u].flush_dep_npar = 0; expected[4].flush_dep_nchd = 3 - u; /* Check for destroying flush dependency on last entry */ if (3 == u) { /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].is_pinned = FALSE; } /* end if */ /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ } /* Test Case #4b - Multiple children for a single parent, decreasing addr order */ /* Create flush dependency between entries (child) 0,1,2,3->4 (parent) */ { protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") for (u = 1; u < 5; u++) { create_flush_dependency(entry_type, 0, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[u].flush_dep_par_type[0] = entry_type; expected[u].flush_dep_par_idx[0] = 0; expected[u].flush_dep_npar = 1; expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = u; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-4 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, TRUE); dirty_entry(file_ptr, entry_type, 1, FALSE); dirty_entry(file_ptr, entry_type, 2, FALSE); dirty_entry(file_ptr, entry_type, 3, FALSE); dirty_entry(file_ptr, entry_type, 4, FALSE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; expected[4].serialized = FALSE; expected[4].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 4; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 0; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 1; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 2; expected[4].is_dirty = FALSE; expected[4].serialized = TRUE; expected[4].flush_order = 3; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries */ { for (u = 1; u < 5; u++) { destroy_flush_dependency(entry_type, 0, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[u].flush_dep_npar = 0; expected[0].flush_dep_nchd = 4 - u; /* Check for destroying flush dependency on last entry */ if (4 == u) { /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].is_pinned = FALSE; } /* end if */ /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* end for */ } /* Test Case #5a - Join two flush dependency chains together, creating a single * un-forked dependency chain */ /* Create flush dependency between entries (child) 0->1 and 3->4 (parent) * then add entry 4 as a child of 0 */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 4; expected[3].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[4].flush_dep_par_type[0] = entry_type; expected[4].flush_dep_par_idx[0] = 0; expected[4].flush_dep_npar = 1; expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0 & 1, 3 & 4 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, TRUE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 3, FALSE); dirty_entry(file_ptr, entry_type, 4, TRUE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; expected[4].serialized = FALSE; expected[4].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 2; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 3; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 0; expected[4].is_dirty = FALSE; expected[4].serialized = TRUE; expected[4].flush_order = 1; expected[4].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, detaching 3->4 from 0 first */ { destroy_flush_dependency(entry_type, 0, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].flush_dep_npar = 0; expected[0].is_pinned = FALSE; expected[0].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[4].is_pinned = FALSE; expected[4].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #5b - Join two flush dependency chains together, creating a * forked dependency chain */ /* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent) * then add entry 4 as a child of 1 */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 4; expected[3].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 1, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[4].flush_dep_par_type[0] = entry_type; expected[4].flush_dep_par_idx[0] = 1; expected[4].flush_dep_npar = 1; expected[1].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-4 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 2, TRUE); dirty_entry(file_ptr, entry_type, 3, FALSE); dirty_entry(file_ptr, entry_type, 4, TRUE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; expected[4].serialized = FALSE; expected[4].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 3; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 4; expected[2].is_protected = FALSE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 1; expected[4].is_dirty = FALSE; expected[4].serialized = TRUE; expected[4].flush_order = 2; expected[4].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, detaching 3->4 from 1 first */ { destroy_flush_dependency(entry_type, 1, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].flush_dep_npar = 0; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[4].is_pinned = FALSE; expected[4].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #5c - Join two flush dependency chains together, creating a * forked dependency chain */ /* Create flush dependency between entries (child) 0->1->2 and 3->4 (parent) * then add entry 4 as a child of 2 */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 4); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 4; expected[3].flush_dep_npar = 1; expected[4].is_protected = TRUE; expected[4].is_pinned = TRUE; expected[4].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 2, entry_type, 4); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[4].flush_dep_par_type[0] = entry_type; expected[4].flush_dep_par_idx[0] = 2; expected[4].flush_dep_npar = 1; expected[2].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 4, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 4, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-4 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 2, TRUE); dirty_entry(file_ptr, entry_type, 3, FALSE); dirty_entry(file_ptr, entry_type, 4, TRUE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'serialized' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; expected[4].serialized = FALSE; expected[4].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 1; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 4; expected[2].is_protected = FALSE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 2; expected[4].is_dirty = FALSE; expected[4].serialized = TRUE; expected[4].flush_order = 3; expected[4].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, detaching 3->4 from 2 first */ { destroy_flush_dependency(entry_type, 2, entry_type, 4); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[4].flush_dep_npar = 0; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 4, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[4].is_pinned = FALSE; expected[4].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #6a - Interlocked multiple parents, increasing addr order */ /* Create flush dependencies between entries 0-3, with each entry a child * of every entry with a higher number. */ { protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[0] = entry_type; expected[0].flush_dep_par_idx[0] = 1; expected[0].flush_dep_npar = 1; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[1] = entry_type; expected[0].flush_dep_par_idx[1] = 2; expected[0].flush_dep_npar = 2; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 2; expected[1].flush_dep_npar = 1; expected[2].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 3); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 3, entry_type, 0); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[0].flush_dep_par_type[2] = entry_type; expected[0].flush_dep_par_idx[2] = 3; expected[0].flush_dep_npar = 3; expected[3].is_protected = TRUE; expected[3].is_pinned = TRUE; expected[3].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 3, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[1] = entry_type; expected[1].flush_dep_par_idx[1] = 3; expected[1].flush_dep_npar = 2; expected[3].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 3; expected[2].flush_dep_npar = 1; expected[3].flush_dep_nchd = 3; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 3, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-3 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 2, TRUE); dirty_entry(file_ptr, entry_type, 3, FALSE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'flushed' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 0; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 1; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 2; expected[2].is_protected = FALSE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 3; expected[3].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, in reverse order */ { destroy_flush_dependency(entry_type, 3, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[3].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 3, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 1; expected[3].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 3, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 2; expected[3].is_pinned = FALSE; expected[3].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 1; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 0); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[0].flush_dep_npar = 0; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Test Case #6b - Interlocked multiple parents, decreasing addr order */ /* Create flush dependencies between entries 0-3, with each entry a parent * of every entry with a higher number. */ { protect_entry(file_ptr, entry_type, 2); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 2, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[0] = entry_type; expected[3].flush_dep_par_idx[0] = 2; expected[3].flush_dep_npar = 1; expected[2].is_protected = TRUE; expected[2].is_pinned = TRUE; expected[2].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 1); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 1, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[1] = entry_type; expected[3].flush_dep_par_idx[1] = 1; expected[3].flush_dep_npar = 2; expected[1].is_protected = TRUE; expected[1].is_pinned = TRUE; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 1, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[0] = entry_type; expected[2].flush_dep_par_idx[0] = 1; expected[2].flush_dep_npar = 1; expected[1].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") protect_entry(file_ptr, entry_type, 0); if (!pass) CACHE_ERROR("protect_entry failed") create_flush_dependency(entry_type, 0, entry_type, 3); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[3].flush_dep_par_type[2] = entry_type; expected[3].flush_dep_par_idx[2] = 0; expected[3].flush_dep_npar = 3; expected[0].is_protected = TRUE; expected[0].is_pinned = TRUE; expected[0].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 0, entry_type, 2); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[2].flush_dep_par_type[1] = entry_type; expected[2].flush_dep_par_idx[1] = 0; expected[2].flush_dep_npar = 2; expected[0].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") create_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("create_flush_dependency failed") /* Change expected values, and verify the status of the entries * after creating flush dependency */ expected[1].flush_dep_par_type[0] = entry_type; expected[1].flush_dep_par_idx[0] = 0; expected[1].flush_dep_npar = 1; expected[0].flush_dep_nchd = 3; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Flush the cache and verify that the entries were flushed in correct order */ { add_flush_op(entry_type, 0, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 1, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 2, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); add_flush_op(entry_type, 3, FLUSH_OP__ORDER, entry_type, 0, FALSE, (size_t)0, &flush_order); unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 0, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 1, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 2, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ if (!pass) CACHE_ERROR("unprotect_entry failed") /* Mark entries 0-3 dirty, so they are flushed */ dirty_entry(file_ptr, entry_type, 0, FALSE); dirty_entry(file_ptr, entry_type, 1, TRUE); dirty_entry(file_ptr, entry_type, 2, TRUE); dirty_entry(file_ptr, entry_type, 3, FALSE); if (!pass) CACHE_ERROR("dirty_entry failed") /* Reset 'flushed' flag & 'flush_order' value in expected array */ expected[0].serialized = FALSE; expected[0].flush_order = -1; expected[1].serialized = FALSE; expected[1].flush_order = -1; expected[2].serialized = FALSE; expected[2].flush_order = -1; expected[3].serialized = FALSE; expected[3].flush_order = -1; /* Reset index for tracking flush order */ flush_order = 0; H5C_FLUSH_CACHE(file_ptr, H5C__NO_FLAGS_SET, "dummy mssg") if (!pass) CACHE_ERROR("flushing entries with flush dependendices") /* Change expected values, and verify the status of the entries * after destroy flush dependency */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; expected[0].flush_order = 3; expected[0].is_protected = FALSE; expected[1].is_dirty = FALSE; expected[1].serialized = TRUE; expected[1].flush_order = 2; expected[1].is_protected = FALSE; expected[2].is_dirty = FALSE; expected[2].serialized = TRUE; expected[2].flush_order = 1; expected[2].is_protected = FALSE; expected[3].is_dirty = FALSE; expected[3].serialized = TRUE; expected[3].flush_order = 0; expected[3].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } /* Destroy flush dependency between entries, in reverse order */ { destroy_flush_dependency(entry_type, 0, entry_type, 1); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[1].flush_dep_npar = 0; expected[0].flush_dep_nchd = 2; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 0, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 1; expected[0].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 0, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 2; expected[0].is_pinned = FALSE; expected[0].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 2); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[2].flush_dep_npar = 0; expected[1].flush_dep_nchd = 1; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 1, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 1; expected[1].is_pinned = FALSE; expected[1].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") destroy_flush_dependency(entry_type, 2, entry_type, 3); if (!pass) CACHE_ERROR("destroy_flush_dependency failed") /* Change expected values, and verify the status of the entries * after destroying flush dependency */ expected[3].flush_dep_npar = 0; expected[2].is_pinned = FALSE; expected[2].flush_dep_nchd = 0; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)0, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") } done: if (file_ptr) takedown_cache(file_ptr, FALSE, FALSE); if (pass) PASSED(); else { H5_FAILED(); HDfprintf(stdout, "%s.\n", failure_mssg); } /* end else */ return (unsigned)!pass; } /* check_flush_deps_order() */ /*------------------------------------------------------------------------- * Function: check_notify_cb() * * Purpose: Exercise the client 'notify' callback. * * Return: 0 on success, non-zero on failure * * Programmer: Quincey Koziol * 4/28/09 * *------------------------------------------------------------------------- */ static unsigned check_notify_cb(unsigned paged) { H5F_t *file_ptr = NULL; /* File for this test */ H5C_t *cache_ptr = NULL; /* Metadata cache for this test */ test_entry_t *base_addr; /* Base address of entries for test */ test_entry_t *entry_ptr; /* Cache entry to examine/manipulate */ int entry_type = NOTIFY_ENTRY_TYPE; /* Use entry w/notify callback (size of entries doesn't matter) */ unsigned u; /* Local index variable */ /* clang-format off */ struct expected_entry_status expected[5] = { /* entry entry in at main flush dep flush dep child flush flush flush */ /* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */ { NOTIFY_ENTRY_TYPE, 0, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { NOTIFY_ENTRY_TYPE, 1, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { NOTIFY_ENTRY_TYPE, 2, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { NOTIFY_ENTRY_TYPE, 3, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { NOTIFY_ENTRY_TYPE, 4, NOTIFY_ENTRY_SIZE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE} }; /* clang-format on */ if (paged) TESTING("'notify' callback (paged)") else TESTING("'notify' callback") pass = TRUE; /* Allocate a cache, insert & remove entries, triggering 'notify' callback. * Verify that all performs as expected. */ reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024), (size_t)(1 * 1024), paged); if (!file_ptr) CACHE_ERROR("setup_cache returned NULL") cache_ptr = file_ptr->shared->cache; base_addr = entries[entry_type]; if (!pass) CACHE_ERROR("setup_cache failed") /* Insert entries to work with into the cache */ for (u = 0; u < 5; u++) { insert_entry(file_ptr, entry_type, (int32_t)u, H5C__NO_FLAGS_SET); if (!pass) CACHE_ERROR("insert_entry failed") /* Change expected values, and verify the status of the entries * after each insertion */ expected[u].in_cache = TRUE; expected[u].is_dirty = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") /* Check the entry's 'after insert' count */ entry_ptr = &(base_addr[u]); if (1 != entry_ptr->notify_after_insert_count) CACHE_ERROR("invalid notify after insert count") if (0 != entry_ptr->notify_before_evict_count) CACHE_ERROR("invalid notify before evict count") } /* end for */ /* Remove entries from the cache */ for (u = 0; u < 5; u++) { expunge_entry(file_ptr, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("expunge_entry failed") /* Change expected values, and verify the status of the entries * after each expunge */ expected[u].in_cache = FALSE; expected[u].is_dirty = TRUE; expected[u].serialized = FALSE; expected[u].destroyed = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") /* Check the entry's 'before evict' count */ entry_ptr = &(base_addr[u]); if (1 != entry_ptr->notify_after_insert_count) CACHE_ERROR("invalid notify after insert count") if (1 != entry_ptr->notify_before_evict_count) CACHE_ERROR("invalid notify before evict count") } /* end for */ /* Protect entries to bring them into the cache */ for (u = 0; u < 5; u++) { protect_entry(file_ptr, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("protect_entry failed") /* Change expected values, and verify the status of the entries * after each insertion */ expected[u].in_cache = TRUE; expected[u].is_dirty = FALSE; expected[u].is_protected = TRUE; expected[u].deserialized = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") /* Check the entry's 'after insert' count */ entry_ptr = &(base_addr[u]); if (2 != entry_ptr->notify_after_insert_count) CACHE_ERROR("invalid notify after insert count") if (1 != entry_ptr->notify_before_evict_count) CACHE_ERROR("invalid notify before evict count") } /* end for */ /* Unprotect entries, evicting them from the cache */ for (u = 0; u < 5; u++) { unprotect_entry(file_ptr, entry_type, (int32_t)u, H5C__DIRTIED_FLAG); if (!pass) CACHE_ERROR("unprotect_entry failed") /* Change expected values, and verify the status of the entries * after each insertion */ expected[u].in_cache = TRUE; expected[u].is_dirty = TRUE; expected[u].is_protected = FALSE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") /* Check the entry's 'after insert' count */ entry_ptr = &(base_addr[u]); if (2 != entry_ptr->notify_after_insert_count) CACHE_ERROR("invalid notify after insert count") if (1 != entry_ptr->notify_before_evict_count) CACHE_ERROR("invalid notify before evict count") } /* end for */ /* Remove entries from the cache */ for (u = 0; u < 5; u++) { expunge_entry(file_ptr, entry_type, (int32_t)u); if (!pass) CACHE_ERROR("expunge_entry failed") /* Change expected values, and verify the status of the entries * after each expunge */ expected[u].in_cache = FALSE; expected[u].is_dirty = TRUE; expected[u].serialized = FALSE; expected[u].destroyed = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ (int)u, /* int tag */ (int)5, /* int num_entries */ expected); /* struct expected_entry_staus[] */ if (!pass) CACHE_ERROR("verify_entry_status failed") /* Check the entry's 'before evict' count */ entry_ptr = &(base_addr[u]); if (2 != entry_ptr->notify_after_insert_count) CACHE_ERROR("invalid notify after insert count") if (2 != entry_ptr->notify_before_evict_count) CACHE_ERROR("invalid notify before evict count") } /* end for */ done: takedown_cache(file_ptr, FALSE, FALSE); if (pass) PASSED(); else { H5_FAILED(); HDfprintf(stdout, "%s.\n", failure_mssg); } /* end else */ return (unsigned)!pass; } /* check_notify_cb() */ /*------------------------------------------------------------------------- * Function: check_metadata_cork * * Purpose: To verify that dirty corked entries are not evicted from the cache * but clean corked entries can be evicted from the cache. * The min_clean_size does not have effect. * NOTE: This is a modification of check_metadata_blizzard_absence(). * * Return: void * * Programmer: Vailin Choi * *------------------------------------------------------------------------- */ static unsigned check_metadata_cork(hbool_t fill_via_insertion, unsigned paged) { struct expected_entry_status *expected = NULL; const char *fcn_name = "check_metadata_cork"; int entry_type = HUGE_ENTRY_TYPE; size_t entry_size = HUGE_ENTRY_SIZE; /* 16 KB */ H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; hbool_t show_progress = FALSE; int32_t checkpoint = 0; int32_t entry_idx = 0; int32_t i; /* Expected deserialized status of entries depends on how they get into * the cache. Insertions = not deserialized, protect/unprotect = deserialized. */ hbool_t deserialized = (hbool_t) !(fill_via_insertion); expected = HDmalloc(150 * sizeof(struct expected_entry_status)); if (expected == NULL) { pass = FALSE; failure_mssg = "couldn't allocate expected entry status array\n"; } if (expected) { /* Set up the expected array. This is used to maintain a table of the * expected status of every entry used in this test. */ for (i = 0; i < 150; i++) { expected[i].entry_type = HUGE_ENTRY_TYPE; expected[i].entry_index = (int)i; expected[i].size = HUGE_ENTRY_SIZE; expected[i].in_cache = FALSE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = FALSE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = FALSE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; HDmemset(expected[i].flush_dep_par_type, 0, sizeof(expected[i].flush_dep_par_type)); HDmemset(expected[i].flush_dep_par_idx, 0, sizeof(expected[i].flush_dep_par_idx)); expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } pass = TRUE; } reset_entries(); if (fill_via_insertion) TESTING("to ensure cork/uncork metadata when inserting") else TESTING("to ensure cork/uncork metadata on protect/unprotect") if (show_progress) /* 0 */ HDfprintf(stdout, "\n%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Set up the cache. * * The max_cache_size should have room for 50 entries. * The min_clean_size is half of that, or 25 entries. */ file_ptr = setup_cache((size_t)(50 * entry_size), (size_t)(25 * entry_size), paged); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "bad return from cache intialization.\n"; } else cache_ptr = file_ptr->shared->cache; } /* Cork the cache entry type */ cork_entry_type(file_ptr, entry_type); if (show_progress) /* 1 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 1: * * Inserting dirty corked entries into an empty cache, until the cache * violates the min_clean_size requirement. * Since entries are all dirty and corked, no entry will get flushed or * evicted. * * ======================================================================== * ======================================================================== */ if (pass) { /* Insert 26 entries (indexes 0 through 25) into the cache. */ for (entry_idx = 0; entry_idx < 26; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Change expected values, and verify the status of the entries * after each insertion */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; expected[entry_idx].is_corked = TRUE; verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } } if (show_progress) /* 2 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 2: * * Inserting entries into a cache that violates the min_clean_size, * until the cache is full. * Since entries are all dirty and corked, no entry during this phase * will get flushed or evicted. * * ======================================================================== * ======================================================================== */ if (pass) { /* Insert the 27th entry (index = 26) into the cache. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. * * Expected status is that there are 27 entries in the cache, and * all entries remain the same as before since they are all corked * and dirty */ /* entry w/ index 26 is now in the cache and dirty. */ expected[26].in_cache = TRUE; expected[26].is_dirty = TRUE; expected[26].deserialized = (unsigned char)deserialized; expected[26].is_corked = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 26, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 3 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Insert the 28th entry (index = 27) into the cache. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx++, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. * * Expected status is that there are 28 entries in the cache, and * all entries are dirty corked entries. * */ expected[27].in_cache = TRUE; expected[27].is_dirty = TRUE; expected[27].deserialized = (unsigned char)deserialized; expected[27].is_corked = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 27, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 4 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Fill out the rest of the cache with entries */ /* Verify expected status of entries after each insertion */ for (; entry_idx < 50; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* * Expected status: all entries are dirty corked entries. */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; expected[entry_idx].is_corked = TRUE; /* Verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } /* Verify that the cache is now full */ if (cache_ptr->cache_full != TRUE) { pass = FALSE; failure_mssg = "cache not completely filled.\n"; } } if (show_progress) /* 5 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 3: * Inserting entries into a cache that is completely full. * No entry is flushed or evicted because all entries are dirty & corked. * * ======================================================================== * ======================================================================== */ if (show_progress) /* 6 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Insert 50 more entries (indices 50-99) into the cache. */ for (; entry_idx < 100; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* This past inserted entry is now in the cache: dirty and corked */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; expected[entry_idx].is_corked = TRUE; /* Verify this expected status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } } if (show_progress) /* 7 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); /* ======================================================================== * ======================================================================== * Phase 4: * * Flushing the entire cache, and then inserting entries into a cache * that is completely full, but all clean. * * ======================================================================== * ======================================================================== */ if (pass) { /* Flush the cache. * * We're doing this so we can repeat the above insertions, but * starting from a cache filled with clean entries as opposed * to an empty cache. */ flush_cache(file_ptr, /* H5F_t * file_ptr */ FALSE, /* hbool_t destory_entries */ FALSE, /* hbool_t dump_stats */ FALSE); /* hbool_t dump_detailed_stats */ /* Verify that the cache is clean */ verify_clean(); /* Verify the status of the entries. */ /* All entries are flushed, clean but still corked */ for (i = 0; i < 100; i++) { expected[i].serialized = TRUE; expected[i].is_dirty = FALSE; expected[i].is_corked = TRUE; } verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 0, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 8 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Will evict 50 clean "corked" entries all at once when inserting the 100th entry */ for (i = 0; i < 51; i++) { expected[i].in_cache = FALSE; expected[i].destroyed = TRUE; expected[i].is_corked = TRUE; } /* Insert the 100th entry */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 100, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 100); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 100, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* The 100th inserted entry is now in the cache and dirty */ expected[100].in_cache = TRUE; expected[100].is_dirty = TRUE; expected[100].deserialized = (unsigned char)deserialized; expected[100].is_corked = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 100, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } if (show_progress) /* 9 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Insert 25 more corked entries (indexes 101 through 125) into the cache. */ /* Clean entry will be evicted one a time */ for (entry_idx = 101; entry_idx < 126; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* The inserted entry is now in the cache and dirty */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; expected[entry_idx].is_corked = TRUE; expected[entry_idx - 50].in_cache = FALSE; expected[entry_idx - 50].destroyed = TRUE; expected[entry_idx - 50].is_corked = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } /* end for */ } if (show_progress) /* 10 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Insert the 127th entry (index = 126) into the cache. */ if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 126, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 126); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ 126, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* Verify the status of the entries. */ expected[126].in_cache = TRUE; expected[126].is_dirty = TRUE; expected[126].deserialized = (unsigned char)deserialized; expected[126].is_corked = TRUE; expected[126 - 50].in_cache = FALSE; expected[126 - 50].destroyed = TRUE; expected[126 - 50].is_corked = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ 126, /* int tag */ 150, /* int num_entries */ expected); /* expected */ } if (show_progress) /* 11 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); if (pass) { /* Insert entries w/ indices 127 through 149 into the cache */ for (entry_idx = 127; entry_idx < 150; entry_idx++) { if (fill_via_insertion) { insert_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__NO_FLAGS_SET); /* unsigned int flags */ } else { protect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx); /* int32-t idx */ unprotect_entry(file_ptr, /* H5F_t * file_ptr */ entry_type, /* int32_t type */ entry_idx, /* int32_t idx */ H5C__DIRTIED_FLAG); /* unsigned int flags */ } /* This past inserted entry is now in the cache, dirty and corked */ expected[entry_idx].in_cache = TRUE; expected[entry_idx].is_dirty = TRUE; expected[entry_idx].deserialized = (unsigned char)deserialized; expected[entry_idx].is_corked = TRUE; /* Entry that is 50 entries away will be evicted since it is clean even though corked */ expected[entry_idx - 50].in_cache = FALSE; expected[entry_idx - 50].destroyed = TRUE; expected[entry_idx - 50].is_corked = TRUE; /* verify the status */ verify_entry_status(cache_ptr, /* H5C_t * cache_ptr */ entry_idx, /* int tag */ 150, /* int num_entries */ expected); /* struct expected_entry_staus[] */ } } if (show_progress) /* 12 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); /* We're done with testing. We can take down the cache. */ takedown_cache(file_ptr, FALSE, FALSE); reset_entries(); if (show_progress) /* 13 */ HDfprintf(stdout, "%s: check point %d -- pass %d\n", fcn_name, checkpoint++, pass); HDfree(expected); if (pass) { PASSED(); } else { H5_FAILED(); } return (unsigned)!pass; } /* check_metadata_cork() */ /*------------------------------------------------------------------------- * Function: check_entry_deletions_during_scans() * * Purpose: With the addition of the H5C__TAKE_OWNERSHIP_FLAG, it is * possible for an entry to be removed from the cache as a * side effect of flushing an entry. * * For the most part, this doesn't cause problems. However, * during the scans of lists, it is possible that the entry * removed will be the next entry in the scan -- which if not * detected, will typeically cause the cache to attempt to flush * an entry that is no longer in the cache, and which may have * been deleted. * * This function contans tests for correct handling on this * situation. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/3/15 * * Modifications: * * None. * *------------------------------------------------------------------------- */ static unsigned check_entry_deletions_during_scans(unsigned paged) { H5F_t *file_ptr = NULL; if (paged) TESTING("entry deletion during list scan detection and adaption (par)") else TESTING("entry deletion during list scan detection and adaption") pass = TRUE; /* allocate a cache, and flush it under various circumstances. * To the extent possible, verify that the desired actions took * place. */ if (pass) { reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); } /* run the tests. This set of tests is somewhat eclectic, as * we are trying to test all locations where the deletion of * an entry from the cache as a side effect of the fluch of * a different entry could cause problems. */ if (pass) { cedds__expunge_dirty_entry_in_flush_test(file_ptr); } if (pass) { cedds__H5C_make_space_in_cache(file_ptr); } if (pass) { cedds__H5C__autoadjust__ageout__evict_aged_out_entries(file_ptr); } if (pass) { cedds__H5C_flush_invalidate_cache__bucket_scan(file_ptr); } takedown_cache(file_ptr, FALSE, FALSE); if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } return (unsigned)!pass; } /* check_entry_deletions_during_scans() */ /*------------------------------------------------------------------------- * * Function: cedds__expunge_dirty_entry_in_flush_test() * * Purpose: Verify that H5C_flush_cache() can handle the removal of * a dirty entry from the cache during its scan of the * skip list. * * Do this by setting up a full cache, with the last entry * on the LRU being both dirty and having a flush operation * that deletes the second to last entry on the LRU. Then * flush the cache, triggering the flush of the last * item, and thereby the deletion of the second to last item. * * H5C_flush_cache() should handle this deletion gracefully. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/4/15 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void cedds__expunge_dirty_entry_in_flush_test(H5F_t *file_ptr) { struct expected_entry_status *expected = NULL; H5C_t *cache_ptr = file_ptr->shared->cache; int i; expected = HDmalloc(36 * sizeof(struct expected_entry_status)); if (expected == NULL) { pass = FALSE; failure_mssg = "couldn't allocate expected entry status array\n"; } if (expected) { /* the expected array is used to maintain a table of the expected status of every * entry used in this test. Note that since the function that processes this * array only processes as much of it as it is told to, we don't have to * worry about maintaining the status of entries that we haven't used yet. */ for (i = 0; i < 36; i++) { expected[i].entry_type = HUGE_ENTRY_TYPE; expected[i].entry_index = (int)i; expected[i].size = HUGE_ENTRY_SIZE; expected[i].in_cache = TRUE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = TRUE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = TRUE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; for (size_t j = 0; j < MAX_FLUSH_DEP_PARS; j++) { expected[i].flush_dep_par_type[j] = -1; expected[i].flush_dep_par_idx[j] = -1; } expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } pass = TRUE; } if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to cedds expunge dirty entry in flush test."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty on entry to cedds expunge dirty entry in flush test."; } else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "unexpected cache config at start of cedds expunge dirty entry in flush test."; } else { /* set min clean size to zero for this test as it simplifies * computing the expected cache size after each operation. */ cache_ptr->min_clean_size = 0; } } if (pass) { /* The basic idea of this test is to setup the cache such * that: * * 1) the cache contains several dirty entries. * * 2) the first entry on the slist is dirty, and has a flush * operation that will remove the second entry on the * slist. * * Then load flush the cache. Cache should handle the * removal of the next entry in the slist scan gracefully. */ /* reset the stats before we start. If stats are enabled, we will * check to see if they are as expected at the end. */ H5C_stats__reset(cache_ptr); /* Load four huge entries into the cache. Recall that huge entries * are one fourth the size of monster entries (16 KB vs. 64 KB). */ for (i = 0; i < 4; i++) { protect_entry(file_ptr, HUGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != (4 * HUGE_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "unexpected size/len in cedds expunge dirty entry in flush test (1)"; } } if (pass) { /* Next, set up the flush operation: * * (HET, 0) expunges (HET, 1) * */ add_flush_op(HUGE_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, HUGE_ENTRY_TYPE, 1, FALSE, (size_t)0, NULL); } if (pass) { /* to summarize, at present the following entries * are in cache with the following characteristics: * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (HET, 0) Y 16 KB Y N - expunge (HET 1) * * (HET, 1) Y 16 KB Y N - - * * (HET, 2) Y 16 KB Y N - - * * (HET, 3) Y 16 KB Y N - - * * Recall that in this test bed, flush operations are excuted the * first time the associated entry is flushed, and are then * deleted. */ /* verify the expected status of all entries we have loaded to date: */ verify_entry_status(cache_ptr, 0, 4, expected); } /* flush the cache to run the test. In the process, clean up after test. */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "Cache flush inval failed in cedds expunge dirty entry in flush test") if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) { pass = FALSE; failure_mssg = "Unexpected cache len/size after cedds expunge dirty entry in flush test"; } } #if H5C_COLLECT_CACHE_STATS /* If we are collecting stats, check to see if we get the expected * values. */ if (pass) if ((cache_ptr->insertions[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->clears[HUGE_ENTRY_TYPE] != 1) || (cache_ptr->flushes[HUGE_ENTRY_TYPE] != 3) || (cache_ptr->evictions[HUGE_ENTRY_TYPE] != 4) || (cache_ptr->take_ownerships[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->unpins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[HUGE_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected huge size entry stats in cedds__expunge_dirty_entry_in_flush_test()."; } /* end if */ if (pass) if ((cache_ptr->slist_scan_restarts != 1) || (cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "unexpected scan restart stats in cedds__expunge_dirty_entry_in_flush_test()."; } /* end if */ #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) reset_entries(); if (pass) /* reset cache min clean size to its expected value */ cache_ptr->min_clean_size = (1 * 1024 * 1024); HDfree(expected); } /* cedds__expunge_dirty_entry_in_flush_test() */ /*------------------------------------------------------------------------- * Function: cedds__H5C_make_space_in_cache() * * Purpose: Verify that H5C__make_space_in_cache() can handle the * removal from the cache of the next item in its reverse scan * of the LRU list. * * Do this by setting up a full cache, with the last entry * on the LRU being both dirty and having a flush operation * that deleted the second to last entry on the LRU. Then * load an additional entry, triggering the flush of the last * item, and thereby the deletion of the second to last item. * * H5C__make_space_in_cache() should detect this deletion, and * restart its scan of the LRU from the tail, instead of * examining the now deleted next item up on the LRU. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/4/15 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void cedds__H5C_make_space_in_cache(H5F_t *file_ptr) { struct expected_entry_status *expected = NULL; H5C_t *cache_ptr = file_ptr->shared->cache; int i; const int num_huge_entries = 4; const int num_monster_entries = 32; expected = HDmalloc(36 * sizeof(struct expected_entry_status)); if (expected == NULL) { pass = FALSE; failure_mssg = "couldn't allocate expected entry status array\n"; } if (expected) { /* the expected array is used to maintain a table of the expected status of every * entry used in this test. Note that since the function that processes this * array only processes as much of it as it is told to, we don't have to * worry about maintaining the status of entries that we haven't used yet. */ for (i = 0; i < 36; i++) { if (i < num_huge_entries) { expected[i].entry_type = HUGE_ENTRY_TYPE; expected[i].entry_index = (int)i; expected[i].size = HUGE_ENTRY_SIZE; } else { expected[i].entry_type = MONSTER_ENTRY_TYPE; expected[i].entry_index = (int)(i - num_huge_entries); expected[i].size = MONSTER_ENTRY_SIZE; } expected[i].in_cache = TRUE; expected[i].at_main_addr = TRUE; expected[i].is_dirty = TRUE; expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = TRUE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; for (size_t j = 0; j < MAX_FLUSH_DEP_PARS; j++) { expected[i].flush_dep_par_type[j] = -1; expected[i].flush_dep_par_idx[j] = -1; } expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } pass = TRUE; } if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to cedds for H5C__make_space_in_cache() test."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at start of flush ops eviction test."; } else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "unexpected cache config at start of cedds H5C__make_space_in_cache() test."; } else { /* set min clean size to zero for this test as it simplifies * computing the expected cache size after each operation. */ cache_ptr->min_clean_size = 0; } } if (pass) { /* The basic idea of this test is to setup the cache such * that: * * 1) the cache is full * * 2) the last entry on the LRU is dirty, and has a flush * operation that will remove the second to last entry * on the LRU from the cache. * * Then load another entry into the cache. See if * H5C__make_space_in_cache() detects the removal of * the next item in the scan, and restarts the scan * from the bottom of the LRU. Note that the newly * loaded entry must be large enough to require that * the scan continue after the entry is expunged. */ /* reset the stats before we start. If stats are enabled, we will * check to see if they are as expected at the end. */ H5C_stats__reset(cache_ptr); /* Load four huge entries into the cache. Recall that huge entries * are one fourth the size of monster entries (16 KB vs. 64 KB). */ for (i = 0; i < 4; i++) { protect_entry(file_ptr, HUGE_ENTRY_TYPE, i); unprotect_entry(file_ptr, HUGE_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } if ((cache_ptr->index_len != 4) || (cache_ptr->index_size != (4 * HUGE_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "unexpected size/len in H5C__make_space_in_cache() test (1)"; } } if (pass) { /* Next, set up the flush operation: * * (HET, 0) expunges (HET, 1) * */ add_flush_op(HUGE_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, HUGE_ENTRY_TYPE, 1, FALSE, (size_t)0, NULL); } if (pass) { /* to summarize, at present the following entries * are in cache with the following characteristics: * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (HET, 0) Y 16 KB Y N - expunge (HET 1) * * (HET, 1) Y 16 KB N N - - * * (HET, 2) Y 16 KB N N - - * * (HET, 3) Y 16 KB N N - - * * Recall that in this test bed, flush operations are excuted the * first time the associated entry is flushed, and are then * deleted. */ /* Now fill up the cache with other, unrelated entries. Recall * that the cache size is 2 MB and 31 * 64 KB + 4 * 16 KP == 2 MB. */ for (i = 0; i < 31; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__DIRTIED_FLAG); } /* The cache should now be exactly full */ if ((cache_ptr->index_len != 35) || (cache_ptr->index_size != 2 * 1024 * 1024) || (cache_ptr->index_size != ((4 * HUGE_ENTRY_SIZE) + (31 * MONSTER_ENTRY_SIZE)))) { pass = FALSE; failure_mssg = "unexpected size/len in H5C__make_space_in_cache() test (2)"; } else { /* verify the expected status of all entries we have loaded to date: */ verify_entry_status(cache_ptr, 0, 35, expected); } } if (pass) { /* now load another monster entry. This should cause * H5C__make_space_in_cache() to be called. (HET 0) is dirty, and is at * the bottom of the LRU. * Thus it will be flushed, and moved to the * head of the LRU. However, during the flush, (HET 1) should be expunged * from the cache. Since (MET 1) is the next item in * H5C__make_space_in_cache(), must detect its removal from the cache, * and refrain from trying to flush it. * * Since all entries in the cache are dirty, all entries will be flushed, * and HET 0, 2, and 3 will be evicted to make room for the new * monster entry (MET, 31). * * Verify this. If H5C__make_space_in_cache() chokes, failure will * be detected in protect_entry(). Thus end the "if(pass)" clause * there so the error message will not be overwritten. */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31); } if (pass) { /* if the protect succeeded, unprotect and verify that all is at * it should be. */ unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__DIRTIED_FLAG); /* The cache should now be exactly full */ if ((cache_ptr->index_len != 32) || (cache_ptr->index_size != 2 * 1024 * 1024) || (cache_ptr->index_size != (32 * MONSTER_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "unexpected size/len in H5C__make_space_in_cache() test (3)"; } else { /* modify the expected table to match the new situation, and * then call verify_entry_status(). */ for (i = 0; i < num_huge_entries; i++) { expected[i].in_cache = FALSE; expected[i].is_dirty = FALSE; expected[i].serialized = TRUE; expected[i].destroyed = TRUE; } /* (HET, 1) was expunged, so touch its entry up accordingly */ expected[1].is_dirty = TRUE; expected[1].serialized = FALSE; for (i = num_huge_entries; i < num_huge_entries + num_monster_entries - 1; i++) { expected[i].is_dirty = FALSE; expected[i].serialized = TRUE; } /* verify the expected status of all entries: */ verify_entry_status(cache_ptr, 0, 36, expected); } } /* flush the cache and end the test. */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "Cache flush invalidate failed after flush op eviction test") if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) { pass = FALSE; failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test"; } } #if H5C_COLLECT_CACHE_STATS /* If we are collecting stats, check to see if we get the expected * values. */ if (pass) { if ((cache_ptr->insertions[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->clears[HUGE_ENTRY_TYPE] != 1) || (cache_ptr->flushes[HUGE_ENTRY_TYPE] != 3) || (cache_ptr->evictions[HUGE_ENTRY_TYPE] != 4) || (cache_ptr->take_ownerships[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->unpins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[HUGE_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[HUGE_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected large entry stats in cedds__H5C_make_space_in_cache()."; } } if (pass) if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry stats in cedds__H5C_make_space_in_cache()."; } /* end if */ if (pass) if ((cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 1) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "unexpected scan restart stats in cedds__H5C_make_space_in_cache()."; } /* end if */ #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) reset_entries(); if (pass) /* reset cache min clean size to its expected value */ cache_ptr->min_clean_size = (1 * 1024 * 1024); HDfree(expected); } /* cedds__H5C_make_space_in_cache() */ /*------------------------------------------------------------------------- * Function: cedds__H5C__autoadjust__ageout__evict_aged_out_entries() * * Purpose: Verify that H5C__autoadjust__ageout__evict_aged_out_entries() * can handle the removal from the cache of the next item in * its reverse scan of the LRU list. * * Do this by setting up a full cache, with the last entry * on the LRU being both dirty and having a flush operation * that deletes the second to last entry on the LRU. Then * access the first item in the LRU repeatedly until the * item, and thereby the deletion of the second to last item. * * H5C__make_space_in_cache() should detect this deletion, and * restart its scan of the LRU from the tail, instead of * examining the now deleted next item up on the LRU. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/4/15 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void cedds__H5C__autoadjust__ageout__evict_aged_out_entries(H5F_t *file_ptr) { struct expected_entry_status *expected = NULL; H5C_t *cache_ptr = file_ptr->shared->cache; int i; herr_t result; H5C_auto_size_ctl_t saved_auto_size_ctl; H5C_auto_size_ctl_t test_auto_size_ctl = { /* int32_t version = */ H5C__CURR_AUTO_SIZE_CTL_VER, /* H5C_auto_resize_report_fcn rpt_fcn = */ test_rpt_fcn, /* hbool_t set_initial_size = */ TRUE, /* size_t initial_size = */ (2 * 1024 * 1024), /* double min_clean_fraction = */ 0.5, /* size_t max_size = */ (8 * 1024 * 1024), /* size_t min_size = */ (1 * 1024 * 1024), /* int64_t epoch_length = */ 1000, /* enum H5C_cache_incr_mode incr_mode = */ H5C_incr__threshold, /* double lower_hr_threshold = */ 0.75, /* double increment = */ 2.0, /* hbool_t apply_max_increment = */ TRUE, /* size_t max_increment = */ (4 * 1024 * 1024), /* enum H5C_cache_flash_incr_mode */ /* flash_incr_mode = */ H5C_flash_incr__off, /* double flash_multiple = */ 2.0, /* double flash_threshold = */ 0.5, /* enum H5C_cache_decr_mode decr_mode = */ H5C_decr__age_out, /* double upper_hr_threshold = */ 0.995, /* double decrement = */ 0.5, /* hbool_t apply_max_decrement = */ FALSE, /* size_t max_decrement = */ (1 * 1024 * 1024), /* int32_t epochs_before_eviction = */ 1, /* hbool_t apply_empty_reserve = */ TRUE, /* double empty_reserve = */ 0.05}; expected = HDmalloc(36 * sizeof(struct expected_entry_status)); if (expected == NULL) { pass = FALSE; failure_mssg = "couldn't allocate expected entry status array\n"; } if (expected) { /* the expected array is used to maintain a table of the expected status of every * entry used in this test. Note that since the function that processes this * array only processes as much of it as it is told to, we don't have to * worry about maintaining the status of entries that we haven't used yet. */ for (i = 0; i < 36; i++) { expected[i].entry_type = MONSTER_ENTRY_TYPE; expected[i].entry_index = (int)i; expected[i].size = MONSTER_ENTRY_SIZE; expected[i].in_cache = TRUE; expected[i].at_main_addr = TRUE; /* NOTE: special case for first entry */ expected[i].is_dirty = (i == 0); expected[i].is_protected = FALSE; expected[i].is_pinned = FALSE; expected[i].deserialized = TRUE; expected[i].serialized = FALSE; expected[i].destroyed = FALSE; for (size_t j = 0; j < MAX_FLUSH_DEP_PARS; j++) { expected[i].flush_dep_par_type[j] = -1; expected[i].flush_dep_par_idx[j] = -1; } expected[i].flush_dep_npar = 0; expected[i].flush_dep_nchd = 0; expected[i].flush_dep_ndirty_chd = 0; expected[i].flush_order = -1; expected[i].is_corked = FALSE; } pass = TRUE; } if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to cedds for " "H5C__autoadjust__ageout__evict_aged_out_entries() test."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at start cedds for H5C__autoadjust__ageout__evict_aged_out_entries() test."; } else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "unexpected cache config at start of cedds " "H5C__autoadjust__ageout__evict_aged_out_entries() test."; } else { /* set min clean size to zero for this test as it simplifies * computing the expected cache size after each operation. */ cache_ptr->min_clean_size = 0; } } /* save the initial resize configuration so we can restore it later */ if (pass) { saved_auto_size_ctl.version = H5C__CURR_AUTO_SIZE_CTL_VER; result = H5C_get_cache_auto_resize_config(cache_ptr, &saved_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_get_cache_auto_resize_config failed."; } } /* set the resize configuration we will be using in the test */ if (pass) { result = H5C_set_cache_auto_resize_config(cache_ptr, &test_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 1.\n"; } } if (pass) { /* The basic idea of this test is to setup the cache such * that: * * 1) the cache is full * * 2) the last entry on the LRU is dirty, and has a flush * operation that will remove the second to last entry * on the LRU from the cache. * * Then access the first item in the LRU until the epoch * and H5C__autoadjust__ageout__evict_aged_out_entries() * is invoked. Verify that the function deals with the * deletion of the next item in its scan cleanly. */ /* reset the stats before we start. If stats are enabled, we will * check to see if they are as expected at the end. */ H5C_stats__reset(cache_ptr); /* load the first entry -- mark it dirty */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG); /* Then load the rest of the entries to fill the cache: * * Recall that the cache size is 2 MB and 32 * 64 KB == 2 MB. */ for (i = 1; i < 32; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } } if (pass) { /* Next, set up the flush operation: * * (MET, 0) expunges (MET, 1) * */ add_flush_op(MONSTER_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, MONSTER_ENTRY_TYPE, 1, FALSE, (size_t)0, NULL); } if (pass) { /* to summarize, at present the following entries * are in cache with the following characteristics: * * in * entry: cache? size: dirty? pinned? pins: flush operations: * * (MET, 0) Y 64 KB Y N - expunge (MET 1) * * (MET, 1-31) Y 64 KB N N - - * * Recall that in this test bed, flush operations are excuted the * first time the associated entry is flushed, and are then * deleted. */ /* The cache should now be exactly full */ if ((cache_ptr->index_len != 32) || (cache_ptr->index_size != 2 * 1024 * 1024) || (cache_ptr->index_size != (32 * MONSTER_ENTRY_SIZE))) { pass = FALSE; failure_mssg = "unexpected size/len in H5C__autoadjust__ageout__evict_aged_out_entries() test (1)"; } else { /* verify the expected status of all entries we have loaded to date: */ verify_entry_status(cache_ptr, 0, 32, expected); } } /* protect and unprotect (MET, 31) repeatedly until the end of the first epoch */ while (pass && (cache_ptr->cache_accesses > 0)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__NO_FLAGS_SET); } /* at this point, an epoch marker entry should have been inserted into the LRU */ if (pass) { /* protect and unprotect (MET, 31) again to get cache_accesses > 0 */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__NO_FLAGS_SET); } /* protect and unprotect (MET, 31) repeatedly until the end of the second epoch */ while (pass && (cache_ptr->cache_accesses > 0)) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__NO_FLAGS_SET); } /* at this point, only (MET, 0) and (MET, 31) should remain in the cache, * all other entries having been evicted by the ageout adaptive cache * resizing algorithm. (Since (MET, 0) was dirty, it was flushed and * moved to the head of the LRU by the ageout algorithm.) */ if (pass) { if ((cache_ptr->index_len != 2) || (cache_ptr->index_size != 2 * MONSTER_ENTRY_SIZE)) { pass = FALSE; failure_mssg = "unexpected size/len in H5C__autoadjust__ageout__evict_aged_out_entries() test (2)"; } else { /* update the expected table to reflect the expected values at * this point, and then verify. */ expected[0].is_dirty = FALSE; expected[0].serialized = TRUE; for (i = 1; i < 31; i++) { expected[i].in_cache = FALSE; expected[i].is_dirty = FALSE; expected[i].destroyed = TRUE; } verify_entry_status(cache_ptr, 0, 32, expected); } } /* restore the initial resize configuration */ if (pass) { saved_auto_size_ctl.set_initial_size = TRUE; saved_auto_size_ctl.initial_size = 2 * 1024 * 1024; result = H5C_set_cache_auto_resize_config(cache_ptr, &saved_auto_size_ctl); if (result != SUCCEED) { pass = FALSE; failure_mssg = "H5C_set_cache_auto_resize_config failed 2.\n"; } } /* flush the cache and end the test. */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "Cache flush invalidate failed after flush op eviction test") if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) { pass = FALSE; failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test"; } } #if H5C_COLLECT_CACHE_STATS /* If we are collecting stats, check to see if we get the expected * values. */ if (pass) if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry stats in cedds__H5C__autoadjust__ageout__evict_aged_out_entries()."; } /* end if */ if (pass) if ((cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 1) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "unexpected scan restart stats in cedds__H5C__autoadjust__ageout__evict_aged_out_entries()."; } /* end if */ #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) reset_entries(); if (pass) /* reset cache min clean size to its expected value */ cache_ptr->min_clean_size = (1 * 1024 * 1024); HDfree(expected); } /* cedds__H5C__autoadjust__ageout__evict_aged_out_entries() */ /*------------------------------------------------------------------------- * Function: cedds__H5C_flush_invalidate_cache__bucket_scan() * * Purpose: Note: We now use the index list when we scan the * contents of the metadata cache, so in principal, * this test is obsolete. However, even using the * index list, restarts are possible, and must be * handled gracefully. * * As it turns out, this test triggers index list * scan restarts, and thus with minor changes is * still a useful test. * * For this reason, with the exception of changing * to check the index_scan_restart stat instead of * hash bucket restarts, I'm leaving the test * alone. If and when it starts to fail due to * other changes, we can re-work it to test * index list scan restarts explicitly. * * JRM -- 11/2/16 * * Verify that H5C_flush_invalidate_cache() can handle * the removal from the cache of the next item in * its scans of hash buckets. * * !!!!!!!!!!WARNING !!!!!!!!!! * * This test may fail to function correctly if the hash * table size or hash function is altered. * * To setup the test, this function depends on the fact that * H5C_flush_invalidate_cache() does alternating scans of the * slist and the index. If this changes, the test will likely * also cease to function correctly. * * The test relies on a known hash function and hash table * size to select a set of test entries that will all hash * to the same hash bucket -- call it the test hash bucket. * It also relies on known behavior of the cache to place * the entries in the test bucket in a known order. * * To avoid pre-mature flushes of the entries in the * test hash bucket, all entries are initially clean, * with the exception of the first entry which is dirty. * It avoids premature flushing by being the parent in * a flush dependency. The first entry in the test bucket * also has a flush op which expunges the second entry -- * setting up the failure. * * An additional dirty entry is added (which must hash * to a different bucket, and must have a higher address * than at least the first entry in the test hash bucket. * This entry is the child in a flush dependency with the * first entry in the above hash bucket, and contains * a flush op to destroy this flush dependency. * * Since the first entry in the test hash bucket has a lower * address that the other dirty entry, the scan of the * slist encounters it first, and passes over it because * it has a flush dependency height of 1. * * The scan then encounters the second dirty entry and flushes * it -- causing it to destroy the flush dependency and thus * reducing the flush dependency height of the first entry in * the test hash bucket to zero. * * After completing a scan of the slist, * H5C_flush_invalidate_cache() then scans the index, * flushing all entries of flush dependency height zero. * * This sets up the potential error when the first entry * in the test hash bucket is flushed -- expunging the * second entry as a side effect. If * H5C_flush_invalidate_cache() fails to detect this, * it will attempt to continue its scan of the bucket with * an entry that has been deleted from the cache. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/9/15 * * Modifications: * * Added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * *------------------------------------------------------------------------- */ static void cedds__H5C_flush_invalidate_cache__bucket_scan(H5F_t *file_ptr) { H5C_t *cache_ptr = file_ptr->shared->cache; int i; int expected_hash_bucket = 0; haddr_t entry_addr; test_entry_t *entry_ptr; test_entry_t *base_addr = NULL; struct H5C_cache_entry_t *scan_ptr; /* clang-format off */ struct expected_entry_status expected[5] = { /* the expected array is used to maintain a table of the expected status of every * entry used in this test. Note that since the function that processes this * array only processes as much of it as it is told to, we don't have to * worry about maintaining the status of entries that we haven't used yet. */ /* entry entry in at main flush dep flush dep child flush flush flush */ /* type: index: size: cache: addr: dirty: prot: pinned: dsrlzd: srlzd: dest: par type[]: par idx[]: dep npart: dep nchd: dep ndirty chd: order: corked: */ { MONSTER_ENTRY_TYPE, 0, MONSTER_ENTRY_SIZE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 1, 1, -1, FALSE}, { MONSTER_ENTRY_TYPE, 8, MONSTER_ENTRY_SIZE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { MONSTER_ENTRY_TYPE, 16, MONSTER_ENTRY_SIZE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { MONSTER_ENTRY_TYPE, 24, MONSTER_ENTRY_SIZE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, {-1,0,0,0,0,0,0,0}, {-1,0,0,0,0,0,0,0}, 0, 0, 0, -1, FALSE}, { MONSTER_ENTRY_TYPE, 31, MONSTER_ENTRY_SIZE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, {MONSTER_ENTRY_TYPE,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, 1, 0, 0, -1, FALSE}, }; /* clang-format on */ if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to cedds for cedds__H5C_flush_invalidate_cache__bucket_scan() test."; } else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty at start cedds for cedds__H5C_flush_invalidate_cache__bucket_scan() test."; } else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "unexpected cache config at start of cedds " "cedds__H5C_flush_invalidate_cache__bucket_scan() test."; } else { /* set min clean size to zero for this test as it simplifies * computing the expected cache size after each operation. */ cache_ptr->min_clean_size = 0; } } if (pass) { /* reset the stats before we start. If stats are enabled, we will * check to see if they are as expected at the end. */ H5C_stats__reset(cache_ptr); /* load one dirty and three clean entries that should hash to the * same hash bucket. */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG); for (i = 8; i <= 24; i += 8) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } } if (pass) { /* verify that the above entries hash to the same bucket */ base_addr = entries[MONSTER_ENTRY_TYPE]; entry_ptr = &(base_addr[0]); entry_addr = entry_ptr->header.addr; HDassert(entry_addr == entry_ptr->addr); expected_hash_bucket = H5C__HASH_FCN(entry_addr); for (i = 8; i <= 24; i += 8) { entry_ptr = &(base_addr[i]); entry_addr = entry_ptr->header.addr; if (expected_hash_bucket != H5C__HASH_FCN(entry_addr)) { pass = FALSE; failure_mssg = "Test entries don't map to same bucket -- hash table size or hash fcn change?"; } } } if (pass) { /* setup the expunge flush operation: * * (MET, 0) expunges (MET, 8) * */ add_flush_op(MONSTER_ENTRY_TYPE, 0, FLUSH_OP__EXPUNGE, MONSTER_ENTRY_TYPE, 8, FALSE, (size_t)0, NULL); } if (pass) { /* load the entry that will have a flush dependencey with (MET, 0), * thus preventing it from being flushed on the first pass through * the skip list. */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 31, H5C__DIRTIED_FLAG); } if (pass) { /* verify that the dirty entry doesn't map to the same * hash bucket as the clean entries. */ entry_ptr = &(base_addr[31]); entry_addr = entry_ptr->header.addr; if (expected_hash_bucket == H5C__HASH_FCN(entry_addr)) { pass = FALSE; failure_mssg = "Dirty entry maps to same hash bucket as clean entries?!?!"; } } if (pass) { /* Next, create the flush dependency requiring (MET, 31) to * be flushed prior to (MET, 0). */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0); create_flush_dependency(MONSTER_ENTRY_TYPE, 0, MONSTER_ENTRY_TYPE, 31); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 0, H5C__DIRTIED_FLAG); } if (pass) { /* Then, setup the flush operation to take down the flush * dependency when (MET, 31) is flushed. * * (MET, 31) destroys flush dependency with (MET, 8) * */ add_flush_op(MONSTER_ENTRY_TYPE, 31, FLUSH_OP__DEST_FLUSH_DEP, MONSTER_ENTRY_TYPE, 0, FALSE, (size_t)0, NULL); } if (pass) { /* verify the expected status of all entries we have loaded to date: */ verify_entry_status(cache_ptr, 0, 5, expected); } if (pass) { /* now do some protect / unprotect cycles to force the * entries into the desired order in the hash bucket. * Recall that entries are moved to the head of the * hash bucket list on lookup. */ for (i = 24; i >= 0; i -= 8) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } } if (pass) { /* scan the hash bucket to verify that the expected entries appear * in the expected order. */ scan_ptr = cache_ptr->index[expected_hash_bucket]; i = 0; while (pass && (i <= 24)) { entry_ptr = &(base_addr[i]); if (scan_ptr == NULL) { pass = FALSE; failure_mssg = "premature end of hash bucket list?!?!"; } else if ((scan_ptr == NULL) || (scan_ptr != &(entry_ptr->header))) { pass = FALSE; failure_mssg = "bad test hash bucket setup?!?!"; } if (pass) { scan_ptr = scan_ptr->ht_next; i += 8; } } } /* test setup complete -- flush the cache to run and end the test. */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "Cache flush invalidate failed after flush op eviction test") if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) { pass = FALSE; failure_mssg = "Unexpected cache len/size after cleanup of flush op eviction test"; } } #if H5C_COLLECT_CACHE_STATS /* If we are collecting stats, check to see if we get the expected * values. */ if (pass) if ((cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 2) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 5) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry stats in cedds__H5C_flush_invalidate_cache__bucket_scan()."; } /* end if */ if (pass) /* as this test is now checking for index list scan restarts, * the following has been modified to check this instead of * hash bucket scan restarts. */ if ((cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 1)) { pass = FALSE; failure_mssg = "unexpected scan restart stats in cedds__H5C_flush_invalidate_cache__bucket_scan()."; } #endif /* H5C_COLLECT_CACHE_STATS */ if (pass) reset_entries(); if (pass) /* reset cache min clean size to its expected value */ cache_ptr->min_clean_size = (1 * 1024 * 1024); } /* cedds__H5C_flush_invalidate_cache__bucket_scan() */ /*------------------------------------------------------------------------- * Function: check_stats() * * Purpose: If stats are enabled, conduct tests to verify correct * functioning of the cache statistics collection code. * * Skip the test if stats are not enabled. * * At present this test is a shell -- fill it out at time * permits. * * Return: void * * Programmer: John Mainzer * 4/12/15 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned check_stats(unsigned paged) { #if H5C_COLLECT_CACHE_STATS H5F_t *file_ptr = NULL; #endif /* H5C_COLLECT_CACHE_STATS */ if (paged) TESTING("metadata cache statistics collection (paged aggregation)") else TESTING("metadata cache statistics collection") #if H5C_COLLECT_CACHE_STATS pass = TRUE; reset_entries(); file_ptr = setup_cache((size_t)(2 * 1024 * 1024), (size_t)(1 * 1024 * 1024), paged); if (pass) { check_stats__smoke_check_1(file_ptr); } if (pass) { takedown_cache(file_ptr, FALSE, FALSE); } if (pass) { PASSED(); } else { H5_FAILED(); } if (!pass) { HDfprintf(stdout, "%s(): failure_mssg = \"%s\".\n", FUNC, failure_mssg); } #else /* H5C_COLLECT_CACHE_STATS */ SKIPPED(); HDfprintf(stdout, " Statistics collection disabled.\n"); #endif /* H5C_COLLECT_CACHE_STATS */ return (unsigned)!pass; } /* check_stats() */ /*------------------------------------------------------------------------- * Function: check_stats__smoke_check_1() * * Purpose: Test to see if the statistics collection code is working * more or less as expected. Do this by performing a number * of operations in the cache, and checking to verify that * they result in the expected statistics. * * Note that this function is not intended to be a full test * of the statistics collection facility -- only a cursory * check that will serve as a place holder until more complete * tests are implemented. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/22/15 * * Modifications: * * Modified slist stats checks to allow for the case that * the slist is disabled. * * Also added code to setup and take down the skip list before * and after calls to H5C_flush_cache(). Do this via the * H5C_FLUSH_CACHE macro. * * JRM -- 5/14/20 * * *------------------------------------------------------------------------- */ #if H5C_COLLECT_CACHE_STATS static void check_stats__smoke_check_1(H5F_t *file_ptr) { H5C_t *cache_ptr = file_ptr->shared->cache; int i; if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "cache_ptr NULL on entry to check_stats__smoke_check_1()."; } /* end if */ else if ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0)) { pass = FALSE; failure_mssg = "cache not empty on entry to check_stats__smoke_check_1()."; } /* end else-if */ else if ((cache_ptr->max_cache_size != (2 * 1024 * 1024)) || (cache_ptr->min_clean_size != (1 * 1024 * 1024))) { pass = FALSE; failure_mssg = "unexpected cache config at start of check_stats__smoke_check_1()."; } /* end else-if */ else { /* set min clean size to zero for this test as it simplifies * computing the expected cache size after each operation. */ cache_ptr->min_clean_size = 0; } /* end else */ } /* end if */ if (pass) /* first fill the cache with monster entryies via insertion */ for (i = 0; i < 32; i++) insert_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); if (pass) if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(1)."; } /* end if */ if (pass) { if ((cache_ptr->total_ht_insertions != 32) || (cache_ptr->total_ht_deletions != 0) || (cache_ptr->successful_ht_searches != 0) || (cache_ptr->total_successful_ht_search_depth != 0) || (cache_ptr->failed_ht_searches != 32) || (cache_ptr->total_failed_ht_search_depth != 48) || (cache_ptr->max_index_len != 32) || (cache_ptr->max_index_size != 2 * 1024 * 1024) || (cache_ptr->max_clean_index_size != 0) || (cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) || ((cache_ptr->slist_enabled) && ((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) || (cache_ptr->max_pl_len != 0) || (cache_ptr->max_pl_size != 0) || (cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) || (cache_ptr->calls_to_msic != 0) || (cache_ptr->total_entries_skipped_in_msic != 0) || (cache_ptr->total_entries_scanned_in_msic != 0) || (cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 0) || (cache_ptr->entries_scanned_to_make_space != 0) || (cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(1)."; } /* end if */ } #if H5C_COLLECT_CACHE_ENTRY_STATS if (pass) /* Note that most entry level stats are only updated on entry eviction */ if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1000000) || /* initial value */ (cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) || (cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(1)."; } /* end if */ #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ if (pass) /* protect and unprotect each entry once. Note * that all entries are already dirty, as they * entered the cache via insertion */ for (i = 0; i < 32; i++) { protect_entry(file_ptr, MONSTER_ENTRY_TYPE, i); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, i, H5C__NO_FLAGS_SET); } /* end for */ if (pass) if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(2)."; } /* end if */ if (pass) { if ((cache_ptr->total_ht_insertions != 32) || (cache_ptr->total_ht_deletions != 0) || (cache_ptr->successful_ht_searches != 32) || (cache_ptr->total_successful_ht_search_depth != 96) || (cache_ptr->failed_ht_searches != 32) || (cache_ptr->total_failed_ht_search_depth != 48) || (cache_ptr->max_index_len != 32) || (cache_ptr->max_index_size != 2 * 1024 * 1024) || (cache_ptr->max_clean_index_size != 0) || (cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) || ((cache_ptr->slist_enabled) && ((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) || (cache_ptr->max_pl_len != 1) || (cache_ptr->max_pl_size != 64 * 1024) || (cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) || (cache_ptr->calls_to_msic != 0) || (cache_ptr->total_entries_skipped_in_msic != 0) || (cache_ptr->total_entries_scanned_in_msic != 0) || (cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 0) || (cache_ptr->entries_scanned_to_make_space != 0) || (cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(2)."; } /* end if */ } #if H5C_COLLECT_CACHE_ENTRY_STATS if (pass) /* Note that most entry level stats are only updated on entry eviction */ if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1000000) || /* initial value */ (cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) || (cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(2)."; } /* end if */ #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ if (pass) { /* protect and unprotect an entry that is not currently * in the cache. Since the cache is full and all entries * are dirty, this will force a flush of each entry, and * the eviction of (MET, 0). */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 32); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 32, H5C__DIRTIED_FLAG); } /* end if */ if (pass) if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 33) || (cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(3)."; } /* end if */ if (pass) { if ((cache_ptr->total_ht_insertions != 33) || (cache_ptr->total_ht_deletions != 1) || (cache_ptr->successful_ht_searches != 32) || (cache_ptr->total_successful_ht_search_depth != 96) || (cache_ptr->failed_ht_searches != 33) || (cache_ptr->total_failed_ht_search_depth != 52) || (cache_ptr->max_index_len != 32) || (cache_ptr->max_index_size != 2 * 1024 * 1024) || (cache_ptr->max_clean_index_size != 2 * 1024 * 1024) || (cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) || ((cache_ptr->slist_enabled) && ((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) || (cache_ptr->max_pl_len != 1) || (cache_ptr->max_pl_size != 64 * 1024) || (cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) || (cache_ptr->calls_to_msic != 1) || (cache_ptr->total_entries_skipped_in_msic != 0) || (cache_ptr->total_entries_scanned_in_msic != 33) || (cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 33) || (cache_ptr->entries_scanned_to_make_space != 33) || (cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(3)."; } /* end if */ } #if H5C_COLLECT_CACHE_ENTRY_STATS if (pass) /* Note that most entry level stats are only updated on entry eviction */ if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) || (cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(3)."; } /* end if */ #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ if (pass) { /* protect and unprotect dirty (MET, 1), and then flush destroy * the cache. */ protect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1); unprotect_entry(file_ptr, MONSTER_ENTRY_TYPE, 1, H5C__DIRTIED_FLAG); } /* end if */ /* flush the cache to end the test and collect all entry stats */ if (pass) { H5C_FLUSH_CACHE(file_ptr, H5C__FLUSH_INVALIDATE_FLAG, "Cache flush invalidate failed in check_stats__smoke_check_1()") if ((pass) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0))) { pass = FALSE; failure_mssg = "Unexpected cache len/size after check_stats__smoke_check_1()"; } /* end else-if */ } /* end if */ if (pass) if ((cache_ptr->hits[MONSTER_ENTRY_TYPE] != 33) || (cache_ptr->misses[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->write_protects[MONSTER_ENTRY_TYPE] != 34) || (cache_ptr->read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_read_protects[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->insertions[MONSTER_ENTRY_TYPE] != 32) || (cache_ptr->pinned_insertions[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->flushes[MONSTER_ENTRY_TYPE] != 34) || (cache_ptr->evictions[MONSTER_ENTRY_TYPE] != 33) || (cache_ptr->take_ownerships[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_moves[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->unpins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->dirty_pins[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_flushes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->pinned_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_increases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->size_decreases[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->entry_flush_size_changes[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->cache_flush_size_changes[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster size entry stats in check_stats__smoke_check_1(4)."; } /* end if */ if (pass) { if ((cache_ptr->total_ht_insertions != 33) || (cache_ptr->total_ht_deletions != 33) || (cache_ptr->successful_ht_searches != 33) || (cache_ptr->total_successful_ht_search_depth != 99) || (cache_ptr->failed_ht_searches != 33) || (cache_ptr->total_failed_ht_search_depth != 52) || (cache_ptr->max_index_len != 32) || (cache_ptr->max_index_size != 2 * 1024 * 1024) || (cache_ptr->max_clean_index_size != 2 * 1024 * 1024) || (cache_ptr->max_dirty_index_size != 2 * 1024 * 1024) || ((cache_ptr->slist_enabled) && ((cache_ptr->max_slist_len != 32) || (cache_ptr->max_slist_size != 2 * 1024 * 1024))) || (cache_ptr->max_pl_len != 1) || (cache_ptr->max_pl_size != 64 * 1024) || (cache_ptr->max_pel_len != 0) || (cache_ptr->max_pel_size != 0) || (cache_ptr->calls_to_msic != 1) || (cache_ptr->total_entries_skipped_in_msic != 0) || (cache_ptr->total_entries_scanned_in_msic != 33) || (cache_ptr->max_entries_skipped_in_msic != 0) || (cache_ptr->max_entries_scanned_in_msic != 33) || (cache_ptr->entries_scanned_to_make_space != 33) || (cache_ptr->slist_scan_restarts != 0) || (cache_ptr->LRU_scan_restarts != 0) || (cache_ptr->index_scan_restarts != 0)) { pass = FALSE; failure_mssg = "Unexpected cache stats in check_stats__smoke_check_1(4)."; } /* end if */ } #if H5C_COLLECT_CACHE_ENTRY_STATS if (pass) /* Note that most entry level stats are only updated on entry eviction */ if ((cache_ptr->max_accesses[MONSTER_ENTRY_TYPE] != 2) || (cache_ptr->min_accesses[MONSTER_ENTRY_TYPE] != 1) || (cache_ptr->max_clears[MONSTER_ENTRY_TYPE] != 0) || (cache_ptr->max_flushes[MONSTER_ENTRY_TYPE] != 2) || (cache_ptr->max_size[MONSTER_ENTRY_TYPE] != 64 * 1024) || (cache_ptr->max_pins[MONSTER_ENTRY_TYPE] != 0)) { pass = FALSE; failure_mssg = "Unexpected monster entry level stats in check_stats__smoke_check_1(4)."; } /* end if */ #endif /* H5C_COLLECT_CACHE_ENTRY_STATS */ if (pass) reset_entries(); if (pass) /* reset cache min clean size to its expected value */ cache_ptr->min_clean_size = (1 * 1024 * 1024); } /* check_stats__smoke_check_1() */ #endif /* H5C_COLLECT_CACHE_STATS */ /* Call back functions: */ /*------------------------------------------------------------------------- * * Function: check_if_write_permitted * * Purpose: Determine if a write is permitted under the current * circumstances, and set *write_permitted_ptr accordingly. * As a general rule it is, but when we are running in parallel * mode with collective I/O, we must ensure that a read cannot * cause a write. * * In the event of failure, the value of *write_permitted_ptr * is undefined. * * Return: Non-negative on success/Negative on failure. * * Programmer: John Mainzer, 5/15/04 * *------------------------------------------------------------------------- */ static herr_t check_write_permitted(const H5F_t H5_ATTR_UNUSED *f, hbool_t *write_permitted_ptr) { HDassert(write_permitted_ptr); *write_permitted_ptr = write_permitted; return (SUCCEED); } /* check_write_permitted() */ /***************************************************************************** * * Function: setup_cache() * * Purpose: Open an HDF file. This will allocate an instance and * initialize an associated instance of H5C_t. However, * we want to test an instance of H5C_t, so allocate and * initialize one with the file ID returned by the call to * H5Fcreate(). Return a pointer to this instance of H5C_t. * * Observe that we open a HDF file because the cache now * writes directly to file, and we need the file I/O facilities * associated with the file. * * To avoid tripping on error check code, must allocate enough * space in the file to hold all the test entries and their * alternates. This is a little sticky, as the addresses of * all the test entries are determined at compile time. * * Deal with this by choosing BASE_ADDR large enough that * the base address of the allocate space will be less than * or equal to BASE_ADDR, and then requesting an extra BASE_ADDR * bytes, so we don't have to wory about exceeding the allocation. * * Return: Success: Ptr to H5C_t * * Failure: NULL * * Programmer: JRM -- 9/13/07 * *****************************************************************************/ H5F_t * setup_cache(size_t max_cache_size, size_t min_clean_size, unsigned paged) { char filename[512]; hbool_t show_progress = FALSE; hbool_t verbose = TRUE; int mile_stone = 1; hid_t fid = -1; H5F_t *file_ptr = NULL; H5C_t *cache_ptr = NULL; H5F_t *ret_val = NULL; haddr_t actual_base_addr; hid_t fapl_id = H5P_DEFAULT; hid_t fcpl_id = H5P_DEFAULT; if (show_progress) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); saved_fid = -1; if (pass) { if ((fcpl_id = H5Pcreate(H5P_FILE_CREATE)) == FAIL) { pass = FALSE; failure_mssg = "H5Pcreate(H5P_FILE_CREATE) failed.\n"; } } if (pass && paged) { /* Set up paged aggregation strategy */ if (H5Pset_file_space_strategy(fcpl_id, H5F_FSPACE_STRATEGY_PAGE, 1, (hsize_t)1) == FAIL) { pass = FALSE; failure_mssg = "H5Pset_file_space_strategy() failed.\n"; H5Pclose(fcpl_id); fcpl_id = H5P_DEFAULT; } } if (pass && paged) { /* Set up file space page size to BASE_ADDR */ if (H5Pset_file_space_page_size(fcpl_id, (hsize_t)BASE_ADDR) == FAIL) { pass = FALSE; failure_mssg = "H5Pset_file_space_page_size() failed.\n"; H5Pclose(fcpl_id); fcpl_id = H5P_DEFAULT; } } if (pass) saved_fcpl_id = fcpl_id; /* setup the file name */ if (pass) { if (NULL == h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename))) { pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } } if (show_progress) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass && try_core_file_driver) { if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == FAIL) { pass = FALSE; failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n"; } else if (H5Pset_fapl_core(fapl_id, MAX_ADDR, FALSE) < 0) { H5Pclose(fapl_id); fapl_id = H5P_DEFAULT; pass = FALSE; failure_mssg = "H5P_set_fapl_core() failed.\n"; } else if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl_id, fapl_id)) < 0) { core_file_driver_failed = TRUE; if (verbose) HDfprintf(stdout, "%s: H5Fcreate() with CFD failed.\n", FUNC); } else { saved_fapl_id = fapl_id; } } if (show_progress) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); /* if we either aren't using the core file driver, or a create * with the core file driver failed, try again with a regular file. * If this fails, we are cooked. */ if (pass && fid < 0) { fid = H5Fcreate(filename, H5F_ACC_TRUNC, fcpl_id, fapl_id); saved_fid = fid; if (fid < 0) { pass = FALSE; failure_mssg = "H5Fcreate() failed."; if (verbose) HDfprintf(stdout, "%s: H5Fcreate() failed.\n", FUNC); } /* end if */ } /* end if */ /* Push API context */ H5CX_push(); if (show_progress) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { HDassert(fid >= 0); saved_fid = fid; if (H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0) { pass = FALSE; failure_mssg = "H5Fflush() failed."; if (verbose) HDfprintf(stdout, "%s: H5Fflush() failed.\n", FUNC); } else { file_ptr = (H5F_t *)H5I_object_verify(fid, H5I_FILE); if (file_ptr == NULL) { pass = FALSE; failure_mssg = "Can't get file_ptr."; if (verbose) HDfprintf(stdout, "%s: H5Fflush() failed.\n", FUNC); } } } if (show_progress) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* A bit of fancy footwork here: * * The call to H5Fcreate() allocates an instance of H5C_t, * initializes it, and stores its address in f->shared->cache. * * We don't want to use this cache, as it has a bunch of extra * initialization that may change over time, and in any case * it will not in general be configured the way we want it. * * We used to deal with this problem by storing the file pointer * in another instance of H5C_t, and then ignoring the original * version. However, this strategy doesn't work any more, as * we can't store the file pointer in the instance of H5C_t, * and we have modified many cache routines to use a file * pointer to look up the target cache. * * Thus we now make note of the address of the instance of * H5C_t created by the call to H5Fcreate(), set * file_ptr->shared->cache to NULL, call H5C_create() * to allocate a new instance of H5C_t for test purposes, * and store than new instance's address in * file_ptr->shared->cache. * * On shut down, we call H5C_dest on our instance of H5C_t, * set file_ptr->shared->cache to point to the original * instance, and then close the file normally. */ HDassert(saved_cache == NULL); saved_cache = file_ptr->shared->cache; file_ptr->shared->cache = NULL; cache_ptr = H5C_create(max_cache_size, min_clean_size, (NUMBER_OF_ENTRY_TYPES - 1), types, check_write_permitted, TRUE, NULL, NULL); file_ptr->shared->cache = cache_ptr; } if (show_progress) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { if (cache_ptr == NULL) { pass = FALSE; failure_mssg = "H5C_create() failed."; if (verbose) HDfprintf(stdout, "%s: H5C_create() failed.\n", FUNC); } else if (cache_ptr->magic != H5C__H5C_T_MAGIC) { pass = FALSE; failure_mssg = "Bad cache_ptr magic."; if (verbose) HDfprintf(stdout, "%s: Bad cache_ptr magic.\n", FUNC); } } if (show_progress) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* allocate space for test entries */ actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, (hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR)); if (actual_base_addr == HADDR_UNDEF) { pass = FALSE; failure_mssg = "H5MF_alloc() failed."; if (verbose) HDfprintf(stdout, "%s: H5MF_alloc() failed.\n", FUNC); } else if (actual_base_addr > BASE_ADDR) { /* If this happens, must increase BASE_ADDR so that the * actual_base_addr is <= BASE_ADDR. This should only happen * if the size of the superblock is increase. */ pass = FALSE; failure_mssg = "actual_base_addr > BASE_ADDR"; if (verbose) HDfprintf(stdout, "%s: actual_base_addr > BASE_ADDR.\n", FUNC); } saved_actual_base_addr = actual_base_addr; } if (show_progress) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); if (pass) { /* Need to set this else all cache tests will fail */ cache_ptr->ignore_tags = TRUE; H5C_stats__reset(cache_ptr); ret_val = file_ptr; } if (show_progress) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", FUNC, mile_stone++, (int)pass); return (ret_val); } /* setup_cache() */ /*------------------------------------------------------------------------- * Function: takedown_cache() * * Purpose: Flush the specified cache and destroy it. If requested, * dump stats first. Then close and delete the associate * file. * * If pass is FALSE, do nothing. * * Return: void * * Programmer: John Mainzer * 9/14/07 * *------------------------------------------------------------------------- */ void takedown_cache(H5F_t *file_ptr, hbool_t dump_stats, hbool_t dump_detailed_stats) { char filename[512]; if (file_ptr != NULL) { H5C_t *cache_ptr = file_ptr->shared->cache; if (dump_stats) { H5C_stats(cache_ptr, "test cache", dump_detailed_stats); } if (H5C_prep_for_file_close(file_ptr) < 0) { pass = FALSE; failure_mssg = "unexpected failure of prep for file close.\n"; } flush_cache(file_ptr, TRUE, FALSE, FALSE); H5C_dest(file_ptr); if (saved_cache != NULL) { file_ptr->shared->cache = saved_cache; saved_cache = NULL; } } if (saved_fapl_id != H5P_DEFAULT) { H5Pclose(saved_fapl_id); saved_fapl_id = H5P_DEFAULT; } if (saved_fcpl_id != H5P_DEFAULT) { H5Pclose(saved_fcpl_id); saved_fcpl_id = H5P_DEFAULT; } if (saved_fid != -1) { if (H5F_addr_defined(saved_actual_base_addr)) { if (NULL == file_ptr) { file_ptr = (H5F_t *)H5I_object_verify(saved_fid, H5I_FILE); HDassert(file_ptr); } H5MF_xfree(file_ptr, H5FD_MEM_DEFAULT, saved_actual_base_addr, (hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR)); saved_actual_base_addr = HADDR_UNDEF; } if (H5Fclose(saved_fid) < 0) { pass = FALSE; failure_mssg = "couldn't close test file."; } else { saved_fid = -1; } /* Pop API context */ H5CX_pop(); if ((!try_core_file_driver) || (core_file_driver_failed)) { if (h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename)) == NULL) { pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } if (HDremove(filename) < 0) { pass = FALSE; failure_mssg = "couldn't delete test file."; } } } } /* takedown_cache() */ /*------------------------------------------------------------------------- * Function: main * * Return: EXIT_SUCCESS/EXIT_FAILURE * * Programmer: John Mainzer * 6/24/04 * *------------------------------------------------------------------------- */ int main(void) { unsigned nerrs = 0; unsigned paged; int express_test; H5open(); express_test = GetTestExpress(); HDprintf("=========================================\n"); HDprintf("Internal cache tests\n"); HDprintf(" express_test = %d\n", express_test); HDprintf("=========================================\n"); if (create_entry_arrays() < 0) { HDprintf("ERROR: Unable to create entries arrays. Aborting.\n"); return EXIT_FAILURE; } /* end if */ /* Test with paged aggregation enabled or not */ /* Each test will call setup_cache() which set up the file space strategy according to "paged" */ for (paged = FALSE; paged <= TRUE; paged++) { if (paged) { HDfprintf(stdout, "\n\nRe-running tests with paged aggregation:\n"); if (express_test > 0) HDfprintf(stdout, " Skipping smoke checks.\n"); HDfprintf(stdout, "\n"); } nerrs += smoke_check_1(express_test, paged); nerrs += smoke_check_2(express_test, paged); nerrs += smoke_check_3(express_test, paged); nerrs += smoke_check_4(express_test, paged); nerrs += smoke_check_5(express_test, paged); nerrs += smoke_check_6(express_test, paged); nerrs += smoke_check_7(express_test, paged); nerrs += smoke_check_8(express_test, paged); nerrs += smoke_check_9(express_test, paged); nerrs += smoke_check_10(express_test, paged); nerrs += write_permitted_check(express_test, paged); nerrs += check_insert_entry(paged); nerrs += check_flush_cache(paged); nerrs += check_get_entry_status(paged); nerrs += check_expunge_entry(paged); nerrs += check_multiple_read_protect(paged); nerrs += check_move_entry(paged); nerrs += check_pin_protected_entry(paged); nerrs += check_resize_entry(paged); nerrs += check_evictions_enabled(paged); nerrs += check_flush_protected_err(paged); nerrs += check_destroy_pinned_err(paged); nerrs += check_destroy_protected_err(paged); nerrs += check_duplicate_insert_err(paged); nerrs += check_double_pin_err(paged); nerrs += check_double_unpin_err(paged); nerrs += check_pin_entry_errs(paged); nerrs += check_double_protect_err(paged); nerrs += check_double_unprotect_err(paged); nerrs += check_mark_entry_dirty_errs(paged); nerrs += check_expunge_entry_errs(paged); nerrs += check_move_entry_errs(paged); nerrs += check_resize_entry_errs(paged); nerrs += check_unprotect_ro_dirty_err(paged); nerrs += check_protect_ro_rw_err(paged); nerrs += check_protect_retries(paged); nerrs += check_check_evictions_enabled_err(paged); nerrs += check_auto_cache_resize(FALSE, paged); nerrs += check_auto_cache_resize(TRUE, paged); nerrs += check_auto_cache_resize_disable(paged); nerrs += check_auto_cache_resize_epoch_markers(paged); nerrs += check_auto_cache_resize_input_errs(paged); nerrs += check_auto_cache_resize_aux_fcns(paged); nerrs += check_metadata_blizzard_absence(TRUE, paged); nerrs += check_metadata_blizzard_absence(FALSE, paged); nerrs += check_flush_deps(paged); nerrs += check_flush_deps_err(paged); nerrs += check_flush_deps_order(paged); nerrs += check_notify_cb(paged); nerrs += check_metadata_cork(TRUE, paged); nerrs += check_metadata_cork(FALSE, paged); nerrs += check_entry_deletions_during_scans(paged); nerrs += check_stats(paged); } /* end for */ /* can't fail, returns void */ free_entry_arrays(); if (nerrs > 0) return EXIT_FAILURE; else return EXIT_SUCCESS; } /* main() */