/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* Programmer: John Mainzer * 10/27/05 * * This file contains common code for tests of the cache * implemented in H5C.c */ #include "H5private.h" /* Put this first, so H5open() isn't invoked in public macros */ #include "H5MFprivate.h" #include "cache_common.h" /* global variable declarations: */ const char *FILENAME[] = { "cache_test", "cache_api_test", NULL }; hid_t saved_fapl_id = H5P_DEFAULT; /* store the fapl id here between * cache setup and takedown. Note * that if saved_fapl_id == H5P_DEFAULT, * we assume that there is no fapl to * close. */ hid_t saved_fid = -1; /* store the file id here between cache setup * and takedown. */ H5C_t * saved_cache = NULL; /* store the pointer to the instance of * of H5C_t created by H5Fcreate() * here between test cache setup and * shutdown. */ haddr_t saved_actual_base_addr = HADDR_UNDEF; /* Store the address of the space allocated for cache items in the file between cache setup & takedown */ hbool_t write_permitted = TRUE; hbool_t pass = TRUE; /* set to false on error */ hbool_t skip_long_tests = TRUE; hbool_t run_full_test = TRUE; hbool_t try_core_file_driver = FALSE; hbool_t core_file_driver_failed = FALSE; const char *failure_mssg = NULL; static test_entry_t pico_entries[NUM_PICO_ENTRIES], orig_pico_entries[NUM_PICO_ENTRIES]; static test_entry_t nano_entries[NUM_NANO_ENTRIES], orig_nano_entries[NUM_NANO_ENTRIES]; static test_entry_t micro_entries[NUM_MICRO_ENTRIES], orig_micro_entries[NUM_MICRO_ENTRIES]; static test_entry_t tiny_entries[NUM_TINY_ENTRIES], orig_tiny_entries[NUM_TINY_ENTRIES]; static test_entry_t small_entries[NUM_SMALL_ENTRIES], orig_small_entries[NUM_SMALL_ENTRIES]; static test_entry_t medium_entries[NUM_MEDIUM_ENTRIES], orig_medium_entries[NUM_MEDIUM_ENTRIES]; static test_entry_t large_entries[NUM_LARGE_ENTRIES], orig_large_entries[NUM_LARGE_ENTRIES]; static test_entry_t huge_entries[NUM_HUGE_ENTRIES], orig_huge_entries[NUM_HUGE_ENTRIES]; static test_entry_t monster_entries[NUM_MONSTER_ENTRIES], orig_monster_entries[NUM_MONSTER_ENTRIES]; static test_entry_t variable_entries[NUM_VARIABLE_ENTRIES], orig_variable_entries[NUM_VARIABLE_ENTRIES]; hbool_t orig_entry_arrays_init = FALSE; static herr_t pico_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t nano_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t micro_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t tiny_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t small_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t medium_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t large_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t huge_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t monster_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t variable_clear(H5F_t * f, void * thing, hbool_t dest); static herr_t pico_dest(H5F_t * f, void * thing); static herr_t nano_dest(H5F_t * f, void * thing); static herr_t micro_dest(H5F_t * f, void * thing); static herr_t tiny_dest(H5F_t * f, void * thing); static herr_t small_dest(H5F_t * f, void * thing); static herr_t medium_dest(H5F_t * f, void * thing); static herr_t large_dest(H5F_t * f, void * thing); static herr_t huge_dest(H5F_t * f, void * thing); static herr_t monster_dest(H5F_t * f, void * thing); static herr_t variable_dest(H5F_t * f, void * thing); static herr_t pico_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t nano_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t micro_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t tiny_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t small_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t medium_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t large_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t huge_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t monster_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static herr_t variable_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr); static void * pico_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * nano_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * micro_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * tiny_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * small_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * medium_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * large_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * huge_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * monster_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static void * variable_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static herr_t pico_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t nano_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t micro_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t tiny_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t small_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t medium_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t large_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t huge_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t monster_size(H5F_t * f, void * thing, size_t * size_ptr); static herr_t variable_size(H5F_t * f, void * thing, size_t * size_ptr); test_entry_t * entries[NUMBER_OF_ENTRY_TYPES] = { pico_entries, nano_entries, micro_entries, tiny_entries, small_entries, medium_entries, large_entries, huge_entries, monster_entries, variable_entries }; test_entry_t * orig_entries[NUMBER_OF_ENTRY_TYPES] = { orig_pico_entries, orig_nano_entries, orig_micro_entries, orig_tiny_entries, orig_small_entries, orig_medium_entries, orig_large_entries, orig_huge_entries, orig_monster_entries, orig_variable_entries }; const int32_t max_indices[NUMBER_OF_ENTRY_TYPES] = { NUM_PICO_ENTRIES - 1, NUM_NANO_ENTRIES - 1, NUM_MICRO_ENTRIES - 1, NUM_TINY_ENTRIES - 1, NUM_SMALL_ENTRIES - 1, NUM_MEDIUM_ENTRIES - 1, NUM_LARGE_ENTRIES - 1, NUM_HUGE_ENTRIES - 1, NUM_MONSTER_ENTRIES - 1, NUM_VARIABLE_ENTRIES - 1 }; const size_t entry_sizes[NUMBER_OF_ENTRY_TYPES] = { PICO_ENTRY_SIZE, NANO_ENTRY_SIZE, MICRO_ENTRY_SIZE, TINY_ENTRY_SIZE, SMALL_ENTRY_SIZE, MEDIUM_ENTRY_SIZE, LARGE_ENTRY_SIZE, HUGE_ENTRY_SIZE, MONSTER_ENTRY_SIZE, VARIABLE_ENTRY_SIZE }; const haddr_t base_addrs[NUMBER_OF_ENTRY_TYPES] = { PICO_BASE_ADDR, NANO_BASE_ADDR, MICRO_BASE_ADDR, TINY_BASE_ADDR, SMALL_BASE_ADDR, MEDIUM_BASE_ADDR, LARGE_BASE_ADDR, HUGE_BASE_ADDR, MONSTER_BASE_ADDR, VARIABLE_BASE_ADDR }; const haddr_t alt_base_addrs[NUMBER_OF_ENTRY_TYPES] = { PICO_ALT_BASE_ADDR, NANO_ALT_BASE_ADDR, MICRO_ALT_BASE_ADDR, TINY_ALT_BASE_ADDR, SMALL_ALT_BASE_ADDR, MEDIUM_ALT_BASE_ADDR, LARGE_ALT_BASE_ADDR, HUGE_ALT_BASE_ADDR, MONSTER_ALT_BASE_ADDR, VARIABLE_ALT_BASE_ADDR }; const char * entry_type_names[NUMBER_OF_ENTRY_TYPES] = { "pico entries -- 1 B", "nano entries -- 4 B", "micro entries -- 16 B", "tiny entries -- 64 B", "small entries -- 256 B", "medium entries -- 1 KB", "large entries -- 4 KB", "huge entries -- 16 KB", "monster entries -- 64 KB", "variable entries -- 1B - 10KB" }; /* callback table declaration */ const H5C_class_t types[NUMBER_OF_ENTRY_TYPES] = { { PICO_ENTRY_TYPE, (H5C_load_func_t)pico_load, (H5C_flush_func_t)pico_flush, (H5C_dest_func_t)pico_dest, (H5C_clear_func_t)pico_clear, (H5C_size_func_t)pico_size }, { NANO_ENTRY_TYPE, (H5C_load_func_t)nano_load, (H5C_flush_func_t)nano_flush, (H5C_dest_func_t)nano_dest, (H5C_clear_func_t)nano_clear, (H5C_size_func_t)nano_size }, { MICRO_ENTRY_TYPE, (H5C_load_func_t)micro_load, (H5C_flush_func_t)micro_flush, (H5C_dest_func_t)micro_dest, (H5C_clear_func_t)micro_clear, (H5C_size_func_t)micro_size }, { TINY_ENTRY_TYPE, (H5C_load_func_t)tiny_load, (H5C_flush_func_t)tiny_flush, (H5C_dest_func_t)tiny_dest, (H5C_clear_func_t)tiny_clear, (H5C_size_func_t)tiny_size }, { SMALL_ENTRY_TYPE, (H5C_load_func_t)small_load, (H5C_flush_func_t)small_flush, (H5C_dest_func_t)small_dest, (H5C_clear_func_t)small_clear, (H5C_size_func_t)small_size }, { MEDIUM_ENTRY_TYPE, (H5C_load_func_t)medium_load, (H5C_flush_func_t)medium_flush, (H5C_dest_func_t)medium_dest, (H5C_clear_func_t)medium_clear, (H5C_size_func_t)medium_size }, { LARGE_ENTRY_TYPE, (H5C_load_func_t)large_load, (H5C_flush_func_t)large_flush, (H5C_dest_func_t)large_dest, (H5C_clear_func_t)large_clear, (H5C_size_func_t)large_size }, { HUGE_ENTRY_TYPE, (H5C_load_func_t)huge_load, (H5C_flush_func_t)huge_flush, (H5C_dest_func_t)huge_dest, (H5C_clear_func_t)huge_clear, (H5C_size_func_t)huge_size }, { MONSTER_ENTRY_TYPE, (H5C_load_func_t)monster_load, (H5C_flush_func_t)monster_flush, (H5C_dest_func_t)monster_dest, (H5C_clear_func_t)monster_clear, (H5C_size_func_t)monster_size }, { VARIABLE_ENTRY_TYPE, (H5C_load_func_t)variable_load, (H5C_flush_func_t)variable_flush, (H5C_dest_func_t)variable_dest, (H5C_clear_func_t)variable_clear, (H5C_size_func_t)variable_size } }; static herr_t clear(H5F_t * f, void * thing, hbool_t dest); static herr_t destroy(H5F_t * f, void * thing); static herr_t flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned H5_ATTR_UNUSED * flags_ptr); static void * load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata); static herr_t size(H5F_t * f, void * thing, size_t * size_ptr); static void execute_flush_op(H5F_t *file_ptr, struct test_entry_t *entry_ptr, struct flush_op *op_ptr, unsigned *flags_ptr); /* address translation functions: */ /*------------------------------------------------------------------------- * Function: addr_to_type_and_index * * Purpose: Given an address, compute the type and index of the * associated entry. * * Return: void * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void addr_to_type_and_index(haddr_t addr, int32_t *type_ptr, int32_t *index_ptr) { int i; int32_t type; int32_t idx; HDassert( type_ptr ); HDassert( index_ptr ); /* we only have a small number of entry types, so just do a * linear search. If NUMBER_OF_ENTRY_TYPES grows, we may want * to do a binary search instead. */ i = 1; if ( addr >= PICO_ALT_BASE_ADDR ) { while ( ( i < NUMBER_OF_ENTRY_TYPES ) && ( addr >= alt_base_addrs[i] ) ) { i++; } } else { while ( ( i < NUMBER_OF_ENTRY_TYPES ) && ( addr >= base_addrs[i] ) ) { i++; } } type = i - 1; HDassert( ( type >= 0 ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); if ( addr >= PICO_ALT_BASE_ADDR ) { idx = (int32_t)((addr - alt_base_addrs[type]) / entry_sizes[type]); HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) ); HDassert( !((entries[type])[idx].at_main_addr) ); HDassert( addr == (entries[type])[idx].alt_addr ); } else { idx = (int32_t)((addr - base_addrs[type]) / entry_sizes[type]); HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) ); HDassert( (entries[type])[idx].at_main_addr ); HDassert( addr == (entries[type])[idx].main_addr ); } HDassert( addr == (entries[type])[idx].addr ); *type_ptr = type; *index_ptr = idx; return; } /* addr_to_type_and_index() */ #if 0 /* This function has never been used, but we may want it * some time. Lets keep it for now. */ /*------------------------------------------------------------------------- * Function: type_and_index_to_addr * * Purpose: Given a type and index of an entry, compute the associated * addr and return that value. * * Return: computed addr * * Programmer: John Mainzer * 6/10/04 * * Modifications: * *------------------------------------------------------------------------- */ haddr_t type_and_index_to_addr(int32_t type, int32_t idx) { haddr_t addr; HDassert( ( type >= 0 ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) ); addr = base_addrs[type] + (((haddr_t)idx) * entry_sizes[type]); HDassert( addr == (entries[type])[idx].addr ); if ( (entries[type])[idx].at_main_addr ) { HDassert( addr == (entries[type])[idx].main_addr ); } else { HDassert( addr == (entries[type])[idx].alt_addr ); } return(addr); } /* type_and_index_to_addr() */ #endif /*------------------------------------------------------------------------- * * Function: check_if_write_permitted * * Purpose: Determine if a write is permitted under the current * circumstances, and set *write_permitted_ptr accordingly. * As a general rule it is, but when we are running in parallel * mode with collective I/O, we must ensure that a read cannot * cause a write. * * In the event of failure, the value of *write_permitted_ptr * is undefined. * * Return: Non-negative on success/Negative on failure. * * Programmer: John Mainzer, 5/15/04 * *------------------------------------------------------------------------- */ herr_t check_write_permitted(const H5F_t H5_ATTR_UNUSED *f, hid_t H5_ATTR_UNUSED dxpl_id, hbool_t *write_permitted_ptr) { HDassert( write_permitted_ptr ); *write_permitted_ptr = write_permitted; return(SUCCEED); } /* check_write_permitted() */ /*------------------------------------------------------------------------- * Function: clear & friends * * Purpose: clear the entry. The helper functions verify that the * correct version of clear is being called, and then call * clear proper. * * Return: SUCCEED * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ herr_t clear(H5F_t * f, void * thing, hbool_t dest) { test_entry_t * entry_ptr; test_entry_t * base_addr; HDassert( thing ); entry_ptr = (test_entry_t *)thing; base_addr = entries[entry_ptr->type]; HDassert( entry_ptr->index >= 0 ); HDassert( entry_ptr->index <= max_indices[entry_ptr->type] ); HDassert( entry_ptr == &(base_addr[entry_ptr->index]) ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->header.addr == entry_ptr->addr ); HDassert( entry_ptr->header.size == entry_ptr->size ); HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || ( entry_ptr->size == entry_sizes[entry_ptr->type] ) ); entry_ptr->header.is_dirty = FALSE; entry_ptr->is_dirty = FALSE; entry_ptr->cleared = TRUE; if ( dest ) { destroy(f, thing); } return(SUCCEED); } /* clear() */ herr_t pico_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t nano_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t micro_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t tiny_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t small_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t medium_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t large_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t huge_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t monster_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE ); return(clear(f, thing, dest)); } herr_t variable_clear(H5F_t * f, void * thing, hbool_t dest) { HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE ); return(clear(f, thing, dest)); } /*------------------------------------------------------------------------- * Function: dest & friends * * Purpose: Destroy the entry. The helper functions verify that the * correct version of dest is being called, and then call * dest proper. * * Return: SUCCEED * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ herr_t destroy(H5F_t H5_ATTR_UNUSED * f, void * thing) { int i; test_entry_t * entry_ptr; test_entry_t * base_addr; test_entry_t * pinned_entry_ptr; test_entry_t * pinned_base_addr; HDassert( thing ); entry_ptr = (test_entry_t *)thing; base_addr = entries[entry_ptr->type]; HDassert( entry_ptr->index >= 0 ); HDassert( entry_ptr->index <= max_indices[entry_ptr->type] ); HDassert( entry_ptr == &(base_addr[entry_ptr->index]) ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->cache_ptr != NULL ); HDassert( entry_ptr->cache_ptr->magic == H5C__H5C_T_MAGIC ); HDassert( ( entry_ptr->header.destroy_in_progress ) || ( entry_ptr->header.addr == entry_ptr->addr ) ); HDassert( entry_ptr->header.size == entry_ptr->size ); HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || ( entry_ptr->size == entry_sizes[entry_ptr->type] ) ); HDassert( !(entry_ptr->is_dirty) ); HDassert( !(entry_ptr->header.is_dirty) ); if ( entry_ptr->num_pins > 0 ) { for ( i = 0; i < entry_ptr->num_pins; i++ ) { pinned_base_addr = entries[entry_ptr->pin_type[i]]; pinned_entry_ptr = &(pinned_base_addr[entry_ptr->pin_idx[i]]); HDassert( 0 <= pinned_entry_ptr->type ); HDassert( pinned_entry_ptr->type < NUMBER_OF_ENTRY_TYPES ); HDassert( pinned_entry_ptr->type == entry_ptr->pin_type[i] ); HDassert( pinned_entry_ptr->index >= 0 ); HDassert( pinned_entry_ptr->index <= max_indices[pinned_entry_ptr->type] ); HDassert( pinned_entry_ptr->index == entry_ptr->pin_idx[i] ); HDassert( pinned_entry_ptr == pinned_entry_ptr->self ); HDassert( pinned_entry_ptr->header.is_pinned ); HDassert( pinned_entry_ptr->is_pinned ); HDassert( pinned_entry_ptr->pinning_ref_count > 0 ); pinned_entry_ptr->pinning_ref_count--; if ( pinned_entry_ptr->pinning_ref_count <= 0 ) { unpin_entry(pinned_entry_ptr->type, pinned_entry_ptr->index); } entry_ptr->pin_type[i] = -1; entry_ptr->pin_idx[i] = -1; } entry_ptr->num_pins = 0; } entry_ptr->destroyed = TRUE; entry_ptr->cache_ptr = NULL; return(SUCCEED); } /* dest() */ herr_t pico_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t nano_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t micro_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t tiny_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t small_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t medium_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t large_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t huge_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t monster_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE ); return(destroy(f, thing)); } herr_t variable_dest(H5F_t * f, void * thing) { HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE ); return(destroy(f, thing)); } /*------------------------------------------------------------------------- * Function: flush & friends * * Purpose: flush the entry and mark it as clean. The helper functions * verify that the correct version of flush is being called, * and then call flush proper. * * Return: SUCCEED * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ herr_t flush(H5F_t *f, hid_t H5_ATTR_UNUSED dxpl_id, hbool_t dest, haddr_t #ifdef NDEBUG H5_ATTR_UNUSED #endif /* NDEBUG */ addr, void *thing, unsigned * flags_ptr) { int i; test_entry_t * entry_ptr; test_entry_t * base_addr; HDassert( thing ); entry_ptr = (test_entry_t *)thing; base_addr = entries[entry_ptr->type]; HDassert( entry_ptr->index >= 0 ); HDassert( entry_ptr->index <= max_indices[entry_ptr->type] ); HDassert( entry_ptr == &(base_addr[entry_ptr->index]) ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->header.addr == entry_ptr->addr ); HDassert( entry_ptr->addr == addr ); HDassert( entry_ptr->header.size == entry_ptr->size ); HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || ( entry_ptr->size == entry_sizes[entry_ptr->type] ) ); HDassert( entry_ptr->header.is_dirty == entry_ptr->is_dirty ); HDassert( entry_ptr->cache_ptr != NULL ); HDassert( entry_ptr->cache_ptr->magic == H5C__H5C_T_MAGIC ); HDassert( entry_ptr->num_flush_ops >= 0 ); HDassert( entry_ptr->num_flush_ops < MAX_FLUSH_OPS ); if ( entry_ptr->num_flush_ops > 0 ) { for ( i = 0; i < entry_ptr->num_flush_ops; i++ ) { execute_flush_op(f, entry_ptr, &((entry_ptr->flush_ops)[i]), flags_ptr); } entry_ptr->num_flush_ops = 0; entry_ptr->flush_op_self_resize_in_progress = FALSE; } entry_ptr->flushed = TRUE; if ( ( ! write_permitted ) && ( entry_ptr->is_dirty ) ) { pass = FALSE; failure_mssg = "called flush when write_permitted is FALSE."; } if ( entry_ptr->is_dirty ) { (entry_ptr->writes)++; entry_ptr->is_dirty = FALSE; entry_ptr->header.is_dirty = FALSE; } if ( dest ) { destroy(f, thing); } return(SUCCEED); } /* flush() */ herr_t pico_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t nano_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t micro_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t tiny_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t small_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t medium_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t large_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t huge_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t monster_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } herr_t variable_flush(H5F_t *f, hid_t dxpl_id, hbool_t dest, haddr_t addr, void *thing, unsigned * flags_ptr) { HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE ); return(flush(f, dxpl_id, dest, addr, thing, flags_ptr)); } /*------------------------------------------------------------------------- * Function: load & friends * * Purpose: "load" the requested entry and mark it as clean. The * helper functions verify that the correct version of load * is being called, and then call load proper. * * Return: SUCCEED * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void * load(H5F_t H5_ATTR_UNUSED *f, hid_t H5_ATTR_UNUSED dxpl_id, haddr_t addr, void H5_ATTR_UNUSED *udata) { int32_t type; int32_t idx; test_entry_t * entry_ptr; test_entry_t * base_addr; addr_to_type_and_index(addr, &type, &idx); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->type == type ); HDassert( entry_ptr->type >= 0 ); HDassert( entry_ptr->type < NUMBER_OF_ENTRY_TYPES ); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->index >= 0 ); HDassert( entry_ptr->index <= max_indices[type] ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->addr == addr ); #if 1 /* JRM */ if ( ! ( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || ( entry_ptr->size == entry_sizes[type] ) ) ) { HDfprintf(stdout, "entry type/index/size = %d/%d/%ld\n", (int)(entry_ptr->type), (int)(entry_ptr->index), (long)(entry_ptr->size)); } #endif /* JRM */ HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || ( entry_ptr->size == entry_sizes[type] ) ); entry_ptr->loaded = TRUE; entry_ptr->header.is_dirty = FALSE; entry_ptr->is_dirty = FALSE; (entry_ptr->reads)++; return(entry_ptr); } /* load() */ void * pico_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * nano_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * micro_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * tiny_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * small_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * medium_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * large_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * huge_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * monster_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } void * variable_load(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *udata) { return(load(f, dxpl_id, addr, udata)); } /*------------------------------------------------------------------------- * Function: size & friends * * Purpose: Get the size of the specified entry. The helper functions * verify that the correct version of size is being called, * and then call size proper. * * Return: SUCCEED * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ herr_t size(H5F_t H5_ATTR_UNUSED * f, void * thing, size_t * size_ptr) { test_entry_t * entry_ptr; test_entry_t * base_addr; HDassert( size_ptr ); HDassert( thing ); entry_ptr = (test_entry_t *)thing; base_addr = entries[entry_ptr->type]; HDassert( entry_ptr->index >= 0 ); HDassert( entry_ptr->index <= max_indices[entry_ptr->type] ); HDassert( entry_ptr == &(base_addr[entry_ptr->index]) ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->header.addr == entry_ptr->addr ); HDassert( ( entry_ptr->type == VARIABLE_ENTRY_TYPE ) || \ ( entry_ptr->size == entry_sizes[entry_ptr->type] ) ); *size_ptr = entry_ptr->size; return(SUCCEED); } /* size() */ herr_t pico_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == PICO_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t nano_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == NANO_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t micro_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == MICRO_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t tiny_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == TINY_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t small_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == SMALL_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t medium_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == MEDIUM_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t large_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == LARGE_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t huge_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == HUGE_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t monster_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == MONSTER_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } herr_t variable_size(H5F_t * f, void * thing, size_t * size_ptr) { HDassert ( ((test_entry_t *)thing)->type == VARIABLE_ENTRY_TYPE ); return(size(f, thing, size_ptr)); } /**************************************************************************/ /**************************************************************************/ /************************** test utility functions: ***********************/ /**************************************************************************/ /**************************************************************************/ /*------------------------------------------------------------------------- * Function: add_flush_op * * Purpose: Do nothing if pass is FALSE on entry. * * Otherwise, add the specified flush operation to the * target instance of test_entry_t. * * Return: void * * Programmer: John Mainzer * 9/1/06 * *------------------------------------------------------------------------- */ void add_flush_op(int target_type, int target_idx, int op_code, int type, int idx, hbool_t flag, size_t new_size) { int i; test_entry_t * target_base_addr; test_entry_t * target_entry_ptr; HDassert( ( 0 <= target_type ) && ( target_type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= target_idx ) && ( target_idx <= max_indices[target_type] ) ); HDassert( ( 0 <= op_code ) && ( op_code <= FLUSH_OP__MAX_OP ) ); HDassert( ( op_code != FLUSH_OP__RESIZE ) || ( type == VARIABLE_ENTRY_TYPE ) ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); HDassert( ( flag == TRUE ) || ( flag == FALSE ) ); HDassert( new_size <= VARIABLE_ENTRY_SIZE ); if ( pass ) { target_base_addr = entries[target_type]; target_entry_ptr = &(target_base_addr[target_idx]); HDassert( target_entry_ptr->index == target_idx ); HDassert( target_entry_ptr->type == target_type ); HDassert( target_entry_ptr == target_entry_ptr->self ); HDassert( target_entry_ptr->num_flush_ops < MAX_FLUSH_OPS ); i = (target_entry_ptr->num_flush_ops)++; (target_entry_ptr->flush_ops)[i].op_code = op_code; (target_entry_ptr->flush_ops)[i].type = type; (target_entry_ptr->flush_ops)[i].idx = idx; (target_entry_ptr->flush_ops)[i].flag = flag; (target_entry_ptr->flush_ops)[i].size = new_size; } return; } /* add_flush_op() */ /*------------------------------------------------------------------------- * Function: create_pinned_entry_dependency * * Purpose: Do nothing if pass is FALSE on entry. * * Otherwise, set up a pinned entry dependency so we can * test the pinned entry modifications to the flush routine. * * Given the types and indicies of the pinned and pinning * entries, add the pinned entry to the list of pinned * entries in the pinning entry, increment the * pinning reference count of the pinned entry, and * if that count was zero initially, pin the entry. * * Return: void * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void create_pinned_entry_dependency(H5F_t * file_ptr, int pinning_type, int pinning_idx, int pinned_type, int pinned_idx) { test_entry_t * pinning_base_addr; test_entry_t * pinning_entry_ptr; test_entry_t * pinned_base_addr; test_entry_t * pinned_entry_ptr; if ( pass ) { HDassert( ( 0 <= pinning_type ) && ( pinning_type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= pinning_idx ) && ( pinning_idx <= max_indices[pinning_type] ) ); HDassert( ( 0 <= pinned_type ) && ( pinned_type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= pinned_idx ) && ( pinned_idx <= max_indices[pinned_type] ) ); pinning_base_addr = entries[pinning_type]; pinning_entry_ptr = &(pinning_base_addr[pinning_idx]); pinned_base_addr = entries[pinned_type]; pinned_entry_ptr = &(pinned_base_addr[pinned_idx]); HDassert( pinning_entry_ptr->index == pinning_idx ); HDassert( pinning_entry_ptr->type == pinning_type ); HDassert( pinning_entry_ptr == pinning_entry_ptr->self ); HDassert( pinning_entry_ptr->num_pins < MAX_PINS ); HDassert( pinning_entry_ptr->index == pinning_idx ); HDassert( pinning_entry_ptr->type == pinning_type ); HDassert( pinning_entry_ptr == pinning_entry_ptr->self ); HDassert( ! ( pinning_entry_ptr->is_protected ) ); pinning_entry_ptr->pin_type[pinning_entry_ptr->num_pins] = pinned_type; pinning_entry_ptr->pin_idx[pinning_entry_ptr->num_pins] = pinned_idx; (pinning_entry_ptr->num_pins)++; if ( pinned_entry_ptr->pinning_ref_count == 0 ) { protect_entry(file_ptr, pinned_type, pinned_idx); unprotect_entry(file_ptr, pinned_type, pinned_idx, H5C__PIN_ENTRY_FLAG); } (pinned_entry_ptr->pinning_ref_count)++; } return; } /* create_pinned_entry_dependency() */ /*------------------------------------------------------------------------- * Function: dirty_entry * * Purpose: Given a pointer to a cache, an entry type, and an index, * dirty the target entry. * * If the dirty_pin parameter is true, verify that the * target entry is in the cache and is pinned. If it * isn't, scream and die. If it is, use the * H5C_mark_entry_dirty() call to dirty it. * * Do nothing if pass is false on entry. * * Return: void * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void dirty_entry(H5F_t * file_ptr, int32_t type, int32_t idx, hbool_t dirty_pin) { test_entry_t * base_addr; test_entry_t * entry_ptr; HDassert( file_ptr ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); if ( pass ) { if ( dirty_pin ) { H5C_t *cache_ptr = file_ptr->shared->cache; HDassert(cache_ptr); if ( ! entry_in_cache(cache_ptr, type, idx) ) { pass = FALSE; failure_mssg = "entry to be dirty pinned is not in cache."; } else { base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); if ( ! ( (entry_ptr->header).is_pinned ) ) { pass = FALSE; failure_mssg = "entry to be dirty pinned is not pinned."; } else { mark_entry_dirty(type, idx); } } } else { protect_entry(file_ptr, type, idx); unprotect_entry(file_ptr, type, idx, H5C__DIRTIED_FLAG); } } return; } /* dirty_entry() */ /*------------------------------------------------------------------------- * Function: execute_flush_op * * Purpose: Given a pointer to an instance of struct flush_op, execute * it. * * Do nothing if pass is false on entry. * * Return: void * * Programmer: John Mainzer * 9/1/06 * *------------------------------------------------------------------------- */ void execute_flush_op(H5F_t * file_ptr, struct test_entry_t * entry_ptr, struct flush_op * op_ptr, unsigned * flags_ptr) { H5C_t * cache_ptr; HDassert( file_ptr ); cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( cache_ptr->magic == H5C__H5C_T_MAGIC ); HDassert( entry_ptr != NULL ); HDassert( entry_ptr = entry_ptr->self ); HDassert( entry_ptr->header.addr == entry_ptr->addr ); HDassert( ( entry_ptr->flush_op_self_resize_in_progress ) || ( entry_ptr->header.size == entry_ptr->size ) ); HDassert( op_ptr != NULL ); HDassert( ( 0 <= entry_ptr->type ) && ( entry_ptr->type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= entry_ptr->index ) && ( entry_ptr->index <= max_indices[entry_ptr->type] ) ); HDassert( ( 0 <= op_ptr->type ) && ( op_ptr->type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= op_ptr->idx ) && ( op_ptr->idx <= max_indices[op_ptr->type] ) ); HDassert( ( op_ptr->flag == FALSE ) || ( op_ptr->flag == TRUE ) ); HDassert( flags_ptr != NULL ); if ( pass ) { switch ( op_ptr->op_code ) { case FLUSH_OP__NO_OP: break; case FLUSH_OP__DIRTY: HDassert( ( entry_ptr->type != op_ptr->type ) || ( entry_ptr->index != op_ptr->idx ) ); dirty_entry(file_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag); break; case FLUSH_OP__RESIZE: if ( ( entry_ptr->type == op_ptr->type ) && ( entry_ptr->index == op_ptr->idx ) ) { /* the flush operation is acting on the entry to * which it is attached. Handle this here: */ HDassert( entry_ptr->type == VARIABLE_ENTRY_TYPE ); HDassert( op_ptr->size > 0 ); HDassert( op_ptr->size <= VARIABLE_ENTRY_SIZE ); entry_ptr->size = op_ptr->size; (*flags_ptr) |= H5C_CALLBACK__SIZE_CHANGED_FLAG; entry_ptr->flush_op_self_resize_in_progress = TRUE; /* if the entry is in the process of being destroyed, * set the header size to match the entry size so as * to avoid a spurious failure in the destroy callback. */ if ( entry_ptr->header.destroy_in_progress ) { entry_ptr->header.size = entry_ptr->size; } } else { /* change the size of some other entry */ resize_entry(file_ptr, op_ptr->type, op_ptr->idx, op_ptr->size, op_ptr->flag); } break; case FLUSH_OP__MOVE: move_entry(cache_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag); break; default: pass = FALSE; failure_mssg = "Undefined flush op code."; break; } } return; } /* execute_flush_op() */ /*------------------------------------------------------------------------- * Function: entry_in_cache * * Purpose: Given a pointer to a cache, an entry type, and an index, * determine if the entry is currently in the cache. * * Return: TRUE if the entry is in the cache, and FALSE otherwise. * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ hbool_t entry_in_cache(H5C_t * cache_ptr, int32_t type, int32_t idx) { hbool_t in_cache = FALSE; /* will set to TRUE if necessary */ test_entry_t * base_addr; test_entry_t * entry_ptr; H5C_cache_entry_t * test_ptr = NULL; HDassert( cache_ptr ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); H5C_TEST__SEARCH_INDEX(cache_ptr, entry_ptr->addr, test_ptr) if ( test_ptr != NULL ) { in_cache = TRUE; HDassert( test_ptr == (H5C_cache_entry_t *)entry_ptr ); HDassert( entry_ptr->addr == entry_ptr->header.addr ); } return(in_cache); } /* entry_in_cache() */ /*------------------------------------------------------------------------- * Function: reset_entries * * Purpose: reset the contents of the entries arrays to known values. * * Return: void * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void reset_entries(void) { int i; int32_t max_index; test_entry_t * base_addr; test_entry_t * orig_base_addr; if( !orig_entry_arrays_init) { haddr_t addr = PICO_BASE_ADDR; haddr_t alt_addr = PICO_ALT_BASE_ADDR; size_t entry_size; for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ ) { int j; max_index = max_indices[i]; entry_size = entry_sizes[i]; base_addr = entries[i]; orig_base_addr = orig_entries[i]; HDassert( base_addr ); HDassert( orig_base_addr ); for ( j = 0; j <= max_index; j++ ) { int k; /* one can argue that we should fill the header with garbage. * If this is desired, we can simply comment out the header * initialization - the headers will be full of garbage soon * enough. */ base_addr[j].header.addr = (haddr_t)0; base_addr[j].header.size = (size_t)0; base_addr[j].header.type = NULL; base_addr[j].header.is_dirty = FALSE; base_addr[j].header.is_protected = FALSE; base_addr[j].header.is_read_only = FALSE; base_addr[j].header.ro_ref_count = FALSE; base_addr[j].header.next = NULL; base_addr[j].header.prev = NULL; base_addr[j].header.aux_next = NULL; base_addr[j].header.aux_prev = NULL; base_addr[j].self = &(base_addr[j]); base_addr[j].cache_ptr = NULL; base_addr[j].addr = addr; base_addr[j].at_main_addr = TRUE; base_addr[j].main_addr = addr; base_addr[j].alt_addr = alt_addr; base_addr[j].size = entry_size; base_addr[j].type = i; base_addr[j].index = j; base_addr[j].reads = 0; base_addr[j].writes = 0; base_addr[j].is_dirty = FALSE; base_addr[j].is_protected = FALSE; base_addr[j].is_read_only = FALSE; base_addr[j].ro_ref_count = FALSE; base_addr[j].is_pinned = FALSE; base_addr[j].pinning_ref_count = 0; base_addr[j].num_pins = 0; for ( k = 0; k < MAX_PINS; k++ ) { base_addr[j].pin_type[k] = -1; base_addr[j].pin_idx[k] = -1; } base_addr[j].num_flush_ops = 0; for ( k = 0; k < MAX_FLUSH_OPS; k++ ) { base_addr[j].flush_ops[k].op_code = FLUSH_OP__NO_OP; base_addr[j].flush_ops[k].type = -1; base_addr[j].flush_ops[k].idx = -1; base_addr[j].flush_ops[k].flag = FALSE; base_addr[j].flush_ops[k].size = 0; } base_addr[j].flush_op_self_resize_in_progress = FALSE; base_addr[j].loaded = FALSE; base_addr[j].cleared = FALSE; base_addr[j].flushed = FALSE; base_addr[j].destroyed = FALSE; addr += (haddr_t)entry_size; alt_addr += (haddr_t)entry_size; } /* end for */ /* Make copy of entries in base_addr for later */ HDmemcpy(orig_base_addr, base_addr, (size_t)(max_index + 1) * sizeof( *base_addr )); } /* end for */ /* Indicate that we've made a copy for later */ orig_entry_arrays_init = TRUE; } /* end if */ else { for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ ) { max_index = max_indices[i]; base_addr = entries[i]; orig_base_addr = orig_entries[i]; /* Make copy of entries in base_addr for later */ HDmemcpy(base_addr, orig_base_addr, (size_t)(max_index + 1) * sizeof( *base_addr )); } /* end for */ } /* end else */ return; } /* reset_entries() */ /*------------------------------------------------------------------------- * Function: resize_entry * * Purpose: Given a pointer to a cache, an entry type, an index, and * a new size, set the size of the target entry to the new size. * * Note that at present, the type of the entry must be * VARIABLE_ENTRY_TYPE. * * Do nothing if pass is false on entry. * * Return: void * * Programmer: John Mainzer * 1/11/08 * *------------------------------------------------------------------------- */ void resize_entry(H5F_t * file_ptr, int32_t type, int32_t idx, size_t new_size, hbool_t in_cache) { test_entry_t * base_addr; test_entry_t * entry_ptr; herr_t result; HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( type == VARIABLE_ENTRY_TYPE ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); HDassert( ( 0 < new_size ) && ( new_size <= entry_sizes[type] ) ); if ( pass ) { if ( in_cache ) { H5C_t *cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr ); if ( ! entry_in_cache(cache_ptr, type, idx) ) { pass = FALSE; failure_mssg = "entry to be resized pinned is not in cache."; } else { base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr->cache_ptr == cache_ptr ); HDassert( entry_ptr == entry_ptr->self ); if ( ! ( entry_ptr->header.is_pinned || entry_ptr->header.is_protected ) ) { pass = FALSE; failure_mssg = "entry to be resized is not pinned or protected."; } else { entry_ptr->size = new_size; result = H5C_resize_entry((void *)entry_ptr, new_size); entry_ptr->is_dirty = TRUE; if ( result != SUCCEED ) { pass = FALSE; failure_mssg = "error(s) in H5C_resize_entry()."; } else { HDassert( entry_ptr->size = (entry_ptr->header).size ); } } } } else { protect_entry(file_ptr, type, idx); resize_entry(file_ptr, type, idx, new_size, TRUE); unprotect_entry(file_ptr, type, idx, H5C__DIRTIED_FLAG); } } return; } /* resize_entry() */ /*------------------------------------------------------------------------- * Function: verify_clean * * Purpose: Verify that all cache entries are marked as clean. If any * are not, set pass to FALSE. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void verify_clean(void) { int i; int j; int dirty_count = 0; int32_t max_index; test_entry_t * base_addr; if ( pass ) { for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ ) { max_index = max_indices[i]; base_addr = entries[i]; HDassert( base_addr ); for ( j = 0; j <= max_index; j++ ) { if ( ( base_addr[j].header.is_dirty ) || ( base_addr[j].is_dirty ) ) { dirty_count++; } } } if ( dirty_count > 0 ) { pass = FALSE; failure_mssg = "verify_clean() found dirty entry(s)."; } } return; } /* verify_clean() */ /*------------------------------------------------------------------------- * Function: verify_entry_status * * Purpose: Verify that a list of entries have the expected status. * If any discrepencies are found, set the failure message * and set pass to FALSE. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 10/8/04 * *------------------------------------------------------------------------- */ void verify_entry_status(H5C_t * cache_ptr, int tag, int num_entries, struct expected_entry_status expected[]) { static char msg[256]; hbool_t in_cache = FALSE; /* will set to TRUE if necessary */ int i; test_entry_t * entry_ptr; test_entry_t * base_addr; i = 0; while ( ( pass ) && ( i < num_entries ) ) { base_addr = entries[expected[i].entry_type]; entry_ptr = &(base_addr[expected[i].entry_index]); if ( ( ! expected[i].in_cache ) && ( ( expected[i].is_dirty ) || ( expected[i].is_protected ) || ( expected[i].is_pinned ) ) ) { pass = FALSE; sprintf(msg, "%d: Contradictory data in expected[%d].\n", tag, i); failure_mssg = msg; } if ( pass ) { in_cache = entry_in_cache(cache_ptr, expected[i].entry_type, expected[i].entry_index); if ( in_cache != expected[i].in_cache ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) in cache actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)in_cache, (int)expected[i].in_cache); failure_mssg = msg; } } if ( pass ) { if ( entry_ptr->size != expected[i].size ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) size actualexpected = %ld/%ld.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (long)(entry_ptr->size), (long)expected[i].size); failure_mssg = msg; } } if ( ( pass ) && ( in_cache ) ) { if ( entry_ptr->header.size != expected[i].size ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) header size actual/expected = %ld/%ld.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (long)(entry_ptr->header.size), (long)expected[i].size); failure_mssg = msg; } } if ( pass ) { if ( entry_ptr->at_main_addr != expected[i].at_main_addr ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) at main addr actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->at_main_addr), (int)expected[i].at_main_addr); failure_mssg = msg; } } if ( pass ) { if ( entry_ptr->is_dirty != expected[i].is_dirty ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) is_dirty actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->is_dirty), (int)expected[i].is_dirty); failure_mssg = msg; } } if ( ( pass ) && ( in_cache ) ) { if ( entry_ptr->header.is_dirty != expected[i].is_dirty ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) header is_dirty actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->header.is_dirty), (int)expected[i].is_dirty); failure_mssg = msg; } } if ( pass ) { if ( entry_ptr->is_protected != expected[i].is_protected ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) is_protected actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->is_protected), (int)expected[i].is_protected); failure_mssg = msg; } } if ( ( pass ) && ( in_cache ) ) { if ( entry_ptr->header.is_protected != expected[i].is_protected ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) header is_protected actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->header.is_protected), (int)expected[i].is_protected); failure_mssg = msg; } } if ( pass ) { if ( entry_ptr->is_pinned != expected[i].is_pinned ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) is_pinned actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->is_pinned), (int)expected[i].is_pinned); failure_mssg = msg; } } if ( ( pass ) && ( in_cache ) ) { if ( entry_ptr->header.is_pinned != expected[i].is_pinned ) { pass = FALSE; sprintf(msg, "%d entry (%d, %d) header is_pinned actual/expected = %d/%d.\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->header.is_pinned), (int)expected[i].is_pinned); failure_mssg = msg; } } if ( pass ) { if ( ( entry_ptr->loaded != expected[i].loaded ) || ( entry_ptr->cleared != expected[i].cleared ) || ( entry_ptr->flushed != expected[i].flushed ) || ( entry_ptr->destroyed != expected[i].destroyed ) ) { pass = FALSE; sprintf(msg, "%d entry (%d,%d) loaded = %d(%d), clrd = %d(%d), flshd = %d(%d), dest = %d(%d)\n", tag, (int)expected[i].entry_type, (int)expected[i].entry_index, (int)(entry_ptr->loaded), (int)(expected[i].loaded), (int)(entry_ptr->cleared), (int)(expected[i].cleared), (int)(entry_ptr->flushed), (int)(expected[i].flushed), (int)(entry_ptr->destroyed), (int)(expected[i].destroyed)); failure_mssg = msg; } } i++; } /* while */ return; } /* verify_entry_status() */ /*------------------------------------------------------------------------- * Function: verify_unprotected * * Purpose: Verify that no cache entries are marked as protected. If * any are, set pass to FALSE. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 6/10/04 * *------------------------------------------------------------------------- */ void verify_unprotected(void) { int i; int j; int protected_count = 0; int32_t max_index; test_entry_t * base_addr; if ( pass ) { for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ ) { max_index = max_indices[i]; base_addr = entries[i]; HDassert( base_addr ); for ( j = 0; j <= max_index; j++ ) { HDassert( base_addr[j].header.is_protected == base_addr[j].is_protected ); if ( ( base_addr[j].header.is_protected ) || ( base_addr[j].is_protected ) ) { protected_count++; } } } if ( protected_count > 0 ) { pass = FALSE; failure_mssg = "verify_unprotected() found protected entry(s)."; } } return; } /* verify_unprotected() */ /*------------------------------------------------------------------------- * Function: setup_cache() * * Purpose: Allocate a cache of the desired size and configure it for * use in the test bed. Return a pointer to the new cache * structure. * * Return: Pointer to new cache, or NULL on failure. * * Programmer: John Mainzer * 6/11/04 * *------------------------------------------------------------------------- */ H5F_t * setup_cache(size_t max_cache_size, size_t min_clean_size) { const char * fcn_name = "setup_cache()"; char filename[512]; hbool_t show_progress = FALSE; hbool_t verbose = TRUE; int mile_stone = 1; hid_t fid = -1; H5F_t * file_ptr = NULL; H5C_t * cache_ptr = NULL; H5F_t * ret_val = NULL; haddr_t actual_base_addr; hid_t fapl_id = H5P_DEFAULT; if ( show_progress ) /* 1 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); saved_fid = -1; /* setup the file name */ if ( pass ) { if ( h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename)) == NULL ) { pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } } if ( show_progress ) /* 2 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); if ( ( pass ) && ( try_core_file_driver ) ) { if ( (fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == FAIL ) { pass = FALSE; failure_mssg = "H5Pcreate(H5P_FILE_ACCESS) failed.\n"; } else if ( H5Pset_fapl_core(fapl_id, MAX_ADDR, FALSE) < 0 ) { H5Pclose(fapl_id); fapl_id = H5P_DEFAULT; pass = FALSE; failure_mssg = "H5P_set_fapl_core() failed.\n"; } else if ( (fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0 ) { core_file_driver_failed = TRUE; if ( verbose ) { HDfprintf(stdout, "%s: H5Fcreate() with CFD failed.\n", fcn_name); } } else { saved_fapl_id = fapl_id; } } if ( show_progress ) /* 3 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); /* if we either aren't using the core file driver, or a create * with the core file driver failed, try again with a regular file. * If this fails, we are cooked. */ if ( ( pass ) && ( fid < 0 ) ) { fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); saved_fid = fid; if ( fid < 0 ) { pass = FALSE; failure_mssg = "H5Fcreate() failed."; if ( verbose ) { HDfprintf(stdout, "%s: H5Fcreate() failed.\n", fcn_name); } } } if ( show_progress ) /* 4 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); if ( pass ) { HDassert( fid >= 0 ); saved_fid = fid; if ( H5Fflush(fid, H5F_SCOPE_GLOBAL) < 0 ) { pass = FALSE; failure_mssg = "H5Fflush() failed."; if ( verbose ) { HDfprintf(stdout, "%s: H5Fflush() failed.\n", fcn_name); } } else { file_ptr = (H5F_t *)H5I_object_verify(fid, H5I_FILE); if ( file_ptr == NULL ) { pass = FALSE; failure_mssg = "Can't get file_ptr."; if ( verbose ) { HDfprintf(stdout, "%s: H5Fflush() failed.\n", fcn_name); } } } } if ( show_progress ) /* 5 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); if ( pass ) { /* A bit of fancy footwork here: * * The call to H5Fcreate() allocates an instance of H5C_t, * initializes it, and stores its address in f->shared->cache. * * We don't want to use this cache, as it has a bunch of extra * initialization that may change over time, and in any case * it will not in general be configured the way we want it. * * We used to deal with this problem by storing the file pointer * in another instance of H5C_t, and then ignoring the original * version. However, this strategy doesn't work any more, as * we can't store the file pointer in the instance of H5C_t, * and we have modified many cache routines to use a file * pointer to look up the target cache. * * Thus we now make note of the address of the instance of * H5C_t created by the call to H5Fcreate(), set * file_ptr->shared->cache to NULL, call H5C_create() * to allocate a new instance of H5C_t for test purposes, * and store than new instance's address in * file_ptr->shared->cache. * * On shut down, we call H5C_dest on our instance of H5C_t, * set file_ptr->shared->cache to point to the original * instance, and then close the file normally. */ HDassert( saved_cache == NULL ); saved_cache = file_ptr->shared->cache; file_ptr->shared->cache = NULL; cache_ptr = H5C_create(max_cache_size, min_clean_size, (NUMBER_OF_ENTRY_TYPES - 1), (const char **)entry_type_names, check_write_permitted, TRUE, NULL, NULL); file_ptr->shared->cache = cache_ptr; } if ( show_progress ) /* 6 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); if ( pass ) { if ( cache_ptr == NULL ) { pass = FALSE; failure_mssg = "H5C_create() failed."; if ( verbose ) { HDfprintf(stdout, "%s: H5C_create() failed.\n", fcn_name); } } else if ( cache_ptr->magic != H5C__H5C_T_MAGIC ) { pass = FALSE; failure_mssg = "Bad cache_ptr magic."; if ( verbose ) { HDfprintf(stdout, "%s: Bad cache_ptr magic.\n", fcn_name); } } } if ( show_progress ) /* 7 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); if ( pass ) { /* allocate space for test entries */ actual_base_addr = H5MF_alloc(file_ptr, H5FD_MEM_DEFAULT, H5P_DEFAULT, (hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR)); if ( actual_base_addr == HADDR_UNDEF ) { pass = FALSE; failure_mssg = "H5MF_alloc() failed."; if ( verbose ) { HDfprintf(stdout, "%s: H5MF_alloc() failed.\n", fcn_name); } } else if ( actual_base_addr > BASE_ADDR ) { /* If this happens, must increase BASE_ADDR so that the * actual_base_addr is <= BASE_ADDR. This should only happen * if the size of the superblock is increase. */ pass = FALSE; failure_mssg = "actual_base_addr > BASE_ADDR"; if ( verbose ) { HDfprintf(stdout, "%s: actual_base_addr > BASE_ADDR.\n", fcn_name); } } saved_actual_base_addr = actual_base_addr; } if ( show_progress ) /* 8 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); if ( pass ) { H5C_stats__reset(cache_ptr); ret_val = file_ptr; } if ( show_progress ) /* 9 */ HDfprintf(stdout, "%s() - %0d -- pass = %d\n", fcn_name, mile_stone++, (int)pass); return(ret_val); } /* setup_cache() */ /*------------------------------------------------------------------------- * Function: takedown_cache() * * Purpose: Flush the specified cache and disable it. If requested, * dump stats first. If pass is FALSE, do nothing. * * Return: void * * Programmer: John Mainzer * 9/14/07 * *------------------------------------------------------------------------- */ void takedown_cache(H5F_t * file_ptr, hbool_t dump_stats, hbool_t dump_detailed_stats) { char filename[512]; if ( file_ptr != NULL ) { H5C_t * cache_ptr = file_ptr->shared->cache; if ( dump_stats ) { H5C_stats(cache_ptr, "test cache", dump_detailed_stats); } flush_cache(file_ptr, TRUE, FALSE, FALSE); H5C_dest(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT); if ( saved_cache != NULL ) { file_ptr->shared->cache = saved_cache; saved_cache = NULL; } } if ( saved_fapl_id != H5P_DEFAULT ) { H5Pclose(saved_fapl_id); saved_fapl_id = H5P_DEFAULT; } if ( saved_fid != -1 ) { if ( H5F_addr_defined(saved_actual_base_addr) ) { if ( NULL == file_ptr ) { file_ptr = (H5F_t *)H5I_object_verify(saved_fid, H5I_FILE); HDassert ( file_ptr ); } H5MF_xfree(file_ptr, H5FD_MEM_DEFAULT, H5P_DEFAULT, saved_actual_base_addr, (hsize_t)(ADDR_SPACE_SIZE + BASE_ADDR)); saved_actual_base_addr = HADDR_UNDEF; } if ( H5Fclose(saved_fid) < 0 ) { pass = FALSE; failure_mssg = "couldn't close test file."; } else { saved_fid = -1; } if ( ( ! try_core_file_driver ) || ( core_file_driver_failed ) ) { if ( h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof(filename)) == NULL ) { pass = FALSE; failure_mssg = "h5_fixname() failed.\n"; } if ( HDremove(filename) < 0 ) { pass = FALSE; failure_mssg = "couldn't delete test file."; } } } return; } /* takedown_cache() */ /*------------------------------------------------------------------------- * Function: expunge_entry() * * Purpose: Expunge the entry indicated by the type and index. * * * Return: void * * Programmer: John Mainzer * 7/6/06 * *------------------------------------------------------------------------- */ void expunge_entry(H5F_t * file_ptr, int32_t type, int32_t idx) { /* const char * fcn_name = "expunge_entry()"; */ herr_t result; test_entry_t * base_addr; test_entry_t * entry_ptr; if ( pass ) { #ifndef NDEBUG H5C_t * cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr ); #endif /* NDEBUG */ HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->cache_ptr == cache_ptr ); HDassert( ! ( entry_ptr->header.is_protected ) ); HDassert( ! ( entry_ptr->is_protected ) ); HDassert( ! ( entry_ptr->header.is_pinned ) ); HDassert( ! ( entry_ptr->is_pinned ) ); result = H5C_expunge_entry(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, &(types[type]), entry_ptr->addr, H5C__NO_FLAGS_SET); if ( result < 0 ) { pass = FALSE; failure_mssg = "error in H5C_expunge_entry()."; } } return; } /* expunge_entry() */ /*------------------------------------------------------------------------- * Function: flush_cache() * * Purpose: Flush the specified cache, destroying all entries if requested. If requested, dump stats first. * * Return: void * * Programmer: John Mainzer * 6/23/04 * *------------------------------------------------------------------------- */ void flush_cache(H5F_t * file_ptr, hbool_t destroy_entries, hbool_t dump_stats, hbool_t dump_detailed_stats) { const char * fcn_name = "flush_cache()"; hbool_t verbose = FALSE; verify_unprotected(); if(pass) { H5C_t * cache_ptr = NULL; herr_t result = 0; HDassert(file_ptr); cache_ptr = file_ptr->shared->cache; if(destroy_entries) { result = H5C_flush_cache(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, H5C__FLUSH_INVALIDATE_FLAG); } else { result = H5C_flush_cache(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, H5C__NO_FLAGS_SET); } if(dump_stats) { H5C_stats(cache_ptr, "test cache", dump_detailed_stats); } if(result < 0) { pass = FALSE; failure_mssg = "error in H5C_flush_cache()."; } else if((destroy_entries) && ((cache_ptr->index_len != 0) || (cache_ptr->index_size != 0) || (cache_ptr->clean_index_size != 0) || (cache_ptr->dirty_index_size != 0))) { if(verbose) { HDfprintf(stdout, "%s: unexpected il/is/cis/dis = %lld/%lld/%lld/%lld.\n", fcn_name, (long long)(cache_ptr->index_len), (long long)(cache_ptr->index_size), (long long)(cache_ptr->clean_index_size), (long long)(cache_ptr->dirty_index_size)); } pass = FALSE; failure_mssg = "non zero index len/sizes after H5C_flush_cache() with invalidate."; } } return; } /* flush_cache() */ /*------------------------------------------------------------------------- * Function: insert_entry() * * Purpose: Insert the entry indicated by the type and index. * * Do nothing if pass is false. * * Return: void * * Programmer: John Mainzer * 6/16/04 * *------------------------------------------------------------------------- */ void insert_entry(H5F_t * file_ptr, int32_t type, int32_t idx, unsigned int flags) { H5C_t * cache_ptr; herr_t result; hbool_t insert_pinned; test_entry_t * base_addr; test_entry_t * entry_ptr; if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( !(entry_ptr->is_protected) ); insert_pinned = ((flags & H5C__PIN_ENTRY_FLAG) != 0 ); entry_ptr->is_dirty = TRUE; result = H5C_insert_entry(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, &(types[type]), entry_ptr->addr, (void *)entry_ptr, flags); if ( ( result < 0 ) || ( entry_ptr->header.is_protected ) || ( entry_ptr->header.type != &(types[type]) ) || ( entry_ptr->size != entry_ptr->header.size ) || ( entry_ptr->addr != entry_ptr->header.addr ) ) { pass = FALSE; failure_mssg = "error in H5C_insert()."; #if 0 /* This is useful debugging code. Lets keep it around. */ HDfprintf(stdout, "result = %d\n", (int)result); HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n", (int)(entry_ptr->header.is_protected)); HDfprintf(stdout, "entry_ptr->header.type != &(types[type]) = %d\n", (int)(entry_ptr->header.type != &(types[type]))); HDfprintf(stdout, "entry_ptr->size != entry_ptr->header.size = %d\n", (int)(entry_ptr->size != entry_ptr->header.size)); HDfprintf(stdout, "entry_ptr->addr != entry_ptr->header.addr = %d\n", (int)(entry_ptr->addr != entry_ptr->header.addr)); #endif } HDassert( entry_ptr->cache_ptr == NULL ); entry_ptr->cache_ptr = cache_ptr; if ( insert_pinned ) { HDassert( entry_ptr->header.is_pinned ); entry_ptr->is_pinned = TRUE; } else { HDassert( ! ( entry_ptr->header.is_pinned ) ); entry_ptr->is_pinned = FALSE; } HDassert( entry_ptr->header.is_dirty ); HDassert( ((entry_ptr->header).type)->id == type ); } return; } /* insert_entry() */ /*------------------------------------------------------------------------- * Function: mark_entry_dirty() * * Purpose: Mark the specified entry as dirty. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 3/28/06 * *------------------------------------------------------------------------- */ void mark_entry_dirty(int32_t type, int32_t idx) { herr_t result; test_entry_t * base_addr; test_entry_t * entry_ptr; if ( pass ) { HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->header.is_protected || entry_ptr->header.is_pinned ); entry_ptr->is_dirty = TRUE; result = H5C_mark_entry_dirty((void *)entry_ptr); if ( ( result < 0 ) || ( !entry_ptr->header.is_protected && !entry_ptr->header.is_pinned ) || ( entry_ptr->header.is_protected && !entry_ptr->header.dirtied ) || ( !entry_ptr->header.is_protected && !entry_ptr->header.is_dirty ) || ( entry_ptr->header.type != &(types[type]) ) || ( entry_ptr->size != entry_ptr->header.size ) || ( entry_ptr->addr != entry_ptr->header.addr ) ) { pass = FALSE; failure_mssg = "error in H5C_mark_entry_dirty()."; } HDassert( ((entry_ptr->header).type)->id == type ); } return; } /* mark_entry_dirty() */ /*------------------------------------------------------------------------- * Function: move_entry() * * Purpose: Move the entry indicated by the type and index to its * main or alternate address as indicated. If the entry is * already at the desired entry, do nothing. * * Return: void * * Programmer: John Mainzer * 6/21/04 * *------------------------------------------------------------------------- */ void move_entry(H5C_t * cache_ptr, int32_t type, int32_t idx, hbool_t main_addr) { herr_t result; hbool_t done = TRUE; /* will set to FALSE if we have work to do */ haddr_t old_addr = HADDR_UNDEF; haddr_t new_addr = HADDR_UNDEF; test_entry_t * base_addr; test_entry_t * entry_ptr; if ( pass ) { HDassert( cache_ptr ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->cache_ptr == cache_ptr ); HDassert( !(entry_ptr->is_protected) ); HDassert( !(entry_ptr->header.is_protected) ); if ( entry_ptr->at_main_addr && !main_addr ) { /* move to alt addr */ HDassert( entry_ptr->addr == entry_ptr->main_addr ); done = FALSE; old_addr = entry_ptr->addr; new_addr = entry_ptr->alt_addr; } else if ( !(entry_ptr->at_main_addr) && main_addr ) { /* move to main addr */ HDassert( entry_ptr->addr == entry_ptr->alt_addr ); done = FALSE; old_addr = entry_ptr->addr; new_addr = entry_ptr->main_addr; } if ( ! done ) { entry_ptr->is_dirty = TRUE; result = H5C_move_entry(cache_ptr, &(types[type]), old_addr, new_addr); } if ( ! done ) { if ( ( result < 0 ) || ( ( ! ( entry_ptr->header.destroy_in_progress ) ) && ( entry_ptr->header.addr != new_addr ) ) ) { pass = FALSE; failure_mssg = "error in H5C_move_entry()."; } else { entry_ptr->addr = new_addr; entry_ptr->at_main_addr = main_addr; } } HDassert( ((entry_ptr->header).type)->id == type ); HDassert( entry_ptr->header.is_dirty ); HDassert( entry_ptr->is_dirty ); } return; } /* move_entry() */ /*------------------------------------------------------------------------- * Function: protect_entry() * * Purpose: Protect the entry indicated by the type and index. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 6/11/04 * *------------------------------------------------------------------------- */ void protect_entry(H5F_t * file_ptr, int32_t type, int32_t idx) { H5C_t * cache_ptr; test_entry_t * base_addr; test_entry_t * entry_ptr; H5C_cache_entry_t * cache_entry_ptr; if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( !(entry_ptr->is_protected) ); cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, &(types[type]), entry_ptr->addr, NULL, H5C__NO_FLAGS_SET); if ( ( cache_entry_ptr != (void *)entry_ptr ) || ( !(entry_ptr->header.is_protected) ) || ( entry_ptr->header.type != &(types[type]) ) || ( entry_ptr->size != entry_ptr->header.size ) || ( entry_ptr->addr != entry_ptr->header.addr ) ) { #if 0 /* I've written the following debugging code several times * now. Lets keep it around so I don't have to write it * again. * - JRM */ HDfprintf(stdout, "( cache_entry_ptr != (void *)entry_ptr ) = %d\n", (int)( cache_entry_ptr != (void *)entry_ptr )); HDfprintf(stdout, "cache_entry_ptr = 0x%lx, entry_ptr = 0x%lx\n", (long)cache_entry_ptr, (long)entry_ptr); HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n", (int)(entry_ptr->header.is_protected)); HDfprintf(stdout, "( entry_ptr->header.type != &(types[type]) ) = %d\n", (int)( entry_ptr->header.type != &(types[type]) )); HDfprintf(stdout, "entry_ptr->size = %d, entry_ptr->header.size = %d\n", (int)(entry_ptr->size), (int)(entry_ptr->header.size)); HDfprintf(stdout, "entry_ptr->addr = %d, entry_ptr->header.addr = %d\n", (int)(entry_ptr->addr), (int)(entry_ptr->header.addr)); #endif pass = FALSE; failure_mssg = "error in H5C_protect()."; } else { HDassert( ( entry_ptr->cache_ptr == NULL ) || ( entry_ptr->cache_ptr == cache_ptr ) ); entry_ptr->cache_ptr = cache_ptr; entry_ptr->is_protected = TRUE; } HDassert( ((entry_ptr->header).type)->id == type ); } return; } /* protect_entry() */ /*------------------------------------------------------------------------- * Function: protect_entry_ro() * * Purpose: Do a read only protect the entry indicated by the type * and index. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 4/1/07 * *------------------------------------------------------------------------- */ void protect_entry_ro(H5F_t * file_ptr, int32_t type, int32_t idx) { H5C_t *cache_ptr; test_entry_t *base_addr; test_entry_t *entry_ptr; H5C_cache_entry_t * cache_entry_ptr; if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr ); HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( ( ! ( entry_ptr->is_protected ) ) || ( ( entry_ptr->is_read_only ) && ( entry_ptr->ro_ref_count > 0 ) ) ); cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, &(types[type]), entry_ptr->addr, NULL, H5C__READ_ONLY_FLAG); if ( ( cache_entry_ptr != (void *)entry_ptr ) || ( !(entry_ptr->header.is_protected) ) || ( !(entry_ptr->header.is_read_only) ) || ( entry_ptr->header.ro_ref_count <= 0 ) || ( entry_ptr->header.type != &(types[type]) ) || ( entry_ptr->size != entry_ptr->header.size ) || ( entry_ptr->addr != entry_ptr->header.addr ) ) { pass = FALSE; failure_mssg = "error in read only H5C_protect()."; } else { HDassert( ( entry_ptr->cache_ptr == NULL ) || ( entry_ptr->cache_ptr == cache_ptr ) ); entry_ptr->cache_ptr = cache_ptr; entry_ptr->is_protected = TRUE; entry_ptr->is_read_only = TRUE; entry_ptr->ro_ref_count++; } HDassert( ((entry_ptr->header).type)->id == type ); } return; } /* protect_entry_ro() */ /*------------------------------------------------------------------------- * Function: unpin_entry() * * Purpose: Unpin the entry indicated by the type and index. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 3/28/06 * *------------------------------------------------------------------------- */ void unpin_entry(int32_t type, int32_t idx) { herr_t result; test_entry_t * base_addr; test_entry_t * entry_ptr; if ( pass ) { HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( ! (entry_ptr->header.is_protected) ); HDassert( entry_ptr->header.is_pinned ); HDassert( entry_ptr->is_pinned ); result = H5C_unpin_entry(entry_ptr); if ( ( result < 0 ) || ( entry_ptr->header.is_pinned ) || ( entry_ptr->header.type != &(types[type]) ) || ( entry_ptr->size != entry_ptr->header.size ) || ( entry_ptr->addr != entry_ptr->header.addr ) ) { pass = FALSE; failure_mssg = "error in H5C_unpin()."; } entry_ptr->is_pinned = FALSE; HDassert( ((entry_ptr->header).type)->id == type ); } return; } /* unpin_entry() */ /*------------------------------------------------------------------------- * Function: unprotect_entry() * * Purpose: Unprotect the entry indicated by the type and index. * * Do nothing if pass is FALSE on entry. * * Return: void * * Programmer: John Mainzer * 6/12/04 * *------------------------------------------------------------------------- */ void unprotect_entry(H5F_t * file_ptr, int32_t type, int32_t idx, unsigned int flags) { herr_t result; hbool_t pin_flag_set; hbool_t unpin_flag_set; test_entry_t * base_addr; test_entry_t * entry_ptr; if ( pass ) { HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) ); HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) ); base_addr = entries[type]; entry_ptr = &(base_addr[idx]); HDassert( entry_ptr->index == idx ); HDassert( entry_ptr->type == type ); HDassert( entry_ptr == entry_ptr->self ); HDassert( entry_ptr->header.is_protected ); HDassert( entry_ptr->is_protected ); pin_flag_set = ((flags & H5C__PIN_ENTRY_FLAG) != 0 ); unpin_flag_set = ((flags & H5C__UNPIN_ENTRY_FLAG) != 0 ); HDassert ( ! ( pin_flag_set && unpin_flag_set ) ); HDassert ( ( ! pin_flag_set ) || ( ! (entry_ptr->is_pinned) ) ); HDassert ( ( ! unpin_flag_set ) || ( entry_ptr->is_pinned ) ); if(flags & H5C__DIRTIED_FLAG) entry_ptr->is_dirty = TRUE; result = H5C_unprotect(file_ptr, H5P_DATASET_XFER_DEFAULT, H5P_DATASET_XFER_DEFAULT, &(types[type]), entry_ptr->addr, (void *)entry_ptr, flags); if ( ( result < 0 ) || ( ( entry_ptr->header.is_protected ) && ( ( ! ( entry_ptr->is_read_only ) ) || ( entry_ptr->ro_ref_count <= 0 ) ) ) || ( entry_ptr->header.type != &(types[type]) ) || ( entry_ptr->size != entry_ptr->header.size ) || ( entry_ptr->addr != entry_ptr->header.addr ) ) { pass = FALSE; failure_mssg = "error in H5C_unprotect()."; } else { if ( entry_ptr->ro_ref_count > 1 ) { entry_ptr->ro_ref_count--; } else if ( entry_ptr->ro_ref_count == 1 ) { entry_ptr->is_protected = FALSE; entry_ptr->is_read_only = FALSE; entry_ptr->ro_ref_count = 0; } else { entry_ptr->is_protected = FALSE; } if ( pin_flag_set ) { HDassert ( entry_ptr->header.is_pinned ); entry_ptr->is_pinned = TRUE; } else if ( unpin_flag_set ) { HDassert ( ! ( entry_ptr->header.is_pinned ) ); entry_ptr->is_pinned = FALSE; } } HDassert( ((entry_ptr->header).type)->id == type ); if ( ( flags & H5C__DIRTIED_FLAG ) != 0 && ( (flags & H5C__DELETED_FLAG) == 0 ) ) { HDassert( entry_ptr->header.is_dirty ); HDassert( entry_ptr->is_dirty ); } HDassert( entry_ptr->header.is_protected == entry_ptr->is_protected ); HDassert( entry_ptr->header.is_read_only == entry_ptr->is_read_only ); HDassert( entry_ptr->header.ro_ref_count == entry_ptr->ro_ref_count ); } return; } /* unprotect_entry() */ /*------------------------------------------------------------------------- * Function: row_major_scan_forward() * * Purpose: Do a sequence of inserts, protects, unprotects, moves, * destroys while scanning through the set of entries. If * pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 6/12/04 * *------------------------------------------------------------------------- */ void row_major_scan_forward(H5F_t * file_ptr, int32_t lag, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts, hbool_t do_moves, hbool_t move_to_main_addr, hbool_t do_destroys, hbool_t do_mult_ro_protects, int dirty_destroys, int dirty_unprotects) { const char * fcn_name = "row_major_scan_forward"; H5C_t * cache_ptr; int32_t type = 0; int32_t idx; if ( verbose ) HDfprintf(stdout, "%s(): entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag >= 10 ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) ) { idx = -lag; while ( ( pass ) && ( idx <= (max_indices[type] + lag) ) ) { if ( verbose ) { HDfprintf(stdout, "%d:%d: ", type, idx); } if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) && ( (idx + lag) <= max_indices[type] ) && ( ((idx + lag) % 2) == 0 ) && ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag)); insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx + lag - 1) >= 0 ) && ( (idx + lag - 1) <= max_indices[type] ) && ( ( (idx + lag - 1) % 3 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, (idx + lag - 1)); protect_entry(file_ptr, type, (idx + lag - 1)); } if ( ( pass ) && ( (idx + lag - 2) >= 0 ) && ( (idx + lag - 2) <= max_indices[type] ) && ( ( (idx + lag - 2) % 3 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag - 2)); unprotect_entry(file_ptr, type, idx+lag-2, H5C__NO_FLAGS_SET); } if ( ( pass ) && ( do_moves ) && ( (idx + lag - 2) >= 0 ) && ( (idx + lag - 2) <= max_indices[type] ) && ( ( (idx + lag - 2) % 3 ) == 0 ) ) { move_entry(cache_ptr, type, (idx + lag - 2), move_to_main_addr); } if ( ( pass ) && ( (idx + lag - 3) >= 0 ) && ( (idx + lag - 3) <= max_indices[type] ) && ( ( (idx + lag - 3) % 5 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, (idx + lag - 3)); protect_entry(file_ptr, type, (idx + lag - 3)); } if ( ( pass ) && ( (idx + lag - 5) >= 0 ) && ( (idx + lag - 5) <= max_indices[type] ) && ( ( (idx + lag - 5) % 5 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag - 5)); unprotect_entry(file_ptr, type, idx+lag-5, H5C__NO_FLAGS_SET); } if ( do_mult_ro_protects ) { if ( ( pass ) && ( (idx + lag - 5) >= 0 ) && ( (idx + lag - 5) < max_indices[type] ) && ( (idx + lag - 5) % 9 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p-ro, %d, %d) ", type, (idx + lag - 5)); protect_entry_ro(file_ptr, type, (idx + lag - 5)); } if ( ( pass ) && ( (idx + lag - 6) >= 0 ) && ( (idx + lag - 6) < max_indices[type] ) && ( (idx + lag - 6) % 11 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p-ro, %d, %d) ", type, (idx + lag - 6)); protect_entry_ro(file_ptr, type, (idx + lag - 6)); } if ( ( pass ) && ( (idx + lag - 7) >= 0 ) && ( (idx + lag - 7) < max_indices[type] ) && ( (idx + lag - 7) % 13 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p-ro, %d, %d) ", type, (idx + lag - 7)); protect_entry_ro(file_ptr, type, (idx + lag - 7)); } if ( ( pass ) && ( (idx + lag - 7) >= 0 ) && ( (idx + lag - 7) < max_indices[type] ) && ( (idx + lag - 7) % 9 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u-ro, %d, %d) ", type, (idx + lag - 7)); unprotect_entry(file_ptr, type, (idx + lag - 7), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx + lag - 8) >= 0 ) && ( (idx + lag - 8) < max_indices[type] ) && ( (idx + lag - 8) % 11 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u-ro, %d, %d) ", type, (idx + lag - 8)); unprotect_entry(file_ptr, type, (idx + lag - 8), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx + lag - 9) >= 0 ) && ( (idx + lag - 9) < max_indices[type] ) && ( (idx + lag - 9) % 13 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u-ro, %d, %d) ", type, (idx + lag - 9)); unprotect_entry(file_ptr, type, (idx + lag - 9), H5C__NO_FLAGS_SET); } } /* if ( do_mult_ro_protects ) */ if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, idx); protect_entry(file_ptr, type, idx); } if ( ( pass ) && ( (idx - lag + 2) >= 0 ) && ( (idx - lag + 2) <= max_indices[type] ) && ( ( (idx - lag + 2) % 7 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag + 2)); unprotect_entry(file_ptr, type, idx-lag+2, H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx - lag + 1) >= 0 ) && ( (idx - lag + 1) <= max_indices[type] ) && ( ( (idx - lag + 1) % 7 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, (idx - lag + 1)); protect_entry(file_ptr, type, (idx - lag + 1)); } if ( do_destroys ) { if ( ( pass ) && ( (idx - lag) >= 0 ) && ( ( idx - lag) <= max_indices[type] ) ) { switch ( (idx - lag) %4 ) { case 0: /* we just did an insert */ unprotect_entry(file_ptr, type, idx - lag, H5C__NO_FLAGS_SET); break; case 1: if ( (entries[type])[idx-lag].is_dirty ) { unprotect_entry(file_ptr, type, idx - lag, H5C__NO_FLAGS_SET); } else { unprotect_entry(file_ptr, type, idx - lag, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } break; case 2: /* we just did an insrt */ unprotect_entry(file_ptr, type, idx - lag, H5C__DELETED_FLAG); break; case 3: if ( (entries[type])[idx-lag].is_dirty ) { unprotect_entry(file_ptr, type, idx - lag, H5C__DELETED_FLAG); } else { unprotect_entry(file_ptr, type, idx - lag, (dirty_destroys ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) | H5C__DELETED_FLAG); } break; default: HDassert(0); /* this can't happen... */ break; } } } else { if ( ( pass ) && ( (idx - lag) >= 0 ) && ( ( idx - lag) <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag)); unprotect_entry(file_ptr, type, idx - lag, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } } if ( verbose ) HDfprintf(stdout, "\n"); idx++; } type++; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* row_major_scan_forward() */ /*------------------------------------------------------------------------- * Function: hl_row_major_scan_forward() * * Purpose: Do a high locality sequence of inserts, protects, and * unprotects while scanning through the set of entries. * If pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 10/21/04 * *------------------------------------------------------------------------- */ void hl_row_major_scan_forward(H5F_t * file_ptr, int32_t max_index, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts) { const char * fcn_name = "hl_row_major_scan_forward"; H5C_t * cache_ptr; int32_t type = 0; int32_t idx; int32_t i; int32_t lag = 100; int32_t local_max_index; if ( verbose ) HDfprintf(stdout, "%s(): entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag > 5 ); HDassert( max_index >= 200 ); HDassert( max_index <= MAX_ENTRIES ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) ) { idx = -lag; local_max_index = MIN(max_index, max_indices[type]); while ( ( pass ) && ( idx <= (local_max_index + lag) ) ) { if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) && ( (idx + lag) <= max_indices[type] ) && ( ((idx + lag) % 2) == 0 ) && ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag)); insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET); } i = idx; while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) ) { if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, i); protect_entry(file_ptr, type, i); if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, i); unprotect_entry(file_ptr, type, i, H5C__NO_FLAGS_SET); } i--; } if ( verbose ) HDfprintf(stdout, "\n"); idx++; } type++; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* hl_row_major_scan_forward() */ /*------------------------------------------------------------------------- * Function: row_major_scan_backward() * * Purpose: Do a sequence of inserts, protects, unprotects, moves, * destroys while scanning backwards through the set of * entries. If pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 6/12/04 * *------------------------------------------------------------------------- */ void row_major_scan_backward(H5F_t * file_ptr, int32_t lag, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts, hbool_t do_moves, hbool_t move_to_main_addr, hbool_t do_destroys, hbool_t do_mult_ro_protects, int dirty_destroys, int dirty_unprotects) { const char * fcn_name = "row_major_scan_backward"; H5C_t * cache_ptr; int32_t type = NUMBER_OF_ENTRY_TYPES - 1; int32_t idx; if ( verbose ) HDfprintf(stdout, "%s(): Entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag >= 10 ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } while ( ( pass ) && ( type >= 0 ) ) { idx = max_indices[type] + lag; while ( ( pass ) && ( idx >= -lag ) ) { if ( ( pass ) && ( do_inserts ) && ( (idx - lag) >= 0 ) && ( (idx - lag) <= max_indices[type] ) && ( ((idx - lag) % 2) == 1 ) && ( ! entry_in_cache(cache_ptr, type, (idx - lag)) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, (idx - lag)); insert_entry(file_ptr, type, (idx - lag), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx - lag + 1) >= 0 ) && ( (idx - lag + 1) <= max_indices[type] ) && ( ( (idx - lag + 1) % 3 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, (idx - lag + 1)); protect_entry(file_ptr, type, (idx - lag + 1)); } if ( ( pass ) && ( (idx - lag + 2) >= 0 ) && ( (idx - lag + 2) <= max_indices[type] ) && ( ( (idx - lag + 2) % 3 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag + 2)); unprotect_entry(file_ptr, type, idx-lag+2, H5C__NO_FLAGS_SET); } if ( ( pass ) && ( do_moves ) && ( (idx - lag + 2) >= 0 ) && ( (idx - lag + 2) <= max_indices[type] ) && ( ( (idx - lag + 2) % 3 ) == 0 ) ) { move_entry(cache_ptr, type, (idx - lag + 2), move_to_main_addr); } if ( ( pass ) && ( (idx - lag + 3) >= 0 ) && ( (idx - lag + 3) <= max_indices[type] ) && ( ( (idx - lag + 3) % 5 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, (idx - lag + 3)); protect_entry(file_ptr, type, (idx - lag + 3)); } if ( ( pass ) && ( (idx - lag + 5) >= 0 ) && ( (idx - lag + 5) <= max_indices[type] ) && ( ( (idx - lag + 5) % 5 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag + 5)); unprotect_entry(file_ptr, type, idx-lag+5, H5C__NO_FLAGS_SET); } if ( do_mult_ro_protects ) { if ( ( pass ) && ( (idx - lag + 5) >= 0 ) && ( (idx - lag + 5) < max_indices[type] ) && ( (idx - lag + 5) % 9 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p-ro, %d, %d) ", type, (idx - lag + 5)); protect_entry_ro(file_ptr, type, (idx - lag + 5)); } if ( ( pass ) && ( (idx - lag + 6) >= 0 ) && ( (idx - lag + 6) < max_indices[type] ) && ( (idx - lag + 6) % 11 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p-ro, %d, %d) ", type, (idx - lag + 6)); protect_entry_ro(file_ptr, type, (idx - lag + 6)); } if ( ( pass ) && ( (idx - lag + 7) >= 0 ) && ( (idx - lag + 7) < max_indices[type] ) && ( (idx - lag + 7) % 13 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p-ro, %d, %d) ", type, (idx - lag + 7)); protect_entry_ro(file_ptr, type, (idx - lag + 7)); } if ( ( pass ) && ( (idx - lag + 7) >= 0 ) && ( (idx - lag + 7) < max_indices[type] ) && ( (idx - lag + 7) % 9 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u-ro, %d, %d) ", type, (idx - lag + 7)); unprotect_entry(file_ptr, type, (idx - lag + 7), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx - lag + 8) >= 0 ) && ( (idx - lag + 8) < max_indices[type] ) && ( (idx - lag + 8) % 11 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u-ro, %d, %d) ", type, (idx - lag + 8)); unprotect_entry(file_ptr, type, (idx - lag + 8), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx - lag + 9) >= 0 ) && ( (idx - lag + 9) < max_indices[type] ) && ( (idx - lag + 9) % 13 == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u-ro, %d, %d) ", type, (idx - lag + 9)); unprotect_entry(file_ptr, type, (idx - lag + 9), H5C__NO_FLAGS_SET); } } /* if ( do_mult_ro_protects ) */ if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, idx); protect_entry(file_ptr, type, idx); } if ( ( pass ) && ( (idx + lag - 2) >= 0 ) && ( (idx + lag - 2) <= max_indices[type] ) && ( ( (idx + lag - 2) % 7 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag - 2)); unprotect_entry(file_ptr, type, idx+lag-2, H5C__NO_FLAGS_SET); } if ( ( pass ) && ( (idx + lag - 1) >= 0 ) && ( (idx + lag - 1) <= max_indices[type] ) && ( ( (idx + lag - 1) % 7 ) == 0 ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, (idx + lag - 1)); protect_entry(file_ptr, type, (idx + lag - 1)); } if ( do_destroys ) { if ( ( pass ) && ( (idx + lag) >= 0 ) && ( ( idx + lag) <= max_indices[type] ) ) { switch ( (idx + lag) %4 ) { case 0: if ( (entries[type])[idx+lag].is_dirty ) { unprotect_entry(file_ptr, type, idx + lag, H5C__NO_FLAGS_SET); } else { unprotect_entry(file_ptr, type, idx + lag, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } break; case 1: /* we just did an insert */ unprotect_entry(file_ptr, type, idx + lag, H5C__NO_FLAGS_SET); break; case 2: if ( (entries[type])[idx + lag].is_dirty ) { unprotect_entry(file_ptr, type, idx + lag, H5C__DELETED_FLAG); } else { unprotect_entry(file_ptr, type, idx + lag, (dirty_destroys ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) | H5C__DELETED_FLAG); } break; case 3: /* we just did an insrt */ unprotect_entry(file_ptr, type, idx + lag, H5C__DELETED_FLAG); break; default: HDassert(0); /* this can't happen... */ break; } } } else { if ( ( pass ) && ( (idx + lag) >= 0 ) && ( ( idx + lag) <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag)); unprotect_entry(file_ptr, type, idx + lag, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } } if ( verbose ) HDfprintf(stdout, "\n"); idx--; } type--; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* row_major_scan_backward() */ /*------------------------------------------------------------------------- * Function: hl_row_major_scan_backward() * * Purpose: Do a high locality sequence of inserts, protects, and * unprotects while scanning through the set of entries. * If pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 10/21/04 * *------------------------------------------------------------------------- */ void hl_row_major_scan_backward(H5F_t * file_ptr, int32_t max_index, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts) { const char * fcn_name = "hl_row_major_scan_backward"; H5C_t * cache_ptr; int32_t type = NUMBER_OF_ENTRY_TYPES - 1; int32_t idx; int32_t i; int32_t lag = 100; int32_t local_max_index; if ( verbose ) HDfprintf(stdout, "%s(): entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag > 5 ); HDassert( max_index >= 200 ); HDassert( max_index <= MAX_ENTRIES ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } while ( ( pass ) && ( type >= 0 ) ) { idx = max_indices[type] + lag; local_max_index = MIN(max_index, max_indices[type]); while ( ( pass ) && ( idx >= -lag ) ) { if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) && ( (idx + lag) <= local_max_index ) && ( ((idx + lag) % 2) == 0 ) && ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag)); insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET); } i = idx; while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) ) { if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, i); protect_entry(file_ptr, type, i); if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, i); unprotect_entry(file_ptr, type, i, H5C__NO_FLAGS_SET); } i--; } if ( verbose ) HDfprintf(stdout, "\n"); idx--; } type--; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* hl_row_major_scan_backward() */ /*------------------------------------------------------------------------- * Function: col_major_scan_forward() * * Purpose: Do a sequence of inserts, protects, and unprotects * while scanning through the set of entries. If * pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 6/23/04 * *------------------------------------------------------------------------- */ void col_major_scan_forward(H5F_t * file_ptr, int32_t lag, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts, int dirty_unprotects) { const char * fcn_name = "col_major_scan_forward()"; H5C_t * cache_ptr; int32_t type = 0; int32_t idx; if ( verbose ) HDfprintf(stdout, "%s: entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( lag > 5 ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } idx = -lag; while ( ( pass ) && ( (idx - lag) <= MAX_ENTRIES ) ) { type = 0; while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) ) { if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) && ( (idx + lag) <= max_indices[type] ) && ( ((idx + lag) % 3) == 0 ) && ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag)); insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, idx); protect_entry(file_ptr, type, idx); } if ( ( pass ) && ( (idx - lag) >= 0 ) && ( (idx - lag) <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag)); unprotect_entry(file_ptr, type, idx - lag, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } if ( verbose ) HDfprintf(stdout, "\n"); type++; } idx++; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* col_major_scan_forward() */ /*------------------------------------------------------------------------- * Function: hl_col_major_scan_forward() * * Purpose: Do a high locality sequence of inserts, protects, and * unprotects while scanning through the set of entries. If * pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 19/25/04 * *------------------------------------------------------------------------- */ void hl_col_major_scan_forward(H5F_t * file_ptr, int32_t max_index, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts, int dirty_unprotects) { const char * fcn_name = "hl_col_major_scan_forward()"; H5C_t * cache_ptr; int32_t type = 0; int32_t idx; int32_t lag = 200; int32_t i; int32_t local_max_index; if ( verbose ) HDfprintf(stdout, "%s: entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag > 5 ); HDassert( max_index >= 500 ); HDassert( max_index <= MAX_ENTRIES ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } idx = 0; local_max_index = MIN(max_index, MAX_ENTRIES); while ( ( pass ) && ( idx <= local_max_index ) ) { i = idx; while ( ( pass ) && ( i >= 0 ) && ( i >= (idx - lag) ) ) { type = 0; while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) ) { if ( ( pass ) && ( do_inserts ) && ( i == idx ) && ( i <= local_max_index ) && ( (i % 3) == 0 ) && ( ! entry_in_cache(cache_ptr, type, i) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, i); insert_entry(file_ptr, type, i, H5C__NO_FLAGS_SET); } if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, i); protect_entry(file_ptr, type, i); } if ( ( pass ) && ( i >= 0 ) && ( i <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, i); unprotect_entry(file_ptr, type, i, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } if ( verbose ) HDfprintf(stdout, "\n"); type++; } i--; } idx++; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* hl_col_major_scan_forward() */ /*------------------------------------------------------------------------- * Function: col_major_scan_backward() * * Purpose: Do a sequence of inserts, protects, and unprotects * while scanning backwards through the set of * entries. If pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 6/23/04 * *------------------------------------------------------------------------- */ void col_major_scan_backward(H5F_t * file_ptr, int32_t lag, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts, int dirty_unprotects) { const char * fcn_name = "col_major_scan_backward()"; H5C_t * cache_ptr; int mile_stone = 1; int32_t type; int32_t idx; if ( verbose ) HDfprintf(stdout, "%s: entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag > 5 ); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } } idx = MAX_ENTRIES + lag; if ( verbose ) /* 1 */ HDfprintf(stdout, "%s: point %d.\n", fcn_name, mile_stone++); while ( ( pass ) && ( (idx + lag) >= 0 ) ) { type = NUMBER_OF_ENTRY_TYPES - 1; while ( ( pass ) && ( type >= 0 ) ) { if ( ( pass ) && ( do_inserts) && ( (idx - lag) >= 0 ) && ( (idx - lag) <= max_indices[type] ) && ( ((idx - lag) % 3) == 0 ) && ( ! entry_in_cache(cache_ptr, type, (idx - lag)) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, (idx - lag)); insert_entry(file_ptr, type, (idx - lag), H5C__NO_FLAGS_SET); } if ( ( pass ) && ( idx >= 0 ) && ( idx <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, idx); protect_entry(file_ptr, type, idx); } if ( ( pass ) && ( (idx + lag) >= 0 ) && ( (idx + lag) <= max_indices[type] ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag)); unprotect_entry(file_ptr, type, idx + lag, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } if ( verbose ) HDfprintf(stdout, "\n"); type--; } idx--; } if ( verbose ) /* 2 */ HDfprintf(stdout, "%s: point %d.\n", fcn_name, mile_stone++); if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } if ( verbose ) HDfprintf(stdout, "%s: exiting.\n", fcn_name); return; } /* col_major_scan_backward() */ /*------------------------------------------------------------------------- * Function: hl_col_major_scan_backward() * * Purpose: Do a high locality sequence of inserts, protects, and * unprotects while scanning backwards through the set of * entries. If pass is false on entry, do nothing. * * Return: void * * Programmer: John Mainzer * 10/25/04 * *------------------------------------------------------------------------- */ void hl_col_major_scan_backward(H5F_t * file_ptr, int32_t max_index, hbool_t verbose, hbool_t reset_stats, hbool_t display_stats, hbool_t display_detailed_stats, hbool_t do_inserts, int dirty_unprotects) { const char * fcn_name = "hl_col_major_scan_backward()"; H5C_t * cache_ptr; int32_t type = 0; int32_t idx; int32_t lag = 50; int32_t i; int32_t local_max_index; if ( verbose ) HDfprintf(stdout, "%s: entering.\n", fcn_name); if ( pass ) { cache_ptr = file_ptr->shared->cache; HDassert( cache_ptr != NULL ); HDassert( lag > 5 ); HDassert( max_index >= 500 ); HDassert( max_index <= MAX_ENTRIES ); local_max_index = MIN(max_index, MAX_ENTRIES); if ( reset_stats ) { H5C_stats__reset(cache_ptr); } idx = local_max_index; } while ( ( pass ) && ( idx >= 0 ) ) { i = idx; while ( ( pass ) && ( i <= local_max_index ) && ( i <= (idx + lag) ) ) { type = 0; while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) ) { if ( ( pass ) && ( do_inserts ) && ( i == idx ) && ( i <= local_max_index ) && ( ! entry_in_cache(cache_ptr, type, i) ) ) { if ( verbose ) HDfprintf(stdout, "(i, %d, %d) ", type, i); insert_entry(file_ptr, type, i, H5C__NO_FLAGS_SET); } if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) { if ( verbose ) HDfprintf(stdout, "(p, %d, %d) ", type, i); protect_entry(file_ptr, type, i); } if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) { if ( verbose ) HDfprintf(stdout, "(u, %d, %d) ", type, i); unprotect_entry(file_ptr, type, i, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)); } if ( verbose ) HDfprintf(stdout, "\n"); type++; } i++; } idx--; } if ( ( pass ) && ( display_stats ) ) { H5C_stats(cache_ptr, "test cache", display_detailed_stats); } return; } /* hl_col_major_scan_backward() */ /*** H5AC level utility functions ***/ /*------------------------------------------------------------------------- * Function: check_and_validate_cache_hit_rate() * * Purpose: Use the API functions to get and reset the cache hit rate. * Verify that the value returned by the API call agrees with * the cache internal data structures. * * If the number of cache accesses exceeds the value provided * in the min_accesses parameter, and the hit rate is less than * min_hit_rate, set pass to FALSE, and set failure_mssg to * a string indicating that hit rate was unexpectedly low. * * Return hit rate in *hit_rate_ptr, and print the data to * stdout if requested. * * If an error is detected, set pass to FALSE, and set * failure_mssg to an appropriate value. * * Return: void * * Programmer: John Mainzer * 4/18/04 * *------------------------------------------------------------------------- */ void check_and_validate_cache_hit_rate(hid_t file_id, double * hit_rate_ptr, hbool_t dump_data, int64_t min_accesses, double min_hit_rate) { /* const char * fcn_name = "check_and_validate_cache_hit_rate()"; */ herr_t result; int64_t cache_hits = 0; int64_t cache_accesses = 0; double expected_hit_rate; double hit_rate; H5F_t * file_ptr = NULL; H5C_t * cache_ptr = NULL; /* get a pointer to the files internal data structure */ if ( pass ) { file_ptr = (H5F_t *)H5I_object_verify(file_id, H5I_FILE); if ( file_ptr == NULL ) { pass = FALSE; failure_mssg = "Can't get file_ptr."; } else { cache_ptr = file_ptr->shared->cache; } } /* verify that we can access the cache data structure */ if ( pass ) { if ( ( cache_ptr == NULL ) || ( cache_ptr->magic != H5C__H5C_T_MAGIC ) ) { pass = FALSE; failure_mssg = "Can't access cache resize_ctl."; } } /* compare the cache's internal configuration with the expected value */ if ( pass ) { cache_hits = cache_ptr->cache_hits; cache_accesses = cache_ptr->cache_accesses; if ( cache_accesses > 0 ) { expected_hit_rate = ((double)cache_hits) / ((double)cache_accesses); } else { expected_hit_rate = 0.0F; } result = H5Fget_mdc_hit_rate(file_id, &hit_rate); if ( result < 0 ) { pass = FALSE; failure_mssg = "H5Fget_mdc_hit_rate() failed."; } else if ( ! DBL_REL_EQUAL(hit_rate, expected_hit_rate, 0.00001F) ) { pass = FALSE; failure_mssg = "unexpected hit rate."; } } if ( pass ) { /* reset the hit rate */ result = H5Freset_mdc_hit_rate_stats(file_id); if ( result < 0 ) { pass = FALSE; failure_mssg = "H5Freset_mdc_hit_rate_stats() failed."; } } /* set *hit_rate_ptr if appropriate */ if ( ( pass ) && ( hit_rate_ptr != NULL ) ) { *hit_rate_ptr = hit_rate; } /* dump data to stdout if requested */ if ( ( pass ) && ( dump_data ) ) { HDfprintf(stdout, "cache_hits: %ld, cache_accesses: %ld, hit_rate: %lf\n", (long)cache_hits, (long)cache_accesses, hit_rate); } if ( ( pass ) && ( cache_accesses > min_accesses ) && ( hit_rate < min_hit_rate ) ) { pass = FALSE; failure_mssg = "Unexpectedly low hit rate."; } return; } /* check_and_validate_cache_hit_rate() */ /*------------------------------------------------------------------------- * Function: check_and_validate_cache_size() * * Purpose: Use the API function to get the cache size data. Verify * that the values returned by the API call agree with * the cache internal data structures. * * Return size data in the locations specified by the pointer * parameters if these parameters are not NULL. Print the * data to stdout if requested. * * If an error is detected, set pass to FALSE, and set * failure_mssg to an appropriate value. * * Return: void * * Programmer: John Mainzer * 4/18/04 * *------------------------------------------------------------------------- */ void check_and_validate_cache_size(hid_t file_id, size_t * max_size_ptr, size_t * min_clean_size_ptr, size_t * cur_size_ptr, int32_t * cur_num_entries_ptr, hbool_t dump_data) { /* const char * fcn_name = "check_and_validate_cache_size()"; */ herr_t result; size_t expected_max_size; size_t max_size; size_t expected_min_clean_size; size_t min_clean_size; size_t expected_cur_size; size_t cur_size; int32_t expected_cur_num_entries; int cur_num_entries; H5F_t * file_ptr = NULL; H5C_t * cache_ptr = NULL; /* get a pointer to the files internal data structure */ if ( pass ) { file_ptr = (H5F_t *)H5I_object_verify(file_id, H5I_FILE); if ( file_ptr == NULL ) { pass = FALSE; failure_mssg = "Can't get file_ptr."; } else { cache_ptr = file_ptr->shared->cache; } } /* verify that we can access the cache data structure */ if ( pass ) { if ( ( cache_ptr == NULL ) || ( cache_ptr->magic != H5C__H5C_T_MAGIC ) ) { pass = FALSE; failure_mssg = "Can't access cache data structure."; } } /* compare the cache's internal configuration with the expected value */ if ( pass ) { expected_max_size = cache_ptr->max_cache_size; expected_min_clean_size = cache_ptr->min_clean_size; expected_cur_size = cache_ptr->index_size; expected_cur_num_entries = cache_ptr->index_len; result = H5Fget_mdc_size(file_id, &max_size, &min_clean_size, &cur_size, &cur_num_entries); if ( result < 0 ) { pass = FALSE; failure_mssg = "H5Fget_mdc_size() failed."; } else if ( ( max_size != expected_max_size ) || ( min_clean_size != expected_min_clean_size ) || ( cur_size != expected_cur_size ) || ( cur_num_entries != (int)expected_cur_num_entries ) ) { pass = FALSE; failure_mssg = "H5Fget_mdc_size() returned unexpected value(s)."; } } /* return size values if requested */ if ( ( pass ) && ( max_size_ptr != NULL ) ) { *max_size_ptr = max_size; } if ( ( pass ) && ( min_clean_size_ptr != NULL ) ) { *min_clean_size_ptr = min_clean_size; } if ( ( pass ) && ( cur_size_ptr != NULL ) ) { *cur_size_ptr = cur_size; } if ( ( pass ) && ( cur_num_entries_ptr != NULL ) ) { *cur_num_entries_ptr = cur_num_entries; } /* dump data to stdout if requested */ if ( ( pass ) && ( dump_data ) ) { HDfprintf(stdout, "max_sz: %ld, min_clean_sz: %ld, cur_sz: %ld, cur_ent: %ld\n", (long)max_size, (long)min_clean_size, (long)cur_size, (long)cur_num_entries); } return; } /* check_and_validate_cache_size() */ hbool_t resize_configs_are_equal(const H5C_auto_size_ctl_t *a, const H5C_auto_size_ctl_t *b, hbool_t compare_init) { if(a->version != b->version) return(FALSE); else if(a->rpt_fcn != b->rpt_fcn) return(FALSE); else if(compare_init && (a->set_initial_size != b->set_initial_size)) return(FALSE); else if(compare_init && (a->initial_size != b->initial_size)) return(FALSE); else if(HDfabs(a->min_clean_fraction - b->min_clean_fraction) > FP_EPSILON) return(FALSE); else if(a->max_size != b->max_size) return(FALSE); else if(a->min_size != b->min_size) return(FALSE); else if(a->epoch_length != b->epoch_length) return(FALSE); else if(a->incr_mode != b->incr_mode) return(FALSE); else if(HDfabs(a->lower_hr_threshold - b->lower_hr_threshold) > FP_EPSILON) return(FALSE); else if(HDfabs(a->increment - b->increment) > FP_EPSILON) return(FALSE); else if(a->apply_max_increment != b->apply_max_increment) return(FALSE); else if(a->max_increment != b->max_increment) return(FALSE); else if(a->flash_incr_mode != b->flash_incr_mode) return(FALSE); else if(HDfabs(a->flash_multiple - b->flash_multiple) > FP_EPSILON) return(FALSE); else if(HDfabs(a->flash_threshold - b->flash_threshold) > FP_EPSILON) return(FALSE); else if(a->decr_mode != b->decr_mode) return(FALSE); else if(HDfabs(a->upper_hr_threshold - b->upper_hr_threshold) > FP_EPSILON) return(FALSE); else if(HDfabs(a->decrement - b->decrement) > FP_EPSILON) return(FALSE); else if(a->apply_max_decrement != b->apply_max_decrement) return(FALSE); else if(a->max_decrement != b->max_decrement) return(FALSE); else if(a->epochs_before_eviction != b->epochs_before_eviction) return(FALSE); else if(a->apply_empty_reserve != b->apply_empty_reserve) return(FALSE); else if(HDfabs(a->empty_reserve - b->empty_reserve) > FP_EPSILON) return(FALSE); return(TRUE); } /*------------------------------------------------------------------------- * Function: validate_mdc_config() * * Purpose: Verify that the file indicated by the file_id parameter * has both internal and external configuration matching * *config_ptr. * * Do nothin on success. On failure, set pass to FALSE, and * load an error message into failue_mssg. Note that * failure_msg is assumed to be at least 128 bytes in length. * * Return: void * * Programmer: John Mainzer * 4/14/04 * *------------------------------------------------------------------------- */ void validate_mdc_config(hid_t file_id, H5AC_cache_config_t * ext_config_ptr, hbool_t compare_init, int test_num) { /* const char * fcn_name = "validate_mdc_config()"; */ static char msg[256]; H5F_t * file_ptr = NULL; H5C_t * cache_ptr = NULL; H5AC_cache_config_t scratch; H5C_auto_size_ctl_t int_config; XLATE_EXT_TO_INT_MDC_CONFIG(int_config, (*ext_config_ptr)) /* get a pointer to the files internal data structure */ if ( pass ) { file_ptr = (H5F_t *)H5I_object_verify(file_id, H5I_FILE); if ( file_ptr == NULL ) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Can't get file_ptr #%d.", test_num); failure_mssg = msg; } else { cache_ptr = file_ptr->shared->cache; } } /* verify that we can access the internal version of the cache config */ if ( pass ) { if ( ( cache_ptr == NULL ) || ( cache_ptr->magic != H5C__H5C_T_MAGIC ) || ( cache_ptr->resize_ctl.version != H5C__CURR_AUTO_SIZE_CTL_VER ) ){ pass = FALSE; HDsnprintf(msg, (size_t)128, "Can't access cache resize_ctl #%d.", test_num); failure_mssg = msg; } } /* compare the cache's internal configuration with the expected value */ if ( pass ) { if ( ! resize_configs_are_equal(&int_config, &cache_ptr->resize_ctl, compare_init) ) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected internal config #%d.", test_num); failure_mssg = msg; } } /* obtain external cache config */ if ( pass ) { scratch.version = H5AC__CURR_CACHE_CONFIG_VERSION; if ( H5Fget_mdc_config(file_id, &scratch) < 0 ) { pass = FALSE; HDsnprintf(msg, (size_t)128, "H5Fget_mdc_config() failed #%d.", test_num); failure_mssg = msg; } } if ( pass ) { /* Recall that in any configuration supplied by the cache * at run time, the set_initial_size field will always * be FALSE, regardless of the value passed in. Thus we * always presume that this field need not match that of * the supplied external configuration. * * The cache also sets the initial_size field to the current * cache max size instead of the value initialy supplied. * Depending on circumstances, this may or may not match * the original. Hence the compare_init parameter. */ if ( ! CACHE_CONFIGS_EQUAL((*ext_config_ptr), scratch, \ FALSE, compare_init) ) { pass = FALSE; HDsnprintf(msg, (size_t)128, "Unexpected external config #%d.", test_num); failure_mssg = msg; } } return; } /* validate_mdc_config() */