/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases.  *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/* Programmer:  John Mainzer
 *              10/27/05
 *
 *        This file contains common code for tests of the cache
 *        implemented in H5C.c
 */
#include "H5private.h"
#include "H5CXprivate.h"        /* API Contexts                         */
#include "H5MMprivate.h"

#include "cache_common.h"

hbool_t pass = TRUE; /* set to false on error */
const char *failure_mssg = NULL;

static test_entry_t *pico_entries = NULL,      *orig_pico_entries = NULL;
static test_entry_t *nano_entries = NULL,      *orig_nano_entries = NULL;
static test_entry_t *micro_entries = NULL,     *orig_micro_entries = NULL;
static test_entry_t *tiny_entries = NULL,      *orig_tiny_entries = NULL;
static test_entry_t *small_entries = NULL,     *orig_small_entries = NULL;
static test_entry_t *medium_entries = NULL,    *orig_medium_entries = NULL;
static test_entry_t *large_entries = NULL,     *orig_large_entries = NULL;
static test_entry_t *huge_entries = NULL,      *orig_huge_entries = NULL;
static test_entry_t *monster_entries = NULL,   *orig_monster_entries = NULL;
static test_entry_t *variable_entries = NULL,  *orig_variable_entries = NULL;
static test_entry_t *notify_entries = NULL,    *orig_notify_entries = NULL;

hbool_t orig_entry_arrays_init = FALSE;

static herr_t pico_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t nano_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t micro_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t tiny_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t small_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t medium_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t large_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t huge_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t monster_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t variable_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);
static herr_t notify_get_initial_load_size(void *udata_ptr, size_t *image_len_ptr);

static herr_t variable_get_final_load_size(const void *image, size_t image_len,
    void *udata, size_t *actual_len);

static htri_t variable_verify_chksum(const void *image_ptr, size_t len, void *udata_ptr);

static void *pico_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *nano_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *micro_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *tiny_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *small_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *medium_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *large_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *huge_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *monster_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *variable_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);
static void *notify_deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr);

static herr_t pico_image_len(const void *thing, size_t *image_len_ptr);
static herr_t nano_image_len(const void *thing, size_t *image_len_ptr);
static herr_t micro_image_len(const void *thing, size_t *image_len_ptr);
static herr_t tiny_image_len(const void *thing, size_t *image_len_ptr);
static herr_t small_image_len(const void *thing, size_t *image_len_ptr);
static herr_t medium_image_len(const void *thing, size_t *image_len_ptr);
static herr_t large_image_len(const void *thing, size_t *image_len_ptr);
static herr_t huge_image_len(const void *thing, size_t *image_len_ptr);
static herr_t monster_image_len(const void *thing, size_t *image_len_ptr);
static herr_t variable_image_len(const void *thing, size_t *image_len_ptr);
static herr_t notify_image_len(const void *thing, size_t *image_len_ptr);

static herr_t pico_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t nano_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t micro_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t tiny_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t small_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t medium_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t large_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t huge_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t monster_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t variable_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);
static herr_t notify_pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr,
    size_t *new_len_ptr, unsigned *flags_ptr);

static herr_t pico_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t nano_serialize(const H5F_t *f, void *image_ptr,
    size_t len,  void *thing);
static herr_t micro_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t tiny_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t small_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t medium_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t large_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t huge_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t monster_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t variable_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);
static herr_t notify_serialize(const H5F_t *f, void *image_ptr,
    size_t len, void *thing);

static herr_t pico_free_icr(void *thing);
static herr_t nano_free_icr(void *thing);
static herr_t micro_free_icr(void *thing);
static herr_t tiny_free_icr(void *thing);
static herr_t small_free_icr(void *thing);
static herr_t medium_free_icr(void *thing);
static herr_t large_free_icr(void *thing);
static herr_t huge_free_icr(void *thing);
static herr_t monster_free_icr(void *thing);
static herr_t variable_free_icr(void *thing);
static herr_t notify_free_icr(void *thing);


static herr_t notify_notify(H5C_notify_action_t action, void *thing);

static void mark_flush_dep_dirty(test_entry_t * entry_ptr);
static void mark_flush_dep_clean(test_entry_t * entry_ptr);

/* Generic callback routines */
static herr_t get_initial_load_size(void *udata_ptr, size_t *image_len_ptr,
    int32_t entry_type);
static herr_t get_final_load_size(const void *image, size_t image_len,
    void *udata, size_t *actual_len, int32_t entry_type);
static void *deserialize(const void *image_ptr, size_t len, void *udata_ptr,
    hbool_t *dirty_ptr, int32_t entry_type);
static herr_t image_len(const void *thing, size_t *image_len_ptr, int32_t entry_type);
static herr_t pre_serialize(H5F_t *f, void *thing,
    haddr_t addr, size_t len, haddr_t *new_addr_ptr, size_t *new_len_ptr,
    unsigned *flags_ptr);
static herr_t serialize(const H5F_t *f, void *image_ptr, size_t len,
    void *thing);
static herr_t notify(H5C_notify_action_t action, void *thing, int32_t
    entry_type);
static herr_t free_icr(test_entry_t *entry, int32_t entry_type);

/* Local routines */
static void execute_flush_op(H5F_t *file_ptr, struct test_entry_t *entry_ptr,
    struct flush_op *op_ptr, unsigned *flags_ptr);

test_entry_t *entries[NUMBER_OF_ENTRY_TYPES];

test_entry_t *orig_entries[NUMBER_OF_ENTRY_TYPES];

const int32_t max_indices[NUMBER_OF_ENTRY_TYPES] =
{
    NUM_PICO_ENTRIES - 1,
    NUM_NANO_ENTRIES - 1,
    NUM_MICRO_ENTRIES - 1,
    NUM_TINY_ENTRIES - 1,
    NUM_SMALL_ENTRIES - 1,
    NUM_MEDIUM_ENTRIES - 1,
    NUM_LARGE_ENTRIES - 1,
    NUM_HUGE_ENTRIES - 1,
    NUM_MONSTER_ENTRIES - 1,
    NUM_VARIABLE_ENTRIES - 1,
    NUM_NOTIFY_ENTRIES - 1
};

const size_t entry_sizes[NUMBER_OF_ENTRY_TYPES] =
{
    PICO_ENTRY_SIZE,
    NANO_ENTRY_SIZE,
    MICRO_ENTRY_SIZE,
    TINY_ENTRY_SIZE,
    SMALL_ENTRY_SIZE,
    MEDIUM_ENTRY_SIZE,
    LARGE_ENTRY_SIZE,
    HUGE_ENTRY_SIZE,
    MONSTER_ENTRY_SIZE,
    VARIABLE_ENTRY_SIZE,
    NOTIFY_ENTRY_SIZE
};

const haddr_t base_addrs[NUMBER_OF_ENTRY_TYPES] =
{
    PICO_BASE_ADDR,
    NANO_BASE_ADDR,
    MICRO_BASE_ADDR,
    TINY_BASE_ADDR,
    SMALL_BASE_ADDR,
    MEDIUM_BASE_ADDR,
    LARGE_BASE_ADDR,
    HUGE_BASE_ADDR,
    MONSTER_BASE_ADDR,
    VARIABLE_BASE_ADDR,
    NOTIFY_BASE_ADDR
};

const haddr_t alt_base_addrs[NUMBER_OF_ENTRY_TYPES] =
{
    PICO_ALT_BASE_ADDR,
    NANO_ALT_BASE_ADDR,
    MICRO_ALT_BASE_ADDR,
    TINY_ALT_BASE_ADDR,
    SMALL_ALT_BASE_ADDR,
    MEDIUM_ALT_BASE_ADDR,
    LARGE_ALT_BASE_ADDR,
    HUGE_ALT_BASE_ADDR,
    MONSTER_ALT_BASE_ADDR,
    VARIABLE_ALT_BASE_ADDR,
    NOTIFY_ALT_BASE_ADDR
};


/* Callback classes */
static const H5C_class_t pico_class[1] = {{
    PICO_ENTRY_TYPE,
    "pico_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    pico_get_initial_load_size,
    NULL,
    NULL,
    pico_deserialize,
    pico_image_len,
    pico_pre_serialize,
    pico_serialize,
    NULL,
    pico_free_icr,
    NULL,
}};

static const H5C_class_t nano_class[1] = {{
    NANO_ENTRY_TYPE,
    "nano_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    nano_get_initial_load_size,
    NULL,
    NULL,
    nano_deserialize,
    nano_image_len,
    nano_pre_serialize,
    nano_serialize,
    NULL,
    nano_free_icr,
    NULL,
}};

static const H5C_class_t micro_class[1] = {{
    MICRO_ENTRY_TYPE,
    "micro_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    micro_get_initial_load_size,
    NULL,
    NULL,
    micro_deserialize,
    micro_image_len,
    micro_pre_serialize,
    micro_serialize,
    NULL,
    micro_free_icr,
    NULL,
}};

static const H5C_class_t tiny_class[1] = {{
    TINY_ENTRY_TYPE,
    "tiny_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    tiny_get_initial_load_size,
    NULL,
    NULL,
    tiny_deserialize,
    tiny_image_len,
    tiny_pre_serialize,
    tiny_serialize,
    NULL,
    tiny_free_icr,
    NULL,
}};

static const H5C_class_t small_class[1] = {{
    SMALL_ENTRY_TYPE,
    "small_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    small_get_initial_load_size,
    NULL,
    NULL,
    small_deserialize,
    small_image_len,
    small_pre_serialize,
    small_serialize,
    NULL,
    small_free_icr,
    NULL,
}};

static const H5C_class_t medium_class[1] = {{
    MEDIUM_ENTRY_TYPE,
    "medium_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    medium_get_initial_load_size,
    NULL,
    NULL,
    medium_deserialize,
    medium_image_len,
    medium_pre_serialize,
    medium_serialize,
    NULL,
    medium_free_icr,
    NULL,
}};

static const H5C_class_t large_class[1] = {{
    LARGE_ENTRY_TYPE,
    "large_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    large_get_initial_load_size,
    NULL,
    NULL,
    large_deserialize,
    large_image_len,
    large_pre_serialize,
    large_serialize,
    NULL,
    large_free_icr,
    NULL,
}};

static const H5C_class_t huge_class[1] = {{
    HUGE_ENTRY_TYPE,
    "huge_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    huge_get_initial_load_size,
    NULL,
    NULL,
    huge_deserialize,
    huge_image_len,
    huge_pre_serialize,
    huge_serialize,
    NULL,
    huge_free_icr,
    NULL,
}};

static const H5C_class_t monster_class[1] = {{
    MONSTER_ENTRY_TYPE,
    "monster_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    monster_get_initial_load_size,
    NULL,
    NULL,
    monster_deserialize,
    monster_image_len,
    monster_pre_serialize,
    monster_serialize,
    NULL,
    monster_free_icr,
    NULL,
}};

static const H5C_class_t variable_class[1] = {{
    VARIABLE_ENTRY_TYPE,
    "variable_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_SPECULATIVE_LOAD_FLAG,
    variable_get_initial_load_size,
    variable_get_final_load_size,
    variable_verify_chksum,
    variable_deserialize,
    variable_image_len,
    variable_pre_serialize,
    variable_serialize,
    NULL,
    variable_free_icr,
    NULL,
}};

static const H5C_class_t notify_class[1] = {{
    NOTIFY_ENTRY_TYPE,
    "notify_entry",
    H5FD_MEM_DEFAULT,
    H5C__CLASS_NO_FLAGS_SET,
    notify_get_initial_load_size,
    NULL,
    NULL,
    notify_deserialize,
    notify_image_len,
    notify_pre_serialize,
    notify_serialize,
    notify_notify,
    notify_free_icr,
    NULL,
}};

/* callback table declaration */

const H5C_class_t *types[NUMBER_OF_ENTRY_TYPES] = {
    pico_class,
    nano_class,
    micro_class,
    tiny_class,
    small_class,
    medium_class,
    large_class,
    huge_class,
    monster_class,
    variable_class,
    notify_class
};

/* address translation functions: */


/*-------------------------------------------------------------------------
 * Function:    addr_to_type_and_index
 *
 * Purpose:    Given an address, compute the type and index of the
 *        associated entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */
void
addr_to_type_and_index(haddr_t addr,
                       int32_t *type_ptr,
                       int32_t *index_ptr)
{
    int i;
    int32_t type;
    int32_t idx;

    HDassert( type_ptr );
    HDassert( index_ptr );

    /* we only have a small number of entry types, so just do a
     * linear search.  If NUMBER_OF_ENTRY_TYPES grows, we may want
     * to do a binary search instead.
     */
    i = 1;
    if ( addr >= PICO_ALT_BASE_ADDR ) {

        while ( ( i < NUMBER_OF_ENTRY_TYPES ) &&
                ( addr >= alt_base_addrs[i] ) )
        {
            i++;
        }

    } else {

        while ( ( i < NUMBER_OF_ENTRY_TYPES ) &&
                ( addr >= base_addrs[i] ) )
        {
            i++;
        }
    }

    type = i - 1;

    HDassert( ( type >= 0 ) && ( type < NUMBER_OF_ENTRY_TYPES ) );

    if ( addr >= PICO_ALT_BASE_ADDR ) {

        idx = (int32_t)((addr - alt_base_addrs[type]) / entry_sizes[type]);
        HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
        HDassert( !((entries[type])[idx].at_main_addr) );
        HDassert( addr == (entries[type])[idx].alt_addr );

    } else {

        idx = (int32_t)((addr - base_addrs[type]) / entry_sizes[type]);
        HDassert( ( idx >= 0 ) && ( idx <= max_indices[type] ) );
        HDassert( (entries[type])[idx].at_main_addr );
        HDassert( addr == (entries[type])[idx].main_addr );
    }

    HDassert( addr == (entries[type])[idx].addr );

    *type_ptr = type;
    *index_ptr = idx;

    return;

} /* addr_to_type_and_index() */


/* Call back functions: */



/*-------------------------------------------------------------------------
 * Function:    get_initial_load_size & friends
 *
 * Purpose:    Query the image size for loading an entry.  The helper
 *              functions funnel into get_initial_load_size proper.
 *
 * Return:    SUCCEED
 *
 * Programmer:    Quincey Koziol
 *              5/18/10
 *
 *-------------------------------------------------------------------------
 */
static herr_t
get_initial_load_size(void *udata, size_t *image_length, int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    test_entry_t *entry;
    test_entry_t *base_addr;
    haddr_t addr = *(const haddr_t *)udata;
    int32_t type;
    int32_t idx;

    addr_to_type_and_index(addr, &type, &idx);

    base_addr = entries[type];
    entry = &(base_addr[idx]);

    HDassert(entry->type >= 0);
    HDassert(entry->type == type);
    HDassert(entry->type == entry_type);
    HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
    HDassert(entry->index == idx);
    HDassert(entry->index >= 0);
    HDassert(entry->index <= max_indices[type]);
    HDassert(entry == entry->self);
    HDassert(entry->addr == addr);

    *image_length = entry->size;

    return(SUCCEED);
} /* get_initial_load_size() */

static herr_t
pico_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, PICO_ENTRY_TYPE);
}

static herr_t
nano_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, NANO_ENTRY_TYPE);
}

static herr_t
micro_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, MICRO_ENTRY_TYPE);
}

static herr_t
tiny_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, TINY_ENTRY_TYPE);
}

static herr_t
small_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, SMALL_ENTRY_TYPE);
}

static herr_t
medium_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, MEDIUM_ENTRY_TYPE);
}

static herr_t
large_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, LARGE_ENTRY_TYPE);
}

static herr_t
huge_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, HUGE_ENTRY_TYPE);
}

static herr_t
monster_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, MONSTER_ENTRY_TYPE);
}

static herr_t
variable_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, VARIABLE_ENTRY_TYPE);
}

static herr_t
notify_get_initial_load_size(void *udata, size_t *image_length)
{
    return get_initial_load_size(udata, image_length, NOTIFY_ENTRY_TYPE);
}


/*-------------------------------------------------------------------------
 * Function:    get_final_load_size & friends
 *
 * Purpose:    Query the final image size for loading an entry.  The helper
 *              functions funnel into get_final_load_size proper.
 *
 * Return:    SUCCEED
 *
 * Programmer:    Quincey Koziol
 *              11/18/16
 *
 *-------------------------------------------------------------------------
 */
static herr_t
get_final_load_size(const void H5_ATTR_UNUSED *image, size_t H5_ATTR_UNUSED image_len,
    void *udata, size_t *actual_len, int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    test_entry_t *entry;
    test_entry_t *base_addr;
    haddr_t addr = *(const haddr_t *)udata;
    int32_t type;
    int32_t idx;

    addr_to_type_and_index(addr, &type, &idx);

    base_addr = entries[type];
    entry = &(base_addr[idx]);

    HDassert(entry->type >= 0);
    HDassert(entry->type == type);
    HDassert(entry->type == entry_type);
    HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
    HDassert(entry->index == idx);
    HDassert(entry->index >= 0);
    HDassert(entry->index <= max_indices[type]);
    HDassert(entry == entry->self);
    HDassert(entry->addr == addr);
    HDassert(type == VARIABLE_ENTRY_TYPE);

    /* Simulate SPECULATIVE read with a specified actual_len */
    if(entry->actual_len) {
        *actual_len = entry->actual_len;
        entry->size = entry->actual_len;
    } /* end if */
    else
        *actual_len = entry->size;

    return(SUCCEED);
} /* get_final_load_size() */

static herr_t
variable_get_final_load_size(const void *image, size_t image_len,
    void *udata, size_t *actual_len)
{
    return get_final_load_size(image, image_len, udata, actual_len, VARIABLE_ENTRY_TYPE);
}


/*-------------------------------------------------------------------------
 * Function:    verify_chksum & friends
 *        (only done for VARIABLE_ENTRY_TYPE which has a speculative read)
 *
 * Purpose:    Simulate checksum verification:
 *          --check is ok only after 'max_verify_ct' is reached
 *          --otherwise check is not ok
 *
 * Return:    TRUE: checksum is ok
 *        FALSE: checksum is not ok
 *
 * Programmer:
 *
 *-------------------------------------------------------------------------
 */

static htri_t
verify_chksum(const void H5_ATTR_UNUSED *image, size_t H5_ATTR_UNUSED len, void *udata,
    int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    test_entry_t *entry;
    test_entry_t *base_addr;
    haddr_t addr = *(const haddr_t *)udata;
    int32_t type;
    int32_t idx;

    addr_to_type_and_index(addr, &type, &idx);

    base_addr = entries[type];
    entry = &(base_addr[idx]);

    HDassert(entry->type >= 0);
    HDassert(entry->type == type);
    HDassert(entry->type == entry_type);
    HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
    HDassert(type == VARIABLE_ENTRY_TYPE);
    HDassert(entry->index == idx);
    HDassert(entry->index >= 0);
    HDassert(entry->index <= max_indices[type]);
    HDassert(entry == entry->self);
    HDassert(entry->addr == addr);

    if(++entry->verify_ct >= entry->max_verify_ct)
    return(TRUE);
    else
    return(FALSE);

} /* verify_chksum() */

static htri_t
variable_verify_chksum(const void *image, size_t len, void *udata)
{
    return verify_chksum(image, len, udata, VARIABLE_ENTRY_TYPE);
}


/*-------------------------------------------------------------------------
 * Function:    deserialize & friends
 *
 * Purpose:    deserialize the entry.  The helper functions verify that the
 *        correct version of deserialize is being called, and then call
 *        deserialize proper.
 *
 * Return:    void * (pointer to the in core representation of the entry)
 *
 * Programmer:    John Mainzer
 *              9/20/07
 *
 *-------------------------------------------------------------------------
 */
static void *
deserialize(const void *image, size_t H5_ATTR_NDEBUG_UNUSED len, void *udata, hbool_t *dirty,
    int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    test_entry_t *entry;
    test_entry_t *base_addr;
    haddr_t addr = *(haddr_t *)udata;
    int32_t type;
    int32_t idx;

    addr_to_type_and_index(addr, &type, &idx);

    base_addr = entries[type];
    entry = &(base_addr[idx]);

    HDassert(entry->type >= 0);
    HDassert(entry->type == type);
    HDassert(entry->type == entry_type);
    HDassert(entry->type < NUMBER_OF_ENTRY_TYPES);
    HDassert(entry->index == idx);
    HDassert(entry->index >= 0);
    HDassert(entry->index <= max_indices[type]);
    HDassert(entry == entry->self);
    HDassert(entry->addr == addr);
    HDassert(entry->size == len);
    HDassert((entry->type == VARIABLE_ENTRY_TYPE) || (entry->size == entry_sizes[type]));
    HDassert(dirty != NULL);
    HDassert( entry->flush_dep_npar == 0 );
    HDassert( entry->flush_dep_nchd == 0 );

    /* for now *dirty will always be FALSE */
    *dirty = FALSE;

    /* verify that the image contains the expected data. */
    HDassert(image != NULL);
    if((entry->at_main_addr && entry->written_to_main_addr) ||
            (!entry->at_main_addr && entry->written_to_alt_addr)) {
        if((type == PICO_ENTRY_TYPE) || (type == VARIABLE_ENTRY_TYPE) ||
           (type == NOTIFY_ENTRY_TYPE)) {
            if((*((const char *)image)) != (char)(idx & 0xFF)) {
                HDfprintf(stdout, "type = %d, idx = %d, addr = 0x%lx.\n",
                          type, idx, (long)addr);
                HDfprintf(stdout, "*image = 0x%x\n",
                          (int)(*((const char *)image)));
                HDfprintf(stdout, "expected *image = 0x%x\n",
                          (int)(idx & 0xFF));
            } /* end if */
        HDassert((*((const char *)image)) == (char)(idx & 0xFF));
        } /* end if */
        else {
            if((*(((const char *)image) + 2)) != (char)(idx & 0xFF)) {
                HDfprintf(stdout, "type = %d, idx = %d, addr = 0x%lx.\n",
                          type, idx, (long)addr);
                HDfprintf(stdout,
                    "*image = 0x%" PRIx8 " 0x%" PRIx8 " 0x%" PRIx8 "\n",
                    (*((const uint8_t *)image)),
                    (*(((const uint8_t *)image) + 1)),
                    (*(((const uint8_t *)image) + 2)));
                HDfprintf(stdout,
                    "expected *image = 0x%02" PRIx32 "%02" PRIx32 "\n",
                          (uint32_t)idx & 0xFF,
                          (((uint32_t)idx & 0xFF00) >> 8));
            } /* end if */
        HDassert((*((const char *)image)) == (char)(type & 0xFF));
        HDassert((*(((const char *)image) + 1)) == (char)((idx & 0xFF00) >> 8));
        HDassert((*(((const char *)image) + 2)) == (char)(idx & 0xFF));
        } /* end else */
    } /* end if */

    entry->deserialized = TRUE;
    entry->header.is_dirty = FALSE;
    entry->is_dirty = FALSE;
    (entry->deserializes)++;

    return((void *)entry);
} /* deserialize() */

void *
pico_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, PICO_ENTRY_TYPE);
}

void *
nano_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, NANO_ENTRY_TYPE);
}

void *
micro_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, MICRO_ENTRY_TYPE);
}

void *
tiny_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, TINY_ENTRY_TYPE);
}

void *
small_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, SMALL_ENTRY_TYPE);
}

void *
medium_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, MEDIUM_ENTRY_TYPE);
}

void *
large_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, LARGE_ENTRY_TYPE);
}

void *
huge_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, HUGE_ENTRY_TYPE);
}

void *
monster_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, MONSTER_ENTRY_TYPE);
}

void *
variable_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, VARIABLE_ENTRY_TYPE);
}

void *
notify_deserialize(const void *image, size_t len, void *udata, hbool_t *dirty)
{
    return deserialize(image, len, udata, dirty, NOTIFY_ENTRY_TYPE);
}


/*-------------------------------------------------------------------------
 * Function:    image_len & friends
 *
 * Purpose:    Return the real (and possibly reduced) length of the image.
 *         The helper functions verify that the correct version of
 *         deserialize is being called, and then call deserialize
 *         proper.
 *
 * Return:    SUCCEED
 *
 * Programmer:    John Mainzer
 *              9/19/07
 *
 *-------------------------------------------------------------------------
 */
herr_t
image_len(const void *thing, size_t *image_length, int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    const test_entry_t *entry;
    int32_t type;

    HDassert(thing);
    HDassert(image_length);

    entry = (const test_entry_t *)thing;

    HDassert(entry->self == entry);

    type = entry->type;

    HDassert((type >= 0) && (type < NUMBER_OF_ENTRY_TYPES));
    HDassert(type == entry_type);
    HDassert((entry->index >= 0) && (entry->index <= max_indices[type]));

    HDassert(entry == &(entries[type][entry->index]));

    if(type != VARIABLE_ENTRY_TYPE)
    HDassert(entry->size == entry_sizes[type]);
    else {
    HDassert(entry->size <= entry_sizes[type]);
    HDassert(entry->size > 0);
    } /* end else */

    *image_length = entry->size;

    return(SUCCEED);
} /* image_len() */

herr_t
pico_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, PICO_ENTRY_TYPE);
}

herr_t
nano_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, NANO_ENTRY_TYPE);
}

herr_t
micro_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, MICRO_ENTRY_TYPE);
}

herr_t
tiny_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, TINY_ENTRY_TYPE);
}

herr_t
small_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, SMALL_ENTRY_TYPE);
}

herr_t
medium_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, MEDIUM_ENTRY_TYPE);
}

herr_t
large_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, LARGE_ENTRY_TYPE);
}

herr_t
huge_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, HUGE_ENTRY_TYPE);
}

herr_t
monster_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, MONSTER_ENTRY_TYPE);
}

herr_t
variable_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, VARIABLE_ENTRY_TYPE);
}

herr_t
notify_image_len(const void *thing, size_t *image_length)
{
    return image_len(thing, image_length, NOTIFY_ENTRY_TYPE);
}


/*-------------------------------------------------------------------------
 * Function:    pre_serialize & friends
 *
 * Purpose:    Pre_serialize the supplied entry.  For now this consistes of
 *         executing any flush operations and loading the appropriate
 *        values into *new_addr_ptr, *new_len_ptr, and *flags_ptr.
 *
 *         The helper functions verify that the correct version of
 *         serialize is being called, and then call serialize
 *         proper.
 *
 * Return:    SUCCEED if successful, FAIL otherwise.
 *
 * Programmer:    John Mainzer
 *              8/07/14
 *
 *-------------------------------------------------------------------------
 */
herr_t
pre_serialize(H5F_t H5_ATTR_NDEBUG_UNUSED *f,
              void *thing,
              haddr_t H5_ATTR_NDEBUG_UNUSED addr,
              size_t H5_ATTR_NDEBUG_UNUSED len,
              haddr_t *new_addr_ptr,
              size_t *new_len_ptr,
              unsigned *flags_ptr)
{
    test_entry_t *entry;
    int32_t i;

    HDassert(f);
    HDassert(thing);
    HDassert(flags_ptr);

    *flags_ptr = H5C__SERIALIZE_NO_FLAGS_SET;

    HDassert(new_addr_ptr);
    HDassert(new_len_ptr);

    entry = (test_entry_t *)thing;

    HDassert(entry->self == entry);
    HDassert(entry->addr == addr);
    HDassert(entry->size == len);

    /* shouldn't serialize the entry unless it is dirty */
    HDassert(entry->is_dirty);
    HDassert((entry->type >= 0) && (entry->type < NUMBER_OF_ENTRY_TYPES));
    HDassert((entry->index >= 0) && (entry->index <= max_indices[entry->type]));
    HDassert(entry == &(entries[entry->type][entry->index]));
    HDassert(entry->num_flush_ops >= 0);
    HDassert(entry->num_flush_ops < MAX_FLUSH_OPS);

    if(entry->num_flush_ops > 0) {
        for(i = 0; i < entry->num_flush_ops; i++ ) {
            HDassert(entry->file_ptr);

            execute_flush_op(entry->file_ptr, entry,
                    &((entry->flush_ops)[i]), flags_ptr);
        } /* end for */
        entry->num_flush_ops = 0;
        entry->flush_op_self_resize_in_progress = FALSE;

        /* This looks wrong, but it isn't -- *flags_ptr will be modified
         * by execute_flush_op() only if the target is this entry --
         * and the flags set will accumulate over the set of calls in
         * the for loop.
         */
        if(pass && (((*flags_ptr) & H5C__SERIALIZE_RESIZED_FLAG) != 0)) {

            /* set *new_len_ptr to the new length. */

            HDassert(entry->type == VARIABLE_ENTRY_TYPE);
            HDassert(entry->size > 0);
            HDassert(entry->size <= VARIABLE_ENTRY_SIZE);

            *new_len_ptr = entry->size;
        } /* end if */

        if(((*flags_ptr) & H5C__SERIALIZE_MOVED_FLAG) != 0) {

            HDassert(((*flags_ptr) | H5C__SERIALIZE_RESIZED_FLAG) != 0);

            /* place the new address in *new_addr */
            *new_addr_ptr = entry->addr;
        } /* end if */
    } /* end if */

    return(SUCCEED);

} /* pre_serialize() */

herr_t
pico_pre_serialize(H5F_t *f,
                   void *thing,
                   haddr_t addr,
                   size_t len,
                   haddr_t *new_addr_ptr,
                   size_t *new_len_ptr,
                   unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
nano_pre_serialize(H5F_t *f,
                   void *thing,
                   haddr_t addr,
                   size_t len,
                   haddr_t *new_addr_ptr,
                   size_t *new_len_ptr,
                   unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
micro_pre_serialize(H5F_t *f,
                    void *thing,
                    haddr_t addr,
                    size_t len,
                    haddr_t *new_addr_ptr,
                    size_t *new_len_ptr,
                    unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
tiny_pre_serialize(H5F_t *f,
                   void *thing,
                   haddr_t addr,
                   size_t len,
                   haddr_t *new_addr_ptr,
                   size_t *new_len_ptr,
                   unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
small_pre_serialize(H5F_t *f,
                    void *thing,
                    haddr_t addr,
                    size_t len,
                    haddr_t *new_addr_ptr,
                    size_t *new_len_ptr,
                    unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
medium_pre_serialize(H5F_t *f,
                     void *thing,
                     haddr_t addr,
                     size_t len,
                     haddr_t *new_addr_ptr,
                     size_t *new_len_ptr,
                     unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
large_pre_serialize(H5F_t *f,
                    void *thing,
                    haddr_t addr,
                    size_t len,
                    haddr_t *new_addr_ptr,
                    size_t *new_len_ptr,
                    unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
huge_pre_serialize(H5F_t *f,
                   void *thing,
                   haddr_t addr,
                   size_t len,
                   haddr_t *new_addr_ptr,
                   size_t *new_len_ptr,
                   unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
monster_pre_serialize(H5F_t *f,
                      void *thing,
                      haddr_t addr,
                      size_t len,
                      haddr_t *new_addr_ptr,
                      size_t *new_len_ptr,
                      unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
variable_pre_serialize(H5F_t *f,
                       void *thing,
                       haddr_t addr,
                       size_t len,
                       haddr_t *new_addr_ptr,
                       size_t *new_len_ptr,
                       unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}

herr_t
notify_pre_serialize(H5F_t *f,
                     void *thing,
                     haddr_t addr,
                     size_t len,
                     haddr_t *new_addr_ptr,
                     size_t *new_len_ptr,
                     unsigned *flags_ptr)
{
    return pre_serialize(f, thing, addr, len,
                         new_addr_ptr, new_len_ptr, flags_ptr);
}



/*-------------------------------------------------------------------------
 * Function:    serialize & friends
 *
 * Purpose:    Serialize the supplied entry.  For now this consistes of
 *         loading the type and index of the entry into the first
 *         three bytes of the image (if it is long enough -- if not
 *         just load the low order byte of the index into the first
 *         byte of the image).
 *
 *         The helper functions verify that the correct version of
 *         serialize is being called, and then call serialize
 *         proper.
 *
 * Return:    SUCCEED if successful, FAIL otherwise.
 *
 * Programmer:    John Mainzer
 *              9/19/07
 *
 *-------------------------------------------------------------------------
 */
herr_t
serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    test_entry_t *entry;
    int32_t type;

    HDassert(image_ptr);
    HDassert(thing);

    entry = (test_entry_t *)thing;

    HDassert(entry->self == entry);
    HDassert(entry->size == len);

    /* shouldn't serialize the entry unless it is dirty */
    HDassert(entry->is_dirty);

    type = entry->type;

    HDassert((type >= 0) && (type < NUMBER_OF_ENTRY_TYPES));
    HDassert((entry->index >= 0) && (entry->index <= max_indices[type]));

    HDassert(entry == &(entries[type][entry->index]));
    HDassert(entry->num_flush_ops >= 0);
    HDassert(entry->num_flush_ops < MAX_FLUSH_OPS);

    /* null out the image to avoid spurious failures */
    HDmemset(image_ptr, 0, len);

    if((type == PICO_ENTRY_TYPE) || (type == VARIABLE_ENTRY_TYPE) ||
       (type == NOTIFY_ENTRY_TYPE )) {
    HDassert(entry->size >= PICO_ENTRY_SIZE);
    *((char *)image_ptr) = (char)((entry->index) & 0xFF);
    } /* end if */
    else {
    HDassert(entry->size >= NANO_ENTRY_SIZE);
    *((char *)image_ptr) = (char)((entry->type) & 0xFF);
    *(((char *)image_ptr) + 1) = (char)(((entry->index) & 0xFF00) >> 8);
    *(((char *)image_ptr) + 2) = (char)((entry->index) & 0xFF);
    } /* end else */

    /* We no longer do the actual write through an callback -- this is
     * as close to that callback as we will get.  Hence mark the entry
     * clean here.  If all goes well, it will be flushed shortly.
     */
    entry->is_dirty = FALSE;

    if(entry->flush_dep_npar > 0) {
    HDassert(entry->flush_dep_ndirty_chd == 0);
        mark_flush_dep_clean(entry);
    } /* end if */

    /* since the entry is about to be written to disk, we can mark it
     * as initialized.
     */
    if(entry->at_main_addr)
    entry->written_to_main_addr = TRUE;
    else
    entry->written_to_alt_addr = TRUE;

    /* do book keeping */
    (entry->serializes)++;
    entry->serialized = TRUE;

    return(SUCCEED);
} /* serialize() */

herr_t
pico_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
nano_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
micro_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
tiny_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
small_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
medium_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
    void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
large_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
huge_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len, void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
monster_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
    void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
variable_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
    void *thing)
{
    return serialize(f, image_ptr, len, thing);
}

herr_t
notify_serialize(const H5F_t H5_ATTR_UNUSED *f, void *image_ptr, size_t len,
    void *thing)
{
    return serialize(f, image_ptr, len, thing);
}


/*-------------------------------------------------------------------------
 * Function:    notify & friends
 *
 * Purpose:    Record notifications of cache events for the entry.
 *              The helper functions verify that the correct version of notify
 *              is being called, and then call notify proper.
 *
 * Return:    SUCCEED
 *
 * Programmer:    Quincey Koziol
 *              4/28/09
 *
 *-------------------------------------------------------------------------
 */
static herr_t
notify(H5C_notify_action_t action, void *thing, int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    test_entry_t *entry;

    HDassert(thing);

    entry = (test_entry_t *)thing;

    HDassert(entry->index >= 0);
    HDassert(entry->index <= max_indices[entry->type]);
    HDassert((entry->type >= 0) && (entry->type < NUMBER_OF_ENTRY_TYPES));
    HDassert(entry->type == entry_type);
    HDassert(entry == &(entries[entry->type][entry->index]));
    HDassert(entry == entry->self);
    if(!(action == H5C_NOTIFY_ACTION_ENTRY_DIRTIED && entry->action == TEST_ENTRY_ACTION_MOVE))
        HDassert(entry->header.addr == entry->addr);
    HDassert((entry->type == VARIABLE_ENTRY_TYPE) || \
              (entry->size == entry_sizes[entry->type]));

    /* Increment count for appropriate action */
    switch(action) {
        case H5C_NOTIFY_ACTION_AFTER_INSERT:    /* Entry has been added */
        case H5C_NOTIFY_ACTION_AFTER_LOAD:    /* to the cache.        */
            entry->notify_after_insert_count++;
            break;

        case H5C_NOTIFY_ACTION_AFTER_FLUSH:
        case H5C_NOTIFY_ACTION_ENTRY_DIRTIED:
        case H5C_NOTIFY_ACTION_ENTRY_CLEANED:
        case H5C_NOTIFY_ACTION_CHILD_DIRTIED:
        case H5C_NOTIFY_ACTION_CHILD_CLEANED:
        case H5C_NOTIFY_ACTION_CHILD_UNSERIALIZED:
        case H5C_NOTIFY_ACTION_CHILD_SERIALIZED:
        /* do nothing */
        break;

        case H5C_NOTIFY_ACTION_BEFORE_EVICT:      /* Entry is about to be evicted from cache */
            entry->notify_before_evict_count++;
            break;

        default:
            HDassert(0 && "Unknown notify action!?!");
    } /* end switch */

    return(SUCCEED);
} /* notify() */

herr_t
notify_notify(H5C_notify_action_t action, void *thing)
{
    return(notify(action, thing, NOTIFY_ENTRY_TYPE));
}


/*-------------------------------------------------------------------------
 * Function:    free_icr & friends
 *
 * Purpose:    Nominally, this callback is supposed to free the
 *         in core representation of the entry.
 *
 *         In the context of this test bed, we use it to do
 *         do all the processing we used to do on a destroy.
 *         In particular, we use it to release all the pins
 *         that this entry may have on other entries.
 *
 *         The helper functions verify that the correct version of
 *         serialize is being called, and then call free_icr
 *         proper.
 *
 * Return:    SUCCEED
 *
 * Programmer:    John Mainzer
 *              9/19/07
 *
 *-------------------------------------------------------------------------
 */
herr_t
free_icr(test_entry_t *entry, int32_t H5_ATTR_NDEBUG_UNUSED entry_type)
{
    HDassert(entry);

    HDassert(entry->type == entry_type);
    HDassert(entry->index >= 0);
    HDassert(entry->index <= max_indices[entry->type]);
    HDassert(entry == &(entries[entry->type][entry->index]));
    HDassert(entry == entry->self);
    HDassert(entry->cache_ptr != NULL);
    HDassert(entry->cache_ptr->magic == H5C__H5C_T_MAGIC);
    HDassert((entry->header.destroy_in_progress) ||
              (entry->header.addr == entry->addr));
    HDassert(entry->header.magic == H5C__H5C_CACHE_ENTRY_T_BAD_MAGIC);
    HDassert(entry->header.size == entry->size);
    HDassert((entry->type == VARIABLE_ENTRY_TYPE) ||
        (entry->size == entry_sizes[entry->type]));
    HDassert(entry->header.tl_next == NULL);
    HDassert(entry->header.tl_prev == NULL);

    if(entry->num_pins > 0) {
        int i;

    for(i = 0; i < entry->num_pins; i++) {
            test_entry_t *pinned_entry;
            test_entry_t *pinned_base_addr;

        pinned_base_addr = entries[entry->pin_type[i]];
        pinned_entry = &(pinned_base_addr[entry->pin_idx[i]]);

        HDassert(0 <= pinned_entry->type);
            HDassert(pinned_entry->type < NUMBER_OF_ENTRY_TYPES);
        HDassert(pinned_entry->type == entry->pin_type[i]);
        HDassert(pinned_entry->index >= 0);
        HDassert(pinned_entry->index <= max_indices[pinned_entry->type]);
        HDassert(pinned_entry->index == entry->pin_idx[i]);
        HDassert(pinned_entry == pinned_entry->self);
        HDassert(pinned_entry->header.is_pinned);
        HDassert(pinned_entry->is_pinned);
        HDassert(pinned_entry->pinning_ref_count > 0);

        pinned_entry->pinning_ref_count--;

        if(pinned_entry->pinning_ref_count <= 0) {
                HDassert(pinned_entry->file_ptr);

        unpin_entry(pinned_entry->type, pinned_entry->index);
        } /* end if */

        entry->pin_type[i] = -1;
        entry->pin_idx[i] = -1;
    } /* end if */
    entry->num_pins = 0;
    } /* end if */

    entry->destroyed = TRUE;
    entry->cache_ptr = NULL;

    return(SUCCEED);
} /* free_icr() */

herr_t
pico_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, PICO_ENTRY_TYPE);
}

herr_t
nano_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, NANO_ENTRY_TYPE);
}

herr_t
micro_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, MICRO_ENTRY_TYPE);
}

herr_t
tiny_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, TINY_ENTRY_TYPE);
}

herr_t
small_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, SMALL_ENTRY_TYPE);
}

herr_t
medium_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, MEDIUM_ENTRY_TYPE);
}

herr_t
large_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, LARGE_ENTRY_TYPE);
}

herr_t
huge_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, HUGE_ENTRY_TYPE);
}

herr_t
monster_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, MONSTER_ENTRY_TYPE);
}

herr_t
variable_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, VARIABLE_ENTRY_TYPE);
}

herr_t
notify_free_icr(void *thing)
{
    return free_icr((test_entry_t *)thing, NOTIFY_ENTRY_TYPE);
}


/**************************************************************************/
/**************************************************************************/
/************************** test utility functions: ***********************/
/**************************************************************************/
/**************************************************************************/

/*-------------------------------------------------------------------------
 * Function:    add_flush_op
 *
 * Purpose:    Do nothing if pass is FALSE on entry.
 *
 *              Otherwise, add the specified flush operation to the
 *              target instance of test_entry_t.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              9/1/06
 *
 *-------------------------------------------------------------------------
 */

void
add_flush_op(int target_type,
        int target_idx,
        int op_code,
        int type,
        int idx,
        hbool_t flag,
        size_t new_size,
             unsigned * order_ptr)
{
    int i;
    test_entry_t * target_base_addr;
    test_entry_t * target_entry_ptr;

    HDassert( ( 0 <= target_type ) && ( target_type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= target_idx ) &&
        ( target_idx <= max_indices[target_type] ) );
    HDassert( ( 0 <= op_code ) && ( op_code <= FLUSH_OP__MAX_OP ) );
    HDassert( ( op_code != FLUSH_OP__RESIZE ) ||
        ( type == VARIABLE_ENTRY_TYPE ) );
    HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
    HDassert( new_size <= VARIABLE_ENTRY_SIZE );
#ifndef H5_HAVE_STDBOOL_H
    /* Check for TRUE or FALSE if we're using an integer type instead
     * of a real Boolean type.
     */
    HDassert( ( flag == TRUE ) || ( flag == FALSE ) );
#endif /* H5_HAVE_STDBOOL_H */

    if ( pass ) {

        target_base_addr = entries[target_type];
        target_entry_ptr = &(target_base_addr[target_idx]);

        HDassert( target_entry_ptr->index == target_idx );
        HDassert( target_entry_ptr->type == target_type );
        HDassert( target_entry_ptr == target_entry_ptr->self );
    HDassert( target_entry_ptr->num_flush_ops < MAX_FLUSH_OPS );

    i = (target_entry_ptr->num_flush_ops)++;
    (target_entry_ptr->flush_ops)[i].op_code = op_code;
    (target_entry_ptr->flush_ops)[i].type = type;
    (target_entry_ptr->flush_ops)[i].idx = idx;
    (target_entry_ptr->flush_ops)[i].flag = flag;
    (target_entry_ptr->flush_ops)[i].size = new_size;
    (target_entry_ptr->flush_ops)[i].order_ptr = order_ptr;

    }

    return;

} /* add_flush_op() */


/*-------------------------------------------------------------------------
 * Function:    create_pinned_entry_dependency
 *
 * Purpose:    Do nothing if pass is FALSE on entry.
 *
 *              Otherwise, set up a pinned entry dependency so we can
 *              test the pinned entry modifications to the flush routine.
 *
 *        Given the types and indicies of the pinned and pinning
 *        entries, add the pinned entry to the list of pinned
 *        entries in the pinning entry, increment the
 *        pinning reference count of the pinned entry, and
 *        if that count was zero initially, pin the entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */

void
create_pinned_entry_dependency(H5F_t * file_ptr,
                    int pinning_type,
                               int pinning_idx,
                        int pinned_type,
                        int pinned_idx)
{
    test_entry_t * pinning_base_addr;
    test_entry_t * pinning_entry_ptr;
    test_entry_t * pinned_base_addr;
    test_entry_t * pinned_entry_ptr;

    if ( pass ) {

        HDassert( ( 0 <= pinning_type ) &&
            ( pinning_type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= pinning_idx ) &&
            ( pinning_idx <= max_indices[pinning_type] ) );
        HDassert( ( 0 <= pinned_type ) &&
            ( pinned_type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= pinned_idx ) &&
            ( pinned_idx <= max_indices[pinned_type] ) );

        pinning_base_addr = entries[pinning_type];
        pinning_entry_ptr = &(pinning_base_addr[pinning_idx]);

        pinned_base_addr = entries[pinned_type];
        pinned_entry_ptr = &(pinned_base_addr[pinned_idx]);

        HDassert( pinning_entry_ptr->index == pinning_idx );
        HDassert( pinning_entry_ptr->type == pinning_type );
        HDassert( pinning_entry_ptr == pinning_entry_ptr->self );
    HDassert( pinning_entry_ptr->num_pins < MAX_PINS );

        HDassert( pinning_entry_ptr->index == pinning_idx );
        HDassert( pinning_entry_ptr->type == pinning_type );
        HDassert( pinning_entry_ptr == pinning_entry_ptr->self );
    HDassert( ! ( pinning_entry_ptr->is_protected ) );

    pinning_entry_ptr->pin_type[pinning_entry_ptr->num_pins] = pinned_type;
    pinning_entry_ptr->pin_idx[pinning_entry_ptr->num_pins] = pinned_idx;
    (pinning_entry_ptr->num_pins)++;

        if ( pinned_entry_ptr->pinning_ref_count == 0 ) {

        protect_entry(file_ptr, pinned_type, pinned_idx);
        unprotect_entry(file_ptr, pinned_type, pinned_idx, H5C__PIN_ENTRY_FLAG);
    }

    (pinned_entry_ptr->pinning_ref_count)++;
    }

    return;

} /* create_pinned_entry_dependency() */


/*-------------------------------------------------------------------------
 * Function:    dirty_entry
 *
 * Purpose:    Given a pointer to a cache, an entry type, and an index,
 *        dirty the target entry.
 *
 *        If the dirty_pin parameter is true, verify that the
 *        target entry is in the cache and is pinned.  If it
 *        isn't, scream and die.  If it is, use the
 *        H5C_mark_entry_dirty() call to dirty it.
 *
 *        Do nothing if pass is false on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */

void
dirty_entry(H5F_t * file_ptr,
            int32_t type,
            int32_t idx,
        hbool_t dirty_pin)
{
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;

    HDassert( file_ptr );
    HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

    if ( pass ) {

        if ( dirty_pin ) {
            H5C_t *cache_ptr = file_ptr->shared->cache;

            HDassert(cache_ptr);

        if ( ! entry_in_cache(cache_ptr, type, idx) ) {

        pass = FALSE;
                failure_mssg = "entry to be dirty pinned is not in cache.";

        } else {

                base_addr = entries[type];
                entry_ptr = &(base_addr[idx]);

            HDassert( entry_ptr->index == idx );
            HDassert( entry_ptr->type == type );
                HDassert( entry_ptr == entry_ptr->self );

        if ( ! ( (entry_ptr->header).is_pinned ) ) {

                    pass = FALSE;
                    failure_mssg = "entry to be dirty pinned is not pinned.";

                } else {

            mark_entry_dirty(type, idx);

        }
        }
        } else {

        protect_entry(file_ptr, type, idx);
            unprotect_entry(file_ptr, type, idx, H5C__DIRTIED_FLAG);
    }
    }

    return;

} /* dirty_entry() */


/*-------------------------------------------------------------------------
 * Function:    execute_flush_op
 *
 * Purpose:    Given a pointer to an instance of struct flush_op, execute
 *         it.
 *
 *        Do nothing if pass is false on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              9/1/06
 *
 *-------------------------------------------------------------------------
 */

void
execute_flush_op(H5F_t * file_ptr,
        struct test_entry_t * entry_ptr,
        struct flush_op * op_ptr,
        unsigned * flags_ptr)
{
    H5C_t * cache_ptr;

    HDassert( file_ptr );
    cache_ptr = file_ptr->shared->cache;
    HDassert( cache_ptr != NULL );
    HDassert( cache_ptr->magic == H5C__H5C_T_MAGIC );
    HDassert( entry_ptr != NULL );
    HDassert( entry_ptr = entry_ptr->self );
    HDassert( entry_ptr->header.addr == entry_ptr->addr );
    HDassert( ( entry_ptr->flush_op_self_resize_in_progress ) ||
              ( entry_ptr->header.size == entry_ptr->size ) );
    HDassert( op_ptr != NULL );
    HDassert( ( 0 <= entry_ptr->type ) &&
              ( entry_ptr->type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= entry_ptr->index ) &&
              ( entry_ptr->index <= max_indices[entry_ptr->type] ) );
    HDassert( ( 0 <= op_ptr->type ) &&
              ( op_ptr->type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= op_ptr->idx ) &&
              ( op_ptr->idx <= max_indices[op_ptr->type] ) );
    HDassert( flags_ptr != NULL );
#ifndef H5_HAVE_STDBOOL_H
    /* Check for TRUE or FALSE if we're using an integer type instead
     * of a real Boolean type.
     */
    HDassert( ( op_ptr->flag == FALSE ) || ( op_ptr->flag == TRUE ) );
#endif /* H5_HAVE_STDBOOL_H */

    if ( pass ) {

    switch ( op_ptr->op_code )
    {
        case FLUSH_OP__NO_OP:
        break;

        case FLUSH_OP__DIRTY:
        HDassert( ( entry_ptr->type != op_ptr->type ) ||
            ( entry_ptr->index != op_ptr->idx ) );

        dirty_entry(file_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag);
        break;

            case FLUSH_OP__RESIZE:
        if ( ( entry_ptr->type == op_ptr->type ) &&
                     ( entry_ptr->index == op_ptr->idx ) ) {

                    /* the flush operation is acting on the entry to
            * which it is attached.  Handle this here:
            */
                    HDassert( entry_ptr->type == VARIABLE_ENTRY_TYPE );
            HDassert( op_ptr->size > 0 );
            HDassert( op_ptr->size <= VARIABLE_ENTRY_SIZE );

                    entry_ptr->size = op_ptr->size;

            (*flags_ptr) |= H5C__SERIALIZE_RESIZED_FLAG;

            entry_ptr->flush_op_self_resize_in_progress = TRUE;

        } else {

            /* change the size of some other entry */

            resize_entry(file_ptr, op_ptr->type, op_ptr->idx,
                                 op_ptr->size, op_ptr->flag);
        }
        break;

        case FLUSH_OP__MOVE:
        if((entry_ptr->type == op_ptr->type) &&
                        (entry_ptr->index == op_ptr->idx)) {

                    /* the flush operation is acting on the entry to
            * which it is attached.  Handle this here:
            */

            HDassert(((*flags_ptr) & H5C__SERIALIZE_RESIZED_FLAG) != 0);
                    (*flags_ptr) |= H5C__SERIALIZE_MOVED_FLAG;

            if(op_ptr->flag) {
                        HDassert(entry_ptr->addr == entry_ptr->alt_addr);
                        entry_ptr->addr = entry_ptr->main_addr;
                        entry_ptr->at_main_addr = TRUE;
                    } /* end if */
                    else {
                        HDassert(entry_ptr->addr == entry_ptr->main_addr);
                        entry_ptr->addr = entry_ptr->alt_addr;
                        entry_ptr->at_main_addr = FALSE;
                    } /* end else */
        } /* end if */
                else
            move_entry(cache_ptr, op_ptr->type, op_ptr->idx, op_ptr->flag);
        break;

        case FLUSH_OP__ORDER:
                HDassert( op_ptr->order_ptr );
                entry_ptr->flush_order = *op_ptr->order_ptr;
                (*op_ptr->order_ptr)++;
        break;

        case FLUSH_OP__EXPUNGE:
        /* the expunge flush op exists to allow us to simulate the
        * case in which an entry is removed from the cashe as the
        * the result of the flush of a second entry.  At present,
        * this can only happen via the take ownership flag, but
        * we will make this test feature more general to as to make
        * tests easier to write.
        *
        * When this operation is executed, the target entry is
        * removed from the cache without being flushed if dirty
        * via the expunge_entry() test function (which calls
        * H5C_expunge_entry()).  Note that this flush operation
        * must always be executed on an entry other than the
        * entry being flushed.
        */
        HDassert( ( entry_ptr->type != op_ptr->type ) ||
                          ( entry_ptr->index != op_ptr->idx ) );
        expunge_entry(file_ptr, op_ptr->type, op_ptr->idx);
        break;

        case FLUSH_OP__DEST_FLUSH_DEP:
        HDassert( ( entry_ptr->type != op_ptr->type ) ||
                          ( entry_ptr->index != op_ptr->idx ) );
        destroy_flush_dependency(op_ptr->type, op_ptr->idx,
                                         entry_ptr->type, entry_ptr->index);
                break;

        default:
                pass = FALSE;
                failure_mssg = "Undefined flush op code.";
        break;
    }
    }

    return;

} /* execute_flush_op() */


/*-------------------------------------------------------------------------
 * Function:    entry_in_cache
 *
 * Purpose:    Given a pointer to a cache, an entry type, and an index,
 *        determine if the entry is currently in the cache.
 *
 * Return:    TRUE if the entry is in the cache, and FALSE otherwise.
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */

hbool_t
entry_in_cache(H5C_t * cache_ptr,
               int32_t type,
               int32_t idx)
{
    hbool_t in_cache = FALSE; /* will set to TRUE if necessary */
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;
    H5C_cache_entry_t * test_ptr = NULL;

    HDassert( cache_ptr );
    HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

    base_addr = entries[type];
    entry_ptr = &(base_addr[idx]);

    HDassert( entry_ptr->index == idx );
    HDassert( entry_ptr->type == type );
    HDassert( entry_ptr == entry_ptr->self );

    H5C_TEST__SEARCH_INDEX(cache_ptr, entry_ptr->addr, test_ptr)

    if ( test_ptr != NULL ) {

        in_cache = TRUE;
        HDassert( test_ptr == (H5C_cache_entry_t *)entry_ptr );
        HDassert( entry_ptr->addr == entry_ptr->header.addr );
    }

    return(in_cache);

} /* entry_in_cache() */


/*-------------------------------------------------------------------------
 * Function:    create_entry_arrays
 *
 * Purpose:     Create the entry arrays, both regular and original.
 *
 * Return:      SUCCEED/FAIL
 *
 * Programmer:    Dana Robinson
 *              Spring 2016
 *
 *-------------------------------------------------------------------------
 */

herr_t
create_entry_arrays(void)

{
    /* pico entries */
    if(NULL == (pico_entries = (test_entry_t *)HDcalloc(NUM_PICO_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_pico_entries = (test_entry_t *)HDcalloc(NUM_PICO_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* nano entries */
    if(NULL == (nano_entries = (test_entry_t *)HDcalloc(NUM_NANO_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_nano_entries = (test_entry_t *)HDcalloc(NUM_NANO_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* micro entries */
    if(NULL == (micro_entries = (test_entry_t *)HDcalloc(NUM_MICRO_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_micro_entries = (test_entry_t *)HDcalloc(NUM_MICRO_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* tiny entries */
    if(NULL == (tiny_entries = (test_entry_t *)HDcalloc(NUM_TINY_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_tiny_entries = (test_entry_t *)HDcalloc(NUM_TINY_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* small entries */
    if(NULL == (small_entries = (test_entry_t *)HDcalloc(NUM_SMALL_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_small_entries = (test_entry_t *)HDcalloc(NUM_SMALL_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* medium entries */
    if(NULL == (medium_entries = (test_entry_t *)HDcalloc(NUM_MEDIUM_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_medium_entries = (test_entry_t *)HDcalloc(NUM_MEDIUM_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* large entries */
    if(NULL == (large_entries = (test_entry_t *)HDcalloc(NUM_LARGE_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_large_entries = (test_entry_t *)HDcalloc(NUM_LARGE_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* huge entries */
    if(NULL == (huge_entries = (test_entry_t *)HDcalloc(NUM_HUGE_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_huge_entries = (test_entry_t *)HDcalloc(NUM_HUGE_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* monster entries */
    if(NULL == (monster_entries = (test_entry_t *)HDcalloc(NUM_MONSTER_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_monster_entries = (test_entry_t *)HDcalloc(NUM_MONSTER_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* variable entries */
    if(NULL == (variable_entries = (test_entry_t *)HDcalloc(NUM_VARIABLE_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_variable_entries = (test_entry_t *)HDcalloc(NUM_VARIABLE_ENTRIES, sizeof(test_entry_t))))
        goto error;

    /* notify entries */
    if(NULL == (notify_entries = (test_entry_t *)HDcalloc(NUM_NOTIFY_ENTRIES, sizeof(test_entry_t))))
        goto error;
    if(NULL == (orig_notify_entries = (test_entry_t *)HDcalloc(NUM_NOTIFY_ENTRIES, sizeof(test_entry_t))))
        goto error;

    entries[0] = pico_entries;
    entries[1] = nano_entries;
    entries[2] = micro_entries;
    entries[3] = tiny_entries;
    entries[4] = small_entries;
    entries[5] = medium_entries;
    entries[6] = large_entries;
    entries[7] = huge_entries;
    entries[8] = monster_entries;
    entries[9] = variable_entries;
    entries[10] = notify_entries;

    orig_entries[0] = orig_pico_entries;
    orig_entries[1] = orig_nano_entries;
    orig_entries[2] = orig_micro_entries;
    orig_entries[3] = orig_tiny_entries;
    orig_entries[4] = orig_small_entries;
    orig_entries[5] = orig_medium_entries;
    orig_entries[6] = orig_large_entries;
    orig_entries[7] = orig_huge_entries;
    orig_entries[8] = orig_monster_entries;
    orig_entries[9] = orig_variable_entries;
    orig_entries[10] = orig_notify_entries;

    return SUCCEED;

error:
    free_entry_arrays();
    return FAIL;

} /* create_entry_arrays() */


/*-------------------------------------------------------------------------
 * Function:    free_entry_arrays
 *
 * Purpose:     Free the entry arrays, both regular and original.
 *
 * Return:      void
 *
 * Programmer:    Dana Robinson
 *              Spring 2016
 *
 *-------------------------------------------------------------------------
 */

void
free_entry_arrays(void)

{
    /* pico entries */
    HDfree(pico_entries);
    HDfree(orig_pico_entries);

    /* nano entries */
    HDfree(nano_entries);
    HDfree(orig_nano_entries);

    /* micro entries */
    HDfree(micro_entries);
    HDfree(orig_micro_entries);

    /* tiny entries */
    HDfree(tiny_entries);
    HDfree(orig_tiny_entries);

    /* small entries */
    HDfree(small_entries);
    HDfree(orig_small_entries);

    /* medium entries */
    HDfree(medium_entries);
    HDfree(orig_medium_entries);

    /* large entries */
    HDfree(large_entries);
    HDfree(orig_large_entries);

    /* huge entries */
    HDfree(huge_entries);
    HDfree(orig_huge_entries);

    /* monster entries */
    HDfree(monster_entries);
    HDfree(orig_monster_entries);

    /* variable entries */
    HDfree(variable_entries);
    HDfree(orig_variable_entries);

    /* notify entries */
    HDfree(notify_entries);
    HDfree(orig_notify_entries);

    return;

} /* free_entry_arrays() */


/*-------------------------------------------------------------------------
 * Function:    reset_entries
 *
 * Purpose:    reset the contents of the entries arrays to known values.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */

void
reset_entries(void)

{
    int i;
    int32_t max_index;
    test_entry_t * base_addr;
    test_entry_t * orig_base_addr;

    if( !orig_entry_arrays_init)
    {
        haddr_t addr = PICO_BASE_ADDR;
        haddr_t alt_addr = PICO_ALT_BASE_ADDR;
        size_t entry_size;

        for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
        {
            int j;

            entry_size = entry_sizes[i];
            max_index = max_indices[i];
            base_addr = entries[i];
            orig_base_addr = orig_entries[i];

            HDassert( base_addr );
            HDassert( orig_base_addr );

            for ( j = 0; j <= max_index; j++ )
            {
                int k;

                /* one can argue that we should fill the header with garbage.
                 * If this is desired, we can simply comment out the header
                 * initialization - the headers will be full of garbage soon
                 * enough.
                 */

                base_addr[j].header.addr = (haddr_t)0;
                base_addr[j].header.size = (size_t)0;
                base_addr[j].header.type = NULL;
                base_addr[j].header.is_dirty = FALSE;
                base_addr[j].header.is_protected = FALSE;
                base_addr[j].header.is_read_only = FALSE;
                base_addr[j].header.ro_ref_count = FALSE;
                base_addr[j].header.next = NULL;
                base_addr[j].header.prev = NULL;
#if H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS
                base_addr[j].header.aux_next = NULL;
                base_addr[j].header.aux_prev = NULL;
#endif /* H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS */

                base_addr[j].self = &(base_addr[j]);
                base_addr[j].cache_ptr = NULL;
                base_addr[j].written_to_main_addr = FALSE;
                base_addr[j].written_to_alt_addr = FALSE;
                base_addr[j].addr = addr;
                base_addr[j].at_main_addr = TRUE;
                base_addr[j].main_addr = addr;
                base_addr[j].alt_addr = alt_addr;
                base_addr[j].size = entry_size;
                base_addr[j].type = i;
                base_addr[j].index = j;
                base_addr[j].serializes = 0;
                base_addr[j].deserializes = 0;
                base_addr[j].is_dirty = FALSE;
                base_addr[j].is_protected = FALSE;
                base_addr[j].is_read_only = FALSE;
                base_addr[j].ro_ref_count = FALSE;

                base_addr[j].is_corked = FALSE;

                base_addr[j].is_pinned = FALSE;
                base_addr[j].pinning_ref_count = 0;
                base_addr[j].num_pins = 0;
                for ( k = 0; k < MAX_PINS; k++ )
                {
                    base_addr[j].pin_type[k] = -1;
                    base_addr[j].pin_idx[k] = -1;
                }

                base_addr[j].num_flush_ops = 0;
                for ( k = 0; k < MAX_FLUSH_OPS; k++ )
                {
                    base_addr[j].flush_ops[k].op_code = FLUSH_OP__NO_OP;
                    base_addr[j].flush_ops[k].type = -1;
                    base_addr[j].flush_ops[k].idx = -1;
                    base_addr[j].flush_ops[k].flag = FALSE;
                    base_addr[j].flush_ops[k].size = 0;
                }
                base_addr[j].flush_op_self_resize_in_progress = FALSE;

                base_addr[j].deserialized = FALSE;
                base_addr[j].serialized = FALSE;
                base_addr[j].destroyed = FALSE;
                base_addr[j].expunged = FALSE;

                base_addr[j].flush_dep_npar = 0;
                base_addr[j].flush_dep_nchd = 0;
                base_addr[j].flush_dep_ndirty_chd = 0;
                base_addr[j].pinned_from_client = FALSE;
                base_addr[j].pinned_from_cache = FALSE;

                base_addr[j].flush_order = 0;

                base_addr[j].notify_after_insert_count = 0;
                base_addr[j].notify_before_evict_count = 0;

                base_addr[j].actual_len = 0;
                base_addr[j].max_verify_ct = 0;
                base_addr[j].verify_ct = 0;

                addr += (haddr_t)entry_size;
                alt_addr += (haddr_t)entry_size;
            } /* end for */

            /* Make copy of entries in base_addr for later */
            HDmemcpy(orig_base_addr, base_addr, (size_t)(max_index + 1) * sizeof( *base_addr ));
        } /* end for */

        /* Indicate that we've made a copy for later */
        orig_entry_arrays_init = TRUE;
    } /* end if */
    else {
        for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
        {
            max_index = max_indices[i];
            base_addr = entries[i];
            orig_base_addr = orig_entries[i];

            /* Make copy of entries in base_addr for later */
            HDmemcpy(base_addr, orig_base_addr, (size_t)(max_index + 1) * sizeof( *base_addr ));
        } /* end for */
    } /* end else */

    return;

} /* reset_entries() */


/*-------------------------------------------------------------------------
 * Function:    resize_entry
 *
 * Purpose:     Given a pointer to a cache, an entry type, an index, and
 *         a new size, set the size of the target entry to the new size.
 *
 *        Note that at present, the type of the entry must be
 *         VARIABLE_ENTRY_TYPE.
 *
 *              Do nothing if pass is false on entry.
 *
 * Return:      void
 *
 * Programmer:  John Mainzer
 *              1/11/08
 *
 *-------------------------------------------------------------------------
 */

void
resize_entry(H5F_t * file_ptr,
             int32_t type,
             int32_t idx,
             size_t new_size,
        hbool_t in_cache)
{
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;
    herr_t result;

    HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( type == VARIABLE_ENTRY_TYPE );
    HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );
    HDassert( ( 0 < new_size ) && ( new_size <= entry_sizes[type] ) );

    if ( pass ) {

        if ( in_cache ) {
            H5C_t *cache_ptr = file_ptr->shared->cache;

            HDassert( cache_ptr );

            if ( ! entry_in_cache(cache_ptr, type, idx) ) {

                pass = FALSE;
                failure_mssg = "entry to be resized pinned is not in cache.";

            } else {

                base_addr = entries[type];
                entry_ptr = &(base_addr[idx]);

                HDassert( entry_ptr->index == idx );
                HDassert( entry_ptr->type == type );
                HDassert( entry_ptr->cache_ptr == cache_ptr );
                HDassert( entry_ptr == entry_ptr->self );

                if ( ! ( entry_ptr->header.is_pinned || entry_ptr->header.is_protected ) ) {

                    pass = FALSE;
                    failure_mssg = "entry to be resized is not pinned or protected.";

                } else {
                    hbool_t was_dirty = entry_ptr->is_dirty;

                    entry_ptr->size = new_size;

                    result = H5C_resize_entry((void *)entry_ptr, new_size);
                    entry_ptr->is_dirty = TRUE;

                    if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
                        mark_flush_dep_dirty(entry_ptr);

                    if ( result != SUCCEED ) {

                        pass = FALSE;
                        failure_mssg = "error(s) in H5C_resize_entry().";

                    } else {

                        HDassert( entry_ptr->size = (entry_ptr->header).size );

                    }
                }
            }
        } else {

        protect_entry(file_ptr, type, idx);
            resize_entry(file_ptr, type, idx, new_size, TRUE);
        unprotect_entry(file_ptr, type, idx, H5C__DIRTIED_FLAG);
    }
    }

    return;

} /* resize_entry() */


/*-------------------------------------------------------------------------
 * Function:    verify_clean
 *
 * Purpose:    Verify that all cache entries are marked as clean.  If any
 *        are not, set pass to FALSE.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */

void
verify_clean(void)

{
    int i;
    int j;
    int dirty_count = 0;
    int32_t max_index;
    test_entry_t * base_addr;

    if ( pass ) {

        for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
        {
            max_index = max_indices[i];
            base_addr = entries[i];

            HDassert( base_addr );

            for ( j = 0; j <= max_index; j++ )
            {
                if ( ( base_addr[j].header.is_dirty ) ||
            ( base_addr[j].is_dirty ) ) {

                    dirty_count++;
                }
            }
        }

        if ( dirty_count > 0 ) {

            pass = FALSE;
            failure_mssg = "verify_clean() found dirty entry(s).";
        }
    }

    return;

} /* verify_clean() */


/*-------------------------------------------------------------------------
 * Function:    verify_entry_status
 *
 * Purpose:    Verify that a list of entries have the expected status.
 *         If any discrepencies are found, set the failure message
 *         and set pass to FALSE.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              10/8/04
 *
 *-------------------------------------------------------------------------
 */

void
verify_entry_status(H5C_t * cache_ptr,
            int tag,
            int num_entries,
            struct expected_entry_status expected[])
{
    static char    msg[256];
    int            i;

    i = 0;
    while ( ( pass ) && ( i < num_entries ) )
    {
        test_entry_t  * base_addr = entries[expected[i].entry_type];
        test_entry_t  * entry_ptr = &(base_addr[expected[i].entry_index]);
        hbool_t         in_cache = FALSE; /* will set to TRUE if necessary */
        unsigned        u;              /* Local index variable */

    if ( ( ! expected[i].in_cache ) &&
             ( ( expected[i].is_protected ) || ( expected[i].is_pinned ) ) ) {

        pass = FALSE;
        HDsprintf(msg, "%d: Contradictory data in expected[%d].\n", tag, i);
        failure_mssg = msg;
    }

        if ( ( ! expected[i].in_cache ) &&
             ( expected[i].is_dirty ) &&
             ( ! entry_ptr->expunged ) ) {

        pass = FALSE;
        HDsprintf(msg,
                  "%d: expected[%d] specs non-expunged, dirty, non-resident.\n",
                   tag, i);
        failure_mssg = msg;
        }

        if ( pass ) {

        in_cache = entry_in_cache(cache_ptr, expected[i].entry_type,
                            expected[i].entry_index);

        if ( in_cache != expected[i].in_cache ) {

            pass = FALSE;
            HDsprintf(msg,
            "%d entry (%d, %d) in cache actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)in_cache,
            (int)expected[i].in_cache);
            failure_mssg = msg;
        }
    }

        if ( pass ) {

        if ( entry_ptr->size != expected[i].size ) {

            pass = FALSE;
            HDsprintf(msg,
                        "%d entry (%d, %d) size actual/expected = %ld/%ld.\n",
            tag,
                    (int)expected[i].entry_type,
                (int)expected[i].entry_index,
                (long)(entry_ptr->size),
                (long)expected[i].size);
            failure_mssg = msg;
        }
    }

        if ( ( pass ) && ( in_cache ) ) {

        if ( entry_ptr->header.size != expected[i].size ) {

            pass = FALSE;
            HDsprintf(msg,
                        "%d entry (%d, %d) header size actual/expected = %ld/%ld.\n",
            tag,
                (int)expected[i].entry_type,
                (int)expected[i].entry_index,
                (long)(entry_ptr->header.size),
                (long)expected[i].size);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

        if ( entry_ptr->at_main_addr != expected[i].at_main_addr ) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) at main addr actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->at_main_addr),
            (int)expected[i].at_main_addr);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

        if ( entry_ptr->is_dirty != expected[i].is_dirty ) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) is_dirty actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->is_dirty),
            (int)expected[i].is_dirty);
            failure_mssg = msg;
        }
    }

    if ( ( pass ) && ( in_cache ) ) {

        if ( entry_ptr->header.is_dirty != expected[i].is_dirty ) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) header is_dirty actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->header.is_dirty),
            (int)expected[i].is_dirty);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

        if ( entry_ptr->is_protected != expected[i].is_protected ) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) is_protected actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->is_protected),
            (int)expected[i].is_protected);
            failure_mssg = msg;
        }
    }

    if ( ( pass ) && ( in_cache ) ) {

        if ( entry_ptr->header.is_protected != expected[i].is_protected ) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) header is_protected actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->header.is_protected),
            (int)expected[i].is_protected);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

        if ( entry_ptr->is_pinned != expected[i].is_pinned ) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) is_pinned actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->is_pinned),
            (int)expected[i].is_pinned);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

        if ( entry_ptr->is_corked != expected[i].is_corked) {

            pass = FALSE;
            HDsprintf(msg,
                      "%d entry (%d, %d) is_corked actual/expected = %d/%d.\n",
            tag,
            (int)expected[i].entry_type,
            (int)expected[i].entry_index,
            (int)(entry_ptr->is_corked),
            (int)expected[i].is_corked);
            failure_mssg = msg;
        }
    }

    if ( ( pass ) && ( in_cache ) ) {

        if ( entry_ptr->header.is_pinned != expected[i].is_pinned ) {

            pass = FALSE;
            HDsprintf(msg,
                  "%d entry (%d, %d) header is_pinned actual/expected = %d/%d.\n",
        tag,
        (int)expected[i].entry_type,
        (int)expected[i].entry_index,
        (int)(entry_ptr->header.is_pinned),
        (int)expected[i].is_pinned);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

            if ( ( entry_ptr->deserialized != expected[i].deserialized ) ||
            ( entry_ptr->serialized != expected[i].serialized ) ||
            ( entry_ptr->destroyed != expected[i].destroyed ) ) {

            pass = FALSE;
            HDsprintf(msg,
                        "%d entry (%d,%d) deserialized = %d(%d), serialized = %d(%d), dest = %d(%d)\n",
            tag,
                (int)expected[i].entry_type,
                (int)expected[i].entry_index,
                (int)(entry_ptr->deserialized),
                (int)(expected[i].deserialized),
                (int)(entry_ptr->serialized),
                (int)(expected[i].serialized),
                (int)(entry_ptr->destroyed),
                (int)(expected[i].destroyed));
                failure_mssg = msg;
            }
        }

        /* Check flush dependency fields */

        /* # of flush dependency parents */
        if ( pass ) {
            if ( entry_ptr->flush_dep_npar != expected[i].flush_dep_npar ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) flush_dep_npar actual/expected = %u/%u.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->flush_dep_npar,
                      expected[i].flush_dep_npar);
                failure_mssg = msg;
            } /* end if */
        } /* end if */
        if ( ( pass ) && ( in_cache ) ) {
            if ( entry_ptr->header.flush_dep_nparents != expected[i].flush_dep_npar ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) header flush_dep_nparents actual/expected = %u/%u.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->header.flush_dep_nparents,
                      expected[i].flush_dep_npar);
                failure_mssg = msg;
            } /* end if */
        } /* end if */

        /* Flush dependency parent type & index.  Note this algorithm assumes
         * that the parents in both arrays are in the same order. */
        if ( pass ) {
            for ( u = 0; u < entry_ptr->flush_dep_npar; u++ ) {
                if ( entry_ptr->flush_dep_par_type[u] != expected[i].flush_dep_par_type[u] ) {
                    pass = FALSE;
                    HDsprintf(msg,
                          "%d entry (%d, %d) flush_dep_par_type[%u] actual/expected = %d/%d.\n",
                          tag,
                          expected[i].entry_type,
                          expected[i].entry_index,
                          u,
                          entry_ptr->flush_dep_par_type[u],
                          expected[i].flush_dep_par_type[u]);
                    failure_mssg = msg;
                } /* end if */
            } /* end for */
        } /* end if */
        if ( pass ) {
            for ( u = 0; u < entry_ptr->flush_dep_npar; u++ ) {
                if ( entry_ptr->flush_dep_par_idx[u] != expected[i].flush_dep_par_idx[u] ) {
                    pass = FALSE;
                    HDsprintf(msg,
                          "%d entry (%d, %d) flush_dep_par_idx[%u] actual/expected = %d/%d.\n",
                          tag,
                          expected[i].entry_type,
                          expected[i].entry_index,
                          u,
                          entry_ptr->flush_dep_par_idx[u],
                          expected[i].flush_dep_par_idx[u]);
                    failure_mssg = msg;
                } /* end if */
            } /* end for */
        } /* end if */

        /* # of flush dependency children and dirty children */
        if ( pass ) {
            if ( entry_ptr->flush_dep_nchd != expected[i].flush_dep_nchd ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) flush_dep_nchd actual/expected = %u/%u.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->flush_dep_nchd,
                      expected[i].flush_dep_nchd);
                failure_mssg = msg;
            } /* end if */
        } /* end if */
        if ( ( pass ) && ( in_cache ) ) {
            if ( entry_ptr->header.flush_dep_nchildren != expected[i].flush_dep_nchd ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) header flush_dep_nchildren actual/expected = %u/%u.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->header.flush_dep_nchildren,
                      expected[i].flush_dep_nchd);
                failure_mssg = msg;
            } /* end if */
        } /* end if */
        if ( pass ) {
            if ( entry_ptr->flush_dep_ndirty_chd != expected[i].flush_dep_ndirty_chd ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) flush_dep_ndirty_chd actual/expected = %u/%u.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->flush_dep_ndirty_chd,
                      expected[i].flush_dep_ndirty_chd);
                failure_mssg = msg;
            } /* end if */
        } /* end if */
        if ( ( pass ) && ( in_cache ) ) {
            if ( entry_ptr->header.flush_dep_ndirty_children != expected[i].flush_dep_ndirty_chd ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) header flush_dep_ndirty_children actual/expected = %u/%u.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->header.flush_dep_ndirty_children,
                      expected[i].flush_dep_ndirty_chd);
                failure_mssg = msg;
            } /* end if */
        } /* end if */

        /* Flush dependency flush order */
        if ( pass ) {
            if ( expected[i].flush_order >= 0 && entry_ptr->flush_order != (unsigned)expected[i].flush_order ) {
                pass = FALSE;
                HDsprintf(msg,
                      "%d entry (%d, %d) flush_order actual/expected = %u/%d.\n",
                      tag,
                      expected[i].entry_type,
                      expected[i].entry_index,
                      entry_ptr->flush_order,
                      expected[i].flush_order);
                failure_mssg = msg;
            } /* end if */
        } /* end if */

        i++;
    } /* while */

    return;

} /* verify_entry_status() */


/*-------------------------------------------------------------------------
 * Function:    verify_unprotected
 *
 * Purpose:    Verify that no cache entries are marked as protected.  If
 *        any are, set pass to FALSE.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/10/04
 *
 *-------------------------------------------------------------------------
 */

void
verify_unprotected(void)

{
    int i;
    int j;
    int protected_count = 0;
    int32_t max_index;
    test_entry_t * base_addr;

    if ( pass ) {

        for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
        {
            max_index = max_indices[i];
            base_addr = entries[i];

            HDassert( base_addr );

            for ( j = 0; j <= max_index; j++ )
            {
                HDassert( base_addr[j].header.is_protected ==
                          base_addr[j].is_protected );

                if ( ( base_addr[j].header.is_protected ) ||
                     ( base_addr[j].is_protected ) ) {

                    protected_count++;
                }
            }
        }

        if ( protected_count > 0 ) {

            pass = FALSE;
            failure_mssg = "verify_unprotected() found protected entry(s).";
        }
    }

    return;

} /* verify_unprotected() */



/*-------------------------------------------------------------------------
 * Function:    expunge_entry()
 *
 * Purpose:    Expunge the entry indicated by the type and index.
 *
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              7/6/06
 *
 * Changes:    Added code to set entry_ptr->expunged to TRUE if
 *        H5C_expunge_entry() returns without error.
 *
 *                    JRM -- 8/21/14
 *
 *-------------------------------------------------------------------------
 */

void
expunge_entry(H5F_t * file_ptr,
              int32_t type,
              int32_t idx)
{
    herr_t result;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;

    if ( pass ) {
#ifndef NDEBUG
        H5C_t * cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr );
#endif /* NDEBUG */

        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
    HDassert( entry_ptr->cache_ptr == cache_ptr );
        HDassert( ! ( entry_ptr->header.is_protected ) );
        HDassert( ! ( entry_ptr->is_protected ) );
        HDassert( ! ( entry_ptr->header.is_pinned ) );
    HDassert( ! ( entry_ptr->is_pinned ) );

        result = H5C_expunge_entry(file_ptr, types[type], entry_ptr->addr, H5C__NO_FLAGS_SET);

        if ( result < 0 ) {

            pass = FALSE;
            failure_mssg = "error in H5C_expunge_entry().";

        } else {

        entry_ptr->expunged = TRUE;
        }
    }

    return;

} /* expunge_entry() */


/*-------------------------------------------------------------------------
 * Function:    flush_cache()
 *
 * Purpose:    Flush the specified cache, destroying all entries if
                requested.  If requested, dump stats first.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/23/04
 *
 *-------------------------------------------------------------------------
 */

void
flush_cache(H5F_t * file_ptr,
            hbool_t destroy_entries,
            hbool_t dump_stats,
            hbool_t dump_detailed_stats)
{
    hbool_t verbose = FALSE;

    verify_unprotected();

    if(pass) {
        H5C_t * cache_ptr;
        herr_t result = 0;

        HDassert(file_ptr);

        cache_ptr = file_ptr->shared->cache;

        if(destroy_entries)
            result = H5C_flush_cache(file_ptr, H5C__FLUSH_INVALIDATE_FLAG);

        else
            result = H5C_flush_cache(file_ptr, H5C__NO_FLAGS_SET);

        if(dump_stats)
            H5C_stats(cache_ptr, "test cache", dump_detailed_stats);

        if(result < 0) {
            pass = FALSE;
            failure_mssg = "error in H5C_flush_cache().";
        }
        else if((destroy_entries) && ((cache_ptr->index_len != 0)
                || (cache_ptr->index_size != 0)
                || (cache_ptr->clean_index_size != 0)
                || (cache_ptr->dirty_index_size != 0))) {

            if(verbose) {
                HDfprintf(stdout,
                        "%s: unexpected il/is/cis/dis = %lld/%lld/%lld/%lld.\n",
                        FUNC,
                        (long long)(cache_ptr->index_len),
                        (long long)(cache_ptr->index_size),
                        (long long)(cache_ptr->clean_index_size),
                        (long long)(cache_ptr->dirty_index_size));
            }
            pass = FALSE;
            failure_mssg = "non zero index len/sizes after H5C_flush_cache() with invalidate.";
        }
    }

    return;

} /* flush_cache() */


/*-------------------------------------------------------------------------
 * Function:    cork_entry_type()
 *
 * Purpose:    To "cork" an object:
 *        --insert the base address of an entry type into
 *          the cache's list of corked object addresses
 *
 * Return:    void
 *
 * Programmer:    Vailin Choi
 *        Jan 2014
 *
 *-------------------------------------------------------------------------
 */
void
cork_entry_type(H5F_t *file_ptr, int32_t type)
{
    if(pass) {
        H5C_t *cache_ptr;
        haddr_t baddrs;

        cache_ptr = file_ptr->shared->cache;

        HDassert(cache_ptr);
        HDassert((0 <= type) && (type < NUMBER_OF_ENTRY_TYPES));

        baddrs = base_addrs[type];
        if(H5C_cork(cache_ptr, baddrs, H5C__SET_CORK, NULL) < 0) {
            pass = FALSE;
            failure_mssg = "error in H5C_cork().";
        } /* end if */
    } /* end if */

} /* cork_entry_type() */


/*-------------------------------------------------------------------------
 * Function:    uncork_entry_type()
 *
 * Purpose:    To "uncork" an object:
 *        --insert the base address of an entry type into
 *          the cache's list of corked object addresses
 *
 * Return:    void
 *
 * Programmer:    Vailin Choi
 *        Jan 2014
 *
 *-------------------------------------------------------------------------
 */
void
uncork_entry_type(H5F_t *file_ptr, int32_t type)
{
    if(pass) {
        H5C_t *cache_ptr;
        haddr_t baddrs;

        cache_ptr = file_ptr->shared->cache;

        HDassert(cache_ptr);
        HDassert((0 <= type) && (type < NUMBER_OF_ENTRY_TYPES));

        baddrs = base_addrs[type];
        if(H5C_cork(cache_ptr, baddrs, H5C__UNCORK, NULL) < 0) {
            pass = FALSE;
            failure_mssg = "error in H5C_cork().";
        } /* end if */
    } /* end if */

} /* uncork_entry_type() */


/*-------------------------------------------------------------------------
 * Function:    insert_entry()
 *
 * Purpose:    Insert the entry indicated by the type and index.
 *
 *        Do nothing if pass is false.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/16/04
 *
 *-------------------------------------------------------------------------
 */

void
insert_entry(H5F_t * file_ptr,
             int32_t type,
             int32_t idx,
             unsigned int flags)
{
    H5C_t * cache_ptr;
    herr_t result;
    hbool_t insert_pinned;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;
    haddr_t baddrs;

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr );
        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);
        baddrs = base_addrs[type];

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( !(entry_ptr->is_protected) );
        HDassert( entry_ptr->flush_dep_npar == 0 );
        HDassert( entry_ptr->flush_dep_nchd == 0 );

        insert_pinned = (hbool_t)((flags & H5C__PIN_ENTRY_FLAG) != 0 );

        entry_ptr->is_dirty = TRUE;

        /* Set the base address of the entry type into the property list as tag */
        /* Use to cork entries for the object */
        H5AC_tag(baddrs, NULL);

        result = H5C_insert_entry(file_ptr, types[type], entry_ptr->addr, (void *)entry_ptr, flags);

        if ( ( result < 0 ) ||
             ( entry_ptr->header.is_protected ) ||
             ( entry_ptr->header.type != types[type] ) ||
             ( entry_ptr->size != entry_ptr->header.size ) ||
             ( entry_ptr->addr != entry_ptr->header.addr ) ) {

            pass = FALSE;
            failure_mssg = "error in H5C_insert().";

#if 0 /* This is useful debugging code.  Lets keep it around. */

            HDfprintf(stdout, "result = %d\n", (int)result);
            HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n",
                      (int)(entry_ptr->header.is_protected));
            HDfprintf(stdout,
            "entry_ptr->header.type != types[type] = %d\n",
                      (int)(entry_ptr->header.type != types[type]));
            HDfprintf(stdout,
                      "entry_ptr->size != entry_ptr->header.size = %d\n",
                      (int)(entry_ptr->size != entry_ptr->header.size));
            HDfprintf(stdout,
                      "entry_ptr->addr != entry_ptr->header.addr = %d\n",
                       (int)(entry_ptr->addr != entry_ptr->header.addr));
#endif
        } /* end if */
        HDassert(entry_ptr->cache_ptr == NULL);

        entry_ptr->file_ptr = file_ptr;
        entry_ptr->cache_ptr = cache_ptr;

        if(insert_pinned)
            HDassert(entry_ptr->header.is_pinned);
        else
            HDassert(!(entry_ptr->header.is_pinned));
        entry_ptr->is_pinned = insert_pinned;
        entry_ptr->pinned_from_client = insert_pinned;

        if(entry_ptr->header.tag_info && entry_ptr->header.tag_info->corked)
            entry_ptr->is_corked = TRUE;

        HDassert(entry_ptr->header.is_dirty);
        HDassert(((entry_ptr->header).type)->id == type);
    } /* end if */

    return;

} /* insert_entry() */


/*-------------------------------------------------------------------------
 * Function:    mark_entry_dirty()
 *
 * Purpose:    Mark the specified entry as dirty.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              3/28/06
 *
 *-------------------------------------------------------------------------
 */

void
mark_entry_dirty(int32_t type,
                 int32_t idx)
{
    herr_t result;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;
    hbool_t was_dirty;

    if ( pass ) {

        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( entry_ptr->header.is_protected ||
        entry_ptr->header.is_pinned );

        was_dirty = entry_ptr->is_dirty;
    entry_ptr->is_dirty = TRUE;

        if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
            mark_flush_dep_dirty(entry_ptr);

        result = H5C_mark_entry_dirty((void *)entry_ptr);

        if ( ( result < 0 ) ||
             ( !entry_ptr->header.is_protected && !entry_ptr->header.is_pinned ) ||
             ( entry_ptr->header.is_protected && !entry_ptr->header.dirtied ) ||
             ( !entry_ptr->header.is_protected && !entry_ptr->header.is_dirty ) ||
             ( entry_ptr->header.type != types[type] ) ||
             ( entry_ptr->size != entry_ptr->header.size ) ||
             ( entry_ptr->addr != entry_ptr->header.addr ) ) {

            pass = FALSE;
            failure_mssg = "error in H5C_mark_entry_dirty().";

        }

        HDassert( ((entry_ptr->header).type)->id == type );

    }

    return;

} /* mark_entry_dirty() */


/*-------------------------------------------------------------------------
 * Function:    move_entry()
 *
 * Purpose:    Move the entry indicated by the type and index to its
 *        main or alternate address as indicated.  If the entry is
 *        already at the desired entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/21/04
 *
 *-------------------------------------------------------------------------
 */

void
move_entry(H5C_t * cache_ptr,
             int32_t type,
             int32_t idx,
             hbool_t main_addr)
{
    herr_t         result;
    hbool_t       done = TRUE; /* will set to FALSE if we have work to do */
    haddr_t        old_addr = HADDR_UNDEF;
    haddr_t        new_addr = HADDR_UNDEF;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;

    if ( pass ) {

        HDassert( cache_ptr );
        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( entry_ptr->cache_ptr == cache_ptr );
        HDassert( !entry_ptr->is_read_only );
        HDassert( !entry_ptr->header.is_read_only );


        if ( entry_ptr->at_main_addr && !main_addr ) {

            /* move to alt addr */

            HDassert( entry_ptr->addr == entry_ptr->main_addr );

            done = FALSE;
            old_addr = entry_ptr->addr;
            new_addr = entry_ptr->alt_addr;

        } else if ( !(entry_ptr->at_main_addr) && main_addr ) {

            /* move to main addr */

            HDassert( entry_ptr->addr == entry_ptr->alt_addr );

            done = FALSE;
            old_addr = entry_ptr->addr;
            new_addr = entry_ptr->main_addr;
        }

        if ( ! done ) {
            hbool_t was_dirty = entry_ptr->is_dirty;

            entry_ptr->is_dirty = TRUE;

            if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
                mark_flush_dep_dirty(entry_ptr);

            entry_ptr->action = TEST_ENTRY_ACTION_MOVE;
            result = H5C_move_entry(cache_ptr, types[type], old_addr, new_addr);
            entry_ptr->action = TEST_ENTRY_ACTION_NUL;
        }

        if ( ! done ) {

            if ( ( result < 0 ) ||
            ( ( ! ( entry_ptr->header.destroy_in_progress ) ) &&
            ( entry_ptr->header.addr != new_addr ) ) ) {

                pass = FALSE;
                failure_mssg = "error in H5C_move_entry().";

            } else {

                entry_ptr->addr = new_addr;
                entry_ptr->at_main_addr = main_addr;
            }
        }

        HDassert( ((entry_ptr->header).type)->id == type );

        HDassert( entry_ptr->header.is_dirty );
        HDassert( entry_ptr->is_dirty );
    }

    return;

} /* move_entry() */


/*-------------------------------------------------------------------------
 * Function:    protect_entry()
 *
 * Purpose:    Protect the entry indicated by the type and index.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/11/04
 *
 *-------------------------------------------------------------------------
 */
void
protect_entry(H5F_t * file_ptr, int32_t type, int32_t idx)
{
    H5C_t * cache_ptr;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;
    haddr_t baddrs;
    H5C_cache_entry_t * cache_entry_ptr;

    if(pass) {
        cache_ptr = file_ptr->shared->cache;

        HDassert(cache_ptr);
        HDassert((0 <= type) && (type < NUMBER_OF_ENTRY_TYPES));
        HDassert((0 <= idx) && (idx <= max_indices[type]));

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);
        baddrs = base_addrs[type];

        HDassert(entry_ptr->index == idx);
        HDassert(entry_ptr->type == type);
        HDassert(entry_ptr == entry_ptr->self);
        HDassert(!(entry_ptr->is_protected));

        /* Set the base address of the entry type into the property list as tag */
        /* Use to cork entries for the object */
        H5AC_tag(baddrs, NULL);

        cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr,
                types[type], entry_ptr->addr, &entry_ptr->addr,
                H5C__NO_FLAGS_SET);

        if ( ( cache_entry_ptr != (void *)entry_ptr ) ||
             ( !(entry_ptr->header.is_protected) ) ||
             ( entry_ptr->header.type != types[type] ) ||
             ( entry_ptr->size != entry_ptr->header.size ) ||
             ( entry_ptr->addr != entry_ptr->header.addr ) ) {

#if 0
            /* I've written the following debugging code several times
             * now.  Lets keep it around so I don't have to write it
             * again.
             *                              - JRM
             */
            HDfprintf(stdout, "( cache_entry_ptr != (void *)entry_ptr ) = %d\n",
                      (int)( cache_entry_ptr != (void *)entry_ptr ));
            HDfprintf(stdout, "cache_entry_ptr = 0x%lx, entry_ptr = 0x%lx\n",
                      (long)cache_entry_ptr, (long)entry_ptr);
            HDfprintf(stdout, "entry_ptr->header.is_protected = %d\n",
                      (int)(entry_ptr->header.is_protected));
            HDfprintf(stdout,
                      "( entry_ptr->header.type != types[type] ) = %d\n",
                      (int)( entry_ptr->header.type != types[type] ));
            HDfprintf(stdout,
                      "entry_ptr->size = %d, entry_ptr->header.size = %d\n",
                      (int)(entry_ptr->size), (int)(entry_ptr->header.size));
            HDfprintf(stdout,
                      "entry_ptr->addr = %d, entry_ptr->header.addr = %d\n",
                      (int)(entry_ptr->addr), (int)(entry_ptr->header.addr));
            HDfprintf(stdout,
                    "entry_ptr->verify_ct = %d, entry_ptr->max_verify_ct = %d\n",
                    entry_ptr->verify_ct, entry_ptr->max_verify_ct);
            H5Eprint2(H5E_DEFAULT, stdout);
#endif
            pass = FALSE;
            failure_mssg = "error in H5C_protect().";

        } /* end if */
        else {

        HDassert( ( entry_ptr->cache_ptr == NULL ) ||
            ( entry_ptr->cache_ptr == cache_ptr ) );

        entry_ptr->cache_ptr = cache_ptr;
        entry_ptr->file_ptr = file_ptr;
            entry_ptr->is_protected = TRUE;

        } /* end else */

        if(entry_ptr->header.tag_info && entry_ptr->header.tag_info->corked)
        entry_ptr->is_corked = TRUE;

        HDassert(((entry_ptr->header).type)->id == type);
    } /* end if */

} /* protect_entry() */


/*-------------------------------------------------------------------------
 * Function:    protect_entry_ro()
 *
 * Purpose:    Do a read only protect the entry indicated by the type
 *         and index.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              4/1/07
 *
 *-------------------------------------------------------------------------
 */

void
protect_entry_ro(H5F_t * file_ptr,
                int32_t type,
                int32_t idx)
{
    H5C_t *cache_ptr;
    test_entry_t *base_addr;
    test_entry_t *entry_ptr;
    H5C_cache_entry_t * cache_entry_ptr;

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr );
        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( ( ! ( entry_ptr->is_protected ) ) ||
        ( ( entry_ptr->is_read_only ) &&
            ( entry_ptr->ro_ref_count > 0 ) ) );

        cache_entry_ptr = (H5C_cache_entry_t *)H5C_protect(file_ptr,
                types[type], entry_ptr->addr, &entry_ptr->addr, H5C__READ_ONLY_FLAG);

        if ( ( cache_entry_ptr != (void *)entry_ptr ) ||
             ( !(entry_ptr->header.is_protected) ) ||
             ( !(entry_ptr->header.is_read_only) ) ||
             ( entry_ptr->header.ro_ref_count <= 0 ) ||
             ( entry_ptr->header.type != types[type] ) ||
             ( entry_ptr->size != entry_ptr->header.size ) ||
             ( entry_ptr->addr != entry_ptr->header.addr ) ) {

            pass = FALSE;
            failure_mssg = "error in read only H5C_protect().";

        } else {

        HDassert( ( entry_ptr->cache_ptr == NULL ) ||
            ( entry_ptr->cache_ptr == cache_ptr ) );

        entry_ptr->cache_ptr = cache_ptr;
        entry_ptr->file_ptr = file_ptr;
            entry_ptr->is_protected = TRUE;
        entry_ptr->is_read_only = TRUE;
        entry_ptr->ro_ref_count++;
        }

        HDassert( ((entry_ptr->header).type)->id == type );
    }

    return;

} /* protect_entry_ro() */


/*-------------------------------------------------------------------------
 * Function:    pin_entry()
 *
 * Purpose:    Pin the entry indicated by the type and index.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    Quincey Koziol
 *              3/17/09
 *
 *-------------------------------------------------------------------------
 */

void
pin_entry(int32_t type,
              int32_t idx)
{
    HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

    if ( pass ) {
        test_entry_t * base_addr;
        test_entry_t * entry_ptr;
        herr_t result;

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( entry_ptr->is_protected );
        HDassert( !(entry_ptr->pinned_from_client) );

    result = H5C_pin_protected_entry((void *)entry_ptr);

    if ( result < 0 ) {

            pass = FALSE;
            failure_mssg = "H5C_pin_protected_entry() reports failure.";

    } else if ( ! ( entry_ptr->header.is_pinned ) ) {

            pass = FALSE;
            failure_mssg = "entry not pinned when it should be.";

    } else {

            entry_ptr->pinned_from_client = TRUE;
        entry_ptr->is_pinned = TRUE;

    }
    } /* end if */

    return;

} /* pin_entry() */


/*-------------------------------------------------------------------------
 * Function:    unpin_entry()
 *
 * Purpose:    Unpin the entry indicated by the type and index.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              3/28/06
 *
 *-------------------------------------------------------------------------
 */

void
unpin_entry(int32_t type,
            int32_t idx)
{
    herr_t result;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;

    if ( pass ) {
        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( entry_ptr->header.is_pinned );
        HDassert( entry_ptr->header.pinned_from_client );
    HDassert( entry_ptr->is_pinned );
    HDassert( entry_ptr->pinned_from_client );

        result = H5C_unpin_entry(entry_ptr);

        if ( ( result < 0 ) ||
             ( entry_ptr->header.pinned_from_client ) ||
             ( entry_ptr->header.is_pinned && !entry_ptr->header.pinned_from_cache ) ||
             ( entry_ptr->header.type != types[type] ) ||
             ( entry_ptr->size != entry_ptr->header.size ) ||
             ( entry_ptr->addr != entry_ptr->header.addr ) ) {

            pass = FALSE;
            failure_mssg = "error in H5C_unpin().";

        }

        entry_ptr->pinned_from_client = FALSE;

    entry_ptr->is_pinned = entry_ptr->pinned_from_cache;

        HDassert( ((entry_ptr->header).type)->id == type );

    }

    return;

} /* unpin_entry() */


/*-------------------------------------------------------------------------
 * Function:    unprotect_entry()
 *
 * Purpose:    Unprotect the entry indicated by the type and index.
 *
 *        Do nothing if pass is FALSE on entry.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/12/04
 *
 *-------------------------------------------------------------------------
 */

void
unprotect_entry(H5F_t * file_ptr,
                int32_t type,
                int32_t idx,
                unsigned int flags)
{
    herr_t result;
    hbool_t pin_flag_set;
    hbool_t unpin_flag_set;
    test_entry_t * base_addr;
    test_entry_t * entry_ptr;

    if ( pass ) {
        HDassert( ( 0 <= type ) && ( type < NUMBER_OF_ENTRY_TYPES ) );
        HDassert( ( 0 <= idx ) && ( idx <= max_indices[type] ) );

        base_addr = entries[type];
        entry_ptr = &(base_addr[idx]);

        HDassert( entry_ptr->index == idx );
        HDassert( entry_ptr->type == type );
        HDassert( entry_ptr == entry_ptr->self );
        HDassert( entry_ptr->header.is_protected );
        HDassert( entry_ptr->is_protected );

    pin_flag_set = (hbool_t)((flags & H5C__PIN_ENTRY_FLAG) != 0);
    unpin_flag_set = (hbool_t)((flags & H5C__UNPIN_ENTRY_FLAG) != 0);

    HDassert ( ! ( pin_flag_set && unpin_flag_set ) );
    HDassert ( ( ! pin_flag_set ) || ( ! (entry_ptr->is_pinned) ) );
    HDassert ( ( ! unpin_flag_set ) || ( entry_ptr->is_pinned ) );

        if(flags & H5C__DIRTIED_FLAG) {
            hbool_t was_dirty = entry_ptr->is_dirty;

            entry_ptr->is_dirty = TRUE;

            if(entry_ptr->flush_dep_npar > 0 && !was_dirty)
                mark_flush_dep_dirty(entry_ptr);
        } /* end if */

        result = H5C_unprotect(file_ptr, entry_ptr->addr, (void *)entry_ptr, flags);

        if ( ( result < 0 ) ||
             ( ( entry_ptr->header.is_protected ) &&
        ( ( ! ( entry_ptr->is_read_only ) ) ||
        ( entry_ptr->ro_ref_count <= 0 ) ) ) ||
             ( entry_ptr->header.type != types[type] ) ||
             ( entry_ptr->size != entry_ptr->header.size ) ||
             ( entry_ptr->addr != entry_ptr->header.addr ) ) {

            pass = FALSE;
            failure_mssg = "error in H5C_unprotect().";

        }
        else
        {
        if ( entry_ptr->ro_ref_count > 1 ) {

        entry_ptr->ro_ref_count--;

        } else if ( entry_ptr->ro_ref_count == 1 ) {

        entry_ptr->is_protected = FALSE;
        entry_ptr->is_read_only = FALSE;
        entry_ptr->ro_ref_count = 0;

        } else {

        entry_ptr->is_protected = FALSE;

        }

        if ( pin_flag_set ) {

            HDassert(entry_ptr->header.is_pinned);
        entry_ptr->pinned_from_client = TRUE;
        entry_ptr->is_pinned = TRUE;

        } else if ( unpin_flag_set ) {

            HDassert(entry_ptr->header.is_pinned == entry_ptr->header.pinned_from_cache);
        entry_ptr->pinned_from_client = FALSE;
        entry_ptr->is_pinned = entry_ptr->pinned_from_cache;

            }
        }

        HDassert( ((entry_ptr->header).type)->id == type );

        if ( ( flags & H5C__DIRTIED_FLAG ) != 0
                && ( (flags & H5C__DELETED_FLAG) == 0 ) ) {

            HDassert( entry_ptr->header.is_dirty );
            HDassert( entry_ptr->is_dirty );
        }

    HDassert( entry_ptr->header.is_protected == entry_ptr->is_protected );
    HDassert( entry_ptr->header.is_read_only == entry_ptr->is_read_only );
    HDassert( entry_ptr->header.ro_ref_count == entry_ptr->ro_ref_count );
    }

    return;

} /* unprotect_entry() */


/*-------------------------------------------------------------------------
 * Function:    row_major_scan_forward()
 *
 * Purpose:    Do a sequence of inserts, protects, unprotects, moves,
 *        destroys while scanning through the set of entries.  If
 *        pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/12/04
 *
 *-------------------------------------------------------------------------
 */
void
row_major_scan_forward(H5F_t * file_ptr,
                       int32_t max_index,
                       int32_t lag,
                       hbool_t verbose,
                       hbool_t reset_stats,
                       hbool_t display_stats,
                       hbool_t display_detailed_stats,
                       hbool_t do_inserts,
                       hbool_t do_moves,
                       hbool_t move_to_main_addr,
                       hbool_t do_destroys,
            hbool_t do_mult_ro_protects,
                       int dirty_destroys,
                       int dirty_unprotects)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = 0;
    int32_t idx;
    int32_t local_max_index;

    if(verbose)
        HDfprintf(stdout, "%s(): entering.\n", FUNC);

    if(pass) {
        cache_ptr = file_ptr->shared->cache;
        HDassert(cache_ptr != NULL);
        HDassert(lag >= 10);

        if(reset_stats)
            H5C_stats__reset(cache_ptr);
    } /* end if */

    while(pass && type < NUMBER_OF_ENTRY_TYPES) {
        idx = -lag;

        local_max_index = MIN(max_index, max_indices[type]);
        while(pass && idx <= (local_max_index + lag)) {
            int32_t tmp_idx;

        if(verbose)
                HDfprintf(stdout, "%d:%d: ", type, idx);

            tmp_idx = idx + lag;
            if(pass && do_inserts && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                     ((tmp_idx % 2) == 0 ) && !entry_in_cache(cache_ptr, type, tmp_idx)) {

                if(verbose)
                    HDfprintf(stdout, "1(i, %d, %d) ", type, tmp_idx);

                insert_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            tmp_idx--;
            if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                     (tmp_idx % 3) == 0) {

                if(verbose)
                    HDfprintf(stdout, "2(p, %d, %d) ", type, tmp_idx);

                protect_entry(file_ptr, type, tmp_idx);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            tmp_idx--;
            if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                    (tmp_idx % 3) == 0) {

                if(verbose)
                    HDfprintf(stdout, "3(u, %d, %d) ", type, tmp_idx);

                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            /* (don't decrement tmp_idx) */
            if(pass && do_moves && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                    (tmp_idx % 3) == 0) {

                if(verbose)
                    HDfprintf(stdout, "4(r, %d, %d, %d) ", type, tmp_idx, (int)move_to_main_addr);

                move_entry(cache_ptr, type, tmp_idx, move_to_main_addr);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            tmp_idx--;
            if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                    (tmp_idx % 5) == 0) {

                if(verbose)
                    HDfprintf(stdout, "5(p, %d, %d) ", type, tmp_idx);

                protect_entry(file_ptr, type, tmp_idx);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            tmp_idx -= 2;
            if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                    (tmp_idx % 5) == 0) {

                if(verbose)
                    HDfprintf(stdout, "6(u, %d, %d) ", type, tmp_idx);

                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

        if(do_mult_ro_protects) {
                /* (don't decrement tmp_idx) */
        if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
                        (tmp_idx % 9) == 0) {

                    if(verbose)
                        HDfprintf(stdout, "7(p-ro, %d, %d) ", type, tmp_idx);

            protect_entry_ro(file_ptr, type, tmp_idx);
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
        } /* end if */

                tmp_idx--;
        if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
                        (tmp_idx % 11) == 0) {

                    if(verbose)
                        HDfprintf(stdout, "8(p-ro, %d, %d) ", type, tmp_idx);

            protect_entry_ro(file_ptr, type, tmp_idx);
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
        } /* end if */

                tmp_idx--;
        if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
                        (tmp_idx % 13) == 0) {

                    if(verbose)
                        HDfprintf(stdout, "9(p-ro, %d, %d) ", type, tmp_idx);

            protect_entry_ro(file_ptr, type, tmp_idx);
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
        } /* end if */

                /* (don't decrement tmp_idx) */
        if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
                        (tmp_idx % 9) == 0) {

                    if(verbose)
                        HDfprintf(stdout, "10(u-ro, %d, %d) ", type, tmp_idx);

            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
        } /* end if */

                tmp_idx--;
        if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
                        (tmp_idx % 11) == 0) {

                    if(verbose)
                        HDfprintf(stdout, "11(u-ro, %d, %d) ", type, tmp_idx);

            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
        } /* end if */

                tmp_idx--;
        if(pass && (tmp_idx >= 0) && (tmp_idx < local_max_index) &&
                        (tmp_idx % 13) == 0) {

                    if(verbose)
                        HDfprintf(stdout, "12(u-ro, %d, %d) ", type, tmp_idx);

            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
        } /* end if */
        } /* if ( do_mult_ro_protects ) */

            if(pass && (idx >= 0) && (idx <= local_max_index)) {
                if(verbose)
                    HDfprintf(stdout, "13(p, %d, %d) ", type, idx);

                protect_entry(file_ptr, type, idx);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            tmp_idx = idx - lag + 2;
            if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                    (tmp_idx % 7) == 0) {

                if(verbose)
                    HDfprintf(stdout, "14(u, %d, %d) ", type, tmp_idx);

                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            tmp_idx--;
            if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index) &&
                    (tmp_idx % 7) == 0) {

                if(verbose)
                    HDfprintf(stdout, "15(p, %d, %d) ", type, tmp_idx);

                protect_entry(file_ptr, type, tmp_idx);
        HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
            } /* end if */

            if(do_destroys) {
                tmp_idx = idx - lag;
                if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index)) {
                    switch(tmp_idx % 4) {
                        case 0: /* we just did an insert */
                            if(verbose)
                                HDfprintf(stdout, "16(u, %d, %d) ", type, tmp_idx);

                            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
                HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                            break;

                        case 1:
                            if((entries[type])[tmp_idx].is_dirty) {
                                if(verbose)
                                    HDfprintf(stdout, "17(u, %d, %d) ", type, tmp_idx);

                                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
                HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                            } /* end if */
                            else {
                                if(verbose)
                                    HDfprintf(stdout, "18(u, %d, %d) ", type, tmp_idx);

                                unprotect_entry(file_ptr, type, tmp_idx, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
                HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                            } /* end else */
                            break;

                        case 2: /* we just did an insert */
                            if(verbose)
                                HDfprintf(stdout, "19(u-del, %d, %d) ", type, tmp_idx);

                            unprotect_entry(file_ptr, type, tmp_idx, H5C__DELETED_FLAG);
                HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                            break;

                        case 3:
                            if((entries[type])[tmp_idx].is_dirty) {
                                if(verbose)
                                    HDfprintf(stdout, "20(u-del, %d, %d) ", type, tmp_idx);

                                unprotect_entry(file_ptr, type, tmp_idx, H5C__DELETED_FLAG);
                    HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                            } /* end if */
                            else {
                                if(verbose)
                                    HDfprintf(stdout, "21(u-del, %d, %d) ", type, tmp_idx);

                                unprotect_entry(file_ptr, type, tmp_idx, (dirty_destroys ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET) | H5C__DELETED_FLAG);
                    HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                            } /* end else */
                            break;

                        default:
                            HDassert(0); /* this can't happen... */
                            break;
                    } /* end switch */
                } /* end if */
            } /* end if */
            else {
                tmp_idx = idx - lag;
                if(pass && (tmp_idx >= 0) && (tmp_idx <= local_max_index)) {
                    if(verbose)
                        HDfprintf(stdout, "22(u, %d, %d) ", type, tmp_idx);

                    unprotect_entry(file_ptr, type, tmp_idx, (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
            HDassert(cache_ptr->slist_size == cache_ptr->dirty_index_size);
                } /* end if */
            } /* end elsef */

            if(verbose)
                HDfprintf(stdout, "\n");

            idx++;
        } /* end while */

        type++;
    } /* end while */

    if(pass && display_stats)
        H5C_stats(cache_ptr, "test cache", display_detailed_stats);

} /* row_major_scan_forward() */


/*-------------------------------------------------------------------------
 * Function:    hl_row_major_scan_forward()
 *
 * Purpose:    Do a high locality sequence of inserts, protects, and
 *        unprotects while scanning through the set of entries.
 *        If pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              10/21/04
 *
 *-------------------------------------------------------------------------
 */

void
hl_row_major_scan_forward(H5F_t * file_ptr,
                          int32_t max_index,
                          hbool_t verbose,
                          hbool_t reset_stats,
                          hbool_t display_stats,
                          hbool_t display_detailed_stats,
                          hbool_t do_inserts)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = 0;
    int32_t idx;
    int32_t i;
    int32_t lag = 100;
    int32_t local_max_index;

    if ( verbose )
        HDfprintf(stdout, "%s(): entering.\n", FUNC);

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr != NULL );
        HDassert( lag > 5 );
        HDassert( max_index >= 200 );
        HDassert( max_index <= MAX_ENTRIES );

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }
    }

    while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
    {
        idx = -lag;

        local_max_index = MIN(max_index, max_indices[type]);

        while ( ( pass ) && ( idx <= (local_max_index + lag) ) )
        {
            if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
                 ( (idx + lag) <= max_indices[type] ) &&
                 ( ((idx + lag) % 2) == 0 ) &&
                 ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));

                insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET);
            }

            i = idx;

            while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) )
            {
                if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p, %d, %d) ", type, i);

                    protect_entry(file_ptr, type, i);

                    if ( verbose )
                        HDfprintf(stdout, "(u, %d, %d) ", type, i);

                    unprotect_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
                }
                i--;
            }

            if ( verbose )
                HDfprintf(stdout, "\n");

            idx++;
        }
        type++;
    }

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    return;

} /* hl_row_major_scan_forward() */


/*-------------------------------------------------------------------------
 * Function:    row_major_scan_backward()
 *
 * Purpose:    Do a sequence of inserts, protects, unprotects, moves,
 *        destroys while scanning backwards through the set of
 *        entries.  If pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/12/04
 *
 *-------------------------------------------------------------------------
 */

void
row_major_scan_backward(H5F_t * file_ptr,
                        int32_t max_index,
                        int32_t lag,
                        hbool_t verbose,
                        hbool_t reset_stats,
                        hbool_t display_stats,
                        hbool_t display_detailed_stats,
                        hbool_t do_inserts,
                        hbool_t do_moves,
                        hbool_t move_to_main_addr,
                        hbool_t do_destroys,
            hbool_t do_mult_ro_protects,
                        int dirty_destroys,
                        int dirty_unprotects)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = NUMBER_OF_ENTRY_TYPES - 1;
    int32_t idx;
    int32_t local_max_index;

    if ( verbose )
        HDfprintf(stdout, "%s(): Entering.\n", FUNC);

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr != NULL );
        HDassert( lag >= 10 );

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }
    }

    while ( ( pass ) && ( type >= 0 ) )
    {
        local_max_index = MIN(max_index, max_indices[type]);

        idx = local_max_index + lag;

        while ( ( pass ) && ( idx >= -lag ) )
        {
            int32_t tmp_idx;

            tmp_idx = idx - lag;
            if ( ( pass ) && ( do_inserts ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( (tmp_idx % 2) == 1 ) &&
                 ( ! entry_in_cache(cache_ptr, type, tmp_idx) ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(i, %d, %d) ", type, tmp_idx);

                insert_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            }

            tmp_idx++;
            if ( ( pass ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 3 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(p, %d, %d) ", type, tmp_idx);

                protect_entry(file_ptr, type, tmp_idx);
            }

            tmp_idx++;
            if ( ( pass ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 3 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(u, %d, %d) ", type, tmp_idx);

                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            }

            /* (don't increment tmp_idx) */
            if ( ( pass ) && ( do_moves ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 3 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(r, %d, %d, %d) ",
                type, tmp_idx, (int)move_to_main_addr);

                move_entry(cache_ptr, type, tmp_idx, move_to_main_addr);
            }

            tmp_idx++;
            if ( ( pass ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 5 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(p, %d, %d) ", type, tmp_idx);

                protect_entry(file_ptr, type, (idx - lag + 3));
            }

            tmp_idx += 2;
            if ( ( pass ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 5 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(u, %d, %d) ", type, tmp_idx);

                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            }

            /* (don't increment tmp_idx) */
        if ( do_mult_ro_protects )
        {
        if ( ( pass ) && ( tmp_idx >= 0 ) &&
            ( tmp_idx < local_max_index ) &&
            ( tmp_idx % 9 == 0 ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p-ro, %d, %d) ", type, tmp_idx);

            protect_entry_ro(file_ptr, type, tmp_idx);
        }

                tmp_idx++;
        if ( ( pass ) && ( tmp_idx >= 0 ) &&
            ( tmp_idx < local_max_index ) &&
            ( tmp_idx % 11 == 0 ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p-ro, %d, %d) ", type, tmp_idx);

            protect_entry_ro(file_ptr, type, tmp_idx);
        }

                tmp_idx++;
        if ( ( pass ) && ( tmp_idx >= 0 ) &&
            ( tmp_idx < local_max_index ) &&
            ( tmp_idx % 13 == 0 ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p-ro, %d, %d) ", type, tmp_idx);

            protect_entry_ro(file_ptr, type, tmp_idx);
        }

                /* (don't increment tmp_idx) */
        if ( ( pass ) && ( tmp_idx >= 0 ) &&
            ( tmp_idx < local_max_index ) &&
            ( tmp_idx % 9 == 0 ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(u-ro, %d, %d) ", type, tmp_idx);

            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        }

                tmp_idx++;
        if ( ( pass ) && ( tmp_idx >= 0 ) &&
            ( tmp_idx < local_max_index ) &&
            ( tmp_idx % 11 == 0 ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(u-ro, %d, %d) ", type, tmp_idx);

            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        }

                tmp_idx++;
        if ( ( pass ) && ( tmp_idx >= 0 ) &&
            ( tmp_idx < local_max_index ) &&
            ( tmp_idx % 13 == 0 ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(u-ro, %d, %d) ", type, tmp_idx);

            unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
        }
        } /* if ( do_mult_ro_protects ) */

            if ( ( pass ) && ( idx >= 0 ) && ( idx <= local_max_index ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(p, %d, %d) ", type, idx);

                protect_entry(file_ptr, type, idx);
            }

            tmp_idx = idx + lag - 2;
            if ( ( pass ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 7 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(u, %d, %d) ", type, tmp_idx);

                unprotect_entry(file_ptr, type, tmp_idx, H5C__NO_FLAGS_SET);
            }

            tmp_idx++;
            if ( ( pass ) && ( tmp_idx >= 0 ) &&
                 ( tmp_idx <= local_max_index ) &&
                 ( ( tmp_idx % 7 ) == 0 ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(p, %d, %d) ", type, tmp_idx);

                protect_entry(file_ptr, type, tmp_idx);
            }


            if ( do_destroys ) {

                if ( ( pass ) && ( (idx + lag) >= 0 ) &&
                     ( ( idx + lag) <= local_max_index ) ) {

                    switch ( (idx + lag) % 4 ) {

                        case 0:
                            if ( (entries[type])[idx+lag].is_dirty ) {

                                unprotect_entry(file_ptr, type, idx + lag, H5C__NO_FLAGS_SET);
                            } else {

                                unprotect_entry(file_ptr, type, idx + lag,
                                        (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
                            }
                            break;

                        case 1: /* we just did an insert */
                            unprotect_entry(file_ptr, type, idx + lag, H5C__NO_FLAGS_SET);
                            break;

                        case 2:
                            if ( (entries[type])[idx + lag].is_dirty ) {

                                unprotect_entry(file_ptr, type, idx + lag, H5C__DELETED_FLAG);
                            } else {

                                unprotect_entry(file_ptr, type, idx + lag,
                                        (dirty_destroys ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET)
                                        | H5C__DELETED_FLAG);
                            }
                            break;

                        case 3: /* we just did an insert */
                            unprotect_entry(file_ptr, type, idx + lag, H5C__DELETED_FLAG);
                            break;

                        default:
                            HDassert(0); /* this can't happen... */
                            break;
                    }
                }
            } else {

                if ( ( pass ) && ( (idx + lag) >= 0 ) &&
                     ( ( idx + lag) <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag));

                    unprotect_entry(file_ptr, type, idx + lag,
                            (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
                }
            }

            if ( verbose )
                HDfprintf(stdout, "\n");

            idx--;
        }
        type--;
    }

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    return;

} /* row_major_scan_backward() */


/*-------------------------------------------------------------------------
 * Function:    hl_row_major_scan_backward()
 *
 * Purpose:    Do a high locality sequence of inserts, protects, and
 *        unprotects while scanning through the set of entries.
 *        If pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              10/21/04
 *
 *-------------------------------------------------------------------------
 */

void
hl_row_major_scan_backward(H5F_t * file_ptr,
                           int32_t max_index,
                           hbool_t verbose,
                           hbool_t reset_stats,
                           hbool_t display_stats,
                           hbool_t display_detailed_stats,
                           hbool_t do_inserts)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = NUMBER_OF_ENTRY_TYPES - 1;
    int32_t idx;
    int32_t i;
    int32_t lag = 100;
    int32_t local_max_index;

    if ( verbose )
        HDfprintf(stdout, "%s(): entering.\n", FUNC);

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr != NULL );
        HDassert( lag > 5 );
        HDassert( max_index >= 200 );
        HDassert( max_index <= MAX_ENTRIES );

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }
    }

    while ( ( pass ) && ( type >= 0 ) )
    {
        idx = max_indices[type] + lag;

        local_max_index = MIN(max_index, max_indices[type]);

        while ( ( pass ) && ( idx >= -lag ) )
        {
            if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
                 ( (idx + lag) <= local_max_index ) &&
                 ( ((idx + lag) % 2) == 0 ) &&
                 ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));

                insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET);
            }

            i = idx;

            while ( ( pass ) && ( i >= idx - lag ) && ( i >= 0 ) )
            {
                if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p, %d, %d) ", type, i);

                    protect_entry(file_ptr, type, i);

                    if ( verbose )
                        HDfprintf(stdout, "(u, %d, %d) ", type, i);

                    unprotect_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
                }
                i--;
            }

            if ( verbose )
                HDfprintf(stdout, "\n");

            idx--;
        }
        type--;
    }

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    return;

} /* hl_row_major_scan_backward() */


/*-------------------------------------------------------------------------
 * Function:    col_major_scan_forward()
 *
 * Purpose:    Do a sequence of inserts, protects, and unprotects
 *        while scanning through the set of entries.  If
 *        pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/23/04
 *
 *-------------------------------------------------------------------------
 */

void
col_major_scan_forward(H5F_t * file_ptr,
            int32_t max_index,
                       int32_t lag,
                       hbool_t verbose,
                       hbool_t reset_stats,
                       hbool_t display_stats,
                       hbool_t display_detailed_stats,
                       hbool_t do_inserts,
                       int dirty_unprotects)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = 0;
    int32_t idx;
    int32_t local_max_index[NUMBER_OF_ENTRY_TYPES];

    if ( verbose )
        HDfprintf(stdout, "%s: entering.\n", FUNC);

    if ( pass ) {
        int i;

        cache_ptr = file_ptr->shared->cache;

        for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
            local_max_index[i] = MIN(max_index, max_indices[i]);

        HDassert( lag > 5 );

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }
    }

    idx = -lag;

    while ( ( pass ) && ( (idx - lag) <= MAX_ENTRIES ) )
    {
        type = 0;

        while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
        {
            if ( ( pass ) && ( do_inserts ) && ( (idx + lag) >= 0 ) &&
                 ( (idx + lag) <= local_max_index[type] ) &&
                 ( ((idx + lag) % 3) == 0 ) &&
                 ( ! entry_in_cache(cache_ptr, type, (idx + lag)) ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(i, %d, %d) ", type, (idx + lag));

                insert_entry(file_ptr, type, (idx + lag), H5C__NO_FLAGS_SET);
            }

            if ( ( pass ) &&
                 ( idx >= 0 ) &&
                 ( idx <= local_max_index[type] ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(p, %d, %d) ", type, idx);

                protect_entry(file_ptr, type, idx);
            }

            if ( ( pass ) && ( (idx - lag) >= 0 ) &&
                 ( (idx - lag) <= local_max_index[type] ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(u, %d, %d) ", type, (idx - lag));

                unprotect_entry(file_ptr, type, idx - lag,
                        (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
            }

            if ( verbose )
                HDfprintf(stdout, "\n");

            type++;
        }

        idx++;
    }

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    return;

} /* col_major_scan_forward() */


/*-------------------------------------------------------------------------
 * Function:    hl_col_major_scan_forward()
 *
 * Purpose:    Do a high locality sequence of inserts, protects, and
 *        unprotects while scanning through the set of entries.  If
 *        pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              19/25/04
 *
 *-------------------------------------------------------------------------
 */

void
hl_col_major_scan_forward(H5F_t * file_ptr,
                          int32_t max_index,
                          hbool_t verbose,
                          hbool_t reset_stats,
                          hbool_t display_stats,
                          hbool_t display_detailed_stats,
                          hbool_t do_inserts,
                          int dirty_unprotects)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = 0;
    int32_t idx;
    int32_t lag = 200;
    int32_t i;
    int32_t local_max_index;

    if ( verbose )
        HDfprintf(stdout, "%s: entering.\n", FUNC);

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr != NULL );
        HDassert( lag > 5 );
        HDassert( max_index >= 500 );
        HDassert( max_index <= MAX_ENTRIES );

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }
    }

    idx = 0;

    local_max_index = MIN(max_index, MAX_ENTRIES);

    while ( ( pass ) && ( idx <= local_max_index ) )
    {

        i = idx;

        while ( ( pass ) && ( i >= 0 ) && ( i >= (idx - lag) ) ) {

            type = 0;

            while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
            {
                if ( ( pass ) && ( do_inserts ) && ( i == idx ) &&
                     ( i <= local_max_index ) &&
                     ( (i % 3) == 0 ) &&
                     ( ! entry_in_cache(cache_ptr, type, i) ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(i, %d, %d) ", type, i);

                    insert_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
                }

                if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p, %d, %d) ", type, i);

                    protect_entry(file_ptr, type, i);
                }

                if ( ( pass ) && ( i >= 0 ) &&
                     ( i <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(u, %d, %d) ", type, i);

                    unprotect_entry(file_ptr, type, i,
                            (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
                }

                if ( verbose )
                    HDfprintf(stdout, "\n");

                type++;
            }

            i--;
        }

        idx++;
    }

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    return;

} /* hl_col_major_scan_forward() */


/*-------------------------------------------------------------------------
 * Function:    col_major_scan_backward()
 *
 * Purpose:    Do a sequence of inserts, protects, and unprotects
 *        while scanning backwards through the set of
 *        entries.  If pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              6/23/04
 *
 *-------------------------------------------------------------------------
 */

void
col_major_scan_backward(H5F_t * file_ptr,
                int32_t max_index,
                        int32_t lag,
                        hbool_t verbose,
                        hbool_t reset_stats,
                        hbool_t display_stats,
                        hbool_t display_detailed_stats,
                        hbool_t do_inserts,
                        int dirty_unprotects)
{
    H5C_t * cache_ptr = NULL;
    int mile_stone = 1;
    int32_t type;
    int32_t idx;
    int32_t local_max_index[NUMBER_OF_ENTRY_TYPES];

    if ( verbose )
        HDfprintf(stdout, "%s: entering.\n", FUNC);

    if ( pass ) {
        int i;

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr != NULL );

        for ( i = 0; i < NUMBER_OF_ENTRY_TYPES; i++ )
            local_max_index[i] = MIN(max_index, max_indices[i]);

        HDassert( lag > 5 );

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }
    }

    idx = local_max_index[NUMBER_OF_ENTRY_TYPES - 1] + lag;

    if ( verbose ) /* 1 */
        HDfprintf(stdout, "%s: point %d.\n", FUNC, mile_stone++);


    while ( ( pass ) && ( (idx + lag) >= 0 ) )
    {
        type = NUMBER_OF_ENTRY_TYPES - 1;

        while ( ( pass ) && ( type >= 0 ) )
        {
            if ( ( pass ) && ( do_inserts) && ( (idx - lag) >= 0 ) &&
                 ( (idx - lag) <= local_max_index[type] ) &&
                 ( ((idx - lag) % 3) == 0 ) &&
                 ( ! entry_in_cache(cache_ptr, type, (idx - lag)) ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(i, %d, %d) ", type, (idx - lag));

                insert_entry(file_ptr, type, (idx - lag), H5C__NO_FLAGS_SET);
            }

            if ( ( pass ) &&
        ( idx >= 0 ) &&
        ( idx <= local_max_index[type] ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(p, %d, %d) ", type, idx);

                protect_entry(file_ptr, type, idx);
            }

            if ( ( pass ) && ( (idx + lag) >= 0 ) &&
                 ( (idx + lag) <= local_max_index[type] ) ) {

                if ( verbose )
                    HDfprintf(stdout, "(u, %d, %d) ", type, (idx + lag));

                unprotect_entry(file_ptr, type, idx + lag,
                        (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
            }

            if ( verbose )
                HDfprintf(stdout, "\n");

            type--;
        }

        idx--;
    }

    if ( verbose ) /* 2 */
        HDfprintf(stdout, "%s: point %d.\n", FUNC, mile_stone++);

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    if ( verbose )
        HDfprintf(stdout, "%s: exiting.\n", FUNC);

    return;

} /* col_major_scan_backward() */


/*-------------------------------------------------------------------------
 * Function:    hl_col_major_scan_backward()
 *
 * Purpose:    Do a high locality sequence of inserts, protects, and
 *        unprotects while scanning backwards through the set of
 *        entries.  If pass is false on entry, do nothing.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              10/25/04
 *
 *-------------------------------------------------------------------------
 */

void
hl_col_major_scan_backward(H5F_t * file_ptr,
                           int32_t max_index,
                           hbool_t verbose,
                           hbool_t reset_stats,
                           hbool_t display_stats,
                           hbool_t display_detailed_stats,
                           hbool_t do_inserts,
                           int dirty_unprotects)
{
    H5C_t * cache_ptr = NULL;
    int32_t type = 0;
    int32_t idx = -1;
    int32_t lag = 50;
    int32_t i;
    int32_t local_max_index = -1;

    if ( verbose )
        HDfprintf(stdout, "%s: entering.\n", FUNC);

    if ( pass ) {

        cache_ptr = file_ptr->shared->cache;

        HDassert( cache_ptr != NULL );
        HDassert( lag > 5 );
        HDassert( max_index >= 500 );
        HDassert( max_index <= MAX_ENTRIES );

        local_max_index = MIN(max_index, MAX_ENTRIES);

        if ( reset_stats ) {

            H5C_stats__reset(cache_ptr);
        }

        idx = local_max_index;
    }

    while ( ( pass ) && ( idx >= 0 ) )
    {

        i = idx;

        while ( ( pass ) && ( i <= local_max_index ) && ( i <= (idx + lag) ) ) {

            type = 0;

            while ( ( pass ) && ( type < NUMBER_OF_ENTRY_TYPES ) )
            {
                if ( ( pass ) && ( do_inserts ) && ( i == idx ) &&
                     ( i <= local_max_index ) &&
                     ( ! entry_in_cache(cache_ptr, type, i) ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(i, %d, %d) ", type, i);

                    insert_entry(file_ptr, type, i, H5C__NO_FLAGS_SET);
                }

                if ( ( pass ) && ( i >= 0 ) && ( i <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(p, %d, %d) ", type, i);

                    protect_entry(file_ptr, type, i);
                }

                if ( ( pass ) && ( i >= 0 ) &&
                     ( i <= local_max_index ) ) {

                    if ( verbose )
                        HDfprintf(stdout, "(u, %d, %d) ", type, i);

                    unprotect_entry(file_ptr, type, i,
                            (dirty_unprotects ? H5C__DIRTIED_FLAG : H5C__NO_FLAGS_SET));
                }

                if ( verbose )
                    HDfprintf(stdout, "\n");

                type++;
            }

            i++;
        }

        idx--;
    }

    if ( ( pass ) && ( display_stats ) ) {

        H5C_stats(cache_ptr, "test cache", display_detailed_stats);
    }

    return;

} /* hl_col_major_scan_backward() */


/*-------------------------------------------------------------------------
 * Function:    create_flush_dependency()
 *
 * Purpose:    Create a 'flush dependency' between two entries.
 *
 *        Do nothing if pass is false.
 *
 * Return:    void
 *
 * Programmer:    Quincey Koziol
 *              3/16/09
 *
 *-------------------------------------------------------------------------
 */

void
create_flush_dependency(int32_t par_type,
             int32_t par_idx,
             int32_t chd_type,
             int32_t chd_idx)
{
    HDassert( ( 0 <= par_type ) && ( par_type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= par_idx ) && ( par_idx <= max_indices[par_type] ) );
    HDassert( ( 0 <= chd_type ) && ( chd_type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= chd_idx ) && ( chd_idx <= max_indices[chd_type] ) );

    if ( pass ) {
        test_entry_t * par_base_addr;   /* Base entry of parent's entry array */
        test_entry_t * par_entry_ptr;   /* Parent entry */
        test_entry_t * chd_base_addr;   /* Base entry of child's entry array */
        test_entry_t * chd_entry_ptr;   /* Child entry */
        hbool_t par_is_pinned;          /* Whether parent is already pinned */
        herr_t result;                  /* API routine status */

        /* Get parent entry */
        par_base_addr = entries[par_type];
        par_entry_ptr = &(par_base_addr[par_idx]);
        par_is_pinned = par_entry_ptr->header.is_pinned;

        /* Sanity check parent entry */
        HDassert( par_entry_ptr->index == par_idx );
        HDassert( par_entry_ptr->type == par_type );
        HDassert( par_entry_ptr->header.is_protected );
        HDassert( par_entry_ptr == par_entry_ptr->self );

        /* Get parent entry */
        chd_base_addr = entries[chd_type];
        chd_entry_ptr = &(chd_base_addr[chd_idx]);

        /* Sanity check child entry */
        HDassert( chd_entry_ptr->index == chd_idx );
        HDassert( chd_entry_ptr->type == chd_type );
        HDassert( chd_entry_ptr == chd_entry_ptr->self );

        result = H5C_create_flush_dependency(par_entry_ptr, chd_entry_ptr);

        if ( ( result < 0 ) ||
             ( !par_entry_ptr->header.is_pinned ) ||
             ( !(par_entry_ptr->header.flush_dep_nchildren > 0) ) ) {

            pass = FALSE;
            failure_mssg = "error in H5C_create_flush_dependency().";
        } /* end if */

        /* Update information about entries */
        HDassert( chd_entry_ptr->flush_dep_npar < MAX_FLUSH_DEP_PARS );
        chd_entry_ptr->flush_dep_par_type[chd_entry_ptr->flush_dep_npar] = par_type;
        chd_entry_ptr->flush_dep_par_idx[chd_entry_ptr->flush_dep_npar] = par_idx;
        chd_entry_ptr->flush_dep_npar++;
        par_entry_ptr->flush_dep_nchd++;
        if(chd_entry_ptr->is_dirty || chd_entry_ptr->flush_dep_ndirty_chd > 0) {
            HDassert(par_entry_ptr->flush_dep_ndirty_chd < par_entry_ptr->flush_dep_nchd);
            par_entry_ptr->flush_dep_ndirty_chd++;
        } /* end if */
        par_entry_ptr->pinned_from_cache = TRUE;
        if( !par_is_pinned )
            par_entry_ptr->is_pinned = TRUE;
    } /* end if */
} /* create_flush_dependency() */


/*-------------------------------------------------------------------------
 * Function:    destroy_flush_dependency()
 *
 * Purpose:    Destroy a 'flush dependency' between two entries.
 *
 *        Do nothing if pass is false.
 *
 * Return:    void
 *
 * Programmer:    Quincey Koziol
 *              3/16/09
 *
 *-------------------------------------------------------------------------
 */

void
destroy_flush_dependency(int32_t par_type,
             int32_t par_idx,
             int32_t chd_type,
             int32_t chd_idx)
{
    HDassert( ( 0 <= par_type ) && ( par_type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= par_idx ) && ( par_idx <= max_indices[par_type] ) );
    HDassert( ( 0 <= chd_type ) && ( chd_type < NUMBER_OF_ENTRY_TYPES ) );
    HDassert( ( 0 <= chd_idx ) && ( chd_idx <= max_indices[chd_type] ) );

    if ( pass ) {
        test_entry_t * par_base_addr;   /* Base entry of parent's entry array */
        test_entry_t * par_entry_ptr;   /* Parent entry */
        test_entry_t * chd_base_addr;   /* Base entry of child's entry array */
        test_entry_t * chd_entry_ptr;   /* Child entry */
        unsigned i;                     /* Local index variable */

        /* Get parent entry */
        par_base_addr = entries[par_type];
        par_entry_ptr = &(par_base_addr[par_idx]);

        /* Sanity check parent entry */
        HDassert( par_entry_ptr->is_pinned );
        HDassert( par_entry_ptr->pinned_from_cache );
        HDassert( par_entry_ptr->flush_dep_nchd > 0 );
        HDassert( par_entry_ptr == par_entry_ptr->self );

        /* Get parent entry */
        chd_base_addr = entries[chd_type];
        chd_entry_ptr = &(chd_base_addr[chd_idx]);

        /* Sanity check child entry */
        HDassert( chd_entry_ptr->index == chd_idx );
        HDassert( chd_entry_ptr->type == chd_type );
        HDassert( chd_entry_ptr->flush_dep_npar > 0 );
        HDassert( chd_entry_ptr == chd_entry_ptr->self );

        if ( H5C_destroy_flush_dependency(par_entry_ptr, chd_entry_ptr) < 0 ) {
            pass = FALSE;
            failure_mssg = "error in H5C_destroy_flush_dependency().";
        } /* end if */

        /* Update information about entries */
        for(i=0; i<chd_entry_ptr->flush_dep_npar; i++)
            if(chd_entry_ptr->flush_dep_par_type[i] == par_type
                    && chd_entry_ptr->flush_dep_par_idx[i] == par_idx)
                break;
        HDassert(i < chd_entry_ptr->flush_dep_npar);
        if(i < chd_entry_ptr->flush_dep_npar - 1)
            HDmemmove(&chd_entry_ptr->flush_dep_par_type[i],
                    &chd_entry_ptr->flush_dep_par_type[i+1],
                    (chd_entry_ptr->flush_dep_npar - i - 1)
                    * sizeof(chd_entry_ptr->flush_dep_par_type[0]));
        if(i < chd_entry_ptr->flush_dep_npar - 1)
            HDmemmove(&chd_entry_ptr->flush_dep_par_idx[i],
                    &chd_entry_ptr->flush_dep_par_idx[i+1],
                    (chd_entry_ptr->flush_dep_npar - i - 1)
                    * sizeof(chd_entry_ptr->flush_dep_par_idx[0]));
        chd_entry_ptr->flush_dep_npar--;
        par_entry_ptr->flush_dep_nchd--;
        if(par_entry_ptr->flush_dep_nchd == 0) {
            par_entry_ptr->pinned_from_cache = FALSE;
            par_entry_ptr->is_pinned = par_entry_ptr->pinned_from_client;
        } /* end if */
        if(chd_entry_ptr->is_dirty || chd_entry_ptr->flush_dep_ndirty_chd > 0) {
            HDassert(par_entry_ptr->flush_dep_ndirty_chd > 0);
            par_entry_ptr->flush_dep_ndirty_chd--;
            if(!par_entry_ptr->is_dirty
                    && par_entry_ptr->flush_dep_ndirty_chd == 0)
                mark_flush_dep_clean(par_entry_ptr);
        } /* end if */
    } /* end if */
} /* destroy_flush_dependency() */


/*-------------------------------------------------------------------------
 * Function:    mark_flush_dep_dirty()
 *
 * Purpose:     Recursively propagate the flush_dep_ndirty_children flag
 *              up the dependency chain in response to entry either
 *              becoming dirty or having its flush_dep_ndirty_children
 *              increased from 0.
 *
 * Return:      <none>
 *
 * Programmer:  Neil Fortner
 *              12/4/12
 *
 *-------------------------------------------------------------------------
 */
static void
mark_flush_dep_dirty(test_entry_t * entry_ptr)
{
    /* Sanity checks */
    HDassert(entry_ptr);

    /* Iterate over the parent entries */
    if(entry_ptr->flush_dep_npar) {
        test_entry_t *par_base_addr;        /* Base entry of parent's entry array */
        test_entry_t *par_entry_ptr;        /* Parent entry */
        unsigned u;                         /* Local index variable */

        for(u = 0; u < entry_ptr->flush_dep_npar; u++) {
            /* Get parent entry */
            par_base_addr = entries[entry_ptr->flush_dep_par_type[u]];
            par_entry_ptr = &(par_base_addr[entry_ptr->flush_dep_par_idx[u]]);

            /* Sanity check */
            HDassert(par_entry_ptr->flush_dep_ndirty_chd
                    < par_entry_ptr->flush_dep_nchd);

            /* Adjust the parent's number of dirty children */
            par_entry_ptr->flush_dep_ndirty_chd++;
        } /* end for */
    } /* end if */
} /* end mark_flush_dep_dirty() */


/*-------------------------------------------------------------------------
 * Function:    mark_flush_dep_clean()
 *
 * Purpose:     Recursively propagate the flush_dep_ndirty_children flag
 *              up the dependency chain in response to entry either
 *              becoming clean or having its flush_dep_ndirty_children
 *              reduced to 0.
 *
 * Return:      <none>
 *
 * Programmer:  Neil Fortner
 *              12/4/12
 *
 *-------------------------------------------------------------------------
 */
static void
mark_flush_dep_clean(test_entry_t * entry_ptr)
{
    /* Sanity checks */
    HDassert(entry_ptr);
    HDassert(!entry_ptr->is_dirty && entry_ptr->flush_dep_ndirty_chd == 0);

    /* Iterate over the parent entries */
    if(entry_ptr->flush_dep_npar) {
        test_entry_t *par_base_addr;        /* Base entry of parent's entry array */
        test_entry_t *par_entry_ptr;        /* Parent entry */
        unsigned u;                         /* Local index variable */

        for(u = 0; u < entry_ptr->flush_dep_npar; u++) {
            /* Get parent entry */
            par_base_addr = entries[entry_ptr->flush_dep_par_type[u]];
            par_entry_ptr = &(par_base_addr[entry_ptr->flush_dep_par_idx[u]]);

            /* Sanity check */
            HDassert(par_entry_ptr->flush_dep_ndirty_chd > 0);

            /* Adjust the parent's number of dirty children */
            par_entry_ptr->flush_dep_ndirty_chd--;
        } /* end for */
    } /* end if */
} /* end mark_flush_dep_clean() */


/*** H5AC level utility functions ***/


/*-------------------------------------------------------------------------
 * Function:    check_and_validate_cache_hit_rate()
 *
 * Purpose:    Use the API functions to get and reset the cache hit rate.
 *        Verify that the value returned by the API call agrees with
 *        the cache internal data structures.
 *
 *        If the number of cache accesses exceeds the value provided
 *        in the min_accesses parameter, and the hit rate is less than
 *        min_hit_rate, set pass to FALSE, and set failure_mssg to
 *        a string indicating that hit rate was unexpectedly low.
 *
 *        Return hit rate in *hit_rate_ptr, and print the data to
 *        stdout if requested.
 *
 *        If an error is detected, set pass to FALSE, and set
 *        failure_mssg to an appropriate value.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              4/18/04
 *
 *-------------------------------------------------------------------------
 */

void
check_and_validate_cache_hit_rate(hid_t file_id,
                                  double * hit_rate_ptr,
                                  hbool_t dump_data,
                                  int64_t min_accesses,
                                  double min_hit_rate)
{
    herr_t result;
    int64_t cache_hits = 0;
    int64_t cache_accesses = 0;
    double expected_hit_rate;
    double hit_rate;
    H5F_t * file_ptr = NULL;
    H5C_t * cache_ptr = NULL;

    /* get a pointer to the files internal data structure */
    if ( pass ) {

        file_ptr = (H5F_t *)H5VL_object_verify(file_id, H5I_FILE);

        if ( file_ptr == NULL ) {

            pass = FALSE;
            failure_mssg = "Can't get file_ptr.";

        } else {

            cache_ptr = file_ptr->shared->cache;
        }
    }

    /* verify that we can access the cache data structure */
    if ( pass ) {

        if ( ( cache_ptr == NULL ) ||
             ( cache_ptr->magic != H5C__H5C_T_MAGIC ) ) {

            pass = FALSE;
            failure_mssg = "Can't access cache resize_ctl.";
        }
    }

    /* compare the cache's internal configuration with the expected value */
    if ( pass ) {

        cache_hits     = cache_ptr->cache_hits;
        cache_accesses = cache_ptr->cache_accesses;

        if ( cache_accesses > 0 ) {

            expected_hit_rate = ((double)cache_hits) / ((double)cache_accesses);

        } else {

            expected_hit_rate = 0.0F;
        }

        result = H5Fget_mdc_hit_rate(file_id, &hit_rate);

        if ( result < 0 ) {

            pass = FALSE;
            failure_mssg = "H5Fget_mdc_hit_rate() failed.";

        } else if ( ! H5_DBL_ABS_EQUAL(hit_rate, expected_hit_rate) ) {

            pass = FALSE;
            failure_mssg = "unexpected hit rate.";

        }
    }

    if ( pass ) { /* reset the hit rate */

        result = H5Freset_mdc_hit_rate_stats(file_id);

        if ( result < 0 ) {

            pass = FALSE;
            failure_mssg = "H5Freset_mdc_hit_rate_stats() failed.";
        }
    }

    /* set *hit_rate_ptr if appropriate */
    if ( ( pass ) && ( hit_rate_ptr != NULL ) ) {

        *hit_rate_ptr = hit_rate;
    }

    /* dump data to stdout if requested */
    if ( ( pass ) && ( dump_data ) ) {

        HDfprintf(stdout,
                  "cache_hits: %ld, cache_accesses: %ld, hit_rate: %lf\n",
                  (long)cache_hits, (long)cache_accesses, hit_rate);
    }

    if ( ( pass ) &&
         ( cache_accesses > min_accesses ) &&
         ( hit_rate < min_hit_rate ) ) {

            pass = FALSE;
            failure_mssg = "Unexpectedly low hit rate.";
    }

    return;

} /* check_and_validate_cache_hit_rate() */


/*-------------------------------------------------------------------------
 * Function:    check_and_validate_cache_size()
 *
 * Purpose:    Use the API function to get the cache size data.  Verify
 *        that the values returned by the API call agree with
 *        the cache internal data structures.
 *
 *        Return size data in the locations specified by the pointer
 *        parameters if these parameters are not NULL.  Print the
 *        data to stdout if requested.
 *
 *        If an error is detected, set pass to FALSE, and set
 *        failure_mssg to an appropriate value.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              4/18/04
 *
 *-------------------------------------------------------------------------
 */

void
check_and_validate_cache_size(hid_t file_id,
                              size_t * max_size_ptr,
                              size_t * min_clean_size_ptr,
                              size_t * cur_size_ptr,
                              int32_t * cur_num_entries_ptr,
                              hbool_t dump_data)
{
    herr_t result;
    size_t expected_max_size;
    size_t max_size;
    size_t expected_min_clean_size;
    size_t min_clean_size;
    size_t expected_cur_size;
    size_t cur_size;
    uint32_t expected_cur_num_entries;
    int cur_num_entries;
    H5F_t * file_ptr = NULL;
    H5C_t * cache_ptr = NULL;

    /* get a pointer to the files internal data structure */
    if ( pass ) {

        file_ptr = (H5F_t *)H5VL_object_verify(file_id, H5I_FILE);

        if ( file_ptr == NULL ) {

            pass = FALSE;
            failure_mssg = "Can't get file_ptr.";

        } else {

            cache_ptr = file_ptr->shared->cache;
        }
    }

    /* verify that we can access the cache data structure */
    if ( pass ) {

        if ( ( cache_ptr == NULL ) ||
             ( cache_ptr->magic != H5C__H5C_T_MAGIC ) ) {

            pass = FALSE;
            failure_mssg = "Can't access cache data structure.";
        }
    }

    /* compare the cache's internal configuration with the expected value */
    if ( pass ) {

        expected_max_size        = cache_ptr->max_cache_size;
        expected_min_clean_size  = cache_ptr->min_clean_size;
        expected_cur_size        = cache_ptr->index_size;
        expected_cur_num_entries = cache_ptr->index_len;

        result = H5Fget_mdc_size(file_id,
                                 &max_size,
                                 &min_clean_size,
                                 &cur_size,
                                 &cur_num_entries);

        if ( result < 0 ) {

            pass = FALSE;
            failure_mssg = "H5Fget_mdc_size() failed.";

        } else if ( ( max_size != expected_max_size ) ||
                    ( min_clean_size != expected_min_clean_size ) ||
                    ( cur_size != expected_cur_size ) ||
                    ( cur_num_entries != (int)expected_cur_num_entries ) ) {

            pass = FALSE;
            failure_mssg = "H5Fget_mdc_size() returned unexpected value(s).";

        }
    }

    /* return size values if requested */
    if ( ( pass ) && ( max_size_ptr != NULL ) ) {

        *max_size_ptr = max_size;
    }

    if ( ( pass ) && ( min_clean_size_ptr != NULL ) ) {

        *min_clean_size_ptr = min_clean_size;
    }

    if ( ( pass ) && ( cur_size_ptr != NULL ) ) {

        *cur_size_ptr = cur_size;
    }

    if ( ( pass ) && ( cur_num_entries_ptr != NULL ) ) {

        *cur_num_entries_ptr = cur_num_entries;
    }


    /* dump data to stdout if requested */
    if ( ( pass ) && ( dump_data ) ) {

        HDfprintf(stdout,
                  "max_sz: %ld, min_clean_sz: %ld, cur_sz: %ld, cur_ent: %ld\n",
                  (long)max_size, (long)min_clean_size, (long)cur_size,
                  (long)cur_num_entries);
    }

    return;

} /* check_and_validate_cache_size() */

H5_ATTR_PURE hbool_t
resize_configs_are_equal(const H5C_auto_size_ctl_t *a,
    const H5C_auto_size_ctl_t *b,
    hbool_t compare_init)
{
    if(a->version != b->version)
        return(FALSE);
    else if(a->rpt_fcn != b->rpt_fcn)
        return(FALSE);
    else if(compare_init && (a->set_initial_size != b->set_initial_size))
        return(FALSE);
    else if(compare_init && (a->initial_size != b->initial_size))
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->min_clean_fraction, b->min_clean_fraction))
        return(FALSE);
    else if(a->max_size != b->max_size)
        return(FALSE);
    else if(a->min_size != b->min_size)
        return(FALSE);
    else if(a->epoch_length != b->epoch_length)
        return(FALSE);
    else if(a->incr_mode != b->incr_mode)
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->lower_hr_threshold, b->lower_hr_threshold))
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->increment, b->increment))
        return(FALSE);
    else if(a->apply_max_increment != b->apply_max_increment)
        return(FALSE);
    else if(a->max_increment != b->max_increment)
        return(FALSE);
    else if(a->flash_incr_mode != b->flash_incr_mode)
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->flash_multiple, b->flash_multiple))
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->flash_threshold, b->flash_threshold))
        return(FALSE);
    else if(a->decr_mode != b->decr_mode)
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->upper_hr_threshold, b->upper_hr_threshold))
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->decrement, b->decrement))
        return(FALSE);
    else if(a->apply_max_decrement != b->apply_max_decrement)
        return(FALSE);
    else if(a->max_decrement != b->max_decrement)
        return(FALSE);
    else if(a->epochs_before_eviction != b->epochs_before_eviction)
        return(FALSE);
    else if(a->apply_empty_reserve != b->apply_empty_reserve)
        return(FALSE);
    else if(!H5_DBL_ABS_EQUAL(a->empty_reserve, b->empty_reserve))
        return(FALSE);
    return(TRUE);
}


/*-------------------------------------------------------------------------
 * Function:    validate_mdc_config()
 *
 * Purpose:    Verify that the file indicated by the file_id parameter
 *        has both internal and external configuration matching
 *        *config_ptr.
 *
 *        Do nothin on success.  On failure, set pass to FALSE, and
 *        load an error message into failue_mssg.  Note that
 *        failure_msg is assumed to be at least 128 bytes in length.
 *
 * Return:    void
 *
 * Programmer:    John Mainzer
 *              4/14/04
 *
 *-------------------------------------------------------------------------
 */

void
validate_mdc_config(hid_t file_id,
                    H5AC_cache_config_t * ext_config_ptr,
                    hbool_t compare_init,
                    int test_num)
{
    static char msg[256];
    H5F_t * file_ptr = NULL;
    H5C_t * cache_ptr = NULL;
    H5AC_cache_config_t scratch;
    H5C_auto_size_ctl_t int_config;

    XLATE_EXT_TO_INT_MDC_CONFIG(int_config, (*ext_config_ptr))

    /* get a pointer to the files internal data structure */
    if ( pass ) {

        file_ptr = (H5F_t *)H5VL_object_verify(file_id, H5I_FILE);

        if ( file_ptr == NULL ) {

            pass = FALSE;
            HDsnprintf(msg, (size_t)128, "Can't get file_ptr #%d.", test_num);
            failure_mssg = msg;

        } else {

            cache_ptr = file_ptr->shared->cache;
        }
    }

    /* verify that we can access the internal version of the cache config */
    if ( pass ) {

        if ( ( cache_ptr == NULL ) ||
             ( cache_ptr->magic != H5C__H5C_T_MAGIC ) ||
             ( cache_ptr->resize_ctl.version != H5C__CURR_AUTO_SIZE_CTL_VER ) ){

            pass = FALSE;
            HDsnprintf(msg, (size_t)128,
                       "Can't access cache resize_ctl #%d.", test_num);
            failure_mssg = msg;
        }
    }

    /* compare the cache's internal configuration with the expected value */
    if ( pass ) {

    if ( ! resize_configs_are_equal(&int_config, &cache_ptr->resize_ctl,
                                        compare_init) ) {

            pass = FALSE;
            HDsnprintf(msg, (size_t)128,
                       "Unexpected internal config #%d.", test_num);
            failure_mssg = msg;
        }
    }

    /* obtain external cache config */
    if ( pass ) {

        scratch.version = H5AC__CURR_CACHE_CONFIG_VERSION;

        if ( H5Fget_mdc_config(file_id, &scratch) < 0 ) {

            pass = FALSE;
            HDsnprintf(msg, (size_t)128,
                       "H5Fget_mdc_config() failed #%d.", test_num);
            failure_mssg = msg;
        }
    }

    if ( pass ) {

        /* Recall that in any configuration supplied by the cache
         * at run time, the set_initial_size field will always
         * be FALSE, regardless of the value passed in.  Thus we
         * always presume that this field need not match that of
         * the supplied external configuration.
         *
         * The cache also sets the initial_size field to the current
         * cache max size instead of the value initially supplied.
         * Depending on circumstances, this may or may not match
         * the original.  Hence the compare_init parameter.
         */
        if ( ! CACHE_CONFIGS_EQUAL((*ext_config_ptr), scratch, \
                                   FALSE, compare_init) ) {

            pass = FALSE;
            HDsnprintf(msg, (size_t)128,
                       "Unexpected external config #%d.", test_num);
            failure_mssg = msg;
        }
    }

    return;

} /* validate_mdc_config() */


#if 0 /* debugging functions -- normally commented out */
/*-------------------------------------------------------------------------
 * Function:    dump_LRU
 *
 * Purpose:     Display a summarize list of the contents of the LRU
 *              from head to tail.
 *
 * Return:      void
 *
 * Programmer:  John Mainzer
 *              2/16/15
 *
 *-------------------------------------------------------------------------
 */
void
dump_LRU(H5F_t * file_ptr)
{
    const char * hdr_0 =
        " Entry  Entry   Entry       Entry         Entry               \n";
    const char * hdr_1 =
        " Num:   Dirty:  Size:       Addr:         Type:               \n";
    const char * hdr_2 =
        "==============================================================\n";
    int i = 0;
    H5C_cache_entry_t * entry_ptr = NULL;
    H5C_t *cache_ptr = file_ptr->shared->cache;

    HDassert(cache_ptr);
    HDassert(cache_ptr->magic == H5C__H5C_T_MAGIC);

    entry_ptr = cache_ptr->LRU_head_ptr;

    HDfprintf(stdout,
              "\n\nIndex len/size/clean size/dirty size = %u/%lld/%lld/%lld\n",
              cache_ptr->index_len, (long long)(cache_ptr->index_size),
              (long long)(cache_ptr->clean_index_size),
              (long long)(cache_ptr->dirty_index_size));
    HDfprintf(stdout, "\nLRU len/size = %d/%lld.\n\n",
              cache_ptr->LRU_list_len, (long long)(cache_ptr->LRU_list_size));

    if ( entry_ptr != NULL )
    {
        HDfprintf(stdout, "%s%s%s", hdr_0, hdr_1, hdr_2);
    }

    while ( entry_ptr != NULL )
    {
        HDfprintf(stdout,
                  "  %3d     %d     %10lld  0x%010llx  %s(%d)\n",
                  i,
                  (int)(entry_ptr->is_dirty),
                  (long long)(entry_ptr->size),
                  (long long)(entry_ptr->addr),
                  entry_ptr->type->name,
                  entry_ptr->type->id);
        i++;
        entry_ptr = entry_ptr->next;
    }

    if ( cache_ptr->LRU_list_len > 0 )
    {
        HDfprintf(stdout, "%s\n", hdr_2);
    }

    return;

} /* dump_LRU() */

#endif /* debugging functions -- normally commented out */