/* * Copyright (C) 1998 NCSA * All rights reserved. * * Programmer: Robb Matzke * Friday, January 23, 1998 */ #include #include #include #include #include /* The first dataset */ typedef struct s1_t { int a; int b; int c; int d; int e; } s1_t; /* The second dataset (same as first) */ typedef s1_t s2_t; /* The third dataset (reversed fields of s1) */ typedef struct s3_t { int e; int d; int c; int b; int a; } s3_t; /* The fourth dataset (a subset of s1) */ typedef struct s4_t { int b; int d; } s4_t; /* The fifth dataset (a superset of s1) */ typedef struct s5_t { int pre; int a; int b; int mid1; int c; int mid2; int d; int e; int post; } s5_t; #if 1 # define NX 100 # define NY 2000 #else # define NX 12 # define NY 9 #endif /*------------------------------------------------------------------------- * Function: main * * Purpose: Creates a simple dataset of a compound type and then reads * it back. The dataset is read back in various ways to * exercise the I/O pipeline and compound type conversion. * * Return: Success: 0 * * Failure: 1 * * Programmer: Robb Matzke * Friday, January 23, 1998 * * Modifications: * *------------------------------------------------------------------------- */ int main (void) { /* First dataset */ static s1_t s1[NX*NY]; hid_t s1_tid; /* Second dataset */ static s2_t s2[NX*NY]; hid_t s2_tid; /* Third dataset */ static s3_t s3[NX*NY]; hid_t s3_tid; /* Fourth dataset */ static s4_t s4[NX*NY]; hid_t s4_tid; /* Fifth dataset */ static s5_t s5[NX*NY]; hid_t s5_tid; /* Sixth dataset */ /* Seventh dataset */ hid_t s7_sid; /* Eighth dataset */ s1_t *s8 = NULL; hid_t s8_f_sid; /*file data space */ hid_t s8_m_sid; /*memory data space */ /* Ninth dataset */ /* Tenth dataset */ /* Eleventh dataset */ s5_t *s11 = NULL; /* Other variables */ int i, j, ndims; hid_t file, dataset, space; herr_t status; static size_t dim[] = {NX, NY}; int f_offset[2]; /*offset of hyperslab in file */ size_t h_size[2]; /*size of hyperslab */ size_t h_sample[2]; /*hyperslab sampling */ /* Create the file */ file = H5Fcreate ("cmpd_dset.h5", H5ACC_OVERWRITE, H5C_DEFAULT, H5C_DEFAULT); assert (file>=0); /* Create the data space */ space = H5Pcreate_simple (2, dim); assert (space>=0); /* *###################################################################### * STEP 1: Save the original dataset natively. */ printf ("\ STEP 1: Initialize dataset `s1' and store it on disk in native order.\n"); fflush (stdout); /* Initialize the dataset */ for (i=0; i=0); /* Create the dataset */ dataset = H5Dcreate (file, "s1", s1_tid, space, H5C_DEFAULT); assert (dataset>=0); /* Write the data */ status = H5Dwrite (dataset, s1_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s1); assert (status>=0); /* *###################################################################### * STEP 2: We create a new type ID for the second dataset even though * it's the same as the first just to test things better, but * in fact, we could have used s1_tid. */ printf ("\ STEP 2: Read the dataset from disk into a new memory buffer which has the\n\ same data type and space. This will be the typical case.\n"); fflush (stdout); /* Create a data type for s2 */ s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2_t)); H5Tinsert (s2_tid, "a", HPOFFSET(s2,a), H5T_NATIVE_INT); H5Tinsert (s2_tid, "b", HPOFFSET(s2,b), H5T_NATIVE_INT); H5Tinsert (s2_tid, "c", HPOFFSET(s2,c), H5T_NATIVE_INT); H5Tinsert (s2_tid, "d", HPOFFSET(s2,d), H5T_NATIVE_INT); H5Tinsert (s2_tid, "e", HPOFFSET(s2,e), H5T_NATIVE_INT); assert (s2_tid>=0); /* Read the data */ status = H5Dread (dataset, s2_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s2); assert (status>=0); /* Compare s2 with s1. They should be the same */ for (i=0; i=0); /* Read the data */ status = H5Dread (dataset, s3_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s3); assert (status>=0); /* Compare s3 with s1. They should be the same */ for (i=0; i members * stored on disk we'll read . */ printf ("\ STEP 4: Read a subset of the members.\n"); fflush (stdout); /* Create a datatype for s4 */ s4_tid = H5Tcreate (H5T_COMPOUND, sizeof(s4_t)); H5Tinsert (s4_tid, "b", HPOFFSET(s4,b), H5T_NATIVE_INT); H5Tinsert (s4_tid, "d", HPOFFSET(s4,d), H5T_NATIVE_INT); assert (s4_tid>=0); /* Read the data */ status = H5Dread (dataset, s4_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s4); assert (status>=0); /* Compare s4 with s1 */ for (i=0; i=0); /* Read the data */ status = H5Dread (dataset, s5_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s5); assert (status>=0); /* Check that the data was read properly */ for (i=0; i=0); /* Read the data back */ status = H5Dread (dataset, s1_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s1); assert (status>=0); /* Compare */ for (i=0; i=0); /* Read the dataset */ status = H5Dread (dataset, s2_tid, s7_sid, H5P_ALL, H5C_DEFAULT, s2); assert (status>=0); /* Compare */ for (i=0; i=0); f_offset[0] = NX/3; f_offset[1] = NY/3; h_size[0] = 2*NX/3 - f_offset[0]; h_size[1] = 2*NY/3 - f_offset[1]; h_sample[0] = 1; h_sample[1] = 1; status = H5Pset_hyperslab (s8_f_sid, f_offset, h_size, h_sample); assert (status>=0); /* Create memory data space */ s8_m_sid = H5Pcreate_simple (2, h_size); assert (s8_m_sid>=0); /* Read the dataset */ s8 = calloc (h_size[0]*h_size[1], sizeof(s1_t)); assert (s8); status = H5Dread (dataset, s1_tid, s8_m_sid, s8_f_sid, H5C_DEFAULT, s8); assert (status>=0); /* Compare */ for (i=0; ia == ps1->a); assert (ps8->b == ps1->b); assert (ps8->c == ps1->c); assert (ps8->d == ps1->d); assert (ps8->e == ps1->e); } } free (s8); s8 = NULL; /* *###################################################################### * STEP 9. Read a hyperslab of the file into a hyperslab of memory. The * part of memory not read is already initialized and must not change. */ printf ("\ STEP 9: Read middle third of hyperslab into middle third of memory array.\n"); fflush (stdout); /* Initialize with some bit pattern */ memset (s2, 0xFF, NX*NY*sizeof(s2_t)); /* Read the hyperslab */ status = H5Dread (dataset, s2_tid, s8_f_sid, s8_f_sid, H5C_DEFAULT, s2); assert (status>=0); /* Compare */ for (i=0; i=f_offset[0] && i=f_offset[1] && ja == ps1->a); assert (ps2->b == ps1->b); assert (ps2->c == ps1->c); assert (ps2->d == ps1->d); assert (ps2->e == ps1->e); } else { assert (ps2->a == -1); assert (ps2->b == -1); assert (ps2->c == -1); assert (ps2->d == -1); assert (ps2->e == -1); } } } /* *###################################################################### * STEP 10. Same as step 9 except the memory array contains some members * which are already initialized, like step 5. */ printf ("\ STEP 10: Read middle third of hyperslab into middle third of memory array\n\ where some of the struct members are already initialized.\n"); fflush (stdout); /* Initialize with some bit pattern */ memset (s5, 0xFF, NX*NY*sizeof(s5_t)); /* Read the hyperslab */ status = H5Dread (dataset, s5_tid, s8_f_sid, s8_f_sid, H5C_DEFAULT, s5); assert (status>=0); /* Compare */ for (i=0; i=f_offset[0] && i=f_offset[1] && jpre == -1); assert (ps5->a == ps1->a); assert (ps5->b == ps1->b); assert (ps5->mid1 == -1); assert (ps5->c == ps1->c); assert (ps5->mid2 == -1); assert (ps5->d == ps1->d); assert (ps5->e == ps1->e); assert (ps5->post == -1); } else { assert (ps5->pre == -1); assert (ps5->a == -1); assert (ps5->b == -1); assert (ps5->mid1 == -1); assert (ps5->c == -1); assert (ps5->mid2 == -1); assert (ps5->d == -1); assert (ps5->e == -1); assert (ps5->post == -1); } } } /* *###################################################################### * Step 11: Write an array into the middle third of the dataset * initializeing only members `b' and `d' to -1. */ printf ("\ STEP 11: Write an array back to the middle third of the dataset to\n\ initialize the `b' and `d' members to -1.\n"); fflush (stdout); /* Create the memory array and initialize all fields to zero */ ndims = H5Pget_hyperslab (s8_f_sid, f_offset, h_size, h_sample); assert (ndims==2); s11 = malloc (h_size[0]*h_size[1]*sizeof(s4_t)); assert (s11); memset (s11, 0xff, h_size[0]*h_size[1]*sizeof(s4_t)); /* Write to disk */ status = H5Dwrite (dataset, s4_tid, s8_m_sid, s8_f_sid, H5C_DEFAULT, s11); assert (status>=0); /* Read the whole thing */ status = H5Dread (dataset, s1_tid, H5P_ALL, H5P_ALL, H5C_DEFAULT, s1); assert (status>=0); /* Compare */ for (i=0; ia == 5*(i*NY+j)+0); assert (ps1->c == 5*(i*NY+j)+2); assert (ps1->e == 5*(i*NY+j)+4); if (i>=f_offset[0] && i=f_offset[1] && jb == -1); assert (ps1->d == -1); } else { assert (ps1->b == 5*(i*NY+j)+1); assert (ps1->d == 5*(i*NY+j)+3); } } } /* * Release resources. */ H5Dclose (dataset); H5Fclose (file); exit (0); }