/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* * Programmer: Robb Matzke <matzke@llnl.gov> * Tuesday, December 9, 1997 * * Purpose: Tests the data type interface (H5T) */ #include <math.h> #include <time.h> #include "h5test.h" /* Number of elements in each random test */ #define NTESTELEM 10000 /* Epsilon for floating-point comparisons */ #define FP_EPSILON 0.000001 /* * Offset from alinged memory returned by malloc(). This can be used to test * that type conversions handle non-aligned buffers correctly. */ #define ALIGNMENT 1 /* * Define if you want to test alignment code on a machine that doesn't * normally require alignment. When set, all native data types must be aligned * on a byte boundary equal to the data size. */ #define TEST_ALIGNMENT /* Alignment test stuff */ #ifdef TEST_ALIGNMENT #define H5T_PACKAGE #include "H5Tpkg.h" #endif #define SET_ALIGNMENT(TYPE,VAL) \ H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL) const char *FILENAME[] = { "dt_arith1", "dt_arith2", NULL }; /* * Count up or down depending on whether the machine is big endian, little * endian, or VAX (OpenVMS). If local variable `endian' is H5T_ORDER_BE then * the result will be I, otherwise the result will be Z-(I+1). VAX is printed * as little endian. */ #define ENDIAN(Z,I,E) (H5T_ORDER_BE==E?(I):(Z)-((I)+1)) typedef enum dtype_t { INT_SCHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT, INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, FLT_FLOAT, FLT_DOUBLE, #if H5_SIZEOF_LONG_DOUBLE !=0 FLT_LDOUBLE, #endif OTHER } dtype_t; /* Skip overflow tests if non-zero */ static int skip_overflow_tests_g = 0; /* * Although we check whether a floating point overflow generates a SIGFPE and * turn off overflow tests in that case, it might still be possible for an * overflow condition to occur. Once a SIGFPE is raised the program cannot * be allowed to continue (cf. Posix signals) so in order to recover from a * SIGFPE we run tests that might generate one in a child process. */ #if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID) #define HANDLE_SIGFPE #endif /* OpenVMS doesn't have this feature. Make sure to disable it*/ #ifdef H5_VMS #undef HANDLE_SIGFPE #endif /* * Decide what values of floating-point number we want to test. They are * 1 - normalized; 2 - denormalized; 3 - special. */ #define TEST_NOOP 0 #define TEST_NORMAL 1 #define TEST_DENORM 2 #define TEST_SPECIAL 3 /* Don't use hardware conversions if set */ static int without_hardware_g = 0; /* Allocates memory aligned on a certain boundary. */ #define aligned_malloc(Z) ((void*)((char*)HDmalloc(ALIGNMENT+Z)+ALIGNMENT)) #define aligned_free(M) HDfree((char*)(M)-ALIGNMENT) /* Initialize source buffer of integer for integer->integer and integer->floating-point conversion test. * This algorithm is mainly to avoid any casting and comparison between source and destination types * for compiler, because we're testing conversions. */ #define INIT_INTEGER(TYPE, SRC_MAX, SRC_MIN, SRC_SIZE, DST_SIZE, SRC_PREC, BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p, *saved_p; \ unsigned int n; \ TYPE value1 = 1; \ TYPE value2 = 0; \ \ /* Allocate buffers */ \ NELMTS=(SRC_PREC-1)*3+1; \ BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ \ buf_p = BUF; \ saved_p = SAVED; \ \ /*positive values, ascending order. VALUE1 starts from 00000001, to 00000010, until 10000000*/ \ /*VALUE2 ascends from 00000000, to 00000011, 00000111,..., until 11111111.*/ \ for(n=0; n<SRC_PREC-1; n++) { \ if(value1<=SRC_MAX && value1>=SRC_MIN) { \ memcpy(buf_p, &value1, SRC_SIZE); \ memcpy(saved_p, &value1, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ if(value2<=SRC_MAX && value2>=SRC_MIN) { \ memcpy(buf_p, &value2, SRC_SIZE); \ memcpy(saved_p, &value2, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ \ value1 <<= 1; \ value2 = (value1 - 1) | value1; \ } \ \ /* negative values for signed; descending positive values for unsigned */ \ /* VALUE2 descends from 11111111 to 11111110, 11111100, ..., until 10000000. */ \ for(n=0; n<SRC_PREC; n++) { \ if(value2<=SRC_MAX && value2>=SRC_MIN) { \ memcpy(buf_p, &value2, SRC_SIZE); \ memcpy(saved_p, &value2, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ value2 <<= 1; \ } \ } /* Change a buffer's byte order from big endian to little endian. It's mainly for library's * bit operations which handle only little endian order. */ #define CHANGE_ORDER(EBUF, EORDER, ESIZE) \ { \ unsigned int m; \ if (H5T_ORDER_BE==EORDER) { \ unsigned char mediator; \ size_t half_size = ESIZE/2; \ for (m=0; m<half_size; m++) { \ mediator = EBUF[ESIZE-(m+1)]; \ EBUF[ESIZE-(m+1)] = EBUF[m]; \ EBUF[m] = mediator; \ } \ } else if (H5T_ORDER_VAX==EORDER) { \ unsigned char mediator1, mediator2; \ for (m = 0; m < ESIZE; m += 4) { \ mediator1 = EBUF[m]; \ mediator2 = EBUF[m+1]; \ \ EBUF[m] = EBUF[(ESIZE-2)-m]; \ EBUF[m+1] = EBUF[(ESIZE-1)-m]; \ \ EBUF[(ESIZE-2)-m] = mediator1; \ EBUF[(ESIZE-1)-m] = mediator2; \ } \ } \ } /* Allocate buffer and initialize it with floating-point normalized values. * It's for conversion test of floating-point as the source. */ #define INIT_FP_NORM(TYPE, SRC_MAX, SRC_MIN, SRC_MAX_10_EXP, SRC_MIN_10_EXP, SRC_SIZE, \ DST_SIZE, BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p, *saved_p; \ size_t num_norm, factor, n; \ TYPE value1, value2; \ TYPE multiply; \ \ /*Determine the number of normalized values and increment pace. The values start from \ *minimal normalized value and are multiplied by MULTIPLY each step until reach to maximal \ *normalized value.*/ \ if(SRC_MAX_10_EXP<100) { /*for float*/ \ factor = 0; \ multiply = 10; \ } else if(SRC_MAX_10_EXP>=100 && SRC_MAX_10_EXP<400) { /*for double*/ \ factor = 2; \ multiply = 10000; \ } else { /*for long double*/ \ factor = 3; \ multiply = 100000000; \ } \ \ /*The number of values if multiplied by 10 for each step.*/ \ num_norm = (SRC_MAX_10_EXP - SRC_MIN_10_EXP); \ /*Reduce the number of values by 2^factor. MULTIPLY=10^(2^factor). Using this algorithm \ *instead of arithmatic operation to avoid any conversion*/ \ num_norm >>= factor; \ \ /*Total number of values*/ \ NELMTS = 2 * /*both positive and negative*/ \ (num_norm + /*number of normalized values*/ \ 1); /*maximal normalized value*/ \ \ /* Allocate buffers */ \ BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ \ buf_p = BUF; \ saved_p = SAVED; \ \ /*Normalized values*/ \ value1 = SRC_MIN; \ value2 = -SRC_MIN; \ for(n=0; n<num_norm; n++) { \ if(value1<SRC_MAX) { /*positive*/ \ memcpy(buf_p, &value1, SRC_SIZE); \ memcpy(saved_p, &value1, SRC_SIZE); \ value1 *= multiply; \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ if(value2>-SRC_MAX) { /*negative*/ \ memcpy(buf_p, &value2, SRC_SIZE); \ memcpy(saved_p, &value2, SRC_SIZE); \ value2 *= multiply; \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ } \ \ value1 = SRC_MAX; /*maximal value*/ \ memcpy(buf_p, &value1, SRC_SIZE); \ memcpy(saved_p, &value1, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ \ value2 = -SRC_MAX; /*negative value*/ \ memcpy(buf_p, &value2, SRC_SIZE); \ memcpy(saved_p, &value2, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } /* Allocate buffer and initialize it with floating-point denormalized values. * It's for conversion test of floating-point as the source. */ #define INIT_FP_DENORM(TYPE, SRC_MANT_DIG, SRC_SIZE, SRC_PREC, SRC_ORDR, DST_SIZE, \ BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p, *saved_p; \ unsigned char *tmp1, *tmp2; \ size_t n; \ \ /*Total number of values*/ \ NELMTS = 2 * /*both positive and negative*/ \ (SRC_MANT_DIG - 1); /*number of denormalized values*/ \ \ /* Allocate buffers */ \ BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ \ tmp1 = (unsigned char*)calloc(1, SRC_SIZE); \ tmp2 = (unsigned char*)calloc(1, SRC_SIZE); \ \ buf_p = BUF; \ saved_p = SAVED; \ \ /*Denormalized values. Exponent is 0. Let mantissa starts from 00000001, 00000011, \ *00000111,..., until 11111111.*/ \ memset(tmp1, 0, SRC_SIZE); \ memset(tmp2, 0, SRC_SIZE); \ H5T_bit_set (tmp2, SRC_PREC-1, 1, TRUE); /*the negative value*/ \ for(n=0; n<SRC_MANT_DIG-1; n++) { \ H5T_bit_set (tmp1, n, 1, TRUE); /*turn on 1 bit each time*/ \ CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ memcpy(buf_p, tmp1, SRC_SIZE); \ memcpy(saved_p, tmp1, SRC_SIZE); \ CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ \ /*negative values*/ \ H5T_bit_set (tmp2, n, 1, TRUE); \ CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \ memcpy(buf_p, tmp2, SRC_SIZE); \ memcpy(saved_p, tmp2, SRC_SIZE); \ CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ free(tmp1); \ free(tmp2); \ } /* Allocate buffer and initialize it with floating-point special values, +/-0, +/-infinity, * +/-QNaN, +/-SNaN. It's for conversion test of floating-point as the source. */ #define INIT_FP_SPECIAL(SRC_SIZE, SRC_PREC, SRC_ORDR, SRC_MANT_DIG, DST_SIZE, \ BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p; \ unsigned char *value; \ int n; \ \ /*Total number of values*/ \ NELMTS = 2 * /*both positive and negative*/ \ 4; /*infinity, SNaN, QNaN */ \ \ /* Allocate buffers */ \ BUF = (unsigned char*)aligned_malloc(NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char*)aligned_malloc( NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ value = (unsigned char*)calloc(SRC_SIZE, sizeof(unsigned char)); \ \ buf_p = BUF; \ \ /* +0 */ \ H5T_bit_set(value, 0, SRC_PREC, FALSE); \ memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \ buf_p += SRC_SIZE; \ \ for(n=0; n<2; n++) { \ if(n==1) { \ memset(value, 0, SRC_SIZE*sizeof(unsigned char)); \ /* -0 */ \ H5T_bit_set(value, SRC_PREC-1, 1, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE);/*change order for big endian*/ \ memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE);/*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ } \ \ /* +/-infinity */ \ H5T_bit_set(value, SRC_MANT_DIG-1, SRC_PREC-SRC_MANT_DIG, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ \ /* +/-SNaN */ \ H5T_bit_set(value, 0, 1, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ \ /* +/-QNaN */ \ H5T_bit_set(value, SRC_MANT_DIG-2, 1, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ memcpy(buf_p, value, SRC_SIZE*sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ } \ \ memcpy(SAVED, BUF, NELMTS*MAX(SRC_SIZE, DST_SIZE)); \ free(value); \ } void some_dummy_func(float x); static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits); static int my_isnan(dtype_t type, void *val); static int my_isinf(dtype_t type, int endian, unsigned char *val, size_t size, size_t mpos, size_t msize, size_t epos, size_t esize); /*------------------------------------------------------------------------- * Function: fpe_handler * * Purpose: Exit with 255 * * Return: void * * Programmer: Robb Matzke * Monday, July 6, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void fpe_handler(int UNUSED signo) { SKIPPED(); HDputs(" Test skipped due to SIGFPE."); #ifndef HANDLE_SIGFPE HDputs(" Remaining tests could not be run."); HDputs(" Please turn off SIGFPE on overflows and try again."); #endif HDexit(255); } /*------------------------------------------------------------------------- * Function: reset_hdf5 * * Purpose: Reset the hdf5 library. This causes statistics to be printed * and counters to be reset. * * Return: void * * Programmer: Robb Matzke * Monday, November 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void reset_hdf5(void) { h5_reset(); if (without_hardware_g) h5_no_hwconv(); #ifdef TEST_ALIGNMENT SET_ALIGNMENT(SCHAR, H5_SIZEOF_CHAR); SET_ALIGNMENT(UCHAR, H5_SIZEOF_CHAR); SET_ALIGNMENT(SHORT, H5_SIZEOF_SHORT); SET_ALIGNMENT(USHORT, H5_SIZEOF_SHORT); SET_ALIGNMENT(INT, H5_SIZEOF_INT); SET_ALIGNMENT(UINT, H5_SIZEOF_INT); SET_ALIGNMENT(LONG, H5_SIZEOF_LONG); SET_ALIGNMENT(ULONG, H5_SIZEOF_LONG); SET_ALIGNMENT(LLONG, H5_SIZEOF_LONG_LONG); SET_ALIGNMENT(ULLONG, H5_SIZEOF_LONG_LONG); SET_ALIGNMENT(FLOAT, H5_SIZEOF_FLOAT); SET_ALIGNMENT(DOUBLE, H5_SIZEOF_DOUBLE); #if H5_SIZEOF_LONG_DOUBLE !=0 SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE); #endif #endif } /*------------------------------------------------------------------------- * Function: except_func * * Purpose: Gets called for all data type conversion exceptions. * * Return: H5T_CONV_ABORT: -1 * * H5T_CONV_UNHANDLED 0 * * H5T_CONV_HANDLED 1 * * Programmer: Raymond Lu * April 19, 2004 * * Modifications: * *------------------------------------------------------------------------- */ static H5T_conv_ret_t except_func(H5T_conv_except_t except_type, hid_t UNUSED src_id, hid_t UNUSED dst_id, void UNUSED *src_buf, void *dst_buf, void *user_data) { H5T_conv_ret_t ret = H5T_CONV_HANDLED; if(except_type == H5T_CONV_EXCEPT_RANGE_HI) /*only test integer case*/ *(int*)dst_buf = *(int*)user_data; else if(except_type == H5T_CONV_EXCEPT_RANGE_LOW) /*only test integer case*/ *(int*)dst_buf = *(int*)user_data; else if(except_type == H5T_CONV_EXCEPT_TRUNCATE) ret = H5T_CONV_UNHANDLED; else if(except_type == H5T_CONV_EXCEPT_PRECISION) ret = H5T_CONV_UNHANDLED; else if(except_type == H5T_CONV_EXCEPT_PINF) /*only test integer case*/ *(int*)dst_buf = *(int*)user_data; else if(except_type == H5T_CONV_EXCEPT_NINF) /*only test integer case*/ *(int*)dst_buf = *(int*)user_data; else if(except_type == H5T_CONV_EXCEPT_NAN) /*only test integer case*/ *(int*)dst_buf = *(int*)user_data; return ret; } /*------------------------------------------------------------------------- * Function: some_dummy_func * * Purpose: A dummy function to help check for overflow. * * Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT * PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW * CHECKING. * * Return: void * * Programmer: Robb Matzke * Tuesday, July 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ void some_dummy_func(float x) { char s[128]; sprintf(s, "%g", x); } /*------------------------------------------------------------------------- * Function: generates_sigfpe * * Purpose: Determines if SIGFPE is generated from overflows. We must be * able to fork() and waitpid() in order for this test to work * properly. Sets skip_overflow_tests_g to non-zero if they * would generate SIGBUS, zero otherwise. * * Programmer: Robb Matzke * Tuesday, July 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void generates_sigfpe(void) { #if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID) pid_t pid; int status; size_t i, j; double d; unsigned char *dp = (unsigned char*)&d; float f; HDfflush(stdout); HDfflush(stderr); if ((pid=fork())<0) { HDperror("fork"); HDexit(1); } else if (0==pid) { for (i=0; i<2000; i++) { for (j=0; j<sizeof(double); j++) dp[j] = HDrand(); f = (float)d; some_dummy_func((float)f); } HDexit(0); } while (pid!=waitpid(pid, &status, 0)) /*void*/; if (WIFEXITED(status) && 0==WEXITSTATUS(status)) { HDputs("Floating-point overflow cases will be tested."); skip_overflow_tests_g = FALSE; } else if (WIFSIGNALED(status) && SIGFPE==WTERMSIG(status)) { HDputs("Floating-point overflow cases cannot be safely tested."); skip_overflow_tests_g = TRUE; /* delete the core dump file that SIGFPE may have created */ HDunlink("core"); } #else HDputs("Cannot determine if floating-point overflows generate a SIGFPE;"); HDputs("assuming yes."); HDputs("Overflow cases will not be tested."); skip_overflow_tests_g = TRUE; #endif } /*------------------------------------------------------------------------- * Function: test_hard_query * * Purpose: Tests H5Tcompiler_conv() for querying whether a conversion is * a hard one. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Friday, Sept 2, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_hard_query(void) { htri_t ret; TESTING("query functions of compiler conversion"); /* Verify the conversion from int to float is a hard conversion. */ if((ret = H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT))!=TRUE) { H5_FAILED(); printf("Can't query conversion function\n"); goto error; } /* Unregister the hard conversion from int to float. Verify the conversion * is a soft conversion. */ H5Tunregister(H5T_PERS_HARD, NULL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT, H5T_conv_int_float); if((ret = H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT))!=FALSE) { H5_FAILED(); printf("Can't query conversion function\n"); goto error; } /* Register the hard conversion from int to float. Verify the conversion * is a hard conversion. */ H5Tregister(H5T_PERS_HARD, "int_flt", H5T_NATIVE_INT, H5T_NATIVE_FLOAT, H5T_conv_int_float); if((ret = H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT))!=TRUE) { H5_FAILED(); printf("Can't query conversion function\n"); goto error; } PASSED(); reset_hdf5(); return 0; error: reset_hdf5(); return 1; } /*------------------------------------------------------------------------- * Function: expt_handle * * Purpose: Gets called from test_particular_fp_integer() for data type * conversion exceptions. * * Return: H5T_CONV_HANDLED 1 * * Programmer: Raymond Lu * Sept 7, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static H5T_conv_ret_t expt_handle(H5T_conv_except_t except_type, hid_t UNUSED src_id, hid_t UNUSED dst_id, void UNUSED *src_buf, void *dst_buf, void *user_data) { H5T_conv_ret_t ret = H5T_CONV_HANDLED; signed char fill_value1 = 7; int fill_value2 = 13; if(except_type == H5T_CONV_EXCEPT_RANGE_HI || except_type == H5T_CONV_EXCEPT_RANGE_LOW || except_type == H5T_CONV_EXCEPT_TRUNCATE) { if(*(hbool_t*)user_data) *(signed char*)dst_buf = fill_value1; else *(int*)dst_buf = fill_value2; } return ret; } /*------------------------------------------------------------------------- * Function: test_particular_fp_integer * * Purpose: Tests hard conversions from floating numbers to integers in * a special situation when the source is "float" and assigned * the value of "INT_MAX". A compiler may do roundup making * this value "INT_MAX+1". When this float value is casted to * int, overflow happens. This test makes sure the library * returns exception in this situation. * * Also verifies the library handles conversion from double to * signed char correctly when the value of double is SCHAR_MAX. * The test makes sure the signed char doesn't overflow. * * This test is mainly for netCDF's request. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Sept 7, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_particular_fp_integer(void) { hid_t dxpl_id; hbool_t flag; double src_d = (double)SCHAR_MAX; signed char dst_c; unsigned char *buf1, *buf2; unsigned char *saved_buf1, *saved_buf2; size_t src_size1, src_size2; size_t dst_size1, dst_size2; float src_f = (float)INT_MAX; int dst_i; int fill_value = 13; int endian; /*endianess */ unsigned int fails_this_test = 0; size_t j; TESTING("hard particular floating number -> integer conversions"); if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) { H5_FAILED(); printf("Can't create data transfer property list\n"); goto error; } /* Test conversion from double (the value is SCHAR_MAX) to signed char. */ endian = H5Tget_order(H5T_NATIVE_DOUBLE); src_size1 = H5Tget_size(H5T_NATIVE_DOUBLE); dst_size1 = H5Tget_size(H5T_NATIVE_SCHAR); buf1 = (unsigned char*)calloc(1, MAX(src_size1, dst_size1)); saved_buf1 = (unsigned char*)calloc(1, MAX(src_size1, dst_size1)); memcpy(buf1, &src_d, src_size1); memcpy(saved_buf1, &src_d, src_size1); /* Register exception handling function and signal the destination is "signed char". */ flag = 1; if(H5Pset_type_conv_cb(dxpl_id, expt_handle, &flag)<0) { H5_FAILED(); printf("Can't register conversion callback\n"); goto error; } /* Do conversion */ if(H5Tconvert(H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR, 1, buf1, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } memcpy(&dst_c, buf1, dst_size1); /* Print errors */ if(dst_c != SCHAR_MAX) { double x; signed char y; if(0 == fails_this_test++) H5_FAILED(); printf(" test double to signed char:\n"); printf(" src = "); for (j=0; j<src_size1; j++) printf(" %02x", saved_buf1[ENDIAN(src_size1, j, endian)]); HDmemcpy(&x, saved_buf1, src_size1); printf(" %29.20e\n", x); printf(" dst = "); for (j=0; j<dst_size1; j++) printf(" %02x", buf1[ENDIAN(dst_size1, j, endian)]); HDmemcpy(&y, buf1, dst_size1); printf(" %29d\n", y); } /* Test conversion from float (the value is INT_MAX) to int. */ src_size2 = H5Tget_size(H5T_NATIVE_FLOAT); dst_size2 = H5Tget_size(H5T_NATIVE_INT); buf2 = (unsigned char*)calloc(1, MAX(src_size2, dst_size2)); saved_buf2 = (unsigned char*)calloc(1, MAX(src_size2, dst_size2)); memcpy(buf2, &src_f, src_size2); memcpy(saved_buf2, &src_f, src_size2); /* signal exception handling function that the destination is "int". */ flag = 0; /* Do conversion */ if(H5Tconvert(H5T_NATIVE_FLOAT, H5T_NATIVE_INT, 1, buf2, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } memcpy(&dst_i, buf2, dst_size2); /* Print errors */ if(dst_i != fill_value) { float x; int y; if(0 == fails_this_test++) H5_FAILED(); printf(" test float to int:\n"); printf(" src = "); for (j=0; j<src_size2; j++) printf(" %02x", saved_buf2[ENDIAN(src_size2, j, endian)]); HDmemcpy(&x, saved_buf2, src_size2); printf(" %29.20e\n", x); printf(" dst = "); for (j=0; j<dst_size2; j++) printf(" %02x", buf2[ENDIAN(dst_size2, j, endian)]); HDmemcpy(&y, buf2, dst_size2); printf(" %29d\n", y); } if(fails_this_test) goto error; if(H5Pclose(dxpl_id)<0) { H5_FAILED(); printf("Can't close property list\n"); goto error; } if(buf1) free(buf1); if(buf2) free(buf2); if(saved_buf1) free(saved_buf1); if(saved_buf2) free(saved_buf2); PASSED(); return 0; error: HDfflush(stdout); H5E_BEGIN_TRY { H5Pclose(dxpl_id); } H5E_END_TRY; if(buf1) free(buf1); if(buf2) free(buf2); if(saved_buf1) free(saved_buf1); if(saved_buf2) free(saved_buf2); reset_hdf5(); /*print statistics*/ return MAX((int)fails_this_test, 1); } /*------------------------------------------------------------------------- * Function: test_derived_flt * * Purpose: Tests user-define and query functions of floating-point types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Thursday, Jan 6, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_derived_flt(void) { hid_t file=-1, tid1=-1, tid2=-1; hid_t dxpl_id=-1; char filename[1024]; size_t spos, epos, esize, mpos, msize, size; size_t src_size, dst_size; unsigned char *buf=NULL, *saved_buf=NULL; int *aligned=NULL; int endian; /*endianess */ size_t nelmts = NTESTELEM; unsigned int fails_this_test = 0; const size_t max_fails=40; /*max number of failures*/ char str[256]; /*message string */ unsigned int i, j; TESTING("user-define and query functions of floating-point types"); /* Create File */ h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof filename); if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) { H5_FAILED(); printf("Can't create file\n"); goto error; } if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) { H5_FAILED(); printf("Can't create data transfer property list\n"); goto error; } if((tid1 = H5Tcopy(H5T_IEEE_F64LE))<0) { H5_FAILED(); printf("Can't copy data type\n"); goto error; } if((tid2 = H5Tcopy(H5T_IEEE_F32LE))<0) { H5_FAILED(); printf("Can't copy data type\n"); goto error; } /*------------------------------------------------------------------------ * 1st floating-point type * size=7 byte, precision=42 bits, offset=3 bits, mantissa size=31 bits, * mantissa position=3, exponent size=10 bits, exponent position=34, * exponent bias=511. It can be illustrated in little-endian order as * * 6 5 4 3 2 1 0 * ???????? ???SEEEE EEEEEEMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMM??? * * To create a new floating-point type, the following properties must be * set in the order of * set fields -> set offset -> set precision -> set size. * All these properties must be set before the type can function. Other * properties can be set anytime. Derived type size cannot be expanded * bigger than original size but can be decreased. There should be no * holes among the significant bits. Exponent bias usually is set * 2^(n-1)-1, where n is the exponent size. *-----------------------------------------------------------------------*/ if(H5Tset_fields(tid1, 44, 34, 10, 3, 31)<0) { H5_FAILED(); printf("Can't set fields\n"); goto error; } if(H5Tset_offset(tid1, 3)<0) { H5_FAILED(); printf("Can't set offset\n"); goto error; } if(H5Tset_precision(tid1, 42)<0) { H5_FAILED(); printf("Can't set precision 1\n"); goto error; } if(H5Tset_size(tid1, 7)<0) { H5_FAILED(); printf("Can't set size\n"); goto error; } if(H5Tset_ebias(tid1, 511)<0) { H5_FAILED(); printf("Can't set exponent bias\n"); goto error; } if(H5Tset_pad(tid1, H5T_PAD_ZERO, H5T_PAD_ZERO)<0) { H5_FAILED(); printf("Can't set padding\n"); goto error; } if(H5Tcommit(file, "new float type 1", tid1)<0) { H5_FAILED(); printf("Can't set inpad\n"); goto error; } if(H5Tclose(tid1)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if((tid1 = H5Topen(file, "new float type 1"))<0) { H5_FAILED(); printf("Can't open datatype\n"); goto error; } if(H5Tget_fields(tid1, &spos, &epos, &esize, &mpos, &msize)<0) { H5_FAILED(); printf("Can't get fields\n"); goto error; } if(spos!=44 || epos!=34 || esize!=10 || mpos!=3 || msize!=31) { H5_FAILED(); printf("Wrong field values\n"); goto error; } if(H5Tget_precision(tid1)!=42) { H5_FAILED(); printf("Can't get precision or wrong precision\n"); goto error; } if(H5Tget_offset(tid1)!=3) { H5_FAILED(); printf("Can't get offset or wrong offset\n"); goto error; } if((size = H5Tget_size(tid1))!=7) { H5_FAILED(); printf("Can't get size or wrong size\n"); goto error; } if(H5Tget_ebias(tid1)!=511) { H5_FAILED(); printf("Can't get exponent bias or wrong bias\n"); goto error; } /* Convert data from native integer to the 1st derived floating-point type. * Then convert data from the floating-point type back to native integer. * Compare the final data with the original data. */ src_size = H5Tget_size(H5T_NATIVE_INT); endian = H5Tget_order(H5T_NATIVE_INT); buf = (unsigned char*)malloc(nelmts*(MAX(src_size, size))); saved_buf = (unsigned char*)malloc(nelmts*src_size); HDmemset(buf, 0, nelmts*MAX(src_size, size)); HDmemset(saved_buf, 0, nelmts*src_size); aligned = (int*)calloc(1, src_size); for(i=0; i<nelmts*src_size; i++) buf[i] = saved_buf[i] = HDrand(); /* Convert data from native integer to derived floating-point type. * The mantissa is big enough to retain the integer's precision. */ if(H5Tconvert(H5T_NATIVE_INT, tid1, nelmts, buf, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } /* Convert data from the derived floating-point type back to native integer. */ if(H5Tconvert(tid1, H5T_NATIVE_INT, nelmts, buf, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } /* Are the values still the same?*/ for(i=0; i<nelmts; i++) { for(j=0; j<src_size; j++) if(buf[i*src_size+j]!=saved_buf[i*src_size+j]) break; if(j==src_size) continue; /*no error*/ /* Print errors */ if (0==fails_this_test++) { sprintf(str, "\nTesting random sw derived floating-point -> derived floating-point conversions"); printf("%-70s", str); HDfflush(stdout); H5_FAILED(); } printf(" test %u elmt %u: \n", 1, (unsigned)i); printf(" src = "); for (j=0; j<src_size; j++) printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j, endian)]); HDmemcpy(aligned, saved_buf+i*sizeof(int), sizeof(int)); printf(" %29d\n", *aligned); printf(" dst = "); for (j=0; j<src_size; j++) printf(" %02x", buf[i*src_size+ENDIAN(src_size, j, endian)]); HDmemcpy(aligned, buf+i*sizeof(int), sizeof(int)); printf(" %29d\n", *aligned); if (fails_this_test>=max_fails) { HDputs(" maximum failures reached, aborting test..."); goto error; } } fails_this_test = 0; if(buf) free(buf); if(saved_buf) free(saved_buf); if(aligned) free(aligned); buf = NULL; saved_buf = NULL; aligned = NULL; /*-------------------------------------------------------------------------- * 2nd floating-point type * size=3 byte, precision=24 bits, offset=0 bits, mantissa size=16 bits, * mantissa position=0, exponent size=7 bits, exponent position=16, exponent * bias=63. It can be illustrated in little-endian order as * * 2 1 0 * SEEEEEEE MMMMMMMM MMMMMMMM *--------------------------------------------------------------------------*/ if(H5Tset_fields(tid2, 23, 16, 7, 0, 16)<0) { H5_FAILED(); printf("Can't set fields\n"); goto error; } if(H5Tset_offset(tid2, 0)<0) { H5_FAILED(); printf("Can't set offset\n"); goto error; } if(H5Tset_precision(tid2, 24)<0) { H5_FAILED(); printf("Can't set precision 2\n"); goto error; } if(H5Tset_size(tid2, 3)<0) { H5_FAILED(); printf("Can't set size\n"); goto error; } if(H5Tset_ebias(tid2, 63)<0) { H5_FAILED(); printf("Can't set size\n"); goto error; } if(H5Tset_pad(tid2, H5T_PAD_ZERO, H5T_PAD_ZERO)<0) { H5_FAILED(); printf("Can't set padding\n"); goto error; } if(H5Tcommit(file, "new float type 2", tid2)<0) { H5_FAILED(); printf("Can't set inpad\n"); goto error; } if(H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if((tid2 = H5Topen(file, "new float type 2"))<0) { H5_FAILED(); printf("Can't open datatype\n"); goto error; } if(H5Tget_fields(tid2, &spos, &epos, &esize, &mpos, &msize)<0) { H5_FAILED(); printf("Can't get fields\n"); goto error; } if(spos!=23 || epos!=16 || esize!=7 || mpos!=0 || msize!=16) { H5_FAILED(); printf("Wrong field values\n"); goto error; } if(H5Tget_precision(tid2)!=24) { H5_FAILED(); printf("Can't get precision or wrong precision\n"); goto error; } if(H5Tget_offset(tid2)!=0) { H5_FAILED(); printf("Can't get offset or wrong offset\n"); goto error; } if((size = H5Tget_size(tid2))!=3) { H5_FAILED(); printf("Can't get size or wrong size\n"); goto error; } if(H5Tget_ebias(tid2)!=63) { H5_FAILED(); printf("Can't get exponent bias or wrong bias\n"); goto error; } /* Convert data from the 2nd to the 1st derived floating-point type. * Then convert data from the 1st type back to the 2nd type. * Compare the final data with the original data. */ src_size = H5Tget_size(tid2); dst_size = H5Tget_size(tid1); endian = H5Tget_order(tid2); buf = (unsigned char*)malloc(nelmts*(MAX(src_size, dst_size))); saved_buf = (unsigned char*)malloc(nelmts*src_size); HDmemset(buf, 0, nelmts*MAX(src_size, dst_size)); HDmemset(saved_buf, 0, nelmts*src_size); for(i=0; i<nelmts*src_size; i++) buf[i] = saved_buf[i] = HDrand(); /* Convert data from the 2nd to the 1st derived floating-point type. * The mantissa and exponent of the 2nd type are big enough to retain * the precision and exponent power. */ if(H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } /* Convert data from the 1st back to the 2nd derived floating-point type. */ if(H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } /* Are the values still the same?*/ for(i=0; i<nelmts; i++) { for(j=0; j<src_size; j++) if(buf[i*src_size+j]!=saved_buf[i*src_size+j]) break; if(j==src_size) continue; /*no error*/ /* If original value is NaN(exponent bits are all ones, 11..11), * the library simply sets all mantissa bits to ones. So don't * compare values in this case. */ if((buf[i*src_size+2]==0x7f && saved_buf[i*src_size+2]==0x7f) || (buf[i*src_size+2]==0xff && saved_buf[i*src_size+2]==0xff)) continue; /* Print errors */ if (0==fails_this_test++) { sprintf(str, "\nTesting random sw derived floating-point -> derived floating-point conversions"); printf("%-70s", str); HDfflush(stdout); H5_FAILED(); } printf(" test %u elmt %u: \n", 1, (unsigned)i); printf(" src = "); for (j=0; j<src_size; j++) printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j, endian)]); printf("\n"); printf(" dst = "); for (j=0; j<src_size; j++) printf(" %02x", buf[i*src_size+ENDIAN(src_size, j, endian)]); printf("\n"); if (fails_this_test>=max_fails) { HDputs(" maximum failures reached, aborting test..."); goto error; } } if (buf) free(buf); if (saved_buf) free(saved_buf); if(H5Tclose(tid1)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if(H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if(H5Pclose(dxpl_id)<0) { H5_FAILED(); printf("Can't close property list\n"); goto error; } if(H5Fclose(file)<0) { H5_FAILED(); printf("Can't close file\n"); goto error; } /* end if */ PASSED(); reset_hdf5(); /*print statistics*/ return 0; error: if (buf) free(buf); if (saved_buf) free(saved_buf); if (aligned) free(aligned); HDfflush(stdout); H5E_BEGIN_TRY { H5Tclose (tid1); H5Tclose (tid2); H5Pclose (dxpl_id); H5Fclose (file); } H5E_END_TRY; reset_hdf5(); /*print statistics*/ return MAX((int)fails_this_test, 1); } /*------------------------------------------------------------------------- * Function: test_derived_integer * * Purpose: Tests user-define and query functions of integer types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Saturday, Jan 29, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_derived_integer(void) { hid_t file=-1, tid1=-1, tid2=-1; hid_t dxpl_id=-1; char filename[1024]; size_t src_size, dst_size; unsigned char *buf=NULL, *saved_buf=NULL; int *aligned=NULL; int endian; /*endianess */ size_t nelmts = NTESTELEM; unsigned int fails_this_test = 0; const size_t max_fails=40; /*max number of failures*/ char str[256]; /*message string */ unsigned int i, j; TESTING("user-define and query functions of integer types"); /* Create File */ h5_fixname(FILENAME[1], H5P_DEFAULT, filename, sizeof filename); if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) { H5_FAILED(); printf("Can't create file\n"); goto error; } if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) { H5_FAILED(); printf("Can't create data transfer property list\n"); goto error; } if((tid1 = H5Tcopy(H5T_STD_I32LE))<0) { H5_FAILED(); printf("Can't copy data type\n"); goto error; } if((tid2 = H5Tcopy(H5T_STD_U64LE))<0) { H5_FAILED(); printf("Can't copy data type\n"); goto error; } /*-------------------------------------------------------------------------- * 1st integer type * size=3 byte, precision=24 bits, offset=0 bits, order=big endian. * It can be illustrated in big-endian order as * * 0 1 2 * SIIIIIII IIIIIIII IIIIIIII * * There's no specific order for these functions to define the attributes * of a new integer type, H5Tset_precision, H5Tset_offset, H5Tset_size, * H5Tset_order, H5Tset_pad, H5Tset_sign. *--------------------------------------------------------------------------*/ if(H5Tset_offset(tid1,0)<0) { H5_FAILED(); printf("Can't set offset\n"); goto error; } if(H5Tset_size(tid1, 3)<0) { H5_FAILED(); printf("Can't set size\n"); goto error; } if(H5Tset_precision(tid1,24)<0) { H5_FAILED(); printf("Can't set precision\n"); goto error; } if(H5Tset_order(tid1, H5T_ORDER_BE)<0) { H5_FAILED(); printf("Can't set order\n"); goto error; } if(H5Tcommit(file, "new integer type 1", tid1)<0) { H5_FAILED(); printf("Can't commit data type\n"); goto error; } if(H5Tclose(tid1)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if((tid1 = H5Topen(file, "new integer type 1"))<0) { H5_FAILED(); printf("Can't open datatype\n"); goto error; } if(H5Tget_precision(tid1)!=24) { H5_FAILED(); printf("Can't get precision or wrong precision\n"); goto error; } if(H5Tget_offset(tid1)!=0) { H5_FAILED(); printf("Can't get offset or wrong offset\n"); goto error; } if(H5Tget_size(tid1)!=3) { H5_FAILED(); printf("Can't get size or wrong size\n"); goto error; } if(H5Tget_order(tid1)!=H5T_ORDER_BE) { H5_FAILED(); printf("Can't get order or wrong order\n"); goto error; } /*-------------------------------------------------------------------------- * 2nd integer type * size=8 byte, precision=48 bits, offset=10 bits, order=little endian. * It can be illustrated in little-endian order as * * 7 6 5 4 3 2 1 0 * ??????SI IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIII?? ???????? *--------------------------------------------------------------------------*/ if(H5Tset_precision(tid2,48)<0) { H5_FAILED(); printf("Can't set precision\n"); goto error; } if(H5Tset_offset(tid2,10)<0) { H5_FAILED(); printf("Can't set offset\n"); goto error; } if(H5Tset_sign(tid2,H5T_SGN_2)<0) { H5_FAILED(); printf("Can't set offset\n"); goto error; } if(H5Tcommit(file, "new integer type 2", tid2)<0) { H5_FAILED(); printf("Can't commit data type\n"); goto error; } if(H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if((tid2 = H5Topen(file, "new integer type 2"))<0) { H5_FAILED(); printf("Can't open datatype\n"); goto error; } if(H5Tget_precision(tid2)!=48) { H5_FAILED(); printf("Can't get precision or wrong precision\n"); goto error; } if(H5Tget_offset(tid2)!=10) { H5_FAILED(); printf("Can't get offset or wrong offset\n"); goto error; } if(H5Tget_size(tid2)!=8) { H5_FAILED(); printf("Can't get size or wrong size\n"); goto error; } if(H5Tget_sign(tid2)!=H5T_SGN_2) { H5_FAILED(); printf("Can't get sign or wrong sign\n"); goto error; } /* Convert data from the 1st to the 2nd derived integer type. * Then convert data from the 2nd type back to the 1st type. * Compare the final data with the original data. */ src_size = H5Tget_size(tid1); dst_size = H5Tget_size(tid2); endian = H5Tget_order(tid1); buf = (unsigned char*)HDmalloc(nelmts*(MAX(src_size, dst_size))); saved_buf = (unsigned char*)HDmalloc(nelmts*src_size); HDmemset(buf, 0, nelmts*MAX(src_size, dst_size)); HDmemset(saved_buf, 0, nelmts*src_size); for(i=0; i<nelmts*src_size; i++) buf[i] = saved_buf[i] = HDrand(); /* Convert data from the 1st to the 2nd derived integer type. * The precision of the 2nd type are big enough to retain * the 1st type's precision. */ if(H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } /* Convert data from the 2nd back to the 1st derived integer type. */ if(H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id)<0) { H5_FAILED(); printf("Can't convert data\n"); goto error; } /* Are the values still the same?*/ for(i=0; i<nelmts; i++) { for(j=0; j<src_size; j++) if(buf[i*src_size+j]!=saved_buf[i*src_size+j]) break; if(j==src_size) continue; /*no error*/ /* Print errors */ if (0==fails_this_test++) { sprintf(str, "\nTesting random sw derived integer -> derived integer conversions"); printf("%-70s", str); HDfflush(stdout); H5_FAILED(); } printf(" test %u elmt %u: \n", 1, (unsigned)i); printf(" src = "); for (j=0; j<src_size; j++) printf(" %02x", saved_buf[i*src_size+ENDIAN(src_size, j, endian)]); printf("\n"); printf(" dst = "); for (j=0; j<src_size; j++) printf(" %02x", buf[i*src_size+ENDIAN(src_size, j, endian)]); printf("\n"); if (fails_this_test>=max_fails) { HDputs(" maximum failures reached, aborting test..."); goto error; } } if(H5Tclose(tid1)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if(H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } if(H5Pclose(dxpl_id)<0) { H5_FAILED(); printf("Can't close property list\n"); goto error; } if(H5Fclose(file)<0) { H5_FAILED(); printf("Can't close file\n"); goto error; } /* end if */ PASSED(); reset_hdf5(); /*print statistics*/ return 0; error: if (buf) free(buf); if (saved_buf) free(saved_buf); if (aligned) free(aligned); HDfflush(stdout); H5E_BEGIN_TRY { H5Tclose (tid1); H5Tclose (tid2); H5Pclose (dxpl_id); H5Fclose (file); } H5E_END_TRY; reset_hdf5(); /*print statistics*/ return MAX((int)fails_this_test, 1); } /*------------------------------------------------------------------------- * Function: test_conv_int_1 * * Purpose: Test conversion of integer values from SRC to DST. * These types should be any combination of: * * H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR * H5T_NATIVE_SHORT H5T_NATIVE_USHORT * H5T_NATIVE_INT H5T_NATIVE_UINT * H5T_NATIVE_LONG H5T_NATIVE_ULONG * H5T_NATIVE_LLONG H5T_NATIVE_ULLONG * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Monday, November 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_1(const char *name, hid_t src, hid_t dst) { size_t nelmts=0; /*num values per test */ const size_t max_fails=8; /*max number of failures*/ size_t fails_all_tests=0; /*number of failures */ size_t fails_this_test; /*fails for this test */ char str[256]; /*hello string */ dtype_t src_type, dst_type; /*data types */ const char *src_type_name=NULL; /*source type name */ const char *dst_type_name=NULL; /*destination type name */ int endian; /*machine endianess */ size_t src_size, dst_size; /*type sizes */ unsigned char *buf=NULL; /*buffer for conversion */ unsigned char *saved=NULL; /*original values */ size_t j, k; /*counters */ unsigned char *hw=NULL; /*hardware conv result */ unsigned char src_bits[32]; /*src value in LE order */ unsigned char dst_bits[32]; /*dest value in LE order*/ size_t src_nbits; /*source length in bits */ size_t dst_nbits; /*dst length in bits */ H5T_sign_t src_sign; /*source sign type */ H5T_sign_t dst_sign; /*dst sign type */ void *aligned=NULL; /*aligned temp buffer */ signed char hw_char; unsigned char hw_uchar; short hw_short; unsigned short hw_ushort; int hw_int; unsigned hw_uint; long hw_long; unsigned long hw_ulong; long_long hw_llong; unsigned long_long hw_ullong; /* What are the names of the source and destination types */ if (H5Tequal(src, H5T_NATIVE_SCHAR)) { src_type_name = "signed char"; src_type = INT_SCHAR; } else if (H5Tequal(src, H5T_NATIVE_UCHAR)) { src_type_name = "unsigned char"; src_type = INT_UCHAR; } else if (H5Tequal(src, H5T_NATIVE_SHORT)) { src_type_name = "short"; src_type = INT_SHORT; } else if (H5Tequal(src, H5T_NATIVE_USHORT)) { src_type_name = "unsigned short"; src_type = INT_USHORT; } else if (H5Tequal(src, H5T_NATIVE_INT)) { src_type_name = "int"; src_type = INT_INT; } else if (H5Tequal(src, H5T_NATIVE_UINT)) { src_type_name = "unsigned int"; src_type = INT_UINT; } else if (H5Tequal(src, H5T_NATIVE_LONG)) { src_type_name = "long"; src_type = INT_LONG; } else if (H5Tequal(src, H5T_NATIVE_ULONG)) { src_type_name = "unsigned long"; src_type = INT_ULONG; } else if (H5Tequal(src, H5T_NATIVE_LLONG)) { src_type_name = "long long"; src_type = INT_LLONG; } else if (H5Tequal(src, H5T_NATIVE_ULLONG)) { src_type_name = "unsigned long long"; src_type = INT_ULLONG; } else { src_type_name = "UNKNOWN"; src_type = OTHER; } if (H5Tequal(dst, H5T_NATIVE_SCHAR)) { dst_type_name = "signed char"; dst_type = INT_SCHAR; } else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) { dst_type_name = "unsigned char"; dst_type = INT_UCHAR; } else if (H5Tequal(dst, H5T_NATIVE_SHORT)) { dst_type_name = "short"; dst_type = INT_SHORT; } else if (H5Tequal(dst, H5T_NATIVE_USHORT)) { dst_type_name = "unsigned short"; dst_type = INT_USHORT; } else if (H5Tequal(dst, H5T_NATIVE_INT)) { dst_type_name = "int"; dst_type = INT_INT; } else if (H5Tequal(dst, H5T_NATIVE_UINT)) { dst_type_name = "unsigned int"; dst_type = INT_UINT; } else if (H5Tequal(dst, H5T_NATIVE_LONG)) { dst_type_name = "long"; dst_type = INT_LONG; } else if (H5Tequal(dst, H5T_NATIVE_ULONG)) { dst_type_name = "unsigned long"; dst_type = INT_ULONG; } else if (H5Tequal(dst, H5T_NATIVE_LLONG)) { dst_type_name = "long long"; dst_type = INT_LLONG; } else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) { dst_type_name = "unsigned long long"; dst_type = INT_ULLONG; } else { dst_type_name = "UNKNOWN"; dst_type = OTHER; } /* Sanity checks */ if (OTHER==src_type || OTHER==dst_type) { sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); HDputs(" Unknown data type."); goto error; } else { sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); HDfflush(stdout); fails_this_test=0; } /* Some information about datatypes */ endian = H5Tget_order(H5T_NATIVE_INT); src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ src_sign = H5Tget_sign(src); dst_sign = H5Tget_sign(dst); aligned = HDcalloc(1, sizeof(long_long)); /* Allocate and initialize the source buffer through macro INIT_INTEGER. The BUF * will be used for the conversion while the SAVED buffer will be * used for the comparison later. */ if(src_type == INT_SCHAR) { INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_UCHAR) { INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_SHORT) { INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_USHORT) { INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_INT) { INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_UINT) { INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_LONG) { INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_ULONG) { INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_LLONG) { INIT_INTEGER(long_long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_ULLONG) { INIT_INTEGER(unsigned long_long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else goto error; /* Perform the conversion */ if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT)<0) goto error; /* Check the results from the library against hardware */ for (j=0; j<nelmts; j++) { if (INT_SCHAR==dst_type) { hw = (unsigned char*)&hw_char; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_char = (signed char)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_char = (signed char)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_char = (signed char)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_char = (signed char)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_char = (signed char)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_char = (signed char)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_char = (signed char)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_char = (signed char)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_char = (signed char)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_char = (signed char)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_UCHAR==dst_type) { hw = (unsigned char*)&hw_uchar; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_uchar = (unsigned char)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_uchar = (unsigned char)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_uchar = (unsigned char)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_uchar = (unsigned char)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_uchar = (unsigned char)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_uchar = (unsigned char)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_uchar = (unsigned char)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_uchar = (unsigned char)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_uchar = (unsigned char)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_uchar = (unsigned char)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_SHORT==dst_type) { hw = (unsigned char*)&hw_short; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char)); hw_short = (short)(*((char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_short = (short)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_short = (short)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_short = (short)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_short = (short)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_short = (short)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_short = (short)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_short = (short)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_short = (short)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_short = (short)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_USHORT==dst_type) { hw = (unsigned char*)&hw_ushort; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_ushort = (unsigned short)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_ushort = (unsigned short)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_ushort = (unsigned short)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_ushort = (unsigned short)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_ushort = (unsigned short)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_ushort = (unsigned short)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_ushort = (unsigned short)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_ushort = (unsigned short)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_ushort = (unsigned short)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_ushort = (unsigned short)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_INT==dst_type) { hw = (unsigned char*)&hw_int; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_int = (int)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_int = (int)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_int = (int)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_int = (int)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_int = (int)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_int = (int)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_int = (int)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_int = (int)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_int = (int)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_int = (int)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_UINT==dst_type) { hw = (unsigned char*)&hw_uint; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_uint = (unsigned int)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_uint = (unsigned int)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_uint = (unsigned int)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_uint = (unsigned int)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_uint = (unsigned int)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_uint = (unsigned int)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_uint = (unsigned int)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_uint = (unsigned int)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_uint = (unsigned int)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_uint = (unsigned int)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_LONG==dst_type) { hw = (unsigned char*)&hw_long; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_long = (long int)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_long = (long int)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_long = (long int)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_long = (long int)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_long = (long int)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_long = (long int)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_long = (long int)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_long = (long int)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_long = (long int)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_long = (long int)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_ULONG==dst_type) { hw = (unsigned char*)&hw_ulong; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_ulong = (unsigned long)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_ulong = (unsigned long)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_ulong = (unsigned long)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_ulong = (unsigned long)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_ulong = (unsigned long)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_ulong = (unsigned long)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_ulong = (unsigned long)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_ulong = (unsigned long)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_ulong = (unsigned long)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_ulong = (unsigned long)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_LLONG==dst_type) { hw = (unsigned char*)&hw_llong; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(char), sizeof(char)); hw_llong = (long_long)(*((char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_llong = (long_long)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_llong = (long_long)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_llong = (long_long)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_llong = (long_long)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_llong = (long_long)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_llong = (long_long)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_llong = (long_long)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_llong = (long_long)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_llong = (long_long)(*((unsigned long_long*)aligned)); break; default: break; } } else if (INT_ULLONG==dst_type) { hw = (unsigned char*)&hw_ullong; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_ullong = (unsigned long_long)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_ullong = (unsigned long_long)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_ullong = (unsigned long_long)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_ullong = (unsigned long_long)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_ullong = (unsigned long_long)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_ullong = (unsigned long_long)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_ullong = (unsigned long_long)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_ullong = (unsigned long_long)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_ullong = (unsigned long_long)(*((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_ullong = (unsigned long_long)(*((unsigned long_long*)aligned)); break; default: break; } } /* Make certain that there isn't some weird number of destination bits */ assert(dst_nbits%8==0); /* Are the two results the same? */ for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++) if (buf[j*dst_size+k]!=hw[k]) break; if (k==dst_size) continue; /*no error*/ /* * Convert the source and destination values to little endian * order so we can use the HDF5 bit vector operations to test * certain things. These routines have already been tested by * the `bittests' program. */ for (k=0; k<src_size; k++) src_bits[src_size-(k+1)] = saved[j*src_size+ENDIAN(src_size, k, endian)]; for (k=0; k<dst_size; k++) dst_bits[dst_size-(k+1)] = buf[j*dst_size+ENDIAN(dst_size, k, endian)]; /* * Hardware usually doesn't handle overflows too gracefully. The * hardware conversion result during overflows is usually garbage * so we must handle those cases differetly when checking results. */ if (H5T_SGN_2==src_sign && H5T_SGN_2==dst_sign) { if (src_nbits>dst_nbits) { if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) && H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits), H5T_BIT_MSB, 1)>=0) { /* * Source is positive and the magnitude is too large for * the destination. The destination should be set to the * maximum possible value: 0x7f...f */ if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) && H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB, 0)+1>=(ssize_t)dst_nbits) { /* * Source is negative but the magnitude is too large for * the destination. The destination should be set to the * smallest possible value: 0x80...0 */ if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0) continue; /*no error*/ } } else if(src_nbits<dst_nbits) { /* Source is smaller than the destination */ if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1)) { /* * Source is positive, so the excess bits in the * destination should be set to 0's. */ if (0==H5T_bit_get_d(dst_bits, src_nbits-1, 1) && H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits, H5T_BIT_LSB, 1)<0) continue; /*no error*/ } else { /* * Source is negative, so the excess bits in the * destination should be set to 1's. */ if (1==H5T_bit_get_d(dst_bits, src_nbits-1, 1) && H5T_bit_find(dst_bits, src_nbits, dst_nbits-src_nbits, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } } } else if (H5T_SGN_2==src_sign && H5T_SGN_NONE==dst_sign) { if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) { /* * The source is negative so the result should be zero. * The source is negative if the most significant bit is * set. The destination is zero if all bits are zero. */ if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0) continue; /*no error*/ } else if (src_nbits>dst_nbits && H5T_bit_find(src_bits, dst_nbits-1, src_nbits-dst_nbits, H5T_BIT_LSB, 1)>=0) { /* * The source is a value with a magnitude too large for * the destination. The destination should be the * largest possible value: 0xff...f */ if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } } else if (H5T_SGN_NONE==src_sign && H5T_SGN_2==dst_sign) { if (src_nbits>=dst_nbits && H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits)+1, H5T_BIT_LSB, 1)>=0) { /* * The source value has a magnitude that is larger than * the destination can handle. The destination should be * set to the largest possible positive value: 0x7f...f */ if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } } else { if (src_nbits>dst_nbits && H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits, H5T_BIT_LSB, 1)>=0) { /* * The unsigned source has a value which is too large for * the unsigned destination. The destination should be * set to the largest possible value: 0xff...f */ if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } } /* Print errors */ if (0==fails_this_test++) H5_FAILED(); printf(" elmt %u\n", (unsigned)j); printf(" src = "); for (k=0; k<src_size; k++) printf(" %02x", saved[j*src_size+ENDIAN(src_size, k, endian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), ""); switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); printf(" %29d\n", (int)*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); printf(" %29u\n", (unsigned)*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); printf(" %29hd\n", *((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); printf(" %29hu\n", *((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); printf(" %29d\n", *((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); printf(" %29u\n", *((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); printf(" %29ld\n", *((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); printf(" %29lu\n", *((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned)); break; default: break; } printf(" dst = "); for (k=0; k<dst_size; k++) printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k, endian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: HDmemcpy(aligned, buf+j*sizeof(signed char), sizeof(signed char)); printf(" %29d\n", (int)*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, buf+j*sizeof(unsigned char), sizeof(unsigned char)); printf(" %29u\n", (unsigned)*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short)); printf(" %29hd\n", *((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, buf+j*sizeof(unsigned short), sizeof(unsigned short)); printf(" %29hu\n", *((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int)); printf(" %29d\n", *((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned)); printf(" %29u\n", *((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long)); printf(" %29ld\n", *((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, buf+j*sizeof(unsigned long), sizeof(unsigned long)); printf(" %29lu\n", *((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(unsigned long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned)); break; default: break; } printf(" ans = "); for (k=0; k<dst_size; k++) printf(" %02x", hw[ENDIAN(dst_size, k, endian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: printf(" %29d\n", (int)*((signed char*)hw)); break; case INT_UCHAR: printf(" %29u\n", (unsigned)*((unsigned char*)hw)); break; case INT_SHORT: printf(" %29hd\n", *((short*)hw)); break; case INT_USHORT: printf(" %29hu\n", *((unsigned short*)hw)); break; case INT_INT: printf(" %29d\n", *((int*)hw)); break; case INT_UINT: printf(" %29u\n", *((unsigned*)hw)); break; case INT_LONG: printf(" %29ld\n", *((long*)hw)); break; case INT_ULONG: printf(" %29lu\n", *((unsigned long*)hw)); break; case INT_LLONG: HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw)); break; case INT_ULLONG: HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw)); break; default: break; } if (++fails_all_tests>=max_fails) { HDputs(" maximum failures reached, aborting test..."); goto done; } } PASSED(); done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); reset_hdf5(); /*print statistics*/ return (int)fails_all_tests; error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); reset_hdf5(); /*print statistics*/ return MAX((int)fails_all_tests, 1); } /*------------------------------------------------------------------------- * Function: test_conv_int_2 * * Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be * the same as for H5T_conv_f_f() and H5T_conv_s_s(). * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Friday, April 30, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_2(void) { int i, j; hid_t src_type, dst_type; char buf[32*100]; printf("%-70s", "Testing overlap calculations"); HDfflush(stdout); HDmemset(buf, 0, sizeof buf); for (i=1; i<=32; i++) { for (j=1; j<=32; j++) { /* Source type */ src_type = H5Tcopy(H5T_NATIVE_CHAR); H5Tset_size(src_type, (size_t)i); /* Destination type */ dst_type = H5Tcopy(H5T_NATIVE_CHAR); H5Tset_size(dst_type, (size_t)j); /* * Conversion. If overlap calculations aren't right then an * assertion will fail in H5T_conv_i_i() */ H5Tconvert(src_type, dst_type, 100, buf, NULL, H5P_DEFAULT); H5Tclose(src_type); H5Tclose(dst_type); } } PASSED(); return 0; } /*------------------------------------------------------------------------- * Function: my_isnan * * Purpose: Determines whether VAL points to NaN. * * Return: TRUE or FALSE * * Programmer: Robb Matzke * Monday, July 6, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int my_isnan(dtype_t type, void *val) { int retval = 0; char s[256]; if (FLT_FLOAT==type) { float x; HDmemcpy(&x, val, sizeof(float)); retval = (x!=x); } else if (FLT_DOUBLE==type) { double x; HDmemcpy(&x, val, sizeof(double)); retval = (x!=x); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (FLT_LDOUBLE==type) { long double x; HDmemcpy(&x, val, sizeof(long double)); retval = (x!=x); #endif } else { return 0; } /* * Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if * the result contains a NaN string. */ if (!retval) { if (FLT_FLOAT==type) { float x; HDmemcpy(&x, val, sizeof(float)); sprintf(s, "%g", x); } else if (FLT_DOUBLE==type) { double x; HDmemcpy(&x, val, sizeof(double)); sprintf(s, "%g", x); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (FLT_LDOUBLE==type) { long double x; HDmemcpy(&x, val, sizeof(long double)); sprintf(s, "%Lg", x); #endif } else { return 0; } if (HDstrstr(s, "NaN") || HDstrstr(s, "NAN") || HDstrstr(s, "nan")) retval = 1; } #ifdef H5_VMS /* For "float" and "double" on OpenVMS/Alpha, NaN is * actually a valid value of maximal value.*/ if(!retval) { if (FLT_FLOAT==type) { float x; HDmemcpy(&x, val, sizeof(float)); retval = (x==FLT_MAX || x==-FLT_MAX); } else if (FLT_DOUBLE==type) { double x; HDmemcpy(&x, val, sizeof(double)); retval = (x==DBL_MAX || x==-DBL_MAX); } else { return 0; } } #endif /*H5_VMS*/ return retval; } /*------------------------------------------------------------------------- * Function: my_isinf * * Purpose: Determines whether VAL points to +/-infinity. * * Return: TRUE or FALSE * * Programmer: Raymond Lu * Monday, June 20, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int my_isinf(dtype_t type, int endian, unsigned char *val, size_t size, size_t mpos, size_t msize, size_t epos, size_t esize) { unsigned char *bits; int retval = 0; size_t i; ssize_t ret1=0, ret2=0; bits = (unsigned char*)calloc(1, size); #ifdef H5_VMS if(H5T_ORDER_VAX==endian) { for (i = 0; i < size; i += 4) { bits[i] = val[(size-2)-i]; bits[i+1] = val[(size-1)-i]; bits[(size-2)-i] = val[i]; bits[(size-1)-i] = val[i+1]; } } else { for (i=0; i<size; i++) bits[size-(i+1)] = *(val + ENDIAN(size,i,endian)); } #else /*H5_VMS*/ for (i=0; i<size; i++) bits[size-(i+1)] = *(val + ENDIAN(size, i, endian)); #endif /*H5_VMS*/ if((ret1=H5T_bit_find(bits, mpos, msize, H5T_BIT_LSB, 1))<0 && (ret2=H5T_bit_find(bits, epos, esize, H5T_BIT_LSB, 0))<0) retval = 1; free(bits); return retval; } /*------------------------------------------------------------------------- * Function: test_conv_flt_1 * * Purpose: Test conversion of floating point values from SRC to * DST. These types should be H5T_NATIVE_FLOAT, * H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Tuesday, June 23, 1998 * * Modifications: * Albert Cheng, Apr 16, 2004 * Check for underflow condition. If the src number is * smaller than the dst MIN float number, consider it okay * if the converted sw and hw dst are both less than or * equal to the dst MIN float number. * *------------------------------------------------------------------------- */ static int test_conv_flt_1 (const char *name, int run_test, hid_t src, hid_t dst) { dtype_t src_type, dst_type; /*data types */ size_t nelmts=0; /*num values per test */ const size_t max_fails=8; /*max number of failures*/ size_t fails_all_tests=0; /*number of failures */ size_t fails_this_test; /*fails for this test */ const char *src_type_name = NULL; /*source type name */ const char *dst_type_name = NULL; /*destination type name */ size_t src_size, dst_size; /*type sizes */ unsigned char *buf = NULL; /*buffer for conversion */ unsigned char *saved = NULL; /*original values */ char str[256]; /*hello string */ void *aligned=NULL; /*aligned buffer */ float hw_f; /*hardware-converted */ double hw_d; /*hardware-converted */ #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE long double hw_ld; /*hardware-converted */ #endif unsigned char *hw=NULL; /*ptr to hardware-conv'd*/ int underflow; /*underflow occurred */ int overflow; /*overflow occurred */ int maximal; /*maximal value occurred, for VMS only. */ int uflow=0; /*underflow debug counters*/ size_t j, k; /*counters */ int sendian; /* source type endianess */ int dendian; /* Destination type endianess */ size_t dst_ebias; /* Destination type's exponent bias */ size_t src_epos; /* Source type's exponent position */ size_t src_esize; /* Source type's exponent size */ size_t dst_epos; /* Destination type's exponent position */ size_t dst_esize; /* Destination type's exponent size */ size_t dst_mpos; /* Destination type's mantissa position */ size_t dst_msize; /* Destination type's mantissa size */ size_t src_nbits; /* source length in bits */ size_t dst_nbits; /* dst length in bits */ #ifdef HANDLE_SIGFPE pid_t child_pid; /*process ID of child */ int status; /*child exit status */ /* * Some systems generage SIGFPE during floating point overflow and we * cannot assume that we can continue from such a signal. Therefore, we * fork here and let the child run the test and return the number of * failures with the exit status. */ HDfflush(stdout); HDfflush(stderr); if ((child_pid=fork())<0) { HDperror("fork"); return 1; } else if (child_pid>0) { while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/; if (WIFEXITED(status) && 255==WEXITSTATUS(status)) { return 0; /*child exit after catching SIGFPE*/ } else if (WIFEXITED(status)) { return WEXITSTATUS(status); } else { HDputs(" Child didn't exit normally."); return 1; } } #endif /* * The remainder of this function is executed only by the child if * HANDLE_SIGFPE is defined. */ #ifndef H5_VMS HDsignal(SIGFPE,fpe_handler); #endif /* What are the names of the source and destination types */ if (H5Tequal(src, H5T_NATIVE_FLOAT)) { src_type_name = "float"; src_type = FLT_FLOAT; } else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) { src_type_name = "double"; src_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) { src_type_name = "long double"; src_type = FLT_LDOUBLE; #endif } else { src_type_name = "UNKNOWN"; src_type = OTHER; } if (H5Tequal(dst, H5T_NATIVE_FLOAT)) { dst_type_name = "float"; dst_type = FLT_FLOAT; } else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) { dst_type_name = "double"; dst_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) { dst_type_name = "long double"; dst_type = FLT_LDOUBLE; #endif } else { dst_type_name = "UNKNOWN"; dst_type = OTHER; } /* Sanity checks */ if(sizeof(float)==sizeof(double)) HDputs("Sizeof(float)==sizeof(double) - some tests may not be sensible."); if (OTHER==src_type || OTHER==dst_type) { if(!strcmp(name, "noop")) sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_SPECIAL) sprintf(str, "Testing %s special %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_NORMAL) sprintf(str, "Testing %s normalized %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_DENORM) sprintf(str, "Testing %s denormalized %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); HDputs(" Unknown data type."); goto error; } else { if(!strcmp(name, "noop")) sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_SPECIAL) sprintf(str, "Testing %s special %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_NORMAL) sprintf(str, "Testing %s normalized %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_DENORM) sprintf(str, "Testing %s denormalized %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); HDfflush(stdout); fails_this_test = 0; } /* Get "interesting" values */ src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ dst_ebias=H5Tget_ebias(dst); H5Tget_fields(src,NULL,&src_epos,&src_esize,NULL,NULL); H5Tget_fields(dst,NULL,&dst_epos,&dst_esize,&dst_mpos,&dst_msize); sendian = H5Tget_order(src); dendian = H5Tget_order(dst); /* Allocate buffers */ aligned = HDcalloc(1, MAX(sizeof(long double), sizeof(double))); /* Allocate and initialize the source buffer through macro INIT_FP_NORM or INIT_FP_SPECIAL. * The BUF will be used for the conversion while the SAVED buffer will be used for * the comparison later. INIT_FP_NORM will fill in the buffer with regular values like * normalized and denormalized values; INIT_FP_SPECIAL will fill with special values * like infinity, NaN. */ switch (run_test) { case TEST_NOOP: case TEST_NORMAL: #ifdef H5_VMS if(src_type == FLT_FLOAT) { INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(src_type == FLT_DOUBLE && dst_type == FLT_FLOAT) { /*Temporary solution for VMS. Cap double values between maximal and minimal *destination values because VMS return exception when overflows or underflows. *Same below.*/ INIT_FP_NORM(double, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(src_type == FLT_DOUBLE) { INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if(src_type == FLT_LDOUBLE && dst_type == FLT_FLOAT) { INIT_FP_NORM(long double, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(src_type == FLT_LDOUBLE && dst_type == FLT_DOUBLE) { INIT_FP_NORM(long double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(src_type == FLT_LDOUBLE) { INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); #endif } else goto error; #else /*H5_VMS*/ if(src_type == FLT_FLOAT) { INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(src_type == FLT_DOUBLE) { INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if(src_type == FLT_LDOUBLE) { INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); #endif } else goto error; #endif /*H5_VMS*/ break; case TEST_DENORM: if(src_type == FLT_FLOAT) { INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else if(src_type == FLT_DOUBLE) { INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if(src_type == FLT_LDOUBLE) { INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); #endif } else goto error; break; case TEST_SPECIAL: if(src_type == FLT_FLOAT) { INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts); } else if(src_type == FLT_DOUBLE) { INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if(src_type == FLT_LDOUBLE) { INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts); #endif } else goto error; break; default: goto error; } /* Perform the conversion in software */ if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT)<0) goto error; /* Check the software results against the hardware */ for (j=0; j<nelmts; j++) { underflow = 0; hw_f = 911.0; hw_d = 911.0; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE hw_ld = 911.0; #endif /* The hardware conversion */ /* Check for underflow when src is a "larger" float than dst.*/ if (FLT_FLOAT==src_type) { HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); if (FLT_FLOAT==dst_type) { hw_f = *((float*)aligned); hw = (unsigned char*)&hw_f; } else if (FLT_DOUBLE==dst_type) { hw_d = *((float*)aligned); hw = (unsigned char*)&hw_d; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else { hw_ld = *((float*)aligned); hw = (unsigned char*)&hw_ld; #endif } } else if (FLT_DOUBLE==src_type) { HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); if (FLT_FLOAT==dst_type) { hw_f = (float)(*((double*)aligned)); hw = (unsigned char*)&hw_f; underflow = HDfabs(*((double*)aligned)) < FLT_MIN; overflow = HDfabs(*((double*)aligned)) > FLT_MAX; #ifdef H5_VMS maximal = HDfabs(*((double*)aligned)) == FLT_MAX; #endif } else if (FLT_DOUBLE==dst_type) { hw_d = *((double*)aligned); hw = (unsigned char*)&hw_d; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else { hw_ld = *((double*)aligned); hw = (unsigned char*)&hw_ld; #endif } #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else { HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); if (FLT_FLOAT==dst_type) { hw_f = *((long double*)aligned); hw = (unsigned char*)&hw_f; underflow = HDfabsl(*((long double*)aligned)) < FLT_MIN; overflow = HDfabsl(*((long double*)aligned)) > FLT_MAX; #ifdef H5_VMS maximal = HDfabs(*((long double*)aligned)) == FLT_MAX; #endif } else if (FLT_DOUBLE==dst_type) { hw_d = *((long double*)aligned); hw = (unsigned char*)&hw_d; underflow = HDfabsl(*((long double*)aligned)) < DBL_MIN; overflow = HDfabsl(*((long double*)aligned)) > DBL_MAX; #ifdef H5_VMS maximal = HDfabs(*((long double*)aligned)) == DBL_MAX; #endif } else { hw_ld = *((long double*)aligned); hw = (unsigned char*)&hw_ld; } #endif } if (underflow){ uflow++; } /* For Intel machines, the size of "long double" is 12 bytes, precision * is 80 bits; for Intel IA64 and AMD processors, the size of "long double" * is 16 bytes, precision is 80 bits. During hardware conversion, the * last few unused bytes may have garbage in them. Clean them out with * 0s before compare the values. */ #if H5_SIZEOF_LONG_DOUBLE !=0 if(sendian==H5T_ORDER_LE && dst_type==FLT_LDOUBLE) { unsigned int q; for(q=dst_nbits/8; q<dst_size; q++) { buf[j*dst_size+q] = 0x00; hw[q] = 0x00; } } #endif /* Are the two results the same? */ for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++) if (buf[j*dst_size+k]!=hw[k]) break; if (k==dst_size) continue; /*no error*/ #ifdef H5_VMS /* For "float" and "double" on OpenVMS/Alpha, NaN is * a valid value of maximal value.*/ if (FLT_FLOAT==src_type && my_isnan(src_type, saved+j*sizeof(float))) { continue; } else if (FLT_DOUBLE==src_type && my_isnan(src_type, saved+j*sizeof(double))) { continue; } #endif /*H5_VMS*/ /* * Assume same if both results are NaN. There are many NaN bit * patterns and the software doesn't attemt to emulate the * hardware in this regard. Instead, software uses a single bit * pattern for NaN by setting the significand to all ones. */ if (FLT_FLOAT==dst_type && my_isnan(dst_type, buf+j*sizeof(float)) && my_isnan(dst_type, hw)) { continue; } else if (FLT_DOUBLE==dst_type && my_isnan(dst_type, buf+j*sizeof(double)) && my_isnan(dst_type, hw)) { continue; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (FLT_LDOUBLE==dst_type && my_isnan(dst_type, buf+j*sizeof(long double)) && my_isnan(dst_type, hw)) { continue; #endif } /* * Assume same if hardware result is NaN. This is because the * hardware conversions on some machines return NaN instead of * overflowing to +Inf or -Inf or underflowing to +0 or -0. */ if (my_isnan(dst_type, hw)) continue; /* * Instead of matching down to the bit, just make sure the * exponents are the same and the mantissa is the same to a * certain precision. This is needed on machines that don't * round as expected. * If the src number is smaller than the dst MIN float number, * consider it okay if the converted sw and hw dst are both * less than or equal to the dst MIN float number. * If overflow happens when the src value is greater than * the maximum dst value, the library assign INFINITY to dst. * This might be different from what the compiler does, i.e. * the SGI compiler assigns the dst's maximal value. */ { double check_mant[2]; int check_expo[2]; if (FLT_FLOAT==dst_type) { float x; HDmemcpy(&x, &buf[j*dst_size], sizeof(float)); if (underflow && HDfabsf(x) <= FLT_MIN && HDfabsf(hw_f) <= FLT_MIN) continue; /* all underflowed, no error */ if (overflow && my_isinf(dst_type, dendian, buf+j*sizeof(float), dst_size, dst_mpos, dst_msize, dst_epos, dst_esize)) continue; /* all overflowed, no error */ #ifdef H5_VMS if (maximal && my_isinf(dst_type, dendian, buf+j*sizeof(float), dst_size, dst_mpos, dst_msize, dst_epos, dst_esize)) continue; /* maximal value, no error */ #endif /*H5_VMS*/ check_mant[0] = HDfrexpf(x, check_expo+0); check_mant[1] = HDfrexpf(hw_f, check_expo+1); } else if (FLT_DOUBLE==dst_type) { double x; HDmemcpy(&x, &buf[j*dst_size], sizeof(double)); if (underflow && HDfabs(x) <= DBL_MIN && HDfabs(hw_d) <= DBL_MIN) continue; /* all underflowed, no error */ if (overflow && my_isinf(dst_type, dendian, buf+j*sizeof(double), dst_size, dst_mpos, dst_msize, dst_epos, dst_esize)) continue; /* all overflowed, no error */ #ifdef H5_VMS if (maximal && my_isinf(dst_type, dendian, buf+j*sizeof(double), dst_size, dst_mpos, dst_msize, dst_epos, dst_esize)) continue; /* maximal value, no error */ #endif /*H5_VMS*/ check_mant[0] = HDfrexp(x, check_expo+0); check_mant[1] = HDfrexp(hw_d, check_expo+1); #if H5_SIZEOF_LONG_DOUBLE !=0 && (H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE) } else { long double x; HDmemcpy(&x, &buf[j*dst_size], sizeof(long double)); /* dst is largest float, no need to check underflow. */ check_mant[0] = HDfrexpl(x, check_expo+0); check_mant[1] = HDfrexpl(hw_ld, check_expo+1); #endif } #ifdef H5_CONVERT_DENORMAL_FLOAT /* Special check for denormalized values */ if(check_expo[0]<(-(int)dst_ebias) || check_expo[1]<(-(int)dst_ebias)) { int expo_diff=check_expo[0]-check_expo[1]; int valid_bits=(int)((dst_ebias+dst_msize)+MIN(check_expo[0],check_expo[1]))-1; double epsilon=1.0; /* Re-scale the mantissas based on any exponent difference */ if(expo_diff!=0) check_mant[0] = HDldexp(check_mant[0],expo_diff); /* Compute the proper epsilon */ epsilon=HDldexp(epsilon,-valid_bits); /* Check for "close enough" fit with scaled epsilon value */ if (HDfabs(check_mant[0]-check_mant[1])<=epsilon) continue; } /* end if */ else { if (check_expo[0]==check_expo[1] && HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON) continue; } /* end else */ #else /* H5_CONVERT_DENORMAL_FLOAT */ { hssize_t expo; /*exponent */ uint8_t tmp[32]; assert(src_size<=sizeof(tmp)); if(sendian==H5T_ORDER_LE) HDmemcpy(tmp,&saved[j*src_size],src_size); else if(sendian==H5T_ORDER_BE) for (k=0; k<src_size; k++) tmp[k]=saved[j*src_size+(src_size-(k+1))]; else { for (k = 0; k < src_size; k += 4) { tmp[k] = saved[j*src_size+(src_size-2)-k]; tmp[k+1] = saved[j*src_size+(src_size-1)-k]; tmp[(src_size-2)-k] = saved[j*src_size+k]; tmp[(src_size-1)-k] = saved[j*src_size+k+1]; } } expo = H5T_bit_get_d(tmp, src_epos, src_esize); if(expo==0) continue; /* Denormalized floating-point value detected */ else { assert(dst_size<=sizeof(tmp)); if(sendian==H5T_ORDER_LE) HDmemcpy(tmp,&buf[j*dst_size],dst_size); else if(sendian==H5T_ORDER_BE) for (k=0; k<dst_size; k++) tmp[k]=buf[j*dst_size+(dst_size-(k+1))]; else { for (k = 0; k < src_size; k += 4) { tmp[k] = buf[j*dst_size+(dst_size-2)-k]; tmp[k+1] = buf[j*dst_size+(dst_size-1)-k]; tmp[(dst_size-2)-k] = buf[j*dst_size+k]; tmp[(dst_size-1)-k] = buf[j*dst_size+k+1]; } } expo = H5T_bit_get_d(tmp, dst_epos, dst_esize); if(expo==0) continue; /* Denormalized floating-point value detected */ else { if (check_expo[0]==check_expo[1] && HDfabs(check_mant[0]-check_mant[1])<FP_EPSILON) continue; } /* end else */ } /* end else */ } #endif /* H5_CONVERT_DENORMAL_FLOAT */ } if (0==fails_this_test++) { if(run_test==TEST_NOOP || run_test==TEST_NORMAL) { H5_FAILED(); } else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) { H5_WARNING(); } } printf(" elmt %u\n", (unsigned)j); printf(" src ="); for (k=0; k<src_size; k++) printf(" %02x", saved[j*src_size+ENDIAN(src_size,k,sendian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), ""); if (FLT_FLOAT==src_type) { float x; HDmemcpy(&x, &saved[j*src_size], sizeof(float)); printf(" %29.20e\n", x); } else if (FLT_DOUBLE==src_type) { double x; HDmemcpy(&x, &saved[j*src_size], sizeof(double)); printf(" %29.20e\n", x); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else { long double x; HDmemcpy(&x, &saved[j*src_size], sizeof(long double)); HDfprintf(stdout," %29.20Le\n", x); #endif } printf(" dst ="); for (k=0; k<dst_size; k++) printf(" %02x", buf[j*dst_size+ENDIAN(dst_size,k,dendian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), ""); if (FLT_FLOAT==dst_type) { float x; HDmemcpy(&x, &buf[j*dst_size], sizeof(float)); printf(" %29.20e\n", x); } else if (FLT_DOUBLE==dst_type) { double x; HDmemcpy(&x, &buf[j*dst_size], sizeof(double)); printf(" %29.20e\n", x); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else { long double x; HDmemcpy(&x, &buf[j*dst_size], sizeof(long double)); HDfprintf(stdout," %29.20Le\n", x); #endif } printf(" ans ="); for (k=0; k<dst_size; k++) printf(" %02x", hw[ENDIAN(dst_size,k,dendian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), ""); if (FLT_FLOAT==dst_type) printf(" %29.20e\n", hw_f); else if (FLT_DOUBLE==dst_type) printf(" %29.20e\n", hw_d); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE else HDfprintf(stdout," %29.20Le\n", hw_ld); #endif /* If the source is normalized values, print out error message; if it is * denormalized or special values, print out warning message.*/ if (++fails_all_tests>=max_fails) { if(run_test==TEST_NORMAL) HDputs(" maximum failures reached, aborting test..."); else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) HDputs(" maximum warnings reached, aborting test..."); goto done; } } if(!fails_all_tests) PASSED(); done: #ifdef AKCDEBUG printf("uflow=%d, fails_all_tests=%d\n", uflow, fails_all_tests); #endif if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); #ifdef HANDLE_SIGFPE if(run_test==TEST_NOOP || run_test==TEST_NORMAL) HDexit(MIN((int)fails_all_tests, 254)); else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) HDexit(0); #else reset_hdf5(); /* If the source is normalized values, treat the failures as error; * if it is denormalized or special values, treat the failure as warning.*/ if(run_test==TEST_NOOP || run_test==TEST_NORMAL) return (int)fails_all_tests; else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) return 0; #endif error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); #ifdef HANDLE_SIGFPE if(run_test==TEST_NOOP || run_test==TEST_NORMAL) HDexit(MIN(MAX((int)fails_all_tests, 1), 254)); else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) HDexit(1); #else reset_hdf5(); if(run_test==TEST_NOOP || run_test==TEST_NORMAL) return MAX((int)fails_all_tests, 1); else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) return 1; #endif } /*------------------------------------------------------------------------- * Function: test_conv_int_fp * * Purpose: Test conversion between integer and float values * from SRC to DST. These types should be any combination of: * * H5T_NATIVE_SCHAR H5T_NATIVE_FLOAT * H5T_NATIVE_SHORT H5T_NATIVE_DOUBLE * H5T_NATIVE_INT H5T_NATIVE_LDOUBLE * H5T_NATIVE_LONG * H5T_NATIVE_LLONG * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Thursday, November 6, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_fp(const char *name, int run_test, hid_t src, hid_t dst) { hid_t dxpl_id; /*dataset transfer property list*/ int fill_value=9; /*fill value for conversion exception*/ H5T_conv_except_func_t op; /*returned callback function for conversion exception*/ void *user_data; /*returned pointer to user data passed in to the callback*/ hbool_t except_set = FALSE; /*whether user's exception handling is set*/ size_t nelmts=0; /*num values per test */ const size_t max_fails=40; /*max number of failures*/ size_t fails_all_tests=0; /*number of failures */ size_t fails_this_test; /*fails for this test */ char str[256]; /*hello string */ dtype_t src_type; /*data types */ dtype_t dst_type; /*data types */ const char *src_type_name=NULL; /*source type name */ const char *dst_type_name=NULL; /*destination type name */ int sendian; /*source endianess */ int dendian; /*destination endianess */ size_t src_size, dst_size; /*type sizes */ unsigned char *buf=NULL; /*buffer for conversion */ unsigned char *saved=NULL; /*original values */ size_t j, k; /*counters */ unsigned char *hw=NULL; /*hardware conv result */ unsigned char src_bits[32]; /*src value in LE order */ unsigned char dst_bits[32]; /*dest value in LE order*/ size_t src_nbits; /*source length in bits */ size_t dst_nbits; /*dst length in bits */ void *aligned=NULL; /*aligned temp buffer */ float hw_float=0; double hw_double=0; long double hw_ldouble=0; signed char hw_schar=0; unsigned char hw_uchar=0; short hw_short=0; unsigned short hw_ushort=0; int hw_int=0; unsigned hw_uint=0; long hw_long=0; unsigned long hw_ulong=0; long_long hw_llong=0; unsigned long_long hw_ullong=0; /* What is the name of the source type */ if (H5Tequal(src, H5T_NATIVE_SCHAR)) { src_type_name = "signed char"; src_type = INT_SCHAR; } else if (H5Tequal(src, H5T_NATIVE_UCHAR)) { src_type_name = "unsigned char"; src_type = INT_UCHAR; } else if (H5Tequal(src, H5T_NATIVE_SHORT)) { src_type_name = "short"; src_type = INT_SHORT; } else if (H5Tequal(src, H5T_NATIVE_USHORT)) { src_type_name = "unsigned short"; src_type = INT_USHORT; } else if (H5Tequal(src, H5T_NATIVE_INT)) { src_type_name = "int"; src_type = INT_INT; } else if (H5Tequal(src, H5T_NATIVE_UINT)) { src_type_name = "unsigned int"; src_type = INT_UINT; } else if (H5Tequal(src, H5T_NATIVE_LONG)) { src_type_name = "long"; src_type = INT_LONG; } else if (H5Tequal(src, H5T_NATIVE_ULONG)) { src_type_name = "unsigned long"; src_type = INT_ULONG; } else if (H5Tequal(src, H5T_NATIVE_LLONG)) { src_type_name = "long long"; src_type = INT_LLONG; } else if (H5Tequal(src, H5T_NATIVE_ULLONG)) { src_type_name = "unsigned long long"; src_type = INT_ULLONG; } else if (H5Tequal(src, H5T_NATIVE_FLOAT)) { src_type_name = "float"; src_type = FLT_FLOAT; } else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) { src_type_name = "double"; src_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) { src_type_name = "long double"; src_type = FLT_LDOUBLE; #endif } else { src_type_name = "UNKNOWN"; src_type = OTHER; } /* What is the name of the destination type */ if (H5Tequal(dst, H5T_NATIVE_SCHAR)) { dst_type_name = "signed char"; dst_type = INT_SCHAR; } else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) { dst_type_name = "unsigned char"; dst_type = INT_UCHAR; } else if (H5Tequal(dst, H5T_NATIVE_SHORT)) { dst_type_name = "short"; dst_type = INT_SHORT; } else if (H5Tequal(dst, H5T_NATIVE_USHORT)) { dst_type_name = "unsigned short"; dst_type = INT_USHORT; } else if (H5Tequal(dst, H5T_NATIVE_INT)) { dst_type_name = "int"; dst_type = INT_INT; } else if (H5Tequal(dst, H5T_NATIVE_UINT)) { dst_type_name = "unsigned int"; dst_type = INT_UINT; } else if (H5Tequal(dst, H5T_NATIVE_LONG)) { dst_type_name = "long"; dst_type = INT_LONG; } else if (H5Tequal(dst, H5T_NATIVE_ULONG)) { dst_type_name = "unsigned long"; dst_type = INT_ULONG; } else if (H5Tequal(dst, H5T_NATIVE_LLONG)) { dst_type_name = "long long"; dst_type = INT_LLONG; } else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) { dst_type_name = "unsigned long long"; dst_type = INT_ULLONG; } else if (H5Tequal(dst, H5T_NATIVE_FLOAT)) { dst_type_name = "float"; dst_type = FLT_FLOAT; } else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) { dst_type_name = "double"; dst_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) { dst_type_name = "long double"; dst_type = FLT_LDOUBLE; #endif } else { dst_type_name = "UNKNOWN"; dst_type = OTHER; } /* Sanity checks */ if (OTHER==src_type || OTHER==dst_type) { sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); HDputs(" Unknown data type."); goto error; } if ((INT_SCHAR==src_type || INT_UCHAR==src_type || INT_SHORT==src_type || INT_USHORT==src_type || INT_INT==src_type || INT_UINT==src_type || INT_LONG==src_type || INT_ULONG==src_type || INT_LLONG==src_type || INT_ULLONG==src_type) && (FLT_FLOAT!=dst_type && FLT_DOUBLE!=dst_type #if H5_SIZEOF_LONG_DOUBLE !=0 && FLT_LDOUBLE!=dst_type #endif )) { sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); HDputs(" 1. Not an integer-float conversion."); goto error; } if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type #if H5_SIZEOF_LONG_DOUBLE !=0 || FLT_LDOUBLE==src_type #endif ) && (INT_SCHAR!=dst_type && INT_UCHAR!=dst_type && INT_SHORT!=dst_type && INT_USHORT!=dst_type && INT_INT!=dst_type && INT_UINT!=dst_type && INT_LONG!=dst_type && INT_ULONG!=dst_type && INT_LLONG!=dst_type && INT_ULLONG!=dst_type)) { sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); HDputs(" 2. Not a float-integer conversion."); goto error; } if (INT_SCHAR==src_type || INT_UCHAR==src_type || INT_SHORT==src_type || INT_USHORT==src_type || INT_INT==src_type || INT_UINT==src_type || INT_LONG==src_type || INT_ULONG==src_type || INT_LLONG==src_type || INT_ULLONG==src_type) { sprintf(str, "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); HDfflush(stdout); fails_this_test=0; } else { if(run_test==TEST_NORMAL) sprintf(str, "Testing %s normalized %s -> %s conversions", name, src_type_name, dst_type_name); else if(run_test==TEST_DENORM) sprintf(str, "Testing %s denormalized %s -> %s conversions", name, src_type_name, dst_type_name); else sprintf(str, "Testing %s special %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); HDfflush(stdout); fails_this_test=0; } /* Some information about datatypes */ sendian = H5Tget_order(src); dendian = H5Tget_order(dst); src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ aligned = HDcalloc(1, MAX(sizeof(long double), sizeof(long_long))); #ifdef SHOW_OVERFLOWS noverflows_g = 0; #endif /* This is for some Linux systems where long double has the size * 12 bytes but precision is 10 bytes. The 2 unused bytes may * have garbage causing wrong value comparison. */ HDmemset(&hw_ldouble, 0, sizeof(long double)); /* Create a dataset transfer property list and datatype conversion * exception handler function and pass in fill value. This is mainly * for NetCDF compatibility, which requests fill in fill value when * conversion exception happens. We only test (unsigned) int - float * and float - (unsigned) int conversions, which should cover more cases. */ if((dxpl_id = H5Pcreate(H5P_DATASET_XFER))<0) goto error; if((src_type == INT_INT && dst_type == FLT_FLOAT) || (src_type == INT_UINT && dst_type == FLT_FLOAT) || (src_type == FLT_FLOAT && dst_type == INT_UINT) || (src_type == FLT_FLOAT && dst_type == INT_INT)) { if(H5Pset_type_conv_cb(dxpl_id, except_func, &fill_value)<0) goto error; else except_set = TRUE; if(H5Pget_type_conv_cb(dxpl_id, &op, &user_data)<0) goto error; if(op != except_func || *(int*)user_data != fill_value) goto error; } /* Allocate and initialize the source buffer through macro INIT_INTEGER if the source is integer, * INIT_FP_NORM if floating-point. The BUF will be used for the conversion while the SAVED buffer will be * used for the comparison later. */ if(src_type == INT_SCHAR) { INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_UCHAR) { INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_SHORT) { INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_USHORT) { INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_INT) { INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_UINT) { INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_LONG) { INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_ULONG) { INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_LLONG) { INIT_INTEGER(long_long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == INT_ULLONG) { INIT_INTEGER(unsigned long_long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if(src_type == FLT_FLOAT) { if(run_test==TEST_NORMAL) { INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(run_test==TEST_DENORM) { INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else { INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts); } } else if(src_type == FLT_DOUBLE) { if(run_test==TEST_NORMAL) { INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(run_test==TEST_DENORM) { INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else { INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts); } #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 } else if(src_type == FLT_LDOUBLE) { if(run_test==TEST_NORMAL) { INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if(run_test==TEST_DENORM) { INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else { INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts); } #endif } else goto error; /* Perform the conversion */ if (H5Tconvert(src, dst, nelmts, buf, NULL, dxpl_id)<0) goto error; /* Check the results from the library against hardware */ for (j=0; j<nelmts; j++) { if(FLT_FLOAT==src_type || FLT_DOUBLE==src_type #if H5_SIZEOF_LONG_DOUBLE !=0 || FLT_LDOUBLE==src_type #endif ) if(my_isnan(src_type, saved+j*src_size)) continue; if (FLT_FLOAT==dst_type) { hw = (unsigned char*)&hw_float; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_float = (float)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_float = (float)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_float = (float)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_float = (float)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_float = (float)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_float = (float)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_float = (float)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_float = (float)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_float = (float)(*((long_long*)aligned)); break; #ifdef H5_ULLONG_TO_FP_CAST_WORKS case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_float = (float)(*((unsigned long_long*)aligned)); break; #endif /* H5_ULLONG_TO_FP_CAST_WORKS */ default: break; } } else if (FLT_DOUBLE==dst_type) { hw = (unsigned char*)&hw_double; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_double = (double)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_double = (double)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_double = (double)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_double = (double)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_double = (double)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_double = (double)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_double = (double)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_double = (double)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_double = (double)(*((long_long*)aligned)); break; #ifdef H5_ULLONG_TO_FP_CAST_WORKS case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_double = (double)(*((unsigned long_long*)aligned)); break; #endif /* H5_ULLONG_TO_FP_CAST_WORKS */ default: break; } #if H5_SIZEOF_LONG_DOUBLE !=0 } else if (FLT_LDOUBLE==dst_type) { hw = (unsigned char*)&hw_ldouble; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); hw_ldouble = (long double)(*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); hw_ldouble = (long double)(*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); hw_ldouble = (long double)(*((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); hw_ldouble = (long double)(*((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); hw_ldouble = (long double)(*((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); hw_ldouble = (long double)(*((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); hw_ldouble = (long double)(*((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); hw_ldouble = (long double)(*((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); hw_ldouble = (long double)(*((long_long*)aligned)); break; #ifdef H5_ULLONG_TO_FP_CAST_WORKS case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); hw_ldouble = (long double)(*((unsigned long_long*)aligned)); break; #endif /* H5_ULLONG_TO_FP_CAST_WORKS */ default: break; } #endif } else if (INT_SCHAR==dst_type) { hw = (unsigned char*)&hw_schar; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_schar = (signed char)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_schar = (signed char)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_schar = (signed char)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_UCHAR==dst_type) { hw = (unsigned char*)&hw_uchar; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_uchar = (unsigned char)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_uchar = (unsigned char)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_uchar = (unsigned char)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_SHORT==dst_type) { hw = (unsigned char*)&hw_short; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_short = (short)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_short = (short)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_short = (short)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_USHORT==dst_type) { hw = (unsigned char*)&hw_ushort; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_ushort = (unsigned short)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_ushort = (unsigned short)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_ushort = (unsigned short)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_INT==dst_type) { hw = (unsigned char*)&hw_int; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_int = (int)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_int = (int)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_int = (int)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_UINT==dst_type) { hw = (unsigned char*)&hw_uint; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_uint = (unsigned int)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_uint = (unsigned int)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_uint = (unsigned int)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_LONG==dst_type) { hw = (unsigned char*)&hw_long; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_long = (long)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_long = (long)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_long = (long)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_ULONG==dst_type) { hw = (unsigned char*)&hw_ulong; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_ulong = (unsigned long)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_ulong = (unsigned long)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_ulong = (unsigned long)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_LLONG==dst_type) { hw = (unsigned char*)&hw_llong; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_llong = (long_long)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_llong = (long_long)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_llong = (long_long)(*((long double*)aligned)); break; #endif default: break; } } else if (INT_ULLONG==dst_type) { hw = (unsigned char*)&hw_ullong; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); hw_ullong = (unsigned long_long)(*((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); hw_ullong = (unsigned long_long)(*((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); hw_ullong = (unsigned long_long)(*((long double*)aligned)); break; #endif default: break; } } /* Make certain that there isn't some weird number of destination bits */ assert(dst_nbits%8==0); /* For Intel machines, the size of "long double" is 12 bytes, precision * is 80 bits; for AMD processors, the size of "long double" is 16 bytes, * precision is 80 bits. During hardware conversion, the last few unused * bytes may have garbage in them. Clean them out with 0s before compare * the values. */ #if H5_SIZEOF_LONG_DOUBLE !=0 if(dendian==H5T_ORDER_LE && dst_type==FLT_LDOUBLE) { unsigned int q; for(q=dst_nbits/8; q<dst_size; q++) { buf[j*dst_size+q] = 0x00; } } #endif /* Are the two results the same? */ for (k=(dst_size-(dst_nbits/8)); k<dst_size; k++) if (buf[j*dst_size+k]!=hw[k]) break; if (k==dst_size) continue; /*no error*/ /* * Convert the source and destination values to little endian * order so we can use the HDF5 bit vector operations to test * certain things. These routines have already been tested by * the `bittests' program. */ if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type) && sendian==H5T_ORDER_VAX) { for (k = 0; k < src_size; k += 2) { src_bits[k] = saved[j*src_size + (src_size - 2) - k]; src_bits[k + 1] = saved[j*src_size + (src_size - 1) - k]; } } else { for (k=0; k<src_size; k++) src_bits[src_size-(k+1)] = saved[j*src_size+ENDIAN(src_size, k, sendian)]; } for (k=0; k<dst_size; k++) dst_bits[dst_size-(k+1)] = buf[j*dst_size+ENDIAN(dst_size, k, dendian)]; /* Test library's default overflow handling: * Hardware usually doesn't handle overflows too gracefully. The * hardware conversion result during overflows is usually garbage * so we must handle those cases differetly when checking results. * * Test user's exception handler when overflows: * Try to follow the except_func callback function to check if the * desired value was set. */ if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type #if H5_SIZEOF_LONG_DOUBLE !=0 || FLT_LDOUBLE==src_type #endif ) && (INT_SCHAR==dst_type || INT_SHORT==dst_type || INT_INT==dst_type || INT_LONG==dst_type || INT_LLONG==dst_type)) { if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) && overflows(src_bits, src, dst_nbits-1)) { /* * Source is positive and the magnitude is too large for * the destination. The destination should be set to the * maximum possible value: 0x7f...f */ if(!except_set) { if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } else { /* fill_value is small so we know only the 1st byte is set */ if (dst_bits[0] == fill_value) continue; /*no error*/ } } else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) && overflows(src_bits, src, dst_nbits-1)) { /* * Source is negative but the magnitude is too large for * the destination. The destination should be set to the * smallest possible value: 0x80...0 */ if(!except_set) { if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0) continue; /*no error*/ } else { if (dst_bits[0] == fill_value) continue; /*no error*/ } } } if ((FLT_FLOAT==src_type || FLT_DOUBLE==src_type #if H5_SIZEOF_LONG_DOUBLE !=0 || FLT_LDOUBLE==src_type #endif ) && (INT_UCHAR==dst_type || INT_USHORT==dst_type || INT_UINT==dst_type || INT_ULONG==dst_type || INT_ULLONG==dst_type)) { if (H5T_bit_get_d(src_bits, src_nbits-1, 1)) { /* * The source is negative so the result should be zero. * The source is negative if the most significant bit is * set. The destination is zero if all bits are zero. */ if(!except_set) { if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 1)<0) continue; /*no error*/ } else { if (dst_bits[0] == fill_value) continue; /*no error*/ } } else if (overflows(src_bits, src, dst_nbits)) { /* * The source is a value with a magnitude too large for * the destination. The destination should be the * largest possible value: 0xff...f */ if(!except_set) { if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) continue; /*no error*/ } else { if (dst_bits[0] == fill_value) continue; /*no error*/ } } } /* On some machines (notably the SGI and Solaris 64-bit machines) unsigned long * values are not converted to float or double values correctly, they are * consistently off by the lowest bit being rounded oppositely to our * software conversion routines output. So, on those machines, we allow * the converted value to be +/- 1 from the machine's value. -QAK */ #ifndef H5_SW_ULONG_TO_FP_BOTTOM_BIT_WORKS if(dst_size==sizeof(unsigned)) { unsigned tmp_s, tmp_h; HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned)); HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned)); if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h) continue; /*no error*/ } /* end if */ else if (dst_size==sizeof(unsigned long)) { unsigned long tmp_s, tmp_h; HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long)); HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long)); if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h) continue; /*no error*/ } /* end if */ else if (dst_size==sizeof(unsigned long_long)) { unsigned long_long tmp_s, tmp_h; HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long_long)); HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long_long)); if((tmp_s+1)==tmp_h || (tmp_s-1)==tmp_h) continue; /*no error*/ } /* end if */ #endif /* end H5_ULONG_FP_BOTTOM_BIT_WORKS */ /* For PGI compiler on Linux, during conversion from 'float' or 'double' to * 'unsigned long long', round-up happens when the fraction of float-point * value is greater than 0.5. So we allow the converted value to be off by 1. */ #ifndef H5_FP_TO_ULLONG_BOTTOM_BIT_WORKS if((src_type==FLT_FLOAT || src_type==FLT_DOUBLE) && dst_type==INT_ULLONG) { unsigned long_long tmp_s, tmp_h; HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(unsigned long_long)); HDmemcpy(&tmp_h,&hw[0],sizeof(unsigned long_long)); if((tmp_s+1)==tmp_h) continue; /*no error*/ } #endif /*end H5_FP_TO_ULLONG_BOTTOM_BIT_WORKS*/ /* For GNU compilers on FreeBSD(sleipnir), during conversion from 'unsigned long long' * to 'long double', the last 2 bytes of mantissa are lost. But this loss seems * acceptable. We allow it to go through instead of fail it. Sometimes, there's roundup * to the 3rd last byte of mantissa. So we only try to compare all but the last 3 bytes. */ #ifndef H5_ULLONG_TO_LDOUBLE_PRECISION #if H5_SIZEOF_LONG_DOUBLE !=0 if(src_type==INT_ULLONG && dst_type==FLT_LDOUBLE) { long double tmp_s, tmp_h; HDmemcpy(&tmp_s,&buf[j*dst_size],sizeof(long double)); HDmemcpy(&tmp_h,&hw[0],sizeof(long double)); /*Don't compare the last 3 bytes of mantissa*/ if(!HDmemcmp(&tmp_s+4, &tmp_h+4, sizeof(long double)-4)) continue; /*no error*/ } #endif #endif /*end H5_ULLONG_TO_LDOUBLE_PRECISION*/ /* Print errors */ if (0==fails_this_test++) { if(run_test==TEST_NORMAL) { H5_FAILED(); } else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) { H5_WARNING(); } } printf(" elmt %u: \n", (unsigned)j); printf(" src = "); for (k=0; k<src_size; k++) printf(" %02x", saved[j*src_size+ENDIAN(src_size, k, sendian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)dst_size-(ssize_t)src_size)), ""); switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved+j*sizeof(signed char), sizeof(signed char)); printf(" %29d\n", (int)*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved+j*sizeof(unsigned char), sizeof(unsigned char)); printf(" %29u\n", (unsigned)*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved+j*sizeof(short), sizeof(short)); printf(" %29hd\n", *((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved+j*sizeof(unsigned short), sizeof(unsigned short)); printf(" %29hu\n", *((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, saved+j*sizeof(int), sizeof(int)); printf(" %29d\n", *((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved+j*sizeof(unsigned), sizeof(unsigned)); printf(" %29u\n", *((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved+j*sizeof(long), sizeof(long)); printf(" %29ld\n", *((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long), sizeof(unsigned long)); printf(" %29lu\n", *((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved+j*sizeof(long_long), sizeof(long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned)); break; case FLT_FLOAT: HDmemcpy(aligned, saved+j*sizeof(float), sizeof(float)); printf(" %29f\n", *((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved+j*sizeof(double), sizeof(double)); printf(" %29f\n", *((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, saved+j*sizeof(long double), sizeof(long double)); printf(" %29Lf\n", *((long double*)aligned)); break; #endif case OTHER: break; } printf(" dst = "); for (k=0; k<dst_size; k++) printf(" %02x", buf[j*dst_size+ENDIAN(dst_size, k, dendian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: HDmemcpy(aligned, buf+j*sizeof(signed char), sizeof(signed char)); printf(" %29d\n", (int)*((signed char*)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, buf+j*sizeof(unsigned char), sizeof(unsigned char)); printf(" %29u\n", (unsigned)*((unsigned char*)aligned)); break; case INT_SHORT: HDmemcpy(aligned, buf+j*sizeof(short), sizeof(short)); printf(" %29hd\n", *((short*)aligned)); break; case INT_USHORT: HDmemcpy(aligned, buf+j*sizeof(unsigned short), sizeof(unsigned short)); printf(" %29hu\n", *((unsigned short*)aligned)); break; case INT_INT: HDmemcpy(aligned, buf+j*sizeof(int), sizeof(int)); printf(" %29d\n", *((int*)aligned)); break; case INT_UINT: HDmemcpy(aligned, buf+j*sizeof(unsigned), sizeof(unsigned)); printf(" %29u\n", *((unsigned*)aligned)); break; case INT_LONG: HDmemcpy(aligned, buf+j*sizeof(long), sizeof(long)); printf(" %29ld\n", *((long*)aligned)); break; case INT_ULONG: HDmemcpy(aligned, buf+j*sizeof(unsigned long), sizeof(unsigned long)); printf(" %29lu\n", *((unsigned long*)aligned)); break; case INT_LLONG: HDmemcpy(aligned, buf+j*sizeof(long_long), sizeof(long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, buf+j*sizeof(unsigned long_long), sizeof(unsigned long_long)); HDfprintf(stdout," %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)aligned)); break; case FLT_FLOAT: HDmemcpy(aligned, buf+j*sizeof(float), sizeof(float)); printf(" %29f\n", *((float*)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, buf+j*sizeof(double), sizeof(double)); printf(" %29f\n", *((double*)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: HDmemcpy(aligned, buf+j*sizeof(long double), sizeof(long double)); printf(" %29Lf\n", *((long double*)aligned)); break; #endif case OTHER: break; } printf(" ans = "); for (k=0; k<dst_size; k++) printf(" %02x", hw[ENDIAN(dst_size, k, dendian)]); printf("%*s", (int)(3*MAX(0, (ssize_t)src_size-(ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: printf(" %29d\n", (int)*((signed char*)hw)); break; case INT_UCHAR: printf(" %29u\n", (unsigned)*((unsigned char*)hw)); break; case INT_SHORT: printf(" %29hd\n", *((short*)hw)); break; case INT_USHORT: printf(" %29hu\n", *((unsigned short*)hw)); break; case INT_INT: printf(" %29d\n", *((int*)hw)); break; case INT_UINT: printf(" %29u\n", *((unsigned int*)hw)); break; case INT_LONG: printf(" %29ld\n", *((long*)hw)); break; case INT_ULONG: printf(" %29lu\n", *((unsigned long*)hw)); break; case INT_LLONG: printf(" %29"H5_PRINTF_LL_WIDTH"d\n", *((long_long*)hw)); break; case INT_ULLONG: printf(" %29"H5_PRINTF_LL_WIDTH"u\n", *((unsigned long_long*)hw)); break; case FLT_FLOAT: printf(" %29f\n", *((float*)hw)); break; case FLT_DOUBLE: printf(" %29f\n", *((double*)hw)); break; #if H5_SIZEOF_LONG_DOUBLE !=0 case FLT_LDOUBLE: printf(" %29Lf\n", *((long double*)hw)); break; #endif case OTHER: break; } /* If the source is normalized values, print out error message; if it is * denormalized or special values, print out warning message.*/ if (++fails_all_tests>=max_fails) { if(run_test==TEST_NORMAL) HDputs(" maximum failures reached, aborting test..."); else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) HDputs(" maximum warnings reached, aborting test..."); goto done; } } if(!fails_all_tests) PASSED(); done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); reset_hdf5(); /*print statistics*/ /* If the source is normalized floating values, treat the failures as error; * if it is denormalized or special floating values, treat the failure as warning.*/ if(run_test==TEST_NORMAL) return (int)fails_all_tests; else if(run_test==TEST_DENORM || run_test==TEST_SPECIAL) return 0; error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); reset_hdf5(); /*print statistics*/ if(run_test==TEST_NORMAL) return MAX((int)fails_all_tests, 1); else { HDassert(run_test==TEST_DENORM || run_test==TEST_SPECIAL); return 1; } } /*------------------------------------------------------------------------- * Function: overflows * * Purpose: When convert from float or double to any integer type, * check if overflow occurs. * * * Return: TRUE: overflow happens * * FALSE: no overflow * * Programmer: Raymond Lu * Monday, Nov 17, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits) { hbool_t ret_value=FALSE; hsize_t expt; size_t mant_digits=0, expt_digits=0, bias=0; size_t epos, mpos; size_t src_prec=0; /*source type precision in bits*/ H5T_norm_t norm; ssize_t indx; unsigned char bits[32], mant_bits[32]; HDmemset(bits, 0, 32); HDmemset(mant_bits, 0, 32); /* * Sometimes, type size isn't equal to the precision like Linux's "long * double", where size is 96 bits and precision is 80 bits. */ src_prec = H5Tget_precision(src_id); H5Tget_fields(src_id, NULL, &epos, &expt_digits, &mpos, &mant_digits); bias = H5Tget_ebias(src_id); norm = H5Tget_norm(src_id); HDmemcpy(bits, origin_bits, src_prec/8+1); /*Check for special cases: +Inf, -Inf*/ if (H5T_bit_find (bits, mpos, mant_digits, H5T_BIT_LSB, TRUE)<0) { if (H5T_bit_find (bits, epos, expt_digits, H5T_BIT_LSB, FALSE)<0) { ret_value=TRUE; goto done; } } else if (H5T_NORM_NONE==norm && H5T_bit_find (bits, mpos, mant_digits-1, H5T_BIT_LSB, TRUE)<0 && H5T_bit_find (bits, epos, expt_digits, H5T_BIT_LSB, FALSE)<0) { /*This is a special case for the source of no implied mantissa bit. *If the exponent bits are all 1s and only the 1st bit of mantissa *is set to 1. It's infinity. The Intel-Linux "long double" is this case.*/ ret_value=TRUE; goto done; } /* get exponent */ expt = H5T_bit_get_d(bits, mant_digits, expt_digits) - bias; if(expt>=(dst_num_bits-1)) { ret_value=TRUE; goto done; } /* get significand */ H5T_bit_copy (mant_bits, 0, bits, 0, mant_digits); /* restore implicit bit if normalization is implied*/ if(norm == H5T_NORM_IMPLIED) { H5T_bit_inc(mant_bits, mant_digits, 1); mant_digits++; } /* shift significand */ H5T_bit_shift (mant_bits, (ssize_t)(expt-expt_digits), 0, 32*8); indx = H5T_bit_find(mant_bits, 0, 32*8, H5T_BIT_MSB, 1); if((size_t)indx>=dst_num_bits) ret_value=TRUE; done: return ret_value; } /*------------------------------------------------------------------------- * Function: run_integer_tests * * Purpose: Runs all integer tests. * * Return: Number of errors * * Programmer: Robb Matzke * Tuesday, November 24, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int run_integer_tests(const char *name) { int nerrors = 0; nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG); #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG); #endif #endif #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG); #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG); #endif #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG); #endif return nerrors; } /*------------------------------------------------------------------------- * Function: run_fp_tests * * Purpose: Runs all floating-point tests. * * Return: Number of errors * * Programmer: Raymond Lu * Tuesday, March 22, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int run_fp_tests(const char *name) { int nerrors = 0; if(!strcmp(name, "noop")) { nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE); #if H5_SIZEOF_LONG_DOUBLE !=0 nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LDOUBLE); #endif goto done; } /*Test normalized values. TEST_NORMAL indicates normalized values.*/ nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE !=0 nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #endif #ifndef H5_VMS /*Test denormalized values. TEST_DENORM indicates denormalized values.*/ nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #endif /*Test special values, +/-0, +/-infinity, +/-QNaN, +/-SNaN.*/ nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE!=0 nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #endif #endif /*H5_VMS*/ done: return nerrors; } /*------------------------------------------------------------------------- * Function: run_int_fp_conv * * Purpose: Runs all integer-float tests. * * Return: Number of errors * * Programmer: Raymond Lu * Monday, November 10, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static int run_int_fp_conv(const char *name) { int nerrors = 0; nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_DOUBLE); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_DOUBLE); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_DOUBLE); #ifdef H5_ULLONG_TO_FP_CAST_WORKS nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_DOUBLE); #else /* H5_ULLONG_TO_FP_CAST_WORKS */ { char str[256]; /*hello string */ sprintf(str, "Testing %s %s -> %s conversions", name, "unsigned long long", "float"); printf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to compiler not handling conversion."); sprintf(str, "Testing %s %s -> %s conversions", name, "unsigned long long", "double"); printf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to compiler not handling conversion."); } #endif /* H5_ULLONG_TO_FP_CAST_WORKS */ #endif #if H5_INTEGER_TO_LDOUBLE_ACCURATE #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_LDOUBLE); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_LDOUBLE); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG #if H5_LLONG_TO_LDOUBLE_CORRECT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_LDOUBLE); #else /* H5_LLONG_TO_LDOUBLE_CORRECT */ { char str[256]; /*hello string */ sprintf(str, "Testing %s %s -> %s conversions", name, "long long", "long double"); printf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to compiler error in handling conversion."); } #endif /* H5_LLONG_TO_LDOUBLE_CORRECT */ #if H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION && H5_LLONG_TO_LDOUBLE_CORRECT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_LDOUBLE); #else /* H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION && H5_LLONG_TO_LDOUBLE_CORRECT */ { char str[256]; /*hello string */ sprintf(str, "Testing %s %s -> %s conversions", name, "unsigned long long", "long double"); printf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to compiler not handling conversion."); } #endif /* H5_ULLONG_TO_FP_CAST_WORKS && H5_ULLONG_TO_LDOUBLE_PRECISION && H5_LLONG_TO_LDOUBLE_CORRECT */ #endif #endif #else /*H5_INTEGER_TO_LDOUBLE_ACCURATE*/ { char str[256]; /*string */ sprintf(str, "Testing %s %s -> %s conversions", name, "all integers", "long double"); printf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE !=0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_INTEGER_TO_LDOUBLE_ACCURATE*/ return nerrors; } /*------------------------------------------------------------------------- * Function: run_fp_int_conv * * Purpose: Runs all float-integer tests. * * Return: Number of errors * * Programmer: Raymond Lu * Monday, November 10, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static int run_fp_int_conv(const char *name) { int nerrors = 0; int test_values; int i; int run_test = TRUE; #ifndef H5_FP_TO_INTEGER_OVERFLOW_WORKS /* For Cray X1, the compiler generates floating exception when the * conversion overflows. So disable all of the conversions from * floating-point numbers to integers. */ run_test = FALSE; #endif #ifdef H5_VMS run_test = TRUE; #endif if(run_test) { #ifdef H5_VMS test_values = TEST_NORMAL; { #else for(i=0; i<3; i++) { if(i==0) test_values = TEST_NORMAL; else if(i==1) test_values = TEST_DENORM; else test_values = TEST_SPECIAL; #endif /*H5_VMS*/ nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_INT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_INT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UINT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG if(!strcmp(name, "hw")) { /* Hardware conversion */ /* Windows .NET 2003 doesn't work for hardware conversion of this case. * .NET should define this macro H5_HW_FP_TO_LLONG_NOT_WORKS. */ #ifndef H5_HW_FP_TO_LLONG_NOT_WORKS nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG); #endif /*H5_HW_FP_TO_LLONG_NOT_WORKS*/ } else { /* Software conversion */ nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG); } #ifdef H5_FP_TO_ULLONG_RIGHT_MAXIMUM nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULLONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULLONG); #else /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/ { char str[256]; /*hello string */ sprintf(str, "Testing %s %s -> %s conversions", name, "float", "unsigned long long"); printf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to hardware conversion error."); sprintf(str, "Testing %s %s -> %s conversions", name, "double", "unsigned long long"); printf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to hardware conversion error."); } #endif /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM*/ #endif #if H5_LDOUBLE_TO_INTEGER_WORKS && H5_LDOUBLE_TO_INTEGER_ACCURATE #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT); #if H5_LDOUBLE_TO_UINT_ACCURATE nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT); #else /*H5_LDOUBLE_TO_UINT_ACCURATE*/ { char str[256]; /*string */ sprintf(str, "Testing %s %s -> %s conversions", name, "long double", "unsigned int"); printf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE!=0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_LDOUBLE_TO_UINT_ACCURATE*/ #if H5_SIZEOF_LONG!=H5_SIZEOF_INT && H5_SIZEOF_LONG_DOUBLE!=0 nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG && H5_SIZEOF_LONG_DOUBLE!=0 #ifdef H5_LDOUBLE_TO_LLONG_ACCURATE nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LLONG); #else /*H5_LDOUBLE_TO_LLONG_ACCURATE*/ { char str[256]; /*string */ sprintf(str, "Testing %s %s -> %s conversions", name, "long double", "long long"); printf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE!=0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_LDOUBLE_TO_LLONG_ACCURATE*/ #if H5_FP_TO_ULLONG_RIGHT_MAXIMUM && H5_LDOUBLE_TO_LLONG_ACCURATE nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULLONG); #else /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM && H5_LDOUBLE_TO_LLONG_ACCURATE*/ { char str[256]; /*string */ sprintf(str, "Testing %s %s -> %s conversions", name, "long double", "unsigned long long"); printf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE!=0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_FP_TO_ULLONG_RIGHT_MAXIMUM && H5_LDOUBLE_TO_LLONG_ACCURATE*/ #endif #endif #else /*H5_LDOUBLE_TO_INTEGER_WORKS && H5_LDOUBLE_TO_INTEGER_ACCURATE*/ { char str[256]; /*hello string */ sprintf(str, "Testing %s %s -> %s conversions", name, "long double", "all integers"); printf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE!=0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_LDOUBLE_TO_INTEGER_WORKS && H5_LDOUBLE_TO_INTEGER_ACCURATE*/ } } else { char str[256]; /*string */ sprintf(str, "Testing %s %s -> %s conversions", name, "all floating-point numbers", "all integers"); printf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE!=0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disbaled long double."); #endif } return nerrors; } /*------------------------------------------------------------------------- * Function: main * * Purpose: Test the data type(integer and floating-point number). * * Return: Success: * * Failure: * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * Raymond Lu * Monday, April 4, 2005 * These tests were split from dtypes.c because dtypes.c * has grown too big. * *------------------------------------------------------------------------- */ int main(void) { unsigned long nerrors = 0; /* Set the random # seed */ HDsrandom((unsigned long)HDtime(NULL)); reset_hdf5(); if (ALIGNMENT) printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n", ALIGNMENT); /* Do the tests */ /* Test H5Tcompiler_conv() for querying hard conversion. */ nerrors += test_hard_query(); /* Test user-define, query functions and software conversion * for user-defined floating-point types */ nerrors += test_derived_flt(); /* Test user-define, query functions and software conversion * for user-defined integer types */ nerrors += test_derived_integer(); #ifndef H5_VMS /* Does floating point overflow generate a SIGFPE? */ generates_sigfpe(); #endif /* Test degenerate cases */ nerrors += run_fp_tests("noop"); /* Test hardware floating-point conversion functions */ nerrors += run_fp_tests("hard"); /* Test hardware integer conversion functions */ nerrors += run_integer_tests("hard"); /* Test hardware integer-float conversion functions */ nerrors += run_int_fp_conv("hard"); /* Test hardware float-integer conversion functions */ nerrors += run_fp_int_conv("hard"); /* Test a few special values for hardware float-integer conversions */ nerrors += test_particular_fp_integer(); /*---------------------------------------------------------------------- * Software tests *---------------------------------------------------------------------- */ without_hardware_g = TRUE; reset_hdf5(); /* Test software floating-point conversion functions */ nerrors += run_fp_tests("soft"); /* Test software integer conversion functions */ nerrors += test_conv_int_2(); nerrors += run_integer_tests("soft"); /* Test software float-integer conversion functions */ nerrors += run_fp_int_conv("soft"); /* Test software integer-float conversion functions */ nerrors += run_int_fp_conv("soft"); reset_hdf5(); if (nerrors) { printf("***** %lu FAILURE%s! *****\n", nerrors, 1==nerrors?"":"S"); HDexit(1); } printf("All data type tests passed.\n"); return 0; }