/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Purpose: Tests the data type interface (H5T) */ #include "h5test.h" /* Number of elements in each random test */ #define NTESTELEM 10000 /* Epsilon for floating-point comparisons */ #define FP_EPSILON 0.000001F /* * Offset from alinged memory returned by malloc(). This can be used to test * that type conversions handle non-aligned buffers correctly. */ #define ALIGNMENT 1 /* * Define if you want to test alignment code on a machine that doesn't * normally require alignment. When set, all native data types must be aligned * on a byte boundary equal to the data size. */ #define TEST_ALIGNMENT /* Alignment test stuff */ #ifdef TEST_ALIGNMENT #define H5T_FRIEND /*suppress error about including H5Tpkg */ #include "H5Tpkg.h" #endif #define SET_ALIGNMENT(TYPE, VAL) H5T_NATIVE_##TYPE##_ALIGN_g = MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL) const char *FILENAME[] = {"dt_arith1", "dt_arith2", NULL}; /* * Count up or down depending on whether the machine is big endian or little * endian. If local variable `endian' is H5T_ORDER_BE then the result will * be I, otherwise the result will be Z-(I+1). */ #define ENDIAN(Z, I, E) (H5T_ORDER_BE == E ? (I) : (Z) - ((I) + 1)) typedef enum dtype_t { INT_SCHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT, INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, FLT_FLOAT, FLT_DOUBLE, #if H5_SIZEOF_LONG_DOUBLE != 0 FLT_LDOUBLE, #endif OTHER } dtype_t; /* Skip overflow tests if non-zero */ static int skip_overflow_tests_g = 0; /* * Although we check whether a floating point overflow generates a SIGFPE and * turn off overflow tests in that case, it might still be possible for an * overflow condition to occur. Once a SIGFPE is raised the program cannot * be allowed to continue (cf. Posix signals) so in order to recover from a * SIGFPE we run tests that might generate one in a child process. */ #ifdef H5_HAVE_UNISTD_H #define HANDLE_SIGFPE #endif /* * Decide what values of floating-point number we want to test. They are * 1 - normalized; 2 - denormalized; 3 - special. */ #define TEST_NOOP 0 #define TEST_NORMAL 1 #define TEST_DENORM 2 #define TEST_SPECIAL 3 /* Temporary buffer sizes */ #define TMP_BUF_DIM1 32 #define TMP_BUF_DIM2 100 /* Don't use hardware conversions if set */ static int without_hardware_g = 0; /* Allocates memory aligned on a certain boundary. */ #define aligned_malloc(Z) ((void *)((char *)HDmalloc(ALIGNMENT + Z) + ALIGNMENT)) #define aligned_free(M) HDfree((char *)(M)-ALIGNMENT) /* Initialize source buffer of integer for integer->integer and integer->floating-point conversion test. * This algorithm is mainly to avoid any casting and comparison between source and destination types * for compiler, because we're testing conversions. */ #define INIT_INTEGER(TYPE, SRC_MAX, SRC_MIN, SRC_SIZE, DST_SIZE, SRC_PREC, BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p, *saved_p; \ unsigned int n; \ TYPE value1 = 1; \ TYPE value2 = 0; \ \ /* Allocate buffers */ \ NELMTS = SRC_PREC * 3; \ BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ \ buf_p = BUF; \ saved_p = SAVED; \ \ /*positive values, ascending order. VALUE1 starts from 00000001, to 00000010, until 10000000*/ \ /*VALUE2 ascends from 00000000, to 00000011, 00000111,..., until 11111111.*/ \ for (n = 0; n < SRC_PREC; n++) { \ { \ HDmemcpy(buf_p, &value1, SRC_SIZE); \ HDmemcpy(saved_p, &value1, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ { \ HDmemcpy(buf_p, &value2, SRC_SIZE); \ HDmemcpy(saved_p, &value2, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ \ if (n < SRC_PREC - 2) { \ value1 = (TYPE)(value1 << 1); \ value2 = (TYPE)((value1 - 1) | value1); \ } \ else if (n == SRC_PREC - 2) { /*to avoid overflow of negative values for signed integer*/ \ value1 = (TYPE)(value1 << 1); \ value2 = (TYPE)((~value1) | value1); \ } \ } \ \ /* negative values for signed; descending positive values for unsigned */ \ /* VALUE2 descends from 11111111 to 11111110, 11111100, ..., until 10000000. */ \ for (n = 0; n < SRC_PREC - 1; n++) { \ { \ HDmemcpy(buf_p, &value2, SRC_SIZE); \ HDmemcpy(saved_p, &value2, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ if (n < SRC_PREC - 1) \ value2 = (TYPE)(value2 << 1); \ } \ } /* Change a buffer's byte order from big endian to little endian. It's mainly for library's * bit operations which handle only little endian order. */ #define CHANGE_ORDER(EBUF, EORDER, ESIZE) \ { \ unsigned int m; \ if (H5T_ORDER_BE == EORDER) { \ unsigned char mediator; \ size_t half_size = ESIZE / 2; \ for (m = 0; m < half_size; m++) { \ mediator = EBUF[ESIZE - (m + 1)]; \ EBUF[ESIZE - (m + 1)] = EBUF[m]; \ EBUF[m] = mediator; \ } \ } \ else if (H5T_ORDER_VAX == EORDER) { \ unsigned char mediator1, mediator2; \ for (m = 0; m < ESIZE; m += 4) { \ mediator1 = EBUF[m]; \ mediator2 = EBUF[m + 1]; \ \ EBUF[m] = EBUF[(ESIZE - 2) - m]; \ EBUF[m + 1] = EBUF[(ESIZE - 1) - m]; \ \ EBUF[(ESIZE - 2) - m] = mediator1; \ EBUF[(ESIZE - 1) - m] = mediator2; \ } \ } \ } /* Allocate buffer and initialize it with floating-point normalized values. * It's for conversion test of floating-point as the source. */ #define INIT_FP_NORM(TYPE, SRC_MAX, SRC_MIN, SRC_MAX_10_EXP, SRC_MIN_10_EXP, SRC_SIZE, DST_SIZE, BUF, SAVED, \ NELMTS) \ { \ unsigned char *buf_p, *saved_p; \ size_t num_norm, factor, n; \ TYPE value1, value2; \ TYPE multiply; \ \ /*Determine the number of normalized values and increment pace. The values start from \ *minimal normalized value and are multiplied by MULTIPLY each step until reach to maximal \ *normalized value.*/ \ if (SRC_MAX_10_EXP < 100) { /*for float*/ \ factor = 0; \ multiply = 10; \ } \ else if (SRC_MAX_10_EXP >= 100 && SRC_MAX_10_EXP < 400) { /*for double*/ \ factor = 2; \ multiply = 10000; \ } \ else { /*for long double*/ \ factor = 3; \ multiply = 100000000; \ } \ \ /*The number of values if multiplied by 10 for each step.*/ \ num_norm = (SRC_MAX_10_EXP - SRC_MIN_10_EXP); \ /*Reduce the number of values by 2^factor. MULTIPLY=10^(2^factor). Using this algorithm \ *instead of arithmatic operation to avoid any conversion*/ \ num_norm >>= factor; \ \ /*Total number of values*/ \ NELMTS = 2 * /*both positive and negative*/ \ (num_norm + /*number of normalized values*/ \ 1); /*maximal normalized value*/ \ \ /* Allocate buffers */ \ BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ \ buf_p = BUF; \ saved_p = SAVED; \ \ /*Normalized values*/ \ value1 = SRC_MIN; \ value2 = -SRC_MIN; \ for (n = 0; n < num_norm; n++) { \ if (value1 < SRC_MAX) { /*positive*/ \ HDmemcpy(buf_p, &value1, SRC_SIZE); \ HDmemcpy(saved_p, &value1, SRC_SIZE); \ value1 *= multiply; \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ if (value2 > -SRC_MAX) { /*negative*/ \ HDmemcpy(buf_p, &value2, SRC_SIZE); \ HDmemcpy(saved_p, &value2, SRC_SIZE); \ value2 *= multiply; \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ } \ \ value1 = SRC_MAX; /*maximal value*/ \ HDmemcpy(buf_p, &value1, SRC_SIZE); \ HDmemcpy(saved_p, &value1, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ \ value2 = -SRC_MAX; /*negative value*/ \ HDmemcpy(buf_p, &value2, SRC_SIZE); \ HDmemcpy(saved_p, &value2, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } /* Allocate buffer and initialize it with floating-point denormalized values. * It's for conversion test of floating-point as the source. */ #define INIT_FP_DENORM(TYPE, SRC_MANT_DIG, SRC_SIZE, SRC_PREC, SRC_ORDR, DST_SIZE, BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p, *saved_p; \ unsigned char *tmp1, *tmp2; \ size_t n; \ \ /*Total number of values*/ \ NELMTS = 2 * /*both positive and negative*/ \ (SRC_MANT_DIG - 1); /*number of denormalized values*/ \ \ /* Allocate buffers */ \ BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ \ tmp1 = (unsigned char *)HDcalloc((size_t)1, (size_t)SRC_SIZE); \ tmp2 = (unsigned char *)HDcalloc((size_t)1, (size_t)SRC_SIZE); \ \ buf_p = BUF; \ saved_p = SAVED; \ \ /*Denormalized values. Exponent is 0. Let mantissa starts from 00000001, 00000011, \ *00000111,..., until 11111111.*/ \ HDmemset(tmp1, 0, SRC_SIZE); \ HDmemset(tmp2, 0, SRC_SIZE); \ H5T__bit_set(tmp2, SRC_PREC - 1, (size_t)1, TRUE); /*the negative value*/ \ for (n = 0; n < SRC_MANT_DIG - 1; n++) { \ H5T__bit_set(tmp1, n, (size_t)1, TRUE); /*turn on 1 bit each time*/ \ CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ HDmemcpy(buf_p, tmp1, SRC_SIZE); \ HDmemcpy(saved_p, tmp1, SRC_SIZE); \ CHANGE_ORDER(tmp1, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ \ /*negative values*/ \ H5T__bit_set(tmp2, n, (size_t)1, TRUE); \ CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \ HDmemcpy(buf_p, tmp2, SRC_SIZE); \ HDmemcpy(saved_p, tmp2, SRC_SIZE); \ CHANGE_ORDER(tmp2, SRC_ORDR, SRC_SIZE); \ buf_p += SRC_SIZE; \ saved_p += SRC_SIZE; \ } \ HDfree(tmp1); \ HDfree(tmp2); \ } /* Allocate buffer and initialize it with floating-point special values, +/-0, +/-infinity, * +/-QNaN, +/-SNaN. It's for conversion test of floating-point as the source. */ #define INIT_FP_SPECIAL(SRC_SIZE, SRC_PREC, SRC_ORDR, SRC_MANT_DIG, DST_SIZE, BUF, SAVED, NELMTS) \ { \ unsigned char *buf_p; \ unsigned char *value; \ int n; \ \ /*Total number of values*/ \ NELMTS = 2 * /*both positive and negative*/ \ 4; /*infinity, SNaN, QNaN */ \ \ /* Allocate buffers */ \ BUF = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ SAVED = (unsigned char *)aligned_malloc(NELMTS * MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(BUF, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ HDmemset(SAVED, 0, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ value = (unsigned char *)HDcalloc(SRC_SIZE, sizeof(unsigned char)); \ \ buf_p = BUF; \ \ /* +0 */ \ H5T__bit_set(value, (size_t)0, SRC_PREC, FALSE); \ HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \ buf_p += SRC_SIZE; \ \ for (n = 0; n < 2; n++) { \ if (n == 1) { \ memset(value, 0, SRC_SIZE * sizeof(unsigned char)); \ /* -0 */ \ H5T__bit_set(value, (size_t)(SRC_PREC - 1), (size_t)1, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ } \ \ /* +/-infinity */ \ H5T__bit_set(value, (size_t)(SRC_MANT_DIG - 1), SRC_PREC - SRC_MANT_DIG, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ \ /* +/-SNaN */ \ H5T__bit_set(value, (size_t)0, (size_t)1, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ \ /* +/-QNaN */ \ H5T__bit_set(value, (size_t)(SRC_MANT_DIG - 2), (size_t)1, TRUE); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change order for big endian*/ \ HDmemcpy(buf_p, value, SRC_SIZE * sizeof(unsigned char)); \ CHANGE_ORDER(value, SRC_ORDR, SRC_SIZE); /*change back the order for bit operation*/ \ buf_p += SRC_SIZE; \ } \ \ HDmemcpy(SAVED, BUF, NELMTS *MAX(SRC_SIZE, DST_SIZE)); \ HDfree(value); \ } void some_dummy_func(float x); static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits); static int my_isnan(dtype_t type, void *val); static int my_isinf(int endian, const unsigned char *val, size_t size, size_t mpos, size_t msize, size_t epos, size_t esize); /*------------------------------------------------------------------------- * Function: fpe_handler * * Purpose: Exit with 255 * * Return: void * * Programmer: Robb Matzke * Monday, July 6, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void fpe_handler(int H5_ATTR_UNUSED signo) { SKIPPED(); HDputs(" Test skipped due to SIGFPE."); #ifndef HANDLE_SIGFPE HDputs(" Remaining tests could not be run."); HDputs(" Please turn off SIGFPE on overflows and try again."); #endif HDexit(255); } /*------------------------------------------------------------------------- * Function: reset_hdf5 * * Purpose: Reset the hdf5 library. This causes statistics to be printed * and counters to be reset. * * Return: void * * Programmer: Robb Matzke * Monday, November 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void reset_hdf5(void) { h5_reset(); if (without_hardware_g) h5_no_hwconv(); #ifdef TEST_ALIGNMENT SET_ALIGNMENT(SCHAR, H5_SIZEOF_CHAR); SET_ALIGNMENT(UCHAR, H5_SIZEOF_CHAR); SET_ALIGNMENT(SHORT, H5_SIZEOF_SHORT); SET_ALIGNMENT(USHORT, H5_SIZEOF_SHORT); SET_ALIGNMENT(INT, H5_SIZEOF_INT); SET_ALIGNMENT(UINT, H5_SIZEOF_INT); SET_ALIGNMENT(LONG, H5_SIZEOF_LONG); SET_ALIGNMENT(ULONG, H5_SIZEOF_LONG); SET_ALIGNMENT(LLONG, H5_SIZEOF_LONG_LONG); SET_ALIGNMENT(ULLONG, H5_SIZEOF_LONG_LONG); SET_ALIGNMENT(FLOAT, H5_SIZEOF_FLOAT); SET_ALIGNMENT(DOUBLE, H5_SIZEOF_DOUBLE); #if H5_SIZEOF_LONG_DOUBLE != 0 SET_ALIGNMENT(LDOUBLE, H5_SIZEOF_LONG_DOUBLE); #endif #endif } /*------------------------------------------------------------------------- * Function: except_func * * Purpose: Gets called for all data type conversion exceptions. * * Return: H5T_CONV_ABORT: -1 * * H5T_CONV_UNHANDLED 0 * * H5T_CONV_HANDLED 1 * * Programmer: Raymond Lu * April 19, 2004 * * Modifications: * *------------------------------------------------------------------------- */ static H5T_conv_ret_t except_func(H5T_conv_except_t except_type, hid_t H5_ATTR_UNUSED src_id, hid_t H5_ATTR_UNUSED dst_id, void H5_ATTR_UNUSED *src_buf, void *dst_buf, void *user_data) { H5T_conv_ret_t ret = H5T_CONV_HANDLED; if (except_type == H5T_CONV_EXCEPT_RANGE_HI) /*only test integer case*/ *(int *)dst_buf = *(int *)user_data; else if (except_type == H5T_CONV_EXCEPT_RANGE_LOW) /*only test integer case*/ *(int *)dst_buf = *(int *)user_data; else if (except_type == H5T_CONV_EXCEPT_TRUNCATE) ret = H5T_CONV_UNHANDLED; else if (except_type == H5T_CONV_EXCEPT_PRECISION) ret = H5T_CONV_UNHANDLED; else if (except_type == H5T_CONV_EXCEPT_PINF) /*only test integer case*/ *(int *)dst_buf = *(int *)user_data; else if (except_type == H5T_CONV_EXCEPT_NINF) /*only test integer case*/ *(int *)dst_buf = *(int *)user_data; else if (except_type == H5T_CONV_EXCEPT_NAN) /*only test integer case*/ *(int *)dst_buf = *(int *)user_data; return ret; } /*------------------------------------------------------------------------- * Function: some_dummy_func * * Purpose: A dummy function to help check for overflow. * * Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT * PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW * CHECKING. * * Return: void * * Programmer: Robb Matzke * Tuesday, July 21, 1998 * *------------------------------------------------------------------------- */ void some_dummy_func(float x) { char s[128]; HDsnprintf(s, sizeof(s), "%g", (double)x); } /*------------------------------------------------------------------------- * Function: generates_sigfpe * * Purpose: Determines if SIGFPE is generated from overflows. We must be * able to fork() and waitpid() in order for this test to work * properly. Sets skip_overflow_tests_g to non-zero if they * would generate SIGBUS, zero otherwise. * * Programmer: Robb Matzke * Tuesday, July 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void generates_sigfpe(void) { #ifdef H5_HAVE_UNISTD_H pid_t pid; int status; size_t i, j; double d; unsigned char *dp = (unsigned char *)&d; float f; HDfflush(stdout); HDfflush(stderr); if ((pid = fork()) < 0) { HDperror("fork"); HDexit(EXIT_FAILURE); } else if (0 == pid) { for (i = 0; i < 2000; i++) { for (j = 0; j < sizeof(double); j++) dp[j] = (unsigned char)HDrand(); f = (float)d; some_dummy_func((float)f); } HDexit(EXIT_SUCCESS); } while (pid != waitpid(pid, &status, 0)) /*void*/; if (WIFEXITED(status) && 0 == WEXITSTATUS(status)) { HDputs("Floating-point overflow cases will be tested."); skip_overflow_tests_g = FALSE; } else if (WIFSIGNALED(status) && SIGFPE == WTERMSIG(status)) { HDputs("Floating-point overflow cases cannot be safely tested."); skip_overflow_tests_g = TRUE; /* delete the core dump file that SIGFPE may have created */ HDunlink("core"); } #else /* H5_HAVE_UNISTD_H */ HDputs("Cannot determine if floating-point overflows generate a SIGFPE"); HDputs("due to a lack of fork(2) - assuming yes."); HDputs("Overflow cases will not be tested."); skip_overflow_tests_g = TRUE; #endif /* H5_HAVE_UNISTD_H */ } /*------------------------------------------------------------------------- * Function: test_hard_query * * Purpose: Tests H5Tcompiler_conv() for querying whether a conversion is * a hard one. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Friday, Sept 2, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_hard_query(void) { TESTING("query functions of compiler conversion"); /* Verify the conversion from int to float is a hard conversion. */ if (H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT) != TRUE) { H5_FAILED(); HDprintf("Can't query conversion function\n"); goto error; } /* Unregister the hard conversion from int to float. Verify the conversion * is a soft conversion. */ H5Tunregister(H5T_PERS_HARD, NULL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT, (H5T_conv_t)((void (*)(void))H5T__conv_int_float)); if (H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT) != FALSE) { H5_FAILED(); HDprintf("Can't query conversion function\n"); goto error; } /* Register the hard conversion from int to float. Verify the conversion * is a hard conversion. */ H5Tregister(H5T_PERS_HARD, "int_flt", H5T_NATIVE_INT, H5T_NATIVE_FLOAT, (H5T_conv_t)((void (*)(void))H5T__conv_int_float)); if (H5Tcompiler_conv(H5T_NATIVE_INT, H5T_NATIVE_FLOAT) != TRUE) { H5_FAILED(); HDprintf("Can't query conversion function\n"); goto error; } PASSED(); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); return 0; error: /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); return 1; } /*------------------------------------------------------------------------- * Function: expt_handle * * Purpose: Gets called from test_particular_fp_integer() for data type * conversion exceptions. * * Return: H5T_CONV_HANDLED 1 * * Programmer: Raymond Lu * Sept 7, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static H5T_conv_ret_t expt_handle(H5T_conv_except_t except_type, hid_t H5_ATTR_UNUSED src_id, hid_t H5_ATTR_UNUSED dst_id, void H5_ATTR_UNUSED *src_buf, void *dst_buf, void *user_data) { signed char fill_value1 = 7; int fill_value2 = 13; if (except_type == H5T_CONV_EXCEPT_RANGE_HI || except_type == H5T_CONV_EXCEPT_RANGE_LOW || except_type == H5T_CONV_EXCEPT_TRUNCATE) { if (*(hbool_t *)user_data) *(signed char *)dst_buf = fill_value1; else *(int *)dst_buf = fill_value2; } /* end if */ return H5T_CONV_HANDLED; } /*------------------------------------------------------------------------- * Function: test_particular_fp_integer * * Purpose: Tests hard conversions from floating numbers to integers in * a special situation when the source is "float" and assigned * the value of "INT_MAX". A compiler may do roundup making * this value "INT_MAX+1". When this float value is casted to * int, overflow happens. This test makes sure the library * returns exception in this situation. * * Also verifies the library handles conversion from double to * signed char correctly when the value of double is SCHAR_MAX. * The test makes sure the signed char doesn't overflow. * * This test is mainly for netCDF's request. * * Return: Success: 0 * * Failure: number of errors *------------------------------------------------------------------------- */ static int test_particular_fp_integer(void) { hid_t dxpl_id; hbool_t flag; double src_d = (double)SCHAR_MAX; signed char dst_c; unsigned char *buf1 = NULL, *buf2 = NULL; unsigned char *saved_buf1 = NULL, *saved_buf2 = NULL; size_t src_size1, src_size2; size_t dst_size1, dst_size2; float src_f = (float)INT_MAX; int dst_i; int fill_value = 13; int endian; /*endianess */ unsigned int fails_this_test = 0; size_t j; TESTING("hard particular floating number -> integer conversions"); if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) { H5_FAILED(); HDprintf("Can't create data transfer property list\n"); goto error; } /* Test conversion from double (the value is SCHAR_MAX) to signed char. */ endian = H5Tget_order(H5T_NATIVE_DOUBLE); src_size1 = H5Tget_size(H5T_NATIVE_DOUBLE); dst_size1 = H5Tget_size(H5T_NATIVE_SCHAR); buf1 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size1, dst_size1)); saved_buf1 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size1, dst_size1)); HDmemcpy(buf1, &src_d, src_size1); HDmemcpy(saved_buf1, &src_d, src_size1); /* Register exception handling function and signal the destination is "signed char". */ flag = 1; if (H5Pset_type_conv_cb(dxpl_id, expt_handle, &flag) < 0) { H5_FAILED(); HDprintf("Can't register conversion callback\n"); goto error; } /* Do conversion */ if (H5Tconvert(H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR, (size_t)1, buf1, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } HDmemcpy(&dst_c, buf1, dst_size1); /* Print errors */ if (dst_c != SCHAR_MAX) { double x = 0.0; signed char y; if (0 == fails_this_test++) H5_FAILED(); HDprintf(" test double to signed char:\n"); HDprintf(" src = "); for (j = 0; j < src_size1; j++) HDprintf(" %02x", saved_buf1[ENDIAN(src_size1, j, endian)]); HDmemcpy(&x, saved_buf1, src_size1); HDprintf(" %29.20e\n", x); HDprintf(" dst = "); for (j = 0; j < dst_size1; j++) HDprintf(" %02x", buf1[ENDIAN(dst_size1, j, endian)]); HDmemcpy(&y, buf1, dst_size1); HDprintf(" %29d\n", y); } /* Test conversion from float (the value is INT_MAX) to int. */ src_size2 = H5Tget_size(H5T_NATIVE_FLOAT); dst_size2 = H5Tget_size(H5T_NATIVE_INT); buf2 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size2, dst_size2)); saved_buf2 = (unsigned char *)HDcalloc((size_t)1, (size_t)MAX(src_size2, dst_size2)); HDmemcpy(buf2, &src_f, src_size2); HDmemcpy(saved_buf2, &src_f, src_size2); /* signal exception handling function that the destination is "int". */ flag = 0; /* Do conversion */ if (H5Tconvert(H5T_NATIVE_FLOAT, H5T_NATIVE_INT, (size_t)1, buf2, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } HDmemcpy(&dst_i, buf2, dst_size2); /* Print errors */ if (dst_i != fill_value) { float x = 0.0; int y; if (0 == fails_this_test++) H5_FAILED(); HDprintf(" test float to int:\n"); HDprintf(" src = "); for (j = 0; j < src_size2; j++) HDprintf(" %02x", saved_buf2[ENDIAN(src_size2, j, endian)]); HDmemcpy(&x, saved_buf2, src_size2); HDprintf(" %29.20e\n", (double)x); HDprintf(" dst = "); for (j = 0; j < dst_size2; j++) HDprintf(" %02x", buf2[ENDIAN(dst_size2, j, endian)]); HDmemcpy(&y, buf2, dst_size2); HDprintf(" %29d\n", y); } if (fails_this_test) goto error; if (H5Pclose(dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't close property list\n"); goto error; } if (buf1) HDfree(buf1); if (buf2) HDfree(buf2); if (saved_buf1) HDfree(saved_buf1); if (saved_buf2) HDfree(saved_buf2); PASSED(); return 0; error: HDfflush(stdout); H5E_BEGIN_TRY { H5Pclose(dxpl_id); } H5E_END_TRY; if (buf1) HDfree(buf1); if (buf2) HDfree(buf2); if (saved_buf1) HDfree(saved_buf1); if (saved_buf2) HDfree(saved_buf2); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return MAX((int)fails_this_test, 1); } /*------------------------------------------------------------------------- * Function: test_derived_flt * * Purpose: Tests user-define and query functions of floating-point types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Thursday, Jan 6, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_derived_flt(void) { hid_t file = -1, tid1 = -1, tid2 = -1; hid_t dxpl_id = -1; char filename[1024]; size_t spos, epos, esize, mpos, msize, size; size_t src_size, dst_size; unsigned char *buf = NULL, *saved_buf = NULL; int * aligned = NULL; int endian; /*endianess */ size_t nelmts = NTESTELEM; unsigned int fails_this_test = 0; const size_t max_fails = 40; /*max number of failures*/ char str[256]; /*message string */ unsigned int i, j; TESTING("user-define and query functions of floating-point types"); /* Create File */ h5_fixname(FILENAME[0], H5P_DEFAULT, filename, sizeof filename); if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT)) < 0) { H5_FAILED(); HDprintf("Can't create file\n"); goto error; } if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) { H5_FAILED(); HDprintf("Can't create data transfer property list\n"); goto error; } if ((tid1 = H5Tcopy(H5T_IEEE_F64LE)) < 0) { H5_FAILED(); HDprintf("Can't copy data type\n"); goto error; } if ((tid2 = H5Tcopy(H5T_IEEE_F32LE)) < 0) { H5_FAILED(); HDprintf("Can't copy data type\n"); goto error; } /*------------------------------------------------------------------------ * 1st floating-point type * size=7 byte, precision=42 bits, offset=3 bits, mantissa size=31 bits, * mantissa position=3, exponent size=10 bits, exponent position=34, * exponent bias=511. It can be illustrated in little-endian order as * * 6 5 4 3 2 1 0 * ???????? ???SEEEE EEEEEEMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMM??? * * To create a new floating-point type, the following properties must be * set in the order of * set fields -> set offset -> set precision -> set size. * All these properties must be set before the type can function. Other * properties can be set anytime. Derived type size cannot be expanded * bigger than original size but can be decreased. There should be no * holes among the significant bits. Exponent bias usually is set * 2^(n-1)-1, where n is the exponent size. *-----------------------------------------------------------------------*/ if (H5Tset_fields(tid1, (size_t)44, (size_t)34, (size_t)10, (size_t)3, (size_t)31) < 0) { H5_FAILED(); HDprintf("Can't set fields\n"); goto error; } if (H5Tset_offset(tid1, (size_t)3) < 0) { H5_FAILED(); HDprintf("Can't set offset\n"); goto error; } if (H5Tset_precision(tid1, (size_t)42) < 0) { H5_FAILED(); HDprintf("Can't set precision 1\n"); goto error; } if (H5Tset_size(tid1, (size_t)7) < 0) { H5_FAILED(); HDprintf("Can't set size\n"); goto error; } if (H5Tset_ebias(tid1, (size_t)511) < 0) { H5_FAILED(); HDprintf("Can't set exponent bias\n"); goto error; } if (H5Tset_pad(tid1, H5T_PAD_ZERO, H5T_PAD_ZERO) < 0) { H5_FAILED(); HDprintf("Can't set padding\n"); goto error; } if (H5Tcommit2(file, "new float type 1", tid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) { H5_FAILED(); HDprintf("Can't set inpad\n"); goto error; } if (H5Tclose(tid1) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if ((tid1 = H5Topen2(file, "new float type 1", H5P_DEFAULT)) < 0) FAIL_PUTS_ERROR("Can't open datatype") if (H5Tget_fields(tid1, &spos, &epos, &esize, &mpos, &msize) < 0) { H5_FAILED(); HDprintf("Can't get fields\n"); goto error; } if (spos != 44 || epos != 34 || esize != 10 || mpos != 3 || msize != 31) { H5_FAILED(); HDprintf("Wrong field values\n"); goto error; } if (H5Tget_precision(tid1) != 42) { H5_FAILED(); HDprintf("Can't get precision or wrong precision\n"); goto error; } if (H5Tget_offset(tid1) != 3) { H5_FAILED(); HDprintf("Can't get offset or wrong offset\n"); goto error; } if ((size = H5Tget_size(tid1)) != 7) { H5_FAILED(); HDprintf("Can't get size or wrong size\n"); goto error; } if (H5Tget_ebias(tid1) != 511) { H5_FAILED(); HDprintf("Can't get exponent bias or wrong bias\n"); goto error; } /* Convert data from native integer to the 1st derived floating-point type. * Then convert data from the floating-point type back to native integer. * Compare the final data with the original data. */ src_size = H5Tget_size(H5T_NATIVE_INT); endian = H5Tget_order(H5T_NATIVE_INT); buf = (unsigned char *)HDmalloc(nelmts * (MAX(src_size, size))); saved_buf = (unsigned char *)HDmalloc(nelmts * src_size); HDmemset(buf, 0, nelmts * MAX(src_size, size)); HDmemset(saved_buf, 0, nelmts * src_size); aligned = (int *)HDcalloc((size_t)1, src_size); for (i = 0; i < nelmts * src_size; i++) buf[i] = saved_buf[i] = (unsigned char)HDrand(); /* Convert data from native integer to derived floating-point type. * The mantissa is big enough to retain the integer's precision. */ if (H5Tconvert(H5T_NATIVE_INT, tid1, nelmts, buf, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } /* Convert data from the derived floating-point type back to native integer. */ if (H5Tconvert(tid1, H5T_NATIVE_INT, nelmts, buf, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } /* Are the values still the same?*/ for (i = 0; i < nelmts; i++) { for (j = 0; j < src_size; j++) if (buf[i * src_size + j] != saved_buf[i * src_size + j]) break; if (j == src_size) continue; /*no error*/ /* Print errors */ if (0 == fails_this_test++) { HDsnprintf(str, sizeof(str), "\nTesting random sw derived floating-point -> derived floating-point conversions"); HDprintf("%-70s", str); HDfflush(stdout); H5_FAILED(); } HDprintf(" test %u elmt %u: \n", 1, (unsigned)i); HDprintf(" src = "); for (j = 0; j < src_size; j++) HDprintf(" %02x", saved_buf[i * src_size + ENDIAN(src_size, j, endian)]); HDmemcpy(aligned, saved_buf + i * sizeof(int), sizeof(int)); HDprintf(" %29d\n", *aligned); HDprintf(" dst = "); for (j = 0; j < src_size; j++) HDprintf(" %02x", buf[i * src_size + ENDIAN(src_size, j, endian)]); HDmemcpy(aligned, buf + i * sizeof(int), sizeof(int)); HDprintf(" %29d\n", *aligned); if (fails_this_test >= max_fails) { HDputs(" maximum failures reached, aborting test..."); goto error; } } fails_this_test = 0; HDfree(buf); HDfree(saved_buf); HDfree(aligned); buf = NULL; saved_buf = NULL; aligned = NULL; /*-------------------------------------------------------------------------- * 2nd floating-point type * size=3 byte, precision=24 bits, offset=0 bits, mantissa size=16 bits, * mantissa position=0, exponent size=7 bits, exponent position=16, exponent * bias=63. It can be illustrated in little-endian order as * * 2 1 0 * SEEEEEEE MMMMMMMM MMMMMMMM *--------------------------------------------------------------------------*/ if (H5Tset_fields(tid2, (size_t)23, (size_t)16, (size_t)7, (size_t)0, (size_t)16) < 0) { H5_FAILED(); HDprintf("Can't set fields\n"); goto error; } if (H5Tset_offset(tid2, (size_t)0) < 0) { H5_FAILED(); HDprintf("Can't set offset\n"); goto error; } if (H5Tset_precision(tid2, (size_t)24) < 0) { H5_FAILED(); HDprintf("Can't set precision 2\n"); goto error; } if (H5Tset_size(tid2, (size_t)3) < 0) { H5_FAILED(); HDprintf("Can't set size\n"); goto error; } if (H5Tset_ebias(tid2, (size_t)63) < 0) { H5_FAILED(); HDprintf("Can't set size\n"); goto error; } if (H5Tset_pad(tid2, H5T_PAD_ZERO, H5T_PAD_ZERO) < 0) { H5_FAILED(); HDprintf("Can't set padding\n"); goto error; } if (H5Tcommit2(file, "new float type 2", tid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) { H5_FAILED(); HDprintf("Can't set inpad\n"); goto error; } if (H5Tclose(tid2) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if ((tid2 = H5Topen2(file, "new float type 2", H5P_DEFAULT)) < 0) FAIL_PUTS_ERROR("Can't open datatype") if (H5Tget_fields(tid2, &spos, &epos, &esize, &mpos, &msize) < 0) { H5_FAILED(); HDprintf("Can't get fields\n"); goto error; } if (spos != 23 || epos != 16 || esize != 7 || mpos != 0 || msize != 16) { H5_FAILED(); HDprintf("Wrong field values\n"); goto error; } if (H5Tget_precision(tid2) != 24) { H5_FAILED(); HDprintf("Can't get precision or wrong precision\n"); goto error; } if (H5Tget_offset(tid2) != 0) { H5_FAILED(); HDprintf("Can't get offset or wrong offset\n"); goto error; } if ((size = H5Tget_size(tid2)) != 3) { H5_FAILED(); HDprintf("Can't get size or wrong size\n"); goto error; } if (H5Tget_ebias(tid2) != 63) { H5_FAILED(); HDprintf("Can't get exponent bias or wrong bias\n"); goto error; } /* Convert data from the 2nd to the 1st derived floating-point type. * Then convert data from the 1st type back to the 2nd type. * Compare the final data with the original data. */ src_size = H5Tget_size(tid2); dst_size = H5Tget_size(tid1); endian = H5Tget_order(tid2); buf = (unsigned char *)HDmalloc(nelmts * (MAX(src_size, dst_size))); saved_buf = (unsigned char *)HDmalloc(nelmts * src_size); HDmemset(buf, 0, nelmts * MAX(src_size, dst_size)); HDmemset(saved_buf, 0, nelmts * src_size); for (i = 0; i < nelmts * src_size; i++) buf[i] = saved_buf[i] = (unsigned char)HDrand(); /* Convert data from the 2nd to the 1st derived floating-point type. * The mantissa and exponent of the 2nd type are big enough to retain * the precision and exponent power. */ if (H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } /* Convert data from the 1st back to the 2nd derived floating-point type. */ if (H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } /* Are the values still the same?*/ for (i = 0; i < nelmts; i++) { for (j = 0; j < src_size; j++) if (buf[i * src_size + j] != saved_buf[i * src_size + j]) break; if (j == src_size) continue; /*no error*/ /* If original value is NaN(exponent bits are all ones, 11..11), * the library simply sets all mantissa bits to ones. So don't * compare values in this case. */ if ((buf[i * src_size + 2] == 0x7f && saved_buf[i * src_size + 2] == 0x7f) || (buf[i * src_size + 2] == 0xff && saved_buf[i * src_size + 2] == 0xff)) continue; /* Print errors */ if (0 == fails_this_test++) { HDsnprintf(str, sizeof(str), "\nTesting random sw derived floating-point -> derived floating-point conversions"); HDprintf("%-70s", str); HDfflush(stdout); H5_FAILED(); } HDprintf(" test %u elmt %u: \n", 1, (unsigned)i); HDprintf(" src = "); for (j = 0; j < src_size; j++) HDprintf(" %02x", saved_buf[i * src_size + ENDIAN(src_size, j, endian)]); HDprintf("\n"); HDprintf(" dst = "); for (j = 0; j < src_size; j++) HDprintf(" %02x", buf[i * src_size + ENDIAN(src_size, j, endian)]); HDprintf("\n"); if (fails_this_test >= max_fails) { HDputs(" maximum failures reached, aborting test..."); goto error; } } if (buf) HDfree(buf); if (saved_buf) HDfree(saved_buf); if (H5Tclose(tid1) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if (H5Tclose(tid2) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if (H5Pclose(dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't close property list\n"); goto error; } if (H5Fclose(file) < 0) { H5_FAILED(); HDprintf("Can't close file\n"); goto error; } /* end if */ PASSED(); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return 0; error: if (buf) HDfree(buf); if (saved_buf) HDfree(saved_buf); if (aligned) HDfree(aligned); HDfflush(stdout); H5E_BEGIN_TRY { H5Tclose(tid1); H5Tclose(tid2); H5Pclose(dxpl_id); H5Fclose(file); } H5E_END_TRY; /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return MAX((int)fails_this_test, 1); } /*------------------------------------------------------------------------- * Function: test_derived_integer * * Purpose: Tests user-define and query functions of integer types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Saturday, Jan 29, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int test_derived_integer(void) { hid_t file = -1, tid1 = -1, tid2 = -1; hid_t dxpl_id = -1; char filename[1024]; size_t src_size, dst_size; unsigned char *buf = NULL, *saved_buf = NULL; int endian; /*endianess */ size_t nelmts = NTESTELEM; unsigned int fails_this_test = 0; const size_t max_fails = 40; /*max number of failures*/ char str[256]; /*message string */ unsigned int i, j; TESTING("user-define and query functions of integer types"); /* Create File */ h5_fixname(FILENAME[1], H5P_DEFAULT, filename, sizeof filename); if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT)) < 0) { H5_FAILED(); HDprintf("Can't create file\n"); goto error; } if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) { H5_FAILED(); HDprintf("Can't create data transfer property list\n"); goto error; } if ((tid1 = H5Tcopy(H5T_STD_I32LE)) < 0) { H5_FAILED(); HDprintf("Can't copy data type\n"); goto error; } if ((tid2 = H5Tcopy(H5T_STD_U64LE)) < 0) { H5_FAILED(); HDprintf("Can't copy data type\n"); goto error; } /*-------------------------------------------------------------------------- * 1st integer type * size=3 byte, precision=24 bits, offset=0 bits, order=big endian. * It can be illustrated in big-endian order as * * 0 1 2 * SIIIIIII IIIIIIII IIIIIIII * * There's no specific order for these functions to define the attributes * of a new integer type, H5Tset_precision, H5Tset_offset, H5Tset_size, * H5Tset_order, H5Tset_pad, H5Tset_sign. *--------------------------------------------------------------------------*/ if (H5Tset_offset(tid1, (size_t)0) < 0) { H5_FAILED(); HDprintf("Can't set offset\n"); goto error; } if (H5Tset_size(tid1, (size_t)3) < 0) { H5_FAILED(); HDprintf("Can't set size\n"); goto error; } if (H5Tset_precision(tid1, (size_t)24) < 0) { H5_FAILED(); HDprintf("Can't set precision\n"); goto error; } if (H5Tset_order(tid1, H5T_ORDER_BE) < 0) { H5_FAILED(); HDprintf("Can't set order\n"); goto error; } if (H5Tcommit2(file, "new integer type 1", tid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) { H5_FAILED(); HDprintf("Can't commit data type\n"); goto error; } if (H5Tclose(tid1) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if ((tid1 = H5Topen2(file, "new integer type 1", H5P_DEFAULT)) < 0) FAIL_PUTS_ERROR("Can't open datatype") if (H5Tget_precision(tid1) != 24) { H5_FAILED(); HDprintf("Can't get precision or wrong precision\n"); goto error; } if (H5Tget_offset(tid1) != 0) { H5_FAILED(); HDprintf("Can't get offset or wrong offset\n"); goto error; } if (H5Tget_size(tid1) != 3) { H5_FAILED(); HDprintf("Can't get size or wrong size\n"); goto error; } if (H5Tget_order(tid1) != H5T_ORDER_BE) { H5_FAILED(); HDprintf("Can't get order or wrong order\n"); goto error; } /*-------------------------------------------------------------------------- * 2nd integer type * size=8 byte, precision=48 bits, offset=10 bits, order=little endian. * It can be illustrated in little-endian order as * * 7 6 5 4 3 2 1 0 * ??????SI IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIIIII IIIIII?? ???????? *--------------------------------------------------------------------------*/ if (H5Tset_precision(tid2, (size_t)48) < 0) { H5_FAILED(); HDprintf("Can't set precision\n"); goto error; } if (H5Tset_offset(tid2, (size_t)10) < 0) { H5_FAILED(); HDprintf("Can't set offset\n"); goto error; } if (H5Tset_sign(tid2, H5T_SGN_2) < 0) { H5_FAILED(); HDprintf("Can't set offset\n"); goto error; } if (H5Tcommit2(file, "new integer type 2", tid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT) < 0) { H5_FAILED(); HDprintf("Can't commit data type\n"); goto error; } if (H5Tclose(tid2) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if ((tid2 = H5Topen2(file, "new integer type 2", H5P_DEFAULT)) < 0) FAIL_PUTS_ERROR("Can't open datatype") if (H5Tget_precision(tid2) != 48) { H5_FAILED(); HDprintf("Can't get precision or wrong precision\n"); goto error; } if (H5Tget_offset(tid2) != 10) { H5_FAILED(); HDprintf("Can't get offset or wrong offset\n"); goto error; } if (H5Tget_size(tid2) != 8) { H5_FAILED(); HDprintf("Can't get size or wrong size\n"); goto error; } if (H5Tget_sign(tid2) != H5T_SGN_2) { H5_FAILED(); HDprintf("Can't get sign or wrong sign\n"); goto error; } /* Convert data from the 1st to the 2nd derived integer type. * Then convert data from the 2nd type back to the 1st type. * Compare the final data with the original data. */ src_size = H5Tget_size(tid1); dst_size = H5Tget_size(tid2); endian = H5Tget_order(tid1); buf = (unsigned char *)HDmalloc(nelmts * (MAX(src_size, dst_size))); saved_buf = (unsigned char *)HDmalloc(nelmts * src_size); HDmemset(buf, 0, nelmts * MAX(src_size, dst_size)); HDmemset(saved_buf, 0, nelmts * src_size); for (i = 0; i < nelmts * src_size; i++) buf[i] = saved_buf[i] = (unsigned char)HDrand(); /* Convert data from the 1st to the 2nd derived integer type. * The precision of the 2nd type are big enough to retain * the 1st type's precision. */ if (H5Tconvert(tid1, tid2, nelmts, buf, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } /* Convert data from the 2nd back to the 1st derived integer type. */ if (H5Tconvert(tid2, tid1, nelmts, buf, NULL, dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't convert data\n"); goto error; } /* Are the values still the same?*/ for (i = 0; i < nelmts; i++) { for (j = 0; j < src_size; j++) if (buf[i * src_size + j] != saved_buf[i * src_size + j]) break; if (j == src_size) continue; /*no error*/ /* Print errors */ if (0 == fails_this_test++) { HDsnprintf(str, sizeof(str), "\nTesting random sw derived integer -> derived integer conversions"); HDprintf("%-70s", str); HDfflush(stdout); H5_FAILED(); } HDprintf(" test %u elmt %u: \n", 1, (unsigned)i); HDprintf(" src = "); for (j = 0; j < src_size; j++) HDprintf(" %02x", saved_buf[i * src_size + ENDIAN(src_size, j, endian)]); HDprintf("\n"); HDprintf(" dst = "); for (j = 0; j < src_size; j++) HDprintf(" %02x", buf[i * src_size + ENDIAN(src_size, j, endian)]); HDprintf("\n"); if (fails_this_test >= max_fails) { HDputs(" maximum failures reached, aborting test..."); goto error; } } if (H5Tclose(tid1) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if (H5Tclose(tid2) < 0) { H5_FAILED(); HDprintf("Can't close datatype\n"); goto error; } if (H5Pclose(dxpl_id) < 0) { H5_FAILED(); HDprintf("Can't close property list\n"); goto error; } if (H5Fclose(file) < 0) { H5_FAILED(); HDprintf("Can't close file\n"); goto error; } /* end if */ HDfree(buf); HDfree(saved_buf); PASSED(); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return 0; error: if (buf) HDfree(buf); if (saved_buf) HDfree(saved_buf); HDfflush(stdout); H5E_BEGIN_TRY { H5Tclose(tid1); H5Tclose(tid2); H5Pclose(dxpl_id); H5Fclose(file); } H5E_END_TRY; /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return MAX((int)fails_this_test, 1); } /*------------------------------------------------------------------------- * Function: test_conv_int_1 * * Purpose: Test conversion of integer values from SRC to DST. * These types should be any combination of: * * H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR * H5T_NATIVE_SHORT H5T_NATIVE_USHORT * H5T_NATIVE_INT H5T_NATIVE_UINT * H5T_NATIVE_LONG H5T_NATIVE_ULONG * H5T_NATIVE_LLONG H5T_NATIVE_ULLONG * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Monday, November 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_1(const char *name, hid_t src, hid_t dst) { size_t nelmts = 0; /*num values per test */ const size_t max_fails = 8; /*max number of failures*/ size_t fails_all_tests = 0; /*number of failures */ size_t fails_this_test; /*fails for this test */ char str[256]; /*hello string */ dtype_t src_type, dst_type; /*data types */ const char * src_type_name = NULL; /*source type name */ const char * dst_type_name = NULL; /*destination type name */ int endian; /*machine endianess */ size_t src_size, dst_size; /*type sizes */ unsigned char * buf = NULL; /*buffer for conversion */ unsigned char * saved = NULL; /*original values */ size_t j, k; /*counters */ unsigned char * hw = NULL; /*hardware conv result */ unsigned char src_bits[32]; /*src value in LE order */ unsigned char dst_bits[32]; /*dest value in LE order*/ size_t src_nbits; /*source length in bits */ size_t dst_nbits; /*dst length in bits */ H5T_sign_t src_sign; /*source sign type */ H5T_sign_t dst_sign; /*dst sign type */ void * aligned = NULL; /*aligned temp buffer */ signed char hw_char; unsigned char hw_uchar; short hw_short; unsigned short hw_ushort; int hw_int; unsigned hw_uint; long hw_long; unsigned long hw_ulong; long long hw_llong; unsigned long long hw_ullong; /* What are the names of the source and destination types */ if (H5Tequal(src, H5T_NATIVE_SCHAR)) { src_type_name = "signed char"; src_type = INT_SCHAR; } else if (H5Tequal(src, H5T_NATIVE_UCHAR)) { src_type_name = "unsigned char"; src_type = INT_UCHAR; } else if (H5Tequal(src, H5T_NATIVE_SHORT)) { src_type_name = "short"; src_type = INT_SHORT; } else if (H5Tequal(src, H5T_NATIVE_USHORT)) { src_type_name = "unsigned short"; src_type = INT_USHORT; } else if (H5Tequal(src, H5T_NATIVE_INT)) { src_type_name = "int"; src_type = INT_INT; } else if (H5Tequal(src, H5T_NATIVE_UINT)) { src_type_name = "unsigned int"; src_type = INT_UINT; } else if (H5Tequal(src, H5T_NATIVE_LONG)) { src_type_name = "long"; src_type = INT_LONG; } else if (H5Tequal(src, H5T_NATIVE_ULONG)) { src_type_name = "unsigned long"; src_type = INT_ULONG; } else if (H5Tequal(src, H5T_NATIVE_LLONG)) { src_type_name = "long long"; src_type = INT_LLONG; } else if (H5Tequal(src, H5T_NATIVE_ULLONG)) { src_type_name = "unsigned long long"; src_type = INT_ULLONG; } else { src_type_name = "UNKNOWN"; src_type = OTHER; } if (H5Tequal(dst, H5T_NATIVE_SCHAR)) { dst_type_name = "signed char"; dst_type = INT_SCHAR; } else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) { dst_type_name = "unsigned char"; dst_type = INT_UCHAR; } else if (H5Tequal(dst, H5T_NATIVE_SHORT)) { dst_type_name = "short"; dst_type = INT_SHORT; } else if (H5Tequal(dst, H5T_NATIVE_USHORT)) { dst_type_name = "unsigned short"; dst_type = INT_USHORT; } else if (H5Tequal(dst, H5T_NATIVE_INT)) { dst_type_name = "int"; dst_type = INT_INT; } else if (H5Tequal(dst, H5T_NATIVE_UINT)) { dst_type_name = "unsigned int"; dst_type = INT_UINT; } else if (H5Tequal(dst, H5T_NATIVE_LONG)) { dst_type_name = "long"; dst_type = INT_LONG; } else if (H5Tequal(dst, H5T_NATIVE_ULONG)) { dst_type_name = "unsigned long"; dst_type = INT_ULONG; } else if (H5Tequal(dst, H5T_NATIVE_LLONG)) { dst_type_name = "long long"; dst_type = INT_LLONG; } else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) { dst_type_name = "unsigned long long"; dst_type = INT_ULLONG; } else { dst_type_name = "UNKNOWN"; dst_type = OTHER; } /* Sanity checks */ if (OTHER == src_type || OTHER == dst_type) { HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); H5_FAILED(); HDputs(" Unknown data type."); goto error; } else { HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); HDfflush(stdout); fails_this_test = 0; } /* Some information about datatypes */ endian = H5Tget_order(H5T_NATIVE_INT); src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ src_sign = H5Tget_sign(src); dst_sign = H5Tget_sign(dst); aligned = HDcalloc((size_t)1, sizeof(long long)); /* Allocate and initialize the source buffer through macro INIT_INTEGER. The BUF * will be used for the conversion while the SAVED buffer will be * used for the comparison later. */ if (src_type == INT_SCHAR) { INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_UCHAR) { INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_SHORT) { INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_USHORT) { INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_INT) { INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_UINT) { INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_LONG) { INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_ULONG) { INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_LLONG) { INIT_INTEGER(long long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_ULLONG) { INIT_INTEGER(unsigned long long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else goto error; /* Perform the conversion */ if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT) < 0) goto error; /* Check the results from the library against hardware */ for (j = 0; j < nelmts; j++) { if (INT_SCHAR == dst_type) { hw = (unsigned char *)&hw_char; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_char = (signed char)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_char = (signed char)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_char = (signed char)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_char = (signed char)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_char = (signed char)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_char = (signed char)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_char = (signed char)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_char = (signed char)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_char = (signed char)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_char = (signed char)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_UCHAR == dst_type) { hw = (unsigned char *)&hw_uchar; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_uchar = (unsigned char)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_uchar = (unsigned char)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_uchar = (unsigned char)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_uchar = (unsigned char)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_uchar = (unsigned char)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_uchar = (unsigned char)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_uchar = (unsigned char)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_uchar = (unsigned char)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_uchar = (unsigned char)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_uchar = (unsigned char)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_SHORT == dst_type) { hw = (unsigned char *)&hw_short; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(char), sizeof(char)); hw_short = (short)(*((char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_short = (short)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_short = (short)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_short = (short)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_short = (short)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_short = (short)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_short = (short)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_short = (short)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_short = (short)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_short = (short)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_USHORT == dst_type) { hw = (unsigned char *)&hw_ushort; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_ushort = (unsigned short)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_ushort = (unsigned short)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_ushort = (unsigned short)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_ushort = (unsigned short)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_ushort = (unsigned short)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_ushort = (unsigned short)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_ushort = (unsigned short)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_ushort = (unsigned short)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_ushort = (unsigned short)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_ushort = (unsigned short)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_INT == dst_type) { hw = (unsigned char *)&hw_int; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_int = (int)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_int = (int)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_int = (int)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_int = (int)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_int = (int)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_int = (int)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_int = (int)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_int = (int)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_int = (int)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_int = (int)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_UINT == dst_type) { hw = (unsigned char *)&hw_uint; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_uint = (unsigned int)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_uint = (unsigned int)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_uint = (unsigned int)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_uint = (unsigned int)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_uint = (unsigned int)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_uint = (unsigned int)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_uint = (unsigned int)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_uint = (unsigned int)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_uint = (unsigned int)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_uint = (unsigned int)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_LONG == dst_type) { hw = (unsigned char *)&hw_long; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_long = (long int)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_long = (long int)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_long = (long int)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_long = (long int)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_long = (long int)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_long = (long int)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_long = (long int)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_long = (long int)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_long = (long int)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_long = (long int)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_ULONG == dst_type) { hw = (unsigned char *)&hw_ulong; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_ulong = (unsigned long)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_ulong = (unsigned long)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_ulong = (unsigned long)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_ulong = (unsigned long)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_ulong = (unsigned long)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_ulong = (unsigned long)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_ulong = (unsigned long)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_ulong = (unsigned long)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_ulong = (unsigned long)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_ulong = (unsigned long)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_LLONG == dst_type) { hw = (unsigned char *)&hw_llong; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(char), sizeof(char)); hw_llong = (long long)(*((char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_llong = (long long)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_llong = (long long)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_llong = (long long)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_llong = (long long)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_llong = (long long)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_llong = (long long)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_llong = (long long)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_llong = (long long)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_llong = (long long)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_ULLONG == dst_type) { hw = (unsigned char *)&hw_ullong; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_ullong = (unsigned long long)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_ullong = (unsigned long long)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_ullong = (unsigned long long)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_ullong = (unsigned long long)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_ullong = (unsigned long long)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_ullong = (unsigned long long)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_ullong = (unsigned long long)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_ullong = (unsigned long long)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_ullong = (unsigned long long)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_ullong = (unsigned long long)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } /* Make certain that there isn't some weird number of destination bits */ assert(dst_nbits % 8 == 0); /* Are the two results the same? */ for (k = (dst_size - (dst_nbits / 8)); k < dst_size; k++) if (buf[j * dst_size + k] != hw[k]) break; if (k == dst_size) continue; /*no error*/ /* * Convert the source and destination values to little endian * order so we can use the HDF5 bit vector operations to test * certain things. These routines have already been tested by * the `bittests' program. */ for (k = 0; k < src_size; k++) src_bits[src_size - (k + 1)] = saved[j * src_size + ENDIAN(src_size, k, endian)]; for (k = 0; k < dst_size; k++) dst_bits[dst_size - (k + 1)] = buf[j * dst_size + ENDIAN(dst_size, k, endian)]; /* * Hardware usually doesn't handle overflows too gracefully. The * hardware conversion result during overflows is usually garbage * so we must handle those cases differetly when checking results. */ if (H5T_SGN_2 == src_sign && H5T_SGN_2 == dst_sign) { if (src_nbits > dst_nbits) { if (0 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) && H5T__bit_find(src_bits, dst_nbits - 1, (src_nbits - dst_nbits), H5T_BIT_MSB, 1) >= 0) { /* * Source is positive and the magnitude is too large for * the destination. The destination should be set to the * maximum possible value: 0x7f...f */ if (0 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } else if (1 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) && H5T__bit_find(src_bits, (size_t)0, src_nbits - 1, H5T_BIT_MSB, 0) + 1 >= (ssize_t)dst_nbits) { /* * Source is negative but the magnitude is too large for * the destination. The destination should be set to the * smallest possible value: 0x80...0 */ if (1 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 1) < 0) continue; /*no error*/ } } else if (src_nbits < dst_nbits) { /* Source is smaller than the destination */ if (0 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1)) { /* * Source is positive, so the excess bits in the * destination should be set to 0's. */ if (0 == H5T__bit_get_d(dst_bits, src_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, src_nbits, dst_nbits - src_nbits, H5T_BIT_LSB, 1) < 0) continue; /*no error*/ } else { /* * Source is negative, so the excess bits in the * destination should be set to 1's. */ if (1 == H5T__bit_get_d(dst_bits, src_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, src_nbits, dst_nbits - src_nbits, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } } } else if (H5T_SGN_2 == src_sign && H5T_SGN_NONE == dst_sign) { if (H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1)) { /* * The source is negative so the result should be zero. * The source is negative if the most significant bit is * set. The destination is zero if all bits are zero. */ if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 1) < 0) continue; /*no error*/ } else if (src_nbits > dst_nbits && H5T__bit_find(src_bits, dst_nbits - 1, src_nbits - dst_nbits, H5T_BIT_LSB, 1) >= 0) { /* * The source is a value with a magnitude too large for * the destination. The destination should be the * largest possible value: 0xff...f */ if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } } else if (H5T_SGN_NONE == src_sign && H5T_SGN_2 == dst_sign) { if (src_nbits >= dst_nbits && H5T__bit_find(src_bits, dst_nbits - 1, (src_nbits - dst_nbits) + 1, H5T_BIT_LSB, 1) >= 0) { /* * The source value has a magnitude that is larger than * the destination can handle. The destination should be * set to the largest possible positive value: 0x7f...f */ if (0 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } } else { if (src_nbits > dst_nbits && H5T__bit_find(src_bits, dst_nbits, src_nbits - dst_nbits, H5T_BIT_LSB, 1) >= 0) { /* * The unsigned source has a value which is too large for * the unsigned destination. The destination should be * set to the largest possible value: 0xff...f */ if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } } /* Print errors */ if (0 == fails_this_test++) H5_FAILED(); HDprintf(" elmt %u\n", (unsigned)j); HDprintf(" src = "); for (k = 0; k < src_size; k++) HDprintf(" %02x", saved[j * src_size + ENDIAN(src_size, k, endian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)dst_size - (ssize_t)src_size)), ""); switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); HDprintf(" %29d\n", (int)*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); HDprintf(" %29hd\n", *((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); HDprintf(" %29hu\n", *((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); HDprintf(" %29d\n", *((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); HDprintf(" %29u\n", *((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); HDprintf(" %29ld\n", *((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); HDprintf(" %29lu\n", *((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "d\n", *((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "u\n", *((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } HDprintf(" dst = "); for (k = 0; k < dst_size; k++) HDprintf(" %02x", buf[j * dst_size + ENDIAN(dst_size, k, endian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: HDmemcpy(aligned, buf + j * sizeof(signed char), sizeof(signed char)); HDprintf(" %29d\n", (int)*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, buf + j * sizeof(unsigned char), sizeof(unsigned char)); HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, buf + j * sizeof(short), sizeof(short)); HDprintf(" %29hd\n", *((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, buf + j * sizeof(unsigned short), sizeof(unsigned short)); HDprintf(" %29hu\n", *((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, buf + j * sizeof(int), sizeof(int)); HDprintf(" %29d\n", *((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, buf + j * sizeof(unsigned), sizeof(unsigned)); HDprintf(" %29u\n", *((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, buf + j * sizeof(long), sizeof(long)); HDprintf(" %29ld\n", *((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, buf + j * sizeof(unsigned long), sizeof(unsigned long)); HDprintf(" %29lu\n", *((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, buf + j * sizeof(long long), sizeof(long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "d\n", *((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, buf + j * sizeof(long long), sizeof(unsigned long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "u\n", *((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } HDprintf(" ans = "); for (k = 0; k < dst_size; k++) HDprintf(" %02x", hw[ENDIAN(dst_size, k, endian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: HDprintf(" %29d\n", (int)*((signed char *)((void *)hw))); break; case INT_UCHAR: HDprintf(" %29u\n", (unsigned)*((unsigned char *)((void *)hw))); break; case INT_SHORT: HDprintf(" %29hd\n", *((short *)((void *)hw))); break; case INT_USHORT: HDprintf(" %29hu\n", *((unsigned short *)((void *)hw))); break; case INT_INT: HDprintf(" %29d\n", *((int *)((void *)hw))); break; case INT_UINT: HDprintf(" %29u\n", *((unsigned *)((void *)hw))); break; case INT_LONG: HDprintf(" %29ld\n", *((long *)((void *)hw))); break; case INT_ULONG: HDprintf(" %29lu\n", *((unsigned long *)((void *)hw))); break; case INT_LLONG: HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "d\n", *((long long *)((void *)hw))); break; case INT_ULLONG: HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "u\n", *((unsigned long long *)((void *)hw))); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } if (++fails_all_tests >= max_fails) { HDputs(" maximum failures reached, aborting test..."); HDputs(" (dst is library's conversion output. ans is compiler's conversion output.)"); goto done; } } PASSED(); done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return (int)fails_all_tests; error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ return MAX((int)fails_all_tests, 1); } /*------------------------------------------------------------------------- * Function: test_conv_int_2 * * Purpose: Tests overlap calculates in H5T__conv_i_i(), which should be * the same as for H5T__conv_f_f() and H5T__conv_s_s(). * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Friday, April 30, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_2(void) { int i, j; hid_t src_type, dst_type; char *buf; HDprintf("%-70s", "Testing overlap calculations"); HDfflush(stdout); buf = (char *)HDcalloc(TMP_BUF_DIM1, TMP_BUF_DIM2); HDassert(buf); for (i = 1; i <= TMP_BUF_DIM1; i++) { for (j = 1; j <= TMP_BUF_DIM1; j++) { /* Source type */ src_type = H5Tcopy(H5T_NATIVE_CHAR); H5Tset_size(src_type, (size_t)i); /* Destination type */ dst_type = H5Tcopy(H5T_NATIVE_CHAR); H5Tset_size(dst_type, (size_t)j); /* * Conversion. If overlap calculations aren't right then an * assertion will fail in H5T__conv_i_i() */ H5Tconvert(src_type, dst_type, (size_t)TMP_BUF_DIM2, buf, NULL, H5P_DEFAULT); H5Tclose(src_type); H5Tclose(dst_type); } } PASSED(); HDfree(buf); return 0; } /*------------------------------------------------------------------------- * Function: my_isnan * * Purpose: Determines whether VAL points to NaN. * * Return: TRUE or FALSE * * Programmer: Robb Matzke * Monday, July 6, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int my_isnan(dtype_t type, void *val) { int retval = 0; char s[256]; if (FLT_FLOAT == type) { float x = 0.0; HDmemcpy(&x, val, sizeof(float)); retval = (x != x); } else if (FLT_DOUBLE == type) { double x = 0.0; HDmemcpy(&x, val, sizeof(double)); retval = (x != x); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (FLT_LDOUBLE == type) { long double x = 0.0; HDmemcpy(&x, val, sizeof(long double)); retval = (x != x); #endif } else { return 0; } /* * Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if * the result contains a NaN string. */ if (!retval) { if (FLT_FLOAT == type) { float x = 0.0; HDmemcpy(&x, val, sizeof(float)); HDsnprintf(s, sizeof(s), "%g", (double)x); } else if (FLT_DOUBLE == type) { double x = 0.0; HDmemcpy(&x, val, sizeof(double)); HDsnprintf(s, sizeof(s), "%g", x); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (FLT_LDOUBLE == type) { long double x = 0.0; HDmemcpy(&x, val, sizeof(long double)); HDsnprintf(s, sizeof(s), "%Lg", x); #endif } else { return 0; } if (HDstrstr(s, "NaN") || HDstrstr(s, "NAN") || HDstrstr(s, "nan")) retval = 1; } return retval; } /*------------------------------------------------------------------------- * Function: my_isinf * * Purpose: Determines whether VAL points to +/-infinity. * * Return: TRUE or FALSE * * Programmer: Raymond Lu * Monday, June 20, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int my_isinf(int endian, const unsigned char *val, size_t size, size_t mpos, size_t msize, size_t epos, size_t esize) { unsigned char *bits; int retval = 0; size_t i; bits = (unsigned char *)HDcalloc((size_t)1, size); for (i = 0; i < size; i++) bits[size - (i + 1)] = *(val + ENDIAN(size, i, endian)); if (H5T__bit_find(bits, mpos, msize, H5T_BIT_LSB, 1) < 0 && H5T__bit_find(bits, epos, esize, H5T_BIT_LSB, 0) < 0) retval = 1; HDfree(bits); return retval; } /*------------------------------------------------------------------------- * Function: test_conv_flt_1 * * Purpose: Test conversion of floating point values from SRC to * DST. These types should be H5T_NATIVE_FLOAT, * H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Tuesday, June 23, 1998 * * Modifications: * Albert Cheng, Apr 16, 2004 * Check for underflow condition. If the src number is * smaller than the dst MIN float number, consider it okay * if the converted sw and hw dst are both less than or * equal to the dst MIN float number. * *------------------------------------------------------------------------- */ static int test_conv_flt_1(const char *name, int run_test, hid_t src, hid_t dst) { dtype_t src_type, dst_type; /*data types */ size_t nelmts = 0; /*num values per test */ const size_t max_fails = 8; /*max number of failures*/ size_t fails_all_tests = 0; /*number of failures */ size_t fails_this_test; /*fails for this test */ const char * src_type_name = NULL; /*source type name */ const char * dst_type_name = NULL; /*destination type name */ size_t src_size, dst_size; /*type sizes */ unsigned char *buf = NULL; /*buffer for conversion */ unsigned char *saved = NULL; /*original values */ char str[256]; /*hello string */ void * aligned = NULL; /*aligned buffer */ float hw_f; /*hardware-converted */ double hw_d; /*hardware-converted */ #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE long double hw_ld; /*hardware-converted */ #endif unsigned char *hw = NULL; /*ptr to hardware-conv'd*/ int underflow; /*underflow occurred */ int overflow = 0; /*overflow occurred */ int uflow = 0; /*underflow debug counters*/ size_t j, k; /*counters */ int sendian; /* source type endianess */ int dendian; /* Destination type endianess */ size_t dst_ebias; /* Destination type's exponent bias */ size_t src_epos; /* Source type's exponent position */ size_t src_esize; /* Source type's exponent size */ size_t dst_epos; /* Destination type's exponent position */ size_t dst_esize; /* Destination type's exponent size */ size_t dst_mpos; /* Destination type's mantissa position */ size_t dst_msize; /* Destination type's mantissa size */ size_t src_nbits; /* source length in bits */ size_t dst_nbits; /* dst length in bits */ #ifdef HANDLE_SIGFPE pid_t child_pid; /*process ID of child */ int status; /*child exit status */ /* * Some systems generage SIGFPE during floating point overflow and we * cannot assume that we can continue from such a signal. Therefore, we * fork here and let the child run the test and return the number of * failures with the exit status. */ HDfflush(stdout); HDfflush(stderr); if ((child_pid = fork()) < 0) { HDperror("fork"); return 1; } else if (child_pid > 0) { while (child_pid != waitpid(child_pid, &status, 0)) /*void*/ ; if (WIFEXITED(status) && 255 == WEXITSTATUS(status)) { return 0; /*child exit after catching SIGFPE*/ } else if (WIFEXITED(status)) { return WEXITSTATUS(status); } else if (WIFSIGNALED(status)) { HDsnprintf(str, sizeof(str), " Child caught signal %d.", WTERMSIG(status)); HDputs(str); return 1; /*child exit after catching non-SIGFPE signal */ } else { HDputs(" Child didn't exit normally."); return 1; } } #endif /* * The remainder of this function is executed only by the child if * HANDLE_SIGFPE is defined. */ HDsignal(SIGFPE, fpe_handler); /* What are the names of the source and destination types */ if (H5Tequal(src, H5T_NATIVE_FLOAT)) { src_type_name = "float"; src_type = FLT_FLOAT; } else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) { src_type_name = "double"; src_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) { src_type_name = "long double"; src_type = FLT_LDOUBLE; #endif } else { src_type_name = "UNKNOWN"; src_type = OTHER; } if (H5Tequal(dst, H5T_NATIVE_FLOAT)) { dst_type_name = "float"; dst_type = FLT_FLOAT; } else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) { dst_type_name = "double"; dst_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) { dst_type_name = "long double"; dst_type = FLT_LDOUBLE; #endif } else { dst_type_name = "UNKNOWN"; dst_type = OTHER; } /* Sanity checks */ if (sizeof(float) == sizeof(double)) HDputs("Sizeof(float)==sizeof(double) - some tests may not be sensible."); if (OTHER == src_type || OTHER == dst_type) { if (!strcmp(name, "noop")) HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_SPECIAL) HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_NORMAL) HDsnprintf(str, sizeof(str), "Testing %s normalized %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_DENORM) HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); H5_FAILED(); HDputs(" Unknown data type."); goto error; } else { if (!strcmp(name, "noop")) HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_SPECIAL) HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_NORMAL) HDsnprintf(str, sizeof(str), "Testing %s normalized %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_DENORM) HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); HDfflush(stdout); fails_this_test = 0; } /* Get "interesting" values */ src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ dst_ebias = H5Tget_ebias(dst); H5Tget_fields(src, NULL, &src_epos, &src_esize, NULL, NULL); H5Tget_fields(dst, NULL, &dst_epos, &dst_esize, &dst_mpos, &dst_msize); sendian = H5Tget_order(src); dendian = H5Tget_order(dst); /* Allocate buffers */ aligned = HDcalloc((size_t)1, MAX(sizeof(long double), sizeof(double))); /* Allocate and initialize the source buffer through macro INIT_FP_NORM or INIT_FP_SPECIAL. * The BUF will be used for the conversion while the SAVED buffer will be used for * the comparison later. INIT_FP_NORM will fill in the buffer with regular values like * normalized and denormalized values; INIT_FP_SPECIAL will fill with special values * like infinity, NaN. */ switch (run_test) { case TEST_NOOP: case TEST_NORMAL: if (src_type == FLT_FLOAT) { INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if (src_type == FLT_DOUBLE) { INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (src_type == FLT_LDOUBLE) { INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); #endif } else goto error; break; case TEST_DENORM: if (src_type == FLT_FLOAT) { INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else if (src_type == FLT_DOUBLE) { INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (src_type == FLT_LDOUBLE) { INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); #endif } else goto error; break; case TEST_SPECIAL: if (src_type == FLT_FLOAT) { INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts); } else if (src_type == FLT_DOUBLE) { INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (src_type == FLT_LDOUBLE) { INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts); #endif } else goto error; break; default: goto error; } /* Perform the conversion in software */ if (H5Tconvert(src, dst, nelmts, buf, NULL, H5P_DEFAULT) < 0) goto error; /* Check the software results against the hardware */ for (j = 0; j < nelmts; j++) { underflow = 0; hw_f = 911.0f; hw_d = 911.0f; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE hw_ld = 911.0f; #endif /* The hardware conversion */ /* Check for underflow when src is a "larger" float than dst.*/ if (FLT_FLOAT == src_type) { HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); if (FLT_FLOAT == dst_type) { hw_f = *((float *)aligned); hw = (unsigned char *)&hw_f; } else if (FLT_DOUBLE == dst_type) { hw_d = *((float *)aligned); hw = (unsigned char *)&hw_d; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE } else { hw_ld = *((float *)aligned); hw = (unsigned char *)&hw_ld; #endif } } else if (FLT_DOUBLE == src_type) { HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); if (FLT_FLOAT == dst_type) { hw_f = (float)(*((double *)aligned)); hw = (unsigned char *)&hw_f; underflow = HDfabs(*((double *)aligned)) < (double)FLT_MIN; overflow = HDfabs(*((double *)aligned)) > (double)FLT_MAX; } else if (FLT_DOUBLE == dst_type) { hw_d = *((double *)aligned); hw = (unsigned char *)&hw_d; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE } else { hw_ld = *((double *)aligned); hw = (unsigned char *)&hw_ld; #endif } #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE } else { HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); if (FLT_FLOAT == dst_type) { hw_f = (float)*((long double *)aligned); hw = (unsigned char *)&hw_f; underflow = HDfabsl(*((long double *)aligned)) < FLT_MIN; overflow = HDfabsl(*((long double *)aligned)) > FLT_MAX; } else if (FLT_DOUBLE == dst_type) { hw_d = (double)*((long double *)aligned); hw = (unsigned char *)&hw_d; underflow = HDfabsl(*((long double *)aligned)) < DBL_MIN; overflow = HDfabsl(*((long double *)aligned)) > DBL_MAX; } else { hw_ld = *((long double *)aligned); hw = (unsigned char *)&hw_ld; } #endif } if (underflow) { uflow++; } /* For Intel machines, the size of "long double" is 12 bytes, precision * is 80 bits; for Intel IA64 and AMD processors, the size of "long double" * is 16 bytes, precision is 80 bits. During hardware conversion, the * last few unused bytes may have garbage in them. Clean them out with * 0s before compare the values. */ #if H5_SIZEOF_LONG_DOUBLE != 0 if (sendian == H5T_ORDER_LE && dst_type == FLT_LDOUBLE) { size_t q; for (q = dst_nbits / 8; q < dst_size; q++) { buf[j * dst_size + q] = 0x00; hw[q] = 0x00; } } #endif /* Are the two results the same? */ for (k = (dst_size - (dst_nbits / 8)); k < dst_size; k++) if (buf[j * dst_size + k] != hw[k]) break; if (k == dst_size) continue; /*no error*/ /* * Assume same if both results are NaN. There are many NaN bit * patterns and the software doesn't attemt to emulate the * hardware in this regard. Instead, software uses a single bit * pattern for NaN by setting the significand to all ones. */ if (FLT_FLOAT == dst_type && my_isnan(dst_type, buf + j * sizeof(float)) && my_isnan(dst_type, hw)) { continue; } else if (FLT_DOUBLE == dst_type && my_isnan(dst_type, buf + j * sizeof(double)) && my_isnan(dst_type, hw)) { continue; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (FLT_LDOUBLE == dst_type && my_isnan(dst_type, buf + j * sizeof(long double)) && my_isnan(dst_type, hw)) { continue; #endif } /* * Assume same if hardware result is NaN. This is because the * hardware conversions on some machines return NaN instead of * overflowing to +Inf or -Inf or underflowing to +0 or -0. */ if (my_isnan(dst_type, hw)) continue; /* * Instead of matching down to the bit, just make sure the * exponents are the same and the mantissa is the same to a * certain precision. This is needed on machines that don't * round as expected. * If the src number is smaller than the dst MIN float number, * consider it okay if the converted sw and hw dst are both * less than or equal to the dst MIN float number. * If overflow happens when the src value is greater than * the maximum dst value, the library assign INFINITY to dst. * This might be different from what the compiler does, i.e. * the SGI compiler assigns the dst's maximal value. */ { double check_mant[2]; int check_expo[2]; if (FLT_FLOAT == dst_type) { float x = 0.0; HDmemcpy(&x, &buf[j * dst_size], sizeof(float)); if (underflow && HDfabsf(x) <= FLT_MIN && HDfabsf(hw_f) <= FLT_MIN) continue; /* all underflowed, no error */ if (overflow && my_isinf(dendian, buf + j * sizeof(float), dst_size, dst_mpos, dst_msize, dst_epos, dst_esize)) continue; /* all overflowed, no error */ check_mant[0] = HDfrexpf(x, check_expo + 0); check_mant[1] = HDfrexpf(hw_f, check_expo + 1); } else if (FLT_DOUBLE == dst_type) { double x = 0.0; HDmemcpy(&x, &buf[j * dst_size], sizeof(double)); if (underflow && HDfabs(x) <= DBL_MIN && HDfabs(hw_d) <= DBL_MIN) continue; /* all underflowed, no error */ if (overflow && my_isinf(dendian, buf + j * sizeof(double), dst_size, dst_mpos, dst_msize, dst_epos, dst_esize)) continue; /* all overflowed, no error */ check_mant[0] = HDfrexp(x, check_expo + 0); check_mant[1] = HDfrexp(hw_d, check_expo + 1); #if H5_SIZEOF_LONG_DOUBLE != 0 && (H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE) } else { long double x = 0.0; HDmemcpy(&x, &buf[j * dst_size], sizeof(long double)); /* dst is largest float, no need to check underflow. */ check_mant[0] = (double)HDfrexpl(x, check_expo + 0); check_mant[1] = (double)HDfrexpl(hw_ld, check_expo + 1); #endif } /* Special check for denormalized values */ if (check_expo[0] < (-(int)dst_ebias) || check_expo[1] < (-(int)dst_ebias)) { int expo_diff = check_expo[0] - check_expo[1]; int valid_bits = (int)((dst_ebias + dst_msize) + (size_t)MIN(check_expo[0], check_expo[1])) - 1; double epsilon = 1.0F; /* Re-scale the mantissas based on any exponent difference */ if (expo_diff != 0) check_mant[0] = HDldexp(check_mant[0], expo_diff); /* Compute the proper epsilon */ epsilon = HDldexp(epsilon, -valid_bits); /* Check for "close enough" fit with scaled epsilon value */ if (HDfabs(check_mant[0] - check_mant[1]) <= epsilon) continue; } /* end if */ else { if (check_expo[0] == check_expo[1] && HDfabs(check_mant[0] - check_mant[1]) < (double)FP_EPSILON) continue; } /* end else */ } if (0 == fails_this_test++) { if (run_test == TEST_NOOP || run_test == TEST_NORMAL) { H5_FAILED(); } else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) { H5_WARNING(); } } HDprintf(" elmt %u\n", (unsigned)j); HDprintf(" src ="); for (k = 0; k < src_size; k++) HDprintf(" %02x", saved[j * src_size + ENDIAN(src_size, k, sendian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)dst_size - (ssize_t)src_size)), ""); if (FLT_FLOAT == src_type) { float x = 0.0; HDmemcpy(&x, &saved[j * src_size], sizeof(float)); HDprintf(" %29.20e\n", (double)x); } else if (FLT_DOUBLE == src_type) { double x = 0.0; HDmemcpy(&x, &saved[j * src_size], sizeof(double)); HDprintf(" %29.20e\n", x); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE } else { long double x = 0.0; HDmemcpy(&x, &saved[j * src_size], sizeof(long double)); HDfprintf(stdout, " %29.20Le\n", x); #endif } HDprintf(" dst ="); for (k = 0; k < dst_size; k++) HDprintf(" %02x", buf[j * dst_size + ENDIAN(dst_size, k, dendian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), ""); if (FLT_FLOAT == dst_type) { float x = 0.0; HDmemcpy(&x, &buf[j * dst_size], sizeof(float)); HDprintf(" %29.20e\n", (double)x); } else if (FLT_DOUBLE == dst_type) { double x = 0.0; HDmemcpy(&x, &buf[j * dst_size], sizeof(double)); HDprintf(" %29.20e\n", x); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE } else { long double x = 0.0; HDmemcpy(&x, &buf[j * dst_size], sizeof(long double)); HDfprintf(stdout, " %29.20Le\n", x); #endif } HDprintf(" ans ="); for (k = 0; k < dst_size; k++) HDprintf(" %02x", hw[ENDIAN(dst_size, k, dendian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), ""); if (FLT_FLOAT == dst_type) HDprintf(" %29.20e\n", (double)hw_f); else if (FLT_DOUBLE == dst_type) HDprintf(" %29.20e\n", hw_d); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE else HDfprintf(stdout, " %29.20Le\n", hw_ld); #endif /* If the source is normalized values, print out error message; if it is * denormalized or special values, print out warning message.*/ if (++fails_all_tests >= max_fails) { if (run_test == TEST_NORMAL) HDputs(" maximum failures reached, aborting test..."); else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) HDputs(" maximum warnings reached, aborting test..."); HDputs(" (dst is library's conversion output. ans is compiler's conversion output.)"); goto done; } } if (!fails_all_tests) PASSED(); done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); #ifdef HANDLE_SIGFPE if (run_test == TEST_NOOP || run_test == TEST_NORMAL) HDexit(MIN((int)fails_all_tests, 254)); else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) HDexit(EXIT_SUCCESS); HDassert(0 && "Should not reach this point!"); return 1; #else /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /* If the source is normalized values, treat the failures as error; * if it is denormalized or special values, treat the failure as warning.*/ if (run_test == TEST_NOOP || run_test == TEST_NORMAL) return (int)fails_all_tests; else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) return 0; #endif error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); #ifdef HANDLE_SIGFPE if (run_test == TEST_NOOP || run_test == TEST_NORMAL) HDexit(MIN(MAX((int)fails_all_tests, 1), 254)); else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) HDexit(EXIT_FAILURE); HDassert(0 && "Should not reach this point!"); return 1; #else /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); if (run_test == TEST_NOOP || run_test == TEST_NORMAL) return MAX((int)fails_all_tests, 1); else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) return 1; #endif } /*------------------------------------------------------------------------- * Function: test_conv_int_fp * * Purpose: Test conversion between integer and float values * from SRC to DST. These types should be any combination of: * * H5T_NATIVE_SCHAR H5T_NATIVE_FLOAT * H5T_NATIVE_SHORT H5T_NATIVE_DOUBLE * H5T_NATIVE_INT H5T_NATIVE_LDOUBLE * H5T_NATIVE_LONG * H5T_NATIVE_LLONG * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Thursday, November 6, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_fp(const char *name, int run_test, hid_t src, hid_t dst) { hid_t dxpl_id; /*dataset transfer property list*/ int fill_value = 9; /*fill value for conversion exception*/ H5T_conv_except_func_t op; /*returned callback function for conversion exception*/ void * user_data; /*returned pointer to user data passed in to the callback*/ hbool_t except_set = FALSE; /*whether user's exception handling is set*/ size_t nelmts = 0; /*num values per test */ const size_t max_fails = 40; /*max number of failures*/ size_t fails_all_tests = 0; /*number of failures */ size_t fails_this_test; /*fails for this test */ char str[256]; /*hello string */ dtype_t src_type; /*data types */ dtype_t dst_type; /*data types */ const char * src_type_name = NULL; /*source type name */ const char * dst_type_name = NULL; /*destination type name */ int sendian; /*source endianess */ int dendian; /*destination endianess */ size_t src_size, dst_size; /*type sizes */ unsigned char * buf = NULL; /*buffer for conversion */ unsigned char * saved = NULL; /*original values */ size_t j, k; /*counters */ unsigned char * hw = NULL; /*hardware conv result */ unsigned char src_bits[32]; /*src value in LE order */ unsigned char dst_bits[32]; /*dest value in LE order*/ size_t src_nbits; /*source length in bits */ size_t dst_nbits; /*dst length in bits */ void * aligned = NULL; /*aligned temp buffer */ float hw_float = 0; double hw_double = 0; long double hw_ldouble = 0; signed char hw_schar = 0; unsigned char hw_uchar = 0; short hw_short = 0; unsigned short hw_ushort = 0; int hw_int = 0; unsigned hw_uint = 0; long hw_long = 0; unsigned long hw_ulong = 0; long long hw_llong = 0; unsigned long long hw_ullong = 0; /* What is the name of the source type */ if (H5Tequal(src, H5T_NATIVE_SCHAR)) { src_type_name = "signed char"; src_type = INT_SCHAR; } else if (H5Tequal(src, H5T_NATIVE_UCHAR)) { src_type_name = "unsigned char"; src_type = INT_UCHAR; } else if (H5Tequal(src, H5T_NATIVE_SHORT)) { src_type_name = "short"; src_type = INT_SHORT; } else if (H5Tequal(src, H5T_NATIVE_USHORT)) { src_type_name = "unsigned short"; src_type = INT_USHORT; } else if (H5Tequal(src, H5T_NATIVE_INT)) { src_type_name = "int"; src_type = INT_INT; } else if (H5Tequal(src, H5T_NATIVE_UINT)) { src_type_name = "unsigned int"; src_type = INT_UINT; } else if (H5Tequal(src, H5T_NATIVE_LONG)) { src_type_name = "long"; src_type = INT_LONG; } else if (H5Tequal(src, H5T_NATIVE_ULONG)) { src_type_name = "unsigned long"; src_type = INT_ULONG; } else if (H5Tequal(src, H5T_NATIVE_LLONG)) { src_type_name = "long long"; src_type = INT_LLONG; } else if (H5Tequal(src, H5T_NATIVE_ULLONG)) { src_type_name = "unsigned long long"; src_type = INT_ULLONG; } else if (H5Tequal(src, H5T_NATIVE_FLOAT)) { src_type_name = "float"; src_type = FLT_FLOAT; } else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) { src_type_name = "double"; src_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) { src_type_name = "long double"; src_type = FLT_LDOUBLE; #endif } else { src_type_name = "UNKNOWN"; src_type = OTHER; } /* What is the name of the destination type */ if (H5Tequal(dst, H5T_NATIVE_SCHAR)) { dst_type_name = "signed char"; dst_type = INT_SCHAR; } else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) { dst_type_name = "unsigned char"; dst_type = INT_UCHAR; } else if (H5Tequal(dst, H5T_NATIVE_SHORT)) { dst_type_name = "short"; dst_type = INT_SHORT; } else if (H5Tequal(dst, H5T_NATIVE_USHORT)) { dst_type_name = "unsigned short"; dst_type = INT_USHORT; } else if (H5Tequal(dst, H5T_NATIVE_INT)) { dst_type_name = "int"; dst_type = INT_INT; } else if (H5Tequal(dst, H5T_NATIVE_UINT)) { dst_type_name = "unsigned int"; dst_type = INT_UINT; } else if (H5Tequal(dst, H5T_NATIVE_LONG)) { dst_type_name = "long"; dst_type = INT_LONG; } else if (H5Tequal(dst, H5T_NATIVE_ULONG)) { dst_type_name = "unsigned long"; dst_type = INT_ULONG; } else if (H5Tequal(dst, H5T_NATIVE_LLONG)) { dst_type_name = "long long"; dst_type = INT_LLONG; } else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) { dst_type_name = "unsigned long long"; dst_type = INT_ULLONG; } else if (H5Tequal(dst, H5T_NATIVE_FLOAT)) { dst_type_name = "float"; dst_type = FLT_FLOAT; } else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) { dst_type_name = "double"; dst_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) { dst_type_name = "long double"; dst_type = FLT_LDOUBLE; #endif } else { dst_type_name = "UNKNOWN"; dst_type = OTHER; } /* Sanity checks */ if (OTHER == src_type || OTHER == dst_type) { HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); H5_FAILED(); HDputs(" Unknown data type."); goto error; } if ((INT_SCHAR == src_type || INT_UCHAR == src_type || INT_SHORT == src_type || INT_USHORT == src_type || INT_INT == src_type || INT_UINT == src_type || INT_LONG == src_type || INT_ULONG == src_type || INT_LLONG == src_type || INT_ULLONG == src_type) && (FLT_FLOAT != dst_type && FLT_DOUBLE != dst_type #if H5_SIZEOF_LONG_DOUBLE != 0 && FLT_LDOUBLE != dst_type #endif )) { HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); H5_FAILED(); HDputs(" 1. Not an integer-float conversion."); goto error; } if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type #if H5_SIZEOF_LONG_DOUBLE != 0 || FLT_LDOUBLE == src_type #endif ) && (INT_SCHAR != dst_type && INT_UCHAR != dst_type && INT_SHORT != dst_type && INT_USHORT != dst_type && INT_INT != dst_type && INT_UINT != dst_type && INT_LONG != dst_type && INT_ULONG != dst_type && INT_LLONG != dst_type && INT_ULLONG != dst_type)) { HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); H5_FAILED(); HDputs(" 2. Not a float-integer conversion."); goto error; } if (INT_SCHAR == src_type || INT_UCHAR == src_type || INT_SHORT == src_type || INT_USHORT == src_type || INT_INT == src_type || INT_UINT == src_type || INT_LONG == src_type || INT_ULONG == src_type || INT_LLONG == src_type || INT_ULLONG == src_type) { HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); HDfflush(stdout); fails_this_test = 0; } else { if (run_test == TEST_NORMAL) HDsnprintf(str, sizeof(str), "Testing %s normalized %s -> %s conversions", name, src_type_name, dst_type_name); else if (run_test == TEST_DENORM) HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, src_type_name, dst_type_name); else HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, src_type_name, dst_type_name); HDprintf("%-70s", str); HDfflush(stdout); fails_this_test = 0; } /* Some information about datatypes */ sendian = H5Tget_order(src); dendian = H5Tget_order(dst); src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ aligned = HDcalloc((size_t)1, MAX(sizeof(long double), sizeof(long long))); #ifdef SHOW_OVERFLOWS noverflows_g = 0; #endif /* This is for some Linux systems where long double has the size * 12 bytes but precision is 10 bytes. The 2 unused bytes may * have garbage causing wrong value comparison. */ HDmemset(&hw_ldouble, 0, sizeof(long double)); /* Create a dataset transfer property list and datatype conversion * exception handler function and pass in fill value. This is mainly * for NetCDF compatibility, which requests fill in fill value when * conversion exception happens. We only test (unsigned) int - float * and float - (unsigned) int conversions, which should cover more cases. */ if ((dxpl_id = H5Pcreate(H5P_DATASET_XFER)) < 0) goto error; if ((src_type == INT_INT && dst_type == FLT_FLOAT) || (src_type == INT_UINT && dst_type == FLT_FLOAT) || (src_type == FLT_FLOAT && dst_type == INT_UINT) || (src_type == FLT_FLOAT && dst_type == INT_INT)) { if (H5Pset_type_conv_cb(dxpl_id, except_func, &fill_value) < 0) goto error; else except_set = TRUE; if (H5Pget_type_conv_cb(dxpl_id, &op, &user_data) < 0) goto error; if (op != except_func || *(int *)user_data != fill_value) goto error; } /* Allocate and initialize the source buffer through macro INIT_INTEGER if the source is integer, * INIT_FP_NORM if floating-point. The BUF will be used for the conversion while the SAVED buffer will be * used for the comparison later. */ if (src_type == INT_SCHAR) { INIT_INTEGER(signed char, SCHAR_MAX, SCHAR_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_UCHAR) { INIT_INTEGER(unsigned char, UCHAR_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_SHORT) { INIT_INTEGER(short, SHRT_MAX, SHRT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_USHORT) { INIT_INTEGER(unsigned short, USHRT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_INT) { INIT_INTEGER(int, INT_MAX, INT_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_UINT) { INIT_INTEGER(unsigned int, UINT_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_LONG) { INIT_INTEGER(long, LONG_MAX, LONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_ULONG) { INIT_INTEGER(unsigned long, ULONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_LLONG) { INIT_INTEGER(long long, LLONG_MAX, LLONG_MIN, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == INT_ULLONG) { INIT_INTEGER(unsigned long long, ULLONG_MAX, 0, src_size, dst_size, src_nbits, buf, saved, nelmts); } else if (src_type == FLT_FLOAT) { if (run_test == TEST_NORMAL) { INIT_FP_NORM(float, FLT_MAX, FLT_MIN, FLT_MAX_10_EXP, FLT_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if (run_test == TEST_DENORM) { INIT_FP_DENORM(float, FLT_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else { INIT_FP_SPECIAL(src_size, src_nbits, sendian, FLT_MANT_DIG, dst_size, buf, saved, nelmts); } } else if (src_type == FLT_DOUBLE) { if (run_test == TEST_NORMAL) { INIT_FP_NORM(double, DBL_MAX, DBL_MIN, DBL_MAX_10_EXP, DBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if (run_test == TEST_DENORM) { INIT_FP_DENORM(double, DBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else { INIT_FP_SPECIAL(src_size, src_nbits, sendian, DBL_MANT_DIG, dst_size, buf, saved, nelmts); } #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 } else if (src_type == FLT_LDOUBLE) { if (run_test == TEST_NORMAL) { INIT_FP_NORM(long double, LDBL_MAX, LDBL_MIN, LDBL_MAX_10_EXP, LDBL_MIN_10_EXP, src_size, dst_size, buf, saved, nelmts); } else if (run_test == TEST_DENORM) { INIT_FP_DENORM(long double, LDBL_MANT_DIG, src_size, src_nbits, sendian, dst_size, buf, saved, nelmts); } else { INIT_FP_SPECIAL(src_size, src_nbits, sendian, LDBL_MANT_DIG, dst_size, buf, saved, nelmts); } #endif } else goto error; /* Perform the conversion */ if (H5Tconvert(src, dst, nelmts, buf, NULL, dxpl_id) < 0) goto error; /* Check the results from the library against hardware */ for (j = 0; j < nelmts; j++) { if (FLT_FLOAT == src_type || FLT_DOUBLE == src_type #if H5_SIZEOF_LONG_DOUBLE != 0 || FLT_LDOUBLE == src_type #endif ) if (my_isnan(src_type, saved + j * src_size)) continue; if (FLT_FLOAT == dst_type) { hw = (unsigned char *)&hw_float; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_float = (float)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_float = (float)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_float = (float)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_float = (float)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_float = (float)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_float = (float)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_float = (float)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_float = (float)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_float = (float)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_float = (float)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (FLT_DOUBLE == dst_type) { hw = (unsigned char *)&hw_double; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_double = (double)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_double = (double)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_double = (double)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_double = (double)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_double = (double)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_double = (double)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_double = (double)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_double = (double)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_double = (double)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_double = (double)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } #if H5_SIZEOF_LONG_DOUBLE != 0 } else if (FLT_LDOUBLE == dst_type) { hw = (unsigned char *)&hw_ldouble; switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); hw_ldouble = (long double)(*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); hw_ldouble = (long double)(*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); hw_ldouble = (long double)(*((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); hw_ldouble = (long double)(*((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); hw_ldouble = (long double)(*((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); hw_ldouble = (long double)(*((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); hw_ldouble = (long double)(*((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); hw_ldouble = (long double)(*((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); hw_ldouble = (long double)(*((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); hw_ldouble = (long double)(*((unsigned long long *)aligned)); break; case FLT_FLOAT: case FLT_DOUBLE: case FLT_LDOUBLE: case OTHER: default: HDassert(0 && "Unknown type"); break; } #endif } else if (INT_SCHAR == dst_type) { hw = (unsigned char *)&hw_schar; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_schar = (signed char)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_schar = (signed char)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_schar = (signed char)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_UCHAR == dst_type) { hw = (unsigned char *)&hw_uchar; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_uchar = (unsigned char)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_uchar = (unsigned char)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_uchar = (unsigned char)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_SHORT == dst_type) { hw = (unsigned char *)&hw_short; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_short = (short)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_short = (short)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_short = (short)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_USHORT == dst_type) { hw = (unsigned char *)&hw_ushort; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_ushort = (unsigned short)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_ushort = (unsigned short)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_ushort = (unsigned short)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_INT == dst_type) { hw = (unsigned char *)&hw_int; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_int = (int)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_int = (int)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_int = (int)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_UINT == dst_type) { hw = (unsigned char *)&hw_uint; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_uint = (unsigned int)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_uint = (unsigned int)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_uint = (unsigned int)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_LONG == dst_type) { hw = (unsigned char *)&hw_long; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_long = (long)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_long = (long)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_long = (long)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_ULONG == dst_type) { hw = (unsigned char *)&hw_ulong; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_ulong = (unsigned long)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_ulong = (unsigned long)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_ulong = (unsigned long)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_LLONG == dst_type) { hw = (unsigned char *)&hw_llong; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_llong = (long long)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_llong = (long long)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_llong = (long long)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } else if (INT_ULLONG == dst_type) { hw = (unsigned char *)&hw_ullong; switch (src_type) { case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); hw_ullong = (unsigned long long)(*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); hw_ullong = (unsigned long long)(*((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); hw_ullong = (unsigned long long)(*((long double *)aligned)); break; #endif case INT_SCHAR: case INT_UCHAR: case INT_SHORT: case INT_USHORT: case INT_INT: case INT_UINT: case INT_LONG: case INT_ULONG: case INT_LLONG: case INT_ULLONG: case OTHER: default: HDassert(0 && "Unknown type"); break; } } /* Make certain that there isn't some weird number of destination bits */ assert(dst_nbits % 8 == 0); /* For Intel machines, the size of "long double" is 12 bytes, precision * is 80 bits; for AMD processors, the size of "long double" is 16 bytes, * precision is 80 bits. During hardware conversion, the last few unused * bytes may have garbage in them. Clean them out with 0s before compare * the values. */ #if H5_SIZEOF_LONG_DOUBLE != 0 if (dendian == H5T_ORDER_LE && dst_type == FLT_LDOUBLE) { size_t q; for (q = dst_nbits / 8; q < dst_size; q++) buf[j * dst_size + q] = 0x00; } #endif /* Are the two results the same? */ for (k = (dst_size - (dst_nbits / 8)); k < dst_size; k++) if (buf[j * dst_size + k] != hw[k]) break; if (k == dst_size) continue; /*no error*/ /* * Convert the source and destination values to little endian * order so we can use the HDF5 bit vector operations to test * certain things. These routines have already been tested by * the `bittests' program. */ if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type) && sendian == H5T_ORDER_VAX) { for (k = 0; k < src_size; k += 2) { src_bits[k] = saved[j * src_size + (src_size - 2) - k]; src_bits[k + 1] = saved[j * src_size + (src_size - 1) - k]; } } else { for (k = 0; k < src_size; k++) src_bits[src_size - (k + 1)] = saved[j * src_size + ENDIAN(src_size, k, sendian)]; } for (k = 0; k < dst_size; k++) dst_bits[dst_size - (k + 1)] = buf[j * dst_size + ENDIAN(dst_size, k, dendian)]; /* Test library's default overflow handling: * Hardware usually doesn't handle overflows too gracefully. The * hardware conversion result during overflows is usually garbage * so we must handle those cases differetly when checking results. * * Test user's exception handler when overflows: * Try to follow the except_func callback function to check if the * desired value was set. */ if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type #if H5_SIZEOF_LONG_DOUBLE != 0 || FLT_LDOUBLE == src_type #endif ) && (INT_SCHAR == dst_type || INT_SHORT == dst_type || INT_INT == dst_type || INT_LONG == dst_type || INT_LLONG == dst_type)) { if (0 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) && overflows(src_bits, src, dst_nbits - 1)) { /* * Source is positive and the magnitude is too large for * the destination. The destination should be set to the * maximum possible value: 0x7f...f */ if (!except_set) { if (0 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } else { /* fill_value is small so we know only the 1st byte is set */ if (dst_bits[0] == fill_value) continue; /*no error*/ } } else if (1 == H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1) && overflows(src_bits, src, dst_nbits - 1)) { /* * Source is negative but the magnitude is too large for * the destination. The destination should be set to the * smallest possible value: 0x80...0 */ if (!except_set) { if (1 == H5T__bit_get_d(dst_bits, dst_nbits - 1, (size_t)1) && H5T__bit_find(dst_bits, (size_t)0, dst_nbits - 1, H5T_BIT_LSB, 1) < 0) continue; /*no error*/ } else { if (dst_bits[0] == fill_value) continue; /*no error*/ } } } if ((FLT_FLOAT == src_type || FLT_DOUBLE == src_type #if H5_SIZEOF_LONG_DOUBLE != 0 || FLT_LDOUBLE == src_type #endif ) && (INT_UCHAR == dst_type || INT_USHORT == dst_type || INT_UINT == dst_type || INT_ULONG == dst_type || INT_ULLONG == dst_type)) { if (H5T__bit_get_d(src_bits, src_nbits - 1, (size_t)1)) { /* * The source is negative so the result should be zero. * The source is negative if the most significant bit is * set. The destination is zero if all bits are zero. */ if (!except_set) { if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 1) < 0) continue; /*no error*/ } else { if (dst_bits[0] == fill_value) continue; /*no error*/ } } else if (overflows(src_bits, src, dst_nbits)) { /* * The source is a value with a magnitude too large for * the destination. The destination should be the * largest possible value: 0xff...f */ if (!except_set) { if (H5T__bit_find(dst_bits, (size_t)0, dst_nbits, H5T_BIT_LSB, 0) < 0) continue; /*no error*/ } else { if (dst_bits[0] == fill_value) continue; /*no error*/ } } } /* Print errors */ if (0 == fails_this_test++) { if (run_test == TEST_NORMAL) { H5_FAILED(); } else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) { H5_WARNING(); } } HDprintf(" elmt %u: \n", (unsigned)j); HDprintf(" src = "); for (k = 0; k < src_size; k++) HDprintf(" %02x", saved[j * src_size + ENDIAN(src_size, k, sendian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)dst_size - (ssize_t)src_size)), ""); switch (src_type) { case INT_SCHAR: HDmemcpy(aligned, saved + j * sizeof(signed char), sizeof(signed char)); HDprintf(" %29d\n", (int)*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, saved + j * sizeof(unsigned char), sizeof(unsigned char)); HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, saved + j * sizeof(short), sizeof(short)); HDprintf(" %29hd\n", *((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, saved + j * sizeof(unsigned short), sizeof(unsigned short)); HDprintf(" %29hu\n", *((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, saved + j * sizeof(int), sizeof(int)); HDprintf(" %29d\n", *((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, saved + j * sizeof(unsigned), sizeof(unsigned)); HDprintf(" %29u\n", *((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, saved + j * sizeof(long), sizeof(long)); HDprintf(" %29ld\n", *((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long), sizeof(unsigned long)); HDprintf(" %29lu\n", *((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, saved + j * sizeof(long long), sizeof(long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "d\n", *((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, saved + j * sizeof(unsigned long long), sizeof(unsigned long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "u\n", *((unsigned long long *)aligned)); break; case FLT_FLOAT: HDmemcpy(aligned, saved + j * sizeof(float), sizeof(float)); HDprintf(" %29f\n", (double)*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, saved + j * sizeof(double), sizeof(double)); HDprintf(" %29f\n", *((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, saved + j * sizeof(long double), sizeof(long double)); HDprintf(" %29Lf\n", *((long double *)aligned)); break; #endif case OTHER: default: HDassert(0 && "Unknown type"); break; } HDprintf(" dst = "); for (k = 0; k < dst_size; k++) HDprintf(" %02x", buf[j * dst_size + ENDIAN(dst_size, k, dendian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: HDmemcpy(aligned, buf + j * sizeof(signed char), sizeof(signed char)); HDprintf(" %29d\n", (int)*((signed char *)aligned)); break; case INT_UCHAR: HDmemcpy(aligned, buf + j * sizeof(unsigned char), sizeof(unsigned char)); HDprintf(" %29u\n", (unsigned)*((unsigned char *)aligned)); break; case INT_SHORT: HDmemcpy(aligned, buf + j * sizeof(short), sizeof(short)); HDprintf(" %29hd\n", *((short *)aligned)); break; case INT_USHORT: HDmemcpy(aligned, buf + j * sizeof(unsigned short), sizeof(unsigned short)); HDprintf(" %29hu\n", *((unsigned short *)aligned)); break; case INT_INT: HDmemcpy(aligned, buf + j * sizeof(int), sizeof(int)); HDprintf(" %29d\n", *((int *)aligned)); break; case INT_UINT: HDmemcpy(aligned, buf + j * sizeof(unsigned), sizeof(unsigned)); HDprintf(" %29u\n", *((unsigned *)aligned)); break; case INT_LONG: HDmemcpy(aligned, buf + j * sizeof(long), sizeof(long)); HDprintf(" %29ld\n", *((long *)aligned)); break; case INT_ULONG: HDmemcpy(aligned, buf + j * sizeof(unsigned long), sizeof(unsigned long)); HDprintf(" %29lu\n", *((unsigned long *)aligned)); break; case INT_LLONG: HDmemcpy(aligned, buf + j * sizeof(long long), sizeof(long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "d\n", *((long long *)aligned)); break; case INT_ULLONG: HDmemcpy(aligned, buf + j * sizeof(unsigned long long), sizeof(unsigned long long)); HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "u\n", *((unsigned long long *)aligned)); break; case FLT_FLOAT: HDmemcpy(aligned, buf + j * sizeof(float), sizeof(float)); HDprintf(" %29f\n", (double)*((float *)aligned)); break; case FLT_DOUBLE: HDmemcpy(aligned, buf + j * sizeof(double), sizeof(double)); HDprintf(" %29f\n", *((double *)aligned)); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDmemcpy(aligned, buf + j * sizeof(long double), sizeof(long double)); HDprintf(" %29Lf\n", *((long double *)aligned)); break; #endif case OTHER: default: HDassert(0 && "Unknown type"); break; } HDprintf(" ans = "); for (k = 0; k < dst_size; k++) HDprintf(" %02x", hw[ENDIAN(dst_size, k, dendian)]); HDprintf("%*s", (int)(3 * MAX(0, (ssize_t)src_size - (ssize_t)dst_size)), ""); switch (dst_type) { case INT_SCHAR: HDprintf(" %29d\n", (int)*((signed char *)((void *)hw))); break; case INT_UCHAR: HDprintf(" %29u\n", (unsigned)*((unsigned char *)((void *)hw))); break; case INT_SHORT: HDprintf(" %29hd\n", *((short *)((void *)hw))); break; case INT_USHORT: HDprintf(" %29hu\n", *((unsigned short *)((void *)hw))); break; case INT_INT: HDprintf(" %29d\n", *((int *)((void *)hw))); break; case INT_UINT: HDprintf(" %29u\n", *((unsigned int *)((void *)hw))); break; case INT_LONG: HDprintf(" %29ld\n", *((long *)((void *)hw))); break; case INT_ULONG: HDprintf(" %29lu\n", *((unsigned long *)((void *)hw))); break; case INT_LLONG: HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "d\n", *((long long *)((void *)hw))); break; case INT_ULLONG: HDfprintf(stdout, " %29" H5_PRINTF_LL_WIDTH "u\n", *((unsigned long long *)((void *)hw))); break; case FLT_FLOAT: HDprintf(" %29f\n", (double)*((float *)((void *)hw))); break; case FLT_DOUBLE: HDprintf(" %29f\n", *((double *)((void *)hw))); break; #if H5_SIZEOF_LONG_DOUBLE != 0 case FLT_LDOUBLE: HDprintf(" %29Lf\n", *((long double *)((void *)hw))); break; #endif case OTHER: default: HDassert(0 && "Unknown type"); break; } /* If the source is normalized values, print out error message; if it is * denormalized or special values, print out warning message.*/ if (++fails_all_tests >= max_fails) { if (run_test == TEST_NORMAL) HDputs(" maximum failures reached, aborting test..."); else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) HDputs(" maximum warnings reached, aborting test..."); HDputs(" (dst is library's conversion output. ans is compiler's conversion output.)"); goto done; } } if (!fails_all_tests) PASSED(); done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ /* If the source is normalized floating values, treat the failures as error; * if it is denormalized or special floating values, treat the failure as warning.*/ if (run_test == TEST_NORMAL) return (int)fails_all_tests; else if (run_test == TEST_DENORM || run_test == TEST_SPECIAL) return 0; error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) HDfree(aligned); HDfflush(stdout); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /*print statistics*/ if (run_test == TEST_NORMAL) return MAX((int)fails_all_tests, 1); else { HDassert(run_test == TEST_DENORM || run_test == TEST_SPECIAL); return 1; } } /*------------------------------------------------------------------------- * Function: overflows * * Purpose: When convert from float or double to any integer type, * check if overflow occurs. * * * Return: TRUE: overflow happens * * FALSE: no overflow * * Programmer: Raymond Lu * Monday, Nov 17, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static hbool_t overflows(unsigned char *origin_bits, hid_t src_id, size_t dst_num_bits) { hbool_t ret_value = FALSE; hsize_t expt; size_t mant_digits = 0, expt_digits = 0, bias = 0; size_t epos, mpos; size_t src_prec = 0; /*source type precision in bits*/ H5T_norm_t norm; ssize_t indx; unsigned char bits[32], mant_bits[32]; HDmemset(bits, 0, (size_t)32); HDmemset(mant_bits, 0, (size_t)32); /* * Sometimes, type size isn't equal to the precision like Linux's "long * double", where size is 96 bits and precision is 80 bits. */ src_prec = H5Tget_precision(src_id); H5Tget_fields(src_id, NULL, &epos, &expt_digits, &mpos, &mant_digits); bias = H5Tget_ebias(src_id); norm = H5Tget_norm(src_id); HDmemcpy(bits, origin_bits, src_prec / 8 + 1); /*Check for special cases: +Inf, -Inf*/ if (H5T__bit_find(bits, mpos, mant_digits, H5T_BIT_LSB, TRUE) < 0) { if (H5T__bit_find(bits, epos, expt_digits, H5T_BIT_LSB, FALSE) < 0) { ret_value = TRUE; goto done; } } else if (H5T_NORM_NONE == norm && H5T__bit_find(bits, mpos, mant_digits - 1, H5T_BIT_LSB, TRUE) < 0 && H5T__bit_find(bits, epos, expt_digits, H5T_BIT_LSB, FALSE) < 0) { /*This is a special case for the source of no implied mantissa bit. *If the exponent bits are all 1s and only the 1st bit of mantissa *is set to 1. It's infinity. The Intel-Linux "long double" is this case.*/ ret_value = TRUE; goto done; } /* get exponent */ expt = H5T__bit_get_d(bits, mant_digits, expt_digits) - bias; if (expt >= (dst_num_bits - 1)) { ret_value = TRUE; goto done; } /* get significand */ H5T__bit_copy(mant_bits, (size_t)0, bits, (size_t)0, mant_digits); /* restore implicit bit if normalization is implied*/ if (norm == H5T_NORM_IMPLIED) { H5T__bit_inc(mant_bits, mant_digits, (size_t)1); mant_digits++; } /* shift significand */ H5T__bit_shift(mant_bits, (ssize_t)(expt - expt_digits), (size_t)0, (size_t)(32 * 8)); indx = H5T__bit_find(mant_bits, (size_t)0, (size_t)(32 * 8), H5T_BIT_MSB, 1); if ((size_t)indx >= dst_num_bits) ret_value = TRUE; done: return ret_value; } /*------------------------------------------------------------------------- * Function: run_integer_tests * * Purpose: Runs all integer tests. * * Return: Number of errors * * Programmer: Robb Matzke * Tuesday, November 24, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int run_integer_tests(const char *name) { int nerrors = 0; nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG); #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG); #endif #endif #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG); #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG); #endif #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG); #endif return nerrors; } /*------------------------------------------------------------------------- * Function: run_fp_tests * * Purpose: Runs all floating-point tests. * * Return: Number of errors * * Programmer: Raymond Lu * Tuesday, March 22, 2005 * * Modifications: * *------------------------------------------------------------------------- */ static int run_fp_tests(const char *name) { int nerrors = 0; if (!strcmp(name, "noop")) { nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE); #if H5_SIZEOF_LONG_DOUBLE != 0 nerrors += test_conv_flt_1("noop", TEST_NOOP, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LDOUBLE); #endif goto done; } /*Test normalized values. TEST_NORMAL indicates normalized values.*/ nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1(name, TEST_NORMAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #endif /*Test denormalized values. TEST_DENORM indicates denormalized values.*/ nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); #ifndef H5_DISABLE_SOME_LDOUBLE_CONV nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); #else { char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s denormalized %s -> %s conversions", name, "long double", "float"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to the conversion problem on IBM ppc64le cpu."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif nerrors += test_conv_flt_1(name, TEST_DENORM, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #endif /*Test special values, +/-0, +/-infinity, +/-QNaN, +/-SNaN.*/ nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE && H5_SIZEOF_LONG_DOUBLE != 0 nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); #ifndef H5_DISABLE_SOME_LDOUBLE_CONV nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1(name, TEST_SPECIAL, H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #else { char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, "long double", "float or double"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to the conversion problem on IBM ppc64le cpu."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif #endif done: return nerrors; } /*------------------------------------------------------------------------- * Function: run_int_fp_conv * * Purpose: Runs all integer-float tests. * * Return: Number of errors * * Programmer: Raymond Lu * Monday, November 10, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static int run_int_fp_conv(const char *name) { int nerrors = 0; nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_DOUBLE); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_DOUBLE); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_DOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_FLOAT); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_DOUBLE); #endif #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SCHAR, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UCHAR, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_SHORT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_USHORT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_INT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_UINT, H5T_NATIVE_LDOUBLE); #if H5_SIZEOF_LONG != H5_SIZEOF_INT #if !defined(H5_LONG_TO_LDOUBLE_SPECIAL) && !defined(H5_DISABLE_SOME_LDOUBLE_CONV) nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LONG, H5T_NATIVE_LDOUBLE); nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULONG, H5T_NATIVE_LDOUBLE); #else { char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "(unsigned) long", "long double"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to the special algorithm of hardware conversion."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif #endif /* H5_SIZEOF_LONG!=H5_SIZEOF_INT */ #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG #if H5_LLONG_TO_LDOUBLE_CORRECT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_LLONG, H5T_NATIVE_LDOUBLE); #else /* H5_LLONG_TO_LDOUBLE_CORRECT */ { char str[256]; /*hello string */ HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long long", "long double"); HDprintf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to compiler error in handling conversion."); } #endif /* H5_LLONG_TO_LDOUBLE_CORRECT */ #if H5_LLONG_TO_LDOUBLE_CORRECT nerrors += test_conv_int_fp(name, TEST_NORMAL, H5T_NATIVE_ULLONG, H5T_NATIVE_LDOUBLE); #else /* H5_LLONG_TO_LDOUBLE_CORRECT */ { char str[256]; /*hello string */ HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "unsigned long long", "long double"); HDprintf("%-70s", str); SKIPPED(); HDputs(" Test skipped due to compiler not handling conversion."); } #endif /* H5_LLONG_TO_LDOUBLE_CORRECT */ #endif #endif return nerrors; } /*------------------------------------------------------------------------- * Function: run_fp_int_conv * * Purpose: Runs all float-integer tests. * * Return: Number of errors * * Programmer: Raymond Lu * Monday, November 10, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static int run_fp_int_conv(const char *name) { int nerrors = 0; int test_values; for (test_values = TEST_NORMAL; test_values <= TEST_SPECIAL; test_values++) { nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_INT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_INT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_UINT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG != H5_SIZEOF_INT nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG if (!strcmp(name, "hw")) { /* Hardware conversion */ nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG); } else { /* Software conversion */ nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_LLONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_LLONG); } nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_FLOAT, H5T_NATIVE_ULLONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_DOUBLE, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG_DOUBLE != H5_SIZEOF_DOUBLE if (test_values != TEST_SPECIAL) { nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT); } else { #ifndef H5_DISABLE_SOME_LDOUBLE_CONV nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UCHAR); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_SHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_USHORT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_INT); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_UINT); #else char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s special %s -> %s conversions", name, "long double", "signed and unsigned char, short, int, long"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to the conversion problem on IBM ppc64le cpu."); #else HDputs(" Test skipped due to disabled long double."); #endif #endif } #if H5_SIZEOF_LONG != H5_SIZEOF_INT && H5_SIZEOF_LONG_DOUBLE != 0 #ifndef H5_LDOUBLE_TO_LONG_SPECIAL if (test_values != TEST_SPECIAL && test_values != TEST_NORMAL) { nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG); } else { #ifndef H5_DISABLE_SOME_LDOUBLE_CONV nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LONG); nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULONG); #endif } #else { char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long double", "(unsigned) long"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to the special algorithm of hardware conversion."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif #endif /*H5_SIZEOF_LONG!=H5_SIZEOF_INT && H5_SIZEOF_LONG_DOUBLE!=0 */ #if H5_SIZEOF_LONG_LONG != H5_SIZEOF_LONG && H5_SIZEOF_LONG_DOUBLE != 0 #ifdef H5_LDOUBLE_TO_LLONG_ACCURATE nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_LLONG); #else /*H5_LDOUBLE_TO_LLONG_ACCURATE*/ { char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long double", "long long"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_LDOUBLE_TO_LLONG_ACCURATE*/ #if defined(H5_LDOUBLE_TO_LLONG_ACCURATE) nerrors += test_conv_int_fp(name, test_values, H5T_NATIVE_LDOUBLE, H5T_NATIVE_ULLONG); #else /*H5_LDOUBLE_TO_LLONG_ACCURATE*/ { char str[256]; /*string */ HDsnprintf(str, sizeof(str), "Testing %s %s -> %s conversions", name, "long double", "unsigned long long"); HDprintf("%-70s", str); SKIPPED(); #if H5_SIZEOF_LONG_DOUBLE != 0 HDputs(" Test skipped due to hardware conversion error."); #else HDputs(" Test skipped due to disabled long double."); #endif } #endif /*H5_LDOUBLE_TO_LLONG_ACCURATE*/ #endif #endif } /* end for */ return nerrors; } /*------------------------------------------------------------------------- * Function: main * * Purpose: Test the data type(integer and floating-point number). * * Return: Success: * * Failure: * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * Raymond Lu * Monday, April 4, 2005 * These tests were split from dtypes.c because dtypes.c * has grown too big. * *------------------------------------------------------------------------- */ int main(void) { unsigned long nerrors = 0; /* Set the random # seed */ HDsrandom((unsigned)HDtime(NULL)); reset_hdf5(); if (ALIGNMENT) HDprintf("Testing non-aligned conversions (ALIGNMENT=%d)....\n", ALIGNMENT); /* Do the tests */ /* Test H5Tcompiler_conv() for querying hard conversion. */ nerrors += (unsigned long)test_hard_query(); /* Test user-define, query functions and software conversion * for user-defined floating-point types */ nerrors += (unsigned long)test_derived_flt(); /* Test user-define, query functions and software conversion * for user-defined integer types */ nerrors += (unsigned long)test_derived_integer(); /* Does floating point overflow generate a SIGFPE? */ generates_sigfpe(); /* Test degenerate cases */ nerrors += (unsigned long)run_fp_tests("noop"); /* Test hardware floating-point conversion functions */ nerrors += (unsigned long)run_fp_tests("hard"); /* Test hardware integer conversion functions */ nerrors += (unsigned long)run_integer_tests("hard"); /* Test hardware integer-float conversion functions */ nerrors += (unsigned long)run_int_fp_conv("hard"); /* Test hardware float-integer conversion functions */ nerrors += (unsigned long)run_fp_int_conv("hard"); /* Test a few special values for hardware float-integer conversions */ nerrors += (unsigned long)test_particular_fp_integer(); /*---------------------------------------------------------------------- * Software tests *---------------------------------------------------------------------- */ without_hardware_g = TRUE; /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /* Test software floating-point conversion functions */ nerrors += (unsigned long)run_fp_tests("soft"); /* Test software integer conversion functions */ nerrors += (unsigned long)test_conv_int_2(); nerrors += (unsigned long)run_integer_tests("soft"); /* Test software float-integer conversion functions */ nerrors += (unsigned long)run_fp_int_conv("soft"); /* Test software integer-float conversion functions */ nerrors += (unsigned long)run_int_fp_conv("soft"); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); reset_hdf5(); /* Restore the default error handler (set in h5_reset()) */ h5_restore_err(); if (nerrors) { HDprintf("***** %lu FAILURE%s! *****\n", nerrors, 1 == nerrors ? "" : "S"); HDexit(EXIT_FAILURE); } HDprintf("All data type tests passed.\n"); return 0; }