/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Purpose: Tests the data type interface (H5T) */ #include #include "h5test.h" /* Number of times to run each test */ #define NTESTS 1 /* Number of elements in each test */ #define NTESTELEM 100000 /* Define if you want to see a count of overflows */ #undef SHOW_OVERFLOWS /* * Offset from alinged memory returned by malloc(). This can be used to test * that type conversions handle non-aligned buffers correctly. */ #define ALIGNMENT 1 /* * Define if you want to test alignment code on a machine that doesn't * normally require alignment. When set, all native data types must be aligned * on a byte boundary equal to the data size. */ #define TEST_ALIGNMENT /* Alignment test stuff */ #ifdef TEST_ALIGNMENT #define H5T_PACKAGE #include "H5Tpkg.h" #endif #define SET_ALIGNMENT(TYPE,VAL) \ H5T_NATIVE_##TYPE##_ALIGN_g=MAX(H5T_NATIVE_##TYPE##_ALIGN_g, VAL) const char *FILENAME[] = { "dtypes1", "dtypes2", "dtypes3", NULL }; typedef struct complex_t { double re; double im; } complex_t; /* * Count up or down depending on whether the machine is big endian or little * endian. If local variable `endian' is H5T_ORDER_BE then the result will * be I, otherwise the result will be Z-(I+1). */ #define ENDIAN(Z,I) (H5T_ORDER_BE==endian?(I):(Z)-((I)+1)) typedef enum flt_t { FLT_FLOAT, FLT_DOUBLE, FLT_LDOUBLE, FLT_OTHER } flt_t; typedef enum int_t { INT_CHAR, INT_UCHAR, INT_SHORT, INT_USHORT, INT_INT, INT_UINT, INT_LONG, INT_ULONG, INT_LLONG, INT_ULLONG, INT_OTHER } int_t; /* Count the number of overflows */ #ifdef SHOW_OVERFLOWS static int noverflows_g = 0; #endif /* Skip overflow tests if non-zero */ static int skip_overflow_tests_g = 0; /* Don't use hardware conversions if set */ static int without_hardware_g = 0; /* Count opaque conversions */ static int num_opaque_conversions_g = 0; /* * Although we check whether a floating point overflow generates a SIGFPE and * turn off overflow tests in that case, it might still be possible for an * overflow condition to occur. Once a SIGFPE is raised the program cannot * be allowed to continue (cf. Posix signals) so in order to recover from a * SIGFPE we run tests that might generate one in a child process. */ #if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID) # define HANDLE_SIGFPE #endif /* Allocates memory aligned on a certain boundary. */ #define aligned_malloc(Z) ((void*)((char*)malloc(ALIGNMENT+Z)+ALIGNMENT)) #define aligned_free(M) free((char*)(M)-ALIGNMENT) void some_dummy_func(float x); /*------------------------------------------------------------------------- * Function: fpe_handler * * Purpose: Exit with 255 * * Return: void * * Programmer: Robb Matzke * Monday, July 6, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void fpe_handler(int UNUSED signo) { SKIPPED(); puts(" Test skipped due to SIGFPE."); #ifndef HANDLE_SIGFPE puts(" Remaining tests could not be run."); puts(" Please turn off SIGFPE on overflows and try again."); #endif exit(255); } /*------------------------------------------------------------------------- * Function: overflow_handler * * Purpose: Gets called for all data type conversion overflows. * * Return: Success: 0 * * Failure: -1 * * Programmer: Robb Matzke * Tuesday, July 7, 1998 * * Modifications: * *------------------------------------------------------------------------- */ #ifdef SHOW_OVERFLOWS static herr_t overflow_handler(hid_t UNUSED src_id, hid_t UNUSED dst_id, void UNUSED *src_buf, void UNUSED *dst_buf) { noverflows_g++; return -1; } #endif /*------------------------------------------------------------------------- * Function: some_dummy_func * * Purpose: A dummy function to help check for overflow. * * Note: DO NOT DECLARE THIS FUNCTION STATIC OR THE COMPILER MIGHT * PROMOTE ARGUMENT `x' TO DOUBLE AND DEFEAT THE OVERFLOW * CHECKING. * * Return: void * * Programmer: Robb Matzke * Tuesday, July 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ void some_dummy_func(float x) { char s[128]; sprintf(s, "%g", x); } /*------------------------------------------------------------------------- * Function: generates_sigfpe * * Purpose: Determines if SIGFPE is generated from overflows. We must be * able to fork() and waitpid() in order for this test to work * properly. Sets skip_overflow_tests_g to non-zero if they * would generate SIGBUS, zero otherwise. * * Programmer: Robb Matzke * Tuesday, July 21, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static void generates_sigfpe(void) { #if defined(H5_HAVE_FORK) && defined(H5_HAVE_WAITPID) pid_t pid; int status; size_t i, j; double d; unsigned char *dp = (unsigned char*)&d; float f; fflush(stdout); fflush(stderr); if ((pid=fork())<0) { perror("fork"); exit(1); } else if (0==pid) { for (i=0; i<2000; i++) { for (j=0; j=0) { H5_FAILED(); puts (" Should not be able to close a predefined type!"); goto error; } PASSED(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_compound_1 * * Purpose: Tests various things about compound data types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Wednesday, January 7, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_1(void) { complex_t tmp; hid_t complex_id; herr_t ret; TESTING("compound data types"); /* Create the empty type */ if ((complex_id = H5Tcreate(H5T_COMPOUND, sizeof tmp))<0) goto error; /* Attempt to add the new compound datatype as a field within itself */ H5E_BEGIN_TRY { ret=H5Tinsert(complex_id, "compound", 0, complex_id); } H5E_END_TRY; if (ret>=0) { H5_FAILED(); printf("Inserted compound datatype into itself?\n"); goto error; } /* end if */ /* Add a couple fields */ if (H5Tinsert(complex_id, "real", HOFFSET(complex_t, re), H5T_NATIVE_DOUBLE)<0) goto error; if (H5Tinsert(complex_id, "imaginary", HOFFSET(complex_t, im), H5T_NATIVE_DOUBLE)<0) goto error; if (H5Tclose (complex_id)<0) goto error; PASSED(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_compound_2 * * Purpose: Tests a compound type conversion where the source and * destination are the same except for the order of the * elements. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Thursday, June 17, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_2(void) { struct st { int a, b, c[4], d, e; } *s_ptr; struct dt { int e, d, c[4], b, a; } *d_ptr; const int nelmts = NTESTELEM; const hsize_t four = 4; unsigned char *buf=NULL, *orig=NULL, *bkg=NULL; hid_t st=-1, dt=-1; hid_t array_dt; int i; TESTING("compound element reordering"); /* Sizes should be the same, but be careful just in case */ buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt))); bkg = malloc(nelmts * sizeof(struct dt)); orig = malloc(nelmts * sizeof(struct st)); for (i=0; ia = i*8+0; s_ptr->b = i*8+1; s_ptr->c[0] = i*8+2; s_ptr->c[1] = i*8+3; s_ptr->c[2] = i*8+4; s_ptr->c[3] = i*8+5; s_ptr->d = i*8+6; s_ptr->e = i*8+7; } memcpy(buf, orig, nelmts*sizeof(struct st)); /* Build hdf5 datatypes */ array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL); if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 || H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 || H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 || H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 || H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 || H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0) goto error; H5Tclose(array_dt); array_dt=H5Tarray_create(H5T_NATIVE_INT,1, &four, NULL); if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 || H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 || H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_INT)<0 || H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 || H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_INT)<0 || H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0) goto error; H5Tclose(array_dt); /* Perform the conversion */ if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) goto error; /* Compare results */ for (i=0; ia != d_ptr->a || s_ptr->b != d_ptr->b || s_ptr->c[0] != d_ptr->c[0] || s_ptr->c[1] != d_ptr->c[1] || s_ptr->c[2] != d_ptr->c[2] || s_ptr->c[3] != d_ptr->c[3] || s_ptr->d != d_ptr->d || s_ptr->e != d_ptr->e) { H5_FAILED(); printf(" i=%d\n", i); printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n", s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2], s_ptr->c[3], s_ptr->d, s_ptr->e); printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n", d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2], d_ptr->c[3], d_ptr->d, d_ptr->e); goto error; } } /* Release resources */ free(buf); free(bkg); free(orig); if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error; PASSED(); reset_hdf5(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_compound_3 * * Purpose: Tests compound conversions where the source and destination * are the same except the destination is missing a couple * members which appear in the source. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Thursday, June 17, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_3(void) { struct st { int a, b, c[4], d, e; } *s_ptr; struct dt { int a, c[4], e; } *d_ptr; const int nelmts = NTESTELEM; const hsize_t four = 4; unsigned char *buf=NULL, *orig=NULL, *bkg=NULL; hid_t st=-1, dt=-1; hid_t array_dt; int i; TESTING("compound subset conversions"); /* Initialize */ buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt))); bkg = malloc(nelmts * sizeof(struct dt)); orig = malloc(nelmts * sizeof(struct st)); for (i=0; ia = i*8+0; s_ptr->b = i*8+1; s_ptr->c[0] = i*8+2; s_ptr->c[1] = i*8+3; s_ptr->c[2] = i*8+4; s_ptr->c[3] = i*8+5; s_ptr->d = i*8+6; s_ptr->e = i*8+7; } memcpy(buf, orig, nelmts*sizeof(struct st)); /* Build hdf5 datatypes */ array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL); if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 || H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 || H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 || H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 || H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 || H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0) goto error; H5Tclose(array_dt); array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL); if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 || H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 || H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 || H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0) goto error; H5Tclose(array_dt); /* Perform the conversion */ if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) goto error; /* Compare results */ for (i=0; ia != d_ptr->a || s_ptr->c[0] != d_ptr->c[0] || s_ptr->c[1] != d_ptr->c[1] || s_ptr->c[2] != d_ptr->c[2] || s_ptr->c[3] != d_ptr->c[3] || s_ptr->e != d_ptr->e) { H5_FAILED(); printf(" i=%d\n", i); printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n", s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2], s_ptr->c[3], s_ptr->d, s_ptr->e); printf(" dst={a=%d, c=[%d,%d,%d,%d], e=%d\n", d_ptr->a, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2], d_ptr->c[3], d_ptr->e); goto error; } } /* Release resources */ free(buf); free(bkg); free(orig); if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error; PASSED(); reset_hdf5(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_compound_4 * * Purpose: Tests compound conversions when the destination has the same * fields as the source but one or more of the fields are * smaller. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Thursday, June 17, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_4(void) { struct st { int a, b, c[4], d, e; } *s_ptr; struct dt { short b; int a, c[4]; short d; int e; } *d_ptr; const int nelmts = NTESTELEM; const hsize_t four = 4; unsigned char *buf=NULL, *orig=NULL, *bkg=NULL; hid_t st=-1, dt=-1; hid_t array_dt; int i; TESTING("compound element shrinking & reordering"); /* Sizes should be the same, but be careful just in case */ buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt))); bkg = malloc(nelmts * sizeof(struct dt)); orig = malloc(nelmts * sizeof(struct st)); for (i=0; ia = i*8+0; s_ptr->b = (i*8+1) & 0x7fff; s_ptr->c[0] = i*8+2; s_ptr->c[1] = i*8+3; s_ptr->c[2] = i*8+4; s_ptr->c[3] = i*8+5; s_ptr->d = (i*8+6) & 0x7fff; s_ptr->e = i*8+7; } memcpy(buf, orig, nelmts*sizeof(struct st)); /* Build hdf5 datatypes */ array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL); if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 || H5Tinsert(st, "a", HOFFSET(struct st, a), H5T_NATIVE_INT)<0 || H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_INT)<0 || H5Tinsert(st, "c", HOFFSET(struct st, c), array_dt)<0 || H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_INT)<0 || H5Tinsert(st, "e", HOFFSET(struct st, e), H5T_NATIVE_INT)<0) goto error; H5Tclose(array_dt); array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, &four, NULL); if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 || H5Tinsert(dt, "a", HOFFSET(struct dt, a), H5T_NATIVE_INT)<0 || H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_SHORT)<0 || H5Tinsert(dt, "c", HOFFSET(struct dt, c), array_dt)<0 || H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_SHORT)<0 || H5Tinsert(dt, "e", HOFFSET(struct dt, e), H5T_NATIVE_INT)<0) goto error; H5Tclose(array_dt); /* Perform the conversion */ if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) goto error; /* Compare results */ for (i=0; ia != d_ptr->a || s_ptr->b != d_ptr->b || s_ptr->c[0] != d_ptr->c[0] || s_ptr->c[1] != d_ptr->c[1] || s_ptr->c[2] != d_ptr->c[2] || s_ptr->c[3] != d_ptr->c[3] || s_ptr->d != d_ptr->d || s_ptr->e != d_ptr->e) { H5_FAILED(); printf(" i=%d\n", i); printf(" src={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n", s_ptr->a, s_ptr->b, s_ptr->c[0], s_ptr->c[1], s_ptr->c[2], s_ptr->c[3], s_ptr->d, s_ptr->e); printf(" dst={a=%d, b=%d, c=[%d,%d,%d,%d], d=%d, e=%d\n", d_ptr->a, d_ptr->b, d_ptr->c[0], d_ptr->c[1], d_ptr->c[2], d_ptr->c[3], d_ptr->d, d_ptr->e); goto error; } } /* Release resources */ free(buf); free(bkg); free(orig); if (H5Tclose(st)<0 || H5Tclose(dt)<0) goto error; PASSED(); reset_hdf5(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_compound_5 * * Purpose: Many versions of HDF5 have a bug in the optimized compound * datatype conversion function, H5T_conv_struct_opt(), which * is triggered when the top-level type contains a struct * which must undergo a conversion. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Thursday, June 17, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_5(void) { typedef struct { char name[16]; short tdim; short coll_ids[4]; } src_type_t; typedef struct { char name[16]; short tdim; int coll_ids[4]; } dst_type_t; hsize_t dims[1] = {4}; hid_t src_type, dst_type, short_array, int_array, string; hid_t array_dt; src_type_t src[2] = {{"one", 102, {104, 105, 106, 107}}, {"two", 202, {204, 205, 206, 207}}}; dst_type_t *dst; void *buf = calloc(2, sizeof(dst_type_t)); void *bkg = calloc(2, sizeof(dst_type_t)); #if 1 TESTING("optimized struct converter"); #else /* Turn off optimized compound conversion function to work around * the problem. */ TESTING("optimized struct converter bug workaround"); H5Tunregister(H5T_PERS_DONTCARE, "struct(opt)", -1, -1, NULL); #endif /* Build datatypes */ short_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(short)); array_dt=H5Tarray_create(H5T_NATIVE_SHORT, 1, dims, NULL); H5Tinsert(short_array, "_", 0, array_dt); H5Tclose(array_dt); int_array = H5Tcreate(H5T_COMPOUND, 4*sizeof(int)); array_dt=H5Tarray_create(H5T_NATIVE_INT, 1, dims, NULL); H5Tinsert(int_array, "_", 0, array_dt); H5Tclose(array_dt); string = H5Tcopy(H5T_C_S1); H5Tset_size(string, 16); src_type = H5Tcreate(H5T_COMPOUND, sizeof(src_type_t)); H5Tinsert(src_type, "name", HOFFSET(src_type_t, name), string ); H5Tinsert(src_type, "tdim", HOFFSET(src_type_t, tdim), H5T_NATIVE_SHORT); H5Tinsert(src_type, "coll_ids", HOFFSET(src_type_t, coll_ids), short_array ); dst_type = H5Tcreate(H5T_COMPOUND, sizeof(dst_type_t)); H5Tinsert(dst_type, "name", HOFFSET(dst_type_t, name), string ); H5Tinsert(dst_type, "tdim", HOFFSET(dst_type_t, tdim), H5T_NATIVE_SHORT); H5Tinsert(dst_type, "coll_ids", HOFFSET(dst_type_t, coll_ids), int_array ); /* Convert data */ memcpy(buf, src, sizeof(src)); H5Tconvert(src_type, dst_type, (hsize_t)2, buf, bkg, H5P_DEFAULT); dst = (dst_type_t*)buf; /* Cleanup */ H5Tclose(src_type); H5Tclose(dst_type); H5Tclose(string); H5Tclose(short_array); H5Tclose(int_array); /* Check results */ if (memcmp(src[1].name, dst[1].name, sizeof(src[1].name)) || src[1].tdim!=dst[1].tdim || src[1].coll_ids[0]!=dst[1].coll_ids[0] || src[1].coll_ids[1]!=dst[1].coll_ids[1] || src[1].coll_ids[2]!=dst[1].coll_ids[2] || src[1].coll_ids[3]!=dst[1].coll_ids[3]) { H5_FAILED(); return 1; } /* Free memory buffers */ free(buf); free(bkg); PASSED(); return 0; } /*------------------------------------------------------------------------- * Function: test_compound_6 * * Purpose: Tests compound conversions when the destination has the same * fields as the source but one or more of the fields are * larger. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Quincey Koziol * Wednesday, December 13, 2000 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_6(void) { struct st { short b; short d; } *s_ptr; struct dt { long b; long d; } *d_ptr; const int nelmts = NTESTELEM; unsigned char *buf=NULL, *orig=NULL, *bkg=NULL; hid_t st=-1, dt=-1; int i; TESTING("compound element growing"); /* Sizes should be the same, but be careful just in case */ buf = malloc(nelmts * MAX(sizeof(struct st), sizeof(struct dt))); bkg = malloc(nelmts * sizeof(struct dt)); orig = malloc(nelmts * sizeof(struct st)); for (i=0; ib = (i*8+1) & 0x7fff; s_ptr->d = (i*8+6) & 0x7fff; } memcpy(buf, orig, nelmts*sizeof(struct st)); /* Build hdf5 datatypes */ if ((st=H5Tcreate(H5T_COMPOUND, sizeof(struct st)))<0 || H5Tinsert(st, "b", HOFFSET(struct st, b), H5T_NATIVE_SHORT)<0 || H5Tinsert(st, "d", HOFFSET(struct st, d), H5T_NATIVE_SHORT)<0) { H5_FAILED(); goto error; } if ((dt=H5Tcreate(H5T_COMPOUND, sizeof(struct dt)))<0 || H5Tinsert(dt, "b", HOFFSET(struct dt, b), H5T_NATIVE_LONG)<0 || H5Tinsert(dt, "d", HOFFSET(struct dt, d), H5T_NATIVE_LONG)<0) { H5_FAILED(); goto error; } /* Perform the conversion */ if (H5Tconvert(st, dt, (hsize_t)nelmts, buf, bkg, H5P_DEFAULT)<0) { H5_FAILED(); goto error; } /* Compare results */ for (i=0; ib != d_ptr->b || s_ptr->d != d_ptr->d) { H5_FAILED(); printf(" i=%d\n", i); printf(" src={b=%d, d=%d\n", (int)s_ptr->b, (int)s_ptr->d); printf(" dst={b=%ld, d=%ld\n", d_ptr->b, d_ptr->d); goto error; } } /* Release resources */ free(buf); free(bkg); free(orig); if (H5Tclose(st)<0 || H5Tclose(dt)<0) { H5_FAILED(); goto error; } PASSED(); reset_hdf5(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_compound_7 * * Purpose: Tests inserting fields into compound datatypes when the field * overlaps the end of the compound datatype. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Quincey Koziol * Tuesday, December 18, 2001 * * Modifications: * *------------------------------------------------------------------------- */ static int test_compound_7(void) { struct s1 { int a; float b; long c; }; struct s2 { int a; float b; long c; double d; }; hid_t tid1,tid2; herr_t ret; TESTING("compound element insertion"); if((tid1= H5Tcreate( H5T_COMPOUND, sizeof(struct s1)))<0) { H5_FAILED(); printf("Can't create datatype!\n"); goto error; } /* end if */ if(H5Tinsert(tid1,"a",HOFFSET(struct s1,a),H5T_NATIVE_INT)<0) { H5_FAILED(); printf("Can't insert field 'a'\n"); goto error; } /* end if */ if(H5Tinsert(tid1,"b",HOFFSET(struct s1,b),H5T_NATIVE_FLOAT)<0) { H5_FAILED(); printf("Can't insert field 'b'\n"); goto error; } /* end if */ if(H5Tinsert(tid1,"c",HOFFSET(struct s1,c),H5T_NATIVE_LONG)<0) { H5_FAILED(); printf("Can't insert field 'c'\n"); goto error; } /* end if */ if(H5Tget_size(tid1)!=sizeof(struct s1)) { H5_FAILED(); printf("Incorrect size for struct 1\n"); goto error; } /* end if */ if((tid2= H5Tcopy(tid1))<0) { H5_FAILED(); printf("Can't copy datatype\n"); goto error; } /* end if */ if(H5Tget_size(tid2)==sizeof(struct s2)) { H5_FAILED(); printf("Incorrect size for struct 2\n"); goto error; } /* end if */ /* Should not be able to insert field past end of compound datatype */ H5E_BEGIN_TRY { ret=H5Tinsert(tid2,"d",HOFFSET(struct s2,d),H5T_NATIVE_DOUBLE); } H5E_END_TRY; if(ret>=0) { H5_FAILED(); printf("Inserted field 'd'?\n"); goto error; } /* end if */ /* Release resources */ if (H5Tclose(tid1)<0 || H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatypes\n"); goto error; } /* end if */ PASSED(); reset_hdf5(); return 0; error: return 1; } /*------------------------------------------------------------------------- * Function: test_query * * Purpose: Tests query functions of compound and enumeration types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Raymond Lu * Thursday, April 4, 2002 * * Modifications: * *------------------------------------------------------------------------- */ static int test_query(void) { struct s1 { int a; float b; long c; double d; }; hid_t file=-1, tid1=-1, tid2=-1; char filename[1024]; char compnd_type[]="Compound_type", enum_type[]="Enum_type"; short enum_val; TESTING("query functions of compound and enumeration types"); /* Create File */ h5_fixname(FILENAME[2], H5P_DEFAULT, filename, sizeof filename); if((file=H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT))<0) goto error; /* Create a compound datatype */ if((tid1=H5Tcreate(H5T_COMPOUND, sizeof(struct s1)))<0) { H5_FAILED(); printf("Can't create datatype!\n"); goto error; } /* end if */ if(H5Tinsert(tid1, "a", HOFFSET(struct s1, a), H5T_NATIVE_INT)<0) { H5_FAILED(); printf("Can't insert field 'a'\n"); goto error; } /* end if */ if(H5Tinsert(tid1, "b", HOFFSET(struct s1, b), H5T_NATIVE_FLOAT)<0) { H5_FAILED(); printf("Can't insert field 'b'\n"); goto error; } /* end if */ if(H5Tinsert(tid1, "c", HOFFSET(struct s1, c), H5T_NATIVE_LONG)<0) { H5_FAILED(); printf("Can't insert field 'c'\n"); goto error; } /* end if */ if(H5Tinsert(tid1, "d", HOFFSET(struct s1, d), H5T_NATIVE_DOUBLE)<0) { H5_FAILED(); printf("Can't insert field 'd'\n"); goto error; } /* end if */ /* Create a enumerate datatype */ if((tid2=H5Tcreate(H5T_ENUM, sizeof(short)))<0) { H5_FAILED(); printf("Can't create enumerate type\n"); goto error; } /* end if */ if(H5Tenum_insert(tid2, "RED", (enum_val=0,&enum_val))<0) { H5_FAILED(); printf("Can't insert field into enumeration type\n"); goto error; } /* end if */ if(H5Tenum_insert(tid2, "GREEN", (enum_val=1,&enum_val))<0) { H5_FAILED(); printf("Can't insert field into enumeration type\n"); goto error; } /* end if */ if(H5Tenum_insert(tid2, "BLUE", (enum_val=2,&enum_val))<0) { H5_FAILED(); printf("Can't insert field into enumeration type\n"); goto error; } /* end if */ if(H5Tenum_insert(tid2, "ORANGE", (enum_val=3,&enum_val))<0) { H5_FAILED(); printf("Can't insert field into enumeration type\n"); goto error; } /* end if */ if(H5Tenum_insert(tid2, "YELLOW", (enum_val=4,&enum_val))<0) { H5_FAILED(); printf("Can't insert field into enumeration type\n"); goto error; } /* end if */ /* Query member number and member index by name, for compound type. */ if(H5Tget_nmembers(tid1)!=4) { H5_FAILED(); printf("Can't get member number\n"); goto error; } /* end if */ if(H5Tget_member_index(tid1, "c")!=2) { H5_FAILED(); printf("Can't get correct index number\n"); goto error; } /* end if */ /* Query member number and member index by name, for enumeration type. */ if(H5Tget_nmembers(tid2)!=5) { H5_FAILED(); printf("Can't get member number\n"); goto error; } /* end if */ if(H5Tget_member_index(tid2, "ORANGE")!=3) { H5_FAILED(); printf("Can't get correct index number\n"); goto error; } /* end if */ /* Commit compound datatype and close it */ if(H5Tcommit(file, compnd_type, tid1)<0) { H5_FAILED(); printf("Can't commit compound datatype\n"); goto error; } /* end if */ if(H5Tclose(tid1)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } /* end if */ /* Commit enumeration datatype and close it */ if(H5Tcommit(file, enum_type, tid2)<0) { H5_FAILED(); printf("Can't commit compound datatype\n"); goto error; } /* end if */ if(H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } /* end if */ /* Open the dataytpe for query */ if((tid1=H5Topen(file, compnd_type))<0) { H5_FAILED(); printf("Can't open datatype\n"); goto error; } /* end if */ if((tid2=H5Topen(file, enum_type))<0) { H5_FAILED(); printf("Can't open datatype\n"); goto error; } /* end if */ /* Query member number and member index by name, for compound type */ if(H5Tget_nmembers(tid1)!=4) { H5_FAILED(); printf("Can't get member number\n"); goto error; } /* end if */ if(H5Tget_member_index(tid1, "c")!=2) { H5_FAILED(); printf("Can't get correct index number\n"); goto error; } /* end if */ /* Query member number and member index by name, for enumeration type */ if(H5Tget_nmembers(tid2)!=5) { H5_FAILED(); printf("Can't get member number\n"); goto error; } /* end if */ if(H5Tget_member_index(tid2, "ORANGE")!=3) { H5_FAILED(); printf("Can't get correct index number\n"); goto error; } /* end if */ /* Close data type and file */ if(H5Tclose(tid1)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } /* end if */ if(H5Tclose(tid2)<0) { H5_FAILED(); printf("Can't close datatype\n"); goto error; } /* end if */ if(H5Fclose(file)<0) { H5_FAILED(); printf("Can't close file\n"); goto error; } /* end if */ PASSED(); return 0; error: H5E_BEGIN_TRY { H5Tclose (tid1); H5Tclose (tid2); H5Fclose (file); } H5E_END_TRY; return 1; } /*------------------------------------------------------------------------- * Function: test_transient * * Purpose: Tests transient data types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Thursday, June 4, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_transient (hid_t fapl) { static hsize_t ds_size[2] = {10, 20}; hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1; char filename[1024]; herr_t status; TESTING("transient data types"); h5_fixname(FILENAME[0], fapl, filename, sizeof filename); if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) { goto error; } if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error; /* Predefined types cannot be modified or closed */ H5E_BEGIN_TRY { status = H5Tset_precision (H5T_NATIVE_INT, 256); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Predefined types should not be modifiable!"); goto error; } H5E_BEGIN_TRY { status = H5Tclose (H5T_NATIVE_INT); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Predefined types should not be closable!"); goto error; } /* Copying a predefined type results in a modifiable copy */ if ((type=H5Tcopy (H5T_NATIVE_INT))<0) goto error; if (H5Tset_precision (type, 256)<0) goto error; /* It should not be possible to create an attribute for a transient type */ H5E_BEGIN_TRY { status = H5Acreate (type, "attr1", H5T_NATIVE_INT, space, H5P_DEFAULT); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Attributes should not be allowed for transient types!"); goto error; } /* Create a dataset from a transient data type */ if (H5Tclose (type)<0) goto error; if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error; if ((dset=H5Dcreate (file, "dset1", type, space, H5P_DEFAULT))<0) goto error; /* The type returned from a dataset should not be modifiable */ if ((t2 = H5Dget_type (dset))<0) goto error; H5E_BEGIN_TRY { status = H5Tset_precision (t2, 256); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Dataset data types should not be modifiable!"); goto error; } if (H5Tclose (t2)<0) goto error; /* * Close the dataset and reopen it, testing that it's type is still * read-only. */ if (H5Dclose (dset)<0) goto error; if ((dset=H5Dopen (file, "dset1"))<0) goto error; if ((t2 = H5Dget_type (dset))<0) goto error; H5E_BEGIN_TRY { status = H5Tset_precision (t2, 256); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Dataset data types should not be modifiable!"); goto error; } if (H5Tclose (t2)<0) goto error; /* * Get the dataset data type by applying H5Tcopy() to the dataset. The * result should be modifiable. */ if ((t2=H5Tcopy (dset))<0) goto error; if (H5Tset_precision (t2, 256)<0) goto error; if (H5Tclose (t2)<0) goto error; H5Dclose (dset); H5Fclose (file); H5Tclose (type); H5Sclose (space); PASSED(); return 0; error: H5E_BEGIN_TRY { H5Tclose (t2); H5Tclose (type); H5Sclose (space); H5Dclose (dset); H5Fclose (file); } H5E_END_TRY; return 1; } /*------------------------------------------------------------------------- * Function: test_named * * Purpose: Tests named data types. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Monday, June 1, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_named (hid_t fapl) { hid_t file=-1, type=-1, space=-1, dset=-1, t2=-1, attr1=-1; herr_t status; static hsize_t ds_size[2] = {10, 20}; hsize_t i; unsigned attr_data[10][20]; char filename[1024]; TESTING("named data types"); h5_fixname(FILENAME[1], fapl, filename, sizeof filename); if ((file=H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl))<0) { goto error; } if ((space = H5Screate_simple (2, ds_size, ds_size))<0) goto error; /* Predefined types cannot be committed */ H5E_BEGIN_TRY { status = H5Tcommit (file, "test_named_1 (should not exist)", H5T_NATIVE_INT); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Predefined types should not be committable!"); goto error; } /* Copy a predefined data type and commit the copy */ if ((type = H5Tcopy (H5T_NATIVE_INT))<0) goto error; if (H5Tcommit (file, "native-int", type)<0) goto error; if ((status=H5Tcommitted (type))<0) goto error; if (0==status) { H5_FAILED(); puts (" H5Tcommitted() returned false!"); goto error; } /* We should not be able to modify a type after it has been committed. */ H5E_BEGIN_TRY { status = H5Tset_precision (type, 256); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Committed type is not constant!"); goto error; } /* We should not be able to re-commit a committed type */ H5E_BEGIN_TRY { status = H5Tcommit(file, "test_named_2 (should not exist)", type); } H5E_END_TRY; if (status>=0) { H5_FAILED(); puts (" Committed types should not be recommitted!"); goto error; } /* It should be possible to define an attribute for the named type */ if ((attr1=H5Acreate (type, "attr1", H5T_NATIVE_UCHAR, space, H5P_DEFAULT))<0) goto error; for (i=0; i1) { sprintf(s, "Testing random string conversion speed (test %d/%d)", (int)(i+1), (int)ntests); } else { sprintf(s, "Testing random string conversion speed"); } printf("%-70s", s); fflush(stdout); if (H5Tconvert(c_type, f_type, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error; if (H5Tconvert(f_type, c_type, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error; PASSED(); } ret_value = 0; error: if (buf) free(buf); reset_hdf5(); return ret_value; } /*------------------------------------------------------------------------- * Function: test_conv_enum_1 * * Purpose: Test conversion speed for enum data types * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Tuesday, January 5, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_enum_1(void) { const int nelmts=NTESTELEM, ntests=NTESTS; int i, val, *buf=NULL; hid_t t1, t2; char s[80]; int ret_value = 1; /* Build the data types */ t1 = H5Tcreate(H5T_ENUM, sizeof(int)); t2 = H5Tenum_create(H5T_NATIVE_INT); s[1] = '\0'; for (i=0; i<26; i++) { s[0] = 'A'+i; H5Tenum_insert(t1, s, &i); H5Tenum_insert(t2, s, (val=i*1000+i, &val)); } /* Initialize the buffer */ buf = malloc(nelmts*MAX(H5Tget_size(t1), H5Tget_size(t2))); for (i=0; i1) { sprintf(s, "Testing random enum conversion O(N) (test %d/%d)", i+1, ntests); } else { sprintf(s, "Testing random enum conversion O(N)"); } printf("%-70s", s); fflush(stdout); if (H5Tconvert(t1, t2, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error; PASSED(); } for (i=0; i1) { sprintf(s, "Testing random enum conversion O(N log N) " "(test %d/%d)", i+1, ntests); } else { sprintf(s, "Testing random enum conversion O(N log N)"); } printf("%-70s", s); fflush(stdout); if (H5Tconvert(t2, t1, (hsize_t)nelmts, buf, NULL, H5P_DEFAULT)<0) goto error; PASSED(); } ret_value = 0; error: H5Tclose(t1); H5Tclose(t2); if (buf) free(buf); reset_hdf5(); return ret_value; } /*------------------------------------------------------------------------- * Function: test_conv_enum_2 * * Purpose: Tests enumeration conversions where source isn't a native type. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke, LLNL, 2003-06-09 * * Modifications: *------------------------------------------------------------------------- */ static int test_conv_enum_2(void) { hid_t srctype=-1, dsttype=-1, oddsize=-1; int *data=NULL, i, nerrors=0; const char *mname[] = { "RED", "GREEN", "BLUE", "YELLOW", "PINK", "PURPLE", "ORANGE", "WHITE" }; TESTING("non-native enumeration type conversion"); /* Source enum type */ oddsize = H5Tcopy(H5T_STD_I32BE); H5Tset_size(oddsize, 3); /*reduce to 24 bits, not corresponding to any native size*/ srctype = H5Tenum_create(oddsize); for (i=7; i>=0; --i) { char pattern[3]; pattern[2] = i; pattern[0] = pattern[1] = 0; H5Tenum_insert(srctype, mname[i], pattern); } /* Destination enum type */ dsttype = H5Tenum_create(H5T_NATIVE_INT); assert(H5Tget_size(dsttype)>H5Tget_size(srctype)); for (i=0; i<8; i++) H5Tenum_insert(dsttype, mname[i], &i); /* Source data */ data = malloc(NTESTELEM*sizeof(int)); for (i=0; icommand) num_opaque_conversions_g++; return 0; } /*------------------------------------------------------------------------- * Function: test_opaque * * Purpose: Test opaque datatypes * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Thursday, May 20, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_opaque(void) { #define OPAQUE_NELMTS 1000 hid_t st=-1, dt=-1; herr_t status; char buf[1]; /*not really used*/ int saved = num_opaque_conversions_g; TESTING("opaque datatypes"); /* Build source and destination types */ if ((st=H5Tcreate(H5T_OPAQUE, 4))<0) goto error; if (H5Tset_tag(st, "opaque source type")<0) goto error; if ((dt=H5Tcreate(H5T_OPAQUE, 4))<0) goto error; if (H5Tset_tag(dt, "opaque destination type")<0) goto error; /* Make sure that we can't convert between the types yet */ H5E_BEGIN_TRY { status = H5Tconvert(st, dt, (hsize_t)OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT); } H5E_END_TRY; if (status>=0) { H5_FAILED(); printf(" opaque conversion should have failed but succeeded\n"); goto error; } /* Register a conversion function */ if (H5Tregister(H5T_PERS_HARD, "o_test", st, dt, convert_opaque)<0) goto error; /* Try the conversion again, this time it should work */ if (H5Tconvert(st, dt, (hsize_t)OPAQUE_NELMTS, buf, NULL, H5P_DEFAULT)<0) goto error; if (saved+1 != num_opaque_conversions_g) { H5_FAILED(); printf(" unexpected number of opaque conversions\n"); goto error; } H5Tclose(st); H5Tclose(dt); PASSED(); return 0; error: if (st>0) H5Tclose(st); if (dt>0) H5Tclose(dt); H5_FAILED(); return 1; } /*------------------------------------------------------------------------- * Function: test_conv_int * * Purpose: Test atomic number conversions. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Wednesday, June 10, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int (void) { unsigned char byte[4]; /*--------------------------------------------------------------------- * Test some specific overflow/underflow cases. *--------------------------------------------------------------------- */ TESTING("integer overflow conversions"); /* (unsigned)0x80000000 -> (unsigned)0xffff */ byte[0] = byte[1] = byte[2] = 0; byte[3] = 0x80; if (H5Tconvert (H5T_STD_U32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) { goto error; } if (byte[0]!=0xff || byte[1]!=0xff) { H5_FAILED(); printf(" src: 0x80000000 unsigned\n"); printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]); printf(" ans: 0xffff unsigned\n"); goto error; } /* (unsigned)0xffffffff -> (signed)0x7fff */ byte[0] = byte[1] = byte[2] = byte[3] = 0xff; if (H5Tconvert (H5T_STD_U32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) { goto error; } if (byte[0]!=0xff || byte[1]!=0x7f) { H5_FAILED(); printf(" src: 0xffffffff unsigned\n"); printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]); printf(" ans: 0x7fff signed\n"); goto error; } /* (signed)0xffffffff -> (unsigned)0x0000 */ byte[0] = byte[1] = byte[2] = byte[3] = 0xff; if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) { goto error; } if (byte[0]!=0x00 || byte[1]!=0x00) { H5_FAILED(); printf(" src: 0xffffffff signed\n"); printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]); printf(" ans: 0x0000 unsigned\n"); goto error; } /* (signed)0x7fffffff -> (unsigned)0xffff */ byte[0] = byte[1] = byte[2] = 0xff; byte[3] = 0x7f; if (H5Tconvert (H5T_STD_I32LE, H5T_STD_U16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) { goto error; } if (byte[0]!=0xff || byte[1]!=0xff) { H5_FAILED(); printf(" src: 0x7fffffff signed\n"); printf(" dst: 0x%02x%02x unsigned\n", byte[1], byte[0]); printf(" ans: 0xffff unsigned\n"); goto error; } /* (signed)0x7fffffff -> (signed)0x7fff */ byte[0] = byte[1] = byte[2] = 0xff; byte[3] = 0x7f; if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) { goto error; } if (byte[0]!=0xff || byte[1]!=0x7f) { H5_FAILED(); printf(" src: 0x7fffffff signed\n"); printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]); printf(" ans: 0x7fff signed\n"); goto error; } /* (signed)0xbfffffff -> (signed)0x8000 */ byte[0] = byte[1] = byte[2] = 0xff; byte[3] = 0xbf; if (H5Tconvert (H5T_STD_I32LE, H5T_STD_I16LE, (hsize_t)1, byte, NULL, H5P_DEFAULT)<0) { goto error; } if (byte[0]!=0x00 || byte[1]!=0x80) { H5_FAILED(); printf(" src: 0xbfffffff signed\n"); printf(" dst: 0x%02x%02x signed\n", byte[1], byte[0]); printf(" ans: 0x8000 signed\n"); goto error; } PASSED(); reset_hdf5(); return 0; error: reset_hdf5(); return 1; } /*------------------------------------------------------------------------- * Function: test_conv_int_1 * * Purpose: Test conversion of random integer values from SRC to DST. * These types should be any combination of: * * H5T_NATIVE_SCHAR H5T_NATIVE_UCHAR * H5T_NATIVE_SHORT H5T_NATIVE_USHORT * H5T_NATIVE_INT H5T_NATIVE_UINT * H5T_NATIVE_LONG H5T_NATIVE_ULONG * H5T_NATIVE_LLONG H5T_NATIVE_ULLONG * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Monday, November 16, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_1(const char *name, hid_t src, hid_t dst) { const size_t ntests=NTESTS; /*number of tests */ const size_t nelmts=NTESTELEM; /*num values per test */ const size_t max_fails=8; /*max number of failures*/ size_t fails_all_tests=0; /*number of failures */ size_t fails_this_test; /*fails for this test */ char str[256]; /*hello string */ int_t src_type, dst_type; /*data types */ const char *src_type_name=NULL; /*source type name */ const char *dst_type_name=NULL; /*destination type name */ int endian; /*machine endianess */ size_t src_size, dst_size; /*type sizes */ unsigned char *buf=NULL; /*buffer for conversion */ unsigned char *saved=NULL; /*original values */ size_t i, j, k; /*counters */ unsigned char *hw=NULL; /*hardware conv result */ unsigned char src_bits[32]; /*src value in LE order */ unsigned char dst_bits[32]; /*dest value in LE order*/ size_t src_nbits; /*source length in bits */ size_t dst_nbits; /*dst length in bits */ void *aligned=NULL; /*aligned temp buffer */ signed char hw_char; unsigned char hw_uchar; short hw_short; unsigned short hw_ushort; int hw_int; unsigned hw_uint; long hw_long; unsigned long hw_ulong; long_long hw_llong; unsigned long_long hw_ullong; /* What are the names of the source and destination types */ if (H5Tequal(src, H5T_NATIVE_SCHAR)) { src_type_name = "signed char"; src_type = INT_CHAR; } else if (H5Tequal(src, H5T_NATIVE_UCHAR)) { src_type_name = "unsigned char"; src_type = INT_UCHAR; } else if (H5Tequal(src, H5T_NATIVE_SHORT)) { src_type_name = "short"; src_type = INT_SHORT; } else if (H5Tequal(src, H5T_NATIVE_USHORT)) { src_type_name = "unsigned short"; src_type = INT_USHORT; } else if (H5Tequal(src, H5T_NATIVE_INT)) { src_type_name = "int"; src_type = INT_INT; } else if (H5Tequal(src, H5T_NATIVE_UINT)) { src_type_name = "unsigned int"; src_type = INT_UINT; } else if (H5Tequal(src, H5T_NATIVE_LONG)) { src_type_name = "long"; src_type = INT_LONG; } else if (H5Tequal(src, H5T_NATIVE_ULONG)) { src_type_name = "unsigned long"; src_type = INT_ULONG; } else if (H5Tequal(src, H5T_NATIVE_LLONG)) { src_type_name = "long long"; src_type = INT_LLONG; } else if (H5Tequal(src, H5T_NATIVE_ULLONG)) { src_type_name = "unsigned long long"; src_type = INT_ULLONG; } else { src_type_name = "UNKNOWN"; src_type = INT_OTHER; } if (H5Tequal(dst, H5T_NATIVE_SCHAR)) { dst_type_name = "signed char"; dst_type = INT_CHAR; } else if (H5Tequal(dst, H5T_NATIVE_UCHAR)) { dst_type_name = "unsigned char"; dst_type = INT_UCHAR; } else if (H5Tequal(dst, H5T_NATIVE_SHORT)) { dst_type_name = "short"; dst_type = INT_SHORT; } else if (H5Tequal(dst, H5T_NATIVE_USHORT)) { dst_type_name = "unsigned short"; dst_type = INT_USHORT; } else if (H5Tequal(dst, H5T_NATIVE_INT)) { dst_type_name = "int"; dst_type = INT_INT; } else if (H5Tequal(dst, H5T_NATIVE_UINT)) { dst_type_name = "unsigned int"; dst_type = INT_UINT; } else if (H5Tequal(dst, H5T_NATIVE_LONG)) { dst_type_name = "long"; dst_type = INT_LONG; } else if (H5Tequal(dst, H5T_NATIVE_ULONG)) { dst_type_name = "unsigned long"; dst_type = INT_ULONG; } else if (H5Tequal(dst, H5T_NATIVE_LLONG)) { dst_type_name = "long long"; dst_type = INT_LLONG; } else if (H5Tequal(dst, H5T_NATIVE_ULLONG)) { dst_type_name = "unsigned long long"; dst_type = INT_ULLONG; } else { dst_type_name = "UNKNOWN"; dst_type = INT_OTHER; } /* Sanity checks */ if (INT_OTHER==src_type || INT_OTHER==dst_type) { sprintf(str, "Testing random %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); puts(" Unknown data type."); goto error; } /* Allocate buffers */ endian = H5Tget_order(H5T_NATIVE_INT); src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); src_nbits = H5Tget_precision(src); /* not 8*src_size, esp on J90 - QAK */ dst_nbits = H5Tget_precision(dst); /* not 8*dst_size, esp on J90 - QAK */ buf = aligned_malloc(nelmts*MAX(src_size, dst_size)); saved = aligned_malloc(nelmts*MAX(src_size, dst_size)); aligned = malloc(sizeof(long_long)); #ifdef SHOW_OVERFLOWS noverflows_g = 0; #endif /* The tests */ for (i=0; i1) { sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)", name, src_type_name, dst_type_name, (int)i+1, (int)ntests); } else { sprintf(str, "Testing random %s %s -> %s conversions", name, src_type_name, dst_type_name); } printf("%-70s", str); fflush(stdout); fails_this_test=0; /* * Initialize the source buffers to random bits. The `buf' buffer * will be used for the conversion while the `saved' buffer will be * sed for the comparison later. */ for (j=0; jdst_nbits) { if(0==H5T_bit_get_d(src_bits, src_nbits-1, 1) && H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits), H5T_BIT_MSB, 1)>=0) { /* * Source is positive and the magnitude is too large for * the destination. The destination should be set to the * maximum possible value: 0x7f...f */ if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) { continue; /*no error*/ } } else if (1==H5T_bit_get_d(src_bits, src_nbits-1, 1) && H5T_bit_find(src_bits, 0, src_nbits-1, H5T_BIT_MSB, 0)+1>=(ssize_t)dst_nbits) { /* * Source is negative but the magnitude is too large for * the destination. The destination should be set to the * smallest possible value: 0x80...0 */ if (1==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 1)<0) { continue; /*no error*/ } } } else if(src_nbitsdst_nbits && H5T_bit_find(src_bits, dst_nbits-1, src_nbits-dst_nbits, H5T_BIT_LSB, 1)>=0) { /* * The source is a value with a magnitude too large for * the destination. The destination should be the * largest possible value: 0xff...f */ if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) { continue; /*no error*/ } } } else if (H5T_SGN_NONE==H5Tget_sign(src) && H5T_SGN_2==H5Tget_sign(dst)) { if (src_nbits>=dst_nbits && H5T_bit_find(src_bits, dst_nbits-1, (src_nbits-dst_nbits)+1, H5T_BIT_LSB, 1)>=0) { /* * The source value has a magnitude that is larger than * the destination can handle. The destination should be * set to the largest possible positive value: 0x7f...f */ if (0==H5T_bit_get_d(dst_bits, dst_nbits-1, 1) && H5T_bit_find(dst_bits, 0, dst_nbits-1, H5T_BIT_LSB, 0)<0) { continue; /*no error*/ } } } else { if (src_nbits>dst_nbits && H5T_bit_find(src_bits, dst_nbits, src_nbits-dst_nbits, H5T_BIT_LSB, 1)>=0) { /* * The unsigned source has a value which is too large for * the unsigned destination. The destination should be * set to the largest possible value: 0xff...f */ if (H5T_bit_find(dst_bits, 0, dst_nbits, H5T_BIT_LSB, 0)<0) { continue; /*no error*/ } } } /* Print errors */ if (0==fails_this_test++) H5_FAILED(); printf(" test %u elmt %u\n", (unsigned)i+1, (unsigned)j); printf(" src = "); for (k=0; k=max_fails) { puts(" maximum failures reached, aborting test..."); goto done; } } PASSED(); } #ifdef SHOW_OVERFLOWS if (noverflows_g>0) { printf(" %d overflow%s in previous test\n", noverflows_g, 1==noverflows_g?"":"s"); } #endif done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) free(aligned); fflush(stdout); reset_hdf5(); /*print statistics*/ return (int)fails_all_tests; error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) free(aligned); fflush(stdout); reset_hdf5(); /*print statistics*/ return MAX((int)fails_all_tests, 1); } /*------------------------------------------------------------------------- * Function: test_conv_int_2 * * Purpose: Tests overlap calculates in H5T_conv_i_i(), which should be * the same as for H5T_conv_f_f() and H5T_conv_s_s(). * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Friday, April 30, 1999 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_int_2(void) { int i, j; hid_t src_type, dst_type; char buf[32*100]; printf("%-70s", "Testing overlap calculations"); fflush(stdout); memset(buf, 0, sizeof buf); for (i=1; i<=32; i++) { for (j=1; j<=32; j++) { /* Source type */ src_type = H5Tcopy(H5T_NATIVE_CHAR); H5Tset_size(src_type, (size_t)i); /* Destination type */ dst_type = H5Tcopy(H5T_NATIVE_CHAR); H5Tset_size(dst_type, (size_t)j); /* * Conversion. If overlap calculations aren't right then an * assertion will fail in H5T_conv_i_i() */ H5Tconvert(src_type, dst_type, (hsize_t)100, buf, NULL, H5P_DEFAULT); H5Tclose(src_type); H5Tclose(dst_type); } } PASSED(); return 0; } /*------------------------------------------------------------------------- * Function: my_isnan * * Purpose: Determines whether VAL points to NaN. * * Return: TRUE or FALSE * * Programmer: Robb Matzke * Monday, July 6, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int my_isnan(flt_t type, void *val) { int retval; char s[256]; if (FLT_FLOAT==type) { float x; memcpy(&x, val, sizeof(float)); retval = (x!=x); } else if (FLT_DOUBLE==type) { double x; memcpy(&x, val, sizeof(double)); retval = (x!=x); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else if (FLT_LDOUBLE==type) { long double x; memcpy(&x, val, sizeof(long double)); retval = (x!=x); #endif } else { return 0; } /* * Sometimes NaN==NaN (e.g., DEC Alpha) so we try to print it and see if * the result contains a NaN string. */ if (!retval) { if (FLT_FLOAT==type) { float x; memcpy(&x, val, sizeof(float)); sprintf(s, "%g", x); } else if (FLT_DOUBLE==type) { double x; memcpy(&x, val, sizeof(double)); sprintf(s, "%g", x); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else if (FLT_LDOUBLE==type) { long double x; memcpy(&x, val, sizeof(long double)); sprintf(s, "%Lg", x); #endif } else { return 0; } if (!strstr(s, "NaN") || !strstr(s, "NAN") || !strstr(s, "nan")) { retval = 1; } } return retval; } /*------------------------------------------------------------------------- * Function: test_conv_flt_1 * * Purpose: Test conversion of random floating point values from SRC to * DST. These types should be H5T_NATIVE_FLOAT, * H5T_NATIVE_DOUBLE, or H5T_NATIVE_LDOUBLE. * * Return: Success: 0 * * Failure: number of errors * * Programmer: Robb Matzke * Tuesday, June 23, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int test_conv_flt_1 (const char *name, hid_t src, hid_t dst) { flt_t src_type, dst_type; /*data types */ const size_t ntests=NTESTS; /*number of tests */ const size_t nelmts=NTESTELEM; /*num values per test */ const size_t max_fails=8; /*max number of failures*/ size_t fails_all_tests=0; /*number of failures */ size_t fails_this_test; /*fails for this test */ const char *src_type_name = NULL; /*source type name */ const char *dst_type_name = NULL; /*destination type name */ size_t src_size, dst_size; /*type sizes */ unsigned char *buf = NULL; /*buffer for conversion */ unsigned char *saved = NULL; /*original values */ char str[256]; /*hello string */ float hw_f; /*hardware-converted */ double hw_d; /*hardware-converted */ void *aligned=NULL; /*aligned buffer */ #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE long double hw_ld; /*hardware-converted */ #endif unsigned char *hw=NULL; /*ptr to hardware-conv'd*/ size_t i, j, k; /*counters */ int endian; /*machine endianess */ #ifdef HANDLE_SIGFPE pid_t child_pid; /*process ID of child */ int status; /*child exit status */ /* * Some systems generage SIGFPE during floating point overflow and we * cannot assume that we can continue from such a signal. Therefore, we * fork here and let the child run the test and return the number of * failures with the exit status. */ fflush(stdout); fflush(stderr); if ((child_pid=fork())<0) { perror("fork"); return 1; } else if (child_pid>0) { while (child_pid!=waitpid(child_pid, &status, 0)) /*void*/; if (WIFEXITED(status) && 255==WEXITSTATUS(status)) { return 0; /*child exit after catching SIGFPE*/ } else if (WIFEXITED(status)) { return WEXITSTATUS(status); } else { puts(" Child didn't exit normally."); return 1; } } #endif /* * The remainder of this function is executed only by the child if * HANDLE_SIGFPE is defined. */ #ifndef __WATCOMC__ signal(SIGFPE,fpe_handler); #endif /* What are the names of the source and destination types */ if (H5Tequal(src, H5T_NATIVE_FLOAT)) { src_type_name = "float"; src_type = FLT_FLOAT; } else if (H5Tequal(src, H5T_NATIVE_DOUBLE)) { src_type_name = "double"; src_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else if (H5Tequal(src, H5T_NATIVE_LDOUBLE)) { src_type_name = "long double"; src_type = FLT_LDOUBLE; #endif } else { src_type_name = "UNKNOWN"; src_type = FLT_OTHER; } if (H5Tequal(dst, H5T_NATIVE_FLOAT)) { dst_type_name = "float"; dst_type = FLT_FLOAT; } else if (H5Tequal(dst, H5T_NATIVE_DOUBLE)) { dst_type_name = "double"; dst_type = FLT_DOUBLE; #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE } else if (H5Tequal(dst, H5T_NATIVE_LDOUBLE)) { dst_type_name = "long double"; dst_type = FLT_LDOUBLE; #endif } else { dst_type_name = "UNKNOWN"; dst_type = FLT_OTHER; } /* Sanity checks */ if(sizeof(float)==sizeof(double)) puts("Sizeof(float)==sizeof(double) - some tests may not be sensible."); if (FLT_OTHER==src_type || FLT_OTHER==dst_type) { sprintf(str, "Testing random %s %s -> %s conversions", name, src_type_name, dst_type_name); printf("%-70s", str); H5_FAILED(); puts(" Unknown data type."); goto error; } /* Allocate buffers */ endian = H5Tget_order(H5T_NATIVE_FLOAT); src_size = H5Tget_size(src); dst_size = H5Tget_size(dst); buf = aligned_malloc(nelmts*MAX(src_size, dst_size)); saved = aligned_malloc(nelmts*MAX(src_size, dst_size)); aligned = malloc(16); /*should be big enough for any type*/ #ifdef SHOW_OVERFLOWS noverflows_g = 0; #endif for (i=0; i1) { sprintf(str, "Testing random %s %s -> %s conversions (test %d/%d)", name, src_type_name, dst_type_name, (int)i+1, (int)ntests); } else { sprintf(str, "Testing random %s %s -> %s conversions", name, src_type_name, dst_type_name); } printf("%-70s", str); fflush(stdout); fails_this_test = 0; /* * Initialize the source buffers to random bits. The `buf' buffer * will be used for the conversion while the `saved' buffer will be * used for the comparison later. */ if (!skip_overflow_tests_g) { for (j=0; j=max_fails) { puts(" maximum failures reached, aborting test..."); goto done; } } PASSED(); } #ifdef SHOW_OVERFLOWS if (noverflows_g>0) { printf(" %d overflow%s in previous test\n", noverflows_g, 1==noverflows_g?"":"s"); } #endif done: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) free(aligned); fflush(stdout); #ifdef HANDLE_SIGFPE exit(MIN((int)fails_all_tests, 254)); #else reset_hdf5(); return (int)fails_all_tests; #endif error: if (buf) aligned_free(buf); if (saved) aligned_free(saved); if (aligned) free(aligned); fflush(stdout); #ifdef HANDLE_SIGFPE exit(MIN(MAX((int)fails_all_tests, 1), 254)); #else reset_hdf5(); return MAX((int)fails_all_tests, 1); #endif } /*------------------------------------------------------------------------- * Function: run_integer_tests * * Purpose: Runs all integer tests. * * Return: Number of errors * * Programmer: Robb Matzke * Tuesday, November 24, 1998 * * Modifications: * *------------------------------------------------------------------------- */ static int run_integer_tests(const char *name) { int nerrors = 0; nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SCHAR, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UCHAR, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_SHORT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_USHORT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_INT, H5T_NATIVE_ULLONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_INT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_UINT, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_UINT); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULONG); #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_LONG, H5T_NATIVE_ULLONG); #endif #endif #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_UINT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LONG); #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_LLONG); nerrors += test_conv_int_1(name, H5T_NATIVE_ULONG, H5T_NATIVE_ULLONG); #endif #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_LLONG, H5T_NATIVE_ULLONG); #endif #if H5_SIZEOF_LONG_LONG!=H5_SIZEOF_LONG nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UCHAR); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_SHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_USHORT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_INT); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_UINT); #if H5_SIZEOF_LONG!=H5_SIZEOF_INT nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LONG); nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_ULONG); #endif nerrors += test_conv_int_1(name, H5T_NATIVE_ULLONG, H5T_NATIVE_LLONG); #endif return nerrors; } /*------------------------------------------------------------------------- * Function: main * * Purpose: Test the data type interface. * * Return: Success: * * Failure: * * Programmer: Robb Matzke * Tuesday, December 9, 1997 * * Modifications: * *------------------------------------------------------------------------- */ int main(void) { unsigned long nerrors = 0; hid_t fapl=-1; /* Set the random # seed */ HDsrandom((unsigned long)time(NULL)); reset_hdf5(); fapl = h5_fileaccess(); if (ALIGNMENT) { printf("Testing non-aligned conversions (ALIGNMENT=%d)....\n", ALIGNMENT); } /* Do the tests */ nerrors += test_classes(); nerrors += test_copy(); nerrors += test_compound_1(); nerrors += test_query(); nerrors += test_transient (fapl); nerrors += test_named (fapl); h5_cleanup(FILENAME, fapl); /*must happen before first reset*/ reset_hdf5(); nerrors += test_conv_str_1(); nerrors += test_conv_str_2(); nerrors += test_compound_2(); nerrors += test_compound_3(); nerrors += test_compound_4(); nerrors += test_compound_5(); nerrors += test_compound_6(); nerrors += test_compound_7(); nerrors += test_conv_int (); nerrors += test_conv_enum_1(); nerrors += test_conv_enum_2(); nerrors += test_conv_bitfield(); nerrors += test_opaque(); /* Does floating point overflow generate a SIGFPE? */ generates_sigfpe(); /* Test degenerate cases */ nerrors += test_conv_flt_1("noop", H5T_NATIVE_FLOAT, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1("noop", H5T_NATIVE_DOUBLE, H5T_NATIVE_DOUBLE); /* Test hardware integer conversion functions */ nerrors += run_integer_tests("hw"); /* Test hardware floating-point conversion functions */ nerrors += test_conv_flt_1("hw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1("hw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); /*---------------------------------------------------------------------- * Software tests *---------------------------------------------------------------------- */ without_hardware_g = TRUE; reset_hdf5(); /* Test software integer conversion functions */ nerrors += test_conv_int_2(); nerrors += run_integer_tests("sw"); /* Test software floating-point conversion functions */ nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_DOUBLE); nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_FLOAT); #if H5_SIZEOF_LONG_DOUBLE!=H5_SIZEOF_DOUBLE nerrors += test_conv_flt_1("sw", H5T_NATIVE_FLOAT, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1("sw", H5T_NATIVE_DOUBLE, H5T_NATIVE_LDOUBLE); nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_FLOAT); nerrors += test_conv_flt_1("sw", H5T_NATIVE_LDOUBLE, H5T_NATIVE_DOUBLE); #endif if (nerrors) { printf("***** %lu FAILURE%s! *****\n", nerrors, 1==nerrors?"":"S"); exit(1); } printf("All data type tests passed.\n"); return 0; }