/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* Programmer: Robb Matzke <matzke@llnl.gov> * Friday, October 10, 1997 * * Purpose: Hyperslab operations are rather complex, so this file * attempts to test them extensively so we can be relatively * sure they really work. We only test 1d, 2d, and 3d cases * because testing general dimensionalities would require us to * rewrite much of the hyperslab stuff. */ #include "h5test.h" #include "H5private.h" #include "H5Eprivate.h" #include "H5Vprivate.h" #define TEST_SMALL 0x0001 #define TEST_MEDIUM 0x0002 #define VARIABLE_SRC 0 #define VARIABLE_DST 1 #define VARIABLE_BOTH 2 #define ARRAY_FILL_SIZE 4 #define ARRAY_OFFSET_NDIMS 3 /*------------------------------------------------------------------------- * Function: init_full * * Purpose: Initialize full array. * * Return: void * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static unsigned init_full(uint8_t *array, size_t nx, size_t ny, size_t nz) { size_t i, j, k; uint8_t acc = 128; unsigned total = 0; for (i=0; i<nx; i++) { for (j=0; j<ny; j++) { for (k=0; k<nz; k++) { total += acc; *array = acc; acc++; array++; } } } return total; } /*------------------------------------------------------------------------- * Function: print_array * * Purpose: Prints the values in an array * * Return: void * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static void print_array(uint8_t *array, size_t nx, size_t ny, size_t nz) { size_t i, j, k; for (i=0; i<nx; i++) { if (nz>1) { printf("i=%lu:\n", (unsigned long)i); } else { printf("%03lu:", (unsigned long)i); } for (j=0; j<ny; j++) { if (nz>1) printf("%03lu:", (unsigned long)j); for (k=0; k<nz; k++) { printf(" %3d", *array++); } if (nz>1) printf("\n"); } printf("\n"); } } /*------------------------------------------------------------------------- * Function: print_ref * * Purpose: Prints the reference value * * Return: Success: 0 * * Failure: * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static void print_ref(size_t nx, size_t ny, size_t nz) { uint8_t *array; array = HDcalloc(nx*ny*nz,sizeof(uint8_t)); printf("Reference array:\n"); init_full(array, nx, ny, nz); print_array(array, nx, ny, nz); } /*------------------------------------------------------------------------- * Function: test_fill * * Purpose: Tests the H5V_hyper_fill() function. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_fill(size_t nx, size_t ny, size_t nz, size_t di, size_t dj, size_t dk, size_t ddx, size_t ddy, size_t ddz) { uint8_t *dst = NULL; /*destination array */ hsize_t hs_size[3]; /*hyperslab size */ hsize_t dst_size[3]; /*destination total size */ hsize_t dst_offset[3]; /*offset of hyperslab in dest */ unsigned ref_value; /*reference value */ unsigned acc; /*accumulator */ size_t i, j, k, dx, dy, dz; /*counters */ size_t u, v, w; unsigned ndims; /*hyperslab dimensionality */ char dim[64], s[256]; /*temp string */ unsigned fill_value; /*fill value */ /* * Dimensionality. */ if (0 == nz) { if (0 == ny) { ndims = 1; ny = nz = 1; sprintf(dim, "%lu", (unsigned long) nx); } else { ndims = 2; nz = 1; sprintf(dim, "%lux%lu", (unsigned long) nx, (unsigned long) ny); } } else { ndims = 3; sprintf(dim, "%lux%lux%lu", (unsigned long) nx, (unsigned long) ny, (unsigned long) nz); } sprintf(s, "Testing hyperslab fill %-11s variable hyperslab", dim); printf("%-70s", s); fflush(stdout); /* Allocate array */ dst = HDcalloc((size_t)1, nx * ny * nz); init_full(dst, nx, ny, nz); for (i = 0; i < nx; i += di) { for (j = 0; j < ny; j += dj) { for (k = 0; k < nz; k += dk) { for (dx = 1; dx <= nx - i; dx += ddx) { for (dy = 1; dy <= ny - j; dy += ddy) { for (dz = 1; dz <= nz - k; dz += ddz) { /* Describe the hyperslab */ dst_size[0] = nx; dst_size[1] = ny; dst_size[2] = nz; dst_offset[0] = i; dst_offset[1] = j; dst_offset[2] = k; hs_size[0] = dx; hs_size[1] = dy; hs_size[2] = dz; for (fill_value=0; fill_value<256; fill_value+=64) { /* * Initialize the full array, then subtract the * original * fill values and add the new ones. */ ref_value = init_full(dst, nx, ny, nz); for (u=(size_t)dst_offset[0]; u<dst_offset[0]+dx; u++) { for (v = (size_t)dst_offset[1]; v < dst_offset[1] + dy; v++) { for (w = (size_t)dst_offset[2]; w < dst_offset[2] + dz; w++) { ref_value -= dst[u*ny*nz+v*nz+w]; } } } ref_value += fill_value * dx * dy * dz; /* Fill the hyperslab with some value */ H5V_hyper_fill(ndims, hs_size, dst_size, dst_offset, dst, fill_value); /* * Sum the array and compare it to the * reference value. */ acc = 0; for (u = 0; u < nx; u++) { for (v = 0; v < ny; v++) { for (w = 0; w < nz; w++) { acc += dst[u*ny*nz + v*nz + w]; } } } if (acc != ref_value) { puts("*FAILED*"); if (!isatty(1)) { /* * Print debugging info unless output * is going directly to a terminal. */ AT(); printf(" acc != ref_value\n"); printf(" i=%lu, j=%lu, k=%lu, " "dx=%lu, dy=%lu, dz=%lu, " "fill=%d\n", (unsigned long)i, (unsigned long)j, (unsigned long)k, (unsigned long)dx, (unsigned long)dy, (unsigned long)dz, fill_value); print_ref(nx, ny, nz); printf("\n Result is:\n"); print_array(dst, nx, ny, nz); } goto error; } } } } } } } } puts(" PASSED"); HDfree(dst); return SUCCEED; error: HDfree(dst); return FAIL; } /*------------------------------------------------------------------------- * Function: test_copy * * Purpose: Tests H5V_hyper_copy(). * * The NX, NY, and NZ arguments are the size for the source and * destination arrays. You may pass zero for NZ or for NY and * NZ to test the 2-d and 1-d cases respectively. * * A hyperslab is copied from/to (depending on MODE) various * places in SRC and DST beginning at 0,0,0 and increasing * location by DI,DJ,DK in the x, y, and z directions. * * For each hyperslab location, various sizes of hyperslabs are * tried beginning with 1x1x1 and increasing the size in each * dimension by DDX,DDY,DDZ. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_copy(int mode, size_t nx, size_t ny, size_t nz, size_t di, size_t dj, size_t dk, size_t ddx, size_t ddy, size_t ddz) { uint8_t *src = NULL; /*source array */ uint8_t *dst = NULL; /*destination array */ hsize_t hs_size[3]; /*hyperslab size */ hsize_t dst_size[3]; /*destination total size */ hsize_t src_size[3]; /*source total size */ hsize_t dst_offset[3]; /*offset of hyperslab in dest */ hsize_t src_offset[3]; /*offset of hyperslab in source */ unsigned ref_value; /*reference value */ unsigned acc; /*accumulator */ hsize_t i, j, k, dx, dy, dz; /*counters */ hsize_t u, v, w; unsigned ndims; /*hyperslab dimensionality */ char dim[64], s[256]; /*temp string */ const char *sub; /* * Dimensionality. */ if (0 == nz) { if (0 == ny) { ndims = 1; ny = nz = 1; sprintf(dim, "%lu", (unsigned long) nx); } else { ndims = 2; nz = 1; sprintf(dim, "%lux%lu", (unsigned long) nx, (unsigned long) ny); } } else { ndims = 3; sprintf(dim, "%lux%lux%lu", (unsigned long) nx, (unsigned long) ny, (unsigned long) nz); } switch (mode) { case VARIABLE_SRC: /* * The hyperslab "travels" through the source array but the * destination hyperslab is always at the origin of the destination * array. */ sub = "variable source"; break; case VARIABLE_DST: /* * We always read a hyperslab from the origin of the source and copy it * to a hyperslab at various locations in the destination. */ sub = "variable destination"; break; case VARIABLE_BOTH: /* * We read the hyperslab from various locations in the source and copy * it to the same location in the destination. */ sub = "sync source & dest "; break; default: abort(); } sprintf(s, "Testing hyperslab copy %-11s %s", dim, sub); printf("%-70s", s); fflush(stdout); /* * Allocate arrays */ src = HDcalloc((size_t)1, nx * ny * nz); dst = HDcalloc((size_t)1, nx * ny * nz); init_full(src, nx, ny, nz); for (i=0; i<nx; i+=di) { for (j=0; j<ny; j+=dj) { for (k=0; k<nz; k+=dk) { for (dx=1; dx<=nx-i; dx+=ddx) { for (dy=1; dy<=ny-j; dy+=ddy) { for (dz=1; dz<=nz-k; dz+=ddz) { /* * Describe the source and destination hyperslabs * and the arrays to which they belong. */ hs_size[0] = dx; hs_size[1] = dy; hs_size[2] = dz; dst_size[0] = src_size[0] = nx; dst_size[1] = src_size[1] = ny; dst_size[2] = src_size[2] = nz; switch (mode) { case VARIABLE_SRC: dst_offset[0] = 0; dst_offset[1] = 0; dst_offset[2] = 0; src_offset[0] = i; src_offset[1] = j; src_offset[2] = k; break; case VARIABLE_DST: dst_offset[0] = i; dst_offset[1] = j; dst_offset[2] = k; src_offset[0] = 0; src_offset[1] = 0; src_offset[2] = 0; break; case VARIABLE_BOTH: dst_offset[0] = i; dst_offset[1] = j; dst_offset[2] = k; src_offset[0] = i; src_offset[1] = j; src_offset[2] = k; break; default: abort(); } /* * Sum the main array directly to get a reference * value to compare against later. */ ref_value = 0; for (u=src_offset[0]; u<src_offset[0]+dx; u++) { for (v=src_offset[1]; v<src_offset[1]+dy; v++) { for (w=src_offset[2]; w<src_offset[2]+dz; w++) { ref_value += src[u*ny*nz + v*nz + w]; } } } /* * Set all loc values to 1 so we can detect writing * outside the hyperslab. */ for (u=0; u<nx; u++) { for (v=0; v<ny; v++) { for (w=0; w<nz; w++) { dst[u*ny*nz + v*nz + w] = 1; } } } /* * Copy a hyperslab from the global array to the * local array. */ H5V_hyper_copy(ndims, hs_size, dst_size, dst_offset, dst, src_size, src_offset, src); /* * Sum the destination hyperslab. It should be * the same as the reference value. */ acc = 0; for (u=dst_offset[0]; u<dst_offset[0]+dx; u++) { for (v=dst_offset[1]; v<dst_offset[1]+dy; v++) { for (w=dst_offset[2]; w<dst_offset[2]+dz; w++) { acc += dst[u*ny*nz + v*nz + w]; } } } if (acc != ref_value) { puts("*FAILED*"); if (!isatty(1)) { /* * Print debugging info unless output is * going directly to a terminal. */ AT(); printf(" acc != ref_value\n"); printf(" i=%lu, j=%lu, k=%lu, " "dx=%lu, dy=%lu, dz=%lu\n", (unsigned long)i, (unsigned long)j, (unsigned long)k, (unsigned long)dx, (unsigned long)dy, (unsigned long)dz); print_ref(nx, ny, nz); printf("\n Destination array is:\n"); print_array(dst, nx, ny, nz); } goto error; } /* * Sum the entire array. It should be a fixed * amount larger than the reference value since * we added the border of 1's to the hyperslab. */ acc = 0; for (u=0; u<nx; u++) { for (v=0; v<ny; v++) { for (w=0; w<nz; w++) { acc += dst[u*ny*nz + v*nz + w]; } } } /* * The following casts are to work around an * optimization bug in the Mongoose 7.20 Irix64 * compiler. */ if (acc+(unsigned)dx*(unsigned)dy*(unsigned)dz != ref_value + nx*ny*nz) { puts("*FAILED*"); if (!isatty(1)) { /* * Print debugging info unless output is * going directly to a terminal. */ AT(); printf(" acc != ref_value + nx*ny*nz - " "dx*dy*dz\n"); printf(" i=%lu, j=%lu, k=%lu, " "dx=%lu, dy=%lu, dz=%lu\n", (unsigned long)i, (unsigned long)j, (unsigned long)k, (unsigned long)dx, (unsigned long)dy, (unsigned long)dz); print_ref(nx, ny, nz); printf("\n Destination array is:\n"); print_array(dst, nx, ny, nz); } goto error; } } } } } } } puts(" PASSED"); HDfree(src); HDfree(dst); return SUCCEED; error: HDfree(src); HDfree(dst); return FAIL; } /*------------------------------------------------------------------------- * Function: test_multifill * * Purpose: Tests the H5V_stride_copy() function by using it to fill a * hyperslab by replicating a multi-byte sequence. This might * be useful to initialize an array of structs with a default * struct value, or to initialize an array of floating-point * values with a default bit-pattern. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_multifill(size_t nx) { hsize_t i, j; hsize_t size; hsize_t src_stride; hsize_t dst_stride; char s[64]; struct a_struct { int left; double mid; int right; } fill , *src = NULL, *dst = NULL; printf("%-70s", "Testing multi-byte fill value"); fflush(stdout); /* Initialize the source and destination */ src = HDmalloc(nx * sizeof(*src)); dst = HDmalloc(nx * sizeof(*dst)); for (i = 0; i < nx; i++) { src[i].left = 1111111; src[i].mid = 12345.6789; src[i].right = 2222222; dst[i].left = 3333333; dst[i].mid = 98765.4321; dst[i].right = 4444444; } /* * Describe the fill value. The zero stride says to read the same thing * over and over again. */ fill.left = 55555555; fill.mid = 3.1415927; fill.right = 66666666; src_stride = 0; /* * The destination stride says to fill in one value per array element */ dst_stride = sizeof(fill); /* * Copy the fill value into each element */ size = nx; H5V_stride_copy(1, (hsize_t)sizeof(double), &size, &dst_stride, &(dst[0].mid), &src_stride, &(fill.mid)); /* * Check */ s[0] = '\0'; for (i = 0; i < nx; i++) { if (dst[i].left != 3333333) { sprintf(s, "bad dst[%lu].left", (unsigned long)i); } else if (!DBL_ABS_EQUAL(dst[i].mid, fill.mid)) { /* Check if two DOUBLE values are equal. If their difference * is smaller than the EPSILON value for double, they are * considered equal. See the definition in h5test.h. */ sprintf(s, "bad dst[%lu].mid", (unsigned long)i); } else if (dst[i].right != 4444444) { sprintf(s, "bad dst[%lu].right", (unsigned long)i); } if (s[0]) { puts("*FAILED*"); if (!isatty(1)) { AT(); printf(" fill={%d,%g,%d}\n ", fill.left, fill.mid, fill.right); for (j = 0; j < sizeof(fill); j++) { printf(" %02x", ((uint8_t *) &fill)[j]); } printf("\n dst[%lu]={%d,%g,%d}\n ", (unsigned long)i, dst[i].left, dst[i].mid, dst[i].right); for (j = 0; j < sizeof(dst[i]); j++) { printf(" %02x", ((uint8_t *) (dst + i))[j]); } printf("\n"); } goto error; } } puts(" PASSED"); HDfree(src); HDfree(dst); return SUCCEED; error: HDfree(src); HDfree(dst); return FAIL; } /*------------------------------------------------------------------------- * Function: test_endian * * Purpose: Tests the H5V_stride_copy() function by using it to copy an * array of integers and swap the byte ordering from little * endian to big endian or vice versa depending on the hardware. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_endian(size_t nx) { uint8_t *src = NULL; /*source array */ uint8_t *dst = NULL; /*destination array */ hssize_t src_stride[2]; /*source strides */ hssize_t dst_stride[2]; /*destination strides */ hsize_t size[2]; /*size vector */ hsize_t i, j; printf("%-70s", "Testing endian conversion by stride"); fflush(stdout); /* Initialize arrays */ src = HDmalloc(nx * 4); init_full(src, nx, (size_t)4, (size_t)1); dst = HDcalloc(nx , (size_t)4); /* Initialize strides */ src_stride[0] = 0; src_stride[1] = 1; dst_stride[0] = 8; dst_stride[1] = -1; size[0] = nx; size[1] = 4; /* Copy the array */ H5V_stride_copy_s(2, (hsize_t)1, size, dst_stride, dst + 3, src_stride, src); /* Compare */ for (i = 0; i < nx; i++) { for (j = 0; j < 4; j++) { if (src[i * 4 + j] != dst[i * 4 + 3 - j]) { puts("*FAILED*"); if (!isatty(1)) { /* * Print debugging info unless output is going directly * to a terminal. */ AT(); printf(" i=%lu, j=%lu\n", (unsigned long)i, (unsigned long)j); printf(" Source array is:\n"); print_array(src, nx, (size_t)4, (size_t)1); printf("\n Result is:\n"); print_array(dst, nx, (size_t)4, (size_t)1); } goto error; } } } puts(" PASSED"); HDfree(src); HDfree(dst); return SUCCEED; error: HDfree(src); HDfree(dst); return FAIL; } /*------------------------------------------------------------------------- * Function: test_transpose * * Purpose: Copy a 2d array from here to there and transpose the elements * as it's copied. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Saturday, October 11, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_transpose(size_t nx, size_t ny) { int *src = NULL; int *dst = NULL; hsize_t i, j; hsize_t src_stride[2], dst_stride[2]; hsize_t size[2]; char s[256]; sprintf(s, "Testing 2d transpose by stride %4lux%-lud", (unsigned long) nx, (unsigned long) ny); printf("%-70s", s); fflush(stdout); /* Initialize */ src = HDmalloc(nx * ny * sizeof(*src)); for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { src[i * ny + j] = (int)(i * ny + j); } } dst = HDcalloc(nx*ny,sizeof(*dst)); /* Build stride info */ size[0] = nx; size[1] = ny; src_stride[0] = 0; src_stride[1] = sizeof(*src); dst_stride[0] = (ssize_t)((1 - nx * ny) * sizeof(*src)); dst_stride[1] = (ssize_t)(nx * sizeof(*src)); /* Copy and transpose */ if (nx == ny) { H5V_stride_copy(2, (hsize_t)sizeof(*src), size, dst_stride, dst, src_stride, src); } else { H5V_stride_copy(2, (hsize_t)sizeof(*src), size, dst_stride, dst, src_stride, src); } /* Check */ for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { if (src[i * ny + j] != dst[j * nx + i]) { puts("*FAILED*"); if (!isatty(1)) { AT(); printf(" diff at i=%lu, j=%lu\n", (unsigned long)i, (unsigned long)j); printf(" Source is:\n"); for (i = 0; i < nx; i++) { printf("%3lu:", (unsigned long)i); for (j = 0; j < ny; j++) { printf(" %6d", src[i * ny + j]); } printf("\n"); } printf("\n Destination is:\n"); for (i = 0; i < ny; i++) { printf("%3lu:", (unsigned long)i); for (j = 0; j < nx; j++) { printf(" %6d", dst[i * nx + j]); } printf("\n"); } } goto error; } } } puts(" PASSED"); HDfree(src); HDfree(dst); return SUCCEED; error: HDfree(src); HDfree(dst); return FAIL; } /*------------------------------------------------------------------------- * Function: test_sub_super * * Purpose: Tests H5V_stride_copy() to reduce the resolution of an image * by copying half the pixels in the X and Y directions. Then * we use the small image and duplicate every pixel to result in * a 2x2 square. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Robb Matzke * Monday, October 13, 1997 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_sub_super(size_t nx, size_t ny) { uint8_t *full = NULL; /*original image */ uint8_t *half = NULL; /*image at 1/2 resolution */ uint8_t *twice = NULL; /*2x2 pixels */ hsize_t src_stride[4]; /*source stride info */ hsize_t dst_stride[4]; /*destination stride info */ hsize_t size[4]; /*number of sample points */ hsize_t i, j; char s[256]; sprintf(s, "Testing image sampling %4lux%-4lu to %4lux%-4lu ", (unsigned long) (2 * nx), (unsigned long) (2 * ny), (unsigned long) nx, (unsigned long) ny); printf("%-70s", s); fflush(stdout); /* Initialize */ full = HDmalloc(4 * nx * ny); init_full(full, 2 * nx, 2 * ny, (size_t)1); half = HDcalloc((size_t)1, nx * ny); twice = HDcalloc((size_t)4, nx * ny); /* Setup */ size[0] = nx; size[1] = ny; src_stride[0] = (ssize_t)(2 * ny); src_stride[1] = 2; dst_stride[0] = 0; dst_stride[1] = 1; /* Copy */ H5V_stride_copy(2, (hsize_t)sizeof(uint8_t), size, dst_stride, half, src_stride, full); /* Check */ for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { if (full[4 * i * ny + 2 * j] != half[i * ny + j]) { puts("*FAILED*"); if (!isatty(1)) { AT(); printf(" full[%lu][%lu] != half[%lu][%lu]\n", (unsigned long)i*2, (unsigned long)j*2, (unsigned long)i, (unsigned long)j); printf(" full is:\n"); print_array(full, 2 * nx, 2 * ny, (size_t)1); printf("\n half is:\n"); print_array(half, nx, ny, (size_t)1); } goto error; } } } puts(" PASSED"); /* * Test replicating pixels to produce an image twice as large in each * dimension. */ sprintf(s, "Testing image sampling %4lux%-4lu to %4lux%-4lu ", (unsigned long) nx, (unsigned long) ny, (unsigned long) (2 * nx), (unsigned long) (2 * ny)); printf("%-70s", s); fflush(stdout); /* Setup stride */ size[0] = nx; size[1] = ny; size[2] = 2; size[3] = 2; src_stride[0] = 0; src_stride[1] = 1; src_stride[2] = 0; src_stride[3] = 0; dst_stride[0] = (ssize_t)(2 * ny); dst_stride[1] = (ssize_t)(2 * sizeof(uint8_t) - 4 * ny); dst_stride[2] = (ssize_t)(2 * ny - 2 * sizeof(uint8_t)); dst_stride[3] = sizeof(uint8_t); /* Copy */ H5V_stride_copy(4, (hsize_t)sizeof(uint8_t), size, dst_stride, twice, src_stride, half); /* Check */ s[0] = '\0'; for (i = 0; i < nx; i++) { for (j = 0; j < ny; j++) { if (half[i*ny+j] != twice[4*i*ny + 2*j]) { sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]", (unsigned long)i, (unsigned long)j, (unsigned long)i*2, (unsigned long)j*2); } else if (half[i*ny + j] != twice[4*i*ny + 2*j + 1]) { sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]", (unsigned long)i, (unsigned long)j, (unsigned long)i*2, (unsigned long)j*2+1); } else if (half[i*ny + j] != twice[(2*i +1)*2*ny + 2*j]) { sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]", (unsigned long)i, (unsigned long)j, (unsigned long)i*2+1, (unsigned long)j*2); } else if (half[i*ny + j] != twice[(2*i+1)*2*ny + 2*j+1]) { sprintf(s, "half[%lu][%lu] != twice[%lu][%lu]", (unsigned long)i, (unsigned long)j, (unsigned long)i*2+1, (unsigned long)j*2+1); } if (s[0]) { puts("*FAILED*"); if (!isatty(1)) { AT(); printf(" %s\n Half is:\n", s); print_array(half, nx, ny, (size_t)1); printf("\n Twice is:\n"); print_array(twice, 2 * nx, 2 * ny, (size_t)1); } goto error; } } } puts(" PASSED"); HDfree(full); HDfree(half); HDfree(twice); return SUCCEED; error: HDfree(full); HDfree(half); HDfree(twice); return FAIL; } /*------------------------------------------------------------------------- * Function: test_array_fill * * Purpose: Tests H5V_array_fill routine by copying a multibyte value * (an array of ints, in our case) into all the elements of an * array. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Quincey Koziol * Monday, April 21, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_array_fill(size_t lo, size_t hi) { int *dst; /* Destination */ int src[ARRAY_FILL_SIZE]; /* Source to duplicate */ size_t u, v, w; /* Local index variables */ char s[256]; sprintf(s, "array filling %4lu-%-4lu elements", (unsigned long)lo,(unsigned long)hi); TESTING(s); /* Initialize */ dst = HDcalloc(sizeof(int),ARRAY_FILL_SIZE * hi); /* Setup */ for(u=0; u<ARRAY_FILL_SIZE; u++) src[u]=(char)u; /* Fill */ for(w=lo; w<=hi; w++) { H5V_array_fill(dst,src,sizeof(src),w); /* Check */ for(u=0; u<w; u++) for(v=0; v<ARRAY_FILL_SIZE; v++) if(dst[(u*ARRAY_FILL_SIZE)+v]!=src[v]) TEST_ERROR; HDmemset(dst,0,sizeof(int)*ARRAY_FILL_SIZE*w); } /* end for */ PASSED(); HDfree(dst); return SUCCEED; error: HDfree(dst); return FAIL; } /*------------------------------------------------------------------------- * Function: test_array_offset_n_calc * * Purpose: Tests H5V_array_offset and H5V_array_calc routines by comparing * computed array offsets against calculated ones and then going * back to the coordinates from the offset and checking those. * * Return: Success: SUCCEED * * Failure: FAIL * * Programmer: Quincey Koziol * Monday, April 21, 2003 * * Modifications: * *------------------------------------------------------------------------- */ static herr_t test_array_offset_n_calc(size_t n, size_t x, size_t y, size_t z) { hsize_t *a, *temp_a; /* Array for stored calculated offsets */ hsize_t off; /* Offset in array */ size_t u, v, w; /* Local index variables */ hsize_t dims[ARRAY_OFFSET_NDIMS]; /* X, Y & X coordinates of array to check */ hsize_t coords[ARRAY_OFFSET_NDIMS]; /* X, Y & X coordinates to check offset of */ hsize_t new_coords[ARRAY_OFFSET_NDIMS]; /* X, Y & X coordinates of offset */ char s[256]; sprintf(s, "array offset %4lux%4lux%4lu elements", (unsigned long)z,(unsigned long)y,(unsigned long)x); TESTING(s); /* Initialize */ a = HDmalloc(sizeof(hsize_t) * x * y *z); dims[0]=z; dims[1]=y; dims[2]=x; /* Setup */ for(u=0, temp_a=a, off=0; u<z; u++) for(v=0; v<y; v++) for(w=0; w<x; w++) *temp_a++ = off++; /* Check offsets */ for(u=0; u<n; u++) { /* Get random coordinate */ coords[0] = (hssize_t)(HDrandom() % z); coords[1] = (hssize_t)(HDrandom() % y); coords[2] = (hssize_t)(HDrandom() % x); /* Get offset of coordinate */ off=H5V_array_offset(ARRAY_OFFSET_NDIMS,dims,coords); /* Check offset of coordinate */ if(a[off]!=off) TEST_ERROR; /* Get coordinates of offset */ if(H5V_array_calc(off,ARRAY_OFFSET_NDIMS,dims,new_coords)<0) TEST_ERROR; /* Check computed coordinates */ for(v=0; v<ARRAY_OFFSET_NDIMS; v++) if(coords[v]!=new_coords[v]) { HDfprintf(stderr,"coords[%u]=%Hu, new_coords[%u]=%Hu\n",(unsigned)v,coords[v],(unsigned)v,new_coords[v]); TEST_ERROR; } } /* end for */ PASSED(); HDfree(a); return SUCCEED; error: HDfree(a); return FAIL; } /*------------------------------------------------------------------------- * Function: main * * Purpose: Test various hyperslab operations. Give the words * `small' and/or `medium' on the command line or only `small' * is assumed. * * Return: Success: exit(0) * * Failure: exit(non-zero) * * Programmer: Robb Matzke * Friday, October 10, 1997 * * Modifications: * *------------------------------------------------------------------------- */ int main(int argc, char *argv[]) { herr_t status; int nerrors = 0; unsigned size_of_test; /* Parse arguments or assume `small' & `medium' */ if (1 == argc) { size_of_test = TEST_SMALL | TEST_MEDIUM; } else { int i; for (i = 1, size_of_test = 0; i < argc; i++) { if (!strcmp(argv[i], "small")) { size_of_test |= TEST_SMALL; } else if (!strcmp(argv[i], "medium")) { size_of_test |= TEST_MEDIUM; } else { printf("unrecognized argument: %s\n", argv[i]); exit(1); } } } printf("Test sizes: "); if (size_of_test & TEST_SMALL) printf(" SMALL"); if (size_of_test & TEST_MEDIUM) printf(" MEDIUM"); printf("\n"); /* Set the random # seed */ HDsrandom((unsigned long)HDtime(NULL)); /* * Open the library explicitly for thread-safe builds, so per-thread * things are initialized correctly. */ #ifdef H5_HAVE_THREADSAFE H5open(); #endif /* H5_HAVE_THREADSAFE */ /* *------------------------------ * TEST HYPERSLAB FILL OPERATION *------------------------------ */ if (size_of_test & TEST_SMALL) { status = test_fill((size_t)11, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_fill((size_t)11, (size_t)10, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_fill((size_t)3, (size_t)5, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_fill((size_t)113, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_fill((size_t)15, (size_t)11, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_fill((size_t)5, (size_t)7, (size_t)7, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } /*------------------------------ * TEST HYPERSLAB COPY OPERATION *------------------------------ */ /* exhaustive, one-dimensional test */ if (size_of_test & TEST_SMALL) { status = test_copy(VARIABLE_SRC, (size_t)11, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)11, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)11, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_copy(VARIABLE_SRC, (size_t)179, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)179, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)179, (size_t)0, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } /* exhaustive, two-dimensional test */ if (size_of_test & TEST_SMALL) { status = test_copy(VARIABLE_SRC, (size_t)11, (size_t)10, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)11, (size_t)10, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)11, (size_t)10, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_copy(VARIABLE_SRC, (size_t)13, (size_t)19, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)13, (size_t)19, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)13, (size_t)19, (size_t)0, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } /* sparse, two-dimensional test */ if (size_of_test & TEST_MEDIUM) { status = test_copy(VARIABLE_SRC, (size_t)73, (size_t)67, (size_t)0, (size_t)7, (size_t)11, (size_t)1, (size_t)13, (size_t)11, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)73, (size_t)67, (size_t)0, (size_t)7, (size_t)11, (size_t)1, (size_t)13, (size_t)11, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)73, (size_t)67, (size_t)0, (size_t)7, (size_t)11, (size_t)1, (size_t)13, (size_t)11, (size_t)1); nerrors += status < 0 ? 1 : 0; } /* exhaustive, three-dimensional test */ if (size_of_test & TEST_SMALL) { status = test_copy(VARIABLE_SRC, (size_t)3, (size_t)5, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)3, (size_t)5, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)3, (size_t)5, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_copy(VARIABLE_SRC, (size_t)7, (size_t)9, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_DST, (size_t)7, (size_t)9, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; status = test_copy(VARIABLE_BOTH, (size_t)7, (size_t)9, (size_t)5, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1, (size_t)1); nerrors += status < 0 ? 1 : 0; } /*--------------------- * TEST MULTI-BYTE FILL *--------------------- */ if (size_of_test & TEST_SMALL) { status = test_multifill((size_t)10); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_multifill((size_t)500000); nerrors += status < 0 ? 1 : 0; } /*--------------------------- * TEST TRANSLATION OPERATORS *--------------------------- */ if (size_of_test & TEST_SMALL) { status = test_endian((size_t)10); nerrors += status < 0 ? 1 : 0; status = test_transpose((size_t)9, (size_t)9); nerrors += status < 0 ? 1 : 0; status = test_transpose((size_t)3, (size_t)11); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_endian((size_t)800000); nerrors += status < 0 ? 1 : 0; status = test_transpose((size_t)1200, (size_t)1200); nerrors += status < 0 ? 1 : 0; status = test_transpose((size_t)800, (size_t)1800); nerrors += status < 0 ? 1 : 0; } /*------------------------- * TEST SAMPLING OPERATIONS *------------------------- */ if (size_of_test & TEST_SMALL) { status = test_sub_super((size_t)5, (size_t)10); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_sub_super((size_t)480, (size_t)640); nerrors += status < 0 ? 1 : 0; } /*------------------------- * TEST ARRAY FILL OPERATIONS *------------------------- */ if (size_of_test & TEST_SMALL) { status = test_array_fill((size_t)1, (size_t)9); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_array_fill((size_t)9, (size_t)257); nerrors += status < 0 ? 1 : 0; } /*------------------------- * TEST ARRAY OFFSET OPERATIONS *------------------------- */ if (size_of_test & TEST_SMALL) { status = test_array_offset_n_calc((size_t)20, (size_t)7, (size_t)11, (size_t)13); nerrors += status < 0 ? 1 : 0; } if (size_of_test & TEST_MEDIUM) { status = test_array_offset_n_calc((size_t)500, (size_t)71, (size_t)193, (size_t)347); nerrors += status < 0 ? 1 : 0; } /*--- END OF TESTS ---*/ if (nerrors) { printf("***** %d HYPERSLAB TEST%s FAILED! *****\n", nerrors, 1 == nerrors ? "" : "S"); if (isatty(1)) { printf("(Redirect output to a pager or a file to see " "debug output)\n"); } exit(1); } printf("All hyperslab tests passed.\n"); #ifdef H5_HAVE_THREADSAFE H5close(); #endif /* H5_HAVE_THREADSAFE */ return 0; }