/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /*********************************************************** * * Test program: th5s * * Test the element coordinates for dataspace selection. * *************************************************************/ #include "testhdf5.h" /* ** Data used to write the dataset. */ static int da_buffer[12][1][6][2]; static hsize_t da_dims[4] = { 12, 1, 6, 2 }; static hsize_t da_maxdims[4] = { H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED }; /*static hsize_t da_chunksize[4] = { 3, 1, 2, 1 };*/ static hsize_t da_chunksize[4] = { 12, 1, 6, 2 }; /* ** The dataset end of the selection is done using element selection. ** These are the element locations. */ #ifdef TMP static hsize_t da_elements[12][4] = { { 11, 0, 0, 0 }, { 11, 0, 0, 1 }, { 11, 0, 5, 0 }, { 11, 0, 5, 1 }, { 11, 0, 1, 0 }, { 11, 0, 1, 1 }, { 11, 0, 2, 0 }, { 11, 0, 2, 1 }, { 11, 0, 3, 0 }, { 11, 0, 3, 1 }, { 11, 0, 4, 0 }, { 11, 0, 4, 1 } }; #else static hsize_t da_elements[12][4] = { { 11, 0, 0, 0 }, { 11, 0, 0, 1 }, { 11, 0, 1, 0 }, { 11, 0, 1, 1 }, { 11, 0, 2, 0 }, { 11, 0, 2, 1 }, { 11, 0, 3, 0 }, { 11, 0, 3, 1 }, { 11, 0, 4, 0 }, { 11, 0, 4, 1 }, { 11, 0, 5, 0 }, { 11, 0, 5, 1 } }; #endif /* ** This is where it gets interesting. ** ** First experiment: the data being read is rank=2, so use two ** dimensions. However, the array is 6x3, while the transfer is 6x2. ** We use a hyperslab to select the subset. This case shows no ** problem. */ static int mem1_buffer[6][3]; static hsize_t mem1_dims[2] = { 6, 3}; static hsize_t mem1_start[2] = { 0, 0 }; static hsize_t mem1_count[2] = { 1, 1 }; static hsize_t mem1_stride[2] = { 1, 1 }; static hsize_t mem1_block[2] = { 6, 2 }; /* ** Second experiment: the transfer is the same rank as above, but we ** add two dimensions of 1. I.e., the array is 1x1x6x2. In this ** case, the 6x2 selection is over the entire array, not a subset of ** the array. However, we still use hyperslab selection. This case ** shows no problem. */ static int mem2_buffer[1][1][6][2]; static hsize_t mem2_dims[4] = { 1, 1, 6, 2 }; static hsize_t mem2_start[4] = { 0, 0, 0, 0 }; static hsize_t mem2_count[4] = { 1, 1, 1, 1 }; static hsize_t mem2_stride[4] = { 1, 1, 1, 1 }; static hsize_t mem2_block[4] = { 1, 1, 6, 2 }; /* ** Third experiment: the transfer is the same rank as above, and we ** add two dimensions of 1, but now the array is larger: 1x1x6x3. ** The selection is now over a subset of the array (1x1x6x2). This ** case demonstrates the problem. */ /*static int mem3_buffer[1][1][6][3];*/ static int mem3_buffer[1][1][6][3]; /*static hsize_t mem3_dims[4] = { 1, 1, 6, 3 };*/ static hsize_t mem3_dims[4] = { 1, 1, 6, 3 }; static hsize_t mem3_start[4] = { 0, 0, 0, 0 }; static hsize_t mem3_count[4] = { 1, 1, 1, 1 }; static hsize_t mem3_stride[4] = { 1, 1, 1, 1 }; static hsize_t mem3_block[4] = { 1, 1, 6, 2 }; /* ** Fourth experiment: the transfer is the same rank as above, but we ** add two dimensions of 1. I.e., the array is 1x6x3. In this ** case, the 6x2 selection is over the entire array, not a subset of ** the array. However, we still use hyperslab selection. This case ** shows the problem. */ static int mem4_buffer[1][6][3]; static hsize_t mem4_dims[3] = { 1, 6, 3 }; static hsize_t mem4_start[3] = { 0, 0, 0 }; static hsize_t mem4_count[3] = { 1, 1, 1 }; static hsize_t mem4_stride[3] = { 1, 1, 1 }; static hsize_t mem4_block[3] = { 1, 6, 2 }; /* ** Subroutine to write the dataset. It's probably not important to ** this example, other than to know it's shape. */ void write_dataset() { int i; hid_t fid, dsid, daid, msid, plid; herr_t rv; fid = H5Fcreate("coord.hdf", H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); if(fid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } /*dsid = H5Screate_simple(4, da_dims, da_maxdims);*/ dsid = H5Screate_simple(4, da_dims, da_dims); if(dsid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } plid = H5Pcreate(H5P_DATASET_CREATE); if(plid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Pset_layout(plid, H5D_CHUNKED); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Pset_chunk(plid, 4, da_chunksize); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } daid = H5Dcreate2(fid, "dataset", H5T_NATIVE_INT, dsid, H5P_DEFAULT, plid, H5P_DEFAULT); if(daid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } /* ** We'll only be interested in the front plane ([0][0][0-5[0-1]) so ** we only initialize that. */ for(i = 0; i < 12; i++) { int j; for(j = 0; j < 6; j++) { da_buffer[i][0][j][0] = j * 10; da_buffer[i][0][j][1] = j * 10 + 1; } } msid = H5Screate_simple(4, da_dims, da_dims); if(msid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Dwrite(daid, H5T_NATIVE_INT, msid, dsid, H5P_DEFAULT, da_buffer); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Dclose(daid); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Fclose(fid); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } } /* ** Read a dataset using the provided parameters. */ void read_dataset(int rank, int* buffer, hsize_t* mdims, hsize_t* start, hsize_t* count, hsize_t* stride, hsize_t* block) { hid_t fid, dsid, daid, msid, plid; herr_t rv; fid = H5Fopen("coord.hdf", H5F_ACC_RDONLY, H5P_DEFAULT); if(fid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } daid = H5Dopen2(fid, "dataset", H5P_DEFAULT); if(daid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } dsid = H5Dget_space(daid); if(dsid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } /* ** Element selection is used to select 18 elements from the dataset. */ #ifdef TMP rv = H5Sselect_elements(dsid, H5S_SELECT_SET, 12, (const hsize_t**)da_elements); #else rv = H5Sselect_hyperslab(dsid, H5S_SELECT_SET, mem2_start, mem2_stride, mem2_count, mem2_block); #endif if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } msid = H5Screate_simple(rank, mdims, mdims); if(dsid < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } /* ** The element selection above is combined with hyperslab ** selection. The selection is always be a contiguous block. (See ** above.) */ rv = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, stride, count, block); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Dread(daid, H5T_NATIVE_INT, msid, dsid, H5P_DEFAULT, buffer); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Dclose(daid); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } rv = H5Fclose(fid); if(rv < 0) { H5Eprint2(H5E_DEFAULT, stderr); exit(1); } } void test_coords(void) { int i, j; write_dataset(); /* 1. ** Use a rank=2 in memory array. (See above) */ memset(mem1_buffer, 0, sizeof(mem1_buffer)); read_dataset(2, (int*)mem1_buffer, mem1_dims, mem1_start, mem1_count, mem1_stride, mem1_block); for(i = 0; i < 6; i++) { for(j=0; j<2; j++) if(da_buffer[11][0][i][j] != mem1_buffer[i][j]) TestErrPrintf(" %3d %3d\n", mem1_buffer[i][j], mem1_buffer[i][j]); } /* 2. ** Use a rank=4 in memory array. Make the array smaller and select ** the whole array. (See above) */ memset(mem2_buffer, 0, sizeof(mem2_buffer)); read_dataset(4, (int*)mem2_buffer, mem2_dims, mem2_start, mem2_count, mem2_stride, mem2_block); for(i = 0; i < 6; i++) { for(j=0; j<2; j++) if(da_buffer[11][0][i][j] != mem2_buffer[0][0][i][j]) TestErrPrintf(" %3d %3d\n", mem2_buffer[0][0][i][j], mem2_buffer[0][0][i][j]); } /* 3. ** Use a rank=4 in memory array, but don't select the whole array. (See above) */ memset(mem3_buffer, 0, sizeof(mem3_buffer)); read_dataset(4, (int*)mem3_buffer, mem3_dims, mem3_start, mem3_count, mem3_stride, mem3_block); for(i = 0; i < 6; i++) { for(j=0; j<2; j++) if(da_buffer[11][0][i][j] != mem3_buffer[0][0][i][j]) TestErrPrintf(" %3d %3d\n", mem3_buffer[0][0][i][j], mem3_buffer[0][0][i][j]); } /* 4. ** Use a rank=3 in memory array. (See above) */ memset(mem4_buffer, 0, sizeof(mem4_buffer)); read_dataset(3, (int*)mem4_buffer, mem4_dims, mem4_start, mem4_count, mem4_stride, mem4_block); for(i = 0; i < 6; i++) { for(j=0; j<2; j++) if(da_buffer[11][0][i][j] != mem4_buffer[0][i][j]) TestErrPrintf(" %3d %3d\n", mem4_buffer[0][i][j], mem4_buffer[0][i][j]); } } /*------------------------------------------------------------------------- * Function: cleanup_coords * * Purpose: Cleanup temporary test files * * Return: none * * Programmer: Raymond Lu * 20 Dec. 2007 * * Modifications: * *------------------------------------------------------------------------- */ void cleanup_coords(void) { remove("coord.hdf"); }