/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /*********************************************************** * * Test program: th5s * * Test the dataspace functionality * *************************************************************/ #include "testhdf5.h" #include "H5srcdir.h" #include "H5Iprivate.h" #include "H5Pprivate.h" /* * This file needs to access private information from the H5S package. * This file also needs to access the dataspace testing code. */ #define H5S_FRIEND /*suppress error about including H5Spkg */ #define H5S_TESTING /*suppress warning about H5S testing funcs*/ #include "H5Spkg.h" /* Dataspaces */ /* * This file needs to access private information from the H5O package. * This file also needs to access the dataspace testing code. */ #define H5O_FRIEND /*suppress error about including H5Opkg */ #define H5O_TESTING #include "H5Opkg.h" /* Object header */ #define TESTFILE "th5s.h5" #define DATAFILE "th5s1.h5" #define NULLFILE "th5s2.h5" #define BASICFILE "th5s3.h5" #define ZEROFILE "th5s4.h5" #define BASICDATASET "basic_dataset" #define BASICDATASET1 "basic_dataset1" #define BASICDATASET2 "basic_dataset2" #define BASICDATASET3 "basic_dataset3" #define BASICDATASET4 "basic_dataset4" #define BASICATTR "basic_attribute" #define NULLDATASET "null_dataset" #define NULLATTR "null_attribute" #define EXTFILE_NAME "ext_file" /* 3-D dataset with fixed dimensions */ #define SPACE1_RANK 3 #define SPACE1_DIM1 3 #define SPACE1_DIM2 15 #define SPACE1_DIM3 13 /* 4-D dataset with one unlimited dimension */ #define SPACE2_RANK 4 #define SPACE2_DIM1 0 #define SPACE2_DIM2 15 #define SPACE2_DIM3 13 #define SPACE2_DIM4 23 #define SPACE2_MAX1 H5S_UNLIMITED #define SPACE2_MAX2 15 #define SPACE2_MAX3 13 #define SPACE2_MAX4 23 /* Scalar dataset with simple datatype */ #define SPACE3_RANK 0 static unsigned space3_data = 65; /* Scalar dataset with compound datatype */ #define SPACE4_FIELDNAME1 "c1" #define SPACE4_FIELDNAME2 "u" #define SPACE4_FIELDNAME3 "f" #define SPACE4_FIELDNAME4 "c2" static size_t space4_field1_off = 0; static size_t space4_field2_off = 0; static size_t space4_field3_off = 0; static size_t space4_field4_off = 0; static struct space4_struct { char c1; unsigned u; float f; char c2; } space4_data = {'v', 987123, -3.14F, 'g'}; /* Test data for 4th dataspace */ /* * Testing configuration defines used by: * test_h5s_encode_regular_hyper() * test_h5s_encode_irregular_hyper() * test_h5s_encode_points() */ #define CONFIG_8 1 #define CONFIG_16 2 #define CONFIG_32 3 #define POWER8 256 /* 2^8 */ #define POWER16 65536 /* 2^16 */ #define POWER32 4294967296 /* 2^32 */ /**************************************************************** ** ** test_h5s_basic(): Test basic H5S (dataspace) code. ** ****************************************************************/ static void test_h5s_basic(void) { hid_t fid1; /* HDF5 File IDs */ hid_t sid1, sid2; /* Dataspace ID */ hid_t dset1; /* Dataset ID */ hid_t aid1; /* Attribute ID */ int rank; /* Logical rank of dataspace */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2, SPACE2_DIM3, SPACE2_DIM4}; hsize_t dims3[H5S_MAX_RANK + 1]; hsize_t max2[] = {SPACE2_MAX1, SPACE2_MAX2, SPACE2_MAX3, SPACE2_MAX4}; hsize_t tdims[4]; /* Dimension array to test with */ hsize_t tmax[4]; hssize_t n; /* Number of dataspace elements */ bool vol_is_native; bool driver_is_default_compatible; herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace Manipulation\n")); if (!(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_ATTR_BASIC)) { MESSAGE(5, (" -- SKIPPED --\n")); return; } sid1 = H5Screate_simple(SPACE1_RANK, dims1, max2); CHECK(sid1, FAIL, "H5Screate_simple"); n = H5Sget_simple_extent_npoints(sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints"); rank = H5Sget_simple_extent_ndims(sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims"); rank = H5Sget_simple_extent_dims(sid1, tdims, NULL); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); sid2 = H5Screate_simple(SPACE2_RANK, dims2, max2); CHECK(sid2, FAIL, "H5Screate_simple"); n = H5Sget_simple_extent_npoints(sid2); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, SPACE2_DIM1 * SPACE2_DIM2 * SPACE2_DIM3 * SPACE2_DIM4, "H5Sget_simple_extent_npoints"); rank = H5Sget_simple_extent_ndims(sid2); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE2_RANK, "H5Sget_simple_extent_ndims"); rank = H5Sget_simple_extent_dims(sid2, tdims, tmax); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tdims, dims2, SPACE2_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tmax, max2, SPACE2_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); /* Change max dims to be equal to the dimensions */ ret = H5Sset_extent_simple(sid1, SPACE1_RANK, dims1, NULL); CHECK(ret, FAIL, "H5Sset_extent_simple"); rank = H5Sget_simple_extent_dims(sid1, tdims, tmax); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tmax, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* * Check to be sure we can't create a simple dataspace that has too many * dimensions. */ H5E_BEGIN_TRY { sid1 = H5Screate_simple(H5S_MAX_RANK + 1, dims3, NULL); } H5E_END_TRY VERIFY(sid1, FAIL, "H5Screate_simple"); /* * Try reading a file that has been prepared that has a dataset with a * higher dimensionality than what the library can handle. * * If this test fails and the H5S_MAX_RANK variable has changed, follow * the instructions in space_overflow.c for regenerating the th5s.h5 file. */ /* Check if native VOL is being used */ CHECK(h5_using_native_vol(H5P_DEFAULT, H5I_INVALID_HID, &vol_is_native), FAIL, "h5_using_native_vol"); /* Check if VFD used is native file format compatible */ ret = h5_driver_is_default_vfd_compatible(H5P_DEFAULT, &driver_is_default_compatible); CHECK_I(ret, "h5_driver_is_default_vfd_compatible"); if (vol_is_native && driver_is_default_compatible) { const char *testfile = H5_get_srcdir_filename(TESTFILE); /* Corrected test file name */ fid1 = H5Fopen(testfile, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK_I(fid1, "H5Fopen"); if (fid1 >= 0) { dset1 = H5Dopen2(fid1, "dset", H5P_DEFAULT); VERIFY(dset1, FAIL, "H5Dopen2"); ret = H5Fclose(fid1); CHECK_I(ret, "H5Fclose"); } else printf("***cannot open the pre-created H5S_MAX_RANK test file (%s)\n", testfile); } /* Verify that incorrect dimensions don't work */ dims1[0] = H5S_UNLIMITED; H5E_BEGIN_TRY { sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); } H5E_END_TRY VERIFY(sid1, FAIL, "H5Screate_simple"); dims1[0] = H5S_UNLIMITED; sid1 = H5Screate(H5S_SIMPLE); CHECK(sid1, FAIL, "H5Screate"); H5E_BEGIN_TRY { ret = H5Sset_extent_simple(sid1, SPACE1_RANK, dims1, NULL); } H5E_END_TRY VERIFY(ret, FAIL, "H5Sset_extent_simple"); ret = H5Sclose(sid1); CHECK_I(ret, "H5Sclose"); /* * Try writing simple dataspaces without setting their extents */ /* Create the file */ fid1 = H5Fcreate(BASICFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); dims1[0] = SPACE1_DIM1; sid1 = H5Screate(H5S_SIMPLE); CHECK(sid1, FAIL, "H5Screate"); sid2 = H5Screate_simple(1, dims1, dims1); CHECK(sid2, FAIL, "H5Screate"); /* This dataset's space has no extent; it should not be created */ H5E_BEGIN_TRY { dset1 = H5Dcreate2(fid1, BASICDATASET, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); } H5E_END_TRY VERIFY(dset1, FAIL, "H5Dcreate2"); dset1 = H5Dcreate2(fid1, BASICDATASET2, H5T_NATIVE_INT, sid2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dcreate2"); /* Try some writes with the bad dataspace (sid1) */ H5E_BEGIN_TRY { ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, &n); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dwrite"); H5E_BEGIN_TRY { ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, &n); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dwrite"); H5E_BEGIN_TRY { ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, sid1, H5P_DEFAULT, &n); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dwrite"); /* Try to iterate using the bad dataspace */ H5E_BEGIN_TRY { ret = H5Diterate(&n, H5T_NATIVE_INT, sid1, NULL, NULL); } H5E_END_TRY VERIFY(ret, FAIL, "H5Diterate"); /* Try to fill using the bad dataspace */ H5E_BEGIN_TRY { ret = H5Dfill(NULL, H5T_NATIVE_INT, &n, H5T_NATIVE_INT, sid1); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dfill"); /* Now use the bad dataspace as the space for an attribute */ H5E_BEGIN_TRY { aid1 = H5Acreate2(dset1, BASICATTR, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT); } H5E_END_TRY VERIFY(aid1, FAIL, "H5Acreate2"); /* Make sure that dataspace reads using the bad dataspace fail */ H5E_BEGIN_TRY { ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, &n); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dread"); H5E_BEGIN_TRY { ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, &n); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dread"); H5E_BEGIN_TRY { ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, sid1, H5P_DEFAULT, &n); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dread"); /* Clean up */ ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* test_h5s_basic() */ /**************************************************************** ** ** test_h5s_null(): Test NULL dataspace ** ****************************************************************/ static void test_h5s_null(void) { hid_t fid; /* File ID */ hid_t sid; /* Dataspace IDs */ hid_t dset_sid, dset_sid2; /* Dataspace IDs */ hid_t attr_sid; /* Dataspace IDs */ hid_t did; /* Dataset ID */ hid_t attr; /*Attribute ID */ H5S_class_t stype; /* dataspace type */ hssize_t nelem; /* Number of elements */ unsigned uval = 2; /* Buffer for writing to dataset */ int val = 1; /* Buffer for writing to attribute */ H5S_sel_type sel_type; /* Type of selection currently */ hsize_t dims[1] = {10}; /* Dimensions for converting null dataspace to simple */ H5S_class_t space_type; /* Type of dataspace */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Null Dataspace\n")); /* Create the file */ fid = H5Fcreate(NULLFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid, FAIL, "H5Fcreate"); sid = H5Screate(H5S_NULL); CHECK(sid, FAIL, "H5Screate"); /* Check that the null dataspace actually has 0 elements */ nelem = H5Sget_simple_extent_npoints(sid); VERIFY(nelem, 0, "H5Sget_simple_extent_npoints"); /* Check that the dataspace was created with an "all" selection */ sel_type = H5Sget_select_type(sid); VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); /* Check that the null dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid); VERIFY(nelem, 0, "H5Sget_select_npoints"); /* Change to "none" selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Check that the null dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid); VERIFY(nelem, 0, "H5Sget_select_npoints"); /* Check to be sure we can't set a hyperslab selection on a null dataspace */ H5E_BEGIN_TRY { hsize_t start[1] = {0}; hsize_t count[1] = {0}; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL); } H5E_END_TRY VERIFY(ret, FAIL, "H5Sselect_hyperslab"); /* Check to be sure we can't set a point selection on a null dataspace */ H5E_BEGIN_TRY { hsize_t coord[1][1]; /* Coordinates for point selection */ coord[0][0] = 0; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord); } H5E_END_TRY VERIFY(ret, FAIL, "H5Sselect_elements"); /* Create first dataset */ did = H5Dcreate2(fid, NULLDATASET, H5T_NATIVE_UINT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(did, FAIL, "H5Dcreate2"); /* Write "nothing" to the dataset */ ret = H5Dwrite(did, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &uval); CHECK(ret, FAIL, "H5Dwrite"); /* Write "nothing" to the dataset (with type conversion :-) */ ret = H5Dwrite(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &val); CHECK(ret, FAIL, "H5Dwrite"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(did, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &uval); CHECK(ret, FAIL, "H5Dread"); VERIFY(uval, 2, "H5Dread"); /* Try reading from the dataset (with type conversion :-) (make certain our buffer is unmodified) */ ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &val); CHECK(ret, FAIL, "H5Dread"); VERIFY(val, 1, "H5Dread"); /* Create an attribute for the group */ attr = H5Acreate2(did, NULLATTR, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT); CHECK(attr, FAIL, "H5Acreate2"); /* Write "nothing" to the attribute */ ret = H5Awrite(attr, H5T_NATIVE_INT, &val); CHECK(ret, FAIL, "H5Awrite"); /* Write "nothing" to the attribute (with type conversion :-) */ ret = H5Awrite(attr, H5T_NATIVE_UINT, &uval); CHECK(ret, FAIL, "H5Awrite"); /* Try reading from the attribute (make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_INT, &val); CHECK(ret, FAIL, "H5Aread"); VERIFY(val, 1, "H5Aread"); /* Try reading from the attribute (with type conversion :-) (make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_UINT, &uval); CHECK(ret, FAIL, "H5Aread"); VERIFY(uval, 2, "H5Aread"); /* Close attribute */ ret = H5Aclose(attr); CHECK(ret, FAIL, "H5Aclose"); /* Close the dataset */ ret = H5Dclose(did); CHECK(ret, FAIL, "H5Dclose"); /* Verify that we've got the right kind of dataspace */ space_type = H5Sget_simple_extent_type(sid); VERIFY(space_type, H5S_NULL, "H5Sget_simple_extent_type"); /* Convert the null dataspace to a simple dataspace */ ret = H5Sset_extent_simple(sid, 1, dims, NULL); CHECK(ret, FAIL, "H5Sset_extent_simple"); /* Verify that we've got the right kind of dataspace now */ space_type = H5Sget_simple_extent_type(sid); VERIFY(space_type, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); /* Close the file */ ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); /*============================================ * Reopen the file to check the dataspace *============================================ */ fid = H5Fopen(NULLFILE, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK(fid, FAIL, "H5Fopen"); /* Reopen the dataset */ did = H5Dopen2(fid, NULLDATASET, H5P_DEFAULT); CHECK(did, FAIL, "H5Dopen2"); /* Get the space of the dataset */ dset_sid = H5Dget_space(did); CHECK(dset_sid, FAIL, "H5Dget_space"); /* Query the NULL dataspace */ dset_sid2 = H5Scopy(dset_sid); CHECK(dset_sid2, FAIL, "H5Scopy"); /* Verify the class type of dataspace */ stype = H5Sget_simple_extent_type(dset_sid2); VERIFY(stype, H5S_NULL, "H5Sget_simple_extent_type"); /* Verify there is zero element in the dataspace */ ret = (herr_t)H5Sget_simple_extent_npoints(dset_sid2); VERIFY(ret, 0, "H5Sget_simple_extent_npoints"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(did, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &uval); CHECK(ret, FAIL, "H5Dread"); VERIFY(uval, 2, "H5Dread"); /* Close the dataspace */ ret = H5Sclose(dset_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(dset_sid2); CHECK(ret, FAIL, "H5Sclose"); /* Open the attribute for the dataset */ attr = H5Aopen(did, NULLATTR, H5P_DEFAULT); CHECK(attr, FAIL, "H5Aopen"); /* Get the space of the dataset */ attr_sid = H5Aget_space(attr); CHECK(attr_sid, FAIL, "H5Aget_space"); /* Verify the class type of dataspace */ stype = H5Sget_simple_extent_type(attr_sid); VERIFY(stype, H5S_NULL, "H5Sget_simple_extent_type"); /* Verify there is zero element in the dataspace */ ret = (herr_t)H5Sget_simple_extent_npoints(attr_sid); VERIFY(ret, 0, "H5Sget_simple_extent_npoints"); /* Close the dataspace */ ret = H5Sclose(attr_sid); CHECK(ret, FAIL, "H5Sclose"); /* Try reading from the attribute (make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_INT, &val); CHECK(ret, FAIL, "H5Aread"); VERIFY(val, 1, "H5Aread"); /* Close attribute */ ret = H5Aclose(attr); CHECK(ret, FAIL, "H5Aclose"); /* Close the dataset */ ret = H5Dclose(did); CHECK(ret, FAIL, "H5Dclose"); /* Close the file */ ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); } /* end test_h5s_null() */ /**************************************************************** ** ** test_h5s_zero_dim(): Test the code for dataspace with zero dimension size ** ****************************************************************/ static void test_h5s_zero_dim(void) { hid_t fid1; /* HDF5 File IDs */ hid_t sid1, attr_sid; /* Dataspace ID */ hid_t sid_chunk; /* Dataspace ID for chunked dataset */ hid_t dset1; /* Dataset ID */ hid_t plist_id; /* Dataset creation property list */ hid_t attr; /* Attribute ID */ int rank; /* Logical rank of dataspace */ hsize_t dims1[] = {0, SPACE1_DIM2, SPACE1_DIM3}; hsize_t max_dims[] = {SPACE1_DIM1 + 1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t extend_dims[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t chunk_dims[] = {SPACE1_DIM1, SPACE1_DIM2 / 3, SPACE1_DIM3}; hsize_t tdims[SPACE1_RANK]; /* Dimension array to test with */ int wdata[SPACE1_DIM2][SPACE1_DIM3]; int rdata[SPACE1_DIM2][SPACE1_DIM3]; short wdata_short[SPACE1_DIM2][SPACE1_DIM3]; short rdata_short[SPACE1_DIM2][SPACE1_DIM3]; int wdata_real[SPACE1_DIM1][SPACE1_DIM2][SPACE1_DIM3]; int rdata_real[SPACE1_DIM1][SPACE1_DIM2][SPACE1_DIM3]; int val = 3; hsize_t start[] = {0, 0, 0}; hsize_t count[] = {3, 15, 13}; hsize_t coord[1][3]; /* Coordinates for point selection */ hssize_t nelem; /* Number of elements */ H5S_sel_type sel_type; /* Type of selection currently */ H5S_class_t stype; /* dataspace type */ H5D_alloc_time_t alloc_time; /* Space allocation time */ herr_t ret; /* Generic return value */ unsigned int i, j, k; /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace with zero dimension size\n")); if (!(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_BASIC) || !(vol_cap_flags_g & H5VL_CAP_FLAG_DATASET_MORE)) { MESSAGE(5, (" -- SKIPPED --\n")); return; } /* Initialize the data */ for (i = 0; i < SPACE1_DIM2; i++) for (j = 0; j < SPACE1_DIM3; j++) { wdata[i][j] = (int)(i + j); rdata[i][j] = 7; wdata_short[i][j] = (short)(i + j); rdata_short[i][j] = 7; } for (i = 0; i < SPACE1_DIM1; i++) for (j = 0; j < SPACE1_DIM2; j++) for (k = 0; k < SPACE1_DIM3; k++) wdata_real[i][j][k] = (int)(i + j + k); /* Test with different space allocation times */ for (alloc_time = H5D_ALLOC_TIME_EARLY; alloc_time <= H5D_ALLOC_TIME_INCR; alloc_time++) { /* Make sure we can create the space with the dimension size 0 (starting from v1.8.7). * The dimension doesn't need to be unlimited. */ dims1[0] = 0; dims1[1] = SPACE1_DIM2; dims1[2] = SPACE1_DIM3; sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); sid1 = H5Screate(H5S_SIMPLE); CHECK(sid1, FAIL, "H5Screate"); /* SID1 has the 1st dimension size as zero. The maximal dimension will be * the same as the dimension because of the NULL passed in. */ ret = H5Sset_extent_simple(sid1, SPACE1_RANK, dims1, NULL); CHECK(ret, FAIL, "H5Sset_extent_simple"); /* Check that the dataspace actually has 0 elements */ nelem = H5Sget_simple_extent_npoints(sid1); VERIFY(nelem, 0, "H5Sget_simple_extent_npoints"); /* Check that the dataspace was created with an "all" selection */ sel_type = H5Sget_select_type(sid1); VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); /* Check that the dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid1); VERIFY(nelem, 0, "H5Sget_select_npoints"); /* Change to "none" selection */ ret = H5Sselect_none(sid1); CHECK(ret, FAIL, "H5Sselect_none"); /* Check that the dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid1); VERIFY(nelem, 0, "H5Sget_select_npoints"); /* Try to select all dataspace */ ret = H5Sselect_all(sid1); CHECK(ret, FAIL, "H5Sselect_all"); /* Check that the dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid1); VERIFY(nelem, 0, "H5Sget_select_npoints"); /* Create the dataspace for chunked dataset with the first dimension size as zero. * The maximal dimensions are bigger than the dimensions for later expansion. */ sid_chunk = H5Screate_simple(SPACE1_RANK, dims1, max_dims); CHECK(sid_chunk, FAIL, "H5Screate_simple"); /*============================================ * Make sure we can use 0-dimension to create * contiguous, chunked, compact, and external * datasets, and also attribute. *============================================ */ fid1 = H5Fcreate(ZEROFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /*===================== Contiguous dataset =======================*/ plist_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist_id, FAIL, "H5Pcreate"); ret = H5Pset_alloc_time(plist_id, alloc_time); CHECK(ret, FAIL, "H5Pset_alloc_time"); dset1 = H5Dcreate2(fid1, BASICDATASET, H5T_NATIVE_INT, sid1, H5P_DEFAULT, plist_id, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dcreate2"); ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); /* Write "nothing" to the dataset */ ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, wdata); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } } /* Write "nothing" to the dataset (with type conversion :-) */ ret = H5Dwrite(dset1, H5T_NATIVE_SHORT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata_short); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, rdata_short); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata_short[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata_short[i][j]); } } } /* Select a hyperslab beyond its current dimension sizes, then try to write * the data. It should fail. */ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); H5E_BEGIN_TRY { ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, wdata); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dwrite"); /* Change to "none" selection */ ret = H5Sselect_none(sid1); CHECK(ret, FAIL, "H5Sselect_none"); /* Select a point beyond the dimension size, then try to write the data. * It should fail. */ coord[0][0] = 2; coord[0][1] = 5; coord[0][2] = 3; ret = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord); CHECK(ret, FAIL, "H5Sselect_elements"); H5E_BEGIN_TRY { ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, sid1, H5P_DEFAULT, &val); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dwrite"); /* Restore the selection to all */ ret = H5Sselect_all(sid1); CHECK(ret, FAIL, "H5Sselect_all"); ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); /*=================== Chunked dataset ====================*/ plist_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist_id, FAIL, "H5Pcreate"); ret = H5Pset_chunk(plist_id, SPACE1_RANK, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); /* ret = H5Pset_alloc_time(plist_id, alloc_time); */ /* CHECK(ret, FAIL, "H5Pset_alloc_time"); */ dset1 = H5Dcreate2(fid1, BASICDATASET1, H5T_NATIVE_INT, sid_chunk, H5P_DEFAULT, plist_id, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dcreate2"); /* Write "nothing" to the dataset */ ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } /* Now extend the dataset to SPACE1_DIM1*SPACE1_DIM2*SPACE1_DIM3 and make sure * we can write data to it */ extend_dims[0] = SPACE1_DIM1; ret = H5Dset_extent(dset1, extend_dims); CHECK(ret, FAIL, "H5Dset_extent"); ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata_real); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata_real); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM1; i++) { for (j = 0; j < SPACE1_DIM2; j++) { for (k = 0; k < SPACE1_DIM3; k++) { if (rdata_real[i][j][k] != wdata_real[i][j][k]) { H5_FAILED(); printf("element [%d][%d][%d] is %d but should have been %d\n", i, j, k, rdata_real[i][j][k], wdata_real[i][j][k]); } } } } /* Now shrink the first dimension size of the dataset to 0 and make sure no data is in it */ extend_dims[0] = 0; ret = H5Dset_extent(dset1, extend_dims); CHECK(ret, FAIL, "H5Dset_extent"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } /* Now extend the first dimension size of the dataset to SPACE1_DIM1*3 past the maximal size. * It is supposed to fail. */ extend_dims[0] = SPACE1_DIM1 * 3; H5E_BEGIN_TRY { ret = H5Dset_extent(dset1, extend_dims); } H5E_END_TRY VERIFY(ret, FAIL, "H5Dset_extent"); ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); /*=================== Compact dataset =====================*/ plist_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(plist_id, H5D_COMPACT); CHECK(ret, FAIL, "H5Pset_layout"); /* Don't set the allocation time for compact storage datasets (must be early) */ dset1 = H5Dcreate2(fid1, BASICDATASET2, H5T_NATIVE_INT, sid1, H5P_DEFAULT, plist_id, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dcreate2"); /* Write "nothing" to the dataset */ ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); /*=========== Contiguous dataset with external storage ============*/ plist_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist_id, FAIL, "H5Pcreate"); /* Change the DCPL for contiguous layout with external storage. The size of the reserved * space in the external file is the size of the dataset (zero because one dimension size is zero). * There's no need to clean up the external file since the library doesn't create it * until the data is written to it. */ ret = H5Pset_external(plist_id, EXTFILE_NAME, (off_t)0, (hsize_t)0); CHECK(ret, FAIL, "H5Pset_external"); ret = H5Pset_alloc_time(plist_id, alloc_time); CHECK(ret, FAIL, "H5Pset_alloc_time"); dset1 = H5Dcreate2(fid1, BASICDATASET3, H5T_NATIVE_INT, sid1, H5P_DEFAULT, plist_id, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dcreate2"); /* Write "nothing" to the dataset */ ret = H5Dwrite(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, wdata); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, sid1, H5S_ALL, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } } ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); /*=============== Create an attribute for the file ================*/ attr = H5Acreate2(fid1, NULLATTR, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT); CHECK(attr, FAIL, "H5Acreate2"); /* Write "nothing" to the attribute */ ret = H5Awrite(attr, H5T_NATIVE_INT, wdata); CHECK(ret, FAIL, "H5Awrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the attribute (make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_INT, rdata); CHECK(ret, FAIL, "H5Aread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } } /* Write "nothing" to the attribute (with type conversion :-) */ ret = H5Awrite(attr, H5T_NATIVE_SHORT, wdata_short); CHECK(ret, FAIL, "H5Awrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); /* Try reading from the attribute (with type conversion :-) (make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_SHORT, rdata_short); CHECK(ret, FAIL, "H5Aread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata_short[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata_short[i][j]); } } } /* Close attribute */ ret = H5Aclose(attr); CHECK(ret, FAIL, "H5Aclose"); /*=============================================================== * Extend the dimension to make it a normal dataspace (3x15x13). * Verify that data can be written to and read from the chunked * dataset now. *=============================================================== */ dims1[0] = SPACE1_DIM1; ret = H5Sset_extent_simple(sid_chunk, SPACE1_RANK, dims1, max_dims); CHECK(ret, FAIL, "H5Sset_extent_simple"); nelem = H5Sget_simple_extent_npoints(sid_chunk); CHECK(nelem, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(nelem, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints"); rank = H5Sget_simple_extent_ndims(sid_chunk); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims"); rank = H5Sget_simple_extent_dims(sid_chunk, tdims, NULL); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); /* Set it to chunked dataset */ plist_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist_id, FAIL, "H5Pcreate"); ret = H5Pset_chunk(plist_id, SPACE1_RANK, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); ret = H5Pset_alloc_time(plist_id, alloc_time); CHECK(ret, FAIL, "H5Pset_alloc_time"); dset1 = H5Dcreate2(fid1, BASICDATASET4, H5T_NATIVE_INT, sid_chunk, H5P_DEFAULT, plist_id, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dcreate2"); ret = H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata_real); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Fflush(fid1, H5F_SCOPE_GLOBAL); CHECK(ret, FAIL, "H5Fflush"); ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata_real); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM1; i++) { for (j = 0; j < SPACE1_DIM2; j++) { for (k = 0; k < SPACE1_DIM3; k++) { if (rdata_real[i][j][k] != wdata_real[i][j][k]) { H5_FAILED(); printf("element [%d][%d][%d] is %d but should have been %d\n", i, j, k, rdata_real[i][j][k], wdata_real[i][j][k]); } } } } ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); /* Change the dimensions to make them zero size again (0x0x0). Verify that * no element is in the dataspace. */ dims1[0] = dims1[1] = dims1[2] = 0; ret = H5Sset_extent_simple(sid_chunk, SPACE1_RANK, dims1, NULL); CHECK(ret, FAIL, "H5Sset_extent_simple"); /* Check that the dataspace actually has 0 elements */ nelem = H5Sget_simple_extent_npoints(sid_chunk); VERIFY(nelem, 0, "H5Sget_simple_extent_npoints"); /* Check that the dataspace was created with an "all" selection */ sel_type = H5Sget_select_type(sid_chunk); VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type"); /* Check that the dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid_chunk); VERIFY(nelem, 0, "H5Sget_select_npoints"); /* Change to "none" selection */ ret = H5Sselect_none(sid_chunk); CHECK(ret, FAIL, "H5Sselect_none"); /* Check that the dataspace has 0 elements selected */ nelem = H5Sget_select_npoints(sid_chunk); VERIFY(nelem, 0, "H5Sget_select_npoints"); ret = H5Sclose(sid_chunk); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /*============================================ * Reopen the file to check the dataspace *============================================ */ fid1 = H5Fopen(ZEROFILE, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fopen"); /* Reopen the chunked dataset */ dset1 = H5Dopen2(fid1, BASICDATASET1, H5P_DEFAULT); CHECK(dset1, FAIL, "H5Dopen2"); /* Get the space of the dataset and query it */ sid1 = H5Dget_space(dset1); CHECK(sid1, FAIL, "H5Dget_space"); /* Verify the class type of dataspace */ stype = H5Sget_simple_extent_type(sid1); VERIFY(stype, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Verify there is zero element in the dataspace */ nelem = H5Sget_simple_extent_npoints(sid1); VERIFY(nelem, 0, "H5Sget_simple_extent_npoints"); /* Verify the dimension sizes are correct */ rank = H5Sget_simple_extent_dims(sid1, tdims, NULL); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(tdims[0], 0, "H5Sget_simple_extent_dims"); VERIFY(tdims[1], SPACE1_DIM2, "H5Sget_simple_extent_dims"); VERIFY(tdims[2], SPACE1_DIM3, "H5Sget_simple_extent_dims"); /* Try reading from the dataset (make certain our buffer is unmodified) */ ret = H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata); CHECK(ret, FAIL, "H5Dread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata[i][j]); } } } /* Close the dataset and its dataspace */ ret = H5Dclose(dset1); CHECK(ret, FAIL, "H5Dclose"); ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Open the attribute for the file */ attr = H5Aopen(fid1, NULLATTR, H5P_DEFAULT); CHECK(attr, FAIL, "H5Aopen"); /* Get the space of the dataset */ attr_sid = H5Aget_space(attr); CHECK(attr_sid, FAIL, "H5Aget_space"); /* Verify the class type of dataspace */ stype = H5Sget_simple_extent_type(attr_sid); VERIFY(stype, H5S_SIMPLE, "H5Sget_simple_extent_type"); /* Verify there is zero element in the dataspace */ nelem = H5Sget_simple_extent_npoints(attr_sid); VERIFY(nelem, 0, "H5Sget_simple_extent_npoints"); /* Try reading from the attribute (make certain our buffer is unmodified) */ ret = H5Aread(attr, H5T_NATIVE_SHORT, rdata_short); CHECK(ret, FAIL, "H5Aread"); /* Check results */ for (i = 0; i < SPACE1_DIM2; i++) { for (j = 0; j < SPACE1_DIM3; j++) { if (rdata_short[i][j] != 7) { H5_FAILED(); printf("element [%d][%d] is %d but should have been 7\n", i, j, rdata_short[i][j]); } } } /* Close attribute */ ret = H5Aclose(attr); CHECK(ret, FAIL, "H5Aclose"); /* Close the dataspace */ ret = H5Sclose(attr_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* end for */ } /* test_h5s_zero_dim() */ /**************************************************************** ** ** test_h5s_encode(): Test H5S (dataspace) encoding and decoding. ** ** Note: See "RFC: H5Sencode/H5Sdecode Format Change". ** ****************************************************************/ static void test_h5s_encode(H5F_libver_t low, H5F_libver_t high) { hid_t sid1, sid2, sid3; /* Dataspace ID */ hid_t decoded_sid1, decoded_sid2, decoded_sid3; int rank; /* Logical rank of dataspace */ hid_t fapl = H5I_INVALID_HID; /* File access property list ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; size_t sbuf_size = 0, null_size = 0, scalar_size = 0; unsigned char *sbuf = NULL, *null_sbuf = NULL, *scalar_buf = NULL; hsize_t tdims[4]; /* Dimension array to test with */ hssize_t n; /* Number of dataspace elements */ hsize_t start[] = {0, 0, 0}; hsize_t stride[] = {2, 5, 3}; hsize_t count[] = {2, 2, 2}; hsize_t block[] = {1, 3, 1}; H5S_sel_type sel_type; H5S_class_t space_type; hssize_t nblocks; hid_t ret_id; /* Generic hid_t return value */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace Encoding and Decoding\n")); /*------------------------------------------------------------------------- * Test encoding and decoding of simple dataspace and hyperslab selection. *------------------------------------------------------------------------- */ /* Create the file access property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Set low/high bounds in the fapl */ ret = H5Pset_libver_bounds(fapl, low, high); CHECK(ret, FAIL, "H5Pset_libver_bounds"); /* Create the dataspace */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Encode simple dataspace in a buffer with the fapl setting */ ret = H5Sencode2(sid1, NULL, &sbuf_size, fapl); CHECK(ret, FAIL, "H5Sencode2"); if (sbuf_size > 0) { sbuf = (unsigned char *)calloc((size_t)1, sbuf_size); CHECK_PTR(sbuf, "calloc"); } /* Try decoding bogus buffer */ H5E_BEGIN_TRY { ret_id = H5Sdecode(sbuf); } H5E_END_TRY VERIFY(ret_id, FAIL, "H5Sdecode"); /* Encode the simple dataspace in a buffer with the fapl setting */ ret = H5Sencode2(sid1, sbuf, &sbuf_size, fapl); CHECK(ret, FAIL, "H5Sencode"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid1 = H5Sdecode(sbuf); CHECK(decoded_sid1, FAIL, "H5Sdecode"); /* Verify the decoded dataspace */ n = H5Sget_simple_extent_npoints(decoded_sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints"); /* Retrieve and verify the dataspace rank */ rank = H5Sget_simple_extent_ndims(decoded_sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims"); /* Retrieve and verify the dataspace dimensions */ rank = H5Sget_simple_extent_dims(decoded_sid1, tdims, NULL); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); /* Verify the type of dataspace selection */ sel_type = H5Sget_select_type(decoded_sid1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify the number of hyperslab blocks */ nblocks = H5Sget_select_hyper_nblocks(decoded_sid1); VERIFY(nblocks, 2 * 2 * 2, "H5Sget_select_hyper_nblocks"); /* Close the dataspaces */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(decoded_sid1); CHECK(ret, FAIL, "H5Sclose"); /*------------------------------------------------------------------------- * Test encoding and decoding of null dataspace. *------------------------------------------------------------------------- */ sid2 = H5Screate(H5S_NULL); CHECK(sid2, FAIL, "H5Screate"); /* Encode null dataspace in a buffer */ ret = H5Sencode2(sid2, NULL, &null_size, fapl); CHECK(ret, FAIL, "H5Sencode"); if (null_size > 0) { null_sbuf = (unsigned char *)calloc((size_t)1, null_size); CHECK_PTR(null_sbuf, "calloc"); } /* Encode the null dataspace in the buffer */ ret = H5Sencode2(sid2, null_sbuf, &null_size, fapl); CHECK(ret, FAIL, "H5Sencode2"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid2 = H5Sdecode(null_sbuf); CHECK(decoded_sid2, FAIL, "H5Sdecode"); /* Verify the decoded dataspace type */ space_type = H5Sget_simple_extent_type(decoded_sid2); VERIFY(space_type, H5S_NULL, "H5Sget_simple_extent_type"); /* Close the dataspaces */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(decoded_sid2); CHECK(ret, FAIL, "H5Sclose"); /*------------------------------------------------------------------------- * Test encoding and decoding of scalar dataspace. *------------------------------------------------------------------------- */ /* Create scalar dataspace */ sid3 = H5Screate(H5S_SCALAR); CHECK(sid3, FAIL, "H5Screate_simple"); /* Encode scalar dataspace in a buffer */ ret = H5Sencode2(sid3, NULL, &scalar_size, fapl); CHECK(ret, FAIL, "H5Sencode"); if (scalar_size > 0) { scalar_buf = (unsigned char *)calloc((size_t)1, scalar_size); CHECK_PTR(scalar_buf, "calloc"); } /* Encode the scalar dataspace in the buffer */ ret = H5Sencode2(sid3, scalar_buf, &scalar_size, fapl); CHECK(ret, FAIL, "H5Sencode2"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid3 = H5Sdecode(scalar_buf); CHECK(decoded_sid3, FAIL, "H5Sdecode"); /* Verify extent type */ space_type = H5Sget_simple_extent_type(decoded_sid3); VERIFY(space_type, H5S_SCALAR, "H5Sget_simple_extent_type"); /* Verify decoded dataspace */ n = H5Sget_simple_extent_npoints(decoded_sid3); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, 1, "H5Sget_simple_extent_npoints"); /* Retrieve and verify the dataspace rank */ rank = H5Sget_simple_extent_ndims(decoded_sid3); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, 0, "H5Sget_simple_extent_ndims"); /* Close the dataspaces */ ret = H5Sclose(sid3); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(decoded_sid3); CHECK(ret, FAIL, "H5Sclose"); /* Close the file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* Release resources */ if (sbuf) free(sbuf); if (null_sbuf) free(null_sbuf); if (scalar_buf) free(scalar_buf); } /* test_h5s_encode() */ #ifndef H5_NO_DEPRECATED_SYMBOLS /**************************************************************** ** ** test_h5s_encode(): Test H5S (dataspace) encoding and decoding. ** ****************************************************************/ static void test_h5s_encode1(void) { hid_t sid1, sid2, sid3; /* Dataspace ID */ hid_t decoded_sid1, decoded_sid2, decoded_sid3; int rank; /* Logical rank of dataspace */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; size_t sbuf_size = 0, null_size = 0, scalar_size = 0; unsigned char *sbuf = NULL, *null_sbuf = NULL, *scalar_buf = NULL; hsize_t tdims[4]; /* Dimension array to test with */ hssize_t n; /* Number of dataspace elements */ hsize_t start[] = {0, 0, 0}; hsize_t stride[] = {2, 5, 3}; hsize_t count[] = {2, 2, 2}; hsize_t block[] = {1, 3, 1}; H5S_sel_type sel_type; H5S_class_t space_type; hssize_t nblocks; hid_t ret_id; /* Generic hid_t return value */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace Encoding (H5Sencode1) and Decoding\n")); /*------------------------------------------------------------------------- * Test encoding and decoding of simple dataspace and hyperslab selection. *------------------------------------------------------------------------- */ /* Create the dataspace */ sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Encode simple dataspace in a buffer with the fapl setting */ ret = H5Sencode1(sid1, NULL, &sbuf_size); CHECK(ret, FAIL, "H5Sencode2"); if (sbuf_size > 0) { sbuf = (unsigned char *)calloc((size_t)1, sbuf_size); CHECK_PTR(sbuf, "calloc"); } /* Try decoding bogus buffer */ H5E_BEGIN_TRY { ret_id = H5Sdecode(sbuf); } H5E_END_TRY VERIFY(ret_id, FAIL, "H5Sdecode"); /* Encode the simple dataspace in a buffer */ ret = H5Sencode1(sid1, sbuf, &sbuf_size); CHECK(ret, FAIL, "H5Sencode"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid1 = H5Sdecode(sbuf); CHECK(decoded_sid1, FAIL, "H5Sdecode"); /* Verify the decoded dataspace */ n = H5Sget_simple_extent_npoints(decoded_sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, SPACE1_DIM1 * SPACE1_DIM2 * SPACE1_DIM3, "H5Sget_simple_extent_npoints"); /* Retrieve and verify the dataspace rank */ rank = H5Sget_simple_extent_ndims(decoded_sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE1_RANK, "H5Sget_simple_extent_ndims"); /* Retrieve and verify the dataspace dimensions */ rank = H5Sget_simple_extent_dims(decoded_sid1, tdims, NULL); CHECK(rank, FAIL, "H5Sget_simple_extent_dims"); VERIFY(memcmp(tdims, dims1, SPACE1_RANK * sizeof(hsize_t)), 0, "H5Sget_simple_extent_dims"); /* Verify the type of dataspace selection */ sel_type = H5Sget_select_type(decoded_sid1); VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type"); /* Verify the number of hyperslab blocks */ nblocks = H5Sget_select_hyper_nblocks(decoded_sid1); VERIFY(nblocks, 2 * 2 * 2, "H5Sget_select_hyper_nblocks"); /* Close the dataspaces */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(decoded_sid1); CHECK(ret, FAIL, "H5Sclose"); /*------------------------------------------------------------------------- * Test encoding and decoding of null dataspace. *------------------------------------------------------------------------- */ sid2 = H5Screate(H5S_NULL); CHECK(sid2, FAIL, "H5Screate"); /* Encode null dataspace in a buffer */ ret = H5Sencode1(sid2, NULL, &null_size); CHECK(ret, FAIL, "H5Sencode"); if (null_size > 0) { null_sbuf = (unsigned char *)calloc((size_t)1, null_size); CHECK_PTR(null_sbuf, "calloc"); } /* Encode the null dataspace in the buffer */ ret = H5Sencode1(sid2, null_sbuf, &null_size); CHECK(ret, FAIL, "H5Sencode2"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid2 = H5Sdecode(null_sbuf); CHECK(decoded_sid2, FAIL, "H5Sdecode"); /* Verify the decoded dataspace type */ space_type = H5Sget_simple_extent_type(decoded_sid2); VERIFY(space_type, H5S_NULL, "H5Sget_simple_extent_type"); /* Close the dataspaces */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(decoded_sid2); CHECK(ret, FAIL, "H5Sclose"); /*------------------------------------------------------------------------- * Test encoding and decoding of scalar dataspace. *------------------------------------------------------------------------- */ /* Create scalar dataspace */ sid3 = H5Screate(H5S_SCALAR); CHECK(sid3, FAIL, "H5Screate"); /* Encode scalar dataspace in a buffer */ ret = H5Sencode1(sid3, NULL, &scalar_size); CHECK(ret, FAIL, "H5Sencode"); if (scalar_size > 0) { scalar_buf = (unsigned char *)calloc((size_t)1, scalar_size); CHECK_PTR(scalar_buf, "calloc"); } /* Encode the scalar dataspace in the buffer */ ret = H5Sencode1(sid3, scalar_buf, &scalar_size); CHECK(ret, FAIL, "H5Sencode2"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid3 = H5Sdecode(scalar_buf); CHECK(decoded_sid3, FAIL, "H5Sdecode"); /* Verify extent type */ space_type = H5Sget_simple_extent_type(decoded_sid3); VERIFY(space_type, H5S_SCALAR, "H5Sget_simple_extent_type"); /* Verify decoded dataspace */ n = H5Sget_simple_extent_npoints(decoded_sid3); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, 1, "H5Sget_simple_extent_npoints"); /* Retrieve and verify the dataspace rank */ rank = H5Sget_simple_extent_ndims(decoded_sid3); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, 0, "H5Sget_simple_extent_ndims"); /* Close the dataspaces */ ret = H5Sclose(sid3); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(decoded_sid3); CHECK(ret, FAIL, "H5Sclose"); /* Release resources */ if (sbuf) free(sbuf); if (null_sbuf) free(null_sbuf); if (scalar_buf) free(scalar_buf); } /* test_h5s_encode1() */ #endif /* H5_NO_DEPRECATED_SYMBOLS */ /**************************************************************** ** ** test_h5s_check_encoding(): ** This is the helper routine to verify that H5Sencode2() ** works as specified in the RFC for the library format setting ** in the file access property list. ** See "RFC: H5Sencode/H5Sdeocde Format Change". ** ** This routine is used by: ** test_h5s_encode_regular_hyper() ** test_h5s_encode_irregular_hyper() ** test_h5s_encode_points() ** ****************************************************************/ static herr_t test_h5s_check_encoding(hid_t in_fapl, hid_t in_sid, uint32_t expected_version, uint8_t expected_enc_size, bool expected_to_fail) { char *buf = NULL; /* Pointer to the encoded buffer */ size_t buf_size; /* Size of the encoded buffer */ hid_t d_sid = H5I_INVALID_HID; /* The decoded dataspace ID */ htri_t check; hsize_t in_low_bounds[1]; /* The low bounds for the selection for in_sid */ hsize_t in_high_bounds[1]; /* The high bounds for the selection for in_sid */ hsize_t d_low_bounds[1]; /* The low bounds for the selection for d_sid */ hsize_t d_high_bounds[1]; /* The high bounds for the selection for d_sid */ herr_t ret; /* Return value */ /* Get buffer size for encoding with the format setting in in_fapl */ H5E_BEGIN_TRY { ret = H5Sencode2(in_sid, NULL, &buf_size, in_fapl); } H5E_END_TRY if (expected_to_fail) { VERIFY(ret, FAIL, "H5Screate_simple"); } else { CHECK(ret, FAIL, "H5Sencode2"); /* Allocate the buffer for encoding */ buf = (char *)malloc(buf_size); CHECK_PTR(buf, "malloc"); /* Encode according to the setting in in_fapl */ ret = H5Sencode2(in_sid, buf, &buf_size, in_fapl); CHECK(ret, FAIL, "H5Sencode2"); /* Decode the buffer */ d_sid = H5Sdecode(buf); CHECK(d_sid, FAIL, "H5Sdecode"); /* Verify the number of selected points for in_sid and d_sid */ VERIFY(H5Sget_select_npoints(in_sid), H5Sget_select_npoints(d_sid), "Compare npoints"); /* Verify if the two dataspace selections (in_sid, d_sid) are the same shape */ check = H5Sselect_shape_same(in_sid, d_sid); VERIFY(check, true, "H5Sselect_shape_same"); /* Compare the starting/ending coordinates of the bounding box for in_sid and d_sid */ ret = H5Sget_select_bounds(in_sid, in_low_bounds, in_high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); ret = H5Sget_select_bounds(d_sid, d_low_bounds, d_high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(in_low_bounds[0], d_low_bounds[0], "Compare selection low bounds"); VERIFY(in_high_bounds[0], d_high_bounds[0], "Compare selection high bounds"); /* * See "RFC: H5Sencode/H5Sdeocde Format Change" for the verification of: * H5S_SEL_POINTS: * --the expected version for point selection info * --the expected encoded size (version 2 points selection info) * H5S_SEL_HYPERSLABS: * --the expected version for hyperslab selection info * --the expected encoded size (version 3 hyperslab selection info) */ if (H5Sget_select_type(in_sid) == H5S_SEL_POINTS) { /* Verify the version */ VERIFY((uint32_t)buf[35], expected_version, "Version for point selection"); /* Verify the encoded size for version 2 */ if (expected_version == 2) VERIFY((uint8_t)buf[39], expected_enc_size, "Encoded size of point selection info"); } if (H5Sget_select_type(in_sid) == H5S_SEL_HYPERSLABS) { /* Verify the version */ VERIFY((uint32_t)buf[35], expected_version, "Version for hyperslab selection info"); /* Verify the encoded size for version 3 */ if (expected_version == 3) VERIFY((uint8_t)buf[40], expected_enc_size, "Encoded size of selection info"); } /* hyperslab selection */ ret = H5Sclose(d_sid); CHECK(ret, FAIL, "H5Sclose"); if (buf) free(buf); } return (0); } /* test_h5s_check_encoding */ /**************************************************************** ** ** test_h5s_encode_regular_hyper(): ** This test verifies that H5Sencode2() works as specified in ** the RFC for regular hyperslabs. ** See "RFC: H5Sencode/H5Sdeocde Format Change". ** ****************************************************************/ static void test_h5s_encode_regular_hyper(H5F_libver_t low, H5F_libver_t high) { hid_t fapl = H5I_INVALID_HID; /* File access property list ID */ hid_t sid = H5I_INVALID_HID; /* Dataspace ID */ hsize_t numparticles = 8388608; /* Used to calculate dimension size */ unsigned num_dsets = 513; /* Used to calculate dimension size */ hsize_t total_particles = numparticles * num_dsets; hsize_t vdsdims[1] = {total_particles}; /* Dimension size */ hsize_t start, stride, count, block; /* Selection info */ unsigned config; /* Testing configuration */ unsigned unlim; /* H5S_UNLIMITED setting or not */ herr_t ret; /* Generic return value */ uint32_t expected_version = 0; /* Expected version for selection info */ uint8_t expected_enc_size = 0; /* Expected encoded size for selection info */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace encoding of regular hyperslabs\n")); /* Create the file access property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Set the low/high bounds in the fapl */ ret = H5Pset_libver_bounds(fapl, low, high); CHECK(ret, FAIL, "H5Pset_libver_bounds"); /* Create the dataspace */ sid = H5Screate_simple(1, vdsdims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Testing with each configuration */ for (config = CONFIG_16; config <= CONFIG_32; config++) { bool expected_to_fail = false; /* Testing with unlimited or not */ for (unlim = 0; unlim <= 1; unlim++) { start = 0; count = unlim ? H5S_UNLIMITED : 2; if ((high <= H5F_LIBVER_V18) && (unlim || config == CONFIG_32)) expected_to_fail = true; if (low >= H5F_LIBVER_V112) expected_version = 3; else if (config == CONFIG_16 && !unlim) expected_version = 1; else expected_version = 2; /* test 1 */ switch (config) { case CONFIG_16: stride = POWER16 - 1; block = 4; expected_enc_size = (uint8_t)(expected_version == 3 ? 2 : 4); break; case CONFIG_32: stride = POWER32 - 1; block = 4; expected_enc_size = (uint8_t)(expected_version == 3 ? 4 : 8); break; default: assert(0); break; } /* end switch */ /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Verify the version and encoded size expected for this configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* test 2 */ switch (config) { case CONFIG_16: stride = POWER16 - 1; block = POWER16 - 2; expected_enc_size = (uint8_t)(expected_version == 3 ? 2 : 4); break; case CONFIG_32: stride = POWER32 - 1; block = POWER32 - 2; expected_enc_size = (uint8_t)(expected_version == 3 ? 4 : 8); break; default: assert(0); break; } /* end switch */ /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Verify the version and encoded size for this configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* test 3 */ switch (config) { case CONFIG_16: stride = POWER16 - 1; block = POWER16 - 1; expected_enc_size = 4; break; case CONFIG_32: stride = POWER32 - 1; block = POWER32 - 1; expected_enc_size = 8; break; default: assert(0); break; } /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Verify the version and encoded size expected for this configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* test 4 */ switch (config) { case CONFIG_16: stride = POWER16; block = POWER16 - 2; expected_enc_size = 4; break; case CONFIG_32: stride = POWER32; block = POWER32 - 2; expected_enc_size = 8; break; default: assert(0); break; } /* end switch */ /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Verify the version and encoded size expected for this configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* test 5 */ switch (config) { case CONFIG_16: stride = POWER16; block = 1; expected_enc_size = 4; break; case CONFIG_32: stride = POWER32; block = 1; expected_enc_size = 8; break; default: assert(0); break; } /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Verify the version and encoded size expected for this configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); } /* for unlim */ } /* for config */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); } /* test_h5s_encode_regular_hyper() */ /**************************************************************** ** ** test_h5s_encode_irregular_hyper(): ** This test verifies that H5Sencode2() works as specified in ** the RFC for irregular hyperslabs. ** See "RFC: H5Sencode/H5Sdeocde Format Change". ** ****************************************************************/ static void test_h5s_encode_irregular_hyper(H5F_libver_t low, H5F_libver_t high) { hid_t fapl = H5I_INVALID_HID; /* File access property list ID */ hid_t sid; /* Dataspace ID */ hsize_t numparticles = 8388608; /* Used to calculate dimension size */ unsigned num_dsets = 513; /* Used to calculate dimension size */ hsize_t total_particles = numparticles * num_dsets; hsize_t vdsdims[1] = {total_particles}; /* Dimension size */ hsize_t start, stride, count, block; /* Selection info */ htri_t is_regular; /* Is this a regular hyperslab */ unsigned config; /* Testing configuration */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace encoding of irregular hyperslabs\n")); /* Create the file access property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Set the low/high bounds in the fapl */ ret = H5Pset_libver_bounds(fapl, low, high); CHECK(ret, FAIL, "H5Pset_libver_bounds"); /* Create the dataspace */ sid = H5Screate_simple(1, vdsdims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Testing with each configuration */ for (config = CONFIG_8; config <= CONFIG_32; config++) { bool expected_to_fail = false; /* Whether H5Sencode2 is expected to fail */ uint32_t expected_version = 0; /* Expected version for selection info */ uint32_t expected_enc_size = 0; /* Expected encoded size for selection info */ start = 0; count = 2; block = 4; /* H5Sencode2 is expected to fail for library v110 and below when the selection exceeds the 32 bits integer limit */ if (high <= H5F_LIBVER_V110 && config == CONFIG_32) expected_to_fail = true; if (low >= H5F_LIBVER_V112 || config == CONFIG_32) expected_version = 3; else expected_version = 1; switch (config) { case CONFIG_8: stride = POWER8 - 2; break; case CONFIG_16: stride = POWER16 - 2; break; case CONFIG_32: stride = POWER32 - 2; break; default: assert(0); break; } /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start = 8; count = 5; block = 2; switch (config) { case CONFIG_8: stride = POWER8; expected_enc_size = expected_version == 3 ? 2 : 4; break; case CONFIG_16: stride = POWER16; expected_enc_size = 4; break; case CONFIG_32: stride = POWER32; expected_enc_size = 8; break; default: assert(0); break; } /* Set the hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Should be irregular hyperslab */ is_regular = H5Sis_regular_hyperslab(sid); VERIFY(is_regular, false, "H5Sis_regular_hyperslab"); /* Verify the version and encoded size expected for the configuration */ assert(expected_enc_size <= 255); ret = test_h5s_check_encoding(fapl, sid, expected_version, (uint8_t)expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); } /* for config */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_encode_irregular_hyper() */ /**************************************************************** ** ** test_h5s_encode_points(): ** This test verifies that H5Sencode2() works as specified in ** the RFC for point selection. ** See "RFC: H5Sencode/H5Sdeocde Format Change". ** ****************************************************************/ static void test_h5s_encode_points(H5F_libver_t low, H5F_libver_t high) { hid_t fapl = H5I_INVALID_HID; /* File access property list ID */ hid_t sid; /* Dataspace ID */ hsize_t numparticles = 8388608; /* Used to calculate dimension size */ unsigned num_dsets = 513; /* used to calculate dimension size */ hsize_t total_particles = numparticles * num_dsets; hsize_t vdsdims[1] = {total_particles}; /* Dimension size */ hsize_t coord[4]; /* The point coordinates */ herr_t ret; /* Generic return value */ bool expected_to_fail = false; /* Expected to fail or not */ uint32_t expected_version = 0; /* Expected version for selection info */ uint8_t expected_enc_size = 0; /* Expected encoded size of selection info */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspace encoding of points selection\n")); /* Create the file access property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Set the low/high bounds in the fapl */ ret = H5Pset_libver_bounds(fapl, low, high); CHECK(ret, FAIL, "H5Pset_libver_bounds"); /* Create the dataspace */ sid = H5Screate_simple(1, vdsdims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* test 1 */ coord[0] = 5; coord[1] = 15; coord[2] = POWER16; coord[3] = 19; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)4, coord); CHECK(ret, FAIL, "H5Sselect_elements"); expected_to_fail = false; expected_enc_size = 4; expected_version = 1; if (low >= H5F_LIBVER_V112) expected_version = 2; /* Verify the version and encoded size expected for the configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* test 2 */ coord[0] = 5; coord[1] = 15; coord[2] = POWER32 - 1; coord[3] = 19; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)4, coord); CHECK(ret, FAIL, "H5Sselect_elements"); /* Expected result same as test 1 */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* test 3 */ if (high <= H5F_LIBVER_V110) expected_to_fail = true; if (high >= H5F_LIBVER_V112) { expected_version = 2; expected_enc_size = 8; } coord[0] = 5; coord[1] = 15; coord[2] = POWER32 + 1; coord[3] = 19; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)4, coord); CHECK(ret, FAIL, "H5Sselect_elements"); /* Verify the version and encoded size expected for the configuration */ ret = test_h5s_check_encoding(fapl, sid, expected_version, expected_enc_size, expected_to_fail); CHECK(ret, FAIL, "test_h5s_check_encoding"); /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_encode_points() */ /**************************************************************** ** ** test_h5s_encode_length(): ** Test to verify HDFFV-10271 is fixed. ** Verify that version 2 hyperslab encoding length is correct. ** ** See "RFC: H5Sencode/H5Sdecode Format Change" for the ** description of the encoding format. ** ****************************************************************/ static void test_h5s_encode_length(void) { hid_t sid; /* Dataspace ID */ hid_t decoded_sid; /* Dataspace ID from H5Sdecode2 */ size_t sbuf_size = 0; /* Buffer size for H5Sencode2/1 */ unsigned char *sbuf = NULL; /* Buffer for H5Sencode2/1 */ hsize_t dims[1] = {500}; /* Dimension size */ hsize_t start, count, block, stride; /* Hyperslab selection specifications */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Version 2 Hyperslab Encoding Length is correct\n")); /* Create dataspace */ sid = H5Screate_simple(1, dims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Setting H5S_UNLIMITED in count will use version 2 for hyperslab encoding */ start = 0; stride = 10; block = 4; count = H5S_UNLIMITED; /* Set hyperslab selection */ ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, &start, &stride, &count, &block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Encode simple dataspace in a buffer */ ret = H5Sencode2(sid, NULL, &sbuf_size, H5P_DEFAULT); CHECK(ret, FAIL, "H5Sencode"); /* Allocate the buffer */ if (sbuf_size > 0) { sbuf = (unsigned char *)calloc((size_t)1, sbuf_size); CHECK_PTR(sbuf, "H5Sencode2"); } /* Encode the dataspace */ ret = H5Sencode2(sid, sbuf, &sbuf_size, H5P_DEFAULT); CHECK(ret, FAIL, "H5Sencode"); /* Verify that length stored at this location in the buffer is correct */ VERIFY((uint32_t)sbuf[40], 36, "Length for encoding version 2"); VERIFY((uint32_t)sbuf[35], 2, "Hyperslab encoding version is 2"); /* Decode from the dataspace buffer and return an object handle */ decoded_sid = H5Sdecode(sbuf); CHECK(decoded_sid, FAIL, "H5Sdecode"); /* Verify that the original and the decoded dataspace are equal */ VERIFY(H5Sget_select_npoints(sid), H5Sget_select_npoints(decoded_sid), "Compare npoints"); /* Close the decoded dataspace */ ret = H5Sclose(decoded_sid); CHECK(ret, FAIL, "H5Sclose"); /* Free the buffer */ if (sbuf) free(sbuf); /* Close the original dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_encode_length() */ /**************************************************************** ** ** test_h5s_scalar_write(): Test scalar H5S (dataspace) writing code. ** ****************************************************************/ static void test_h5s_scalar_write(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1; /* Dataspace ID */ int rank; /* Logical rank of dataspace */ hsize_t tdims[4]; /* Dimension array to test with */ hssize_t n; /* Number of dataspace elements */ H5S_class_t ext_type; /* Extent type */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Scalar Dataspace Manipulation during Writing\n")); /* Create file */ fid1 = H5Fcreate(DATAFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Verify a non-zero rank fails with a NULL dimension. */ H5E_BEGIN_TRY { sid1 = H5Screate_simple(SPACE1_RANK, NULL, NULL); } H5E_END_TRY VERIFY(sid1, FAIL, "H5Screate_simple"); /* Create scalar dataspace */ sid1 = H5Screate_simple(SPACE3_RANK, NULL, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Retrieve the number of elements in the dataspace selection */ n = H5Sget_simple_extent_npoints(sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, 1, "H5Sget_simple_extent_npoints"); /* Get the dataspace rank */ rank = H5Sget_simple_extent_ndims(sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims"); /* Get the dataspace dimension sizes */ rank = H5Sget_simple_extent_dims(sid1, tdims, NULL); VERIFY(rank, 0, "H5Sget_simple_extent_dims"); /* Verify extent type */ ext_type = H5Sget_simple_extent_type(sid1); VERIFY(ext_type, H5S_SCALAR, "H5Sget_simple_extent_type"); /* Create a dataset */ dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UINT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Write to the dataset */ ret = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &space3_data); CHECK(ret, FAIL, "H5Dwrite"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close scalar dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* test_h5s_scalar_write() */ /**************************************************************** ** ** test_h5s_scalar_read(): Test scalar H5S (dataspace) reading code. ** ****************************************************************/ static void test_h5s_scalar_read(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1; /* Dataspace ID */ int rank; /* Logical rank of dataspace */ hsize_t tdims[4]; /* Dimension array to test with */ hssize_t n; /* Number of dataspace elements */ unsigned rdata; /* Scalar data read in */ herr_t ret; /* Generic return value */ H5S_class_t ext_type; /* Extent type */ /* Output message about test being performed */ MESSAGE(5, ("Testing Scalar Dataspace Manipulation during Reading\n")); /* Create file */ fid1 = H5Fopen(DATAFILE, H5F_ACC_RDWR, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fopen"); /* Create a dataset */ dataset = H5Dopen2(fid1, "Dataset1", H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dopen2"); sid1 = H5Dget_space(dataset); CHECK(sid1, FAIL, "H5Dget_space"); n = H5Sget_simple_extent_npoints(sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, 1, "H5Sget_simple_extent_npoints"); rank = H5Sget_simple_extent_ndims(sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims"); rank = H5Sget_simple_extent_dims(sid1, tdims, NULL); VERIFY(rank, 0, "H5Sget_simple_extent_dims"); /* Verify extent type */ ext_type = H5Sget_simple_extent_type(sid1); VERIFY(ext_type, H5S_SCALAR, "H5Sget_simple_extent_type"); ret = H5Dread(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, &rdata); CHECK(ret, FAIL, "H5Dread"); VERIFY(rdata, space3_data, "H5Dread"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close scalar dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* test_h5s_scalar_read() */ /**************************************************************** ** ** test_h5s_compound_scalar_write(): Test scalar H5S (dataspace) writing for ** compound datatypes. ** ****************************************************************/ static void test_h5s_compound_scalar_write(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t tid1; /* Attribute datatype ID */ hid_t sid1; /* Dataspace ID */ int rank; /* Logical rank of dataspace */ hsize_t tdims[4]; /* Dimension array to test with */ hssize_t n; /* Number of dataspace elements */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Scalar Dataspace Manipulation for Writing Compound Datatypes\n")); /* Create file */ fid1 = H5Fcreate(DATAFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fcreate"); /* Create the compound datatype. */ tid1 = H5Tcreate(H5T_COMPOUND, sizeof(struct space4_struct)); CHECK(tid1, FAIL, "H5Tcreate"); space4_field1_off = HOFFSET(struct space4_struct, c1); ret = H5Tinsert(tid1, SPACE4_FIELDNAME1, space4_field1_off, H5T_NATIVE_SCHAR); CHECK(ret, FAIL, "H5Tinsert"); space4_field2_off = HOFFSET(struct space4_struct, u); ret = H5Tinsert(tid1, SPACE4_FIELDNAME2, space4_field2_off, H5T_NATIVE_UINT); CHECK(ret, FAIL, "H5Tinsert"); space4_field3_off = HOFFSET(struct space4_struct, f); ret = H5Tinsert(tid1, SPACE4_FIELDNAME3, space4_field3_off, H5T_NATIVE_FLOAT); CHECK(ret, FAIL, "H5Tinsert"); space4_field4_off = HOFFSET(struct space4_struct, c2); ret = H5Tinsert(tid1, SPACE4_FIELDNAME4, space4_field4_off, H5T_NATIVE_SCHAR); CHECK(ret, FAIL, "H5Tinsert"); /* Create scalar dataspace */ sid1 = H5Screate_simple(SPACE3_RANK, NULL, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); n = H5Sget_simple_extent_npoints(sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, 1, "H5Sget_simple_extent_npoints"); rank = H5Sget_simple_extent_ndims(sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims"); rank = H5Sget_simple_extent_dims(sid1, tdims, NULL); VERIFY(rank, 0, "H5Sget_simple_extent_dims"); /* Create a dataset */ dataset = H5Dcreate2(fid1, "Dataset1", tid1, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); ret = H5Dwrite(dataset, tid1, H5S_ALL, H5S_ALL, H5P_DEFAULT, &space4_data); CHECK(ret, FAIL, "H5Dwrite"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close compound datatype */ ret = H5Tclose(tid1); CHECK(ret, FAIL, "H5Tclose"); /* Close scalar dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* test_h5s_compound_scalar_write() */ /**************************************************************** ** ** test_h5s_compound_scalar_read(): Test scalar H5S (dataspace) reading for ** compound datatypes. ** ****************************************************************/ static void test_h5s_compound_scalar_read(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1; /* Dataspace ID */ hid_t type; /* Datatype */ int rank; /* Logical rank of dataspace */ hsize_t tdims[4]; /* Dimension array to test with */ hssize_t n; /* Number of dataspace elements */ struct space4_struct rdata; /* Scalar data read in */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Scalar Dataspace Manipulation for Reading Compound Datatypes\n")); /* Create file */ fid1 = H5Fopen(DATAFILE, H5F_ACC_RDWR, H5P_DEFAULT); CHECK(fid1, FAIL, "H5Fopen"); /* Create a dataset */ dataset = H5Dopen2(fid1, "Dataset1", H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dopen2"); sid1 = H5Dget_space(dataset); CHECK(sid1, FAIL, "H5Dget_space"); n = H5Sget_simple_extent_npoints(sid1); CHECK(n, FAIL, "H5Sget_simple_extent_npoints"); VERIFY(n, 1, "H5Sget_simple_extent_npoints"); rank = H5Sget_simple_extent_ndims(sid1); CHECK(rank, FAIL, "H5Sget_simple_extent_ndims"); VERIFY(rank, SPACE3_RANK, "H5Sget_simple_extent_ndims"); rank = H5Sget_simple_extent_dims(sid1, tdims, NULL); VERIFY(rank, 0, "H5Sget_simple_extent_dims"); type = H5Dget_type(dataset); CHECK(type, FAIL, "H5Dget_type"); ret = H5Dread(dataset, type, H5S_ALL, H5S_ALL, H5P_DEFAULT, &rdata); CHECK(ret, FAIL, "H5Dread"); if (memcmp(&space4_data, &rdata, sizeof(struct space4_struct)) != 0) { printf("scalar data different: space4_data.c1=%c, read_data4.c1=%c\n", space4_data.c1, rdata.c1); printf("scalar data different: space4_data.u=%u, read_data4.u=%u\n", space4_data.u, rdata.u); printf("scalar data different: space4_data.f=%f, read_data4.f=%f\n", (double)space4_data.f, (double)rdata.f); TestErrPrintf("scalar data different: space4_data.c1=%c, read_data4.c1=%c\n", space4_data.c1, rdata.c2); } /* end if */ /* Close datatype */ ret = H5Tclose(type); CHECK(ret, FAIL, "H5Tclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close scalar dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); } /* end test_h5s_compound_scalar_read() */ /* Data array sizes for chunk test */ #define CHUNK_DATA_NX 50000 #define CHUNK_DATA_NY 3 /**************************************************************** ** ** test_h5s_chunk(): Exercise chunked I/O, testing when data conversion ** is necessary and the entire chunk read in doesn't fit into the ** conversion buffer ** ****************************************************************/ static void test_h5s_chunk(void) { herr_t status; hid_t fileID, dsetID; hid_t plist_id; hid_t space_id; hsize_t dims[2]; hsize_t csize[2]; double **chunk_data_dbl = NULL; double *chunk_data_dbl_data = NULL; float **chunk_data_flt = NULL; float *chunk_data_flt_data = NULL; int i, j; /* Allocate memory */ chunk_data_dbl_data = (double *)calloc(CHUNK_DATA_NX * CHUNK_DATA_NY, sizeof(double)); CHECK_PTR(chunk_data_dbl_data, "calloc"); chunk_data_dbl = (double **)calloc(CHUNK_DATA_NX, sizeof(chunk_data_dbl_data)); CHECK_PTR(chunk_data_dbl, "calloc"); for (i = 0; i < CHUNK_DATA_NX; i++) chunk_data_dbl[i] = chunk_data_dbl_data + (i * CHUNK_DATA_NY); chunk_data_flt_data = (float *)calloc(CHUNK_DATA_NX * CHUNK_DATA_NY, sizeof(float)); CHECK_PTR(chunk_data_flt_data, "calloc"); chunk_data_flt = (float **)calloc(CHUNK_DATA_NX, sizeof(chunk_data_flt_data)); CHECK_PTR(chunk_data_flt, "calloc"); for (i = 0; i < CHUNK_DATA_NX; i++) chunk_data_flt[i] = chunk_data_flt_data + (i * CHUNK_DATA_NY); fileID = H5Fcreate(DATAFILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(fileID, FAIL, "H5Fcreate"); plist_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(plist_id, FAIL, "H5Pcreate"); csize[0] = CHUNK_DATA_NX; csize[1] = CHUNK_DATA_NY; status = H5Pset_chunk(plist_id, 2, csize); CHECK(status, FAIL, "H5Pset_chunk"); /* Create the dataspace */ dims[0] = CHUNK_DATA_NX; dims[1] = CHUNK_DATA_NY; space_id = H5Screate_simple(2, dims, NULL); CHECK(space_id, FAIL, "H5Screate_simple"); dsetID = H5Dcreate2(fileID, "coords", H5T_NATIVE_FLOAT, space_id, H5P_DEFAULT, plist_id, H5P_DEFAULT); CHECK(dsetID, FAIL, "H5Dcreate2"); /* Initialize float array */ for (i = 0; i < CHUNK_DATA_NX; i++) for (j = 0; j < CHUNK_DATA_NY; j++) chunk_data_flt[i][j] = (float)(i + 1) * 2.5F - (float)j * 100.3F; status = H5Dwrite(dsetID, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, chunk_data_flt_data); CHECK(status, FAIL, "H5Dwrite"); status = H5Pclose(plist_id); CHECK(status, FAIL, "H5Pclose"); status = H5Sclose(space_id); CHECK(status, FAIL, "H5Sclose"); status = H5Dclose(dsetID); CHECK(status, FAIL, "H5Dclose"); status = H5Fclose(fileID); CHECK(status, FAIL, "H5Fclose"); /* Reset/initialize the data arrays to read in */ memset(chunk_data_dbl_data, 0, sizeof(double) * CHUNK_DATA_NX * CHUNK_DATA_NY); memset(chunk_data_flt_data, 0, sizeof(float) * CHUNK_DATA_NX * CHUNK_DATA_NY); fileID = H5Fopen(DATAFILE, H5F_ACC_RDONLY, H5P_DEFAULT); CHECK(fileID, FAIL, "H5Fopen"); dsetID = H5Dopen2(fileID, "coords", H5P_DEFAULT); CHECK(dsetID, FAIL, "H5Dopen2"); status = H5Dread(dsetID, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, H5P_DEFAULT, chunk_data_dbl_data); CHECK(status, FAIL, "H5Dread"); status = H5Dread(dsetID, H5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL, H5P_DEFAULT, chunk_data_flt_data); CHECK(status, FAIL, "H5Dread"); status = H5Dclose(dsetID); CHECK(status, FAIL, "H5Dclose"); status = H5Fclose(fileID); CHECK(status, FAIL, "H5Fclose"); for (i = 0; i < CHUNK_DATA_NX; i++) { for (j = 0; j < CHUNK_DATA_NY; j++) { /* Check if the two values are within 0.001% range. */ if (!H5_DBL_REL_EQUAL(chunk_data_dbl[i][j], (double)chunk_data_flt[i][j], 0.00001)) TestErrPrintf("%u: chunk_data_dbl[%d][%d]=%e, chunk_data_flt[%d][%d]=%e\n", (unsigned)__LINE__, i, j, chunk_data_dbl[i][j], i, j, (double)chunk_data_flt[i][j]); } /* end for */ } /* end for */ free(chunk_data_dbl); free(chunk_data_dbl_data); free(chunk_data_flt); free(chunk_data_flt_data); } /* test_h5s_chunk() */ /**************************************************************** ** ** test_h5s_extent_equal(): Exercise extent comparison code ** ****************************************************************/ static void test_h5s_extent_equal(void) { hid_t null_space; /* Null dataspace */ hid_t scalar_space; /* Scalar dataspace */ hid_t d1_space1, d1_space2, d1_space3, d1_space4; /* 1-D dataspaces */ hid_t d2_space1, d2_space2, d2_space3, d2_space4; /* 2-D dataspaces */ hid_t d3_space1, d3_space2, d3_space3, d3_space4; /* 3-D dataspaces */ hsize_t d1_dims1[1] = {10}, /* 1-D dimensions */ d1_dims2[1] = {20}, d1_dims3[1] = {H5S_UNLIMITED}; hsize_t d2_dims1[2] = {10, 10}, /* 2-D dimensions */ d2_dims2[2] = {20, 20}, d2_dims3[2] = {H5S_UNLIMITED, H5S_UNLIMITED}; hsize_t d3_dims1[3] = {10, 10, 10}, /* 3-D dimensions */ d3_dims2[3] = {20, 20, 20}, d3_dims3[3] = {H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED}; htri_t ext_equal; /* Whether two dataspace extents are equal */ herr_t ret; /* Generic error return */ /* Create dataspaces */ null_space = H5Screate(H5S_NULL); CHECK(null_space, FAIL, "H5Screate"); scalar_space = H5Screate(H5S_SCALAR); CHECK(scalar_space, FAIL, "H5Screate"); d1_space1 = H5Screate_simple(1, d1_dims1, NULL); CHECK(d1_space1, FAIL, "H5Screate"); d1_space2 = H5Screate_simple(1, d1_dims2, NULL); CHECK(d1_space2, FAIL, "H5Screate"); d1_space3 = H5Screate_simple(1, d1_dims1, d1_dims2); CHECK(d1_space3, FAIL, "H5Screate"); d1_space4 = H5Screate_simple(1, d1_dims1, d1_dims3); CHECK(d1_space4, FAIL, "H5Screate"); d2_space1 = H5Screate_simple(2, d2_dims1, NULL); CHECK(d2_space1, FAIL, "H5Screate"); d2_space2 = H5Screate_simple(2, d2_dims2, NULL); CHECK(d2_space2, FAIL, "H5Screate"); d2_space3 = H5Screate_simple(2, d2_dims1, d2_dims2); CHECK(d2_space3, FAIL, "H5Screate"); d2_space4 = H5Screate_simple(2, d2_dims1, d2_dims3); CHECK(d2_space4, FAIL, "H5Screate"); d3_space1 = H5Screate_simple(3, d3_dims1, NULL); CHECK(d3_space1, FAIL, "H5Screate"); d3_space2 = H5Screate_simple(3, d3_dims2, NULL); CHECK(d3_space2, FAIL, "H5Screate"); d3_space3 = H5Screate_simple(3, d3_dims1, d3_dims2); CHECK(d3_space3, FAIL, "H5Screate"); d3_space4 = H5Screate_simple(3, d3_dims1, d3_dims3); CHECK(d3_space4, FAIL, "H5Screate"); /* Compare all dataspace combinations */ /* Compare null dataspace against all others, including itself */ ext_equal = H5Sextent_equal(null_space, null_space); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(null_space, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare scalar dataspace against all others, including itself */ ext_equal = H5Sextent_equal(scalar_space, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, scalar_space); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(scalar_space, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 1-D dataspace w/no max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d1_space1, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d1_space1); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space1, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare larger 1-D dataspace w/no max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d1_space2, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d1_space2); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space2, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 1-D dataspace w/fixed max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d1_space3, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d1_space3); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space3, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 1-D dataspace w/unlimited max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d1_space4, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d1_space4); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d1_space4, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 2-D dataspace w/no max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d2_space1, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d2_space1); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space1, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare larger 2-D dataspace w/no max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d2_space2, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d2_space2); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space2, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 2-D dataspace w/fixed max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d2_space3, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d2_space3); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space3, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 2-D dataspace w/unlimited max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d2_space4, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d2_space4); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d2_space4, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 3-D dataspace w/no max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d3_space1, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d3_space1); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space1, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare larger 2-D dataspace w/no max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d3_space2, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d3_space2); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space2, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 2-D dataspace w/fixed max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d3_space3, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d3_space3); VERIFY(ext_equal, true, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space3, d3_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); /* Compare small 2-D dataspace w/unlimited max. dims against all others, including itself */ ext_equal = H5Sextent_equal(d3_space4, null_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, scalar_space); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d1_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d1_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d1_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d1_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d2_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d2_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d2_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d2_space4); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d3_space1); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d3_space2); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d3_space3); VERIFY(ext_equal, false, "H5Sextent_equal"); ext_equal = H5Sextent_equal(d3_space4, d3_space4); VERIFY(ext_equal, true, "H5Sextent_equal"); /* Close dataspaces */ ret = H5Sclose(null_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(scalar_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d1_space1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d1_space2); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d1_space3); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d1_space4); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d2_space1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d2_space2); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d2_space3); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d2_space4); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d3_space1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d3_space2); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d3_space3); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(d3_space4); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_extent_equal() */ /**************************************************************** ** ** test_h5s_extent_copy(): Exercise extent copy code ** ****************************************************************/ static void test_h5s_extent_copy(void) { hid_t spaces[14] = { H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID, H5I_INVALID_HID}; /* Array of all dataspaces */ hid_t tmp_space = H5I_INVALID_HID; hsize_t d1_dims1[1] = {10}, /* 1-D dimensions */ d1_dims2[1] = {20}, d1_dims3[1] = {H5S_UNLIMITED}; hsize_t d2_dims1[2] = {10, 10}, /* 2-D dimensions */ d2_dims2[2] = {20, 20}, d2_dims3[2] = {H5S_UNLIMITED, H5S_UNLIMITED}; hsize_t d3_dims1[3] = {10, 10, 10}, /* 3-D dimensions */ d3_dims2[3] = {20, 20, 20}, d3_dims3[3] = {H5S_UNLIMITED, H5S_UNLIMITED, H5S_UNLIMITED}; hsize_t npoints[14]; /* Expected number of points in selection for each element in spaces */ hssize_t npoints_ret; /* Number of points returned by H5Sget_select_npoints() */ htri_t ext_equal; /* Whether two dataspace extents are equal */ const unsigned num_spaces = sizeof(spaces) / sizeof(spaces[0]); unsigned i, j; herr_t ret; /* Generic error return */ /* Create dataspaces */ spaces[0] = H5Screate(H5S_NULL); CHECK(spaces[0], FAIL, "H5Screate"); npoints[0] = (hsize_t)0; spaces[1] = H5Screate(H5S_SCALAR); CHECK(spaces[1], FAIL, "H5Screate"); npoints[1] = (hsize_t)1; spaces[2] = H5Screate_simple(1, d1_dims1, NULL); CHECK(spaces[2], FAIL, "H5Screate"); npoints[2] = d1_dims1[0]; spaces[3] = H5Screate_simple(1, d1_dims2, NULL); CHECK(spaces[3], FAIL, "H5Screate"); npoints[3] = d1_dims2[0]; spaces[4] = H5Screate_simple(1, d1_dims1, d1_dims2); CHECK(spaces[4], FAIL, "H5Screate"); npoints[4] = d1_dims1[0]; spaces[5] = H5Screate_simple(1, d1_dims1, d1_dims3); CHECK(spaces[5], FAIL, "H5Screate"); npoints[5] = d1_dims1[0]; spaces[6] = H5Screate_simple(2, d2_dims1, NULL); CHECK(spaces[6], FAIL, "H5Screate"); npoints[6] = d2_dims1[0] * d2_dims1[1]; spaces[7] = H5Screate_simple(2, d2_dims2, NULL); CHECK(spaces[7], FAIL, "H5Screate"); npoints[7] = d2_dims2[0] * d2_dims2[1]; spaces[8] = H5Screate_simple(2, d2_dims1, d2_dims2); CHECK(spaces[8], FAIL, "H5Screate"); npoints[8] = d2_dims1[0] * d2_dims1[1]; spaces[9] = H5Screate_simple(2, d2_dims1, d2_dims3); CHECK(spaces[9], FAIL, "H5Screate"); npoints[9] = d2_dims1[0] * d2_dims1[1]; spaces[10] = H5Screate_simple(3, d3_dims1, NULL); CHECK(spaces[10], FAIL, "H5Screate"); npoints[10] = d3_dims1[0] * d3_dims1[1] * d3_dims1[2]; spaces[11] = H5Screate_simple(3, d3_dims2, NULL); CHECK(spaces[11], FAIL, "H5Screate"); npoints[11] = d3_dims2[0] * d3_dims2[1] * d3_dims2[2]; spaces[12] = H5Screate_simple(3, d3_dims1, d3_dims2); CHECK(spaces[12], FAIL, "H5Screate"); npoints[12] = d3_dims1[0] * d3_dims1[1] * d3_dims1[2]; spaces[13] = H5Screate_simple(3, d3_dims1, d3_dims3); CHECK(spaces[13], FAIL, "H5Screate"); npoints[13] = d3_dims1[0] * d3_dims1[1] * d3_dims1[2]; tmp_space = H5Screate(H5S_NULL); CHECK(tmp_space, FAIL, "H5Screate"); /* Copy between all dataspace combinations. Note there are a few * duplicates. */ for (i = 0; i < num_spaces; i++) for (j = i; j < num_spaces; j++) { /* Copy from i to j, unless the inner loop just restarted, in which * case i and j are the same, so the second call to H5Sextent_copy() * will test copying from i/j to i/j */ ret = H5Sextent_copy(tmp_space, spaces[j]); CHECK(ret, FAIL, "H5Sextent_copy"); /* Verify that the extents are equal */ ext_equal = H5Sextent_equal(tmp_space, spaces[j]); VERIFY(ext_equal, true, "H5Sextent_equal"); /* Verify that the correct number of elements is selected */ npoints_ret = H5Sget_select_npoints(tmp_space); VERIFY((hsize_t)npoints_ret, npoints[j], "H5Sget_select_npoints"); /* Copy from j to i */ ret = H5Sextent_copy(tmp_space, spaces[i]); CHECK(ret, FAIL, "H5Sextent_copy"); /* Verify that the extents are equal */ ext_equal = H5Sextent_equal(tmp_space, spaces[i]); VERIFY(ext_equal, true, "H5Sextent_equal"); /* Verify that the correct number of elements is selected */ npoints_ret = H5Sget_select_npoints(tmp_space); VERIFY((hsize_t)npoints_ret, npoints[i], "H5Sget_select_npoints"); } /* end for */ /* Close dataspaces */ for (i = 0; i < num_spaces; i++) { ret = H5Sclose(spaces[i]); CHECK(ret, FAIL, "H5Sclose"); spaces[i] = -1; } /* end for */ ret = H5Sclose(tmp_space); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_extent_copy() */ /**************************************************************** ** ** test_h5s_bug1(): Test Creating dataspace with H5Screate then * setting extent with H5Sextent_copy. ** ****************************************************************/ static void test_h5s_bug1(void) { hid_t space1; /* Dataspace to copy extent to */ hid_t space2; /* Scalar dataspace */ hsize_t dims[2] = {10, 10}; /* Dimensions */ hsize_t start[2] = {0, 0}; /* Hyperslab start */ htri_t select_valid; /* Whether the dataspace selection is valid */ herr_t ret; /* Generic error return */ /* Create dataspaces */ space1 = H5Screate(H5S_SIMPLE); CHECK(space1, FAIL, "H5Screate"); space2 = H5Screate_simple(2, dims, NULL); CHECK(space2, FAIL, "H5Screate"); /* Copy extent to space1 */ ret = H5Sextent_copy(space1, space2); CHECK(ret, FAIL, "H5Sextent_copy"); /* Select hyperslab in space1 containing entire extent */ ret = H5Sselect_hyperslab(space1, H5S_SELECT_SET, start, NULL, dims, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Check that space1's selection is valid */ select_valid = H5Sselect_valid(space1); CHECK(select_valid, FAIL, "H5Sselect_valid"); VERIFY(select_valid, true, "H5Sselect_valid result"); /* Close dataspaces */ ret = H5Sclose(space1); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(space2); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_bug1() */ /**************************************************************** ** ** test_h5s_bug2(): Test combining hyperslabs in a way that used ** to trip up H5S__hyper_update_diminfo() ** ****************************************************************/ static void test_h5s_bug2(void) { hid_t space; /* Dataspace to copy extent to */ hsize_t dims[2] = {1, 5}; /* Dimensions */ hsize_t start[2] = {0, 0}; /* Hyperslab start */ hsize_t count[2] = {1, 1}; /* Hyperslab start */ htri_t select_valid; /* Whether the dataspace selection is valid */ hssize_t elements_selected; /* Number of elements selected */ herr_t ret; /* Generic error return */ /* Create dataspace */ space = H5Screate_simple(2, dims, NULL); CHECK(space, FAIL, "H5Screate"); /* Select hyperslab in space containing first element */ ret = H5Sselect_hyperslab(space, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Add hyperslab in space containing last element */ start[1] = 4; ret = H5Sselect_hyperslab(space, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Add hyperslab in space containing the first 3 elements */ start[1] = 0; count[1] = 3; ret = H5Sselect_hyperslab(space, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Check that space's selection is valid */ select_valid = H5Sselect_valid(space); CHECK(select_valid, FAIL, "H5Sselect_valid"); VERIFY(select_valid, true, "H5Sselect_valid result"); /* Check that 4 elements are selected */ elements_selected = H5Sget_select_npoints(space); CHECK(elements_selected, FAIL, "H5Sselect_valid"); VERIFY(elements_selected, 4, "H5Sselect_valid result"); /* Close dataspaces */ ret = H5Sclose(space); CHECK(ret, FAIL, "H5Sclose"); } /* test_h5s_bug2() */ /*------------------------------------------------------------------------- * Function: test_versionbounds * * Purpose: Tests version bounds with dataspace. * * Description: * This function creates a file with lower bounds then later * reopens it with higher bounds to show that the dataspace * version is upgraded appropriately. * * Return: Success: 0 * Failure: number of errors * *------------------------------------------------------------------------- */ #define VERBFNAME "tverbounds_dspace.h5" #define BASIC_DSET "Basic Dataset" #define LATEST_DSET "Latest Dataset" static void test_versionbounds(void) { hid_t file = H5I_INVALID_HID; /* File ID */ hid_t space = H5I_INVALID_HID; /* Dataspace ID */ hid_t dset = H5I_INVALID_HID; /* Dataset ID */ hid_t fapl = H5I_INVALID_HID; /* File access property list ID */ hid_t dset_space = H5I_INVALID_HID; /* Retrieved dataset's dataspace ID */ hsize_t dim[1]; /* Dataset dimensions */ H5F_libver_t low, high; /* File format bounds */ H5S_t *spacep = NULL; /* Pointer to internal dataspace */ bool vol_is_native; herr_t ret = 0; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Version Bounds\n")); /* Create a file access property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Check if native VOL is being used */ CHECK(h5_using_native_vol(fapl, H5I_INVALID_HID, &vol_is_native), FAIL, "h5_using_native_vol"); /* Create dataspace */ dim[0] = 10; space = H5Screate_simple(1, dim, NULL); CHECK(space, FAIL, "H5Screate"); /* Its version should be H5O_SDSPACE_VERSION_1 */ spacep = (H5S_t *)H5I_object(space); CHECK_PTR(spacep, "H5I_object"); VERIFY(spacep->extent.version, H5O_SDSPACE_VERSION_1, "basic dataspace version bound"); /* Set high bound to V18 */ low = H5F_LIBVER_EARLIEST; high = H5F_LIBVER_V18; ret = H5Pset_libver_bounds(fapl, low, high); CHECK(ret, FAIL, "H5Pset_libver_bounds"); /* Create the file */ file = H5Fcreate(VERBFNAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); CHECK(file, FAIL, "H5Fcreate"); /* Create a basic dataset */ dset = H5Dcreate2(file, BASIC_DSET, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (dset > 0) /* dataset created successfully */ { /* Get the internal dataspace pointer */ dset_space = H5Dget_space(dset); CHECK(dset_space, FAIL, "H5Dget_space"); if (vol_is_native) { spacep = (H5S_t *)H5I_object(dset_space); CHECK_PTR(spacep, "H5I_object"); /* Dataspace version should remain as H5O_SDSPACE_VERSION_1 */ VERIFY(spacep->extent.version, H5O_SDSPACE_VERSION_1, "basic dataspace version bound"); } /* Close dataspace */ ret = H5Sclose(dset_space); CHECK(ret, FAIL, "H5Sclose"); } /* Close basic dataset and the file */ ret = H5Dclose(dset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Fclose(file); CHECK(ret, FAIL, "H5Fclose"); /* Set low and high bounds to latest to trigger the increment of the dataspace version */ low = H5F_LIBVER_LATEST; high = H5F_LIBVER_LATEST; ret = H5Pset_libver_bounds(fapl, low, high); CHECK(ret, FAIL, "H5Pset_libver_bounds"); /* Reopen the file with new version bounds, LATEST/LATEST */ file = H5Fopen(VERBFNAME, H5F_ACC_RDWR, fapl); /* Create another dataset using the same dspace as the previous dataset */ dset = H5Dcreate2(file, LATEST_DSET, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); CHECK(dset, FAIL, "H5Dcreate2"); /* Dataset created successfully. Verify that dataspace version has been upgraded per the low bound */ /* Get the internal dataspace pointer */ dset_space = H5Dget_space(dset); CHECK(dset_space, FAIL, "H5Dget_space"); if (vol_is_native) { spacep = (H5S_t *)H5I_object(dset_space); CHECK_PTR(spacep, "H5I_object"); /* Verify the dataspace version */ VERIFY(spacep->extent.version, H5O_sdspace_ver_bounds[low], "upgraded dataspace version"); } /* Close everything */ ret = H5Sclose(dset_space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Dclose(dset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Sclose(space); CHECK(ret, FAIL, "H5Sclose"); ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); ret = H5Fclose(file); CHECK(ret, FAIL, "H5Fclose"); } /* end test_versionbounds() */ /**************************************************************** ** ** test_h5s(): Main H5S (dataspace) testing routine. ** ****************************************************************/ void test_h5s(void) { H5F_libver_t low, high; /* Low and high bounds */ /* Output message about test being performed */ MESSAGE(5, ("Testing Dataspaces\n")); test_h5s_basic(); /* Test basic H5S code */ test_h5s_null(); /* Test Null dataspace H5S code */ test_h5s_zero_dim(); /* Test dataspace with zero dimension size */ /* Loop through all the combinations of low/high version bounds */ for (low = H5F_LIBVER_EARLIEST; low < H5F_LIBVER_NBOUNDS; low++) { for (high = H5F_LIBVER_EARLIEST; high < H5F_LIBVER_NBOUNDS; high++) { /* Invalid combinations, just continue */ if (high == H5F_LIBVER_EARLIEST || high < low) continue; test_h5s_encode(low, high); /* Test encoding and decoding */ test_h5s_encode_regular_hyper(low, high); /* Test encoding regular hyperslabs */ test_h5s_encode_irregular_hyper(low, high); /* Test encoding irregular hyperslabs */ test_h5s_encode_points(low, high); /* Test encoding points */ } /* end high bound */ } /* end low bound */ test_h5s_encode_length(); /* Test version 2 hyperslab encoding length is correct */ #ifndef H5_NO_DEPRECATED_SYMBOLS test_h5s_encode1(); /* Test operations with old API routine (H5Sencode1) */ #endif /* H5_NO_DEPRECATED_SYMBOLS */ test_h5s_scalar_write(); /* Test scalar H5S writing code */ test_h5s_scalar_read(); /* Test scalar H5S reading code */ test_h5s_compound_scalar_write(); /* Test compound datatype scalar H5S writing code */ test_h5s_compound_scalar_read(); /* Test compound datatype scalar H5S reading code */ /* This test was added later to exercise a bug in chunked I/O */ test_h5s_chunk(); /* Exercise bug fix for chunked I/O */ test_h5s_extent_equal(); /* Test extent comparison code */ test_h5s_extent_copy(); /* Test extent copy code */ test_h5s_bug1(); /* Test bug in offset initialization */ test_h5s_bug2(); /* Test bug found in H5S__hyper_update_diminfo() */ test_versionbounds(); /* Test version bounds with dataspace */ } /* test_h5s() */ /*------------------------------------------------------------------------- * Function: cleanup_h5s * * Purpose: Cleanup temporary test files * * Return: none * *------------------------------------------------------------------------- */ void cleanup_h5s(void) { H5E_BEGIN_TRY { H5Fdelete(DATAFILE, H5P_DEFAULT); H5Fdelete(NULLFILE, H5P_DEFAULT); H5Fdelete(BASICFILE, H5P_DEFAULT); H5Fdelete(ZEROFILE, H5P_DEFAULT); H5Fdelete(VERBFNAME, H5P_DEFAULT); } H5E_END_TRY }