/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * Copyright by the Board of Trustees of the University of Illinois. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the files COPYING and Copyright.html. COPYING can be found at the root * * of the source code distribution tree; Copyright.html can be found at the * * root level of an installed copy of the electronic HDF5 document set and * * is linked from the top-level documents page. It can also be found at * * http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have * * access to either file, you may request a copy from help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /*********************************************************** * * Test program: tselect * * Test the Dataspace selection functionality * *************************************************************/ #define H5S_PACKAGE /*suppress error about including H5Spkg */ /* Define this macro to indicate that the testing APIs should be available */ #define H5S_TESTING #include "testhdf5.h" #include "hdf5.h" #include "H5Spkg.h" /* Dataspaces */ #define FILENAME "tselect.h5" /* 3-D dataset with fixed dimensions */ #define SPACE1_NAME "Space1" #define SPACE1_RANK 3 #define SPACE1_DIM1 3 #define SPACE1_DIM2 15 #define SPACE1_DIM3 13 /* 2-D dataset with fixed dimensions */ #define SPACE2_NAME "Space2" #define SPACE2_RANK 2 #define SPACE2_DIM1 30 #define SPACE2_DIM2 26 #define SPACE2A_RANK 1 #define SPACE2A_DIM1 (SPACE2_DIM1*SPACE2_DIM2) /* 2-D dataset with fixed dimensions */ #define SPACE3_NAME "Space3" #define SPACE3_RANK 2 #define SPACE3_DIM1 15 #define SPACE3_DIM2 26 /* 3-D dataset with fixed dimensions */ #define SPACE4_NAME "Space4" #define SPACE4_RANK 3 #define SPACE4_DIM1 11 #define SPACE4_DIM2 13 #define SPACE4_DIM3 17 /* Number of random hyperslabs to test */ #define NHYPERSLABS 10 /* Number of random hyperslab tests performed */ #define NRAND_HYPER 100 /* 5-D dataset with fixed dimensions */ #define SPACE5_NAME "Space5" #define SPACE5_RANK 5 #define SPACE5_DIM1 10 #define SPACE5_DIM2 10 #define SPACE5_DIM3 10 #define SPACE5_DIM4 10 #define SPACE5_DIM5 10 /* 1-D dataset with same size as 5-D dataset */ #define SPACE6_RANK 1 #define SPACE6_DIM1 (SPACE5_DIM1*SPACE5_DIM2*SPACE5_DIM3*SPACE5_DIM4*SPACE5_DIM5) /* 2-D dataset with easy dimension sizes */ #define SPACE7_NAME "Space7" #define SPACE7_RANK 2 #define SPACE7_DIM1 10 #define SPACE7_DIM2 10 #define SPACE7_FILL 254 #define SPACE7_CHUNK_DIM1 5 #define SPACE7_CHUNK_DIM2 5 #define SPACE7_NPOINTS 8 /* 4-D dataset with fixed dimensions */ #define SPACE8_NAME "Space8" #define SPACE8_RANK 4 #define SPACE8_DIM1 11 #define SPACE8_DIM2 13 #define SPACE8_DIM3 17 #define SPACE8_DIM4 19 /* Another 2-D dataset with easy dimension sizes */ #define SPACE9_RANK 2 #define SPACE9_DIM1 12 #define SPACE9_DIM2 12 /* Element selection information */ #define POINT1_NPOINTS 10 /* Chunked dataset information */ #define DATASETNAME "ChunkArray" #define NX_SUB 87 /* hyperslab dimensions */ #define NY_SUB 61 #define NZ_SUB 181 #define NX 87 /* output buffer dimensions */ #define NY 61 #define NZ 181 #define RANK_F 3 /* File dataspace rank */ #define RANK_M 3 /* Memory dataspace rank */ #define X 87 /* dataset dimensions */ #define Y 61 #define Z 181 #define CHUNK_X 87 /* chunk dimensions */ #define CHUNK_Y 61 #define CHUNK_Z 181 /* Basic chunk size */ #define SPACE10_DIM1 180 #define SPACE10_CHUNK_SIZE 12 /* Information for bounds checking test */ #define SPACE11_RANK 2 #define SPACE11_DIM1 100 #define SPACE11_DIM2 100 #define SPACE11_NPOINTS 4 /* Information for offsets w/chunks test #2 */ #define SPACE12_RANK 1 #define SPACE12_DIM0 25 #define SPACE12_CHUNK_DIM0 5 /* Information for Space rebuild test */ #define SPACERE1_RANK 1 #define SPACERE1_DIM0 20 #define SPACERE2_RANK 2 #define SPACERE2_DIM0 8 #define SPACERE2_DIM1 12 #define SPACERE3_RANK 3 #define SPACERE3_DIM0 8 #define SPACERE3_DIM1 12 #define SPACERE3_DIM2 8 #define SPACERE4_RANK 4 #define SPACERE4_DIM0 8 #define SPACERE4_DIM1 12 #define SPACERE4_DIM2 8 #define SPACERE4_DIM3 12 #define SPACERE5_RANK 5 #define SPACERE5_DIM0 8 #define SPACERE5_DIM1 12 #define SPACERE5_DIM2 8 #define SPACERE5_DIM3 12 #define SPACERE5_DIM4 8 /* #defines for shape same / different rank tests */ #define SS_DR_MAX_RANK 5 /* Location comparison function */ static int compare_size_t(const void *s1, const void *s2); static herr_t test_select_hyper_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_point_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_all_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_none_iter1(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); static herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point, void *_operator_data); static herr_t test_select_hyper_iter3(void *elem,hid_t type_id, unsigned ndim, const hsize_t *point, void *operator_data); /**************************************************************** ** ** test_select_hyper_iter1(): Iterator for checking hyperslab iteration ** ****************************************************************/ static herr_t test_select_hyper_iter1(void *_elem, hid_t UNUSED type_id, unsigned UNUSED ndim, const hsize_t UNUSED *point, void *_operator_data) { uint8_t *tbuf=(uint8_t *)_elem, /* temporary buffer pointer */ **tbuf2=(uint8_t **)_operator_data; /* temporary buffer handle */ if(*tbuf!=**tbuf2) return(-1); else { (*tbuf2)++; return(0); } } /* end test_select_hyper_iter1() */ /**************************************************************** ** ** test_select_hyper(): Test basic H5S (dataspace) selection code. ** Tests hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ H5S_class_t ext_type; /* Extent type */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; ibuf+(pnt_info->coord[pnt_info->offset][0]*SPACE2_DIM2)+pnt_info->coord[pnt_info->offset][1]; if(*elem!=*tmp) return(-1); else { pnt_info->offset++; return(0); } } /* end test_select_point_iter1() */ /**************************************************************** ** ** test_select_point(): Test basic H5S (dataspace) selection code. ** Tests element selections between dataspaces of various sizes ** and dimensionalities. ** ****************************************************************/ static void test_select_point(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */ hsize_t coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ hsize_t temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */ hsize_t coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ hsize_t temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i,j; /* Counters */ struct pnt_iter pi; /* Custom Pointer iterator struct */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Element Selection Functions\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i*(const size_t *)s2) return(1); else return(0); } /**************************************************************** ** ** test_select_hyper_stride(): Test H5S (dataspace) selection code. ** Tests strided hyperslabs of various sizes and dimensionalities. ** ****************************************************************/ static void test_select_hyper_stride(hid_t xfer_plist) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ size_t loc1[72]={ /* Gruesomely ugly way to make certain hyperslab locations are checked correctly */ 27, 28, 29, 53, 54, 55, 79, 80, 81, /* Block #1 */ 32, 33, 34, 58, 59, 60, 84, 85, 86, /* Block #2 */ 157,158,159,183,184,185,209,210,211, /* Block #3 */ 162,163,164,188,189,190,214,215,216, /* Block #4 */ 287,288,289,313,314,315,339,340,341, /* Block #5 */ 292,293,294,318,319,320,344,345,346, /* Block #6 */ 417,418,419,443,444,445,469,470,471, /* Block #7 */ 422,423,424,448,449,450,474,475,476, /* Block #8 */ }; size_t loc2[72]={ 0, 1, 2, 26, 27, 28, /* Block #1 */ 4, 5, 6, 30, 31, 32, /* Block #2 */ 8, 9, 10, 34, 35, 36, /* Block #3 */ 12, 13, 14, 38, 39, 40, /* Block #4 */ 104,105,106,130,131,132, /* Block #5 */ 108,109,110,134,135,136, /* Block #6 */ 112,113,114,138,139,140, /* Block #7 */ 116,117,118,142,143,144, /* Block #8 */ 208,209,210,234,235,236, /* Block #9 */ 212,213,214,238,239,240, /* Block #10 */ 216,217,218,242,243,244, /* Block #11 */ 220,221,222,246,247,248, /* Block #12 */ }; int i,j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i=start[0] && i<(start[0]+count[0])) && (j>=start[1] && j<(start[1]+count[1])) && (k>=start[2] && k<(start[2]+count[2])) && (l>=start[3] && l<(start[3]+count[3])) ) { if(*tbuf!=*tbuf2) { printf("Error: hyperslab values don't match!\n"); TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n",__LINE__,i,j,k,l,(unsigned)*tbuf,(unsigned)*tbuf2); } /* end if */ } /* end if */ else { if(*tbuf2!=0) { printf("Error: invalid data in read buffer!\n"); TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n",__LINE__,i,j,k,l,(unsigned)*tbuf,(unsigned)*tbuf2); } /* end if */ } /* end else */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ HDfree(wbuf); HDfree(rbuf); } /* test_select_hyper_contig3() */ /**************************************************************** ** ** verify_select_hyper_contig_dr__run_test(): Verify data from ** test_select_hyper_contig_dr__run_test() ** ****************************************************************/ static void verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, size_t cube_size, unsigned edge_size, unsigned cube_rank) { const uint16_t *cube_ptr; /* Pointer into the cube buffer */ uint16_t expected_value; /* Expected value in dataset */ unsigned i, j, k, l, m; /* Local index variables */ size_t s; /* Local index variable */ hbool_t mis_match; /* Flag to indicate mis-match in expected value */ HDassert(cube_buf); HDassert(cube_size > 0); expected_value = 0; mis_match = FALSE; cube_ptr = cube_buf; s = 0; i = 0; do { j = 0; do { k = 0; do { l = 0; do { m = 0; do { /* Sanity check */ HDassert(s < cube_size); /* Check for correct value */ if(*cube_ptr != expected_value) mis_match = TRUE; /* Advance to next element */ cube_ptr++; expected_value++; s++; m++; } while((cube_rank > 0) && (m < edge_size)); l++; } while((cube_rank > 1) && (l < edge_size)); k++; } while((cube_rank > 2) && (k < edge_size)); j++; } while((cube_rank > 3) && (j < edge_size)); i++; } while((cube_rank > 4) && (i < edge_size)); if(mis_match) TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__); } /* verify_select_hyper_contig_dr__run_test() */ /**************************************************************** ** ** test_select_hyper_contig_dr__run_test(): Test H5S (dataspace) ** selection code with contiguous source and target having ** different ranks but the same shape. We have already ** tested H5S_shape_same in isolation, so now we try to do ** I/O. ** ****************************************************************/ static void test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf, unsigned edge_size, unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist) { hbool_t mis_match; /* Flag indicating a value read in wasn't what was expected */ hid_t fapl; /* File access property list */ hid_t fid1; /* File ID */ hid_t small_cube_sid; /* Dataspace ID for small cube in memory & file */ hid_t mem_large_cube_sid; /* Dataspace ID for large cube in memory */ hid_t file_large_cube_sid; /* Dataspace ID for large cube in file */ hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ hid_t small_cube_dataset; /* Dataset ID */ hid_t large_cube_dataset; /* Dataset ID */ size_t start_index; /* Offset within buffer to begin inspecting */ size_t stop_index; /* Offset within buffer to end inspecting */ uint16_t expected_value; /* Expected value in dataset */ uint16_t * small_cube_buf_1; /* Buffer for small cube data */ uint16_t * large_cube_buf_1; /* Buffer for large cube data */ uint16_t * ptr_1; /* Temporary pointer into cube data */ hsize_t dims[SS_DR_MAX_RANK]; /* Dataspace dimensions */ hsize_t start[SS_DR_MAX_RANK]; /* Shared hyperslab start offset */ hsize_t stride[SS_DR_MAX_RANK]; /* Shared hyperslab stride */ hsize_t count[SS_DR_MAX_RANK]; /* Shared hyperslab count */ hsize_t block[SS_DR_MAX_RANK]; /* Shared hyperslab block size */ hsize_t * start_ptr; /* Actual hyperslab start offset */ hsize_t * stride_ptr; /* Actual hyperslab stride */ hsize_t * count_ptr; /* Actual hyperslab count */ hsize_t * block_ptr; /* Actual hyperslab block size */ size_t small_cube_size; /* Number of elements in small cube */ size_t large_cube_size; /* Number of elements in large cube */ unsigned u, v, w, x; /* Local index variables */ size_t s; /* Local index variable */ htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size, chunk_edge_size)); HDassert(edge_size >= 6); HDassert(edge_size >= chunk_edge_size); HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); HDassert(small_rank > 0); HDassert(small_rank < large_rank); HDassert(large_rank <= SS_DR_MAX_RANK); /* Compute cube sizes */ small_cube_size = large_cube_size = (size_t)1; for(u = 0; u < large_rank; u++) { if(u < small_rank) small_cube_size *= (size_t)edge_size; large_cube_size *= (size_t)edge_size; } /* end for */ HDassert(large_cube_size < (size_t)UINT_MAX); /* set up the start, stride, count, and block pointers */ start_ptr = &(start[SS_DR_MAX_RANK - large_rank]); stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]); count_ptr = &(count[SS_DR_MAX_RANK - large_rank]); block_ptr = &(block[SS_DR_MAX_RANK - large_rank]); /* Allocate buffers */ small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); CHECK(small_cube_buf_1, NULL, "HDcalloc"); large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); CHECK(large_cube_buf_1, NULL, "HDcalloc"); /* Create a dataset transfer property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Use the 'core' VFD for this test */ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); CHECK(ret, FAIL, "H5Pset_fapl_core"); /* Create file */ fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); CHECK(fid1, FAIL, "H5Fcreate"); /* Close file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* setup dims: */ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size; /* Create small cube dataspaces */ small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(small_cube_sid, FAIL, "H5Screate_simple"); /* Create large cube dataspace */ mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); /* if chunk edge size is greater than zero, set up the small and * large data set creation property lists to specify chunked * datasets. */ if(chunk_edge_size > 0) { hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */ chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = (hsize_t)chunk_edge_size; small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); } /* end if */ /* create the small cube dataset */ small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default small dataset DCPL */ if(small_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(small_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* create the large cube dataset */ large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default large dataset DCPL */ if(large_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(large_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* write initial data to the on disk datasets */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read initial data from disk and verify that it is as expected. */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank); ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank); /* first, verify that we can read from disk correctly using selections * of different rank that H5S_select_shape_same() views as being of the * same shape. * * Start by reading small_rank-D slice from the on disk large cube, and * verifying that the data read is correct. Verify that H5S_select_shape_same() * returns true on the memory and file selections. */ /* set up start, stride, count, and block -- note that we will * change start[] so as to read slices of the large cube. */ for(u = 0; u < SS_DR_MAX_RANK; u++) { start[u] = 0; stride[u] = 1; count[u] = 1; if((SS_DR_MAX_RANK - u) > small_rank) block[u] = 1; else block[u] = (hsize_t)edge_size; } /* end for */ u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5S_select_shape_same() reports the two * selections as having the same shape. */ check = H5S_select_shape_same_test(small_cube_sid, file_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Read selection from disk */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that expected data is retrieved */ mis_match = FALSE; ptr_1 = small_cube_buf_1; expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); for(s = 0; s < small_cube_size; s++ ) { if(*ptr_1 != expected_value ) mis_match = TRUE; ptr_1++; expected_value++; } /* end for */ if(mis_match) TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); x++; } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* similarly, read the on disk small cube into slices through the in memory * large cube, and verify that the correct data (and only the correct data) * is read. */ /* zero out the in-memory large cube */ HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t)); u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5S_select_shape_same() reports the two * selections as having the same shape. */ check = H5S_select_shape_same_test(small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Read selection from disk */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was read. */ start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; HDassert(start_index < stop_index); HDassert(stop_index <= large_cube_size); mis_match = FALSE; ptr_1 = large_cube_buf_1; expected_value = 0; for(s = 0; s < start_index; s++) { if(*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ for(; s <= stop_index; s++) { if(*ptr_1 != expected_value) mis_match = TRUE; expected_value++; ptr_1++; } /* end for */ for(; s < large_cube_size; s++) { if(*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ if(mis_match) TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__); /* Zero out the buffer for the next pass */ HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t)); x++; } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5S_select_shape_same() views as being of the same shape. * * Start by writing small_rank D slices from the in memory large cube, to * the the on disk small cube dataset. After each write, read the small * cube dataset back from disk, and verify that it contains the expected * data. Verify that H5S_select_shape_same() returns true on the * memory and file selections. */ u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ /* zero out the on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* select the portion of the in memory large cube from which we * are going to write data. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5S_select_shape_same() reports the in * memory slice through the cube selection and the * on disk full small cube selections as having the same shape. */ check = H5S_select_shape_same_test(small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* write the slice from the in memory large cube to the on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read the on disk small cube into memory */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that expected data is retrieved */ mis_match = FALSE; ptr_1 = small_cube_buf_1; expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); for(s = 0; s < small_cube_size; s++) { if(*ptr_1 != expected_value) mis_match = TRUE; expected_value++; ptr_1++; } /* end for */ if(mis_match ) TestErrPrintf("small cube data don't match! Line=%d\n",__LINE__); x++; } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* Now write the contents of the in memory small cube to slices of * the on disk cube. After each write, read the on disk cube * into memeory, and verify that it contains the expected * data. Verify that H5S_select_shape_same() returns true on * the memory and file selections. */ /* select the entire memory and file cube dataspaces */ ret = H5Sselect_all(mem_large_cube_sid); CHECK(ret, FAIL, "H5Sselect_all"); ret = H5Sselect_all(file_large_cube_sid); CHECK(ret, FAIL, "H5Sselect_all"); u = 0; do { v = 0; do { w = 0; do { x = 0; do { /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ /* zero out the on disk cube */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, mem_large_cube_sid, file_large_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* select the portion of the in memory large cube to which we * are going to write data. */ start[0] = (hsize_t)u; start[1] = (hsize_t)v; start[2] = (hsize_t)w; start[3] = (hsize_t)x; start[4] = (hsize_t)0; ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* verify that H5S_select_shape_same() reports the in * memory full selection of the small cube and the * on disk slice through the large cube selection * as having the same shape. */ check = H5S_select_shape_same_test(small_cube_sid, file_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* write the cube from memory to the target slice of the disk cube */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read the on disk cube into memory */ ret = H5Sselect_all(file_large_cube_sid); CHECK(ret, FAIL, "H5Sselect_all"); ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was read. */ start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; HDassert(start_index < stop_index); HDassert(stop_index <= large_cube_size); mis_match = FALSE; ptr_1 = large_cube_buf_1; expected_value = 0; for(s = 0; s < start_index; s++) { if(*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ for(; s <= stop_index; s++) { if(*ptr_1 != expected_value) mis_match = TRUE; expected_value++; ptr_1++; } /* end for */ for(; s < large_cube_size; s++) { if(*ptr_1 != 0) mis_match = TRUE; ptr_1++; } /* end for */ if(mis_match) TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__); x++; } while((large_rank >= 2) && (small_rank <= 1) && (x < edge_size)); w++; } while((large_rank >= 3) && (small_rank <= 2) && (w < edge_size)); v++; } while((large_rank >= 4) && (small_rank <= 3) && (v < edge_size)); u++; } while((large_rank >= 5) && (small_rank <= 4) && (u < edge_size)); /* Close memory dataspaces */ ret = H5Sclose(small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mem_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(file_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close Datasets */ ret = H5Dclose(small_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Dclose(large_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ HDfree(small_cube_buf_1); HDfree(large_cube_buf_1); } /* test_select_hyper_contig_dr__run_test() */ /**************************************************************** ** ** test_select_hyper_contig_dr(): Test H5S (dataspace) ** selection code with contiguous source and target having ** different ranks but the same shape. We have already ** tested H5S_shape_same in isolation, so now we try to do ** I/O. ** ****************************************************************/ static void test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist) { int test_num = 0; unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ unsigned small_rank; /* Current rank of small dataset */ unsigned large_rank; /* Current rank of large dataset */ uint16_t *cube_buf; /* Buffer for writing cube data */ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ uint16_t *cube_ptr; /* Temporary pointer into cube data */ unsigned max_rank = 5; /* Max. rank to use */ size_t max_cube_size; /* Max. number of elements in largest cube */ size_t s; /* Local index variable */ unsigned u; /* Local index variable */ /* Output message about test being performed */ MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n")); /* Compute max. cube size */ max_cube_size = (size_t)1; for(u = 0; u < max_rank; u++) max_cube_size *= (size_t)edge_size; /* Allocate cube buffer for writing values */ cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); CHECK(cube_buf, NULL, "HDmalloc"); /* Initialize the cube buffer */ cube_ptr = cube_buf; for(s = 0; s < max_cube_size; s++) *cube_ptr++ = (uint16_t)s; /* Allocate cube buffer for zeroing values on disk */ zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); CHECK(zero_buf, NULL, "HDcalloc"); for(large_rank = 1; large_rank <= max_rank; large_rank++) { for(small_rank = 1; small_rank < large_rank; small_rank++) { chunk_edge_size = 0; test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; chunk_edge_size = 3; test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; } /* for loop on small rank */ } /* for loop on large rank */ HDfree(cube_buf); HDfree(zero_buf); } /* test_select_hyper_contig_dr() */ /**************************************************************** ** ** test_select_hyper_checker_board_dr__select_checker_board(): ** Given an n-cube data space with each edge of length ** edge_size, and a checker_edge_size either select a checker ** board selection of the entire cube(if sel_rank == n), ** or select a checker board selection of a ** sel_rank dimensional slice through n-cube parallel to the ** sel_rank fastest changing indices, with origin (in the ** higher indices) as indicated by the start array. ** ** Note that this function, like all its relatives, is ** hard coded to presume a maximum n-cube rank of 5. ** While this maximum is declared as a constant, increasing ** it will require extensive coding in addition to changing ** the value of the constant. ** ** JRM -- 9/9/09 ** ****************************************************************/ static void test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, unsigned tgt_n_cube_rank, unsigned edge_size, unsigned checker_edge_size, unsigned sel_rank, hsize_t sel_start[]) { hbool_t first_selection = TRUE; unsigned n_cube_offset; unsigned sel_offset; hsize_t base_count; hsize_t offset_count; hsize_t start[SS_DR_MAX_RANK]; /* Offset of hyperslab selection */ hsize_t stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */ hsize_t count[SS_DR_MAX_RANK]; /* Count of hyperslab selection */ hsize_t block[SS_DR_MAX_RANK]; /* Block size of hyperslab selection */ unsigned i, j, k, l, m; /* Local index variable */ unsigned u; /* Local index variables */ herr_t ret; /* Generic return value */ HDassert(edge_size >= 6); HDassert(0 < checker_edge_size); HDassert(checker_edge_size <= edge_size); HDassert(0 < sel_rank); HDassert(sel_rank <= tgt_n_cube_rank); HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK); sel_offset = SS_DR_MAX_RANK - sel_rank; n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank; HDassert(n_cube_offset <= sel_offset); /* First, compute the base count (which assumes start == 0 * for the associated offset) and offset_count (which * assumes start == checker_edge_size for the associated * offset). */ base_count = edge_size / (checker_edge_size * 2); if((edge_size % (checker_edge_size * 2)) > 0) base_count++; offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2); if(((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0) offset_count++; /* Now set up the stride and block arrays, and portions of the start * and count arrays that will not be altered during the selection of * the checker board. */ u = 0; while(u < n_cube_offset) { /* these values should never be used */ start[u] = 0; stride[u] = 0; count[u] = 0; block[u] = 0; u++; } /* end while */ while(u < sel_offset) { start[u] = sel_start[u]; stride[u] = 2 * edge_size; count[u] = 1; block[u] = 1; u++; } /* end while */ while(u < SS_DR_MAX_RANK) { stride[u] = 2 * checker_edge_size; block[u] = checker_edge_size; u++; } /* end while */ i = 0; do { if(0 >= sel_offset) { if(i == 0) { start[0] = 0; count[0] = base_count; } /* end if */ else { start[0] = checker_edge_size; count[0] = offset_count; } /* end else */ } /* end if */ j = 0; do { if(1 >= sel_offset) { if(j == 0 ) { start[1] = 0; count[1] = base_count; } /* end if */ else { start[1] = checker_edge_size; count[1] = offset_count; } /* end else */ } /* end if */ k = 0; do { if(2 >= sel_offset) { if(k == 0) { start[2] = 0; count[2] = base_count; } /* end if */ else { start[2] = checker_edge_size; count[2] = offset_count; } /* end else */ } /* end if */ l = 0; do { if(3 >= sel_offset) { if(l == 0) { start[3] = 0; count[3] = base_count; } /* end if */ else { start[3] = checker_edge_size; count[3] = offset_count; } /* end else */ } /* end if */ m = 0; do { if(4 >= sel_offset) { if(m == 0) { start[4] = 0; count[4] = base_count; } /* end if */ else { start[4] = checker_edge_size; count[4] = offset_count; } /* end else */ } /* end if */ if(((i + j + k + l + m) % 2) == 0) { if(first_selection) { first_selection = FALSE; ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_SET, &(start[n_cube_offset]), &(stride[n_cube_offset]), &(count[n_cube_offset]), &(block[n_cube_offset])); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end if */ else { ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_OR, &(start[n_cube_offset]), &(stride[n_cube_offset]), &(count[n_cube_offset]), &(block[n_cube_offset])); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end else */ } /* end if */ m++; } while((m <= 1) && (4 >= sel_offset)); l++; } while((l <= 1) && (3 >= sel_offset)); k++; } while((k <= 1) && (2 >= sel_offset)); j++; } while((j <= 1) && (1 >= sel_offset)); i++; } while((i <= 1) && (0 >= sel_offset)); /* Wierdness alert: * * Some how, it seems that selections can extend beyond the * boundaries of the target data space -- hence the following * code to manually clip the selection back to the data space * proper. */ for(u = 0; u < SS_DR_MAX_RANK; u++) { start[u] = 0; stride[u] = edge_size; count[u] = 1; block[u] = edge_size; } /* end for */ ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* test_select_hyper_checker_board_dr__select_checker_board() */ /**************************************************************** ** ** test_select_hyper_checker_board_dr__verify_data(): ** ** Examine the supplied buffer to see if it contains the ** expected data. Return TRUE if it does, and FALSE ** otherwise. ** ** The supplied buffer is presumed to contain the results ** of read or writing a checkerboard selection of an ** n-cube, or a checkerboard selection of an m (1 <= m < n) ** dimensional slice through an n-cube parallel to the ** fastest changing indices. ** ** It is further presumed that the buffer was zeroed before ** the read, and that the n-cube was initialize with the ** natural numbers listed in order from the origin along ** the fastest changing axis. ** ** Thus for a 10x10x10 3-cube, the value stored in location ** (x, y, z) (assuming that z is the fastest changing index ** and x the slowest) is assumed to be: ** ** (10 * 10 * x) + (10 * y) + z ** ** Thus, if the buffer contains the result of reading a ** checker board selection of a 10x10x10 3-cube, location ** (x, y, z) will contain zero if it is not in a checker, ** and 100x + 10y + z if (x, y, z) is in a checker. ** ** If the buffer contains the result of reading a 3 ** dimensional slice (parallel to the three fastest changing ** indices) through an n cube (n > 3), then the expected ** values in the buffer will be the same, save that we will ** add a constant determined by the origin of the 3-cube ** in the n-cube. ** ** Finally, the function presumes that the first element ** of the buffer resides either at the origin of either ** a selected or an unselected checker. ** ****************************************************************/ static hbool_t test_select_hyper_checker_board_dr__verify_data(uint16_t * buf_ptr, unsigned rank, unsigned edge_size, unsigned checker_edge_size, uint16_t first_expected_val, hbool_t buf_starts_in_checker) { hbool_t good_data = TRUE; hbool_t in_checker; hbool_t start_in_checker[5]; uint16_t expected_value; uint16_t * val_ptr; unsigned i, j, k, l, m; /* to track position in n-cube */ unsigned v, w, x, y, z; /* to track position in checker */ const unsigned test_max_rank = 5; /* code changes needed if this is increased */ HDassert(buf_ptr != NULL); HDassert(0 < rank); HDassert(rank <= test_max_rank); HDassert(edge_size >= 6); HDassert(0 < checker_edge_size); HDassert(checker_edge_size <= edge_size); HDassert(test_max_rank <= SS_DR_MAX_RANK); val_ptr = buf_ptr; expected_value = first_expected_val; i = 0; v = 0; start_in_checker[0] = buf_starts_in_checker; do { if(v >= checker_edge_size) { start_in_checker[0] = !start_in_checker[0]; v = 0; } /* end if */ j = 0; w = 0; start_in_checker[1] = start_in_checker[0]; do { if(w >= checker_edge_size) { start_in_checker[1] = !start_in_checker[1]; w = 0; } /* end if */ k = 0; x = 0; start_in_checker[2] = start_in_checker[1]; do { if(x >= checker_edge_size) { start_in_checker[2] = !start_in_checker[2]; x = 0; } /* end if */ l = 0; y = 0; start_in_checker[3] = start_in_checker[2]; do { if(y >= checker_edge_size) { start_in_checker[3] = ! start_in_checker[3]; y = 0; } /* end if */ m = 0; z = 0; in_checker = start_in_checker[3]; do { if(z >= checker_edge_size) { in_checker = ! in_checker; z = 0; } /* end if */ if(in_checker) { if(*val_ptr != expected_value) good_data = FALSE; } /* end if */ else { if(*val_ptr != 0) good_data = FALSE; } /* end else */ val_ptr++; expected_value++; m++; z++; } while((rank >= (test_max_rank - 4)) && (m < edge_size)); l++; y++; } while((rank >= (test_max_rank - 3)) && (l < edge_size)); k++; x++; } while((rank >= (test_max_rank - 2)) && (k < edge_size)); j++; w++; } while((rank >= (test_max_rank - 1)) && (j < edge_size)); i++; v++; } while((rank >= test_max_rank) && (i < edge_size)); return(good_data); } /* test_select_hyper_checker_board_dr__verify_data() */ /**************************************************************** ** ** test_select_hyper_checker_board_dr__run_test(): Test H5S ** (dataspace) selection code with checker board source and ** target selections having different ranks but the same ** shape. We have already tested H5S_shape_same in ** isolation, so now we try to do I/O. ** ****************************************************************/ static void test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf, unsigned edge_size, unsigned checker_edge_size, unsigned chunk_edge_size, unsigned small_rank, unsigned large_rank, hid_t dset_type, hid_t xfer_plist) { hbool_t data_ok; hbool_t start_in_checker[5]; hid_t fapl; /* File access property list */ hid_t fid; /* HDF5 File IDs */ hid_t full_small_cube_sid; /* Dataspace for small cube w/all selection */ hid_t mem_small_cube_sid; hid_t file_small_cube_sid; hid_t full_large_cube_sid; /* Dataspace for large cube w/all selection */ hid_t mem_large_cube_sid; hid_t file_large_cube_sid; hid_t small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */ hid_t large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */ hid_t small_cube_dataset; /* Dataset ID */ hid_t large_cube_dataset; /* Dataset ID */ unsigned small_rank_offset; /* Rank offset of slice */ const unsigned test_max_rank = 5; /* must update code if this changes */ size_t start_index; /* Offset within buffer to begin inspecting */ size_t stop_index; /* Offset within buffer to end inspecting */ uint16_t expected_value; uint16_t * small_cube_buf_1; uint16_t * large_cube_buf_1; uint16_t * ptr_1; size_t small_cube_size; /* Number of elements in small cube */ size_t large_cube_size; /* Number of elements in large cube */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t chunk_dims[SS_DR_MAX_RANK]; hsize_t sel_start[SS_DR_MAX_RANK]; unsigned u, v, w, x; /* Local index variables */ size_t s; /* Local index variable */ htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num)); MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n", small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size)); HDassert(edge_size >= 6); HDassert(checker_edge_size > 0); HDassert(checker_edge_size <= edge_size); HDassert(edge_size >= chunk_edge_size); HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3)); HDassert(small_rank > 0); HDassert(small_rank < large_rank); HDassert(large_rank <= test_max_rank); HDassert(test_max_rank <= SS_DR_MAX_RANK); /* Compute cube sizes */ small_cube_size = large_cube_size = (size_t)1; for(u = 0; u < large_rank; u++) { if(u < small_rank) small_cube_size *= (size_t)edge_size; large_cube_size *= (size_t)edge_size; } /* end for */ HDassert(large_cube_size < (size_t)(UINT_MAX)); small_rank_offset = test_max_rank - small_rank; HDassert(small_rank_offset >= 1); /* also, at present, we use 16 bit values in this test -- * hence the following assertion. Delete it if we convert * to 32 bit values. */ HDassert(large_cube_size < (size_t)(64 * 1024)); /* Allocate & initialize buffers */ small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size); CHECK(small_cube_buf_1, NULL, "HDcalloc"); large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size); CHECK(large_cube_buf_1, NULL, "HDcalloc"); /* Create a dataset transfer property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Use the 'core' VFD for this test */ ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE); CHECK(ret, FAIL, "H5Pset_fapl_core"); /* Create file */ fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); CHECK(fid, FAIL, "H5Fcreate"); /* Close file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* setup dims: */ dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size; /* Create small cube dataspaces */ full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(full_small_cube_sid, FAIL, "H5Screate_simple"); mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple"); file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL); CHECK(file_small_cube_sid, FAIL, "H5Screate_simple"); /* Create large cube dataspace */ full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(full_large_cube_sid, FAIL, "H5Screate_simple"); mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple"); file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL); CHECK(file_large_cube_sid, FAIL, "H5Screate_simple"); /* if chunk edge size is greater than zero, set up the small and * large data set creation property lists to specify chunked * datasets. */ if(chunk_edge_size > 0) { chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size; small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE); CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate"); ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED); CHECK(ret, FAIL, "H5Pset_layout"); ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims); CHECK(ret, FAIL, "H5Pset_chunk"); } /* end if */ /* create the small cube dataset */ small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, file_small_cube_sid, H5P_DEFAULT, small_cube_dcpl_id, H5P_DEFAULT); CHECK(small_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default small dataset DCPL */ if(small_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(small_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* create the large cube dataset */ large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT, large_cube_dcpl_id, H5P_DEFAULT); CHECK(large_cube_dataset, FAIL, "H5Dcreate2"); /* Close non-default large dataset DCPL */ if(large_cube_dcpl_id != H5P_DEFAULT) { ret = H5Pclose(large_cube_dcpl_id); CHECK(ret, FAIL, "H5Pclose"); } /* end if */ /* write initial data to the on disk datasets */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* read initial small cube data from disk and verify that it is as expected. */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank); /* read initial large cube data from disk and verify that it is as expected. */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* Check that the data is valid */ verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank); /* first, verify that we can read from disk correctly using selections * of different rank that H5S_select_shape_same() views as being of the * same shape. * * Start by reading small_rank-D slice from the on disk large cube, and * verifying that the data read is correct. Verify that H5S_select_shape_same() * returns true on the memory and file selections. * * The first step is to set up the needed checker board selection in the * in memory small small cube */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); /* now read slices from the large, on-disk cube into the small cube. * Note how we adjust sel_start only in the dimensions peculiar to the * large cube. */ start_in_checker[0] = TRUE; u = 0; do { if(small_rank_offset > 0) sel_start[0] = u; v = 0; do { if(small_rank_offset > 1) sel_start[1] = v; w = 0; do { if(small_rank_offset > 2) sel_start[2] = w; x = 0; do { if(small_rank_offset > 3) sel_start[3] = x; /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board ( file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start ); /* verify that H5S_select_shape_same() reports the two * selections as having the same shape. */ check = H5S_select_shape_same_test(mem_small_cube_sid, file_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* zero the buffer that we will be using for reading */ HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); /* Read selection from disk */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid, file_large_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); expected_value = (uint16_t) ((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); data_ok = test_select_hyper_checker_board_dr__verify_data ( small_cube_buf_1, small_rank, edge_size, checker_edge_size, expected_value, (hbool_t)TRUE ); if(!data_ok) TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); x++; } while((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* similarly, read the on disk small cube into slices through the in memory * large cube, and verify that the correct data (and only the correct data) * is read. */ /* select a checker board in the file small cube dataspace */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); start_in_checker[0] = TRUE; u = 0; do { if(0 < small_rank_offset) sel_start[0] = u; v = 0; do { if(1 < small_rank_offset) sel_start[1] = v; w = 0; do { if(2 < small_rank_offset) sel_start[2] = w; x = 0; do { if(3 < small_rank_offset) sel_start[3] = x; /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board ( mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start ); /* verify that H5S_select_shape_same() reports the two * selections as having the same shape. */ check = H5S_select_shape_same_test(file_small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* zero out the in memory large cube */ HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); /* Read selection from disk */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_small_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was read. */ data_ok = TRUE; ptr_1 = large_cube_buf_1; expected_value = 0; start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; HDassert( start_index < stop_index ); HDassert( stop_index <= large_cube_size ); /* verify that the large cube contains only zeros before the slice */ for(s = 0; s < start_index; s++) { if(*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ HDassert(s == start_index); data_ok &= test_select_hyper_checker_board_dr__verify_data ( ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE ); ptr_1 += small_cube_size; s += small_cube_size; HDassert(s == stop_index + 1); /* verify that the large cube contains only zeros after the slice */ for(s = stop_index + 1; s < large_cube_size; s++) { if(*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ if(!data_ok) TestErrPrintf("large cube read from small cube has bad data! Line=%d\n",__LINE__); x++; } while((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* now we go in the opposite direction, verifying that we can write * from memory to file using selections of different rank that * H5S_select_shape_same() views as being of the same shape. * * Start by writing small_rank D slices from the in memory large cube, to * the the on disk small cube dataset. After each write, read the small * cube dataset back from disk, and verify that it contains the expected * data. Verify that H5S_select_shape_same() returns true on the * memory and file selections. */ /* select a checker board in the file small cube dataspace */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); start_in_checker[0] = TRUE; u = 0; do { if(small_rank_offset > 0) sel_start[0] = u; v = 0; do { if(small_rank_offset > 1) sel_start[1] = v; w = 0; do { if(small_rank_offset > 2) sel_start[2] = w; x = 0; do { if(small_rank_offset > 3) sel_start[3] = x; /* zero out the on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board ( mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start ); /* verify that H5S_select_shape_same() reports the two * selections as having the same shape. */ check = H5S_select_shape_same_test(file_small_cube_sid, mem_large_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* write the slice from the in memory large cube to the * on disk small cube */ ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_small_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* zero the buffer that we will be using for reading */ HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size); /* read the on disk small cube into memory */ ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist, small_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); expected_value = (uint16_t) ((u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size)); data_ok = test_select_hyper_checker_board_dr__verify_data ( small_cube_buf_1, small_rank, edge_size, checker_edge_size, expected_value, (hbool_t)TRUE ); if(!data_ok) TestErrPrintf("small cube read from largecube has bad data! Line=%d\n",__LINE__); x++; } while((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* Now write checker board selections of the entries in memory * small cube to slices of the on disk cube. After each write, * read the on disk large cube * into memeory, and verify that * it contains the expected * data. Verify that * H5S_select_shape_same() returns true on the memory and file * selections. */ /* select a checker board in the in memory small cube dataspace */ sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0; test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size, checker_edge_size, small_rank, sel_start); start_in_checker[0] = TRUE; u = 0; do { if(small_rank_offset > 0) sel_start[0] = u; v = 0; do { if(small_rank_offset > 1) sel_start[1] = v; w = 0; do { if(small_rank_offset > 2) sel_start[2] = w; x = 0; do { if(small_rank_offset > 3) sel_start[3] = x; /* zero out the on disk cube */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, full_large_cube_sid, full_large_cube_sid, xfer_plist, zero_buf); CHECK(ret, FAIL, "H5Dwrite"); /* we know that small_rank >= 1 and that large_rank > small_rank * by the assertions at the head of this function. Thus no * need for another inner loop. */ HDassert((sel_start[0] == 0) || (0 < small_rank_offset)); HDassert((sel_start[1] == 0) || (1 < small_rank_offset)); HDassert((sel_start[2] == 0) || (2 < small_rank_offset)); HDassert((sel_start[3] == 0) || (3 < small_rank_offset)); HDassert((sel_start[4] == 0) || (4 < small_rank_offset)); test_select_hyper_checker_board_dr__select_checker_board ( file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start ); /* verify that H5S_select_shape_same() reports the two * selections as having the same shape. */ check = H5S_select_shape_same_test(file_large_cube_sid, mem_small_cube_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* write the checker board selection of the in memory * small cube to a slice through the on disk large * cube. */ ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid, file_large_cube_sid, xfer_plist, cube_buf); CHECK(ret, FAIL, "H5Dwrite"); /* zero out the in memory large cube */ HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size); /* read the on disk large cube into memory */ ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist, large_cube_buf_1); CHECK(ret, FAIL, "H5Dread"); /* verify that the expected data and only the * expected data was written to the on disk large * cube. */ data_ok = TRUE; ptr_1 = large_cube_buf_1; expected_value = 0; start_index = (u * edge_size * edge_size * edge_size * edge_size) + (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) + (x * edge_size); stop_index = start_index + small_cube_size - 1; HDassert( start_index < stop_index ); HDassert( stop_index <= large_cube_size ); /* verify that the large cube contains only zeros before the slice */ for(s = 0; s < start_index; s++) { if(*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ HDassert(s == start_index); /* verify that the slice contains the expected data */ data_ok &= test_select_hyper_checker_board_dr__verify_data ( ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE ); ptr_1 += small_cube_size; s += small_cube_size; HDassert(s == stop_index + 1); /* verify that the large cube contains only zeros after the slice */ for(s = stop_index + 1; s < large_cube_size; s++) { if(*ptr_1 != 0) data_ok = FALSE; ptr_1++; } /* end for */ if(!data_ok) TestErrPrintf("large cube written from small cube has bad data! Line=%d\n",__LINE__); x++; } while((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) && (x < edge_size)); w++; } while((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) && (w < edge_size)); v++; } while((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) && (v < edge_size)); u++; } while((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size)); /* Close memory dataspaces */ ret = H5Sclose(full_small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(full_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mem_small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(mem_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(file_small_cube_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(file_large_cube_sid); CHECK(ret, FAIL, "H5Sclose"); /* Close Datasets */ ret = H5Dclose(small_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); ret = H5Dclose(large_cube_dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ HDfree(small_cube_buf_1); HDfree(large_cube_buf_1); } /* test_select_hyper_checker_board_dr__run_test() */ /**************************************************************** ** ** test_select_hyper_checker_board_dr(): Test H5S (dataspace) ** selection code with checkerboard source and target having ** different ranks but the same shape. We have already ** tested H5S_shape_same in isolation, so now we try to do ** I/O. ** ** This is just an initial smoke check, so we will work ** with a slice through a cube only. ** ****************************************************************/ static void test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist) { uint16_t *cube_buf; /* Buffer for writing cube data */ uint16_t *cube_ptr; /* Temporary pointer into cube data */ uint16_t *zero_buf; /* Buffer for writing zeroed cube data */ int test_num = 0; unsigned checker_edge_size = 2; /* Size of checkerboard dimension */ unsigned chunk_edge_size; /* Size of chunk's dataspace dimensions */ unsigned edge_size = 6; /* Size of dataset's dataspace dimensions */ unsigned small_rank; /* Current rank of small dataset */ unsigned large_rank; /* Current rank of large dataset */ unsigned max_rank = 5; /* Max. rank to use */ size_t max_cube_size; /* Max. number of elements in largest cube */ size_t s; /* Local index variable */ unsigned u; /* Local index variable */ /* Output message about test being performed */ MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n")); /* Compute max. cube size */ max_cube_size = (size_t)1; for(u = 0; u < max_rank; u++) max_cube_size *= (size_t)(edge_size + 1); /* Allocate cube buffer for writing values */ cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size); CHECK(cube_buf, NULL, "HDmalloc"); /* Initialize the cube buffer */ cube_ptr = cube_buf; for(s = 0; s < max_cube_size; s++) *cube_ptr++ = (uint16_t)s; /* Allocate cube buffer for zeroing values on disk */ zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size); CHECK(zero_buf, NULL, "HDcalloc"); for(large_rank = 1; large_rank <= max_rank; large_rank++) { for(small_rank = 1; small_rank < large_rank; small_rank++) { chunk_edge_size = 0; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; chunk_edge_size = 3; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1, checker_edge_size, chunk_edge_size, small_rank, large_rank, dset_type, xfer_plist); test_num++; } /* for loop on small rank */ } /* for loop on large rank */ HDfree(cube_buf); HDfree(zero_buf); } /* test_select_hyper_checker_board_dr() */ /**************************************************************** ** ** test_select_hyper_copy(): Test H5S (dataspace) selection code. ** Tests copying hyperslab selections ** ****************************************************************/ static void test_select_hyper_copy(void) { hid_t fid1; /* HDF5 File IDs */ hid_t data1,data2; /* Dataset IDs */ hid_t sid1,sid2,sid3; /* Dataspace IDs */ hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3}; hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2}; hsize_t start[SPACE1_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE1_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE1_RANK]; /* Block size of hyperslab */ uint16_t *wbuf, /* buffer to write to disk */ *rbuf, /* 1st buffer read from disk */ *rbuf2, /* 2nd buffer read from disk */ *tbuf; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n")); /* Allocate write & read buffers */ wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2)); CHECK(rbuf2, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i=5 && i<=9) && (j>=5 && j<=9)) { if(*tbuf!=*tbuf2) printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2); tbuf2++; } /* end if */ else { if(*tbuf!=0) printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_and_2d() */ /**************************************************************** ** ** test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code. ** Tests 'xor' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_xor_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i=0 && i<=4) && (j>=0 && j<=9)) || ((i>=5 && i<=9) && ((j>=0 && j<=4) || (j>=10 && j<=14))) || ((i>=10 && i<=14) && (j>=5 && j<=14))) { if(*tbuf!=*tbuf2) printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2); tbuf2++; } /* end if */ else { if(*tbuf!=0) printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_xor_2d() */ /**************************************************************** ** ** test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code. ** Tests 'notb' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_notb_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i=0 && i<=4) && (j>=0 && j<=9)) || ((i>=5 && i<=9) && (j>=0 && j<=4))) { if(*tbuf!=*tbuf2) printf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2); tbuf2++; } /* end if */ else { if(*tbuf!=0) printf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ free(wbuf); free(rbuf); } /* test_select_hyper_notb_2d() */ /**************************************************************** ** ** test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code. ** Tests 'nota' of hyperslabs in 2-D ** ****************************************************************/ static void test_select_hyper_nota_2d(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE2_DIM1, SPACE2_DIM2}; hsize_t dims2[] = {SPACE2A_DIM1}; hsize_t start[SPACE2_RANK]; /* Starting location of hyperslab */ hsize_t stride[SPACE2_RANK]; /* Stride of hyperslab */ hsize_t count[SPACE2_RANK]; /* Element count of hyperslab */ hsize_t block[SPACE2_RANK]; /* Block size of hyperslab */ uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer read from disk */ *tbuf, /* temporary buffer pointer */ *tbuf2; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ hssize_t npoints; /* Number of elements in selection */ /* Output message about test being performed */ MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2)); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i=10 && i<=14) && (j>=5 && j<=14)) || ((i>=5 && i<=9) && (j>=10 && j<=14))) { if(*tbuf!=*tbuf2) TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",__LINE__,i,j,(int)*tbuf,(int)*tbuf2); tbuf2++; } /* end if */ else { if(*tbuf!=0) TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n",__LINE__,i,j,(int)*tbuf); } /* end else */ } /* end for */ /* Close memory dataspace */ ret = H5Sclose(sid2); CHECK(ret, FAIL, "H5Sclose"); /* Close disk dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Close Dataset */ ret = H5Dclose(dataset); CHECK(ret, FAIL, "H5Dclose"); /* Close file */ ret = H5Fclose(fid1); CHECK(ret, FAIL, "H5Fclose"); /* Free memory buffers */ HDfree(wbuf); HDfree(rbuf); } /* test_select_hyper_nota_2d() */ /**************************************************************** ** ** test_select_hyper_iter2(): Iterator for checking hyperslab iteration ** ****************************************************************/ static herr_t test_select_hyper_iter2(void *_elem, hid_t UNUSED type_id, unsigned ndim, const hsize_t *point, void *_operator_data) { int *tbuf=(int *)_elem, /* temporary buffer pointer */ **tbuf2=(int **)_operator_data; /* temporary buffer handle */ unsigned u; /* Local counting variable */ if(*tbuf!=**tbuf2) { TestErrPrintf("Error in hyperslab iteration!\n"); printf("location: { "); for(u=0; ufill_value) return(-1); else { /* Check number of dimensions */ if(ndim != SPACE7_RANK) return(-1); else { /* Check Coordinates */ coord_ptr = iter_info->coords + (2 * iter_info->curr_coord); iter_info->curr_coord++; if(coord_ptr[0] != point[0]) return(-1); else if(coord_ptr[1] != point[1]) return(-1); else return(0); } /* end else */ } /* end else */ } /* end test_select_hyper_iter3() */ /**************************************************************** ** ** test_select_fill_all(): Test basic H5S (dataspace) selection code. ** Tests filling "all" selections ** ****************************************************************/ static void test_select_fill_all(void) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; unsigned fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ hsize_t points[SPACE7_DIM1*SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'all' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Space defaults to "all" selection */ /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) if(*tbuf != fill_value) TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value); /* Set the coordinates of the selection */ for(u = 0; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) { points[(u * SPACE7_DIM2) + v][0] = u; points[(u * SPACE7_DIM2) + v][1] = v; } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ HDfree(wbuf); } /* test_select_fill_all() */ /**************************************************************** ** ** test_select_fill_point(): Test basic H5S (dataspace) selection code. ** Tests filling "point" selections ** ****************************************************************/ static void test_select_fill_point(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t points[5][SPACE7_RANK] = {{2,4}, {3,8}, {8,4}, {7,5}, {7,7}}; size_t num_points = 5; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling 'point' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "point" selection */ ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points); CHECK(ret, FAIL, "H5Sselect_elements"); if(offset != NULL) { HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { for(w = 0; w < (unsigned)num_points; w++) { if(u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) && v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) { if(*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Add in the offset */ for(u = 0; u < (unsigned)num_points; u++) { points[u][0] = (hsize_t)(points[u][0] + real_offset[0]); points[u][1] = (hsize_t)(points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ HDfree(wbuf); } /* test_select_fill_point() */ /**************************************************************** ** ** test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code. ** Tests filling "simple" (i.e. one block) hyperslab selections ** ****************************************************************/ static void test_select_fill_hyper_simple(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t count[SPACE7_RANK]; /* Hyperslab block size */ size_t num_points; /* Number of points in selection */ hsize_t points[16][SPACE7_RANK]; /* Coordinates selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ start[0] = 3; start[1] = 3; count[0] = 4; count[1] = 4; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if(offset != NULL) { HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { if((u >= (unsigned)(start[0] + real_offset[0]) && u < (unsigned)(start[0] + count[0] + real_offset[0])) && (v >= (unsigned)(start[1] + real_offset[1]) && v < (unsigned)(start[1] + count[1] + real_offset[1]))) { if(*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); } /* end if */ else { if(*tbuf != ((unsigned)(u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end else */ } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Set the coordinates of the selection (with the offset) */ for(u = 0, num_points = 0; u < (unsigned)count[0]; u++) for(v = 0; v < (unsigned)count[1]; v++, num_points++) { points[num_points][0] = (hsize_t)(u + start[0] + real_offset[0]); points[num_points][1] = (hsize_t)(v + start[1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ HDfree(wbuf); } /* test_select_fill_hyper_simple() */ /**************************************************************** ** ** test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code. ** Tests filling "regular" (i.e. strided block) hyperslab selections ** ****************************************************************/ static void test_select_fill_hyper_regular(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t stride[SPACE7_RANK]; /* Hyperslab stride size */ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ hsize_t block[SPACE7_RANK]; /* Hyperslab block size */ hsize_t points[16][SPACE7_RANK] = { {2,2}, {2,3}, {2,6}, {2,7}, {3,2}, {3,3}, {3,6}, {3,7}, {6,2}, {6,3}, {6,6}, {6,7}, {7,2}, {7,3}, {7,6}, {7,7}, }; size_t num_points=16; /* Number of points selected */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) *tbuf++ =(u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select "hyperslab" selection */ start[0] = 2; start[1] = 2; stride[0] = 4; stride[1] = 4; count[0] = 2; count[1] = 2; block[0] = 2; block[1] = 2; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if(offset != NULL) { HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { for(w = 0; w < (unsigned)num_points; w++) { if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) { if(*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)points; /* Add in the offset */ for(u = 0; u < (unsigned)num_points; u++) { points[u][0] = (hsize_t)(points[u][0] + real_offset[0]); points[u][1] = (hsize_t)(points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ HDfree(wbuf); } /* test_select_fill_hyper_regular() */ /**************************************************************** ** ** test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code. ** Tests filling "irregular" (i.e. combined blocks) hyperslab selections ** ****************************************************************/ static void test_select_fill_hyper_irregular(hssize_t *offset) { hid_t sid1; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */ hsize_t start[SPACE7_RANK]; /* Hyperslab start */ hsize_t count[SPACE7_RANK]; /* Hyperslab block count */ hsize_t points[32][SPACE7_RANK] = { /* Yes, some of the are duplicated.. */ {2,2}, {2,3}, {2,4}, {2,5}, {3,2}, {3,3}, {3,4}, {3,5}, {4,2}, {4,3}, {4,4}, {4,5}, {5,2}, {5,3}, {5,4}, {5,5}, {4,4}, {4,5}, {4,6}, {4,7}, {5,4}, {5,5}, {5,6}, {5,7}, {6,4}, {6,5}, {6,6}, {6,7}, {7,4}, {7,5}, {7,6}, {7,7}, }; hsize_t iter_points[28][SPACE7_RANK] = { /* Coordinates, as iterated through */ {2,2}, {2,3}, {2,4}, {2,5}, {3,2}, {3,3}, {3,4}, {3,5}, {4,2}, {4,3}, {4,4}, {4,5}, {4,6}, {4,7}, {5,2}, {5,3}, {5,4}, {5,5}, {5,6}, {5,7}, {6,4}, {6,5}, {6,6}, {6,7}, {7,4}, {7,5}, {7,6}, {7,7}, }; size_t num_points = 32; /* Number of points selected */ size_t num_iter_points = 28; /* Number of resulting points */ int fill_value; /* Fill value */ fill_iter_info iter_info; /* Iterator information structure */ unsigned *wbuf, /* buffer to write to disk */ *tbuf; /* temporary buffer pointer */ unsigned u, v, w; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n")); /* Allocate memory buffer */ wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); /* Initialize memory buffer */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++) *tbuf++ = (u * SPACE7_DIM2) + v; /* Create dataspace for dataset on disk */ sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL); CHECK(sid1, FAIL, "H5Screate_simple"); /* Select first "hyperslab" selection */ start[0] = 2; start[1] = 2; count[0] = 4; count[1] = 4; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Combine with second "hyperslab" selection */ start[0] = 4; start[1] = 4; count[0] = 4; count[1] = 4; ret = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL); CHECK(ret, FAIL, "H5Sselect_hyperslab"); if(offset != NULL) { HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t)); /* Set offset, if provided */ ret = H5Soffset_simple(sid1, real_offset); CHECK(ret, FAIL, "H5Soffset_simple"); } /* end if */ else HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t)); /* Set fill value */ fill_value = SPACE7_FILL; /* Fill selection in memory */ ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1); CHECK(ret, FAIL, "H5Dfill"); /* Verify memory buffer the hard way... */ for(u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++) for(v = 0; v < SPACE7_DIM2; v++, tbuf++) { for(w = 0; w < (unsigned)num_points; w++) { if(u == (unsigned)(points[w][0] + real_offset[0]) && v == (unsigned)(points[w][1] + real_offset[1])) { if(*tbuf != (unsigned)fill_value) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, (unsigned)fill_value); break; } /* end if */ } /* end for */ if(w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v)) TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf, ((u * SPACE7_DIM2) + v)); } /* end for */ /* Initialize the iterator structure */ iter_info.fill_value = SPACE7_FILL; iter_info.curr_coord = 0; iter_info.coords = (hsize_t *)iter_points; /* Add in the offset */ for(u = 0; u < (unsigned)num_iter_points; u++) { iter_points[u][0] = (hsize_t)(iter_points[u][0] + real_offset[0]); iter_points[u][1] = (hsize_t)(iter_points[u][1] + real_offset[1]); } /* end for */ /* Iterate through selection, verifying correct data */ ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info); CHECK(ret, FAIL, "H5Diterate"); /* Close dataspace */ ret = H5Sclose(sid1); CHECK(ret, FAIL, "H5Sclose"); /* Free memory buffers */ HDfree(wbuf); } /* test_select_fill_hyper_irregular() */ /**************************************************************** ** ** test_select_none(): Test basic H5S (dataspace) selection code. ** Tests I/O on 0-sized point selections ** ****************************************************************/ static void test_select_none(void) { hid_t fid1; /* HDF5 File IDs */ hid_t dataset; /* Dataset ID */ hid_t sid1,sid2; /* Dataspace ID */ hsize_t dims1[] = {SPACE7_DIM1, SPACE7_DIM2}; hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2}; uint8_t *wbuf, /* buffer to write to disk */ *rbuf, /* buffer to read from disk */ *tbuf; /* temporary buffer pointer */ int i,j; /* Counters */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing I/O on 0-sized Selections\n")); /* Allocate write & read buffers */ wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE7_DIM1 * SPACE7_DIM2); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize write buffer */ for(i=0, tbuf=wbuf; i=POINT1_NPOINTS); /* Create dataspace for "all" selection */ all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(all_sid, FAIL, "H5Screate_simple"); /* Select entire extent for dataspace */ ret = H5Sselect_all(all_sid); CHECK(ret, FAIL, "H5Sselect_all"); /* Create dataspace for "none" selection */ none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(none_sid, FAIL, "H5Screate_simple"); /* Un-Select entire extent for dataspace */ ret = H5Sselect_none(none_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Create dataspace for single point selection */ single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord1[0][0] = 2; coord1[0][1] = 2; ret = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for multiple point selection */ mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(mult_pt_sid, FAIL, "H5Screate_simple"); /* Select sequence of ten points for multiple point selection */ coord2[0][0]=2; coord2[0][1]=2; coord2[1][0]=7; coord2[1][1]=2; coord2[2][0]=1; coord2[2][1]=4; coord2[3][0]=2; coord2[3][1]=6; coord2[4][0]=0; coord2[4][1]=8; coord2[5][0]=3; coord2[5][1]=2; coord2[6][0]=4; coord2[6][1]=4; coord2[7][0]=1; coord2[7][1]=0; coord2[8][0]=5; coord2[8][1]=1; coord2[9][0]=9; coord2[9][1]=3; ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2); CHECK(ret, FAIL, "H5Sselect_elements"); /* Create dataspace for single hyperslab selection */ single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_sid, FAIL, "H5Screate_simple"); /* Select 10x10 hyperslab for single hyperslab selection */ start[0]=1; start[1]=1; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=(SPACE9_DIM1-2); block[1]=(SPACE9_DIM2-2); ret = H5Sselect_hyperslab(single_hyper_sid,H5S_SELECT_SET,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for single hyperslab selection with entire extent selected */ single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple"); /* Select entire extent for hyperslab selection */ start[0]=0; start[1]=0; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=SPACE9_DIM1; block[1]=SPACE9_DIM2; ret = H5Sselect_hyperslab(single_hyper_all_sid,H5S_SELECT_SET,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for single hyperslab selection with single point selected */ single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple"); /* Select entire extent for hyperslab selection */ start[0]=2; start[1]=2; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=1; block[1]=1; ret = H5Sselect_hyperslab(single_hyper_pt_sid,H5S_SELECT_SET,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for regular hyperslab selection */ regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(regular_hyper_sid, FAIL, "H5Screate_simple"); /* Select regular, strided hyperslab selection */ start[0]=2; start[1]=2; stride[0]=2; stride[1]=2; count[0]=5; count[1]=2; block[0]=1; block[1]=1; ret = H5Sselect_hyperslab(regular_hyper_sid,H5S_SELECT_SET,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for irregular hyperslab selection */ irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple"); /* Create irregular hyperslab selection by OR'ing two blocks together */ start[0]=2; start[1]=2; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=1; block[1]=1; ret = H5Sselect_hyperslab(irreg_hyper_sid,H5S_SELECT_SET,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start[0]=4; start[1]=4; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=3; block[1]=3; ret = H5Sselect_hyperslab(irreg_hyper_sid,H5S_SELECT_OR,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create dataspace for "no" hyperslab selection */ none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(none_hyper_sid, FAIL, "H5Screate_simple"); /* Create "no" hyperslab selection by XOR'ing same blocks together */ start[0]=2; start[1]=2; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=1; block[1]=1; ret = H5Sselect_hyperslab(none_hyper_sid,H5S_SELECT_SET,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); ret = H5Sselect_hyperslab(none_hyper_sid,H5S_SELECT_XOR,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create scalar dataspace for "all" selection */ scalar_all_sid = H5Screate(H5S_SCALAR); CHECK(scalar_all_sid, FAIL, "H5Screate"); /* Create scalar dataspace for "none" selection */ scalar_none_sid = H5Screate(H5S_SCALAR); CHECK(scalar_none_sid, FAIL, "H5Screate"); /* Un-Select entire extent for dataspace */ ret = H5Sselect_none(scalar_none_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Compare "all" selection to all the selections created */ /* Compare against itself */ check=H5S_select_shape_same_test(all_sid,all_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against copy of itself */ tmp_sid=H5Scopy(all_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check=H5S_select_shape_same_test(all_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "none" selection */ check=H5S_select_shape_same_test(all_sid,none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against single point selection */ check=H5S_select_shape_same_test(all_sid,single_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against multiple point selection */ check=H5S_select_shape_same_test(all_sid,mult_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "plain" single hyperslab selection */ check=H5S_select_shape_same_test(all_sid,single_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "all" single hyperslab selection */ check=H5S_select_shape_same_test(all_sid,single_hyper_all_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against "single point" single hyperslab selection */ check=H5S_select_shape_same_test(all_sid,single_hyper_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against regular, strided hyperslab selection */ check=H5S_select_shape_same_test(all_sid,regular_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against irregular hyperslab selection */ check=H5S_select_shape_same_test(all_sid,irreg_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "no" hyperslab selection */ check=H5S_select_shape_same_test(all_sid,none_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "all" hyperslab selection */ check = H5S_select_shape_same_test(all_sid, scalar_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "none" hyperslab selection */ check = H5S_select_shape_same_test(all_sid, scalar_none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare "none" selection to all the selections created */ /* Compare against itself */ check=H5S_select_shape_same_test(none_sid,none_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against copy of itself */ tmp_sid=H5Scopy(none_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check=H5S_select_shape_same_test(none_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check=H5S_select_shape_same_test(none_sid,all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against single point selection */ check=H5S_select_shape_same_test(none_sid,single_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against multiple point selection */ check=H5S_select_shape_same_test(none_sid,mult_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "plain" single hyperslab selection */ check=H5S_select_shape_same_test(none_sid,single_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "all" single hyperslab selection */ check=H5S_select_shape_same_test(none_sid,single_hyper_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "single point" single hyperslab selection */ check=H5S_select_shape_same_test(none_sid,single_hyper_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against regular, strided hyperslab selection */ check=H5S_select_shape_same_test(none_sid,regular_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against irregular hyperslab selection */ check=H5S_select_shape_same_test(none_sid,irreg_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "no" hyperslab selection */ check=H5S_select_shape_same_test(none_sid,none_hyper_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against scalar "all" hyperslab selection */ check = H5S_select_shape_same_test(none_sid, scalar_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "none" hyperslab selection */ check = H5S_select_shape_same_test(none_sid, scalar_none_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare single point selection to all the selections created */ /* Compare against itself */ check=H5S_select_shape_same_test(single_pt_sid,single_pt_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against copy of itself */ tmp_sid=H5Scopy(single_pt_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check=H5S_select_shape_same_test(single_pt_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check=H5S_select_shape_same_test(single_pt_sid,all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "none" selection */ check=H5S_select_shape_same_test(single_pt_sid,none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against multiple point selection */ check=H5S_select_shape_same_test(single_pt_sid,mult_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "plain" single hyperslab selection */ check=H5S_select_shape_same_test(single_pt_sid,single_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "all" single hyperslab selection */ check=H5S_select_shape_same_test(single_pt_sid,single_hyper_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "single point" single hyperslab selection */ check=H5S_select_shape_same_test(single_pt_sid,single_hyper_pt_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against regular, strided hyperslab selection */ check=H5S_select_shape_same_test(single_pt_sid,regular_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against irregular hyperslab selection */ check=H5S_select_shape_same_test(single_pt_sid,irreg_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "no" hyperslab selection */ check=H5S_select_shape_same_test(single_pt_sid,none_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "all" hyperslab selection */ check = H5S_select_shape_same_test(single_pt_sid, scalar_all_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against scalar "none" hyperslab selection */ check = H5S_select_shape_same_test(single_pt_sid, scalar_none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare multiple point selection to all the selections created */ /* Compare against itself */ check=H5S_select_shape_same_test(mult_pt_sid,mult_pt_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against copy of itself */ tmp_sid=H5Scopy(mult_pt_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check=H5S_select_shape_same_test(mult_pt_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check=H5S_select_shape_same_test(mult_pt_sid,all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "none" selection */ check=H5S_select_shape_same_test(mult_pt_sid,none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against single point selection */ check=H5S_select_shape_same_test(mult_pt_sid,single_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "plain" single hyperslab selection */ check=H5S_select_shape_same_test(mult_pt_sid,single_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "all" single hyperslab selection */ check=H5S_select_shape_same_test(mult_pt_sid,single_hyper_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "single point" single hyperslab selection */ check=H5S_select_shape_same_test(mult_pt_sid,single_hyper_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against regular, strided hyperslab selection */ check=H5S_select_shape_same_test(mult_pt_sid,regular_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against irregular hyperslab selection */ check=H5S_select_shape_same_test(mult_pt_sid,irreg_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "no" hyperslab selection */ check=H5S_select_shape_same_test(mult_pt_sid,none_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "all" hyperslab selection */ check = H5S_select_shape_same_test(mult_pt_sid, scalar_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "none" hyperslab selection */ check = H5S_select_shape_same_test(mult_pt_sid, scalar_none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare single "normal" hyperslab selection to all the selections created */ /* Compare against itself */ check=H5S_select_shape_same_test(single_hyper_sid,single_hyper_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against copy of itself */ tmp_sid=H5Scopy(single_hyper_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check=H5S_select_shape_same_test(single_hyper_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check=H5S_select_shape_same_test(single_hyper_sid,all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "none" selection */ check=H5S_select_shape_same_test(single_hyper_sid,none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against single point selection */ check=H5S_select_shape_same_test(single_hyper_sid,single_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against multiple point selection */ check=H5S_select_shape_same_test(single_hyper_sid,mult_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "all" single hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,single_hyper_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "single point" single hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,single_hyper_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against regular, strided hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,regular_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against irregular hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,irreg_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "no" hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,none_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); #ifdef NOT_YET /* In theory, these two selections are the same shape, but the * H5S_select_shape_same() routine is just not this sophisticated yet and it * would take too much effort to make this work. The worst case is that the * non-optimized chunk mapping routines will be invoked instead of the more * optimized routines, so this only hurts performance, not correctness */ /* Construct point selection which matches "plain" hyperslab selection */ /* Create dataspace for point selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Select sequence of points for point selection */ for(u=1; u<(SPACE9_DIM1-1); u++) { for(v=1; v<(SPACE9_DIM2-1); v++) { coord2[v-1][0]=u; coord2[v-1][1]=v; } /* end for */ ret = H5Sselect_elements(tmp_sid,H5S_SELECT_APPEND,(SPACE9_DIM2-2),coord2); CHECK(ret, FAIL, "H5Sselect_elements"); } /* end for */ /* Compare against hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); #endif /* NOT_YET */ /* Construct hyperslab selection which matches "plain" hyperslab selection */ /* Create dataspace for hyperslab selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Un-select entire extent */ ret = H5Sselect_none(tmp_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Select sequence of rows for hyperslab selection */ for(u=1; u<(SPACE9_DIM1-1); u++) { start[0]=u; start[1]=1; stride[0]=1; stride[1]=1; count[0]=1; count[1]=1; block[0]=1; block[1]=(SPACE9_DIM2-2); ret = H5Sselect_hyperslab(tmp_sid,H5S_SELECT_OR,start,stride,count,block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* Compare against hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against scalar "all" hyperslab selection */ check = H5S_select_shape_same_test(single_hyper_sid, scalar_all_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against scalar "none" hyperslab selection */ check = H5S_select_shape_same_test(single_hyper_sid, scalar_none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare single "all" hyperslab selection to all the selections created */ /* Compare against itself */ check=H5S_select_shape_same_test(single_hyper_all_sid,single_hyper_all_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against copy of itself */ tmp_sid=H5Scopy(single_hyper_all_sid); CHECK(tmp_sid, FAIL, "H5Scopy"); check=H5S_select_shape_same_test(single_hyper_all_sid,tmp_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); ret = H5Sclose(tmp_sid); CHECK(ret, FAIL, "H5Sclose"); /* Compare against "all" selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,all_sid); VERIFY(check, TRUE, "H5S_select_shape_same_test"); /* Compare against "none" selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,none_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against single point selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,single_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against multiple point selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,mult_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "plain" single hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,single_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "single point" single hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,single_hyper_pt_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against regular, strided hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,regular_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against irregular hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,irreg_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); /* Compare against "no" hyperslab selection */ check=H5S_select_shape_same_test(single_hyper_all_sid,none_hyper_sid); VERIFY(check, FALSE, "H5S_select_shape_same_test"); #ifdef NOT_YET /* In theory, these two selections are the same shape, but the * H5S_select_shape_same() routine is just not this sophisticated yet and it * would take too much effort to make this work. The worst case is that the * non-optimized chunk mapping routines will be invoked instead of the more * optimized routines, so this only hurts performance, not correctness */ /* Construct point selection which matches "all" hyperslab selection */ /* Create dataspace for point selection */ tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL); CHECK(tmp_sid, FAIL, "H5Screate_simple"); /* Select sequence of points for point selection */ for(u=0; u n) in a call to H5S_select_shape_same(). ** Note that this test does not require the n-cube and the ** n-dimensional slice to have the same rank (although ** H5S_select_shape_same() should always return FALSE if ** they don't). ** ** Per Quincey's suggestion, only test up to 5 dimensional ** spaces. ** ****************************************************************/ static void test_shape_same_dr__full_space_vs_slice(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size, hbool_t dim_selected[], hbool_t expected_result) { char test_desc_0[128]; char test_desc_1[128]; int i; hid_t n_cube_0_sid; /* the fully selected hyper cube */ hid_t n_cube_1_sid; /* the hyper cube in which a slice is selected */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t start[SS_DR_MAX_RANK]; hsize_t * start_ptr; hsize_t stride[SS_DR_MAX_RANK]; hsize_t * stride_ptr; hsize_t count[SS_DR_MAX_RANK]; hsize_t * count_ptr; hsize_t block[SS_DR_MAX_RANK]; hsize_t * block_ptr; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ HDassert( 0 < small_rank ); HDassert( small_rank <= large_rank ); HDassert( large_rank <= SS_DR_MAX_RANK ); HDassert( 0 <= offset ); HDassert( offset < large_rank ); HDassert( edge_size > 0 ); HDassert( edge_size <= 1000 ); sprintf(test_desc_0, "\tn-cube slice through m-cube (n <= m) test %d.\n", test_num); MESSAGE(7, (test_desc_0)); /* This statement must be updated if SS_DR_MAX_RANK is changed */ sprintf(test_desc_1, "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", small_rank, large_rank, offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4]); MESSAGE(7, (test_desc_1)); /* copy the edge size into the dims array */ for(i = 0; i < SS_DR_MAX_RANK; i++) dims[i] = edge_size; /* Create the small n-cube */ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); /* Create the large n-cube */ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); /* set up start, stride, count, and block for the hyperslab selection */ for(i = 0; i < SS_DR_MAX_RANK; i++) { stride[i] = 2 * edge_size; /* a bit silly in this case */ count[i] = 1; if(dim_selected[i]) { start[i] = 0; block[i] = edge_size; } /* end if */ else { start[i] = (hsize_t)offset; block[i] = 1; } /* end else */ } /* end for */ /* since large rank may be less than SS_DR_MAX_RANK, we may not * use the entire start, stride, count, and block arrays. This * is a problem, since it is inconvenient to set up the dim_selected * array to reflect the large rank, and thus if large_rank < * SS_DR_MAX_RANK, we need to hide the lower index entries * from H5Sselect_hyperslab(). * * Do this by setting up pointers to the first valid entry in start, * stride, count, and block below, and pass these pointers in * to H5Sselect_hyperslab() instead of the array base addresses. */ i = SS_DR_MAX_RANK - large_rank; HDassert(i >= 0); start_ptr = &(start[i]); stride_ptr = &(stride[i]); count_ptr = &(count[i]); block_ptr = &(block[i]); /* select the hyper slab */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the test: */ check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); VERIFY(check, expected_result, "test_shape_same_dr__full_space_vs_slice"); /* Close dataspaces */ ret = H5Sclose(n_cube_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(n_cube_1_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__full_space_vs_slice() */ /**************************************************************** ** ** test_shape_same_dr__run_full_space_vs_slice_tests(): ** ** Run the est_shape_same_dr__full_space_vs_slice() test ** over a variety of ranks and offsets. ** ** At present, we test H5S_select_shape_same() with ** fully selected 1, 2, 3, and 4 cubes as one parameter, and ** 1, 2, 3, and 4 dimensional slices through a n-cube of rank ** no more than 5 (and at least the rank of the slice). ** We stop at rank 5, as Quincey suggested that it would be ** sufficient. ** ** All the n-cubes will have lengths of the same size, so ** H5S_select_shape_same() should return true iff: ** ** 1) the rank for the fully selected n cube equals the ** number of dimensions selected in the slice through the ** m-cube (m >= n). ** ** 2) The dimensions selected in the slice through the m-cube ** are the dimesnions with the most quickly changing ** indices. ** ****************************************************************/ static void test_shape_same_dr__run_full_space_vs_slice_tests(void) { hbool_t dim_selected[5]; hbool_t expected_result; int i, j; int v, w, x, y, z; int test_num = 0; int small_rank; int large_rank; hsize_t edge_size = 10; for(large_rank = 1; large_rank <= 5; large_rank++) { for(small_rank = 1; small_rank <= large_rank; small_rank++) { v = 0; do { if(v == 0) dim_selected[0] = FALSE; else dim_selected[0] = TRUE; w = 0; do { if(w == 0) dim_selected[1] = FALSE; else dim_selected[1] = TRUE; x = 0; do { if(x == 0) dim_selected[2] = FALSE; else dim_selected[2] = TRUE; y = 0; do { if(y == 0) dim_selected[3] = FALSE; else dim_selected[3] = TRUE; z = 0; do { if(z == 0) dim_selected[4] = FALSE; else dim_selected[4] = TRUE; /* compute the expected result: */ i = 0; j = 4; expected_result = TRUE; while((i < small_rank) && expected_result) { if(!dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ while((i < large_rank) && expected_result) { if(dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ /* everything is set up -- run the tests */ test_shape_same_dr__full_space_vs_slice ( test_num++, small_rank, large_rank, 0, edge_size, dim_selected, expected_result ); test_shape_same_dr__full_space_vs_slice ( test_num++, small_rank, large_rank, large_rank / 2, edge_size, dim_selected, expected_result ); test_shape_same_dr__full_space_vs_slice ( test_num++, small_rank, large_rank, large_rank - 1, edge_size, dim_selected, expected_result ); z++; } while((z < 2) && (large_rank >= 1)); y++; } while((y < 2) && (large_rank >= 2)); x++; } while((x < 2) && (large_rank >= 3)); w++; } while((w < 2) && (large_rank >= 4)); v++; } while((v < 2) && (large_rank >= 5)); } /* end for */ } /* end for */ } /* test_shape_same_dr__run_full_space_vs_slice_tests() */ /**************************************************************** ** ** test_shape_same_dr__checkerboard(): Tests selection of a ** "checker board" subset of a full n-cube data space vs ** a "checker board" n-dimensional slice of an m-cube (m > n). ** in a call to H5S_select_shape_same(). ** ** Note that this test does not require the n-cube and the ** n-dimensional slice to have the same rank (although ** H5S_select_shape_same() should always return FALSE if ** they don't). ** ** Per Quincey's suggestion, only test up to 5 dimensional ** spaces. ** ****************************************************************/ static void test_shape_same_dr__checkerboard(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size, hsize_t checker_size, hbool_t dim_selected[], hbool_t expected_result) { char test_desc_0[128]; char test_desc_1[128]; int i; int dims_selected = 0; hid_t n_cube_0_sid; /* the checker board selected * hyper cube */ hid_t n_cube_1_sid; /* the hyper cube in which a * checkerboard slice is selected */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t base_start[2]; hsize_t start[SS_DR_MAX_RANK]; hsize_t * start_ptr; hsize_t base_stride[2]; hsize_t stride[SS_DR_MAX_RANK]; hsize_t * stride_ptr; hsize_t base_count[2]; hsize_t count[SS_DR_MAX_RANK]; hsize_t * count_ptr; hsize_t base_block[2]; hsize_t block[SS_DR_MAX_RANK]; hsize_t * block_ptr; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ HDassert( 0 < small_rank ); HDassert( small_rank <= large_rank ); HDassert( large_rank <= SS_DR_MAX_RANK ); HDassert( 0 < checker_size ); HDassert( checker_size <= edge_size ); HDassert( edge_size <= 1000 ); HDassert( 0 <= offset ); HDassert( offset < (int)edge_size ); for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) if(dim_selected[i] == TRUE) dims_selected++; HDassert( dims_selected >= 0 ); HDassert( dims_selected <= large_rank ); sprintf(test_desc_0, "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", test_num); MESSAGE(7, (test_desc_0)); /* This statement must be updated if SS_DR_MAX_RANK is changed */ sprintf(test_desc_1, "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank, large_rank, (int)edge_size, (int)checker_size, offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4], dims_selected); MESSAGE(7, (test_desc_1)); /* copy the edge size into the dims array */ for(i = 0; i < SS_DR_MAX_RANK; i++) dims[i] = edge_size; /* Create the small n-cube */ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); /* Select a "checkerboard" pattern in the small n-cube. * * In the 1-D case, the "checkerboard" would look like this: * * * * - - * * - - * * * * and in the 2-D case, it would look like this: * * * * - - * * - - * * * * * - - * * - - * * * - - * * - - * * - - * - - * * - - * * - - * * * - - * * - - * * * * * - - * * - - * * * - - * * - - * * - - * - - * * - - * * - - * * * - - * * - - * * * * * - - * * - - * * * * In both cases, asterisks indicate selected elements, * and dashes indicate unselected elements. * * 3-D and 4-D ascii art is somewhat painful, so I'll * leave those selections to your imagination. :-) * * Note, that since the edge_size and checker_size are * parameters that are passed in, the selection need * not look exactly like the selection shown above. * At present, the function allows checker sizes that * are not even divisors of the edge size -- thus * something like the following is also possible: * * * * * - - - * * * - * * * * - - - * * * - * * * * - - - * * * - * - - - * * * - - - * * - - - * * * - - - * * - - - * * * - - - * * * * * - - - * * * - * * * * - - - * * * - * * * * - - - * * * - * - - - * * * - - - * * * As the above pattern can't be selected in one * call to H5Sselect_hyperslab(), and since the * values in the start, stride, count, and block * arrays will be repeated over all entries in * the selected space case, and over all selected * dimensions in the selected hyperslab case, we * compute these values first and store them in * in the base_start, base_stride, base_count, * and base_block arrays. */ base_start[0] = 0; base_start[1] = checker_size; base_stride[0] = 2 * checker_size; base_stride[1] = 2 * checker_size; /* Note that the following computation depends on the C99 * requirement that integer division discard any fraction * (truncation towards zero) to function correctly. As we * now require C99, this shouldn't be a problem, but noting * it may save us some pain if we are ever obliged to support * pre-C99 compilers again. */ base_count[0] = edge_size / (checker_size * 2); if((edge_size % (checker_size * 2)) > 0) base_count[0]++; base_count[1] = (edge_size - checker_size) / (checker_size * 2); if(((edge_size - checker_size) % (checker_size * 2)) > 0) base_count[1]++; base_block[0] = checker_size; base_block[1] = checker_size; /* now setup start, stride, count, and block arrays for * the first call to H5Sselect_hyperslab(). */ for(i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = base_start[0]; stride[i] = base_stride[0]; count[i] = base_count[0]; block[i] = base_block[0]; } /* end for */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* if small_rank == 1, or if edge_size == checker_size, we * are done, as either there is no added dimension in which * to place offset selected "checkers". * * Otherwise, set up start, stride, count and block, and * make the additional selection. */ if((small_rank > 1) && (checker_size < edge_size)) { for(i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = base_start[1]; stride[i] = base_stride[1]; count[i] = base_count[1]; block[i] = base_block[1]; } /* end for */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end if */ /* Wierdness alert: * * Some how, it seems that selections can extend beyond the * boundaries of the target data space -- hence the following * code to manually clip the selection back to the data space * proper. */ for(i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = 0; stride[i] = edge_size; count[i] = 1; block[i] = edge_size; } /* end for */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the large n-cube */ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); /* Now select the checkerboard selection in the (possibly larger) n-cube. * * Since we have already calculated the base start, stride, count, * and block, re-use the values in setting up start, stride, count, * and block. */ for(i = 0; i < SS_DR_MAX_RANK; i++) { if(dim_selected[i]) { start[i] = base_start[0]; stride[i] = base_stride[0]; count[i] = base_count[0]; block[i] = base_block[0]; } /* end if */ else { start[i] = (hsize_t)offset; stride[i] = (hsize_t)(2 * edge_size); count[i] = 1; block[i] = 1; } /* end else */ } /* end for */ /* Since large rank may be less than SS_DR_MAX_RANK, we may not * use the entire start, stride, count, and block arrays. This * is a problem, since it is inconvenient to set up the dim_selected * array to reflect the large rank, and thus if large_rank < * SS_DR_MAX_RANK, we need to hide the lower index entries * from H5Sselect_hyperslab(). * * Do this by setting up pointers to the first valid entry in start, * stride, count, and block below, and pass these pointers in * to H5Sselect_hyperslab() instead of the array base addresses. */ i = SS_DR_MAX_RANK - large_rank; HDassert( i >= 0 ); start_ptr = &(start[i]); stride_ptr = &(stride[i]); count_ptr = &(count[i]); block_ptr = &(block[i]); /* select the hyper slab */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* As before, if the number of dimensions selected is less than or * equal to 1, or if edge_size == checker_size, we are done, as * either there is no added dimension in which to place offset selected * "checkers", or the hyperslab is completely occupied by one * "checker". * * Otherwise, set up start, stride, count and block, and * make the additional selection. */ if((dims_selected > 1) && (checker_size < edge_size)) { for(i = 0; i < SS_DR_MAX_RANK; i++) { if(dim_selected[i]) { start[i] = base_start[1]; stride[i] = base_stride[1]; count[i] = base_count[1]; block[i] = base_block[1]; } /* end if */ else { start[i] = (hsize_t)offset; stride[i] = (hsize_t)(2 * edge_size); count[i] = 1; block[i] = 1; } /* end else */ } /* end for */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end if */ /* Wierdness alert: * * Again, it seems that selections can extend beyond the * boundaries of the target data space -- hence the following * code to manually clip the selection back to the data space * proper. */ for(i = 0; i < SS_DR_MAX_RANK; i++) { start[i] = 0; stride[i] = edge_size; count[i] = 1; block[i] = edge_size; } /* end for */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the test: */ check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); VERIFY(check, expected_result, "test_shape_same_dr__checkerboard"); /* Close dataspaces */ ret = H5Sclose(n_cube_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(n_cube_1_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__checkerboard() */ /**************************************************************** ** ** test_shape_same_dr__run_checkerboard_tests(): ** ** In this set of tests, we test H5S_select_shape_same() ** with a "checkerboard" selection of 1, 2, 3, and 4 cubes as ** one parameter, and 1, 2, 3, and 4 dimensional checkerboard ** slices through a n-cube of rank no more than 5 (and at ** least the rank of the slice). ** ** All the n-cubes will have lengths of the same size, so ** H5S_select_shape_same() should return true iff: ** ** 1) the rank of the n cube equals the number of dimensions ** selected in the checker board slice through the m-cube ** (m >= n). ** ** 2) The dimensions selected in the checkerboard slice ** through the m-cube are the dimensions with the most ** quickly changing indices. ** ****************************************************************/ static void test_shape_same_dr__run_checkerboard_tests(void) { hbool_t dim_selected[5]; hbool_t expected_result; int i, j; int v, w, x, y, z; int test_num = 0; int small_rank; int large_rank; for(large_rank = 1; large_rank <= 5; large_rank++) { for(small_rank = 1; small_rank <= large_rank; small_rank++) { v = 0; do { if(v == 0) dim_selected[0] = FALSE; else dim_selected[0] = TRUE; w = 0; do { if(w == 0) dim_selected[1] = FALSE; else dim_selected[1] = TRUE; x = 0; do { if(x == 0) dim_selected[2] = FALSE; else dim_selected[2] = TRUE; y = 0; do { if(y == 0) dim_selected[3] = FALSE; else dim_selected[3] = TRUE; z = 0; do { if(z == 0) dim_selected[4] = FALSE; else dim_selected[4] = TRUE; /* compute the expected result: */ i = 0; j = 4; expected_result = TRUE; while((i < small_rank) && expected_result) { if(!dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ while((i < large_rank) && expected_result) { if(dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ /* everything is set up -- run the tests */ /* run test with edge size 16, checker * size 1, and a variety of offsets */ test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 16, /* checker_size */ 1, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 5, /* edge_size */ 16, /* checker_size */ 1, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 15, /* edge_size */ 16, /* checker_size */ 1, dim_selected, expected_result ); /* run test with edge size 10, checker * size 2, and a variety of offsets */ test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 10, /* checker_size */ 2, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 5, /* edge_size */ 10, /* checker_size */ 2, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 9, /* edge_size */ 10, /* checker_size */ 2, dim_selected, expected_result ); /* run test with edge size 10, checker * size 3, and a variety of offsets */ test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 10, /* checker_size */ 3, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 5, /* edge_size */ 10, /* checker_size */ 3, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 9, /* edge_size */ 10, /* checker_size */ 3, dim_selected, expected_result ); /* run test with edge size 8, checker * size 8, and a variety of offsets */ test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 0, /* edge_size */ 8, /* checker_size */ 8, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 4, /* edge_size */ 8, /* checker_size */ 8, dim_selected, expected_result ); test_shape_same_dr__checkerboard ( test_num++, small_rank, large_rank, /* offset */ 7, /* edge_size */ 8, /* checker_size */ 8, dim_selected, expected_result ); z++; } while((z < 2) && (large_rank >= 1)); y++; } while((y < 2) && (large_rank >= 2)); x++; } while((x < 2) && (large_rank >= 3)); w++; } while((w < 2) && (large_rank >= 4)); v++; } while((v < 2) && (large_rank >= 5)); } /* end for */ } /* end for */ } /* test_shape_same_dr__run_checkerboard_tests() */ /**************************************************************** ** ** test_shape_same_dr__irregular(): ** ** Tests selection of an "irregular" subset of a full ** n-cube data space vs an identical "irregular" subset ** of an n-dimensional slice of an m-cube (m > n). ** in a call to H5S_select_shape_same(). ** ** Note that this test does not require the n-cube and the ** n-dimensional slice to have the same rank (although ** H5S_select_shape_same() should always return FALSE if ** they don't). ** ****************************************************************/ static void test_shape_same_dr__irregular(int test_num, int small_rank, int large_rank, int pattern_offset, int slice_offset, hbool_t dim_selected[], hbool_t expected_result) { char test_desc_0[128]; char test_desc_1[128]; int edge_size = 10; int i; int j; int k; int dims_selected = 0; hid_t n_cube_0_sid; /* the hyper cube containing * an irregular selection */ hid_t n_cube_1_sid; /* the hyper cube in which a * slice contains an irregular * selection. */ hsize_t dims[SS_DR_MAX_RANK]; hsize_t start_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 5}; hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_0[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; hsize_t block_0[SS_DR_MAX_RANK] = { 2, 2, 2, 2, 3}; hsize_t start_1[SS_DR_MAX_RANK] = { 2, 2, 2, 5, 2}; hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_1[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; hsize_t block_1[SS_DR_MAX_RANK] = { 2, 2, 2, 3, 2}; hsize_t start_2[SS_DR_MAX_RANK] = { 2, 2, 5, 2, 2}; hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_2[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; hsize_t block_2[SS_DR_MAX_RANK] = { 2, 2, 3, 2, 2}; hsize_t start_3[SS_DR_MAX_RANK] = { 2, 5, 2, 2, 2}; hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_3[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; hsize_t block_3[SS_DR_MAX_RANK] = { 2, 3, 2, 2, 2}; hsize_t start_4[SS_DR_MAX_RANK] = { 5, 2, 2, 2, 2}; hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t count_4[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; hsize_t block_4[SS_DR_MAX_RANK] = { 3, 2, 2, 2, 2}; hsize_t clip_start[SS_DR_MAX_RANK] = { 0, 0, 0, 0, 0}; hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t clip_count[SS_DR_MAX_RANK] = { 1, 1, 1, 1, 1}; hsize_t clip_block[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10}; hsize_t *(starts[SS_DR_MAX_RANK]) = {start_0, start_1, start_2, start_3, start_4}; hsize_t *(strides[SS_DR_MAX_RANK]) = {stride_0, stride_1, stride_2, stride_3, stride_4}; hsize_t *(counts[SS_DR_MAX_RANK]) = {count_0, count_1, count_2, count_3, count_4}; hsize_t *(blocks[SS_DR_MAX_RANK]) = {block_0, block_1, block_2, block_3, block_4}; hsize_t start[SS_DR_MAX_RANK]; hsize_t * start_ptr; hsize_t stride[SS_DR_MAX_RANK]; hsize_t * stride_ptr; hsize_t count[SS_DR_MAX_RANK]; hsize_t * count_ptr; hsize_t block[SS_DR_MAX_RANK]; hsize_t * block_ptr; htri_t check; /* Shape comparison return value */ herr_t ret; /* Generic return value */ HDassert( 0 < small_rank ); HDassert( small_rank <= large_rank ); HDassert( large_rank <= SS_DR_MAX_RANK ); HDassert( 9 <= edge_size ); HDassert( edge_size <= 1000 ); HDassert( 0 <= slice_offset ); HDassert( slice_offset < edge_size ); HDassert( -2 <= pattern_offset ); HDassert( pattern_offset <= 2 ); for(i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++) if(dim_selected[i] == TRUE) dims_selected++; HDassert( dims_selected >= 0 ); HDassert( dims_selected <= large_rank ); sprintf(test_desc_0, "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n", test_num); MESSAGE(7, (test_desc_0)); /* This statement must be updated if SS_DR_MAX_RANK is changed */ sprintf(test_desc_1, "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n", small_rank, large_rank, edge_size, slice_offset, pattern_offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4], dims_selected); MESSAGE(7, (test_desc_1)); /* copy the edge size into the dims array */ for(i = 0; i < SS_DR_MAX_RANK; i++) dims[i] = (hsize_t)edge_size; /* Create the small n-cube */ n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL); CHECK(n_cube_0_sid, FAIL, "H5Screate_simple"); /* Select an "irregular" pattern in the small n-cube. This * pattern can be though of a set of four 3 x 2 x 2 X 2 * four dimensional prisims, each parallel to one of the * axies and none of them intersecting with the other. * * In the lesser dimensional cases, this 4D pattern is * projected onto the lower dimensional space. * * In the 1-D case, the projection of the pattern looks * like this: * * - - * * - * * * - - * 0 1 2 3 4 5 6 7 8 9 x * * and in the 2-D case, it would look like this: * * * y * 9 - - - - - - - - - - * 8 - - - - - - - - - - * 7 - - * * - - - - - - * 6 - - * * - - - - - - * 5 - - * * - - - - - - * 4 - - - - - - - - - - * 3 - - * * - * * * - - * 2 - - * * - * * * - - * 1 - - - - - - - - - - * 0 - - - - - - - - - - * 0 1 2 3 4 5 6 7 8 9 x * * In both cases, asterisks indicate selected elements, * and dashes indicate unselected elements. * * Note that is this case, since the edge size is fixed, * the pattern does not change. However, we do use the * displacement parameter to allow it to be moved around * within the n-cube or hyper slab. */ /* first, ensure that the small n-cube has no selection */ ret = H5Sselect_none(n_cube_0_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* now, select the irregular pattern */ for(i = 0; i < SS_DR_MAX_RANK; i++) { ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, starts[i], strides[i], counts[i], blocks[i]); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* finally, clip the selection to ensure that it lies fully * within the n-cube. */ ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Create the large n-cube */ n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL); CHECK(n_cube_1_sid, FAIL, "H5Screate_simple"); /* Ensure that the large n-cube has no selection */ H5Sselect_none(n_cube_1_sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Since large rank may be less than SS_DR_MAX_RANK, we may not * use the entire start, stride, count, and block arrays. This * is a problem, since it is inconvenient to set up the dim_selected * array to reflect the large rank, and thus if large_rank < * SS_DR_MAX_RANK, we need to hide the lower index entries * from H5Sselect_hyperslab(). * * Do this by setting up pointers to the first valid entry in start, * stride, count, and block below, and pass these pointers in * to H5Sselect_hyperslab() instead of the array base addresses. */ i = SS_DR_MAX_RANK - large_rank; HDassert( i >= 0 ); start_ptr = &(start[i]); stride_ptr = &(stride[i]); count_ptr = &(count[i]); block_ptr = &(block[i]); /* Now select the irregular selection in the (possibly larger) n-cube. * * Basic idea is to project the pattern used in the smaller n-cube * onto the dimensions selected in the larger n-cube, with the displacement * specified. */ for(i = 0; i < SS_DR_MAX_RANK; i++) { j = 0; for(k = 0; k < SS_DR_MAX_RANK; k++) { if(dim_selected[k]) { start[k] = (starts[i])[j] + (hsize_t)pattern_offset; stride[k] = (strides[i])[j]; count[k] = (counts[i])[j]; block[k] = (blocks[i])[j]; j++; } /* end if */ else { start[k] = (hsize_t)slice_offset; stride[k] = (hsize_t)(2 * edge_size); count[k] = 1; block[k] = 1; } /* end else */ } /* end for */ /* select the hyper slab */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr); CHECK(ret, FAIL, "H5Sselect_hyperslab"); } /* end for */ /* it is possible that the selection extends beyond the data space. * clip the selection to ensure that it doesn't. */ ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* setup is done -- run the test: */ check = H5S_select_shape_same_test(n_cube_0_sid, n_cube_1_sid); VERIFY(check, expected_result, "test_shape_same_dr__checkerboard"); /* Close dataspaces */ ret = H5Sclose(n_cube_0_sid); CHECK(ret, FAIL, "H5Sclose"); ret = H5Sclose(n_cube_1_sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_shape_same_dr__irregular() */ /**************************************************************** ** ** test_shape_same_dr__run_irregular_tests(): ** ** In this set of tests, we test H5S_select_shape_same() ** with an "irregular" subselection of 1, 2, 3, and 4 cubes as ** one parameter, and irregular subselections of 1, 2, 3, ** and 4 dimensional slices through a n-cube of rank no more ** than 5 (and at least the rank of the slice) as the other. ** Note that the "irregular" selection may be offset between ** the n-cube and the slice. ** ** All the irregular selections will be identical (modulo rank) ** so H5S_select_shape_same() should return true iff: ** ** 1) the rank of the n cube equals the number of dimensions ** selected in the irregular slice through the m-cube ** (m >= n). ** ** 2) The dimensions selected in the irregular slice ** through the m-cube are the dimensions with the most ** quickly changing indices. ** ****************************************************************/ static void test_shape_same_dr__run_irregular_tests(void) { hbool_t dim_selected[5]; hbool_t expected_result; int i, j; int v, w, x, y, z; int test_num = 0; int small_rank; int large_rank; for(large_rank = 1; large_rank <= 5; large_rank++) { for(small_rank = 1; small_rank <= large_rank; small_rank++) { v = 0; do { if(v == 0) dim_selected[0] = FALSE; else dim_selected[0] = TRUE; w = 0; do { if(w == 0) dim_selected[1] = FALSE; else dim_selected[1] = TRUE; x = 0; do { if(x == 0) dim_selected[2] = FALSE; else dim_selected[2] = TRUE; y = 0; do { if(y == 0) dim_selected[3] = FALSE; else dim_selected[3] = TRUE; z = 0; do { if(z == 0) dim_selected[4] = FALSE; else dim_selected[4] = TRUE; /* compute the expected result: */ i = 0; j = 4; expected_result = TRUE; while((i < small_rank) && expected_result) { if(!dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ while((i < large_rank) && expected_result) { if(dim_selected[j]) expected_result = FALSE; i++; j--; } /* end while */ /* everything is set up -- run the tests */ test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ -2, /* slice_offset */ 0, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ -2, /* slice_offset */ 4, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ -2, /* slice_offset */ 9, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ 0, /* slice_offset */ 0, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ 0, /* slice_offset */ 6, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ 0, /* slice_offset */ 9, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ 2, /* slice_offset */ 0, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ 2, /* slice_offset */ 5, dim_selected, expected_result ); test_shape_same_dr__irregular ( test_num++, small_rank, large_rank, /* pattern_offset */ 2, /* slice_offset */ 9, dim_selected, expected_result ); z++; } while((z < 2) && (large_rank >= 1)); y++; } while((y < 2) && (large_rank >= 2)); x++; } while((x < 2) && (large_rank >= 3)); w++; } while((w < 2) && (large_rank >= 4)); v++; } while((v < 2 ) && (large_rank >= 5)); } /* end for */ } /* end for */ } /* test_shape_same_dr__run_irregular_tests() */ /**************************************************************** ** ** test_shape_same_dr(): Tests selections on dataspace with ** different ranks, to verify that "shape same" routine ** is now handling this case correctly. ** ****************************************************************/ static void test_shape_same_dr(void) { /* Output message about test being performed */ MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n")); /* first run some smoke checks */ test_shape_same_dr__smoke_check_1(); test_shape_same_dr__smoke_check_2(); test_shape_same_dr__smoke_check_3(); test_shape_same_dr__smoke_check_4(); /* now run more intensive tests. */ test_shape_same_dr__run_full_space_vs_slice_tests(); test_shape_same_dr__run_checkerboard_tests(); test_shape_same_dr__run_irregular_tests(); } /* test_shape_same_dr() */ /**************************************************************** ** ** test_space_rebuild(): Tests selection rebuild routine, ** We will test whether selection in span-tree form can be rebuilt ** into a regular selection. ** ** ****************************************************************/ static void test_space_rebuild(void) { /* regular space IDs in span-tree form */ hid_t sid_reg1,sid_reg2,sid_reg3,sid_reg4,sid_reg5; /* Original regular Space IDs */ hid_t sid_reg_ori1,sid_reg_ori2,sid_reg_ori3,sid_reg_ori4,sid_reg_ori5; /* Irregular space IDs */ hid_t sid_irreg1,sid_irreg2,sid_irreg3,sid_irreg4,sid_irreg5; /* rebuild status state */ htri_t rebuild_stat,rebuild_check; herr_t ret; /* dimensions of rank 1 to rank 5 */ hsize_t dims1[] ={SPACERE1_DIM0}; hsize_t dims2[] ={SPACERE2_DIM0,SPACERE2_DIM1}; hsize_t dims3[] ={SPACERE3_DIM0,SPACERE3_DIM1,SPACERE3_DIM2}; hsize_t dims4[] ={SPACERE4_DIM0,SPACERE4_DIM1,SPACERE4_DIM2,SPACERE4_DIM3}; hsize_t dims5[] ={SPACERE5_DIM0,SPACERE5_DIM1,SPACERE5_DIM2,SPACERE5_DIM3,SPACERE5_DIM4}; /* The start of the hyperslab */ hsize_t start1[SPACERE1_RANK],start2[SPACERE2_RANK], start3[SPACERE3_RANK],start4[SPACERE4_RANK], start5[SPACERE5_RANK]; /* The stride of the hyperslab */ hsize_t stride1[SPACERE1_RANK],stride2[SPACERE2_RANK], stride3[SPACERE3_RANK],stride4[SPACERE4_RANK], stride5[SPACERE5_RANK]; /* The number of blocks for the hyperslab */ hsize_t count1[SPACERE1_RANK],count2[SPACERE2_RANK], count3[SPACERE3_RANK],count4[SPACERE4_RANK], count5[SPACERE5_RANK]; /* The size of each block for the hyperslab */ hsize_t block1[SPACERE1_RANK],block2[SPACERE2_RANK], block3[SPACERE3_RANK],block4[SPACERE4_RANK], block5[SPACERE5_RANK]; /* Declarations for special test of rebuild */ hid_t sid_spec; /* Output message about test being performed */ MESSAGE(6, ("Testing functionality to rebuild regular hyperslab selection\n")); MESSAGE(7, ("Testing functionality to rebuild 1-D hyperslab selection\n")); /* Create 1-D dataspace */ sid_reg1 = H5Screate_simple(SPACERE1_RANK,dims1,NULL); sid_reg_ori1 = H5Screate_simple(SPACERE1_RANK,dims1,NULL); /* Build up the original one dimensional regular selection */ start1[0] = 1; count1[0] = 3; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_reg_ori1,H5S_SELECT_SET,start1,stride1,count1,block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up one dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start1[0] = 1; count1[0] = 2; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_reg1,H5S_SELECT_SET,start1,stride1,count1,block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start1[0] = 11; count1[0] = 1; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_reg1,H5S_SELECT_OR,start1,stride1,count1,block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_reg1); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be TRUE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); } else { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5S_select_shape_same_test(sid_reg1,sid_reg_ori1); CHECK(rebuild_check,FALSE,"H5S_hyper_rebuild"); } /* For irregular hyperslab */ sid_irreg1 = H5Screate_simple(SPACERE1_RANK,dims1,NULL); /* Build up one dimensional irregular selection with H5_SELECT_OR */ start1[0] = 1; count1[0] = 2; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_irreg1,H5S_SELECT_SET,start1,stride1,count1,block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start1[0] = 12; /* Just one position switch */ count1[0] = 1; stride1[0] = 5; block1[0] = 4; ret = H5Sselect_hyperslab(sid_irreg1,H5S_SELECT_OR,start1,stride1,count1,block1); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = TRUE; rebuild_stat = H5S_get_rebuild_status_test(sid_irreg1); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ MESSAGE(7, ("Testing functionality to rebuild 2-D hyperslab selection\n")); /* Create 2-D dataspace */ sid_reg2 = H5Screate_simple(SPACERE2_RANK,dims2,NULL); sid_reg_ori2 = H5Screate_simple(SPACERE2_RANK,dims2,NULL); /* Build up the original two dimensional regular selection */ start2[0] = 2; count2[0] = 2; stride2[0] = 7; block2[0] = 5; start2[1] = 1; count2[1] = 3; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_reg_ori2,H5S_SELECT_SET,start2,stride2,count2,block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up two dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start2[1] = 1; count2[1] = 2; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_reg2,H5S_SELECT_SET,start2,stride2,count2,block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start2[1] = 7; /* 7 = start(1) + count(2) * stride(3) */ count2[1] = 1; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_reg2,H5S_SELECT_OR,start2,stride2,count2,block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_reg2); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be TRUE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); } else { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5S_select_shape_same_test(sid_reg2,sid_reg_ori2); CHECK(rebuild_check,FALSE,"H5S_hyper_rebuild"); } /* 2-D irregular case */ sid_irreg2 = H5Screate_simple(SPACERE2_RANK,dims2,NULL); /* Build up two dimensional irregular selection with H5_SELECT_OR */ start2[0] = 2; count2[0] = 2; stride2[0] = 7; block2[0] = 5; start2[1] = 1; count2[1] = 1; stride2[1] = 3; block2[1] = 2; ret = H5Sselect_hyperslab(sid_irreg2,H5S_SELECT_SET,start2,stride2,count2,block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start2[1] = 4; count2[1] = 2; stride2[1] = 4; block2[1] = 3; /* Just add one element for the block */ ret = H5Sselect_hyperslab(sid_irreg2,H5S_SELECT_OR,start2,stride2,count2,block2); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = TRUE; rebuild_stat = H5S_get_rebuild_status_test(sid_irreg2); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ MESSAGE(7, ("Testing functionality to rebuild 3-D hyperslab selection\n")); /* Create 3-D dataspace */ sid_reg3 = H5Screate_simple(SPACERE3_RANK,dims3,NULL); sid_reg_ori3 = H5Screate_simple(SPACERE3_RANK,dims3,NULL); /* Build up the original three dimensional regular selection */ start3[0] = 2; count3[0] = 2; stride3[0] = 3; block3[0] = 2; start3[1] = 1; count3[1] = 3; stride3[1] = 3; block3[1] = 2; start3[2] = 1; count3[2] = 2; stride3[2] = 4; block3[2] = 2; ret = H5Sselect_hyperslab(sid_reg_ori3,H5S_SELECT_SET,start3,stride3,count3,block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up three dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start3[2] = 1; count3[2] = 1; stride3[2] = 4; block3[2] = 2; ret = H5Sselect_hyperslab(sid_reg3,H5S_SELECT_SET,start3,stride3,count3,block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start3[2] = 5; count3[2] = 1; stride3[2] = 4; block3[2] = 2; ret = H5Sselect_hyperslab(sid_reg3,H5S_SELECT_OR,start3,stride3,count3,block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_reg3); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be TRUE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); } else { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5S_select_shape_same_test(sid_reg3,sid_reg_ori3); CHECK(rebuild_check,FALSE,"H5S_hyper_rebuild"); } sid_irreg3 = H5Screate_simple(SPACERE3_RANK,dims3,NULL); /* Build up three dimensional irregular selection with H5_SELECT_OR */ start3[0] = 2; count3[0] = 2; stride3[0] = 3; block3[0] = 2; start3[1] = 1; count3[1] = 3; stride3[1] = 3; block3[1] = 2; start3[2] = 1; count3[2] = 2; stride3[2] = 2; block3[2] = 1; ret = H5Sselect_hyperslab(sid_irreg3,H5S_SELECT_SET,start3,stride3,count3,block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start3[2] = 3; count3[2] = 2; stride3[2] = 3; /* Just add one element for the stride */ block3[2] = 1; ret = H5Sselect_hyperslab(sid_irreg3,H5S_SELECT_OR,start3,stride3,count3,block3); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = TRUE; rebuild_stat = H5S_get_rebuild_status_test(sid_irreg3); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ MESSAGE(7, ("Testing functionality to rebuild 4-D hyperslab selection\n")); /* Create 4-D dataspace */ sid_reg4 = H5Screate_simple(SPACERE4_RANK,dims4,NULL); sid_reg_ori4 = H5Screate_simple(SPACERE4_RANK,dims4,NULL); /* Build up the original four dimensional regular selection */ start4[0] = 2; count4[0] = 2; stride4[0] = 3; block4[0] = 2; start4[1] = 1; count4[1] = 3; stride4[1] = 3; block4[1] = 2; start4[2] = 1; count4[2] = 2; stride4[2] = 4; block4[2] = 2; start4[3] = 1; count4[3] = 2; stride4[3] = 4; block4[3] = 2; ret = H5Sselect_hyperslab(sid_reg_ori4,H5S_SELECT_SET,start4,stride4,count4,block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start4[3] = 1; count4[3] = 1; stride4[3] = 4; block4[3] = 2; ret = H5Sselect_hyperslab(sid_reg4,H5S_SELECT_SET,start4,stride4,count4,block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start4[3] = 5; count4[3] = 1; stride4[3] = 4; block4[3] = 2; ret = H5Sselect_hyperslab(sid_reg4,H5S_SELECT_OR,start4,stride4,count4,block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_reg4); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be TRUE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); } else { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5S_select_shape_same_test(sid_reg4,sid_reg_ori4); CHECK(rebuild_check,FALSE,"H5S_hyper_rebuild"); } /* Testing irregular selection */ sid_irreg4 = H5Screate_simple(SPACERE4_RANK,dims4,NULL); /* Build up four dimensional irregular selection with H5_SELECT_OR */ start4[0] = 2; count4[0] = 2; stride4[0] = 3; block4[0] = 2; start4[1] = 1; count4[1] = 3; stride4[1] = 3; block4[1] = 2; start4[2] = 1; count4[2] = 1; stride4[2] = 4; block4[2] = 2; start4[3] = 1; count4[3] = 2; stride4[3] = 4; block4[3] = 2; /* sub-block is one element difference */ ret = H5Sselect_hyperslab(sid_irreg4,H5S_SELECT_SET,start4,stride4,count4,block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start4[2] = 5; count4[2] = 1; stride4[2] = 4; block4[2] = 2; start4[3] = 1; count4[3] = 2; stride4[3] = 4; block4[3] = 3; /* sub-block is one element difference */ ret = H5Sselect_hyperslab(sid_irreg4,H5S_SELECT_OR,start4,stride4,count4,block4); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = TRUE; rebuild_stat = H5S_get_rebuild_status_test(sid_irreg4); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ MESSAGE(7, ("Testing functionality to rebuild 5-D hyperslab selection\n")); /* Create 5-D dataspace */ sid_reg5 = H5Screate_simple(SPACERE5_RANK,dims5,NULL); sid_reg_ori5 = H5Screate_simple(SPACERE5_RANK,dims5,NULL); /* Build up the original five dimensional regular selection */ start5[0] = 2; count5[0] = 2; stride5[0] = 3; block5[0] = 2; start5[1] = 1; count5[1] = 3; stride5[1] = 3; block5[1] = 2; start5[2] = 1; count5[2] = 2; stride5[2] = 4; block5[2] = 2; start5[3] = 1; count5[3] = 2; stride5[3] = 4; block5[3] = 2; start5[4] = 1; count5[4] = 2; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_reg_ori5,H5S_SELECT_SET,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5, it will be treated as an irregular selection. */ start5[4] = 1; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_reg5,H5S_SELECT_SET,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start5[4] = 5; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_reg5,H5S_SELECT_OR,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_reg5); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be TRUE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); } else { /* In this case, rebuild_check should be TRUE. */ rebuild_check = H5S_select_shape_same_test(sid_reg5,sid_reg_ori5); CHECK(rebuild_check,FALSE,"H5S_hyper_rebuild"); } sid_irreg5 = H5Screate_simple(SPACERE5_RANK,dims5,NULL); /* Build up five dimensional irregular selection with H5_SELECT_OR */ start5[0] = 2; count5[0] = 2; stride5[0] = 3; block5[0] = 2; start5[1] = 1; count5[1] = 3; stride5[1] = 3; block5[1] = 2; start5[2] = 1; count5[2] = 2; stride5[2] = 4; block5[2] = 2; start5[3] = 1; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 2; /* One element difference */ count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_irreg5,H5S_SELECT_SET,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); start5[3] = 5; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 1; /* One element difference */ count5[4] = 2; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_irreg5,H5S_SELECT_OR,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = TRUE; rebuild_stat = H5S_get_rebuild_status_test(sid_irreg5); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ /* We use 5-D to test a special case with rebuilding routine TRUE, FALSE and TRUE */ sid_spec = H5Screate_simple(SPACERE5_RANK,dims5,NULL); /* Build up the original five dimensional regular selection */ start5[0] = 2; count5[0] = 2; stride5[0] = 3; block5[0] = 2; start5[1] = 1; count5[1] = 3; stride5[1] = 3; block5[1] = 2; start5[2] = 1; count5[2] = 2; stride5[2] = 4; block5[2] = 2; start5[3] = 1; count5[3] = 2; stride5[3] = 4; block5[3] = 2; start5[4] = 1; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_spec,H5S_SELECT_SET,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_spec); /* In this case, rebuild_stat should be TRUE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ /* Adding some selections to make it real irregular */ start5[3] = 1; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 5; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_spec,H5S_SELECT_OR,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = TRUE; rebuild_stat = H5S_get_rebuild_status_test(sid_spec); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ start5[3] = 5; count5[3] = 1; stride5[3] = 4; block5[3] = 2; start5[4] = 5; count5[4] = 1; stride5[4] = 4; block5[4] = 2; ret = H5Sselect_hyperslab(sid_spec,H5S_SELECT_OR,start5,stride5,count5,block5); CHECK(ret, FAIL, "H5Sselect_hyperslab"); rebuild_stat = FALSE; rebuild_stat = H5S_get_rebuild_status_test(sid_spec); assert(rebuild_stat!=FAIL); /* In this case, rebuild_stat should be FALSE. */ if(!rebuild_stat){ ret = FAIL; CHECK(ret,FAIL,"H5S_hyper_rebuild"); }/* No need to do shape comparision */ H5Sclose(sid_reg1); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg1); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg2); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg2); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg3); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg3); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg4); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg4); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_reg5); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_irreg5); CHECK(ret, FAIL, "H5Sclose"); H5Sclose(sid_spec); CHECK(ret, FAIL, "H5Sclose"); } /**************************************************************** ** ** test_select_hyper_chunk_offset(): Tests selections on dataspace, ** verify that offsets for hyperslab selections are working in ** chunked datasets. ** ****************************************************************/ static void test_select_hyper_chunk_offset(void) { hid_t fid; /* File ID */ hid_t sid; /* Dataspace ID */ hid_t msid; /* Memory dataspace ID */ hid_t did; /* Dataset ID */ const hsize_t mem_dims[1] = { SPACE10_DIM1 }; /* Dataspace dimensions for memory */ const hsize_t dims[1] = { 0 }; /* Dataspace initial dimensions */ const hsize_t maxdims[1] = { H5S_UNLIMITED }; /* Dataspace mam dims */ int *wbuf; /* Buffer for writing data */ int *rbuf; /* Buffer for reading data */ hid_t dcpl; /* Dataset creation property list ID */ hsize_t chunks[1]={SPACE10_CHUNK_SIZE }; /* Chunk size */ hsize_t start[1] = { 0 }; /* The start of the hyperslab */ hsize_t count[1] = { SPACE10_CHUNK_SIZE }; /* The size of the hyperslab */ int i,j; /* Local index */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n")); /* Allocate buffers */ wbuf = (int *)HDmalloc(sizeof(int) * SPACE10_DIM1); CHECK(wbuf, NULL, "HDmalloc"); rbuf = (int *)HDcalloc(sizeof(int), SPACE10_DIM1); CHECK(rbuf, NULL, "HDcalloc"); /* Initialize the write buffer */ for(i=0; i=((2*SPACE10_CHUNK_SIZE)/3)) if(wbuf[i+j]!=rbuf[((SPACE10_DIM1-i)-SPACE10_CHUNK_SIZE)+j]) TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n",__LINE__,i,j,rbuf[((SPACE10_DIM1-i)-SPACE10_CHUNK_SIZE)+j],wbuf[i+j]); /* Close the memory dataspace */ ret=H5Sclose (msid); CHECK(ret, FAIL, "H5Sclose"); /* Close the dataset */ ret=H5Dclose (did); CHECK(ret, FAIL, "H5Dclose"); /* Close the file */ ret=H5Fclose (fid); CHECK(ret, FAIL, "H5Fclose"); /* Free the buffers */ HDfree(wbuf); HDfree(rbuf); } /* test_select_hyper_chunk_offset() */ /**************************************************************** ** ** test_select_hyper_chunk_offset2(): Tests selections on dataspace, ** another test to verify that offsets for hyperslab selections are ** working in chunked datasets. ** ****************************************************************/ static void test_select_hyper_chunk_offset2(void) { hid_t file, dataset; /* handles */ hid_t dataspace; hid_t memspace; hid_t dcpl; /* Dataset creation property list */ herr_t status; unsigned data_out[SPACE12_DIM0]; /* output buffer */ unsigned data_in[SPACE12_CHUNK_DIM0]; /* input buffer */ hsize_t dims[SPACE12_RANK]={SPACE12_DIM0}; /* Dimension size */ hsize_t chunk_dims[SPACE12_RANK]={SPACE12_CHUNK_DIM0}; /* Chunk size */ hsize_t start[SPACE12_RANK]; /* Start of hyperslab */ hsize_t count[SPACE12_RANK]; /* Size of hyperslab */ hssize_t offset[SPACE12_RANK]; /* hyperslab offset in the file */ unsigned u, v; /* Local index variables */ /* Output message about test being performed */ MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n")); /* Initialize data to write out */ for (u = 0; u < SPACE12_DIM0; u++) data_out[u] = u; /* Create the file */ file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); CHECK(file, FAIL, "H5Fcreate"); /* Create dataspace */ dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* Create dataset creation property list */ dcpl = H5Pcreate(H5P_DATASET_CREATE); CHECK(dcpl, FAIL, "H5Pcreate"); /* Set chunk sizes */ status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims); CHECK(status, FAIL, "H5Pset_chunk"); /* Create dataset */ dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT); CHECK(dataset, FAIL, "H5Dcreate2"); /* Close DCPL */ status = H5Pclose(dcpl); CHECK(status, FAIL, "H5Pclose"); /* Write out entire dataset */ status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out); CHECK(status, FAIL, "H5Dclose"); /* Create memory dataspace (same size as a chunk) */ memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL); CHECK(dataspace, FAIL, "H5Screate_simple"); /* * Define hyperslab in the file dataspace. */ start[0] = 0; count[0] = SPACE12_CHUNK_DIM0; status = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL); CHECK(status, FAIL, "H5Sselect_hyperslab"); /* Loop through retrieving data from file, checking it against data written */ for(u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) { /* Set the offset of the file selection */ offset[0] = u; status = H5Soffset_simple(dataspace, offset); CHECK(status, FAIL, "H5Soffset_simple"); /* Read in buffer of data */ status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace, H5P_DEFAULT, data_in); CHECK(status, FAIL, "H5Dread"); /* Check data read in */ for(v = 0; v < SPACE12_CHUNK_DIM0; v++) if(data_out[u + v] != data_in[v]) TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n",(unsigned)(u + v), data_out[u + v], v, data_in[v]); } /* end for */ status = H5Dclose(dataset); CHECK(status, FAIL, "H5Dclose"); status = H5Sclose(dataspace); CHECK(status, FAIL, "H5Sclose"); status = H5Sclose(memspace); CHECK(status, FAIL, "H5Sclose"); status = H5Fclose(file); CHECK(status, FAIL, "H5Fclose"); } /* test_select_hyper_chunk_offset2() */ /**************************************************************** ** ** test_select_bounds(): Tests selection bounds on dataspaces, ** both with and without offsets. ** ****************************************************************/ static void test_select_bounds(void) { hid_t sid; /* Dataspace ID */ const hsize_t dims[SPACE11_RANK] = {SPACE11_DIM1, SPACE11_DIM2}; /* Dataspace dimensions */ hsize_t coord[SPACE11_NPOINTS][SPACE11_RANK]; /* Coordinates for point selection */ hsize_t start[SPACE11_RANK]; /* The start of the hyperslab */ hsize_t stride[SPACE11_RANK]; /* The stride between block starts for the hyperslab */ hsize_t count[SPACE11_RANK]; /* The number of blocks for the hyperslab */ hsize_t block[SPACE11_RANK]; /* The size of each block for the hyperslab */ hssize_t offset[SPACE11_RANK]; /* Offset amount for selection */ hsize_t low_bounds[SPACE11_RANK]; /* The low bounds for the selection */ hsize_t high_bounds[SPACE11_RANK]; /* The high bounds for the selection */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(6, ("Testing selection bounds\n")); /* Create dataspace */ sid = H5Screate_simple (SPACE11_RANK, dims, NULL); CHECK(sid, FAIL, "H5Screate_simple"); /* Get bounds for 'all' selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 0, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds"); /* Set offset for selection */ offset[0] = 1; offset[1] = 1; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for 'all' selection with offset (which should be ignored) */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 0, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Set 'none' selection */ ret = H5Sselect_none(sid); CHECK(ret, FAIL, "H5Sselect_none"); /* Get bounds for 'none' selection */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bo unds"); /* Set point selection */ coord[0][0] = 3; coord[0][1] = 3; coord[1][0] = 3; coord[1][1] = 96; coord[2][0] = 96; coord[2][1] = 3; coord[3][0] = 96; coord[3][1] = 96; ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE11_NPOINTS, (const hsize_t *)coord); CHECK(ret, FAIL, "H5Sselect_elements"); /* Get bounds for point selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 3, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 3, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 4, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 4, "H5Sget_select_bounds"); /* Set bad offset for selection */ offset[0] = 5; offset[1] = -5; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with negative offset */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set valid offset for selection */ offset[0] = 2; offset[1] = -2; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for point selection with offset */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 5, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 1, "H5Sget_select_bounds"); VERIFY(high_bounds[0], SPACE11_DIM1 - 2, "H5Sget_select_bounds"); VERIFY(high_bounds[1], SPACE11_DIM2 - 6, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Set "regular" hyperslab selection */ start[0] = 2; start[1] = 2; stride[0] = 10; stride[1] = 10; count[0] = 4; count[1] = 4; block[0] = 5; block[1] = 5; ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Get bounds for hyperslab selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 2, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 2, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 36, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 36, "H5Sget_select_bounds"); /* Set bad offset for selection */ offset[0] = 5; offset[1] = -5; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with negative offset */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set valid offset for selection */ offset[0] = 5; offset[1] = -2; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with offset */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 7, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 41, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 34, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Make "irregular" hyperslab selection */ start[0] = 20; start[1] = 20; stride[0] = 20; stride[1] = 20; count[0] = 2; count[1] = 2; block[0] = 10; block[1] = 10; ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block); CHECK(ret, FAIL, "H5Sselect_hyperslab"); /* Get bounds for hyperslab selection */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 2, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 2, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 49, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 49, "H5Sget_select_bounds"); /* Set bad offset for selection */ offset[0] = 5; offset[1] = -5; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with negative offset */ H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); } H5E_END_TRY; VERIFY(ret, FAIL, "H5Sget_select_bounds"); /* Set valid offset for selection */ offset[0] = 5; offset[1] = -2; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Get bounds for hyperslab selection with offset */ ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); CHECK(ret, FAIL, "H5Sget_select_bounds"); VERIFY(low_bounds[0], 7, "H5Sget_select_bounds"); VERIFY(low_bounds[1], 0, "H5Sget_select_bounds"); VERIFY(high_bounds[0], 54, "H5Sget_select_bounds"); VERIFY(high_bounds[1], 47, "H5Sget_select_bounds"); /* Reset offset for selection */ offset[0] = 0; offset[1] = 0; ret = H5Soffset_simple(sid, offset); CHECK(ret, FAIL, "H5Soffset_simple"); /* Close the dataspace */ ret = H5Sclose(sid); CHECK(ret, FAIL, "H5Sclose"); } /* test_select_bounds() */ /**************************************************************** ** ** test_select(): Main H5S selection testing routine. ** ****************************************************************/ void test_select(void) { hid_t plist_id; /* Property list for reading random hyperslabs */ hid_t fapl; /* Property list accessing the file */ int mdc_nelmts; /* Metadata number of elements */ size_t rdcc_nelmts; /* Raw data number of elements */ size_t rdcc_nbytes; /* Raw data number of bytes */ double rdcc_w0; /* Raw data write percentage */ hssize_t offset[SPACE7_RANK] = {1, 1}; /* Offset for testing selection offsets */ herr_t ret; /* Generic return value */ /* Output message about test being performed */ MESSAGE(5, ("Testing Selections\n")); /* Create a dataset transfer property list */ plist_id = H5Pcreate(H5P_DATASET_XFER); CHECK(plist_id, FAIL, "H5Pcreate"); /* test I/O with a very small buffer for reads */ ret = H5Pset_buffer(plist_id, (size_t)59, NULL, NULL); CHECK(ret, FAIL, "H5Pset_buffer"); /* These next tests use the same file */ test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */ test_select_hyper(plist_id); /* Test basic H5S hyperslab selection code */ test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing element selections */ test_select_point(plist_id); /* Test basic H5S element selection code, also tests appending to existing element selections */ test_select_all(H5P_DEFAULT); /* Test basic all & none selection code */ test_select_all(plist_id); /* Test basic all & none selection code */ test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */ test_select_all_hyper(plist_id); /* Test basic all & none selection code */ /* These next tests use the same file */ test_select_combo(); /* Test combined hyperslab & element selection code */ test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */ test_select_hyper_stride(plist_id); /* Test strided hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16LE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16LE, plist_id); /* Test contiguous hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16BE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */ test_select_hyper_contig(H5T_STD_U16BE, plist_id); /* Test contiguous hyperslab selection code */ test_select_hyper_contig2(H5T_STD_U16LE, H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig2(H5T_STD_U16LE, plist_id); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig2(H5T_STD_U16BE, H5P_DEFAULT); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig2(H5T_STD_U16BE, plist_id); /* Test more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16LE, H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16LE, plist_id); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE, H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig3(H5T_STD_U16BE, plist_id); /* Test yet more contiguous hyperslab selection cases */ test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT); test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id); test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT); test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id); test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT); test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id); test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT); test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id); test_select_hyper_copy(); /* Test hyperslab selection copying code */ test_select_point_copy(); /* Test point selection copying code */ test_select_hyper_offset(); /* Test selection offset code with hyperslabs */ test_select_hyper_offset2();/* Test more selection offset code with hyperslabs */ test_select_point_offset(); /* Test selection offset code with elements */ test_select_hyper_union(); /* Test hyperslab union code */ #ifdef NEW_HYPERSLAB_API test_select_hyper_union_stagger(); /* Test hyperslab union code for staggered slabs */ test_select_hyper_union_3d(); /* Test hyperslab union code for 3-D dataset */ #endif /* NEW_HYPERSLAB_API */ test_select_hyper_and_2d(); /* Test hyperslab intersection (AND) code for 2-D dataset */ test_select_hyper_xor_2d(); /* Test hyperslab XOR code for 2-D dataset */ test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */ test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */ /* test the random hyperslab I/O with the default property list for reading */ test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */ /* test random hyperslab I/O with a small buffer for reads */ test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */ /* Create a dataset transfer property list */ fapl = H5Pcreate(H5P_FILE_ACCESS); CHECK(fapl, FAIL, "H5Pcreate"); /* Get the default file access properties for caching */ ret = H5Pget_cache(fapl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0); CHECK(ret, FAIL, "H5Pget_cache"); /* Increase the size of the raw data cache */ rdcc_nbytes = 10 * 1024 * 1024; /* Set the file access properties for caching */ ret = H5Pset_cache(fapl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0); CHECK(ret, FAIL, "H5Pset_cache"); /* Test reading in a large hyperslab with a chunked dataset */ test_select_hyper_chunk(fapl, H5P_DEFAULT); /* Test reading in a large hyperslab with a chunked dataset a small amount at a time */ test_select_hyper_chunk(fapl, plist_id); /* Close file access property list */ ret = H5Pclose(fapl); CHECK(ret, FAIL, "H5Pclose"); /* Close dataset transfer property list */ ret = H5Pclose(plist_id); CHECK(ret, FAIL, "H5Pclose"); /* More tests for checking validity of selections */ test_select_valid(); /* Tests for combining "all" and "none" selections with hyperslabs */ test_select_combine(); /* Test filling selections */ /* (Also tests iterating through each selection */ test_select_fill_all(); test_select_fill_point(NULL); test_select_fill_point(offset); test_select_fill_hyper_simple(NULL); test_select_fill_hyper_simple(offset); test_select_fill_hyper_regular(NULL); test_select_fill_hyper_regular(offset); test_select_fill_hyper_irregular(NULL); test_select_fill_hyper_irregular(offset); /* Test 0-sized selections */ test_select_none(); /* Test selections on scalar dataspaces */ test_scalar_select(); test_scalar_select2(); test_scalar_select3(); /* Test "same shape" routine */ test_shape_same(); /* Test "same shape" routine for selections of different rank */ test_shape_same_dr(); /* Test "re-build" routine */ test_space_rebuild(); /* Test point selections in chunked datasets */ test_select_point_chunk(); /* Test scalar dataspaces in chunked datasets */ test_select_scalar_chunk(); /* Test using selection offset on hyperslab in chunked dataset */ test_select_hyper_chunk_offset(); test_select_hyper_chunk_offset2(); /* Test selection bounds with & without offsets */ test_select_bounds(); } /* test_select() */ /*------------------------------------------------------------------------- * Function: cleanup_select * * Purpose: Cleanup temporary test files * * Return: none * * Programmer: Albert Cheng * July 2, 1998 * * Modifications: * *------------------------------------------------------------------------- */ void cleanup_select(void) { remove(FILENAME); }