/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases.  *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/***********************************************************
 *
 * Test program:     tselect
 *
 * Test the Dataspace selection functionality
 *
 *************************************************************/

#define H5S_FRIEND /*suppress error about including H5Spkg      */

/* Define this macro to indicate that the testing APIs should be available */
#define H5S_TESTING

#include "testhdf5.h"
#include "H5Spkg.h" /* Dataspaces                */

#define FILENAME "tselect.h5"

/* 3-D dataset with fixed dimensions */
#define SPACE1_NAME "Space1"
#define SPACE1_RANK 3
#define SPACE1_DIM1 3
#define SPACE1_DIM2 15
#define SPACE1_DIM3 13

/* 2-D dataset with fixed dimensions */
#define SPACE2_NAME  "Space2"
#define SPACE2_RANK  2
#define SPACE2_DIM1  30
#define SPACE2_DIM2  26
#define SPACE2A_RANK 1
#define SPACE2A_DIM1 (SPACE2_DIM1 * SPACE2_DIM2)

/* 2-D dataset with fixed dimensions */
#define SPACE3_NAME "Space3"
#define SPACE3_RANK 2
#define SPACE3_DIM1 15
#define SPACE3_DIM2 26

/* 3-D dataset with fixed dimensions */
#define SPACE4_NAME "Space4"
#define SPACE4_RANK 3
#define SPACE4_DIM1 11
#define SPACE4_DIM2 13
#define SPACE4_DIM3 17

/* Number of random hyperslabs to test */
#define NHYPERSLABS 10

/* Number of random hyperslab tests performed */
#define NRAND_HYPER 100

/* 5-D dataset with fixed dimensions */
#define SPACE5_NAME "Space5"
#define SPACE5_RANK 5
#define SPACE5_DIM1 10
#define SPACE5_DIM2 10
#define SPACE5_DIM3 10
#define SPACE5_DIM4 10
#define SPACE5_DIM5 10

/* 1-D dataset with same size as 5-D dataset */
#define SPACE6_RANK 1
#define SPACE6_DIM1 (SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5)

/* 2-D dataset with easy dimension sizes */
#define SPACE7_NAME       "Space7"
#define SPACE7_RANK       2
#define SPACE7_DIM1       10
#define SPACE7_DIM2       10
#define SPACE7_FILL       254
#define SPACE7_CHUNK_DIM1 5
#define SPACE7_CHUNK_DIM2 5
#define SPACE7_NPOINTS    8

/* 4-D dataset with fixed dimensions */
#define SPACE8_NAME "Space8"
#define SPACE8_RANK 4
#define SPACE8_DIM1 11
#define SPACE8_DIM2 13
#define SPACE8_DIM3 17
#define SPACE8_DIM4 19

/* Another 2-D dataset with easy dimension sizes */
#define SPACE9_RANK 2
#define SPACE9_DIM1 12
#define SPACE9_DIM2 12

/* Element selection information */
#define POINT1_NPOINTS 10

/* Chunked dataset information */
#define DATASETNAME "ChunkArray"
#define NX_SUB      87 /* hyperslab dimensions */
#define NY_SUB      61
#define NZ_SUB      181
#define NX          87 /* output buffer dimensions */
#define NY          61
#define NZ          181
#define RANK_F      3  /* File dataspace rank */
#define RANK_M      3  /* Memory dataspace rank */
#define X           87 /* dataset dimensions */
#define Y           61
#define Z           181
#define CHUNK_X     87 /* chunk dimensions */
#define CHUNK_Y     61
#define CHUNK_Z     181

/* Basic chunk size */
#define SPACE10_DIM1       180
#define SPACE10_CHUNK_SIZE 12

/* Information for bounds checking test */
#define SPACE11_RANK    2
#define SPACE11_DIM1    100
#define SPACE11_DIM2    100
#define SPACE11_NPOINTS 4

/* Information for offsets w/chunks test #2 */
#define SPACE12_RANK       1
#define SPACE12_DIM0       25
#define SPACE12_CHUNK_DIM0 5

/* Information for Space rebuild test */
#define SPACERE1_RANK 1
#define SPACERE1_DIM0 20
#define SPACERE2_RANK 2
#define SPACERE2_DIM0 8
#define SPACERE2_DIM1 12
#define SPACERE3_RANK 3
#define SPACERE3_DIM0 8
#define SPACERE3_DIM1 12
#define SPACERE3_DIM2 8
#define SPACERE4_RANK 4
#define SPACERE4_DIM0 8
#define SPACERE4_DIM1 12
#define SPACERE4_DIM2 8
#define SPACERE4_DIM3 12
#define SPACERE5_RANK 5
#define SPACERE5_DIM0 8
#define SPACERE5_DIM1 12
#define SPACERE5_DIM2 8
#define SPACERE5_DIM3 12
#define SPACERE5_DIM4 8

/* Information for Space update diminfo test */
#define SPACEUD1_DIM0 20
#define SPACEUD3_DIM0 9
#define SPACEUD3_DIM1 12
#define SPACEUD3_DIM2 13

/* #defines for shape same / different rank tests */
#define SS_DR_MAX_RANK 5

/* Information for regular hyperslab query test */
#define SPACE13_RANK    3
#define SPACE13_DIM1    50
#define SPACE13_DIM2    50
#define SPACE13_DIM3    50
#define SPACE13_NPOINTS 4

/* Information for testing selection iterators */
#define SEL_ITER_MAX_SEQ 256

/* Defines for test_hyper_io_1d() */
#define DNAME        "DSET_1D"
#define RANK         1
#define NUMCHUNKS    3
#define CHUNKSZ      20
#define NUM_ELEMENTS NUMCHUNKS *CHUNKSZ

/* Location comparison function */
static int compare_size_t(const void *s1, const void *s2);

static herr_t test_select_hyper_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
                                      void *operator_data);
static herr_t test_select_point_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
                                      void *operator_data);
static herr_t test_select_all_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
                                    void *operator_data);
static herr_t test_select_none_iter1(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
                                     void *operator_data);
static herr_t test_select_hyper_iter2(void *_elem, hid_t type_id, unsigned ndim, const hsize_t *point,
                                      void *_operator_data);
static herr_t test_select_hyper_iter3(void *elem, hid_t type_id, unsigned ndim, const hsize_t *point,
                                      void *operator_data);

/****************************************************************
**
**  test_select_hyper_iter1(): Iterator for checking hyperslab iteration
**
****************************************************************/
static herr_t
test_select_hyper_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
                        const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
{
    uint8_t *tbuf = (uint8_t *)_elem,           /* temporary buffer pointer */
        **tbuf2   = (uint8_t **)_operator_data; /* temporary buffer handle */

    if (*tbuf != **tbuf2)
        return (-1);
    else {
        (*tbuf2)++;
        return (0);
    }
} /* end test_select_hyper_iter1() */

/****************************************************************
**
**  test_select_hyper(): Test basic H5S (dataspace) selection code.
**      Tests hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper(hid_t xfer_plist)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t  dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE1_RANK];  /* Block size of hyperslab */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf;                    /* temporary buffer pointer */
    int         i, j;             /* Counters */
    herr_t      ret;              /* Generic return value        */
    H5S_class_t ext_type;         /* Extent type */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Verify extent type */
    ext_type = H5Sget_simple_extent_type(sid1);
    VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");

    /* Test selecting stride==0 to verify failure */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 0;
    stride[1] = 0;
    stride[2] = 0;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sselect_hyperslab");

    /* Test selecting stride<block to verify failure */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 2;
    block[1]  = 2;
    block[2]  = 2;
    H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 15x26 hyperslab for memory dataset */
    start[0]  = 15;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Exercise checks for NULL buffer and valid selection */
    H5E_BEGIN_TRY { ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Dwrite");
    H5E_BEGIN_TRY { ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 0x26 hyperslab to OR into current selection (should be a NOOP) */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 0;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Exercise checks for NULL buffer and valid selection */
    H5E_BEGIN_TRY { ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, NULL); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Dread");
    H5E_BEGIN_TRY { ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, NULL); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Dread");

    /* Check that the values match with a dataset iterator */
    tbuf = wbuf + (15 * SPACE2_DIM2);
    ret  = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_hyper_iter1, &tbuf);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper() */

struct pnt_iter {
    hsize_t  coord[POINT1_NPOINTS * 2][SPACE2_RANK]; /* Coordinates for point selection */
    uint8_t *buf;                                    /* Buffer the points are in */
    int      offset;                                 /* Which point we are looking at */
};

/****************************************************************
**
**  test_select_point_iter1(): Iterator for checking point iteration
**  (This is really ugly code, not a very good example of correct usage - QAK)
**
****************************************************************/
static herr_t
test_select_point_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
                        const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
{
    uint8_t *        elem = (uint8_t *)_elem; /* Pointer to the element to examine */
    uint8_t *        tmp;                     /* temporary ptr to element in operator data */
    struct pnt_iter *pnt_info = (struct pnt_iter *)_operator_data;

    tmp = pnt_info->buf + (pnt_info->coord[pnt_info->offset][0] * SPACE2_DIM2) +
          pnt_info->coord[pnt_info->offset][1];
    if (*elem != *tmp)
        return (-1);
    else {
        pnt_info->offset++;
        return (0);
    }
} /* end test_select_point_iter1() */

/****************************************************************
**
**  test_select_point(): Test basic H5S (dataspace) selection code.
**      Tests element selections between dataspaces of various sizes
**      and dimensionalities.
**
****************************************************************/
static void
test_select_point(hid_t xfer_plist)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t  dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  coord1[POINT1_NPOINTS][SPACE1_RANK];      /* Coordinates for point selection */
    hsize_t  temp_coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
    hsize_t  coord2[POINT1_NPOINTS][SPACE2_RANK];      /* Coordinates for point selection */
    hsize_t  temp_coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
    hsize_t  coord3[POINT1_NPOINTS][SPACE3_RANK];      /* Coordinates for point selection */
    hsize_t  temp_coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
    uint8_t *wbuf,                                     /* buffer to write to disk */
        *rbuf,                                         /* buffer read from disk */
        *tbuf;                                         /* temporary buffer pointer */
    int             i, j;                              /* Counters */
    struct pnt_iter pi;                                /* Custom Pointer iterator struct */
    herr_t          ret;                               /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Element Selection Functions\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for write buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for disk dataset */
    coord1[0][0] = 0;
    coord1[0][1] = 10;
    coord1[0][2] = 5;
    coord1[1][0] = 1;
    coord1[1][1] = 2;
    coord1[1][2] = 7;
    coord1[2][0] = 2;
    coord1[2][1] = 4;
    coord1[2][2] = 9;
    coord1[3][0] = 0;
    coord1[3][1] = 6;
    coord1[3][2] = 11;
    coord1[4][0] = 1;
    coord1[4][1] = 8;
    coord1[4][2] = 13;
    coord1[5][0] = 2;
    coord1[5][1] = 12;
    coord1[5][2] = 0;
    coord1[6][0] = 0;
    coord1[6][1] = 14;
    coord1[6][2] = 2;
    coord1[7][0] = 1;
    coord1[7][1] = 0;
    coord1[7][2] = 4;
    coord1[8][0] = 2;
    coord1[8][1] = 1;
    coord1[8][2] = 6;
    coord1[9][0] = 0;
    coord1[9][1] = 3;
    coord1[9][2] = 8;
    ret          = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Verify correct elements selected */
    H5Sget_select_elem_pointlist(sid1, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord1);
    for (i = 0; i < POINT1_NPOINTS; i++) {
        VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist");
    } /* end for */

    ret = (int)H5Sget_select_npoints(sid1);
    VERIFY(ret, 10, "H5Sget_select_npoints");

    /* Append another sequence of ten points to disk dataset */
    coord1[0][0] = 0;
    coord1[0][1] = 2;
    coord1[0][2] = 0;
    coord1[1][0] = 1;
    coord1[1][1] = 10;
    coord1[1][2] = 8;
    coord1[2][0] = 2;
    coord1[2][1] = 8;
    coord1[2][2] = 10;
    coord1[3][0] = 0;
    coord1[3][1] = 7;
    coord1[3][2] = 12;
    coord1[4][0] = 1;
    coord1[4][1] = 3;
    coord1[4][2] = 11;
    coord1[5][0] = 2;
    coord1[5][1] = 1;
    coord1[5][2] = 1;
    coord1[6][0] = 0;
    coord1[6][1] = 13;
    coord1[6][2] = 7;
    coord1[7][0] = 1;
    coord1[7][1] = 14;
    coord1[7][2] = 6;
    coord1[8][0] = 2;
    coord1[8][1] = 2;
    coord1[8][2] = 5;
    coord1[9][0] = 0;
    coord1[9][1] = 6;
    coord1[9][2] = 13;
    ret = H5Sselect_elements(sid1, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Verify correct elements selected */
    H5Sget_select_elem_pointlist(sid1, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS,
                                 (hsize_t *)temp_coord1);
    for (i = 0; i < POINT1_NPOINTS; i++) {
        VERIFY(temp_coord1[i][0], coord1[i][0], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord1[i][1], coord1[i][1], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord1[i][2], coord1[i][2], "H5Sget_select_elem_pointlist");
    } /* end for */

    ret = (int)H5Sget_select_npoints(sid1);
    VERIFY(ret, 20, "H5Sget_select_npoints");

    /* Select sequence of ten points for memory dataset */
    coord2[0][0] = 12;
    coord2[0][1] = 3;
    coord2[1][0] = 15;
    coord2[1][1] = 13;
    coord2[2][0] = 7;
    coord2[2][1] = 25;
    coord2[3][0] = 0;
    coord2[3][1] = 6;
    coord2[4][0] = 13;
    coord2[4][1] = 0;
    coord2[5][0] = 24;
    coord2[5][1] = 11;
    coord2[6][0] = 12;
    coord2[6][1] = 21;
    coord2[7][0] = 29;
    coord2[7][1] = 4;
    coord2[8][0] = 8;
    coord2[8][1] = 8;
    coord2[9][0] = 19;
    coord2[9][1] = 17;
    ret          = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Verify correct elements selected */
    H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2);
    for (i = 0; i < POINT1_NPOINTS; i++) {
        VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist");
    } /* end for */

    /* Save points for later iteration */
    /* (these are in the second half of the buffer, because we are prepending */
    /*  the next list of points to the beginning of the point selection list) */
    HDmemcpy(((char *)pi.coord) + sizeof(coord2), coord2, sizeof(coord2));

    ret = (int)H5Sget_select_npoints(sid2);
    VERIFY(ret, 10, "H5Sget_select_npoints");

    /* Append another sequence of ten points to memory dataset */
    coord2[0][0] = 24;
    coord2[0][1] = 0;
    coord2[1][0] = 2;
    coord2[1][1] = 25;
    coord2[2][0] = 13;
    coord2[2][1] = 17;
    coord2[3][0] = 8;
    coord2[3][1] = 3;
    coord2[4][0] = 29;
    coord2[4][1] = 4;
    coord2[5][0] = 11;
    coord2[5][1] = 14;
    coord2[6][0] = 5;
    coord2[6][1] = 22;
    coord2[7][0] = 12;
    coord2[7][1] = 2;
    coord2[8][0] = 21;
    coord2[8][1] = 12;
    coord2[9][0] = 9;
    coord2[9][1] = 18;
    ret = H5Sselect_elements(sid2, H5S_SELECT_PREPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Verify correct elements selected */
    H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord2);
    for (i = 0; i < POINT1_NPOINTS; i++) {
        VERIFY(temp_coord2[i][0], coord2[i][0], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord2[i][1], coord2[i][1], "H5Sget_select_elem_pointlist");
    } /* end for */

    ret = (int)H5Sget_select_npoints(sid2);
    VERIFY(ret, 20, "H5Sget_select_npoints");

    /* Save points for later iteration */
    HDmemcpy(pi.coord, coord2, sizeof(coord2));

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of points for read dataset */
    coord3[0][0] = 0;
    coord3[0][1] = 2;
    coord3[1][0] = 4;
    coord3[1][1] = 8;
    coord3[2][0] = 13;
    coord3[2][1] = 13;
    coord3[3][0] = 14;
    coord3[3][1] = 20;
    coord3[4][0] = 7;
    coord3[4][1] = 9;
    coord3[5][0] = 2;
    coord3[5][1] = 0;
    coord3[6][0] = 9;
    coord3[6][1] = 19;
    coord3[7][0] = 1;
    coord3[7][1] = 22;
    coord3[8][0] = 12;
    coord3[8][1] = 21;
    coord3[9][0] = 11;
    coord3[9][1] = 6;
    ret          = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Verify correct elements selected */
    H5Sget_select_elem_pointlist(sid2, (hsize_t)0, (hsize_t)POINT1_NPOINTS, (hsize_t *)temp_coord3);
    for (i = 0; i < POINT1_NPOINTS; i++) {
        VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist");
    } /* end for */

    ret = (int)H5Sget_select_npoints(sid2);
    VERIFY(ret, 10, "H5Sget_select_npoints");

    /* Append another sequence of ten points to disk dataset */
    coord3[0][0] = 14;
    coord3[0][1] = 25;
    coord3[1][0] = 0;
    coord3[1][1] = 0;
    coord3[2][0] = 11;
    coord3[2][1] = 11;
    coord3[3][0] = 5;
    coord3[3][1] = 14;
    coord3[4][0] = 3;
    coord3[4][1] = 5;
    coord3[5][0] = 2;
    coord3[5][1] = 2;
    coord3[6][0] = 7;
    coord3[6][1] = 13;
    coord3[7][0] = 9;
    coord3[7][1] = 16;
    coord3[8][0] = 12;
    coord3[8][1] = 22;
    coord3[9][0] = 13;
    coord3[9][1] = 9;
    ret = H5Sselect_elements(sid2, H5S_SELECT_APPEND, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Verify correct elements selected */
    H5Sget_select_elem_pointlist(sid2, (hsize_t)POINT1_NPOINTS, (hsize_t)POINT1_NPOINTS,
                                 (hsize_t *)temp_coord3);
    for (i = 0; i < POINT1_NPOINTS; i++) {
        VERIFY(temp_coord3[i][0], coord3[i][0], "H5Sget_select_elem_pointlist");
        VERIFY(temp_coord3[i][1], coord3[i][1], "H5Sget_select_elem_pointlist");
    } /* end for */
    ret = (int)H5Sget_select_npoints(sid2);
    VERIFY(ret, 20, "H5Sget_select_npoints");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the values match with a dataset iterator */
    pi.buf    = wbuf;
    pi.offset = 0;
    ret       = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_point_iter1, &pi);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_point() */

/****************************************************************
**
**  test_select_all_iter1(): Iterator for checking all iteration
**
**
****************************************************************/
static herr_t
test_select_all_iter1(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
                      const hsize_t H5_ATTR_UNUSED *point, void *_operator_data)
{
    uint8_t *tbuf = (uint8_t *)_elem,           /* temporary buffer pointer */
        **tbuf2   = (uint8_t **)_operator_data; /* temporary buffer handle */

    if (*tbuf != **tbuf2)
        return (-1);
    else {
        (*tbuf2)++;
        return (0);
    }
} /* end test_select_all_iter1() */

/****************************************************************
**
**  test_select_none_iter1(): Iterator for checking none iteration
**      (This is never supposed to be called, so it always returns -1)
**
****************************************************************/
static herr_t
test_select_none_iter1(void H5_ATTR_UNUSED *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned H5_ATTR_UNUSED ndim,
                       const hsize_t H5_ATTR_UNUSED *point, void H5_ATTR_UNUSED *_operator_data)
{
    return (-1);
} /* end test_select_none_iter1() */

/****************************************************************
**
**  test_select_all(): Test basic H5S (dataspace) selection code.
**      Tests "all" selections.
**
****************************************************************/
static void
test_select_all(hid_t xfer_plist)
{
    hid_t    fid1;    /* HDF5 File IDs        */
    hid_t    dataset; /* Dataset ID            */
    hid_t    sid1;    /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
    uint8_t *wbuf,        /* buffer to write to disk */
        *rbuf,            /* buffer read from disk */
        *tbuf;            /* temporary buffer pointer */
    int         i, j, k;  /* Counters */
    herr_t      ret;      /* Generic return value        */
    H5S_class_t ext_type; /* Extent type */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing 'All' Selection Functions\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++)
        for (j = 0; j < SPACE4_DIM2; j++)
            for (k = 0; k < SPACE4_DIM3; k++)
                *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE4_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Verify extent type */
    ext_type = H5Sget_simple_extent_type(sid1);
    VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the values match with a dataset iterator */
    tbuf = wbuf;
    ret  = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid1, test_select_all_iter1, &tbuf);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_all() */

/****************************************************************
**
**  test_select_all_hyper(): Test basic H5S (dataspace) selection code.
**      Tests "all" and hyperslab selections.
**
****************************************************************/
static void
test_select_all_hyper(hid_t xfer_plist)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE1_RANK];  /* Block size of hyperslab */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf;                    /* temporary buffer pointer */
    int         i, j;             /* Counters */
    herr_t      ret;              /* Generic return value        */
    H5S_class_t ext_type;         /* Extent type */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing 'All' Selection Functions\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE3_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Verify extent type */
    ext_type = H5Sget_simple_extent_type(sid1);
    VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");

    /* Select entire 15x26 extent for disk dataset */
    ret = H5Sselect_all(sid1);
    CHECK(ret, FAIL, "H5Sselect_all");

    /* Select 15x26 hyperslab for memory dataset */
    start[0]  = 15;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select no extent for disk dataset */
    ret = H5Sselect_none(sid1);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Read selection from disk (should fail with no selection defined) */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
    VERIFY(ret, FAIL, "H5Dread");

    /* Select entire 15x26 extent for disk dataset */
    ret = H5Sselect_all(sid1);
    CHECK(ret, FAIL, "H5Sselect_all");

    /* Read selection from disk (should work now) */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the values match with a dataset iterator */
    tbuf = wbuf + (15 * SPACE2_DIM2);
    ret  = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_all_iter1, &tbuf);
    CHECK(ret, FAIL, "H5Diterate");

    /* A quick check to make certain that iterating through a "none" selection works */
    ret = H5Sselect_none(sid2);
    CHECK(ret, FAIL, "H5Sselect_none");
    ret = H5Diterate(rbuf, H5T_NATIVE_UCHAR, sid2, test_select_none_iter1, &tbuf);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_all_hyper() */

/****************************************************************
**
**  test_select_combo(): Test basic H5S (dataspace) selection code.
**      Tests combinations of element and hyperslab selections between
**      dataspaces of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_combo(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t  dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
    hsize_t  start[SPACE1_RANK];                  /* Starting location of hyperslab */
    hsize_t  stride[SPACE1_RANK];                 /* Stride of hyperslab */
    hsize_t  count[SPACE1_RANK];                  /* Element count of hyperslab */
    hsize_t  block[SPACE1_RANK];                  /* Block size of hyperslab */
    uint8_t *wbuf,                                /* buffer to write to disk */
        *rbuf,                                    /* buffer read from disk */
        *tbuf,                                    /* temporary buffer pointer */
        *tbuf2;                                   /* temporary buffer pointer */
    int    i, j;                                  /* Counters */
    herr_t ret;                                   /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Combination of Hyperslab & Element Selection Functions\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for write buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for disk dataset */
    coord1[0][0] = 0;
    coord1[0][1] = 10;
    coord1[0][2] = 5;
    coord1[1][0] = 1;
    coord1[1][1] = 2;
    coord1[1][2] = 7;
    coord1[2][0] = 2;
    coord1[2][1] = 4;
    coord1[2][2] = 9;
    coord1[3][0] = 0;
    coord1[3][1] = 6;
    coord1[3][2] = 11;
    coord1[4][0] = 1;
    coord1[4][1] = 8;
    coord1[4][2] = 13;
    coord1[5][0] = 2;
    coord1[5][1] = 12;
    coord1[5][2] = 0;
    coord1[6][0] = 0;
    coord1[6][1] = 14;
    coord1[6][2] = 2;
    coord1[7][0] = 1;
    coord1[7][1] = 0;
    coord1[7][2] = 4;
    coord1[8][0] = 2;
    coord1[8][1] = 1;
    coord1[8][2] = 6;
    coord1[9][0] = 0;
    coord1[9][1] = 3;
    coord1[9][2] = 8;
    ret          = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Select 1x10 hyperslab for writing memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 10x1 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < POINT1_NPOINTS; i++) {
        tbuf  = wbuf + i;
        tbuf2 = rbuf + (i * SPACE3_DIM2);
        if (*tbuf != *tbuf2)
            TestErrPrintf("element values don't match!, i=%d\n", i);
    } /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_combo() */

static int
compare_size_t(const void *s1, const void *s2)
{
    if (*(const size_t *)s1 < *(const size_t *)s2)
        return (-1);
    else if (*(const size_t *)s1 > *(const size_t *)s2)
        return (1);
    else
        return (0);
}

/****************************************************************
**
**  test_select_hyper_stride(): Test H5S (dataspace) selection code.
**      Tests strided hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_stride(hid_t xfer_plist)
{
    hid_t     fid1;       /* HDF5 File IDs        */
    hid_t     dataset;    /* Dataset ID            */
    hid_t     sid1, sid2; /* Dataspace ID            */
    hsize_t   dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t   dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t   dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t   start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t   stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t   count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t   block[SPACE1_RANK];  /* Block size of hyperslab */
    uint16_t *wbuf,                /* buffer to write to disk */
        *rbuf,                     /* buffer read from disk */
        *tbuf,                     /* temporary buffer pointer */
        *tbuf2;                    /* temporary buffer pointer */
    size_t loc1[72] = {
        /* Gruesomely ugly way to make certain hyperslab locations are checked correctly */
        27,  28,  29,  53,  54,  55,  79,  80,  81,  /* Block #1 */
        32,  33,  34,  58,  59,  60,  84,  85,  86,  /* Block #2 */
        157, 158, 159, 183, 184, 185, 209, 210, 211, /* Block #3 */
        162, 163, 164, 188, 189, 190, 214, 215, 216, /* Block #4 */
        287, 288, 289, 313, 314, 315, 339, 340, 341, /* Block #5 */
        292, 293, 294, 318, 319, 320, 344, 345, 346, /* Block #6 */
        417, 418, 419, 443, 444, 445, 469, 470, 471, /* Block #7 */
        422, 423, 424, 448, 449, 450, 474, 475, 476, /* Block #8 */
    };
    size_t loc2[72] = {
        0,   1,   2,   26,  27,  28,  /* Block #1 */
        4,   5,   6,   30,  31,  32,  /* Block #2 */
        8,   9,   10,  34,  35,  36,  /* Block #3 */
        12,  13,  14,  38,  39,  40,  /* Block #4 */
        104, 105, 106, 130, 131, 132, /* Block #5 */
        108, 109, 110, 134, 135, 136, /* Block #6 */
        112, 113, 114, 138, 139, 140, /* Block #7 */
        116, 117, 118, 142, 143, 144, /* Block #8 */
        208, 209, 210, 234, 235, 236, /* Block #9 */
        212, 213, 214, 238, 239, 240, /* Block #10 */
        216, 217, 218, 242, 243, 244, /* Block #11 */
        220, 221, 222, 246, 247, 248, /* Block #12 */
    };
    int    i, j; /* Counters */
    herr_t ret;  /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));

    /* Allocate write & read buffers */
    wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 2;
    stride[1] = 4;
    stride[2] = 3;
    count[0]  = 2;
    count[1]  = 3;
    count[2]  = 3;
    block[0]  = 1;
    block[1]  = 2;
    block[2]  = 2;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
    start[0]  = 1;
    start[1]  = 1;
    stride[0] = 5;
    stride[1] = 5;
    count[0]  = 4;
    count[1]  = 2;
    block[0]  = 3;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 4;
    stride[1] = 4;
    count[0]  = 3;
    count[1]  = 4;
    block[0]  = 2;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Sort the locations into the proper order */
    HDqsort(loc1, (size_t)72, sizeof(size_t), compare_size_t);
    HDqsort(loc2, (size_t)72, sizeof(size_t), compare_size_t);
    /* Compare data read with data written out */
    for (i = 0; i < 72; i++) {
        tbuf  = wbuf + loc1[i];
        tbuf2 = rbuf + loc2[i];
        if (*tbuf != *tbuf2) {
            HDprintf("%d: hyperslab values don't match!, loc1[%d]=%d, loc2[%d]=%d\n", __LINE__, i,
                     (int)loc1[i], i, (int)loc2[i]);
            HDprintf("wbuf=%p, tbuf=%p, rbuf=%p, tbuf2=%p\n", (void *)wbuf, (void *)tbuf, (void *)rbuf,
                     (void *)tbuf2);
            TestErrPrintf("*tbuf=%u, *tbuf2=%u\n", (unsigned)*tbuf, (unsigned)*tbuf2);
        } /* end if */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_stride() */

/****************************************************************
**
**  test_select_hyper_contig(): Test H5S (dataspace) selection code.
**      Tests contiguous hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_contig(hid_t dset_type, hid_t xfer_plist)
{
    hid_t     fid1;       /* HDF5 File IDs        */
    hid_t     dataset;    /* Dataset ID            */
    hid_t     sid1, sid2; /* Dataspace ID            */
    hsize_t   dims2[] = {SPACE2_DIM2, SPACE2_DIM1};
    hsize_t   start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t   stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t   count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t   block[SPACE1_RANK];  /* Block size of hyperslab */
    uint16_t *wbuf,                /* buffer to write to disk */
        *rbuf,                     /* buffer read from disk */
        *tbuf;                     /* temporary buffer pointer */
    int    i, j;                   /* Counters */
    herr_t ret;                    /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Contiguous Hyperslabs Functionality\n"));

    /* Allocate write & read buffers */
    wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 12x10 count with a stride of 1x3 & 3x3 block hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 3;
    count[0]  = 12;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 4x5 count with a stride of 3x6 & 3x6 block hyperslab for memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 3;
    stride[1] = 6;
    count[0]  = 4;
    count[1]  = 5;
    block[0]  = 3;
    block[1]  = 6;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 6x5 count with a stride of 2x6 & 2x6 block hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 2;
    stride[1] = 6;
    count[0]  = 6;
    count[1]  = 5;
    block[0]  = 2;
    block[1]  = 6;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 3x15 count with a stride of 4x2 & 4x2 block hyperslab for memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 4;
    stride[1] = 2;
    count[0]  = 3;
    count[1]  = 15;
    block[0]  = 4;
    block[1]  = 2;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    if (HDmemcmp(rbuf, wbuf, sizeof(uint16_t) * 30 * 12))
        TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__);

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_contig() */

/****************************************************************
**
**  test_select_hyper_contig2(): Test H5S (dataspace) selection code.
**      Tests more contiguous hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_contig2(hid_t dset_type, hid_t xfer_plist)
{
    hid_t     fid1;       /* HDF5 File IDs        */
    hid_t     dataset;    /* Dataset ID            */
    hid_t     sid1, sid2; /* Dataspace ID            */
    hsize_t   dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
    hsize_t   start[SPACE8_RANK]; /* Starting location of hyperslab */
    hsize_t   count[SPACE8_RANK]; /* Element count of hyperslab */
    uint16_t *wbuf,               /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf;                    /* temporary buffer pointer */
    int    i, j, k, l;            /* Counters */
    herr_t ret;                   /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing More Contiguous Hyperslabs Functionality\n"));

    /* Allocate write & read buffers */
    wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t),
                                (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE8_DIM1; i++)
        for (j = 0; j < SPACE8_DIM2; j++)
            for (k = 0; k < SPACE8_DIM3; k++)
                for (l = 0; l < SPACE8_DIM4; l++)
                    *tbuf++ = (uint16_t)((i * SPACE8_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select contiguous hyperslab for disk dataset */
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select contiguous hyperslab in memory */
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select contiguous hyperslab in memory */
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select contiguous hyperslab in memory */
    start[0] = 0;
    start[1] = 0;
    start[2] = 0;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    if (HDmemcmp(rbuf, wbuf, sizeof(uint16_t) * 2 * SPACE8_DIM3 * SPACE8_DIM2 * SPACE8_DIM1))
        TestErrPrintf("Error: hyperslab values don't match!\n");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_contig2() */

/****************************************************************
**
**  test_select_hyper_contig3(): Test H5S (dataspace) selection code.
**      Tests contiguous hyperslabs of various sizes and dimensionalities.
**  This test uses a hyperslab that is contiguous in the lowest dimension,
**  not contiguous in a dimension, then has a selection across the entire next
**  dimension (which should be "flattened" out also).
**
****************************************************************/
static void
test_select_hyper_contig3(hid_t dset_type, hid_t xfer_plist)
{
    hid_t     fid1;       /* HDF5 File IDs        */
    hid_t     dataset;    /* Dataset ID            */
    hid_t     sid1, sid2; /* Dataspace ID            */
    hsize_t   dims2[] = {SPACE8_DIM4, SPACE8_DIM3, SPACE8_DIM2, SPACE8_DIM1};
    hsize_t   start[SPACE8_RANK]; /* Starting location of hyperslab */
    hsize_t   count[SPACE8_RANK]; /* Element count of hyperslab */
    uint16_t *wbuf,               /* Buffer to write to disk */
        *rbuf,                    /* Buffer read from disk */
        *tbuf, *tbuf2;            /* Temporary buffer pointers */
    unsigned i, j, k, l;          /* Counters */
    herr_t   ret;                 /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Yet More Contiguous Hyperslabs Functionality\n"));

    /* Allocate write & read buffers */
    wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t),
                                (size_t)(SPACE8_DIM1 * SPACE8_DIM2 * SPACE8_DIM3 * SPACE8_DIM4));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE8_DIM4; i++)
        for (j = 0; j < SPACE8_DIM3; j++)
            for (k = 0; k < SPACE8_DIM2; k++)
                for (l = 0; l < SPACE8_DIM1; l++)
                    *tbuf++ = (uint16_t)((k * SPACE8_DIM2) + l);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select semi-contiguous hyperslab for disk dataset */
    start[0] = 0;
    start[1] = 0;
    start[2] = SPACE8_DIM2 / 2;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2 / 2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select semi-contiguous hyperslab in memory */
    start[0] = 0;
    start[1] = 0;
    start[2] = SPACE8_DIM2 / 2;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2 / 2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE8_NAME, dset_type, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE8_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select semi-contiguous hyperslab in memory */
    start[0] = 0;
    start[1] = 0;
    start[2] = SPACE8_DIM2 / 2;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2 / 2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select semi-contiguous hyperslab in memory */
    start[0] = 0;
    start[1] = 0;
    start[2] = SPACE8_DIM2 / 2;
    start[3] = 0;
    count[0] = 2;
    count[1] = SPACE8_DIM3;
    count[2] = SPACE8_DIM2 / 2;
    count[3] = SPACE8_DIM1;
    ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, xfer_plist, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0, tbuf = wbuf, tbuf2 = rbuf; i < SPACE8_DIM4; i++)
        for (j = 0; j < SPACE8_DIM3; j++)
            for (k = 0; k < SPACE8_DIM2; k++)
                for (l = 0; l < SPACE8_DIM1; l++, tbuf++, tbuf2++)
                    if ((i >= start[0] && i < (start[0] + count[0])) &&
                        (j >= start[1] && j < (start[1] + count[1])) &&
                        (k >= start[2] && k < (start[2] + count[2])) &&
                        (l >= start[3] && l < (start[3] + count[3]))) {
                        if (*tbuf != *tbuf2) {
                            HDprintf("Error: hyperslab values don't match!\n");
                            TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__,
                                          i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2);
                        } /* end if */
                    }     /* end if */
                    else {
                        if (*tbuf2 != 0) {
                            HDprintf("Error: invalid data in read buffer!\n");
                            TestErrPrintf("Line: %d, i=%u, j=%u, k=%u, l=%u, *tbuf=%u,*tbuf2=%u\n", __LINE__,
                                          i, j, k, l, (unsigned)*tbuf, (unsigned)*tbuf2);
                        } /* end if */
                    }     /* end else */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_contig3() */

/****************************************************************
**
**  verify_select_hyper_contig_dr__run_test(): Verify data from
**      test_select_hyper_contig_dr__run_test()
**
****************************************************************/
static void
verify_select_hyper_contig_dr__run_test(const uint16_t *cube_buf, size_t H5_ATTR_NDEBUG_UNUSED cube_size,
                                        unsigned edge_size, unsigned cube_rank)
{
    const uint16_t *cube_ptr;       /* Pointer into the cube buffer */
    uint16_t        expected_value; /* Expected value in dataset */
    unsigned        i, j, k, l, m;  /* Local index variables */
    size_t          s;              /* Local index variable */
    hbool_t         mis_match;      /* Flag to indicate mis-match in expected value */

    HDassert(cube_buf);
    HDassert(cube_size > 0);

    expected_value = 0;
    mis_match      = FALSE;
    cube_ptr       = cube_buf;
    s              = 0;
    i              = 0;
    do {
        j = 0;
        do {
            k = 0;
            do {
                l = 0;
                do {
                    m = 0;
                    do {
                        /* Sanity check */
                        HDassert(s < cube_size);

                        /* Check for correct value */
                        if (*cube_ptr != expected_value)
                            mis_match = TRUE;

                        /* Advance to next element */
                        cube_ptr++;
                        expected_value++;
                        s++;
                        m++;
                    } while ((cube_rank > 0) && (m < edge_size));
                    l++;
                } while ((cube_rank > 1) && (l < edge_size));
                k++;
            } while ((cube_rank > 2) && (k < edge_size));
            j++;
        } while ((cube_rank > 3) && (j < edge_size));
        i++;
    } while ((cube_rank > 4) && (i < edge_size));
    if (mis_match)
        TestErrPrintf("Initial cube data don't match! Line = %d\n", __LINE__);
} /* verify_select_hyper_contig_dr__run_test() */

/****************************************************************
**
**  test_select_hyper_contig_dr__run_test(): Test H5S (dataspace)
**  selection code with contiguous source and target having
**  different ranks but the same shape.  We have already
**  tested H5Sselect_shape_same in isolation, so now we try to do
**  I/O.
**
****************************************************************/
static void
test_select_hyper_contig_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf,
                                      unsigned edge_size, unsigned chunk_edge_size, unsigned small_rank,
                                      unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
{
    hbool_t   mis_match;                        /* Flag indicating a value read in wasn't what was expected */
    hid_t     fapl;                             /* File access property list */
    hid_t     fid1;                             /* File ID */
    hid_t     small_cube_sid;                   /* Dataspace ID for small cube in memory & file */
    hid_t     mem_large_cube_sid;               /* Dataspace ID for large cube in memory */
    hid_t     file_large_cube_sid;              /* Dataspace ID for large cube in file */
    hid_t     small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
    hid_t     large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
    hid_t     small_cube_dataset;               /* Dataset ID */
    hid_t     large_cube_dataset;               /* Dataset ID */
    size_t    start_index;                      /* Offset within buffer to begin inspecting */
    size_t    stop_index;                       /* Offset within buffer to end inspecting */
    uint16_t  expected_value;                   /* Expected value in dataset */
    uint16_t *small_cube_buf_1;                 /* Buffer for small cube data */
    uint16_t *large_cube_buf_1;                 /* Buffer for large cube data */
    uint16_t *ptr_1;                            /* Temporary pointer into cube data */
    hsize_t   dims[SS_DR_MAX_RANK];             /* Dataspace dimensions */
    hsize_t   start[SS_DR_MAX_RANK];            /* Shared hyperslab start offset */
    hsize_t   stride[SS_DR_MAX_RANK];           /* Shared hyperslab stride */
    hsize_t   count[SS_DR_MAX_RANK];            /* Shared hyperslab count */
    hsize_t   block[SS_DR_MAX_RANK];            /* Shared hyperslab block size */
    hsize_t * start_ptr;                        /* Actual hyperslab start offset */
    hsize_t * stride_ptr;                       /* Actual hyperslab stride */
    hsize_t * count_ptr;                        /* Actual hyperslab count */
    hsize_t * block_ptr;                        /* Actual hyperslab block size */
    size_t    small_cube_size;                  /* Number of elements in small cube */
    size_t    large_cube_size;                  /* Number of elements in large cube */
    unsigned  u, v, w, x;                       /* Local index variables */
    size_t    s;                                /* Local index variable */
    htri_t    check;                            /* Shape comparison return value */
    herr_t    ret;                              /* Generic return value */

    MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
    MESSAGE(7, ("\tranks = %u/%u, edge_size = %u, chunk_edge_size = %u.\n", small_rank, large_rank, edge_size,
                chunk_edge_size));

    HDassert(edge_size >= 6);
    HDassert(edge_size >= chunk_edge_size);
    HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
    HDassert(small_rank > 0);
    HDassert(small_rank < large_rank);
    HDassert(large_rank <= SS_DR_MAX_RANK);

    /* Compute cube sizes */
    small_cube_size = large_cube_size = (size_t)1;
    for (u = 0; u < large_rank; u++) {
        if (u < small_rank)
            small_cube_size *= (size_t)edge_size;

        large_cube_size *= (size_t)edge_size;
    } /* end for */

    HDassert(large_cube_size < (size_t)UINT_MAX);

    /* set up the start, stride, count, and block pointers */
    start_ptr  = &(start[SS_DR_MAX_RANK - large_rank]);
    stride_ptr = &(stride[SS_DR_MAX_RANK - large_rank]);
    count_ptr  = &(count[SS_DR_MAX_RANK - large_rank]);
    block_ptr  = &(block[SS_DR_MAX_RANK - large_rank]);

    /* Allocate buffers */
    small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size);
    CHECK_PTR(small_cube_buf_1, "HDcalloc");
    large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size);
    CHECK_PTR(large_cube_buf_1, "HDcalloc");

    /* Create a dataset transfer property list */
    fapl = H5Pcreate(H5P_FILE_ACCESS);
    CHECK(fapl, FAIL, "H5Pcreate");

    /* Use the 'core' VFD for this test */
    ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
    CHECK(ret, FAIL, "H5Pset_fapl_core");

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Close file access property list */
    ret = H5Pclose(fapl);
    CHECK(ret, FAIL, "H5Pclose");

    /* setup dims: */
    dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = (hsize_t)edge_size;

    /* Create small cube dataspaces */
    small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
    CHECK(small_cube_sid, FAIL, "H5Screate_simple");

    /* Create large cube dataspace */
    mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
    CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");
    file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
    CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");

    /* if chunk edge size is greater than zero, set up the small and
     * large data set creation property lists to specify chunked
     * datasets.
     */
    if (chunk_edge_size > 0) {
        hsize_t chunk_dims[SS_DR_MAX_RANK]; /* Chunk dimensions */

        chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] =
            (hsize_t)chunk_edge_size;

        small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
        CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");

        ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
        CHECK(ret, FAIL, "H5Pset_layout");

        ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
        CHECK(ret, FAIL, "H5Pset_chunk");

        large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
        CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");

        ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
        CHECK(ret, FAIL, "H5Pset_layout");

        ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
        CHECK(ret, FAIL, "H5Pset_chunk");
    } /* end if */

    /* create the small cube dataset */
    small_cube_dataset = H5Dcreate2(fid1, "small_cube_dataset", dset_type, small_cube_sid, H5P_DEFAULT,
                                    small_cube_dcpl_id, H5P_DEFAULT);
    CHECK(small_cube_dataset, FAIL, "H5Dcreate2");

    /* Close non-default small dataset DCPL */
    if (small_cube_dcpl_id != H5P_DEFAULT) {
        ret = H5Pclose(small_cube_dcpl_id);
        CHECK(ret, FAIL, "H5Pclose");
    } /* end if */

    /* create the large cube dataset */
    large_cube_dataset = H5Dcreate2(fid1, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT,
                                    large_cube_dcpl_id, H5P_DEFAULT);
    CHECK(large_cube_dataset, FAIL, "H5Dcreate2");

    /* Close non-default large dataset DCPL */
    if (large_cube_dcpl_id != H5P_DEFAULT) {
        ret = H5Pclose(large_cube_dcpl_id);
        CHECK(ret, FAIL, "H5Pclose");
    } /* end if */

    /* write initial data to the on disk datasets */
    ret =
        H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist, cube_buf);
    CHECK(ret, FAIL, "H5Dwrite");

    ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist,
                   cube_buf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* read initial data from disk and verify that it is as expected. */
    ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid, xfer_plist,
                  small_cube_buf_1);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the data is valid */
    verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank);

    ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, file_large_cube_sid, xfer_plist,
                  large_cube_buf_1);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the data is valid */
    verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank);

    /* first, verify that we can read from disk correctly using selections
     * of different rank that H5Sselect_shape_same() views as being of the
     * same shape.
     *
     * Start by reading small_rank-D slice from the on disk large cube, and
     * verifying that the data read is correct.  Verify that H5Sselect_shape_same()
     * returns true on the memory and file selections.
     */

    /* set up start, stride, count, and block -- note that we will
     * change start[] so as to read slices of the large cube.
     */
    for (u = 0; u < SS_DR_MAX_RANK; u++) {
        start[u]  = 0;
        stride[u] = 1;
        count[u]  = 1;
        if ((SS_DR_MAX_RANK - u) > small_rank)
            block[u] = 1;
        else
            block[u] = (hsize_t)edge_size;
    } /* end for */

    u = 0;
    do {
        v = 0;
        do {
            w = 0;
            do {
                x = 0;
                do {
                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */
                    start[0] = (hsize_t)u;
                    start[1] = (hsize_t)v;
                    start[2] = (hsize_t)w;
                    start[3] = (hsize_t)x;
                    start[4] = (hsize_t)0;

                    ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
                                              count_ptr, block_ptr);
                    CHECK(ret, FAIL, "H5Sselect_hyperslab");

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* Read selection from disk */
                    ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid,
                                  xfer_plist, small_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    /* verify that expected data is retrieved */
                    mis_match      = FALSE;
                    ptr_1          = small_cube_buf_1;
                    expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
                                                (v * edge_size * edge_size * edge_size) +
                                                (w * edge_size * edge_size) + (x * edge_size));
                    for (s = 0; s < small_cube_size; s++) {
                        if (*ptr_1 != expected_value)
                            mis_match = TRUE;
                        ptr_1++;
                        expected_value++;
                    } /* end for */
                    if (mis_match)
                        TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
                w++;
            } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
            v++;
        } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
        u++;
    } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));

    /* similarly, read the on disk small cube into slices through the in memory
     * large cube, and verify that the correct data (and only the correct data)
     * is read.
     */

    /* zero out the in-memory large cube */
    HDmemset(large_cube_buf_1, 0, large_cube_size * sizeof(uint16_t));

    u = 0;
    do {
        v = 0;
        do {
            w = 0;
            do {
                x = 0;
                do {
                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */
                    start[0] = (hsize_t)u;
                    start[1] = (hsize_t)v;
                    start[2] = (hsize_t)w;
                    start[3] = (hsize_t)x;
                    start[4] = (hsize_t)0;

                    ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
                                              count_ptr, block_ptr);
                    CHECK(ret, FAIL, "H5Sselect_hyperslab");

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* Read selection from disk */
                    ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid,
                                  xfer_plist, large_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    start_index = (u * edge_size * edge_size * edge_size * edge_size) +
                                  (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
                                  (x * edge_size);
                    stop_index = start_index + small_cube_size - 1;

                    HDassert(start_index < stop_index);
                    HDassert(stop_index <= large_cube_size);

                    mis_match      = FALSE;
                    ptr_1          = large_cube_buf_1;
                    expected_value = 0;
                    for (s = 0; s < start_index; s++) {
                        if (*ptr_1 != 0)
                            mis_match = TRUE;
                        ptr_1++;
                    } /* end for */
                    for (; s <= stop_index; s++) {
                        if (*ptr_1 != expected_value)
                            mis_match = TRUE;
                        expected_value++;
                        ptr_1++;
                    } /* end for */
                    for (; s < large_cube_size; s++) {
                        if (*ptr_1 != 0)
                            mis_match = TRUE;
                        ptr_1++;
                    } /* end for */
                    if (mis_match)
                        TestErrPrintf("large cube read from small cube has bad data! Line=%u\n", __LINE__);

                    /* Zero out the buffer for the next pass */
                    HDmemset(large_cube_buf_1 + start_index, 0, small_cube_size * sizeof(uint16_t));

                    x++;
                } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
                w++;
            } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
            v++;
        } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
        u++;
    } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));

    /* now we go in the opposite direction, verifying that we can write
     * from memory to file using selections of different rank that
     * H5Sselect_shape_same() views as being of the same shape.
     *
     * Start by writing small_rank D slices from the in memory large cube, to
     * the the on disk small cube dataset.  After each write, read the small
     * cube dataset back from disk, and verify that it contains the expected
     * data. Verify that H5Sselect_shape_same() returns true on the
     * memory and file selections.
     */

    u = 0;
    do {
        v = 0;
        do {
            w = 0;
            do {
                x = 0;
                do {
                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    /* zero out the on disk small cube */
                    ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid,
                                   xfer_plist, zero_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* select the portion of the in memory large cube from which we
                     * are going to write data.
                     */
                    start[0] = (hsize_t)u;
                    start[1] = (hsize_t)v;
                    start[2] = (hsize_t)w;
                    start[3] = (hsize_t)x;
                    start[4] = (hsize_t)0;

                    ret = H5Sselect_hyperslab(mem_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
                                              count_ptr, block_ptr);
                    CHECK(ret, FAIL, "H5Sselect_hyperslab");

                    /* verify that H5Sselect_shape_same() reports the in
                     * memory slice through the cube selection and the
                     * on disk full small cube selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(small_cube_sid, mem_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* write the slice from the in memory large cube to the on disk small cube */
                    ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid, small_cube_sid,
                                   xfer_plist, cube_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* read the on disk small cube into memory */
                    ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, small_cube_sid,
                                  xfer_plist, small_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    /* verify that expected data is retrieved */
                    mis_match      = FALSE;
                    ptr_1          = small_cube_buf_1;
                    expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
                                                (v * edge_size * edge_size * edge_size) +
                                                (w * edge_size * edge_size) + (x * edge_size));
                    for (s = 0; s < small_cube_size; s++) {
                        if (*ptr_1 != expected_value)
                            mis_match = TRUE;
                        expected_value++;
                        ptr_1++;
                    } /* end for */
                    if (mis_match)
                        TestErrPrintf("small cube data don't match! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
                w++;
            } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
            v++;
        } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
        u++;
    } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));

    /* Now write the contents of the in memory small cube to slices of
     * the on disk cube.  After each write, read the on disk cube
     * into memeory, and verify that it contains the expected
     * data.  Verify that H5Sselect_shape_same() returns true on
     * the memory and file selections.
     */

    /* select the entire memory and file cube dataspaces */
    ret = H5Sselect_all(mem_large_cube_sid);
    CHECK(ret, FAIL, "H5Sselect_all");

    ret = H5Sselect_all(file_large_cube_sid);
    CHECK(ret, FAIL, "H5Sselect_all");

    u = 0;
    do {
        v = 0;
        do {
            w = 0;
            do {
                x = 0;
                do {
                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    /* zero out the on disk cube */
                    ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, mem_large_cube_sid,
                                   file_large_cube_sid, xfer_plist, zero_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* select the portion of the in memory large cube to which we
                     * are going to write data.
                     */
                    start[0] = (hsize_t)u;
                    start[1] = (hsize_t)v;
                    start[2] = (hsize_t)w;
                    start[3] = (hsize_t)x;
                    start[4] = (hsize_t)0;

                    ret = H5Sselect_hyperslab(file_large_cube_sid, H5S_SELECT_SET, start_ptr, stride_ptr,
                                              count_ptr, block_ptr);
                    CHECK(ret, FAIL, "H5Sselect_hyperslab");

                    /* verify that H5Sselect_shape_same() reports the in
                     * memory full selection of the small cube and the
                     * on disk slice through the large cube selection
                     * as having the same shape.
                     */
                    check = H5Sselect_shape_same(small_cube_sid, file_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* write the cube from memory to the target slice of the disk cube */
                    ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, small_cube_sid, file_large_cube_sid,
                                   xfer_plist, cube_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* read the on disk cube into memory */
                    ret = H5Sselect_all(file_large_cube_sid);
                    CHECK(ret, FAIL, "H5Sselect_all");

                    ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
                                  file_large_cube_sid, xfer_plist, large_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    start_index = (u * edge_size * edge_size * edge_size * edge_size) +
                                  (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
                                  (x * edge_size);
                    stop_index = start_index + small_cube_size - 1;

                    HDassert(start_index < stop_index);
                    HDassert(stop_index <= large_cube_size);

                    mis_match      = FALSE;
                    ptr_1          = large_cube_buf_1;
                    expected_value = 0;
                    for (s = 0; s < start_index; s++) {
                        if (*ptr_1 != 0)
                            mis_match = TRUE;
                        ptr_1++;
                    } /* end for */
                    for (; s <= stop_index; s++) {
                        if (*ptr_1 != expected_value)
                            mis_match = TRUE;
                        expected_value++;
                        ptr_1++;
                    } /* end for */
                    for (; s < large_cube_size; s++) {
                        if (*ptr_1 != 0)
                            mis_match = TRUE;
                        ptr_1++;
                    } /* end for */
                    if (mis_match)
                        TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= 2) && (small_rank <= 1) && (x < edge_size));
                w++;
            } while ((large_rank >= 3) && (small_rank <= 2) && (w < edge_size));
            v++;
        } while ((large_rank >= 4) && (small_rank <= 3) && (v < edge_size));
        u++;
    } while ((large_rank >= 5) && (small_rank <= 4) && (u < edge_size));

    /* Close memory dataspaces */
    ret = H5Sclose(small_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(mem_large_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(file_large_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Datasets */
    ret = H5Dclose(small_cube_dataset);
    CHECK(ret, FAIL, "H5Dclose");

    ret = H5Dclose(large_cube_dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(small_cube_buf_1);
    HDfree(large_cube_buf_1);

} /* test_select_hyper_contig_dr__run_test() */

/****************************************************************
**
**  test_select_hyper_contig_dr(): Test H5S (dataspace)
**    selection code with contiguous source and target having
**    different ranks but the same shape.  We have already
**    tested H5Sselect_shape_same in isolation, so now we try to do
**    I/O.
**
****************************************************************/
static void
test_select_hyper_contig_dr(hid_t dset_type, hid_t xfer_plist)
{
    int       test_num = 0;
    unsigned  chunk_edge_size; /* Size of chunk's dataspace dimensions */
    unsigned  edge_size = 6;   /* Size of dataset's dataspace dimensions */
    unsigned  small_rank;      /* Current rank of small dataset */
    unsigned  large_rank;      /* Current rank of large dataset */
    uint16_t *cube_buf;        /* Buffer for writing cube data */
    uint16_t *zero_buf;        /* Buffer for writing zeroed cube data */
    uint16_t *cube_ptr;        /* Temporary pointer into cube data */
    unsigned  max_rank = 5;    /* Max. rank to use */
    size_t    max_cube_size;   /* Max. number of elements in largest cube */
    size_t    s;               /* Local index variable */
    unsigned  u;               /* Local index variable */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Contiguous Hyperslabs With Different Rank I/O Functionality\n"));

    /* Compute max. cube size */
    max_cube_size = (size_t)1;
    for (u = 0; u < max_rank; u++)
        max_cube_size *= (size_t)edge_size;

    /* Allocate cube buffer for writing values */
    cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size);
    CHECK_PTR(cube_buf, "HDmalloc");

    /* Initialize the cube buffer */
    cube_ptr = cube_buf;
    for (s = 0; s < max_cube_size; s++)
        *cube_ptr++ = (uint16_t)s;

    /* Allocate cube buffer for zeroing values on disk */
    zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size);
    CHECK_PTR(zero_buf, "HDcalloc");

    for (large_rank = 1; large_rank <= max_rank; large_rank++) {
        for (small_rank = 1; small_rank < large_rank; small_rank++) {
            chunk_edge_size = 0;
            test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size,
                                                  small_rank, large_rank, dset_type, xfer_plist);
            test_num++;

            chunk_edge_size = 3;
            test_select_hyper_contig_dr__run_test(test_num, cube_buf, zero_buf, edge_size, chunk_edge_size,
                                                  small_rank, large_rank, dset_type, xfer_plist);
            test_num++;
        } /* for loop on small rank */
    }     /* for loop on large rank */

    HDfree(cube_buf);
    HDfree(zero_buf);

} /* test_select_hyper_contig_dr() */

/****************************************************************
**
**  test_select_hyper_checker_board_dr__select_checker_board():
**    Given an n-cube dataspace with each edge of length
**    edge_size, and a checker_edge_size either select a checker
**    board selection of the entire cube(if sel_rank == n),
**    or select a checker board selection of a
**    sel_rank dimensional slice through n-cube parallel to the
**      sel_rank fastest changing indices, with origin (in the
**    higher indices) as indicated by the start array.
**
**    Note that this function, like all its relatives, is
**    hard coded to presume a maximum n-cube rank of 5.
**    While this maximum is declared as a constant, increasing
**    it will require extensive coding in addition to changing
**      the value of the constant.
**
**                    JRM -- 9/9/09
**
****************************************************************/
static void
test_select_hyper_checker_board_dr__select_checker_board(hid_t tgt_n_cube_sid, unsigned tgt_n_cube_rank,
                                                         unsigned edge_size, unsigned checker_edge_size,
                                                         unsigned sel_rank, hsize_t sel_start[])
{
    hbool_t  first_selection = TRUE;
    unsigned n_cube_offset;
    unsigned sel_offset;
    hsize_t  base_count;
    hsize_t  offset_count;
    hsize_t  start[SS_DR_MAX_RANK];  /* Offset of hyperslab selection */
    hsize_t  stride[SS_DR_MAX_RANK]; /* Stride of hyperslab selection */
    hsize_t  count[SS_DR_MAX_RANK];  /* Count of hyperslab selection */
    hsize_t  block[SS_DR_MAX_RANK];  /* Block size of hyperslab selection */
    unsigned i, j, k, l, m;          /* Local index variable */
    unsigned u;                      /* Local index variables */
    herr_t   ret;                    /* Generic return value */

    HDassert(edge_size >= 6);
    HDassert(0 < checker_edge_size);
    HDassert(checker_edge_size <= edge_size);
    HDassert(0 < sel_rank);
    HDassert(sel_rank <= tgt_n_cube_rank);
    HDassert(tgt_n_cube_rank <= SS_DR_MAX_RANK);

    sel_offset    = SS_DR_MAX_RANK - sel_rank;
    n_cube_offset = SS_DR_MAX_RANK - tgt_n_cube_rank;
    HDassert(n_cube_offset <= sel_offset);

    /* First, compute the base count (which assumes start == 0
     * for the associated offset) and offset_count (which
     * assumes start == checker_edge_size for the associated
     * offset).
     */
    base_count = edge_size / (checker_edge_size * 2);
    if ((edge_size % (checker_edge_size * 2)) > 0)
        base_count++;

    offset_count = (edge_size - checker_edge_size) / (checker_edge_size * 2);
    if (((edge_size - checker_edge_size) % (checker_edge_size * 2)) > 0)
        offset_count++;

    /* Now set up the stride and block arrays, and portions of the start
     * and count arrays that will not be altered during the selection of
     * the checker board.
     */
    u = 0;
    while (u < n_cube_offset) {
        /* these values should never be used */
        start[u]  = 0;
        stride[u] = 0;
        count[u]  = 0;
        block[u]  = 0;

        u++;
    } /* end while */

    while (u < sel_offset) {
        start[u]  = sel_start[u];
        stride[u] = 2 * edge_size;
        count[u]  = 1;
        block[u]  = 1;

        u++;
    } /* end while */

    while (u < SS_DR_MAX_RANK) {
        stride[u] = 2 * checker_edge_size;
        block[u]  = checker_edge_size;

        u++;
    } /* end while */

    i = 0;
    do {
        if (0 >= sel_offset) {
            if (i == 0) {
                start[0] = 0;
                count[0] = base_count;
            } /* end if */
            else {
                start[0] = checker_edge_size;
                count[0] = offset_count;
            } /* end else */
        }     /* end if */

        j = 0;
        do {
            if (1 >= sel_offset) {
                if (j == 0) {
                    start[1] = 0;
                    count[1] = base_count;
                } /* end if */
                else {
                    start[1] = checker_edge_size;
                    count[1] = offset_count;
                } /* end else */
            }     /* end if */

            k = 0;
            do {
                if (2 >= sel_offset) {
                    if (k == 0) {
                        start[2] = 0;
                        count[2] = base_count;
                    } /* end if */
                    else {
                        start[2] = checker_edge_size;
                        count[2] = offset_count;
                    } /* end else */
                }     /* end if */

                l = 0;
                do {
                    if (3 >= sel_offset) {
                        if (l == 0) {
                            start[3] = 0;
                            count[3] = base_count;
                        } /* end if */
                        else {
                            start[3] = checker_edge_size;
                            count[3] = offset_count;
                        } /* end else */
                    }     /* end if */

                    m = 0;
                    do {
                        if (4 >= sel_offset) {
                            if (m == 0) {
                                start[4] = 0;
                                count[4] = base_count;
                            } /* end if */
                            else {
                                start[4] = checker_edge_size;
                                count[4] = offset_count;
                            } /* end else */
                        }     /* end if */

                        if (((i + j + k + l + m) % 2) == 0) {
                            if (first_selection) {
                                first_selection = FALSE;

                                ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_SET,
                                                          &(start[n_cube_offset]), &(stride[n_cube_offset]),
                                                          &(count[n_cube_offset]), &(block[n_cube_offset]));
                                CHECK(ret, FAIL, "H5Sselect_hyperslab");
                            } /* end if */
                            else {
                                ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_OR,
                                                          &(start[n_cube_offset]), &(stride[n_cube_offset]),
                                                          &(count[n_cube_offset]), &(block[n_cube_offset]));
                                CHECK(ret, FAIL, "H5Sselect_hyperslab");
                            } /* end else */
                        }     /* end if */

                        m++;
                    } while ((m <= 1) && (4 >= sel_offset));
                    l++;
                } while ((l <= 1) && (3 >= sel_offset));
                k++;
            } while ((k <= 1) && (2 >= sel_offset));
            j++;
        } while ((j <= 1) && (1 >= sel_offset));
        i++;
    } while ((i <= 1) && (0 >= sel_offset));

    /* Wierdness alert:
     *
     * Some how, it seems that selections can extend beyond the
     * boundaries of the target dataspace -- hence the following
     * code to manually clip the selection back to the dataspace
     * proper.
     */
    for (u = 0; u < SS_DR_MAX_RANK; u++) {
        start[u]  = 0;
        stride[u] = edge_size;
        count[u]  = 1;
        block[u]  = edge_size;
    } /* end for */

    ret = H5Sselect_hyperslab(tgt_n_cube_sid, H5S_SELECT_AND, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
} /* test_select_hyper_checker_board_dr__select_checker_board() */

/****************************************************************
**
**  test_select_hyper_checker_board_dr__verify_data():
**
**    Examine the supplied buffer to see if it contains the
**    expected data.  Return TRUE if it does, and FALSE
**      otherwise.
**
**    The supplied buffer is presumed to contain the results
**    of read or writing a checkerboard selection of an
**    n-cube, or a checkerboard selection of an m (1 <= m < n)
**    dimensional slice through an n-cube parallel to the
**      fastest changing indices.
**
**    It is further presumed that the buffer was zeroed before
**    the read, and that the n-cube was initialize with the
**      natural numbers listed in order from the origin along
**      the fastest changing axis.
**
**      Thus for a 10x10x10 3-cube, the value stored in location
**    (x, y, z) (assuming that z is the fastest changing index
**    and x the slowest) is assumed to be:
**
**        (10 * 10 * x) + (10 * y) + z
**
**    Thus, if the buffer contains the result of reading a
**    checker board selection of a 10x10x10 3-cube, location
**    (x, y, z) will contain zero if it is not in a checker,
**    and 100x + 10y + z if (x, y, z) is in a checker.
**
**    If the buffer contains the result of reading a 3
**    dimensional slice (parallel to the three fastest changing
**    indices) through an n cube (n > 3), then the expected
**    values in the buffer will be the same, save that we will
**    add a constant determined by the origin of the 3-cube
**    in the n-cube.
**
**    Finally, the function presumes that the first element
**    of the buffer resides either at the origin of either
**    a selected or an unselected checker.
**
****************************************************************/
H5_ATTR_PURE static hbool_t
test_select_hyper_checker_board_dr__verify_data(uint16_t *buf_ptr, unsigned rank, unsigned edge_size,
                                                unsigned checker_edge_size, uint16_t first_expected_val,
                                                hbool_t buf_starts_in_checker)
{
    hbool_t        good_data = TRUE;
    hbool_t        in_checker;
    hbool_t        start_in_checker[5];
    uint16_t       expected_value;
    uint16_t *     val_ptr;
    unsigned       i, j, k, l, m;     /* to track position in n-cube */
    unsigned       v, w, x, y, z;     /* to track position in checker */
    const unsigned test_max_rank = 5; /* code changes needed if this is increased */

    HDassert(buf_ptr != NULL);
    HDassert(0 < rank);
    HDassert(rank <= test_max_rank);
    HDassert(edge_size >= 6);
    HDassert(0 < checker_edge_size);
    HDassert(checker_edge_size <= edge_size);
    HDassert(test_max_rank <= SS_DR_MAX_RANK);

    val_ptr        = buf_ptr;
    expected_value = first_expected_val;

    i                   = 0;
    v                   = 0;
    start_in_checker[0] = buf_starts_in_checker;
    do {
        if (v >= checker_edge_size) {
            start_in_checker[0] = !start_in_checker[0];
            v                   = 0;
        } /* end if */

        j                   = 0;
        w                   = 0;
        start_in_checker[1] = start_in_checker[0];
        do {
            if (w >= checker_edge_size) {
                start_in_checker[1] = !start_in_checker[1];
                w                   = 0;
            } /* end if */

            k                   = 0;
            x                   = 0;
            start_in_checker[2] = start_in_checker[1];
            do {
                if (x >= checker_edge_size) {
                    start_in_checker[2] = !start_in_checker[2];
                    x                   = 0;
                } /* end if */

                l                   = 0;
                y                   = 0;
                start_in_checker[3] = start_in_checker[2];
                do {
                    if (y >= checker_edge_size) {
                        start_in_checker[3] = !start_in_checker[3];
                        y                   = 0;
                    } /* end if */

                    m          = 0;
                    z          = 0;
                    in_checker = start_in_checker[3];
                    do {
                        if (z >= checker_edge_size) {
                            in_checker = !in_checker;
                            z          = 0;
                        } /* end if */

                        if (in_checker) {
                            if (*val_ptr != expected_value)
                                good_data = FALSE;
                        } /* end if */
                        else {
                            if (*val_ptr != 0)
                                good_data = FALSE;
                        } /* end else */

                        val_ptr++;
                        expected_value++;

                        m++;
                        z++;
                    } while ((rank >= (test_max_rank - 4)) && (m < edge_size));
                    l++;
                    y++;
                } while ((rank >= (test_max_rank - 3)) && (l < edge_size));
                k++;
                x++;
            } while ((rank >= (test_max_rank - 2)) && (k < edge_size));
            j++;
            w++;
        } while ((rank >= (test_max_rank - 1)) && (j < edge_size));
        i++;
        v++;
    } while ((rank >= test_max_rank) && (i < edge_size));

    return (good_data);
} /* test_select_hyper_checker_board_dr__verify_data() */

/****************************************************************
**
**  test_select_hyper_checker_board_dr__run_test(): Test H5S
**      (dataspace) selection code with checker board source and
**    target selections having different ranks but the same
**    shape.  We have already tested H5Sselect_shape_same in
**    isolation, so now we try to do I/O.
**
****************************************************************/
static void
test_select_hyper_checker_board_dr__run_test(int test_num, const uint16_t *cube_buf, const uint16_t *zero_buf,
                                             unsigned edge_size, unsigned checker_edge_size,
                                             unsigned chunk_edge_size, unsigned small_rank,
                                             unsigned large_rank, hid_t dset_type, hid_t xfer_plist)
{
    hbool_t        data_ok;
    hid_t          fapl;                /* File access property list */
    hid_t          fid;                 /* HDF5 File IDs        */
    hid_t          full_small_cube_sid; /* Dataspace for small cube w/all selection */
    hid_t          mem_small_cube_sid;
    hid_t          file_small_cube_sid;
    hid_t          full_large_cube_sid; /* Dataspace for large cube w/all selection */
    hid_t          mem_large_cube_sid;
    hid_t          file_large_cube_sid;
    hid_t          small_cube_dcpl_id = H5P_DEFAULT; /* DCPL for small cube dataset */
    hid_t          large_cube_dcpl_id = H5P_DEFAULT; /* DCPL for large cube dataset */
    hid_t          small_cube_dataset;               /* Dataset ID            */
    hid_t          large_cube_dataset;               /* Dataset ID            */
    unsigned       small_rank_offset;                /* Rank offset of slice */
    const unsigned test_max_rank = 5;                /* must update code if this changes */
    size_t         start_index;                      /* Offset within buffer to begin inspecting */
    size_t         stop_index;                       /* Offset within buffer to end inspecting */
    uint16_t       expected_value;
    uint16_t *     small_cube_buf_1;
    uint16_t *     large_cube_buf_1;
    uint16_t *     ptr_1;
    size_t         small_cube_size; /* Number of elements in small cube */
    size_t         large_cube_size; /* Number of elements in large cube */
    hsize_t        dims[SS_DR_MAX_RANK];
    hsize_t        chunk_dims[SS_DR_MAX_RANK];
    hsize_t        sel_start[SS_DR_MAX_RANK];
    unsigned       u, v, w, x; /* Local index variables */
    size_t         s;          /* Local index variable */
    htri_t         check;      /* Shape comparison return value */
    herr_t         ret;        /* Generic return value */

    MESSAGE(7, ("\tn-cube slice through m-cube I/O test %d.\n", test_num));
    MESSAGE(7, ("\tranks = %d/%d, edge_size = %d, checker_edge_size = %d, chunk_edge_size = %d.\n",
                small_rank, large_rank, edge_size, checker_edge_size, chunk_edge_size));

    HDassert(edge_size >= 6);
    HDassert(checker_edge_size > 0);
    HDassert(checker_edge_size <= edge_size);
    HDassert(edge_size >= chunk_edge_size);
    HDassert((chunk_edge_size == 0) || (chunk_edge_size >= 3));
    HDassert(small_rank > 0);
    HDassert(small_rank < large_rank);
    HDassert(large_rank <= test_max_rank);
    HDassert(test_max_rank <= SS_DR_MAX_RANK);

    /* Compute cube sizes */
    small_cube_size = large_cube_size = (size_t)1;
    for (u = 0; u < large_rank; u++) {
        if (u < small_rank)
            small_cube_size *= (size_t)edge_size;

        large_cube_size *= (size_t)edge_size;
    } /* end for */
    HDassert(large_cube_size < (size_t)(UINT_MAX));

    small_rank_offset = test_max_rank - small_rank;
    HDassert(small_rank_offset >= 1);

    /* also, at present, we use 16 bit values in this test --
     * hence the following assertion.  Delete it if we convert
     * to 32 bit values.
     */
    HDassert(large_cube_size < (size_t)(64 * 1024));

    /* Allocate & initialize buffers */
    small_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), small_cube_size);
    CHECK_PTR(small_cube_buf_1, "HDcalloc");
    large_cube_buf_1 = (uint16_t *)HDcalloc(sizeof(uint16_t), large_cube_size);
    CHECK_PTR(large_cube_buf_1, "HDcalloc");

    /* Create a dataset transfer property list */
    fapl = H5Pcreate(H5P_FILE_ACCESS);
    CHECK(fapl, FAIL, "H5Pcreate");

    /* Use the 'core' VFD for this test */
    ret = H5Pset_fapl_core(fapl, (size_t)(1024 * 1024), FALSE);
    CHECK(ret, FAIL, "H5Pset_fapl_core");

    /* Create file */
    fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl);
    CHECK(fid, FAIL, "H5Fcreate");

    /* Close file access property list */
    ret = H5Pclose(fapl);
    CHECK(ret, FAIL, "H5Pclose");

    /* setup dims: */
    dims[0] = dims[1] = dims[2] = dims[3] = dims[4] = edge_size;

    /* Create small cube dataspaces */
    full_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
    CHECK(full_small_cube_sid, FAIL, "H5Screate_simple");

    mem_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
    CHECK(mem_small_cube_sid, FAIL, "H5Screate_simple");

    file_small_cube_sid = H5Screate_simple((int)small_rank, dims, NULL);
    CHECK(file_small_cube_sid, FAIL, "H5Screate_simple");

    /* Create large cube dataspace */
    full_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
    CHECK(full_large_cube_sid, FAIL, "H5Screate_simple");

    mem_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
    CHECK(mem_large_cube_sid, FAIL, "H5Screate_simple");

    file_large_cube_sid = H5Screate_simple((int)large_rank, dims, NULL);
    CHECK(file_large_cube_sid, FAIL, "H5Screate_simple");

    /* if chunk edge size is greater than zero, set up the small and
     * large data set creation property lists to specify chunked
     * datasets.
     */
    if (chunk_edge_size > 0) {
        chunk_dims[0] = chunk_dims[1] = chunk_dims[2] = chunk_dims[3] = chunk_dims[4] = chunk_edge_size;

        small_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
        CHECK(small_cube_dcpl_id, FAIL, "H5Pcreate");

        ret = H5Pset_layout(small_cube_dcpl_id, H5D_CHUNKED);
        CHECK(ret, FAIL, "H5Pset_layout");

        ret = H5Pset_chunk(small_cube_dcpl_id, (int)small_rank, chunk_dims);
        CHECK(ret, FAIL, "H5Pset_chunk");

        large_cube_dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
        CHECK(large_cube_dcpl_id, FAIL, "H5Pcreate");

        ret = H5Pset_layout(large_cube_dcpl_id, H5D_CHUNKED);
        CHECK(ret, FAIL, "H5Pset_layout");

        ret = H5Pset_chunk(large_cube_dcpl_id, (int)large_rank, chunk_dims);
        CHECK(ret, FAIL, "H5Pset_chunk");
    } /* end if */

    /* create the small cube dataset */
    small_cube_dataset = H5Dcreate2(fid, "small_cube_dataset", dset_type, file_small_cube_sid, H5P_DEFAULT,
                                    small_cube_dcpl_id, H5P_DEFAULT);
    CHECK(small_cube_dataset, FAIL, "H5Dcreate2");

    /* Close non-default small dataset DCPL */
    if (small_cube_dcpl_id != H5P_DEFAULT) {
        ret = H5Pclose(small_cube_dcpl_id);
        CHECK(ret, FAIL, "H5Pclose");
    } /* end if */

    /* create the large cube dataset */
    large_cube_dataset = H5Dcreate2(fid, "large_cube_dataset", dset_type, file_large_cube_sid, H5P_DEFAULT,
                                    large_cube_dcpl_id, H5P_DEFAULT);
    CHECK(large_cube_dataset, FAIL, "H5Dcreate2");

    /* Close non-default large dataset DCPL */
    if (large_cube_dcpl_id != H5P_DEFAULT) {
        ret = H5Pclose(large_cube_dcpl_id);
        CHECK(ret, FAIL, "H5Pclose");
    } /* end if */

    /* write initial data to the on disk datasets */
    ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid,
                   xfer_plist, cube_buf);
    CHECK(ret, FAIL, "H5Dwrite");

    ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid,
                   xfer_plist, cube_buf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* read initial small cube data from disk and verify that it is as expected. */
    ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid, full_small_cube_sid, xfer_plist,
                  small_cube_buf_1);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the data is valid */
    verify_select_hyper_contig_dr__run_test(small_cube_buf_1, small_cube_size, edge_size, small_rank);

    /* read initial large cube data from disk and verify that it is as expected. */
    ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid, full_large_cube_sid, xfer_plist,
                  large_cube_buf_1);
    CHECK(ret, FAIL, "H5Dread");

    /* Check that the data is valid */
    verify_select_hyper_contig_dr__run_test(large_cube_buf_1, large_cube_size, edge_size, large_rank);

    /* first, verify that we can read from disk correctly using selections
     * of different rank that H5Sselect_shape_same() views as being of the
     * same shape.
     *
     * Start by reading small_rank-D slice from the on disk large cube, and
     * verifying that the data read is correct.  Verify that H5Sselect_shape_same()
     * returns true on the memory and file selections.
     *
     * The first step is to set up the needed checker board selection in the
     * in memory small small cube
     */

    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;

    test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size,
                                                             checker_edge_size, small_rank, sel_start);

    /* now read slices from the large, on-disk cube into the small cube.
     * Note how we adjust sel_start only in the dimensions peculiar to the
     * large cube.
     */

    u = 0;
    do {
        if (small_rank_offset > 0)
            sel_start[0] = u;

        v = 0;
        do {
            if (small_rank_offset > 1)
                sel_start[1] = v;

            w = 0;
            do {
                if (small_rank_offset > 2)
                    sel_start[2] = w;

                x = 0;
                do {
                    if (small_rank_offset > 3)
                        sel_start[3] = x;

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
                    HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
                    HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
                    HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
                    HDassert((sel_start[4] == 0) || (4 < small_rank_offset));

                    test_select_hyper_checker_board_dr__select_checker_board(
                        file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(mem_small_cube_sid, file_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* zero the buffer that we will be using for reading */
                    HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);

                    /* Read selection from disk */
                    ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid,
                                  file_large_cube_sid, xfer_plist, small_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
                                                (v * edge_size * edge_size * edge_size) +
                                                (w * edge_size * edge_size) + (x * edge_size));

                    data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank,
                                                                              edge_size, checker_edge_size,
                                                                              expected_value, (hbool_t)TRUE);
                    if (!data_ok)
                        TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
                         (x < edge_size));
                w++;
            } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
                     (w < edge_size));
            v++;
        } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
                 (v < edge_size));
        u++;
    } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));

    /* similarly, read the on disk small cube into slices through the in memory
     * large cube, and verify that the correct data (and only the correct data)
     * is read.
     */

    /* select a checker board in the file small cube dataspace */
    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size,
                                                             checker_edge_size, small_rank, sel_start);

    u = 0;
    do {
        if (0 < small_rank_offset)
            sel_start[0] = u;

        v = 0;
        do {
            if (1 < small_rank_offset)
                sel_start[1] = v;

            w = 0;
            do {
                if (2 < small_rank_offset)
                    sel_start[2] = w;

                x = 0;
                do {
                    if (3 < small_rank_offset)
                        sel_start[3] = x;

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
                    HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
                    HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
                    HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
                    HDassert((sel_start[4] == 0) || (4 < small_rank_offset));

                    test_select_hyper_checker_board_dr__select_checker_board(
                        mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* zero out the in memory large cube */
                    HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);

                    /* Read selection from disk */
                    ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
                                  file_small_cube_sid, xfer_plist, large_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    /* verify that the expected data and only the
                     * expected data was read.
                     */
                    data_ok        = TRUE;
                    ptr_1          = large_cube_buf_1;
                    expected_value = 0;
                    start_index    = (u * edge_size * edge_size * edge_size * edge_size) +
                                  (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
                                  (x * edge_size);
                    stop_index = start_index + small_cube_size - 1;

                    HDassert(start_index < stop_index);
                    HDassert(stop_index <= large_cube_size);

                    /* verify that the large cube contains only zeros before the slice */
                    for (s = 0; s < start_index; s++) {
                        if (*ptr_1 != 0)
                            data_ok = FALSE;
                        ptr_1++;
                    } /* end for */
                    HDassert(s == start_index);

                    data_ok &= test_select_hyper_checker_board_dr__verify_data(
                        ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE);

                    ptr_1 += small_cube_size;
                    s += small_cube_size;

                    HDassert(s == stop_index + 1);

                    /* verify that the large cube contains only zeros after the slice */
                    for (s = stop_index + 1; s < large_cube_size; s++) {
                        if (*ptr_1 != 0)
                            data_ok = FALSE;
                        ptr_1++;
                    } /* end for */
                    if (!data_ok)
                        TestErrPrintf("large cube read from small cube has bad data! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
                         (x < edge_size));
                w++;
            } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
                     (w < edge_size));
            v++;
        } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
                 (v < edge_size));
        u++;
    } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));

    /* now we go in the opposite direction, verifying that we can write
     * from memory to file using selections of different rank that
     * H5Sselect_shape_same() views as being of the same shape.
     *
     * Start by writing small_rank D slices from the in memory large cube, to
     * the the on disk small cube dataset.  After each write, read the small
     * cube dataset back from disk, and verify that it contains the expected
     * data. Verify that H5Sselect_shape_same() returns true on the
     * memory and file selections.
     */

    /* select a checker board in the file small cube dataspace */
    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    test_select_hyper_checker_board_dr__select_checker_board(file_small_cube_sid, small_rank, edge_size,
                                                             checker_edge_size, small_rank, sel_start);

    u = 0;
    do {
        if (small_rank_offset > 0)
            sel_start[0] = u;

        v = 0;
        do {
            if (small_rank_offset > 1)
                sel_start[1] = v;

            w = 0;
            do {
                if (small_rank_offset > 2)
                    sel_start[2] = w;

                x = 0;
                do {
                    if (small_rank_offset > 3)
                        sel_start[3] = x;

                    /* zero out the on disk small cube */
                    ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
                                   full_small_cube_sid, xfer_plist, zero_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
                    HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
                    HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
                    HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
                    HDassert((sel_start[4] == 0) || (4 < small_rank_offset));

                    test_select_hyper_checker_board_dr__select_checker_board(
                        mem_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(file_small_cube_sid, mem_large_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* write the slice from the in memory large cube to the
                     * on disk small cube
                     */
                    ret = H5Dwrite(small_cube_dataset, H5T_NATIVE_UINT16, mem_large_cube_sid,
                                   file_small_cube_sid, xfer_plist, cube_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* zero the buffer that we will be using for reading */
                    HDmemset(small_cube_buf_1, 0, sizeof(*small_cube_buf_1) * small_cube_size);

                    /* read the on disk small cube into memory */
                    ret = H5Dread(small_cube_dataset, H5T_NATIVE_UINT16, full_small_cube_sid,
                                  full_small_cube_sid, xfer_plist, small_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    expected_value = (uint16_t)((u * edge_size * edge_size * edge_size * edge_size) +
                                                (v * edge_size * edge_size * edge_size) +
                                                (w * edge_size * edge_size) + (x * edge_size));

                    data_ok = test_select_hyper_checker_board_dr__verify_data(small_cube_buf_1, small_rank,
                                                                              edge_size, checker_edge_size,
                                                                              expected_value, (hbool_t)TRUE);
                    if (!data_ok)
                        TestErrPrintf("small cube read from largecube has bad data! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
                         (x < edge_size));
                w++;
            } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
                     (w < edge_size));
            v++;
        } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
                 (v < edge_size));
        u++;
    } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));

    /* Now write checker board selections of the entries in memory
     * small cube to slices of the on disk cube.  After each write,
     * read the on disk large cube * into memeory, and verify that
     * it contains the expected * data.  Verify that
     * H5Sselect_shape_same() returns true on the memory and file
     * selections.
     */

    /* select a checker board in the in memory small cube dataspace */
    sel_start[0] = sel_start[1] = sel_start[2] = sel_start[3] = sel_start[4] = 0;
    test_select_hyper_checker_board_dr__select_checker_board(mem_small_cube_sid, small_rank, edge_size,
                                                             checker_edge_size, small_rank, sel_start);

    u = 0;
    do {
        if (small_rank_offset > 0)
            sel_start[0] = u;

        v = 0;
        do {
            if (small_rank_offset > 1)
                sel_start[1] = v;

            w = 0;
            do {
                if (small_rank_offset > 2)
                    sel_start[2] = w;

                x = 0;
                do {
                    if (small_rank_offset > 3)
                        sel_start[3] = x;

                    /* zero out the on disk cube */
                    ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_USHORT, full_large_cube_sid,
                                   full_large_cube_sid, xfer_plist, zero_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* we know that small_rank >= 1 and that large_rank > small_rank
                     * by the assertions at the head of this function.  Thus no
                     * need for another inner loop.
                     */

                    HDassert((sel_start[0] == 0) || (0 < small_rank_offset));
                    HDassert((sel_start[1] == 0) || (1 < small_rank_offset));
                    HDassert((sel_start[2] == 0) || (2 < small_rank_offset));
                    HDassert((sel_start[3] == 0) || (3 < small_rank_offset));
                    HDassert((sel_start[4] == 0) || (4 < small_rank_offset));

                    test_select_hyper_checker_board_dr__select_checker_board(
                        file_large_cube_sid, large_rank, edge_size, checker_edge_size, small_rank, sel_start);

                    /* verify that H5Sselect_shape_same() reports the two
                     * selections as having the same shape.
                     */
                    check = H5Sselect_shape_same(file_large_cube_sid, mem_small_cube_sid);
                    VERIFY(check, TRUE, "H5Sselect_shape_same");

                    /* write the checker board selection of the in memory
                     * small cube to a slice through the on disk large
                     * cube.
                     */
                    ret = H5Dwrite(large_cube_dataset, H5T_NATIVE_UINT16, mem_small_cube_sid,
                                   file_large_cube_sid, xfer_plist, cube_buf);
                    CHECK(ret, FAIL, "H5Dwrite");

                    /* zero out the in memory large cube */
                    HDmemset(large_cube_buf_1, 0, sizeof(*large_cube_buf_1) * large_cube_size);

                    /* read the on disk large cube into memory */
                    ret = H5Dread(large_cube_dataset, H5T_NATIVE_UINT16, full_large_cube_sid,
                                  full_large_cube_sid, xfer_plist, large_cube_buf_1);
                    CHECK(ret, FAIL, "H5Dread");

                    /* verify that the expected data and only the
                     * expected data was written to the on disk large
                     * cube.
                     */
                    data_ok        = TRUE;
                    ptr_1          = large_cube_buf_1;
                    expected_value = 0;
                    start_index    = (u * edge_size * edge_size * edge_size * edge_size) +
                                  (v * edge_size * edge_size * edge_size) + (w * edge_size * edge_size) +
                                  (x * edge_size);
                    stop_index = start_index + small_cube_size - 1;

                    HDassert(start_index < stop_index);
                    HDassert(stop_index <= large_cube_size);

                    /* verify that the large cube contains only zeros before the slice */
                    for (s = 0; s < start_index; s++) {
                        if (*ptr_1 != 0)
                            data_ok = FALSE;
                        ptr_1++;
                    } /* end for */
                    HDassert(s == start_index);

                    /* verify that the slice contains the expected data */
                    data_ok &= test_select_hyper_checker_board_dr__verify_data(
                        ptr_1, small_rank, edge_size, checker_edge_size, (uint16_t)0, (hbool_t)TRUE);

                    ptr_1 += small_cube_size;
                    s += small_cube_size;

                    HDassert(s == stop_index + 1);

                    /* verify that the large cube contains only zeros after the slice */
                    for (s = stop_index + 1; s < large_cube_size; s++) {
                        if (*ptr_1 != 0)
                            data_ok = FALSE;
                        ptr_1++;
                    } /* end for */
                    if (!data_ok)
                        TestErrPrintf("large cube written from small cube has bad data! Line=%d\n", __LINE__);

                    x++;
                } while ((large_rank >= (test_max_rank - 3)) && (small_rank <= (test_max_rank - 4)) &&
                         (x < edge_size));
                w++;
            } while ((large_rank >= (test_max_rank - 2)) && (small_rank <= (test_max_rank - 3)) &&
                     (w < edge_size));
            v++;
        } while ((large_rank >= (test_max_rank - 1)) && (small_rank <= (test_max_rank - 2)) &&
                 (v < edge_size));
        u++;
    } while ((large_rank >= test_max_rank) && (small_rank <= (test_max_rank - 1)) && (u < edge_size));

    /* Close memory dataspaces */
    ret = H5Sclose(full_small_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(full_large_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(mem_small_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(mem_large_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(file_small_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(file_large_cube_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Datasets */
    ret = H5Dclose(small_cube_dataset);
    CHECK(ret, FAIL, "H5Dclose");

    ret = H5Dclose(large_cube_dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(small_cube_buf_1);
    HDfree(large_cube_buf_1);

} /* test_select_hyper_checker_board_dr__run_test() */

/****************************************************************
**
**  test_select_hyper_checker_board_dr(): Test H5S (dataspace)
**    selection code with checkerboard source and target having
**    different ranks but the same shape.  We have already
**    tested H5Sselect_shape_same in isolation, so now we try to do
**    I/O.
**
**    This is just an initial smoke check, so we will work
**    with a slice through a cube only.
**
****************************************************************/
static void
test_select_hyper_checker_board_dr(hid_t dset_type, hid_t xfer_plist)
{
    uint16_t *cube_buf; /* Buffer for writing cube data */
    uint16_t *cube_ptr; /* Temporary pointer into cube data */
    uint16_t *zero_buf; /* Buffer for writing zeroed cube data */
    int       test_num          = 0;
    unsigned  checker_edge_size = 2; /* Size of checkerboard dimension */
    unsigned  chunk_edge_size;       /* Size of chunk's dataspace dimensions */
    unsigned  edge_size = 6;         /* Size of dataset's dataspace dimensions */
    unsigned  small_rank;            /* Current rank of small dataset */
    unsigned  large_rank;            /* Current rank of large dataset */
    unsigned  max_rank = 5;          /* Max. rank to use */
    size_t    max_cube_size;         /* Max. number of elements in largest cube */
    size_t    s;                     /* Local index variable */
    unsigned  u;                     /* Local index variable */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Checker Board Hyperslabs With Different Rank I/O Functionality\n"));

    /* Compute max. cube size */
    max_cube_size = (size_t)1;
    for (u = 0; u < max_rank; u++)
        max_cube_size *= (size_t)(edge_size + 1);

    /* Allocate cube buffer for writing values */
    cube_buf = (uint16_t *)HDmalloc(sizeof(uint16_t) * max_cube_size);
    CHECK_PTR(cube_buf, "HDmalloc");

    /* Initialize the cube buffer */
    cube_ptr = cube_buf;
    for (s = 0; s < max_cube_size; s++)
        *cube_ptr++ = (uint16_t)s;

    /* Allocate cube buffer for zeroing values on disk */
    zero_buf = (uint16_t *)HDcalloc(sizeof(uint16_t), max_cube_size);
    CHECK_PTR(zero_buf, "HDcalloc");

    for (large_rank = 1; large_rank <= max_rank; large_rank++) {
        for (small_rank = 1; small_rank < large_rank; small_rank++) {
            chunk_edge_size = 0;
            test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size,
                                                         checker_edge_size, chunk_edge_size, small_rank,
                                                         large_rank, dset_type, xfer_plist);
            test_num++;

            test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1,
                                                         checker_edge_size, chunk_edge_size, small_rank,
                                                         large_rank, dset_type, xfer_plist);
            test_num++;

            chunk_edge_size = 3;
            test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size,
                                                         checker_edge_size, chunk_edge_size, small_rank,
                                                         large_rank, dset_type, xfer_plist);
            test_num++;

            test_select_hyper_checker_board_dr__run_test(test_num, cube_buf, zero_buf, edge_size + 1,
                                                         checker_edge_size, chunk_edge_size, small_rank,
                                                         large_rank, dset_type, xfer_plist);
            test_num++;
        } /* for loop on small rank */
    }     /* for loop on large rank */

    HDfree(cube_buf);
    HDfree(zero_buf);

} /* test_select_hyper_checker_board_dr() */

/****************************************************************
**
**  test_select_hyper_copy(): Test H5S (dataspace) selection code.
**      Tests copying hyperslab selections
**
****************************************************************/
static void
test_select_hyper_copy(void)
{
    hid_t     fid1;             /* HDF5 File IDs        */
    hid_t     data1, data2;     /* Dataset IDs            */
    hid_t     sid1, sid2, sid3; /* Dataspace IDs        */
    hsize_t   dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t   dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t   dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t   start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t   stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t   count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t   block[SPACE1_RANK];  /* Block size of hyperslab */
    uint16_t *wbuf,                /* buffer to write to disk */
        *rbuf,                     /* 1st buffer read from disk */
        *rbuf2,                    /* 2nd buffer read from disk */
        *tbuf;                     /* temporary buffer pointer */
    int    i, j;                   /* Counters */
    herr_t ret;                    /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));

    /* Allocate write & read buffers */
    wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");
    rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf2, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x3x3 count with a stride of 2x4x3 & 1x2x2 block hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 2;
    stride[1] = 4;
    stride[2] = 3;
    count[0]  = 2;
    count[1]  = 3;
    count[2]  = 3;
    block[0]  = 1;
    block[1]  = 2;
    block[2]  = 2;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 4x2 count with a stride of 5x5 & 3x3 block hyperslab for memory dataset */
    start[0]  = 1;
    start[1]  = 1;
    stride[0] = 5;
    stride[1] = 5;
    count[0]  = 4;
    count[1]  = 2;
    block[0]  = 3;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Make a copy of the dataspace to write */
    sid3 = H5Scopy(sid2);
    CHECK(sid3, FAIL, "H5Scopy");

    /* Create a dataset */
    data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(data1, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create another dataset */
    data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(data2, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid3);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 3x4 count with a stride of 4x4 & 2x3 block hyperslab for memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 4;
    stride[1] = 4;
    count[0]  = 3;
    count[1]  = 4;
    block[0]  = 2;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Make a copy of the dataspace to read */
    sid3 = H5Scopy(sid2);
    CHECK(sid3, FAIL, "H5Scopy");

    /* Read selection from disk */
    ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Read selection from disk */
    ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    if (HDmemcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2))
        TestErrPrintf("hyperslab values don't match! Line=%d\n", __LINE__);

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close 2nd memory dataspace */
    ret = H5Sclose(sid3);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(data1);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close Dataset */
    ret = H5Dclose(data2);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
    HDfree(rbuf2);
} /* test_select_hyper_copy() */

/****************************************************************
**
**  test_select_point_copy(): Test H5S (dataspace) selection code.
**      Tests copying point selections
**
****************************************************************/
static void
test_select_point_copy(void)
{
    hid_t     fid1;             /* HDF5 File IDs        */
    hid_t     data1, data2;     /* Dataset IDs            */
    hid_t     sid1, sid2, sid3; /* Dataspace IDs        */
    hsize_t   dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t   dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t   dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t   coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
    hsize_t   coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
    hsize_t   coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
    uint16_t *wbuf,                                /* buffer to write to disk */
        *rbuf,                                     /* 1st buffer read from disk */
        *rbuf2,                                    /* 2nd buffer read from disk */
        *tbuf;                                     /* temporary buffer pointer */
    int    i, j;                                   /* Counters */
    herr_t ret;                                    /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslabs with Strides Functionality\n"));

    /* Allocate write & read buffers */
    wbuf = (uint16_t *)HDmalloc(sizeof(uint16_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");
    rbuf2 = (uint16_t *)HDcalloc(sizeof(uint16_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf2, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint16_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for disk dataset */
    coord1[0][0] = 0;
    coord1[0][1] = 10;
    coord1[0][2] = 5;
    coord1[1][0] = 1;
    coord1[1][1] = 2;
    coord1[1][2] = 7;
    coord1[2][0] = 2;
    coord1[2][1] = 4;
    coord1[2][2] = 9;
    coord1[3][0] = 0;
    coord1[3][1] = 6;
    coord1[3][2] = 11;
    coord1[4][0] = 1;
    coord1[4][1] = 8;
    coord1[4][2] = 13;
    coord1[5][0] = 2;
    coord1[5][1] = 12;
    coord1[5][2] = 0;
    coord1[6][0] = 0;
    coord1[6][1] = 14;
    coord1[6][2] = 2;
    coord1[7][0] = 1;
    coord1[7][1] = 0;
    coord1[7][2] = 4;
    coord1[8][0] = 2;
    coord1[8][1] = 1;
    coord1[8][2] = 6;
    coord1[9][0] = 0;
    coord1[9][1] = 3;
    coord1[9][2] = 8;
    ret          = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Select sequence of ten points for write dataset */
    coord2[0][0] = 12;
    coord2[0][1] = 3;
    coord2[1][0] = 15;
    coord2[1][1] = 13;
    coord2[2][0] = 7;
    coord2[2][1] = 25;
    coord2[3][0] = 0;
    coord2[3][1] = 6;
    coord2[4][0] = 13;
    coord2[4][1] = 0;
    coord2[5][0] = 24;
    coord2[5][1] = 11;
    coord2[6][0] = 12;
    coord2[6][1] = 21;
    coord2[7][0] = 29;
    coord2[7][1] = 4;
    coord2[8][0] = 8;
    coord2[8][1] = 8;
    coord2[9][0] = 19;
    coord2[9][1] = 17;
    ret          = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Make a copy of the dataspace to write */
    sid3 = H5Scopy(sid2);
    CHECK(sid3, FAIL, "H5Scopy");

    /* Create a dataset */
    data1 = H5Dcreate2(fid1, SPACE1_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(data1, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create another dataset */
    data2 = H5Dcreate2(fid1, SPACE2_NAME, H5T_STD_U16LE, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(data2, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid3);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of points for read dataset */
    coord3[0][0] = 0;
    coord3[0][1] = 2;
    coord3[1][0] = 4;
    coord3[1][1] = 8;
    coord3[2][0] = 13;
    coord3[2][1] = 13;
    coord3[3][0] = 14;
    coord3[3][1] = 25;
    coord3[4][0] = 7;
    coord3[4][1] = 9;
    coord3[5][0] = 2;
    coord3[5][1] = 0;
    coord3[6][0] = 9;
    coord3[6][1] = 19;
    coord3[7][0] = 1;
    coord3[7][1] = 22;
    coord3[8][0] = 12;
    coord3[8][1] = 21;
    coord3[9][0] = 11;
    coord3[9][1] = 6;
    ret          = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Make a copy of the dataspace to read */
    sid3 = H5Scopy(sid2);
    CHECK(sid3, FAIL, "H5Scopy");

    /* Read selection from disk */
    ret = H5Dread(data1, H5T_STD_U16LE, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Read selection from disk */
    ret = H5Dread(data2, H5T_STD_U16LE, sid3, sid1, H5P_DEFAULT, rbuf2);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    if (HDmemcmp(rbuf, rbuf2, sizeof(uint16_t) * SPACE3_DIM1 * SPACE3_DIM2))
        TestErrPrintf("point values don't match!\n");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close 2nd memory dataspace */
    ret = H5Sclose(sid3);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(data1);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close Dataset */
    ret = H5Dclose(data2);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
    HDfree(rbuf2);
} /* test_select_point_copy() */

/****************************************************************
**
**  test_select_hyper_offset(): Test basic H5S (dataspace) selection code.
**      Tests hyperslabs of various sizes and dimensionalities with selection
**      offsets.
**
****************************************************************/
static void
test_select_hyper_offset(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t  dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE1_RANK];  /* Block size of hyperslab */
    hssize_t offset[SPACE1_RANK]; /* Offset of selection */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf,                    /* temporary buffer pointer */
        *tbuf2;                   /* temporary buffer pointer */
    int         i, j;             /* Counters */
    herr_t      ret;              /* Generic return value        */
    htri_t      valid;            /* Generic boolean return value        */
    H5S_class_t ext_type;         /* Extent type */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with Offsets\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Verify extent type */
    ext_type = H5Sget_simple_extent_type(sid1);
    VERIFY(ext_type, H5S_SIMPLE, "H5Sget_simple_extent_type");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Check a valid offset */
    offset[0] = -1;
    offset[1] = 0;
    offset[2] = 0;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Check an invalid offset */
    offset[0] = 10;
    offset[1] = 0;
    offset[2] = 0;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, FALSE, "H5Sselect_valid");

    /* Reset offset */
    offset[0] = 0;
    offset[1] = 0;
    offset[2] = 0;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Select 15x26 hyperslab for memory dataset */
    start[0]  = 15;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Choose a valid offset for the memory dataspace */
    offset[0] = -10;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid2, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid2);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < SPACE3_DIM1; i++) {
        tbuf  = wbuf + ((i + 5) * SPACE2_DIM2);
        tbuf2 = rbuf + (i * SPACE3_DIM2);
        for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",
                              __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_offset() */

/****************************************************************
**
**  test_select_hyper_offset2(): Test basic H5S (dataspace) selection code.
**      Tests optimized hyperslab I/O with selection offsets.
**
****************************************************************/
static void
test_select_hyper_offset2(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    hsize_t  dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
    hsize_t  start[SPACE7_RANK];  /* Starting location of hyperslab */
    hsize_t  count[SPACE7_RANK];  /* Element count of hyperslab */
    hssize_t offset[SPACE7_RANK]; /* Offset of selection */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf,                    /* temporary buffer pointer */
        *tbuf2;                   /* temporary buffer pointer */
    int    i, j;                  /* Counters */
    herr_t ret;                   /* Generic return value */
    htri_t valid;                 /* Generic boolean return value */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing More Hyperslab Selection Functions with Offsets\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE7_DIM1 * SPACE7_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++)
        for (j = 0; j < SPACE7_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 4x10 hyperslab for disk dataset */
    start[0] = 1;
    start[1] = 0;
    count[0] = 4;
    count[1] = 10;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Set offset */
    offset[0] = 1;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Select 4x10 hyperslab for memory dataset */
    start[0] = 1;
    start[1] = 0;
    count[0] = 4;
    count[1] = 10;
    ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Choose a valid offset for the memory dataspace */
    offset[0] = 2;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid2, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid2);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE7_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < 4; i++) {
        tbuf  = wbuf + ((i + 3) * SPACE7_DIM2);
        tbuf2 = rbuf + ((i + 3) * SPACE7_DIM2);
        for (j = 0; j < SPACE7_DIM2; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%u, *tbuf2=%u\n",
                              __LINE__, i, j, (unsigned)*tbuf, (unsigned)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_offset2() */

/****************************************************************
**
**  test_select_point_offset(): Test basic H5S (dataspace) selection code.
**      Tests element selections between dataspaces of various sizes
**      and dimensionalities with selection offsets.
**
****************************************************************/
static void
test_select_point_offset(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t  dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t  coord1[POINT1_NPOINTS][SPACE1_RANK]; /* Coordinates for point selection */
    hsize_t  coord2[POINT1_NPOINTS][SPACE2_RANK]; /* Coordinates for point selection */
    hsize_t  coord3[POINT1_NPOINTS][SPACE3_RANK]; /* Coordinates for point selection */
    hssize_t offset[SPACE1_RANK];                 /* Offset of selection */
    uint8_t *wbuf,                                /* buffer to write to disk */
        *rbuf,                                    /* buffer read from disk */
        *tbuf,                                    /* temporary buffer pointer */
        *tbuf2;                                   /* temporary buffer pointer */
    int    i, j;                                  /* Counters */
    herr_t ret;                                   /* Generic return value        */
    htri_t valid;                                 /* Generic boolean return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Element Selection Functions\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for write buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for disk dataset */
    coord1[0][0] = 0;
    coord1[0][1] = 10;
    coord1[0][2] = 5;
    coord1[1][0] = 1;
    coord1[1][1] = 2;
    coord1[1][2] = 7;
    coord1[2][0] = 2;
    coord1[2][1] = 4;
    coord1[2][2] = 9;
    coord1[3][0] = 0;
    coord1[3][1] = 6;
    coord1[3][2] = 11;
    coord1[4][0] = 1;
    coord1[4][1] = 8;
    coord1[4][2] = 12;
    coord1[5][0] = 2;
    coord1[5][1] = 12;
    coord1[5][2] = 0;
    coord1[6][0] = 0;
    coord1[6][1] = 14;
    coord1[6][2] = 2;
    coord1[7][0] = 1;
    coord1[7][1] = 0;
    coord1[7][2] = 4;
    coord1[8][0] = 2;
    coord1[8][1] = 1;
    coord1[8][2] = 6;
    coord1[9][0] = 0;
    coord1[9][1] = 3;
    coord1[9][2] = 8;
    ret          = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Check a valid offset */
    offset[0] = 0;
    offset[1] = 0;
    offset[2] = 1;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Check an invalid offset */
    offset[0] = 10;
    offset[1] = 0;
    offset[2] = 0;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, FALSE, "H5Sselect_valid");

    /* Reset offset */
    offset[0] = 0;
    offset[1] = 0;
    offset[2] = 0;
    ret       = H5Soffset_simple(sid1, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid1);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Select sequence of ten points for write dataset */
    coord2[0][0] = 12;
    coord2[0][1] = 3;
    coord2[1][0] = 15;
    coord2[1][1] = 13;
    coord2[2][0] = 7;
    coord2[2][1] = 24;
    coord2[3][0] = 0;
    coord2[3][1] = 6;
    coord2[4][0] = 13;
    coord2[4][1] = 0;
    coord2[5][0] = 24;
    coord2[5][1] = 11;
    coord2[6][0] = 12;
    coord2[6][1] = 21;
    coord2[7][0] = 23;
    coord2[7][1] = 4;
    coord2[8][0] = 8;
    coord2[8][1] = 8;
    coord2[9][0] = 19;
    coord2[9][1] = 17;
    ret          = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Choose a valid offset for the memory dataspace */
    offset[0] = 5;
    offset[1] = 1;
    ret       = H5Soffset_simple(sid2, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");
    valid = H5Sselect_valid(sid2);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select sequence of points for read dataset */
    coord3[0][0] = 0;
    coord3[0][1] = 2;
    coord3[1][0] = 4;
    coord3[1][1] = 8;
    coord3[2][0] = 13;
    coord3[2][1] = 13;
    coord3[3][0] = 14;
    coord3[3][1] = 25;
    coord3[4][0] = 7;
    coord3[4][1] = 9;
    coord3[5][0] = 2;
    coord3[5][1] = 0;
    coord3[6][0] = 9;
    coord3[6][1] = 19;
    coord3[7][0] = 1;
    coord3[7][1] = 22;
    coord3[8][0] = 12;
    coord3[8][1] = 21;
    coord3[9][0] = 11;
    coord3[9][1] = 6;
    ret          = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord3);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < POINT1_NPOINTS; i++) {
        tbuf = wbuf + ((coord2[i][0] + (hsize_t)offset[0]) * SPACE2_DIM2) + coord2[i][1] + (hsize_t)offset[1];
        tbuf2 = rbuf + (coord3[i][0] * SPACE3_DIM2) + coord3[i][1];
        if (*tbuf != *tbuf2)
            TestErrPrintf("element values don't match!, i=%d\n", i);
    } /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_point_offset() */

/****************************************************************
**
**  test_select_hyper_union(): Test basic H5S (dataspace) selection code.
**      Tests unions of hyperslabs of various sizes and dimensionalities.
**
****************************************************************/
static void
test_select_hyper_union(void)
{
    hid_t   fid1;       /* HDF5 File IDs        */
    hid_t   dataset;    /* Dataset ID            */
    hid_t   sid1, sid2; /* Dataspace ID            */
    hid_t   xfer;       /* Dataset Transfer Property List ID */
    hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t dims2[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t start[SPACE1_RANK];                                 /* Starting location of hyperslab */
    hsize_t stride[SPACE1_RANK];                                /* Stride of hyperslab */
    hsize_t count[SPACE1_RANK];                                 /* Element count of hyperslab */
    hsize_t block[SPACE1_RANK];                                 /* Block size of hyperslab */
    size_t  begin[SPACE2_DIM1] =                                /* Offset within irregular block */
        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                          /* First ten rows start at offset 0 */
         5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; /* Next eighteen rows start at offset 5 */
    size_t len[SPACE2_DIM1] =                                   /* Len of each row within irregular block */
        {10, 10, 10, 10, 10, 10, 10, 10,                        /* First eight rows are 10 long */
         20, 20,                                                /* Next two rows are 20 long */
         15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15}; /* Next eighteen rows are 15 long */
    uint8_t *wbuf,                                                        /* buffer to write to disk */
        *rbuf,                                                            /* buffer read from disk */
        *tbuf,                                                            /* temporary buffer pointer */
        *tbuf2;                                                           /* temporary buffer pointer */
    int      i, j;                                                        /* Counters */
    herr_t   ret;                                                         /* Generic return value        */
    hssize_t npoints; /* Number of elements in selection */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE3_DIM1 * SPACE3_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Test simple case of one block overlapping another */
    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid1);
    VERIFY(npoints, 2 * 15 * 13, "H5Sget_select_npoints");

    /* Select 8x26 hyperslab for memory dataset */
    start[0]  = 15;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 8;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union overlapping 8x26 hyperslab for memory dataset (to form a 15x26 selection) */
    start[0]  = 22;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 8;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < SPACE3_DIM1; i++) {
        tbuf  = wbuf + ((i + 15) * SPACE2_DIM2);
        tbuf2 = rbuf + (i * SPACE3_DIM2);
        for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                              __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Test simple case of several block overlapping another */
    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 8x15 hyperslab for memory dataset */
    start[0]  = 15;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 8;
    count[1]  = 15;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union overlapping 8x15 hyperslab for memory dataset (to form a 15x15 selection) */
    start[0]  = 22;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 8;
    count[1]  = 15;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union overlapping 15x15 hyperslab for memory dataset (to form a 15x26 selection) */
    start[0]  = 15;
    start[1]  = 11;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 15;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < SPACE3_DIM1; i++) {
        tbuf  = wbuf + ((i + 15) * SPACE2_DIM2);
        tbuf2 = rbuf + (i * SPACE3_DIM2);
        for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                              __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Test disjoint case of two non-overlapping blocks */
    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 7x26 hyperslab for memory dataset */
    start[0]  = 1;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 7;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
    start[0]  = 22;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 8;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE3_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0; i < SPACE3_DIM1; i++) {
        /* Jump over gap in middle */
        if (i < 7)
            tbuf = wbuf + ((i + 1) * SPACE2_DIM2);
        else
            tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
        tbuf2 = rbuf + (i * SPACE3_DIM2);
        for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                              __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Test disjoint case of two non-overlapping blocks with hyperslab caching turned off */
    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 7x26 hyperslab for memory dataset */
    start[0]  = 1;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 7;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union non-overlapping 8x26 hyperslab for memory dataset (to form a 15x26 disjoint selection) */
    start[0]  = 22;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 8;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE4_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    xfer = H5Pcreate(H5P_DATASET_XFER);
    CHECK(xfer, FAIL, "H5Pcreate");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, xfer, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Close transfer property list */
    ret = H5Pclose(xfer);
    CHECK(ret, FAIL, "H5Pclose");

    /* Compare data read with data written out */
    for (i = 0; i < SPACE3_DIM1; i++) {
        /* Jump over gap in middle */
        if (i < 7)
            tbuf = wbuf + ((i + 1) * SPACE2_DIM2);
        else
            tbuf = wbuf + ((i + 15) * SPACE2_DIM2);
        tbuf2 = rbuf + (i * SPACE3_DIM2);
        for (j = 0; j < SPACE3_DIM2; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                              __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Test case of two blocks which overlap corners and must be split */
    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 10x10 hyperslab for memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
    start[0]  = 8;
    start[1]  = 5;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 20;
    count[1]  = 15;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0, tbuf2 = rbuf; i < SPACE2_DIM1; i++) {
        tbuf = wbuf + (i * SPACE2_DIM2) + begin[i];
        for (j = 0; j < (int)len[i]; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                              __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_union() */

/****************************************************************
**
**  test_select_hyper_union_stagger(): Test basic H5S (dataspace) selection code.
**      Tests unions of staggered hyperslabs.  (Uses H5Scombine_hyperslab
**      and H5Smodify_select instead of H5Sselect_hyperslab)
**
****************************************************************/
static void
test_select_hyper_union_stagger(void)
{
    hid_t   file_id;               /* File ID */
    hid_t   dset_id;               /* Dataset ID */
    hid_t   dataspace;             /* File dataspace ID */
    hid_t   memspace;              /* Memory dataspace ID */
    hid_t   tmp_space;             /* Temporary dataspace ID */
    hid_t   tmp2_space;            /* Another emporary dataspace ID */
    hsize_t dimsm[2]     = {7, 7}; /* Memory array dimensions */
    hsize_t dimsf[2]     = {6, 5}; /* File array dimensions */
    hsize_t count[2]     = {3, 1}; /* 1st Hyperslab size */
    hsize_t count2[2]    = {3, 1}; /* 2nd Hyperslab size */
    hsize_t count3[2]    = {2, 1}; /* 3rd Hyperslab size */
    hsize_t start[2]     = {0, 0}; /* 1st Hyperslab offset */
    hsize_t start2[2]    = {2, 1}; /* 2nd Hyperslab offset */
    hsize_t start3[2]    = {4, 2}; /* 3rd Hyperslab offset */
    hsize_t count_out[2] = {4, 2}; /* Hyperslab size in memory */
    hsize_t start_out[2] = {0, 3}; /* Hyperslab offset in memory */
    int     data[6][5];            /* Data to write */
    int     data_out[7][7];        /* Data read in */
    int     input_loc[8][2]  = {{0, 0}, {1, 0}, {2, 0}, {2, 1}, {3, 1}, {4, 1}, {4, 2}, {5, 2}};
    int     output_loc[8][2] = {{0, 3}, {0, 4}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 3}, {3, 4}};
    int     dsetrank         = 2; /* File Dataset rank */
    int     memrank          = 2; /* Memory Dataset rank */
    int     i, j;                 /* Local counting variables */
    herr_t  error;
    hsize_t stride[2] = {1, 1};
    hsize_t block[2]  = {1, 1};

    /* Initialize data to write */
    for (i = 0; i < 6; i++)
        for (j = 0; j < 5; j++)
            data[i][j] = j * 10 + i;

    /* Create file */
    file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(file_id, FAIL, "H5Fcreate");

    /* Create File Dataspace */
    dataspace = H5Screate_simple(dsetrank, dimsf, NULL);
    CHECK(dataspace, FAIL, "H5Screate_simple");

    /* Create File Dataset */
    dset_id =
        H5Dcreate2(file_id, "IntArray", H5T_NATIVE_INT, dataspace, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dset_id, FAIL, "H5Dcreate2");

    /* Write File Dataset */
    error = H5Dwrite(dset_id, H5T_NATIVE_INT, dataspace, dataspace, H5P_DEFAULT, data);
    CHECK(error, FAIL, "H5Dwrite");

    /* Close things */
    error = H5Sclose(dataspace);
    CHECK(error, FAIL, "H5Sclose");
    error = H5Dclose(dset_id);
    CHECK(error, FAIL, "H5Dclose");
    error = H5Fclose(file_id);
    CHECK(error, FAIL, "H5Fclose");

    /* Initialize intput buffer */
    HDmemset(data_out, 0, 7 * 7 * sizeof(int));

    /* Open file */
    file_id = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
    CHECK(file_id, FAIL, "H5Fopen");

    /* Open dataset */
    dset_id = H5Dopen2(file_id, "IntArray", H5P_DEFAULT);
    CHECK(dset_id, FAIL, "H5Dopen2");

    /* Get the dataspace */
    dataspace = H5Dget_space(dset_id);
    CHECK(dataspace, FAIL, "H5Dget_space");

    /* Select the hyperslabs */
    error = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");
    tmp_space = H5Scombine_hyperslab(dataspace, H5S_SELECT_OR, start2, stride, count2, block);
    CHECK(tmp_space, FAIL, "H5Scombine_hyperslab");

    /* Copy the file dataspace and select hyperslab */
    tmp2_space = H5Scopy(dataspace);
    CHECK(tmp2_space, FAIL, "H5Scopy");
    error = H5Sselect_hyperslab(tmp2_space, H5S_SELECT_SET, start3, stride, count3, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Combine the copied dataspace with the temporary dataspace */
    error = H5Smodify_select(tmp_space, H5S_SELECT_OR, tmp2_space);
    CHECK(error, FAIL, "H5Smodify_select");

    /* Create Memory Dataspace */
    memspace = H5Screate_simple(memrank, dimsm, NULL);
    CHECK(memspace, FAIL, "H5Screate_simple");

    /* Select hyperslab in memory */
    error = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, start_out, stride, count_out, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Read File Dataset */
    error = H5Dread(dset_id, H5T_NATIVE_INT, memspace, tmp_space, H5P_DEFAULT, data_out);
    CHECK(error, FAIL, "H5Dread");

    /* Verify input data */
    for (i = 0; i < 8; i++) {
        if (data[input_loc[i][0]][input_loc[i][1]] != data_out[output_loc[i][0]][output_loc[i][1]]) {
            HDprintf("input data #%d is wrong!\n", i);
            HDprintf("input_loc=[%d][%d]\n", input_loc[i][0], input_loc[i][1]);
            HDprintf("output_loc=[%d][%d]\n", output_loc[i][0], output_loc[i][1]);
            HDprintf("data=%d\n", data[input_loc[i][0]][input_loc[i][1]]);
            TestErrPrintf("data_out=%d\n", data_out[output_loc[i][0]][output_loc[i][1]]);
        } /* end if */
    }     /* end for */

    /* Close things */
    error = H5Sclose(tmp2_space);
    CHECK(error, FAIL, "H5Sclose");
    error = H5Sclose(tmp_space);
    CHECK(error, FAIL, "H5Sclose");
    error = H5Sclose(dataspace);
    CHECK(error, FAIL, "H5Sclose");
    error = H5Sclose(memspace);
    CHECK(error, FAIL, "H5Sclose");
    error = H5Dclose(dset_id);
    CHECK(error, FAIL, "H5Dclose");
    error = H5Fclose(file_id);
    CHECK(error, FAIL, "H5Fclose");
}

/****************************************************************
**
**  test_select_hyper_union_3d(): Test basic H5S (dataspace) selection code.
**      Tests unions of hyperslabs in 3-D (Uses H5Scombine_hyperslab
**      and H5Scombine_select instead of H5Sselect_hyperslab)
**
****************************************************************/
static void
test_select_hyper_union_3d(void)
{
    hid_t   fid1;       /* HDF5 File IDs        */
    hid_t   dataset;    /* Dataset ID            */
    hid_t   sid1, sid2; /* Dataspace ID            */
    hid_t   tmp_space;  /* Temporary Dataspace ID    */
    hid_t   tmp2_space; /* Another temporary Dataspace ID    */
    hsize_t dims1[] = {SPACE1_DIM1, SPACE1_DIM2, SPACE1_DIM3};
    hsize_t dims2[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};
    hsize_t dims3[] = {SPACE3_DIM1, SPACE3_DIM2};
    hsize_t start[SPACE1_RANK];  /* Starting location of hyperslab */
    hsize_t stride[SPACE1_RANK]; /* Stride of hyperslab */
    hsize_t count[SPACE1_RANK];  /* Element count of hyperslab */
    hsize_t block[SPACE1_RANK];  /* Block size of hyperslab */
    struct row_list {
        size_t z;
        size_t y;
        size_t x;
        size_t l;
    } rows[] = {
        /* Array of x,y,z coordinates & length for each row written from memory */
        {0, 0, 0, 6},                                                             /* 1st face of 3-D object */
        {0, 1, 0, 6},  {0, 2, 0, 6},  {0, 3, 0, 6},  {0, 4, 0, 6},  {1, 0, 0, 6}, /* 2nd face of 3-D object */
        {1, 1, 0, 6},  {1, 2, 0, 6},  {1, 3, 0, 6},  {1, 4, 0, 6},  {2, 0, 0, 6}, /* 3rd face of 3-D object */
        {2, 1, 0, 10}, {2, 2, 0, 10}, {2, 3, 0, 10}, {2, 4, 0, 10}, {2, 5, 2, 8},
        {2, 6, 2, 8},  {3, 0, 0, 6}, /* 4th face of 3-D object */
        {3, 1, 0, 10}, {3, 2, 0, 10}, {3, 3, 0, 10}, {3, 4, 0, 10}, {3, 5, 2, 8},
        {3, 6, 2, 8},  {4, 0, 0, 6}, /* 5th face of 3-D object */
        {4, 1, 0, 10}, {4, 2, 0, 10}, {4, 3, 0, 10}, {4, 4, 0, 10}, {4, 5, 2, 8},
        {4, 6, 2, 8},  {5, 1, 2, 8}, /* 6th face of 3-D object */
        {5, 2, 2, 8},  {5, 3, 2, 8},  {5, 4, 2, 8},  {5, 5, 2, 8},  {5, 6, 2, 8},
        {6, 1, 2, 8}, /* 7th face of 3-D object */
        {6, 2, 2, 8},  {6, 3, 2, 8},  {6, 4, 2, 8},  {6, 5, 2, 8},  {6, 6, 2, 8},
        {7, 1, 2, 8}, /* 8th face of 3-D object */
        {7, 2, 2, 8},  {7, 3, 2, 8},  {7, 4, 2, 8},  {7, 5, 2, 8},  {7, 6, 2, 8}};
    uint8_t *wbuf,   /* buffer to write to disk */
        *rbuf,       /* buffer read from disk */
        *tbuf,       /* temporary buffer pointer */
        *tbuf2;      /* temporary buffer pointer */
    int     i, j, k; /* Counters */
    herr_t  ret;     /* Generic return value        */
    hsize_t npoints; /* Number of elements in selection */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with unions of 3-D hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE4_DIM1 * SPACE4_DIM2 * SPACE4_DIM3);
    CHECK(wbuf, NULL, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE3_DIM1 * SPACE3_DIM2);
    CHECK(rbuf, NULL, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE4_DIM1; i++)
        for (j = 0; j < SPACE4_DIM2; j++)
            for (k = 0; k < SPACE4_DIM3; k++)
                *tbuf++ = (uint8_t)((((i * SPACE4_DIM2) + j) * SPACE4_DIM3) + k);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Test case of two blocks which overlap corners and must be split */
    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE1_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE4_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 2x15x13 hyperslab for disk dataset */
    start[0]  = 1;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 2;
    count[1]  = 15;
    count[2]  = 13;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select 5x5x6 hyperslab for memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    start[2]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 5;
    count[1]  = 5;
    count[2]  = 6;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Union overlapping 15x20 hyperslab for memory dataset (forming a irregularly shaped region) */
    start[0]  = 2;
    start[1]  = 1;
    start[2]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    stride[2] = 1;
    count[0]  = 6;
    count[1]  = 6;
    count[2]  = 8;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    tmp_space = H5Scombine_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(tmp_space, FAIL, "H5Sselect_hyperslab");

    /* Combine dataspaces and create new dataspace */
    tmp2_space = H5Scombine_select(sid2, H5S_SELECT_OR, tmp_space);
    CHECK(tmp2_space, FAIL, "H5Scombin_select");

    npoints = (hsize_t)H5Sget_select_npoints(tmp2_space);
    VERIFY(npoints, 15 * 26, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE1_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, tmp2_space, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close temporary dataspaces */
    ret = H5Sclose(tmp_space);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(tmp2_space);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE3_RANK, dims3, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 15x26 hyperslab for reading memory dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 15;
    count[1]  = 26;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Read selection from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Compare data read with data written out */
    for (i = 0, tbuf2 = rbuf; i < (int)(sizeof(rows) / sizeof(struct row_list)); i++) {
        tbuf = wbuf + (rows[i].z * SPACE4_DIM3 * SPACE4_DIM2) + (rows[i].y * SPACE4_DIM3) + rows[i].x;
        for (j = 0; j < (int)rows[i].l; j++, tbuf++, tbuf2++) {
            if (*tbuf != *tbuf2)
                TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                              __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
        } /* end for */
    }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_union_3d() */

/****************************************************************
**
**  test_select_hyper_valid_combination(): Tests invalid and valid
**  combinations of selections on dataspace for H5Scombine_select
**  and H5Smodify_select.
**
****************************************************************/
static void
test_select_hyper_valid_combination(void)
{
    hid_t   single_pt_sid;         /* Dataspace ID    with single point selection */
    hid_t   single_hyper_sid;      /* Dataspace ID    with single block hyperslab selection */
    hid_t   regular_hyper_sid;     /* Dataspace ID    with regular hyperslab selection */
    hid_t   non_existent_sid = -1; /* A non-existent space id */
    hid_t   tmp_sid;               /* Temporary dataspace ID */
    hsize_t dims2D[] = {SPACE9_DIM1, SPACE9_DIM2};
    hsize_t dims3D[] = {SPACE4_DIM1, SPACE4_DIM2, SPACE4_DIM3};

    hsize_t coord1[1][SPACE2_RANK]; /* Coordinates for single point selection */
    hsize_t start[SPACE4_RANK];     /* Hyperslab start */
    hsize_t stride[SPACE4_RANK];    /* Hyperslab stride */
    hsize_t count[SPACE4_RANK];     /* Hyperslab block count */
    hsize_t block[SPACE4_RANK];     /* Hyperslab block size */
    herr_t  ret;                    /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Selection Combination Validity\n"));
    HDassert(SPACE9_DIM2 >= POINT1_NPOINTS);

    /* Create dataspace for single point selection */
    single_pt_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL);
    CHECK(single_pt_sid, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for multiple point selection */
    coord1[0][0] = 2;
    coord1[0][1] = 2;
    ret          = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create dataspace for single hyperslab selection */
    single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims2D, NULL);
    CHECK(single_hyper_sid, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for single hyperslab selection  */
    start[0]  = 1;
    start[1]  = 1;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = (SPACE9_DIM1 - 2);
    block[1]  = (SPACE9_DIM2 - 2);
    ret       = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for regular hyperslab selection */
    regular_hyper_sid = H5Screate_simple(SPACE4_RANK, dims3D, NULL);
    CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");

    /* Select regular, strided hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    start[2]  = 2;
    stride[0] = 2;
    stride[1] = 2;
    stride[2] = 2;
    count[0]  = 5;
    count[1]  = 2;
    count[2]  = 5;
    block[0]  = 1;
    block[1]  = 1;
    block[2]  = 1;
    ret       = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Test all the selections created */

    /* Test the invalid combinations between point and hyperslab */
    tmp_sid = H5Scombine_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid);
    VERIFY(tmp_sid, FAIL, "H5Scombine_select");

    tmp_sid = H5Smodify_select(single_pt_sid, H5S_SELECT_AND, single_hyper_sid);
    VERIFY(tmp_sid, FAIL, "H5Smodify_select");

    /* Test the invalid combination between two hyperslab but of different dimension size */
    tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid);
    VERIFY(tmp_sid, FAIL, "H5Scombine_select");

    tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, regular_hyper_sid);
    VERIFY(tmp_sid, FAIL, "H5Smodify_select");

    /* Test invalid operation inputs to the two functions */
    tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid);
    VERIFY(tmp_sid, FAIL, "H5Scombine_select");

    tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_SET, single_hyper_sid);
    VERIFY(tmp_sid, FAIL, "H5Smodify_select");

    /* Test inputs in case of non-existent space ids */
    tmp_sid = H5Scombine_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid);
    VERIFY(tmp_sid, FAIL, "H5Scombine_select");

    tmp_sid = H5Smodify_select(single_hyper_sid, H5S_SELECT_AND, non_existent_sid);
    VERIFY(tmp_sid, FAIL, "H5Smodify_select");

    /* Close dataspaces */
    ret = H5Sclose(single_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(regular_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_select_hyper_valid_combination() */

/****************************************************************
**
**  test_select_hyper_and_2d(): Test basic H5S (dataspace) selection code.
**      Tests 'and' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_and_2d(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims2[] = {SPACE2A_DIM1};
    hsize_t  start[SPACE2_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE2_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE2_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE2_RANK];  /* Block size of hyperslab */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf,                    /* temporary buffer pointer */
        *tbuf2;                   /* temporary buffer pointer */
    int      i, j;                /* Counters */
    herr_t   ret;                 /* Generic return value        */
    hssize_t npoints;             /* Number of elements in selection */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with intersection of 2-D hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Intersect overlapping 10x10 hyperslab */
    start[0]  = 5;
    start[1]  = 5;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_AND, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid1);
    VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");

    /* Select 25 hyperslab for memory dataset */
    start[0]  = 0;
    stride[0] = 1;
    count[0]  = 25;
    block[0]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 5 * 5, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read entire dataset from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Initialize write buffer */
    for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
            if ((i >= 5 && i <= 9) && (j >= 5 && j <= 9)) {
                if (*tbuf != *tbuf2)
                    HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
                             i, j, (int)*tbuf, (int)*tbuf2);
                tbuf2++;
            } /* end if */
            else {
                if (*tbuf != 0)
                    HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
                             (int)*tbuf);
            } /* end else */
        }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_and_2d() */

/****************************************************************
**
**  test_select_hyper_xor_2d(): Test basic H5S (dataspace) selection code.
**      Tests 'xor' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_xor_2d(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims2[] = {SPACE2A_DIM1};
    hsize_t  start[SPACE2_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE2_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE2_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE2_RANK];  /* Block size of hyperslab */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf,                    /* temporary buffer pointer */
        *tbuf2;                   /* temporary buffer pointer */
    int      i, j;                /* Counters */
    herr_t   ret;                 /* Generic return value        */
    hssize_t npoints;             /* Number of elements in selection */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with XOR of 2-D hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Intersect overlapping 10x10 hyperslab */
    start[0]  = 5;
    start[1]  = 5;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_XOR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid1);
    VERIFY(npoints, 150, "H5Sget_select_npoints");

    /* Select 25 hyperslab for memory dataset */
    start[0]  = 0;
    stride[0] = 1;
    count[0]  = 150;
    block[0]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 150, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read entire dataset from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Initialize write buffer */
    for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
            if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) ||
                ((i >= 5 && i <= 9) && ((j >= 0 && j <= 4) || (j >= 10 && j <= 14))) ||
                ((i >= 10 && i <= 14) && (j >= 5 && j <= 14))) {
                if (*tbuf != *tbuf2)
                    HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
                             i, j, (int)*tbuf, (int)*tbuf2);
                tbuf2++;
            } /* end if */
            else {
                if (*tbuf != 0)
                    HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
                             (int)*tbuf);
            } /* end else */
        }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_xor_2d() */

/****************************************************************
**
**  test_select_hyper_notb_2d(): Test basic H5S (dataspace) selection code.
**      Tests 'notb' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_notb_2d(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims2[] = {SPACE2A_DIM1};
    hsize_t  start[SPACE2_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE2_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE2_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE2_RANK];  /* Block size of hyperslab */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf,                    /* temporary buffer pointer */
        *tbuf2;                   /* temporary buffer pointer */
    int      i, j;                /* Counters */
    herr_t   ret;                 /* Generic return value        */
    hssize_t npoints;             /* Number of elements in selection */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTB of 2-D hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Intersect overlapping 10x10 hyperslab */
    start[0]  = 5;
    start[1]  = 5;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTB, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid1);
    VERIFY(npoints, 75, "H5Sget_select_npoints");

    /* Select 75 hyperslab for memory dataset */
    start[0]  = 0;
    stride[0] = 1;
    count[0]  = 75;
    block[0]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 75, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read entire dataset from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Initialize write buffer */
    for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
            if (((i >= 0 && i <= 4) && (j >= 0 && j <= 9)) || ((i >= 5 && i <= 9) && (j >= 0 && j <= 4))) {
                if (*tbuf != *tbuf2)
                    HDprintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n", __LINE__,
                             i, j, (int)*tbuf, (int)*tbuf2);
                tbuf2++;
            } /* end if */
            else {
                if (*tbuf != 0)
                    HDprintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__, i, j,
                             (int)*tbuf);
            } /* end else */
        }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_notb_2d() */

/****************************************************************
**
**  test_select_hyper_nota_2d(): Test basic H5S (dataspace) selection code.
**      Tests 'nota' of hyperslabs in 2-D
**
****************************************************************/
static void
test_select_hyper_nota_2d(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE2_DIM1, SPACE2_DIM2};
    hsize_t  dims2[] = {SPACE2A_DIM1};
    hsize_t  start[SPACE2_RANK];  /* Starting location of hyperslab */
    hsize_t  stride[SPACE2_RANK]; /* Stride of hyperslab */
    hsize_t  count[SPACE2_RANK];  /* Element count of hyperslab */
    hsize_t  block[SPACE2_RANK];  /* Block size of hyperslab */
    uint8_t *wbuf,                /* buffer to write to disk */
        *rbuf,                    /* buffer read from disk */
        *tbuf,                    /* temporary buffer pointer */
        *tbuf2;                   /* temporary buffer pointer */
    int      i, j;                /* Counters */
    herr_t   ret;                 /* Generic return value        */
    hssize_t npoints;             /* Number of elements in selection */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with NOTA of 2-D hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE2_DIM1 * SPACE2_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), (size_t)(SPACE2_DIM1 * SPACE2_DIM2));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE2_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE2_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE2A_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for disk dataset */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Intersect overlapping 10x10 hyperslab */
    start[0]  = 5;
    start[1]  = 5;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 10;
    count[1]  = 10;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_NOTA, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid1);
    VERIFY(npoints, 75, "H5Sget_select_npoints");

    /* Select 75 hyperslab for memory dataset */
    start[0]  = 0;
    stride[0] = 1;
    count[0]  = 75;
    block[0]  = 1;
    ret       = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    npoints = H5Sget_select_npoints(sid2);
    VERIFY(npoints, 75, "H5Sget_select_npoints");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE2_NAME, H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write selection to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read entire dataset from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Initialize write buffer */
    for (i = 0, tbuf = rbuf, tbuf2 = wbuf; i < SPACE2_DIM1; i++)
        for (j = 0; j < SPACE2_DIM2; j++, tbuf++) {
            if (((i >= 10 && i <= 14) && (j >= 5 && j <= 14)) ||
                ((i >= 5 && i <= 9) && (j >= 10 && j <= 14))) {
                if (*tbuf != *tbuf2)
                    TestErrPrintf("%d: hyperslab values don't match!, i=%d, j=%d, *tbuf=%d, *tbuf2=%d\n",
                                  __LINE__, i, j, (int)*tbuf, (int)*tbuf2);
                tbuf2++;
            } /* end if */
            else {
                if (*tbuf != 0)
                    TestErrPrintf("%d: hyperslab element has wrong value!, i=%d, j=%d, *tbuf=%d\n", __LINE__,
                                  i, j, (int)*tbuf);
            } /* end else */
        }     /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_nota_2d() */

/****************************************************************
**
**  test_select_hyper_iter2(): Iterator for checking hyperslab iteration
**
****************************************************************/
static herr_t
test_select_hyper_iter2(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point,
                        void *_operator_data)
{
    int *tbuf   = (int *)_elem,           /* temporary buffer pointer */
        **tbuf2 = (int **)_operator_data; /* temporary buffer handle */
    unsigned u;                           /* Local counting variable */

    if (*tbuf != **tbuf2) {
        TestErrPrintf("Error in hyperslab iteration!\n");
        HDprintf("location: { ");
        for (u = 0; u < ndim; u++) {
            HDprintf("%2d", (int)point[u]);
            if (u < (ndim - 1))
                HDprintf(", ");
        } /* end for */
        HDprintf("}\n");
        HDprintf("*tbuf=%d, **tbuf2=%d\n", *tbuf, **tbuf2);
        return (-1);
    } /* end if */
    else {
        (*tbuf2)++;
        return (0);
    }
} /* end test_select_hyper_iter2() */

/****************************************************************
**
**  test_select_hyper_union_random_5d(): Test basic H5S (dataspace) selection code.
**      Tests random unions of 5-D hyperslabs
**
****************************************************************/
static void
test_select_hyper_union_random_5d(hid_t read_plist)
{
    hid_t   fid1;       /* HDF5 File IDs        */
    hid_t   dataset;    /* Dataset ID            */
    hid_t   sid1, sid2; /* Dataspace ID            */
    hsize_t dims1[] = {SPACE5_DIM1, SPACE5_DIM2, SPACE5_DIM3, SPACE5_DIM4, SPACE5_DIM5};
    hsize_t dims2[] = {SPACE6_DIM1};
    hsize_t start[SPACE5_RANK]; /* Starting location of hyperslab */
    hsize_t count[SPACE5_RANK]; /* Element count of hyperslab */
    int *   wbuf,               /* buffer to write to disk */
        *rbuf,                  /* buffer read from disk */
        *tbuf;                  /* temporary buffer pointer */
    int      i, j, k, l, m;     /* Counters */
    herr_t   ret;               /* Generic return value        */
    hssize_t npoints,           /* Number of elements in file selection */
        npoints2;               /* Number of elements in memory selection */
    unsigned seed;              /* Random number seed for each test */
    unsigned test_num;          /* Count of tests being executed */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab Selection Functions with random unions of 5-D hyperslabs\n"));

    /* Allocate write & read buffers */
    wbuf = (int *)HDmalloc(sizeof(int) * SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (int *)HDcalloc(sizeof(int),
                           (size_t)(SPACE5_DIM1 * SPACE5_DIM2 * SPACE5_DIM3 * SPACE5_DIM4 * SPACE5_DIM5));
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE5_DIM1; i++)
        for (j = 0; j < SPACE5_DIM2; j++)
            for (k = 0; k < SPACE5_DIM3; k++)
                for (l = 0; l < SPACE5_DIM4; l++)
                    for (m = 0; m < SPACE5_DIM5; m++)
                        *tbuf++ = (int)(((((((i * SPACE5_DIM2) + j) * SPACE5_DIM3) + k) * SPACE5_DIM4) + l) *
                                        SPACE5_DIM5) +
                                  m;

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE5_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, SPACE5_NAME, H5T_NATIVE_INT, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Write entire dataset to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Create dataspace for reading buffer */
    sid2 = H5Screate_simple(SPACE6_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Get initial random # seed */
    seed = (unsigned)HDtime(NULL) + (unsigned)HDclock();

    /* Crunch through a bunch of random hyperslab reads from the file dataset */
    for (test_num = 0; test_num < NRAND_HYPER; test_num++) {
        /* Save random # seed for later use */
        /* (Used in case of errors, to regenerate the hyperslab sequence) */
        seed += (unsigned)HDclock();
        HDsrandom(seed);

        for (i = 0; i < NHYPERSLABS; i++) {
            /* Select random hyperslab location & size for selection */
            for (j = 0; j < SPACE5_RANK; j++) {
                start[j] = ((hsize_t)HDrandom() % dims1[j]);
                count[j] = (((hsize_t)HDrandom() % (dims1[j] - start[j])) + 1);
            } /* end for */

            /* Select hyperslab */
            ret = H5Sselect_hyperslab(sid1, (i == 0 ? H5S_SELECT_SET : H5S_SELECT_OR), start, NULL, count,
                                      NULL);
            CHECK(ret, FAIL, "H5Sselect_hyperslab");
            if (ret < 0) {
                TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
                break;
            } /* end if */
        }     /* end for */

        /* Get the number of elements selected */
        npoints = H5Sget_select_npoints(sid1);
        CHECK(npoints, 0, "H5Sget_select_npoints");

        /* Select linear 1-D hyperslab for memory dataset */
        start[0] = 0;
        count[0] = (hsize_t)npoints;
        ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");

        npoints2 = H5Sget_select_npoints(sid2);
        VERIFY(npoints, npoints2, "H5Sget_select_npoints");

        /* Read selection from disk */
        ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, read_plist, rbuf);
        CHECK(ret, FAIL, "H5Dread");
        if (ret < 0) {
            TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
            break;
        } /* end if */

        /* Compare data read with data written out */
        tbuf = rbuf;
        ret  = H5Diterate(wbuf, H5T_NATIVE_INT, sid1, test_select_hyper_iter2, &tbuf);
        if (ret < 0) {
            TestErrPrintf("Random hyperslabs for seed %u failed!\n", seed);
            break;
        } /* end if */

        /* Set the read buffer back to all zeroes */
        HDmemset(rbuf, 0, (size_t)SPACE6_DIM1);
    } /* end for */

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_union_random_5d() */

/****************************************************************
**
**  test_select_hyper_chunk(): Test basic H5S (dataspace) selection code.
**      Tests large hyperslab selection in chunked dataset
**
****************************************************************/
static void
test_select_hyper_chunk(hid_t fapl_plist, hid_t xfer_plist)
{
    hsize_t dimsf[3];                                     /* dataset dimensions */
    hsize_t chunk_dimsf[3] = {CHUNK_X, CHUNK_Y, CHUNK_Z}; /* chunk sizes */
    short * data;                                         /* data to write */
    short * tmpdata;                                      /* data to write */

    /*
     * Data  and output buffer initialization.
     */
    hid_t   file, dataset; /* handles */
    hid_t   dataspace;
    hid_t   memspace;
    hid_t   plist;
    hsize_t dimsm[3];    /* memory space dimensions */
    hsize_t dims_out[3]; /* dataset dimensions */
    herr_t  status;

    short *data_out;    /* output buffer */
    short *tmpdata_out; /* output buffer */

    hsize_t count[3];      /* size of the hyperslab in the file */
    hsize_t offset[3];     /* hyperslab offset in the file */
    hsize_t count_out[3];  /* size of the hyperslab in memory */
    hsize_t offset_out[3]; /* hyperslab offset in memory */
    int     i, j, k, status_n, rank;

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Hyperslab I/O on Large Chunks\n"));

    /* Allocate the transfer buffers */
    data = (short *)HDmalloc(sizeof(short) * X * Y * Z);
    CHECK_PTR(data, "HDmalloc");
    data_out = (short *)HDcalloc((size_t)(NX * NY * NZ), sizeof(short));
    CHECK_PTR(data_out, "HDcalloc");

    /*
     * Data buffer initialization.
     */
    tmpdata = data;
    for (j = 0; j < X; j++)
        for (i = 0; i < Y; i++)
            for (k = 0; k < Z; k++)
                *tmpdata++ = (short)((k + 1) % 256);

    /*
     * Create a new file using H5F_ACC_TRUNC access,
     * the default file creation properties, and the default file
     * access properties.
     */
    file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_plist);
    CHECK(file, FAIL, "H5Fcreate");

    /*
     * Describe the size of the array and create the dataspace for fixed
     * size dataset.
     */
    dimsf[0]  = X;
    dimsf[1]  = Y;
    dimsf[2]  = Z;
    dataspace = H5Screate_simple(RANK_F, dimsf, NULL);
    CHECK(dataspace, FAIL, "H5Screate_simple");

    /*
     * Create a new dataset within the file using defined dataspace and
     * chunking properties.
     */
    plist = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(plist, FAIL, "H5Pcreate");
    status = H5Pset_chunk(plist, RANK_F, chunk_dimsf);
    CHECK(status, FAIL, "H5Pset_chunk");
    dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /*
     * Define hyperslab in the dataset.
     */
    offset[0] = 0;
    offset[1] = 0;
    offset[2] = 0;
    count[0]  = NX_SUB;
    count[1]  = NY_SUB;
    count[2]  = NZ_SUB;
    status    = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
    CHECK(status, FAIL, "H5Sselect_hyperslab");

    /*
     * Define the memory dataspace.
     */
    dimsm[0] = NX;
    dimsm[1] = NY;
    dimsm[2] = NZ;
    memspace = H5Screate_simple(RANK_M, dimsm, NULL);
    CHECK(memspace, FAIL, "H5Screate_simple");

    /*
     * Define memory hyperslab.
     */
    offset_out[0] = 0;
    offset_out[1] = 0;
    offset_out[2] = 0;
    count_out[0]  = NX_SUB;
    count_out[1]  = NY_SUB;
    count_out[2]  = NZ_SUB;
    status        = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
    CHECK(status, FAIL, "H5Sselect_hyperslab");

    /*
     * Write the data to the dataset using hyperslabs
     */
    status = H5Dwrite(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data);
    CHECK(status, FAIL, "H5Dwrite");

    /*
     * Close/release resources.
     */
    status = H5Pclose(plist);
    CHECK(status, FAIL, "H5Pclose");
    status = H5Sclose(dataspace);
    CHECK(status, FAIL, "H5Sclose");
    status = H5Sclose(memspace);
    CHECK(status, FAIL, "H5Sclose");
    status = H5Dclose(dataset);
    CHECK(status, FAIL, "H5Dclose");
    status = H5Fclose(file);
    CHECK(status, FAIL, "H5Fclose");

    /*************************************************************

      This reads the hyperslab from the test.h5 file just
      created, into a 3-dimensional plane of the 3-dimensional
      array.

     ************************************************************/

    /*
     * Open the file and the dataset.
     */
    file = H5Fopen(FILENAME, H5F_ACC_RDONLY, fapl_plist);
    CHECK(file, FAIL, "H5Fopen");
    dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dopen2");

    dataspace = H5Dget_space(dataset); /* dataspace handle */
    CHECK(dataspace, FAIL, "H5Dget_space");
    rank = H5Sget_simple_extent_ndims(dataspace);
    VERIFY(rank, 3, "H5Sget_simple_extent_ndims");
    status_n = H5Sget_simple_extent_dims(dataspace, dims_out, NULL);
    CHECK(status_n, FAIL, "H5Sget_simple_extent_dims");
    VERIFY(dims_out[0], dimsf[0], "Dataset dimensions");
    VERIFY(dims_out[1], dimsf[1], "Dataset dimensions");
    VERIFY(dims_out[2], dimsf[2], "Dataset dimensions");

    /*
     * Define hyperslab in the dataset.
     */
    offset[0] = 0;
    offset[1] = 0;
    offset[2] = 0;
    count[0]  = NX_SUB;
    count[1]  = NY_SUB;
    count[2]  = NZ_SUB;
    status    = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, offset, NULL, count, NULL);
    CHECK(status, FAIL, "H5Sselect_hyperslab");

    /*
     * Define the memory dataspace.
     */
    dimsm[0] = NX;
    dimsm[1] = NY;
    dimsm[2] = NZ;
    memspace = H5Screate_simple(RANK_M, dimsm, NULL);
    CHECK(memspace, FAIL, "H5Screate_simple");

    /*
     * Define memory hyperslab.
     */
    offset_out[0] = 0;
    offset_out[1] = 0;
    offset_out[2] = 0;
    count_out[0]  = NX_SUB;
    count_out[1]  = NY_SUB;
    count_out[2]  = NZ_SUB;
    status        = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, offset_out, NULL, count_out, NULL);
    CHECK(status, FAIL, "H5Sselect_hyperslab");

    /*
     * Read data from hyperslab in the file into the hyperslab in
     * memory and display.
     */
    status = H5Dread(dataset, H5T_NATIVE_SHORT, memspace, dataspace, xfer_plist, data_out);
    CHECK(status, FAIL, "H5Dread");

    /* Compare data written with data read in */
    tmpdata     = data;
    tmpdata_out = data_out;
    for (j = 0; j < X; j++)
        for (i = 0; i < Y; i++)
            for (k = 0; k < Z; k++, tmpdata++, tmpdata_out++) {
                if (*tmpdata != *tmpdata_out)
                    TestErrPrintf("Line %d: Error! j=%d, i=%d, k=%d, *tmpdata=%x, *tmpdata_out=%x\n",
                                  __LINE__, j, i, k, (unsigned)*tmpdata, (unsigned)*tmpdata_out);
            } /* end for */

    /*
     * Close and release resources.
     */
    status = H5Dclose(dataset);
    CHECK(status, FAIL, "H5Dclose");
    status = H5Sclose(dataspace);
    CHECK(status, FAIL, "H5Sclose");
    status = H5Sclose(memspace);
    CHECK(status, FAIL, "H5Sclose");
    status = H5Fclose(file);
    CHECK(status, FAIL, "H5Fclose");
    HDfree(data);
    HDfree(data_out);
} /* test_select_hyper_chunk() */

/****************************************************************
**
**  test_select_point_chunk(): Test basic H5S (dataspace) selection code.
**      Tests combinations of hyperslab and point selections on
**      chunked datasets.
**
****************************************************************/
static void
test_select_point_chunk(void)
{
    hsize_t   dimsf[SPACE7_RANK];                                                /* dataset dimensions */
    hsize_t   chunk_dimsf[SPACE7_RANK] = {SPACE7_CHUNK_DIM1, SPACE7_CHUNK_DIM2}; /* chunk sizes */
    unsigned *data;                                                              /* data to write */
    unsigned *tmpdata;                                                           /* data to write */

    /*
     * Data  and output buffer initialization.
     */
    hid_t  file, dataset; /* handles */
    hid_t  dataspace;
    hid_t  pnt1_space; /* Dataspace to hold 1st point selection */
    hid_t  pnt2_space; /* Dataspace to hold 2nd point selection */
    hid_t  hyp1_space; /* Dataspace to hold 1st hyperslab selection */
    hid_t  hyp2_space; /* Dataspace to hold 2nd hyperslab selection */
    hid_t  dcpl;
    herr_t ret; /* Generic return value */

    unsigned *data_out; /* output buffer */

    hsize_t  start[SPACE7_RANK];                  /* hyperslab offset */
    hsize_t  count[SPACE7_RANK];                  /* size of the hyperslab */
    hsize_t  points[SPACE7_NPOINTS][SPACE7_RANK]; /* points for selection */
    unsigned i, j;                                /* Local index variables */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Point Selections on Chunked Datasets\n"));

    /* Allocate the transfer buffers */
    data = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(data, "HDmalloc");
    data_out = (unsigned *)HDcalloc((size_t)(SPACE7_DIM1 * SPACE7_DIM2), sizeof(unsigned));
    CHECK_PTR(data_out, "HDcalloc");

    /*
     * Data buffer initialization.
     */
    tmpdata = data;
    for (i = 0; i < SPACE7_DIM1; i++)
        for (j = 0; j < SPACE7_DIM1; j++)
            *tmpdata++ = ((i * SPACE7_DIM2) + j) % 256;

    /*
     * Create a new file using H5F_ACC_TRUNC access,
     * the default file creation properties and file
     * access properties.
     */
    file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(file, FAIL, "H5Fcreate");

    /* Create file dataspace */
    dimsf[0]  = SPACE7_DIM1;
    dimsf[1]  = SPACE7_DIM2;
    dataspace = H5Screate_simple(SPACE7_RANK, dimsf, NULL);
    CHECK(dataspace, FAIL, "H5Screate_simple");

    /*
     * Create a new dataset within the file using defined dataspace and
     * chunking properties.
     */
    dcpl = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(dcpl, FAIL, "H5Pcreate");
    ret = H5Pset_chunk(dcpl, SPACE7_RANK, chunk_dimsf);
    CHECK(ret, FAIL, "H5Pset_chunk");
    dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UCHAR, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Create 1st point selection */
    pnt1_space = H5Scopy(dataspace);
    CHECK(pnt1_space, FAIL, "H5Scopy");

    points[0][0] = 3;
    points[0][1] = 3;
    points[1][0] = 3;
    points[1][1] = 8;
    points[2][0] = 8;
    points[2][1] = 3;
    points[3][0] = 8;
    points[3][1] = 8;
    points[4][0] = 1; /* In same chunk as point #0, but "earlier" in chunk */
    points[4][1] = 1;
    points[5][0] = 1; /* In same chunk as point #1, but "earlier" in chunk */
    points[5][1] = 6;
    points[6][0] = 6; /* In same chunk as point #2, but "earlier" in chunk */
    points[6][1] = 1;
    points[7][0] = 6; /* In same chunk as point #3, but "earlier" in chunk */
    points[7][1] = 6;
    ret = H5Sselect_elements(pnt1_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create 1st hyperslab selection */
    hyp1_space = H5Scopy(dataspace);
    CHECK(hyp1_space, FAIL, "H5Scopy");

    start[0] = 2;
    start[1] = 2;
    count[0] = 4;
    count[1] = 2;
    ret      = H5Sselect_hyperslab(hyp1_space, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Write out data using 1st point selection for file & hyperslab for memory */
    ret = H5Dwrite(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Create 2nd point selection */
    pnt2_space = H5Scopy(dataspace);
    CHECK(pnt2_space, FAIL, "H5Scopy");

    points[0][0] = 4;
    points[0][1] = 4;
    points[1][0] = 4;
    points[1][1] = 9;
    points[2][0] = 9;
    points[2][1] = 4;
    points[3][0] = 9;
    points[3][1] = 9;
    points[4][0] = 2; /* In same chunk as point #0, but "earlier" in chunk */
    points[4][1] = 2;
    points[5][0] = 2; /* In same chunk as point #1, but "earlier" in chunk */
    points[5][1] = 7;
    points[6][0] = 7; /* In same chunk as point #2, but "earlier" in chunk */
    points[6][1] = 2;
    points[7][0] = 7; /* In same chunk as point #3, but "earlier" in chunk */
    points[7][1] = 7;
    ret = H5Sselect_elements(pnt2_space, H5S_SELECT_SET, (size_t)SPACE7_NPOINTS, (const hsize_t *)points);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create 2nd hyperslab selection */
    hyp2_space = H5Scopy(dataspace);
    CHECK(hyp2_space, FAIL, "H5Scopy");

    start[0] = 2;
    start[1] = 4;
    count[0] = 4;
    count[1] = 2;
    ret      = H5Sselect_hyperslab(hyp2_space, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Write out data using 2nd hyperslab selection for file & point for memory */
    ret = H5Dwrite(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close everything (except selections) */
    ret = H5Pclose(dcpl);
    CHECK(ret, FAIL, "H5Pclose");
    ret = H5Sclose(dataspace);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");
    ret = H5Fclose(file);
    CHECK(ret, FAIL, "H5Fclose");

    /* Re-open file & dataset */
    file = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
    CHECK(file, FAIL, "H5Fopen");
    dataset = H5Dopen2(file, DATASETNAME, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dopen2");

    /* Read data using 1st point selection for file and hyperslab for memory */
    ret = H5Dread(dataset, H5T_NATIVE_UINT, hyp1_space, pnt1_space, H5P_DEFAULT, data_out);
    CHECK(ret, FAIL, "H5Dread");

    /* Verify data (later) */

    /* Read data using 2nd hyperslab selection for file and point for memory */
    ret = H5Dread(dataset, H5T_NATIVE_UINT, pnt2_space, hyp2_space, H5P_DEFAULT, data_out);
    CHECK(ret, FAIL, "H5Dread");

    /* Verify data (later) */

    /* Close everything (inclusing selections) */
    ret = H5Sclose(pnt1_space);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(pnt2_space);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(hyp1_space);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(hyp2_space);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");
    ret = H5Fclose(file);
    CHECK(ret, FAIL, "H5Fclose");

    HDfree(data);
    HDfree(data_out);
} /* test_select_point_chunk() */

/****************************************************************
**
**  test_select_sclar_chunk(): Test basic H5S (dataspace) selection code.
**      Tests using a scalar dataspace (in memory) to access chunked datasets.
**
****************************************************************/
static void
test_select_scalar_chunk(void)
{
    hid_t    file_id;                     /* File ID */
    hid_t    dcpl;                        /* Dataset creation property list */
    hid_t    dsid;                        /* Dataset ID */
    hid_t    sid;                         /* Dataspace ID */
    hid_t    m_sid;                       /* Memory dataspace */
    hsize_t  dims[]    = {2};             /* Dataset dimensions */
    hsize_t  maxdims[] = {H5S_UNLIMITED}; /* Dataset maximum dimensions */
    hsize_t  offset[]  = {0};             /* Hyperslab start */
    hsize_t  count[]   = {1};             /* Hyperslab count */
    unsigned data      = 2;               /* Data to write */
    herr_t   ret;

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Scalar Dataspaces and Chunked Datasets\n"));

    file_id = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(file_id, FAIL, "H5Fcreate");

    dcpl = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(dcpl, FAIL, "H5Pcreate");

    dims[0] = 1024U;
    ret     = H5Pset_chunk(dcpl, 1, dims);
    CHECK(ret, FAIL, "H5Pset_chunk");

    /* Create 1-D dataspace */
    sid = H5Screate_simple(1, dims, maxdims);
    CHECK(sid, FAIL, "H5Screate_simple");

    dsid = H5Dcreate2(file_id, "dset", H5T_NATIVE_UINT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
    CHECK(dsid, FAIL, "H5Dcreate2");

    /* Select scalar area (offset 0, count 1) */
    ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create scalar memory dataspace */
    m_sid = H5Screate(H5S_SCALAR);
    CHECK(m_sid, FAIL, "H5Screate");

    /* Write out data using scalar dataspace for memory dataspace */
    ret = H5Dwrite(dsid, H5T_NATIVE_UINT, m_sid, sid, H5P_DEFAULT, &data);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close resources */
    ret = H5Sclose(m_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Dclose(dsid);
    CHECK(ret, FAIL, "H5Dclose");
    ret = H5Pclose(dcpl);
    CHECK(ret, FAIL, "H5Pclose");
    ret = H5Fclose(file_id);
    CHECK(ret, FAIL, "H5Fclose");
} /* test_select_scalar_chunk() */

/****************************************************************
**
**  test_select_valid(): Test basic H5S (dataspace) selection code.
**      Tests selection validity
**
****************************************************************/
static void
test_select_valid(void)
{
    herr_t  error;
    htri_t  valid;
    hid_t   main_space, sub_space;
    hsize_t safe_start[2] = {1, 1};
    hsize_t safe_count[2] = {1, 1};
    hsize_t start[2];
    hsize_t dims[2], maxdims[2], size[2], count[2];

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Selection Validity\n"));

    MESSAGE(8, ("Case 1 : sub_space is not a valid dataspace\n"));
    dims[0] = dims[1] = H5S_UNLIMITED;

    sub_space = H5Screate_simple(2, dims, NULL);
    VERIFY(sub_space, FAIL, "H5Screate_simple");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, FAIL, "H5Sselect_valid");

    /* Set arrays and dataspace for the rest of the cases */
    count[0] = count[1] = 1;
    dims[0] = dims[1] = maxdims[0] = maxdims[1] = 10;

    main_space = H5Screate_simple(2, dims, maxdims);
    CHECK(main_space, FAIL, "H5Screate_simple");

    MESSAGE(8, ("Case 2 : sub_space is a valid but closed dataspace\n"));
    sub_space = H5Scopy(main_space);
    CHECK(sub_space, FAIL, "H5Scopy");

    error = H5Sclose(sub_space);
    CHECK(error, FAIL, "H5Sclose");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, FAIL, "H5Sselect_valid");

    MESSAGE(8, ("Case 3 : in the dimensions\nTry offset (4,4) and size(6,6), the original space is of size "
                "(10,10)\n"));
    start[0] = start[1] = 4;
    size[0] = size[1] = 6;

    sub_space = H5Scopy(main_space);
    CHECK(sub_space, FAIL, "H5Scopy");

    error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, TRUE, "H5Sselect_valid");

    error = H5Sclose(sub_space);
    CHECK(error, FAIL, "H5Sclose");

    MESSAGE(8, ("Case 4 : exceed dimensions by 1\nTry offset (5,5) and size(6,6), the original space is of "
                "size (10,10)\n"));
    start[0] = start[1] = 5;
    size[0] = size[1] = 6;

    sub_space = H5Scopy(main_space);
    CHECK(sub_space, FAIL, "H5Scopy");

    error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, FALSE, "H5Sselect_valid");

    error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, FALSE, "H5Sselect_valid");

    error = H5Sclose(sub_space);
    CHECK(error, FAIL, "H5Sclose");

    MESSAGE(8, ("Case 5 : exceed dimensions by 2\nTry offset (6,6) and size(6,6), the original space is of "
                "size (10,10)\n"));
    start[0] = start[1] = 6;
    size[0] = size[1] = 6;

    sub_space = H5Scopy(main_space);
    CHECK(sub_space, FAIL, "H5Scopy");

    error = H5Sselect_hyperslab(sub_space, H5S_SELECT_SET, start, size, count, size);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, FALSE, "H5Sselect_valid");

    error = H5Sselect_hyperslab(sub_space, H5S_SELECT_OR, safe_start, NULL, safe_count, NULL);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    valid = H5Sselect_valid(sub_space);
    VERIFY(valid, FALSE, "H5Sselect_valid");

    error = H5Sclose(sub_space);
    CHECK(error, FAIL, "H5Sclose");
    error = H5Sclose(main_space);
    CHECK(error, FAIL, "H5Sclose");
} /* test_select_valid() */

/****************************************************************
**
**  test_select_combine(): Test basic H5S (dataspace) selection code.
**      Tests combining "all" and "none" selections with hyperslab
**      operations.
**
****************************************************************/
static void
test_select_combine(void)
{
    hid_t        base_id;                                        /* Base dataspace for test */
    hid_t        all_id;                                         /* Dataspace for "all" selection */
    hid_t        none_id;                                        /* Dataspace for "none" selection */
    hid_t        space1;                                         /* Temporary dataspace #1 */
    hsize_t      start[SPACE7_RANK];                             /* Hyperslab start */
    hsize_t      stride[SPACE7_RANK];                            /* Hyperslab stride */
    hsize_t      count[SPACE7_RANK];                             /* Hyperslab count */
    hsize_t      block[SPACE7_RANK];                             /* Hyperslab block */
    hsize_t      dims[SPACE7_RANK] = {SPACE7_DIM1, SPACE7_DIM2}; /* Dimensions of dataspace */
    H5S_sel_type sel_type;                                       /* Selection type */
    hssize_t     nblocks;                                        /* Number of hyperslab blocks */
    hsize_t      blocks[16][2][SPACE7_RANK];                     /* List of blocks */
    herr_t       error;

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Selection Combinations\n"));

    /* Create dataspace for dataset on disk */
    base_id = H5Screate_simple(SPACE7_RANK, dims, NULL);
    CHECK(base_id, FAIL, "H5Screate_simple");

    /* Copy base dataspace and set selection to "all" */
    all_id = H5Scopy(base_id);
    CHECK(all_id, FAIL, "H5Scopy");
    error = H5Sselect_all(all_id);
    CHECK(error, FAIL, "H5Sselect_all");
    sel_type = H5Sget_select_type(all_id);
    VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");

    /* Copy base dataspace and set selection to "none" */
    none_id = H5Scopy(base_id);
    CHECK(none_id, FAIL, "H5Scopy");
    error = H5Sselect_none(none_id);
    CHECK(error, FAIL, "H5Sselect_none");
    sel_type = H5Sget_select_type(none_id);
    VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");

    /* Copy "all" selection & space */
    space1 = H5Scopy(all_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'OR' "all" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that it's still "all" selection */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_ALL, "H5Sget_select_type");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "all" selection & space */
    space1 = H5Scopy(all_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'AND' "all" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the same at the original block */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");

    /* Verify that there is only one block */
    nblocks = H5Sget_select_hyper_nblocks(space1);
    VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");

    /* Retrieve the block defined */
    HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
    error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
    CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");

    /* Verify that the correct block is defined */
    VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "all" selection & space */
    space1 = H5Scopy(all_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'XOR' "all" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is an inversion of the original block */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");

    /* Verify that there are two blocks */
    nblocks = H5Sget_select_hyper_nblocks(space1);
    VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");

    /* Retrieve the block defined */
    HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
    error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
    CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");

    /* Verify that the correct block is defined */
    VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "all" selection & space */
    space1 = H5Scopy(all_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'NOTB' "all" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is an inversion of the original block */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");

    /* Verify that there are two blocks */
    nblocks = H5Sget_select_hyper_nblocks(space1);
    VERIFY(nblocks, 2, "H5Sget_select_hyper_nblocks");

    /* Retrieve the block defined */
    HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
    error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
    CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");

    /* Verify that the correct block is defined */
    VERIFY(blocks[0][0][0], 0, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][0][1], 5, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][0], 4, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][1], 9, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][0][0], 5, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][0][1], 0, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][1][0], 9, "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[1][1][1], 9, "H5Sget_select_hyper_blocklist");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "all" selection & space */
    space1 = H5Scopy(all_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'NOTA' "all" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the "none" selection */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "none" selection & space */
    space1 = H5Scopy(none_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'OR' "none" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_OR, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the same as the original hyperslab */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");

    /* Verify that there is only one block */
    nblocks = H5Sget_select_hyper_nblocks(space1);
    VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");

    /* Retrieve the block defined */
    HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
    error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
    CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");

    /* Verify that the correct block is defined */
    VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "none" selection & space */
    space1 = H5Scopy(none_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'AND' "none" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_AND, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the "none" selection */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "none" selection & space */
    space1 = H5Scopy(none_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'XOR' "none" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_XOR, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the same as the original hyperslab */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");

    /* Verify that there is only one block */
    nblocks = H5Sget_select_hyper_nblocks(space1);
    VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");

    /* Retrieve the block defined */
    HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
    error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
    CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");

    /* Verify that the correct block is defined */
    VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "none" selection & space */
    space1 = H5Scopy(none_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'NOTB' "none" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_NOTB, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the "none" selection */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Copy "none" selection & space */
    space1 = H5Scopy(none_id);
    CHECK(space1, FAIL, "H5Scopy");

    /* 'NOTA' "none" selection with another hyperslab */
    start[0] = start[1] = 0;
    stride[0] = stride[1] = 1;
    count[0] = count[1] = 1;
    block[0] = block[1] = 5;
    error               = H5Sselect_hyperslab(space1, H5S_SELECT_NOTA, start, stride, count, block);
    CHECK(error, FAIL, "H5Sselect_hyperslab");

    /* Verify that the new selection is the same as the original hyperslab */
    sel_type = H5Sget_select_type(space1);
    VERIFY(sel_type, H5S_SEL_HYPERSLABS, "H5Sget_select_type");

    /* Verify that there is only one block */
    nblocks = H5Sget_select_hyper_nblocks(space1);
    VERIFY(nblocks, 1, "H5Sget_select_hyper_nblocks");

    /* Retrieve the block defined */
    HDmemset(blocks, -1, sizeof(blocks)); /* Reset block list */
    error = H5Sget_select_hyper_blocklist(space1, (hsize_t)0, (hsize_t)nblocks, (hsize_t *)blocks);
    CHECK(error, FAIL, "H5Sget_select_hyper_blocklist");

    /* Verify that the correct block is defined */
    VERIFY(blocks[0][0][0], (hsize_t)start[0], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][0][1], (hsize_t)start[1], "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][0], (block[0] - 1), "H5Sget_select_hyper_blocklist");
    VERIFY(blocks[0][1][1], (block[1] - 1), "H5Sget_select_hyper_blocklist");

    /* Close temporary dataspace */
    error = H5Sclose(space1);
    CHECK(error, FAIL, "H5Sclose");

    /* Close dataspaces */
    error = H5Sclose(base_id);
    CHECK(error, FAIL, "H5Sclose");

    error = H5Sclose(all_id);
    CHECK(error, FAIL, "H5Sclose");

    error = H5Sclose(none_id);
    CHECK(error, FAIL, "H5Sclose");
} /* test_select_combine() */

/*
 * Typedef for iteration structure used in the fill value tests
 */
typedef struct {
    unsigned short fill_value; /* The fill value to check */
    size_t         curr_coord; /* Current coordinate to examine */
    hsize_t *      coords;     /* Pointer to selection's coordinates */
} fill_iter_info;

/****************************************************************
**
**  test_select_hyper_iter3(): Iterator for checking hyperslab iteration
**
****************************************************************/
static herr_t
test_select_hyper_iter3(void *_elem, hid_t H5_ATTR_UNUSED type_id, unsigned ndim, const hsize_t *point,
                        void *_operator_data)
{
    unsigned *      tbuf = (unsigned *)_elem; /* temporary buffer pointer */
    fill_iter_info *iter_info =
        (fill_iter_info *)_operator_data; /* Get the pointer to the iterator information */
    hsize_t *coord_ptr;                   /* Pointer to the coordinate information for a point*/

    /* Check value in current buffer location */
    if (*tbuf != iter_info->fill_value)
        return (-1);
    else {
        /* Check number of dimensions */
        if (ndim != SPACE7_RANK)
            return (-1);
        else {
            /* Check Coordinates */
            coord_ptr = iter_info->coords + (2 * iter_info->curr_coord);
            iter_info->curr_coord++;
            if (coord_ptr[0] != point[0])
                return (-1);
            else if (coord_ptr[1] != point[1])
                return (-1);
            else
                return (0);
        } /* end else */
    }     /* end else */
} /* end test_select_hyper_iter3() */

/****************************************************************
**
**  test_select_fill_all(): Test basic H5S (dataspace) selection code.
**      Tests filling "all" selections
**
****************************************************************/
static void
test_select_fill_all(void)
{
    hid_t          sid1; /* Dataspace ID */
    hsize_t        dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    unsigned       fill_value;                                     /* Fill value */
    fill_iter_info iter_info;                                      /* Iterator information structure */
    hsize_t        points[SPACE7_DIM1 * SPACE7_DIM2][SPACE7_RANK]; /* Coordinates of selection */
    unsigned *     wbuf,                                           /* buffer to write to disk */
        *tbuf;                                                     /* temporary buffer pointer */
    unsigned u, v;                                                 /* Counters */
    herr_t   ret;                                                  /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Filling 'all' Selections\n"));

    /* Allocate memory buffer */
    wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");

    /* Initialize memory buffer */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++)
            *tbuf++ = (u * SPACE7_DIM2) + v;

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Space defaults to "all" selection */

    /* Set fill value */
    fill_value = SPACE7_FILL;

    /* Fill selection in memory */
    ret = H5Dfill(&fill_value, H5T_NATIVE_UINT, wbuf, H5T_NATIVE_UINT, sid1);
    CHECK(ret, FAIL, "H5Dfill");

    /* Verify memory buffer the hard way... */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++)
            if (*tbuf != fill_value)
                TestErrPrintf("Error! v=%d, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf, fill_value);

    /* Set the coordinates of the selection */
    for (u = 0; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++) {
            points[(u * SPACE7_DIM2) + v][0] = u;
            points[(u * SPACE7_DIM2) + v][1] = v;
        } /* end for */

    /* Initialize the iterator structure */
    iter_info.fill_value = SPACE7_FILL;
    iter_info.curr_coord = 0;
    iter_info.coords     = (hsize_t *)points;

    /* Iterate through selection, verifying correct data */
    ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Free memory buffers */
    HDfree(wbuf);
} /* test_select_fill_all() */

/****************************************************************
**
**  test_select_fill_point(): Test basic H5S (dataspace) selection code.
**      Tests filling "point" selections
**
****************************************************************/
static void
test_select_fill_point(hssize_t *offset)
{
    hid_t          sid1; /* Dataspace ID */
    hsize_t        dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    hssize_t       real_offset[SPACE7_RANK]; /* Actual offset to use */
    hsize_t        points[5][SPACE7_RANK] = {{2, 4}, {3, 8}, {8, 4}, {7, 5}, {7, 7}};
    size_t         num_points             = 5; /* Number of points selected */
    int            fill_value;                 /* Fill value */
    fill_iter_info iter_info;                  /* Iterator information structure */
    unsigned *     wbuf,                       /* buffer to write to disk */
        *tbuf;                                 /* temporary buffer pointer */
    unsigned u, v, w;                          /* Counters */
    herr_t   ret;                              /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Filling 'point' Selections\n"));

    /* Allocate memory buffer */
    wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");

    /* Initialize memory buffer */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++)
            *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Select "point" selection */
    ret = H5Sselect_elements(sid1, H5S_SELECT_SET, num_points, (const hsize_t *)points);
    CHECK(ret, FAIL, "H5Sselect_elements");

    if (offset != NULL) {
        HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));

        /* Set offset, if provided */
        ret = H5Soffset_simple(sid1, real_offset);
        CHECK(ret, FAIL, "H5Soffset_simple");
    } /* end if */
    else
        HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));

    /* Set fill value */
    fill_value = SPACE7_FILL;

    /* Fill selection in memory */
    ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
    CHECK(ret, FAIL, "H5Dfill");

    /* Verify memory buffer the hard way... */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
            for (w = 0; w < (unsigned)num_points; w++) {
                if (u == (unsigned)(points[w][0] + (hsize_t)real_offset[0]) &&
                    v == (unsigned)(points[w][1] + (hsize_t)real_offset[1])) {
                    if (*tbuf != (unsigned)fill_value)
                        TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
                                      (unsigned)fill_value);
                    break;
                } /* end if */
            }     /* end for */
            if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
                TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf,
                              ((u * SPACE7_DIM2) + v));
        } /* end for */

    /* Initialize the iterator structure */
    iter_info.fill_value = SPACE7_FILL;
    iter_info.curr_coord = 0;
    iter_info.coords     = (hsize_t *)points;

    /* Add in the offset */
    for (u = 0; u < (unsigned)num_points; u++) {
        points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]);
        points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]);
    } /* end for */

    /* Iterate through selection, verifying correct data */
    ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Free memory buffers */
    HDfree(wbuf);
} /* test_select_fill_point() */

/****************************************************************
**
**  test_select_fill_hyper_simple(): Test basic H5S (dataspace) selection code.
**      Tests filling "simple" (i.e. one block) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_simple(hssize_t *offset)
{
    hid_t          sid1; /* Dataspace ID */
    hsize_t        dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    hssize_t       real_offset[SPACE7_RANK]; /* Actual offset to use */
    hsize_t        start[SPACE7_RANK];       /* Hyperslab start */
    hsize_t        count[SPACE7_RANK];       /* Hyperslab block size */
    size_t         num_points;               /* Number of points in selection */
    hsize_t        points[16][SPACE7_RANK];  /* Coordinates selected */
    int            fill_value;               /* Fill value */
    fill_iter_info iter_info;                /* Iterator information structure */
    unsigned *     wbuf,                     /* buffer to write to disk */
        *tbuf;                               /* temporary buffer pointer */
    unsigned u, v;                           /* Counters */
    herr_t   ret;                            /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Filling Simple 'hyperslab' Selections\n"));

    /* Allocate memory buffer */
    wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");

    /* Initialize memory buffer */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++)
            *tbuf++ = (unsigned short)(u * SPACE7_DIM2) + v;

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Select "hyperslab" selection */
    start[0] = 3;
    start[1] = 3;
    count[0] = 4;
    count[1] = 4;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    if (offset != NULL) {
        HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));

        /* Set offset, if provided */
        ret = H5Soffset_simple(sid1, real_offset);
        CHECK(ret, FAIL, "H5Soffset_simple");
    } /* end if */
    else
        HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));

    /* Set fill value */
    fill_value = SPACE7_FILL;

    /* Fill selection in memory */
    ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
    CHECK(ret, FAIL, "H5Dfill");

    /* Verify memory buffer the hard way... */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
            if ((u >= (unsigned)((hssize_t)start[0] + real_offset[0]) &&
                 u < (unsigned)((hssize_t)(start[0] + count[0]) + real_offset[0])) &&
                (v >= (unsigned)((hssize_t)start[1] + real_offset[1]) &&
                 v < (unsigned)((hssize_t)(start[1] + count[1]) + real_offset[1]))) {
                if (*tbuf != (unsigned)fill_value)
                    TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
                                  (unsigned)fill_value);
            } /* end if */
            else {
                if (*tbuf != ((unsigned)(u * SPACE7_DIM2) + v))
                    TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf,
                                  ((u * SPACE7_DIM2) + v));
            } /* end else */
        }     /* end for */

    /* Initialize the iterator structure */
    iter_info.fill_value = SPACE7_FILL;
    iter_info.curr_coord = 0;
    iter_info.coords     = (hsize_t *)points;

    /* Set the coordinates of the selection (with the offset) */
    for (u = 0, num_points = 0; u < (unsigned)count[0]; u++)
        for (v = 0; v < (unsigned)count[1]; v++, num_points++) {
            points[num_points][0] = (hsize_t)((hssize_t)(u + start[0]) + real_offset[0]);
            points[num_points][1] = (hsize_t)((hssize_t)(v + start[1]) + real_offset[1]);
        } /* end for */

    /* Iterate through selection, verifying correct data */
    ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Free memory buffers */
    HDfree(wbuf);
} /* test_select_fill_hyper_simple() */

/****************************************************************
**
**  test_select_fill_hyper_regular(): Test basic H5S (dataspace) selection code.
**      Tests filling "regular" (i.e. strided block) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_regular(hssize_t *offset)
{
    hid_t    sid1; /* Dataspace ID */
    hsize_t  dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
    hsize_t  start[SPACE7_RANK];       /* Hyperslab start */
    hsize_t  stride[SPACE7_RANK];      /* Hyperslab stride size */
    hsize_t  count[SPACE7_RANK];       /* Hyperslab block count */
    hsize_t  block[SPACE7_RANK];       /* Hyperslab block size */
    hsize_t  points[16][SPACE7_RANK] = {
        {2, 2}, {2, 3}, {2, 6}, {2, 7}, {3, 2}, {3, 3}, {3, 6}, {3, 7},
        {6, 2}, {6, 3}, {6, 6}, {6, 7}, {7, 2}, {7, 3}, {7, 6}, {7, 7},
    };
    size_t         num_points = 16; /* Number of points selected */
    int            fill_value;      /* Fill value */
    fill_iter_info iter_info;       /* Iterator information structure */
    unsigned *     wbuf,            /* buffer to write to disk */
        *tbuf;                      /* temporary buffer pointer */
    unsigned u, v, w;               /* Counters */
    herr_t   ret;                   /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Filling Regular 'hyperslab' Selections\n"));

    /* Allocate memory buffer */
    wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");

    /* Initialize memory buffer */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++)
            *tbuf++ = (u * SPACE7_DIM2) + v;

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Select "hyperslab" selection */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 4;
    stride[1] = 4;
    count[0]  = 2;
    count[1]  = 2;
    block[0]  = 2;
    block[1]  = 2;
    ret       = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    if (offset != NULL) {
        HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));

        /* Set offset, if provided */
        ret = H5Soffset_simple(sid1, real_offset);
        CHECK(ret, FAIL, "H5Soffset_simple");
    } /* end if */
    else
        HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));

    /* Set fill value */
    fill_value = SPACE7_FILL;

    /* Fill selection in memory */
    ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
    CHECK(ret, FAIL, "H5Dfill");

    /* Verify memory buffer the hard way... */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
            for (w = 0; w < (unsigned)num_points; w++) {
                if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) &&
                    v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) {
                    if (*tbuf != (unsigned)fill_value)
                        TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
                                      (unsigned)fill_value);
                    break;
                } /* end if */
            }     /* end for */
            if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
                TestErrPrintf("Error! v=%d, u=%d, *tbuf=%u, should be: %u\n", v, u, *tbuf,
                              ((u * SPACE7_DIM2) + v));
        } /* end for */

    /* Initialize the iterator structure */
    iter_info.fill_value = SPACE7_FILL;
    iter_info.curr_coord = 0;
    iter_info.coords     = (hsize_t *)points;

    /* Add in the offset */
    for (u = 0; u < (unsigned)num_points; u++) {
        points[u][0] = (hsize_t)((hssize_t)points[u][0] + real_offset[0]);
        points[u][1] = (hsize_t)((hssize_t)points[u][1] + real_offset[1]);
    } /* end for */

    /* Iterate through selection, verifying correct data */
    ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Free memory buffers */
    HDfree(wbuf);
} /* test_select_fill_hyper_regular() */

/****************************************************************
**
**  test_select_fill_hyper_irregular(): Test basic H5S (dataspace) selection code.
**      Tests filling "irregular" (i.e. combined blocks) hyperslab selections
**
****************************************************************/
static void
test_select_fill_hyper_irregular(hssize_t *offset)
{
    hid_t    sid1; /* Dataspace ID */
    hsize_t  dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    hssize_t real_offset[SPACE7_RANK]; /* Actual offset to use */
    hsize_t  start[SPACE7_RANK];       /* Hyperslab start */
    hsize_t  count[SPACE7_RANK];       /* Hyperslab block count */
    hsize_t  points[32][SPACE7_RANK] = {
        /* Yes, some of the are duplicated.. */
        {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3}, {4, 4},
        {4, 5}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 4}, {5, 5},
        {5, 6}, {5, 7}, {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
    };
    hsize_t iter_points[28][SPACE7_RANK] = {
        /* Coordinates, as iterated through */
        {2, 2}, {2, 3}, {2, 4}, {2, 5}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {4, 2}, {4, 3},
        {4, 4}, {4, 5}, {4, 6}, {4, 7}, {5, 2}, {5, 3}, {5, 4}, {5, 5}, {5, 6}, {5, 7},
        {6, 4}, {6, 5}, {6, 6}, {6, 7}, {7, 4}, {7, 5}, {7, 6}, {7, 7},
    };
    size_t         num_points      = 32; /* Number of points selected */
    size_t         num_iter_points = 28; /* Number of resulting points */
    int            fill_value;           /* Fill value */
    fill_iter_info iter_info;            /* Iterator information structure */
    unsigned *     wbuf,                 /* buffer to write to disk */
        *tbuf;                           /* temporary buffer pointer */
    unsigned u, v, w;                    /* Counters */
    herr_t   ret;                        /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Filling Irregular 'hyperslab' Selections\n"));

    /* Allocate memory buffer */
    wbuf = (unsigned *)HDmalloc(sizeof(unsigned) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");

    /* Initialize memory buffer */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++)
            *tbuf++ = (u * SPACE7_DIM2) + v;

    /* Create dataspace for dataset on disk */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Select first "hyperslab" selection */
    start[0] = 2;
    start[1] = 2;
    count[0] = 4;
    count[1] = 4;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Combine with second "hyperslab" selection */
    start[0] = 4;
    start[1] = 4;
    count[0] = 4;
    count[1] = 4;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_OR, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    if (offset != NULL) {
        HDmemcpy(real_offset, offset, SPACE7_RANK * sizeof(hssize_t));

        /* Set offset, if provided */
        ret = H5Soffset_simple(sid1, real_offset);
        CHECK(ret, FAIL, "H5Soffset_simple");
    } /* end if */
    else
        HDmemset(real_offset, 0, SPACE7_RANK * sizeof(hssize_t));

    /* Set fill value */
    fill_value = SPACE7_FILL;

    /* Fill selection in memory */
    ret = H5Dfill(&fill_value, H5T_NATIVE_INT, wbuf, H5T_NATIVE_UINT, sid1);
    CHECK(ret, FAIL, "H5Dfill");

    /* Verify memory buffer the hard way... */
    for (u = 0, tbuf = wbuf; u < SPACE7_DIM1; u++)
        for (v = 0; v < SPACE7_DIM2; v++, tbuf++) {
            for (w = 0; w < (unsigned)num_points; w++) {
                if (u == (unsigned)((hssize_t)points[w][0] + real_offset[0]) &&
                    v == (unsigned)((hssize_t)points[w][1] + real_offset[1])) {
                    if (*tbuf != (unsigned)fill_value)
                        TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, fill_value=%u\n", v, u, *tbuf,
                                      (unsigned)fill_value);
                    break;
                } /* end if */
            }     /* end for */
            if (w == (unsigned)num_points && *tbuf != ((u * SPACE7_DIM2) + v))
                TestErrPrintf("Error! v=%u, u=%u, *tbuf=%u, should be: %u\n", v, u, *tbuf,
                              ((u * SPACE7_DIM2) + v));
        } /* end for */

    /* Initialize the iterator structure */
    iter_info.fill_value = SPACE7_FILL;
    iter_info.curr_coord = 0;
    iter_info.coords     = (hsize_t *)iter_points;

    /* Add in the offset */
    for (u = 0; u < (unsigned)num_iter_points; u++) {
        iter_points[u][0] = (hsize_t)((hssize_t)iter_points[u][0] + real_offset[0]);
        iter_points[u][1] = (hsize_t)((hssize_t)iter_points[u][1] + real_offset[1]);
    } /* end for */

    /* Iterate through selection, verifying correct data */
    ret = H5Diterate(wbuf, H5T_NATIVE_UINT, sid1, test_select_hyper_iter3, &iter_info);
    CHECK(ret, FAIL, "H5Diterate");

    /* Close dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Free memory buffers */
    HDfree(wbuf);
} /* test_select_fill_hyper_irregular() */

/****************************************************************
**
**  test_select_none(): Test basic H5S (dataspace) selection code.
**      Tests I/O on 0-sized point selections
**
****************************************************************/
static void
test_select_none(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims1[] = {SPACE7_DIM1, SPACE7_DIM2};
    hsize_t  dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
    uint8_t *wbuf, /* buffer to write to disk */
        *rbuf,     /* buffer to read from disk */
        *tbuf;     /* temporary buffer pointer */
    int    i, j;   /* Counters */
    herr_t ret;    /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing I/O on 0-sized Selections\n"));

    /* Allocate write & read buffers */
    wbuf = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (uint8_t *)HDcalloc(sizeof(uint8_t), SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize write buffer */
    for (i = 0, tbuf = wbuf; i < SPACE7_DIM1; i++)
        for (j = 0; j < SPACE7_DIM2; j++)
            *tbuf++ = (uint8_t)((i * SPACE7_DIM2) + j);

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE7_RANK, dims1, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Make "none" selection in both disk and memory datasets */
    ret = H5Sselect_none(sid1);
    CHECK(ret, FAIL, "H5Sselect_none");

    ret = H5Sselect_none(sid2);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Attempt to read "nothing" from disk (before space is allocated) */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Write "nothing" to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Write "nothing" to disk (with a datatype conversion :-) */
    ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Write "nothing" to disk (with NULL buffer argument) */
    ret = H5Dwrite(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read "nothing" from disk (with NULL buffer argument) */
    ret = H5Dread(dataset, H5T_NATIVE_INT, sid2, sid1, H5P_DEFAULT, NULL);
    CHECK(ret, FAIL, "H5Dread");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_none() */

/****************************************************************
**
**  test_scalar_select(): Test basic H5S (dataspace) selection code.
**      Tests selections on scalar dataspaces
**
****************************************************************/
static void
test_scalar_select(void)
{
    hid_t    fid1;       /* HDF5 File IDs        */
    hid_t    dataset;    /* Dataset ID            */
    hid_t    sid1, sid2; /* Dataspace ID            */
    hsize_t  dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
    hsize_t  coord1[SPACE7_RANK]; /* Coordinates for point selection */
    hsize_t  start[SPACE7_RANK];  /* Hyperslab start */
    hsize_t  count[SPACE7_RANK];  /* Hyperslab block count */
    uint8_t *wbuf_uint8,          /* buffer to write to disk */
        rval_uint8,               /* value read back in */
        *tbuf_uint8;              /* temporary buffer pointer */
    unsigned short *wbuf_ushort,  /* another buffer to write to disk */
        rval_ushort,              /* value read back in */
        *tbuf_ushort;             /* temporary buffer pointer */
    int    i, j;                  /* Counters */
    herr_t ret;                   /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces\n"));

    /* Allocate write & read buffers */
    wbuf_uint8 = (uint8_t *)HDmalloc(sizeof(uint8_t) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf_uint8, "HDmalloc");
    wbuf_ushort = (unsigned short *)HDmalloc(sizeof(unsigned short) * SPACE7_DIM1 * SPACE7_DIM2);
    CHECK_PTR(wbuf_ushort, "HDmalloc");

    /* Initialize write buffers */
    for (i = 0, tbuf_uint8 = wbuf_uint8, tbuf_ushort = wbuf_ushort; i < SPACE7_DIM1; i++)
        for (j = 0; j < SPACE7_DIM2; j++) {
            *tbuf_uint8++  = (uint8_t)((i * SPACE7_DIM2) + j);
            *tbuf_ushort++ = (unsigned short)((j * SPACE7_DIM2) + i);
        } /* end for */

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate(H5S_SCALAR);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Select one element in memory with a point selection */
    coord1[0] = 0;
    coord1[1] = 2;
    ret       = H5Sselect_elements(sid2, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Write single point to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_uint8 != *(wbuf_uint8 + 2))
        TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_uint8,
                      (unsigned)*(wbuf_uint8 + 2));

    /* Write single point to disk (with a datatype conversion) */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_ushort != *(wbuf_ushort + 2))
        TestErrPrintf("Error! rval=%u, should be: *(wbuf+2)=%u\n", (unsigned)rval_ushort,
                      (unsigned)*(wbuf_ushort + 2));

    /* Select one element in memory with a hyperslab selection */
    start[0] = 4;
    start[1] = 3;
    count[0] = 1;
    count[1] = 1;
    ret      = H5Sselect_hyperslab(sid2, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Write single hyperslab element to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    ret = H5Dread(dataset, H5T_NATIVE_UCHAR, sid1, sid1, H5P_DEFAULT, &rval_uint8);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_uint8 != *(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3))
        TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_uint8,
                      (unsigned)*(wbuf_uint8 + (SPACE7_DIM2 * 4) + 3));

    /* Write single hyperslab element to disk (with a datatype conversion) */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    ret = H5Dread(dataset, H5T_NATIVE_USHORT, sid1, sid1, H5P_DEFAULT, &rval_ushort);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_ushort != *(wbuf_ushort + (SPACE7_DIM2 * 4) + 3))
        TestErrPrintf("Error! rval=%u, should be: *(wbuf+(SPACE7_DIM2*4)+3)=%u\n", (unsigned)rval_ushort,
                      (unsigned)*(wbuf_ushort + (SPACE7_DIM2 * 4) + 3));

    /* Select no elements in memory & file with "none" selections */
    ret = H5Sselect_none(sid1);
    CHECK(ret, FAIL, "H5Sselect_none");

    ret = H5Sselect_none(sid2);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Write no data to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, wbuf_uint8);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Write no data to disk (with a datatype conversion) */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, wbuf_ushort);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free memory buffers */
    HDfree(wbuf_uint8);
    HDfree(wbuf_ushort);
} /* test_scalar_select() */

/****************************************************************
**
**  test_scalar_select2(): Tests selections on scalar dataspace,
**    verify H5Sselect_hyperslab and H5Sselect_elements fails for
**    scalar dataspace.
**
****************************************************************/
static void
test_scalar_select2(void)
{
    hid_t   sid;       /* Dataspace ID            */
    hsize_t coord1[1]; /* Coordinates for point selection */
    hsize_t start[1];  /* Hyperslab start */
    hsize_t count[1];  /* Hyperslab block count */
    herr_t  ret;       /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Selections in Scalar Dataspaces\n"));

    /* Create dataspace for dataset */
    sid = H5Screate(H5S_SCALAR);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Select one element in memory with a point selection */
    coord1[0] = 0;
    H5E_BEGIN_TRY { ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sselect_elements");

    /* Select one element in memory with a hyperslab selection */
    start[0] = 0;
    count[0] = 0;
    H5E_BEGIN_TRY { ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, count, NULL); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sselect_hyperslab");

    /* Select no elements in memory & file with "none" selection */
    ret = H5Sselect_none(sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Select all elements in memory & file with "all" selection */
    ret = H5Sselect_all(sid);
    CHECK(ret, FAIL, "H5Sselect_all");

    /* Close disk dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_scalar_select2() */

/****************************************************************
**
**  test_scalar_select3(): Test basic H5S (dataspace) selection code.
**      Tests selections on scalar dataspaces in memory
**
****************************************************************/
static void
test_scalar_select3(void)
{
    hid_t   fid1;       /* HDF5 File IDs        */
    hid_t   dataset;    /* Dataset ID            */
    hid_t   sid1, sid2; /* Dataspace ID            */
    hsize_t dims2[] = {SPACE7_DIM1, SPACE7_DIM2};
    hsize_t coord1[SPACE7_RANK]; /* Coordinates for point selection */
    hsize_t start[SPACE7_RANK];  /* Hyperslab start */
    hsize_t count[SPACE7_RANK];  /* Hyperslab block count */
    uint8_t wval_uint8,          /* Value written out */
        rval_uint8;              /* Value read in */
    unsigned short wval_ushort,  /* Another value written out */
        rval_ushort;             /* Another value read in */
    herr_t ret;                  /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing I/O on Selections in Scalar Dataspaces in Memory\n"));

    /* Create file */
    fid1 = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid1, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid1 = H5Screate_simple(SPACE7_RANK, dims2, NULL);
    CHECK(sid1, FAIL, "H5Screate_simple");

    /* Create dataspace for writing buffer */
    sid2 = H5Screate(H5S_SCALAR);
    CHECK(sid2, FAIL, "H5Screate_simple");

    /* Create a dataset */
    dataset = H5Dcreate2(fid1, "Dataset1", H5T_NATIVE_UCHAR, sid1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Select one element in file with a point selection */
    coord1[0] = 0;
    coord1[1] = 2;
    ret       = H5Sselect_elements(sid1, H5S_SELECT_SET, (size_t)1, (const hsize_t *)&coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Write single point to disk */
    wval_uint8 = 12;
    ret        = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    rval_uint8 = 0;
    ret        = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_uint8 != wval_uint8)
        TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8,
                      (unsigned)wval_uint8);

    /* Write single point to disk (with a datatype conversion) */
    wval_ushort = 23;
    ret         = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    rval_ushort = 0;
    ret         = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_ushort != wval_ushort)
        TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort,
                      (unsigned)wval_ushort);

    /* Select one element in file with a hyperslab selection */
    start[0] = 4;
    start[1] = 3;
    count[0] = 1;
    count[1] = 1;
    ret      = H5Sselect_hyperslab(sid1, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Write single hyperslab element to disk */
    wval_uint8 = 92;
    ret        = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    rval_uint8 = 0;
    ret        = H5Dread(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &rval_uint8);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_uint8 != wval_uint8)
        TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_uint8,
                      (unsigned)wval_uint8);

    /* Write single hyperslab element to disk (with a datatype conversion) */
    wval_ushort = 107;
    ret         = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Read scalar element from disk */
    rval_ushort = 0;
    ret         = H5Dread(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &rval_ushort);
    CHECK(ret, FAIL, "H5Dread");

    /* Check value read back in */
    if (rval_ushort != wval_ushort)
        TestErrPrintf("%u: Error! rval=%u, should be: wval=%u\n", (unsigned)__LINE__, (unsigned)rval_ushort,
                      (unsigned)wval_ushort);

    /* Select no elements in memory & file with "none" selections */
    ret = H5Sselect_none(sid1);
    CHECK(ret, FAIL, "H5Sselect_none");

    ret = H5Sselect_none(sid2);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Write no data to disk */
    ret = H5Dwrite(dataset, H5T_NATIVE_UCHAR, sid2, sid1, H5P_DEFAULT, &wval_uint8);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Write no data to disk (with a datatype conversion) */
    ret = H5Dwrite(dataset, H5T_NATIVE_USHORT, sid2, sid1, H5P_DEFAULT, &wval_ushort);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close memory dataspace */
    ret = H5Sclose(sid2);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close disk dataspace */
    ret = H5Sclose(sid1);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close Dataset */
    ret = H5Dclose(dataset);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close file */
    ret = H5Fclose(fid1);
    CHECK(ret, FAIL, "H5Fclose");
} /* test_scalar_select3() */

/****************************************************************
**
**  test_shape_same(): Tests selections on dataspace, verify that
**    "shape same" routine is working correctly.
**
****************************************************************/
static void
test_shape_same(void)
{
    hid_t all_sid;              /* Dataspace ID    with "all" selection */
    hid_t none_sid;             /* Dataspace ID    with "none" selection */
    hid_t single_pt_sid;        /* Dataspace ID    with single point selection */
    hid_t mult_pt_sid;          /* Dataspace ID    with multiple point selection */
    hid_t single_hyper_sid;     /* Dataspace ID    with single block hyperslab selection */
    hid_t single_hyper_all_sid; /* Dataspace ID    with single block hyperslab
                                 * selection that is the entire dataspace
                                 */
    hid_t single_hyper_pt_sid;  /* Dataspace ID    with single block hyperslab
                                 * selection that is the same as the single
                                 * point selection
                                 */
    hid_t    regular_hyper_sid; /* Dataspace ID    with regular hyperslab selection */
    hid_t    irreg_hyper_sid;   /* Dataspace ID    with irregular hyperslab selection */
    hid_t    none_hyper_sid;    /* Dataspace ID    with "no hyperslabs" selection */
    hid_t    scalar_all_sid;    /* ID for scalar dataspace with "all" selection */
    hid_t    scalar_none_sid;   /* ID for scalar dataspace with "none" selection */
    hid_t    tmp_sid;           /* Temporary dataspace ID */
    hsize_t  dims[] = {SPACE9_DIM1, SPACE9_DIM2};
    hsize_t  coord1[1][SPACE2_RANK];           /* Coordinates for single point selection */
    hsize_t  coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
    hsize_t  start[SPACE9_RANK];               /* Hyperslab start */
    hsize_t  stride[SPACE9_RANK];              /* Hyperslab stride */
    hsize_t  count[SPACE9_RANK];               /* Hyperslab block count */
    hsize_t  block[SPACE9_RANK];               /* Hyperslab block size */
    unsigned u, v;                             /* Local index variables */
    htri_t   check;                            /* Shape comparison return value */
    herr_t   ret;                              /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Same Shape Comparisons\n"));
    HDassert(SPACE9_DIM2 >= POINT1_NPOINTS);

    /* Create dataspace for "all" selection */
    all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(all_sid, FAIL, "H5Screate_simple");

    /* Select entire extent for dataspace */
    ret = H5Sselect_all(all_sid);
    CHECK(ret, FAIL, "H5Sselect_all");

    /* Create dataspace for "none" selection */
    none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(none_sid, FAIL, "H5Screate_simple");

    /* Un-Select entire extent for dataspace */
    ret = H5Sselect_none(none_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Create dataspace for single point selection */
    single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_pt_sid, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for multiple point selection */
    coord1[0][0] = 2;
    coord1[0][1] = 2;
    ret          = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create dataspace for multiple point selection */
    mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(mult_pt_sid, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for multiple point selection */
    coord2[0][0] = 2;
    coord2[0][1] = 2;
    coord2[1][0] = 7;
    coord2[1][1] = 2;
    coord2[2][0] = 1;
    coord2[2][1] = 4;
    coord2[3][0] = 2;
    coord2[3][1] = 6;
    coord2[4][0] = 0;
    coord2[4][1] = 8;
    coord2[5][0] = 3;
    coord2[5][1] = 2;
    coord2[6][0] = 4;
    coord2[6][1] = 4;
    coord2[7][0] = 1;
    coord2[7][1] = 0;
    coord2[8][0] = 5;
    coord2[8][1] = 1;
    coord2[9][0] = 9;
    coord2[9][1] = 3;
    ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create dataspace for single hyperslab selection */
    single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_hyper_sid, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for single hyperslab selection  */
    start[0]  = 1;
    start[1]  = 1;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = (SPACE9_DIM1 - 2);
    block[1]  = (SPACE9_DIM2 - 2);
    ret       = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for single hyperslab selection with entire extent selected */
    single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");

    /* Select entire extent for hyperslab selection */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = SPACE9_DIM1;
    block[1]  = SPACE9_DIM2;
    ret       = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for single hyperslab selection with single point selected */
    single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");

    /* Select entire extent for hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for regular hyperslab selection */
    regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");

    /* Select regular, strided hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 2;
    stride[1] = 2;
    count[0]  = 5;
    count[1]  = 2;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for irregular hyperslab selection */
    irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");

    /* Create irregular hyperslab selection by OR'ing two blocks together */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0]  = 4;
    start[1]  = 4;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 3;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for "no" hyperslab selection */
    none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(none_hyper_sid, FAIL, "H5Screate_simple");

    /* Create "no" hyperslab selection by XOR'ing same blocks together */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create scalar dataspace for "all" selection */
    scalar_all_sid = H5Screate(H5S_SCALAR);
    CHECK(scalar_all_sid, FAIL, "H5Screate");

    /* Create scalar dataspace for "none" selection */
    scalar_none_sid = H5Screate(H5S_SCALAR);
    CHECK(scalar_none_sid, FAIL, "H5Screate");

    /* Un-Select entire extent for dataspace */
    ret = H5Sselect_none(scalar_none_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Compare "all" selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(all_sid, all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(all_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(all_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(all_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(all_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(all_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(all_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(all_sid, single_hyper_all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(all_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(all_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(all_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(all_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(all_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(all_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare "none" selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(none_sid, none_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(none_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(none_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(none_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(none_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(none_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(none_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(none_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(none_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(none_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(none_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(none_sid, none_hyper_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(none_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(none_sid, scalar_none_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare single point selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(single_pt_sid, single_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(single_pt_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(single_pt_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(single_pt_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(single_pt_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(single_pt_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, single_hyper_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, scalar_all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(single_pt_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare multiple point selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(mult_pt_sid, mult_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(mult_pt_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(mult_pt_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(mult_pt_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(mult_pt_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(mult_pt_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(mult_pt_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare single "normal" hyperslab selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(single_hyper_sid, single_hyper_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(single_hyper_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(single_hyper_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(single_hyper_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(single_hyper_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(single_hyper_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

#ifdef NOT_YET
    /* In theory, these two selections are the same shape, but the
     * H5Sselect_shape_same() routine is just not this sophisticated yet and it
     * would take too much effort to make this work.  The worst case is that the
     * non-optimized chunk mapping routines will be invoked instead of the more
     * optimized routines, so this only hurts performance, not correctness
     */
    /* Construct point selection which matches "plain" hyperslab selection */
    /* Create dataspace for point selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Select sequence of points for point selection */
    for (u = 1; u < (SPACE9_DIM1 - 1); u++) {
        for (v = 1; v < (SPACE9_DIM2 - 1); v++) {
            coord2[v - 1][0] = u;
            coord2[v - 1][1] = v;
        } /* end for */

        ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (SPACE9_DIM2 - 2), coord2);
        CHECK(ret, FAIL, "H5Sselect_elements");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");
#endif /* NOT_YET */

    /* Construct hyperslab selection which matches "plain" hyperslab selection */
    /* Create dataspace for hyperslab selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Un-select entire extent */
    ret = H5Sselect_none(tmp_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Select sequence of rows for hyperslab selection */
    for (u = 1; u < (SPACE9_DIM1 - 1); u++) {
        start[0]  = u;
        start[1]  = 1;
        stride[0] = 1;
        stride[1] = 1;
        count[0]  = 1;
        count[1]  = 1;
        block[0]  = 1;
        block[1]  = (SPACE9_DIM2 - 2);
        ret       = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare single "all" hyperslab selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(single_hyper_all_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

#ifdef NOT_YET
    /* In theory, these two selections are the same shape, but the
     * H5S_select_shape_same() routine is just not this sophisticated yet and it
     * would take too much effort to make this work.  The worst case is that the
     * non-optimized chunk mapping routines will be invoked instead of the more
     * optimized routines, so this only hurts performance, not correctness
     */
    /* Construct point selection which matches "all" hyperslab selection */
    /* Create dataspace for point selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Select sequence of points for point selection */
    for (u = 0; u < SPACE9_DIM1; u++) {
        for (v = 0; v < SPACE9_DIM2; v++) {
            coord2[v][0] = u;
            coord2[v][1] = v;
        } /* end for */
        ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, SPACE9_DIM2, coord2);
        CHECK(ret, FAIL, "H5Sselect_elements");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");
#endif /* NOT_YET */

    /* Construct hyperslab selection which matches "all" hyperslab selection */
    /* Create dataspace for hyperslab selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Un-select entire extent */
    ret = H5Sselect_none(tmp_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Select sequence of rows for hyperslab selection */
    for (u = 0; u < SPACE9_DIM2; u++) {
        start[0]  = u;
        start[1]  = 0;
        stride[0] = 1;
        stride[1] = 1;
        count[0]  = 1;
        count[1]  = 1;
        block[0]  = 1;
        block[1]  = SPACE9_DIM2;
        ret       = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_all_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare single "point" hyperslab selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(single_hyper_pt_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(single_hyper_pt_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, single_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(single_hyper_pt_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare regular, strided hyperslab selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(regular_hyper_sid, regular_hyper_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(regular_hyper_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(regular_hyper_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(regular_hyper_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(regular_hyper_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(regular_hyper_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Construct point selection which matches regular, strided hyperslab selection */
    /* Create dataspace for point selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Select sequence of points for point selection */
    for (u = 2; u < 11; u += 2) {
        for (v = 0; v < 2; v++) {
            coord2[v][0] = u;
            coord2[v][1] = (v * 2) + 2;
        } /* end for */
        ret = H5Sselect_elements(tmp_sid, H5S_SELECT_APPEND, (size_t)2, (const hsize_t *)coord2);
        CHECK(ret, FAIL, "H5Sselect_elements");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Construct hyperslab selection which matches regular, strided hyperslab selection */
    /* Create dataspace for hyperslab selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Un-select entire extent */
    ret = H5Sselect_none(tmp_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Select sequence of rows for hyperslab selection */
    for (u = 2; u < 11; u += 2) {
        start[0]  = u;
        start[1]  = 3;
        stride[0] = 1;
        stride[1] = 2;
        count[0]  = 1;
        count[1]  = 2;
        block[0]  = 1;
        block[1]  = 1;
        ret       = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Construct regular hyperslab selection with an offset which matches regular, strided hyperslab selection
     */
    /* Create dataspace for hyperslab selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    /* Select regular, strided hyperslab selection at an offset */
    start[0]  = 1;
    start[1]  = 1;
    stride[0] = 2;
    stride[1] = 2;
    count[0]  = 5;
    count[1]  = 2;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(regular_hyper_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare irregular hyperslab selection to all the selections created */
    /* Compare against itself */
    check = H5Sselect_shape_same(irreg_hyper_sid, irreg_hyper_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(irreg_hyper_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Construct hyperslab selection which matches irregular hyperslab selection */
    /* Create dataspace for hyperslab selection */
    tmp_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(tmp_sid, FAIL, "H5Screate_simple");

    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Select sequence of columns for hyperslab selection */
    for (u = 0; u < 3; u++) {
        start[0]  = 4;
        start[1]  = u + 4;
        stride[0] = 1;
        stride[1] = 1;
        count[0]  = 1;
        count[1]  = 1;
        block[0]  = 3;
        block[1]  = 1;
        ret       = H5Sselect_hyperslab(tmp_sid, H5S_SELECT_OR, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end for */

    /* Compare against hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(irreg_hyper_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare scalar "all" dataspace with all selections created */

    /* Compare against itself */
    check = H5Sselect_shape_same(scalar_all_sid, scalar_all_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(scalar_all_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(scalar_all_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(scalar_all_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(scalar_all_sid, none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(scalar_all_sid, single_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(scalar_all_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, single_hyper_pt_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, none_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against scalar "none" hyperslab selection */
    check = H5Sselect_shape_same(scalar_all_sid, scalar_none_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare scalar "none" dataspace with all selections created */

    /* Compare against itself */
    check = H5Sselect_shape_same(scalar_none_sid, scalar_none_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against copy of itself */
    tmp_sid = H5Scopy(scalar_none_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5Sselect_shape_same(scalar_none_sid, tmp_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Compare against "all" selection */
    check = H5Sselect_shape_same(scalar_none_sid, all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "none" selection */
    check = H5Sselect_shape_same(scalar_none_sid, none_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against single point selection */
    check = H5Sselect_shape_same(scalar_none_sid, single_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against multiple point selection */
    check = H5Sselect_shape_same(scalar_none_sid, mult_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "plain" single hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, single_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "all" single hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, single_hyper_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "single point" single hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, single_hyper_pt_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against regular, strided hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, regular_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against irregular hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, irreg_hyper_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "no" hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, none_hyper_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Compare against scalar "all" hyperslab selection */
    check = H5Sselect_shape_same(scalar_none_sid, scalar_all_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(all_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(none_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(mult_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_all_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(regular_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(irreg_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(none_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(scalar_all_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(scalar_none_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same() */

/****************************************************************
**
**  test_shape_same_dr__smoke_check_1():
**
**    Create a square, 2-D dataspace (10 X 10), and select
**    all of it.
**
**      Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
**    and select (10 X 10 X 1) hyperslabs in each, three with
**    the slab parallel to the xy plane, three parallel to the
**    xz plane, and three parallel to the yz plane.
**
**    Assuming that z is the fastest changing dimension,
**    H5Sselect_shape_same() should return TRUE when comparing
**    the full 2-D space against any hyperslab parallel to the
**    yz plane in the 3-D space, and FALSE when comparing the
**    full 2-D space against the other two hyperslabs.
**
**    Also create two additional 3-D dataspaces (10 X 10 X 10),
**    and select a (10 X 10 X 2) hyperslab parallel to the yz
**    axis in one of them, and two parallel (10 X 10 X 1) hyper
**    slabs parallel to the yz axis in the other.
**    H5Sselect_shape_same() should return FALSE when comparing
**    each to the 2-D selection.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_1(void)
{
    hid_t   small_square_sid;
    hid_t   small_cube_xy_slice_0_sid;
    hid_t   small_cube_xy_slice_1_sid;
    hid_t   small_cube_xy_slice_2_sid;
    hid_t   small_cube_xz_slice_0_sid;
    hid_t   small_cube_xz_slice_1_sid;
    hid_t   small_cube_xz_slice_2_sid;
    hid_t   small_cube_yz_slice_0_sid;
    hid_t   small_cube_yz_slice_1_sid;
    hid_t   small_cube_yz_slice_2_sid;
    hid_t   small_cube_yz_slice_3_sid;
    hid_t   small_cube_yz_slice_4_sid;
    hsize_t small_cube_dims[] = {10, 10, 10};
    hsize_t start[3];
    hsize_t stride[3];
    hsize_t count[3];
    hsize_t block[3];
    htri_t  check; /* Shape comparison return value */
    herr_t  ret;   /* Generic return value    */

    MESSAGE(7, ("    Smoke check 1: Slices through a cube.\n"));

    /* Create the 10 x 10 dataspace  */
    small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
    CHECK(small_square_sid, FAIL, "H5Screate_simple");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
    small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */
    start[2] = 0; /* z */

    /* stride is a bit silly here, since we are only selecting a single  */
    /* contiguous plane, but include it anyway, with values large enough */
    /* to ensure that we will only get the single block selected. */
    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 10; /* x */
    block[1] = 10; /* y */
    block[2] = 1;  /* z */
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[2] = 5;
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[2] = 9;
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
    small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */
    start[2] = 0; /* z */

    /* stride is a bit silly here, since we are only selecting a single  */
    /* contiguous chunk, but include it anyway, with values large enough */
    /* to ensure that we will only get the single chunk. */
    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 10; /* x */
    block[1] = 1;  /* y */
    block[2] = 10; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[1] = 4;
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[1] = 9;
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
    small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_4_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_4_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */
    start[2] = 0; /* z */

    /* stride is a bit silly here, since we are only selecting a single  */
    /* contiguous chunk, but include it anyway, with values large enough */
    /* to ensure that we will only get the single chunk. */
    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 1;  /* x */
    block[1] = 10; /* y */
    block[2] = 10; /* z */

    ret = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 4;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 9;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 4;
    block[0] = 2;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 3;
    block[0] = 1;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 6;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_4_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* setup is done -- run the tests: */

    /* Compare against "xy" selection */
    check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "xz" selection */
    check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "yz" selection */
    check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_4_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(small_square_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_3_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_4_sid);
    CHECK(ret, FAIL, "H5Sclose");

} /* test_shape_same_dr__smoke_check_1() */

/****************************************************************
**
**  test_shape_same_dr__smoke_check_2():
**
**    Create a square, 2-D dataspace (10 X 10), and select
**    a "checker board" hyperslab as follows:
**
**        * * - - * * - - * *
**        * * - - * * - - * *
**        - - * * - - * * - -
**        - - * * - - * * - -
**        * * - - * * - - * *
**        * * - - * * - - * *
**        - - * * - - * * - -
**        - - * * - - * * - -
**        * * - - * * - - * *
**        * * - - * * - - * *
**
**    where asterisks indicate selected elements, and dashes
**    indicate unselected elements.
**
**    Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
**    and select similar (10 X 10 X 1) checker board hyper
**    slabs in each, three with the slab parallel to  the xy
**    plane, three parallel to the xz plane, and three parallel
**    to the yz plane.
**
**    Assuming that z is the fastest changing dimension,
**    H5Sselect_shape_same() should return TRUE when comparing
**    the 2-D space checker board selection against a checker
**    board hyperslab parallel to the yz plane in the 3-D
**    space, and FALSE when comparing the 2-D checkerboard
**    selection against two hyperslabs parallel to the xy
**    or xz planes.
**
**    Also create an additional 3-D dataspaces (10 X 10 X 10),
**    and select a checker board parallel with the yz axis,
**    save with some squares being on different planes.
**    H5Sselect_shape_same() should return FALSE when
**    comparing this selection to the 2-D selection.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_2(void)
{
    hid_t   small_square_sid;
    hid_t   small_cube_xy_slice_0_sid;
    hid_t   small_cube_xy_slice_1_sid;
    hid_t   small_cube_xy_slice_2_sid;
    hid_t   small_cube_xz_slice_0_sid;
    hid_t   small_cube_xz_slice_1_sid;
    hid_t   small_cube_xz_slice_2_sid;
    hid_t   small_cube_yz_slice_0_sid;
    hid_t   small_cube_yz_slice_1_sid;
    hid_t   small_cube_yz_slice_2_sid;
    hid_t   small_cube_yz_slice_3_sid;
    hsize_t small_cube_dims[] = {10, 10, 10};
    hsize_t start[3];
    hsize_t stride[3];
    hsize_t count[3];
    hsize_t block[3];
    htri_t  check; /* Shape comparison return value */
    herr_t  ret;   /* Generic return value    */

    MESSAGE(7, ("    Smoke check 2: Checker board slices through a cube.\n"));

    /* Create the 10 x 10 dataspace  */
    small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
    CHECK(small_square_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */

    stride[0] = 4; /* x */
    stride[1] = 4; /* y */

    count[0] = 3; /* x */
    count[1] = 3; /* y */

    block[0] = 2; /* x */
    block[1] = 2; /* y */
    ret      = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 2; /* x */
    start[1] = 2; /* y */

    stride[0] = 4; /* x */
    stride[1] = 4; /* y */

    count[0] = 2; /* x */
    count[1] = 2; /* y */

    block[0] = 2; /* x */
    block[1] = 2; /* y */
    ret      = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
    small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */
    start[2] = 0; /* z */

    stride[0] = 4;  /* x */
    stride[1] = 4;  /* y  */
    stride[2] = 20; /* z -- large enough that there will only be one slice */

    count[0] = 3; /* x */
    count[1] = 3; /* y */
    count[2] = 1; /* z */

    block[0] = 2; /* x */
    block[1] = 2; /* y */
    block[2] = 1; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[2] = 3;
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[2] = 9;
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 2; /* x */
    start[1] = 2; /* y */
    start[2] = 0; /* z */

    stride[0] = 4;  /* x */
    stride[1] = 4;  /* y  */
    stride[2] = 20; /* z -- large enough that there will only be one slice */

    count[0] = 2; /* x */
    count[1] = 2; /* y */
    count[2] = 1; /* z */

    block[0] = 2; /* x */
    block[1] = 2; /* y */
    block[2] = 1; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[2] = 3;
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[2] = 9;
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
    small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */
    start[2] = 0; /* z */

    stride[0] = 4;  /* x */
    stride[1] = 20; /* y -- large enough that there will only be one slice */
    stride[2] = 4;  /* z */

    count[0] = 3; /* x */
    count[1] = 1; /* y */
    count[2] = 3; /* z */

    block[0] = 2; /* x */
    block[1] = 1; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[1] = 5;
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[1] = 9;
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 2; /* x */
    start[1] = 0; /* y */
    start[2] = 2; /* z */

    stride[0] = 4;  /* x */
    stride[1] = 20; /* y -- large enough that there will only be one slice */
    stride[2] = 4;  /* z */

    count[0] = 2; /* x */
    count[1] = 1; /* y */
    count[2] = 2; /* z */

    block[0] = 2; /* x */
    block[1] = 1; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[1] = 5;
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[1] = 9;
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
    small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_3_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_3_sid, FAIL, "H5Screate_simple");

    start[0] = 0; /* x */
    start[1] = 0; /* y */
    start[2] = 0; /* z */

    stride[0] = 20; /* x -- large enough that there will only be one slice */
    stride[1] = 4;  /* y  */
    stride[2] = 4;  /* z */

    count[0] = 1; /* x */
    count[1] = 3; /* y */
    count[2] = 3; /* z */

    block[0] = 1; /* x */
    block[1] = 2; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 8;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 9;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 3;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 0; /* x */
    start[1] = 2; /* y */
    start[2] = 2; /* z */

    stride[0] = 20; /* x -- large enough that there will only be one slice */
    stride[1] = 4;  /* y */
    stride[2] = 4;  /* z */

    count[0] = 1; /* x */
    count[1] = 2; /* y */
    count[2] = 2; /* z */

    block[0] = 1; /* x */
    block[1] = 2; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 8;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 9;
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 4;
    /* This test gets the right answer, but it fails the shape same
     * test in an unexpected point.  Bring this up with Quincey, as
     * the oddness looks like it is not related to my code.
     *                                      -- JRM
     */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_3_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* setup is done -- run the tests: */

    /* Compare against "xy" selection */
    check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "xz" selection */
    check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "yz" selection */
    check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_3_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(small_square_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_3_sid);
    CHECK(ret, FAIL, "H5Sclose");

} /* test_shape_same_dr__smoke_check_2() */

/****************************************************************
**
**  test_shape_same_dr__smoke_check_3():
**
**    Create a square, 2-D dataspace (10 X 10), and select an
**    irregular hyperslab as follows:
**
**        y
**        9 - - - - - - - - - -
**        8 - - - - - - - - - -
**        7 - - - * * * * - - -
**        6 - - * * * * * - - -
**        5 - - * * - - - - - -
**        4 - - * * - * * - - -
**        3 - - * * - * * - - -
**        2 - - - - - - - - - -
**        1 - - - - - - - - - -
**         0 - - - - - - - - - -
**                0 1 2 3 4 5 6 7 8 9 x
**
**    where asterisks indicate selected elements, and dashes
**    indicate unselected elements.
**
**    Similarly, create nine, 3-D dataspaces (10 X 10 X 10),
**    and select similar irregular hyperslabs in each, three
**    with the slab parallel to the xy plane, three parallel
**    to the xz plane, and three parallel to the yz plane.
**    Further, translate the irregular slab in 2/3rds of the
**    cases.
**
**    Assuming that z is the fastest changing dimension,
**    H5Sselect_shape_same() should return TRUE when
**    comparing the 2-D irregular hyperslab selection
**    against the irregular hyperslab selections parallel
**    to the yz plane in the 3-D space, and FALSE when
**    comparing it against the irregular hyperslabs
**    selections parallel to the xy or xz planes.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_3(void)
{
    hid_t   small_square_sid;
    hid_t   small_cube_xy_slice_0_sid;
    hid_t   small_cube_xy_slice_1_sid;
    hid_t   small_cube_xy_slice_2_sid;
    hid_t   small_cube_xz_slice_0_sid;
    hid_t   small_cube_xz_slice_1_sid;
    hid_t   small_cube_xz_slice_2_sid;
    hid_t   small_cube_yz_slice_0_sid;
    hid_t   small_cube_yz_slice_1_sid;
    hid_t   small_cube_yz_slice_2_sid;
    hsize_t small_cube_dims[] = {10, 10, 10};
    hsize_t start[3];
    hsize_t stride[3];
    hsize_t count[3];
    hsize_t block[3];
    htri_t  check; /* Shape comparison return value */
    herr_t  ret;   /* Generic return value    */

    MESSAGE(7, ("    Smoke check 3: Offset subsets of slices through a cube.\n"));

    /* Create the 10 x 10 dataspace  */
    small_square_sid = H5Screate_simple(2, small_cube_dims, NULL);
    CHECK(small_square_sid, FAIL, "H5Screate_simple");

    start[0] = 2; /* x */
    start[1] = 3; /* y */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */

    count[0] = 1; /* x */
    count[1] = 1; /* y */

    block[0] = 2; /* x */
    block[1] = 4; /* y */
    ret      = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 3; /* x */
    start[1] = 6; /* y */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */

    count[0] = 1; /* x */
    count[1] = 1; /* y */

    block[0] = 4; /* x */
    block[1] = 2; /* y */
    ret      = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 5; /* x */
    start[1] = 3; /* y */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */

    count[0] = 1; /* x */
    count[1] = 1; /* y */

    block[0] = 2; /* x */
    block[1] = 2; /* y */
    ret      = H5Sselect_hyperslab(small_square_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xy axis */
    small_cube_xy_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_xy_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_xy_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xy_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 2; /* x */
    start[1] = 3; /* y */
    start[2] = 5; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 2; /* x */
    block[1] = 4; /* y */
    block[2] = 1; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[0] -= 1; /* x */
    start[1] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[1] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 3; /* x */
    start[1] = 6; /* y */
    start[2] = 5; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y  */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 4; /* x */
    block[1] = 2; /* y */
    block[2] = 1; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[0] -= 1; /* x */
    start[1] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[1] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 5; /* x */
    start[1] = 3; /* y */
    start[2] = 5; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 2; /* x */
    block[1] = 2; /* y */
    block[2] = 1; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xy_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[0] -= 1; /* x */
    start[1] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_xy_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[1] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_xy_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the 10 X 10 X 10 dataspaces for the hyperslab parallel to the xz axis */
    small_cube_xz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_xz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_xz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_xz_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 2; /* x */
    start[1] = 5; /* y */
    start[2] = 3; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 2; /* x */
    block[1] = 1; /* y */
    block[2] = 4; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[0] -= 1; /* x */
    start[2] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[2] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 3; /* x */
    start[1] = 5; /* y */
    start[2] = 6; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 4; /* x */
    block[1] = 1; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[0] -= 1; /* x */
    start[2] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[2] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 5; /* x */
    start[1] = 5; /* y */
    start[2] = 3; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 2; /* x */
    block[1] = 1; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_xz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[0] -= 1; /* x */
    start[2] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_xz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[2] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_xz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* QAK: Start here.
     */
    /* Create the 10 X 10 X 10 dataspaces for the hyperslabs parallel to the yz axis */
    small_cube_yz_slice_0_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_0_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_1_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_1_sid, FAIL, "H5Screate_simple");

    small_cube_yz_slice_2_sid = H5Screate_simple(3, small_cube_dims, NULL);
    CHECK(small_cube_yz_slice_2_sid, FAIL, "H5Screate_simple");

    start[0] = 8; /* x */
    start[1] = 2; /* y */
    start[2] = 3; /* z */

    stride[0] = 20; /* x -- large enough that there will only be one slice */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 1; /* x */
    block[1] = 2; /* y */
    block[2] = 4; /* z */
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[1] -= 1; /* x */
    start[2] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[2] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 8; /* x */
    start[1] = 3; /* y */
    start[2] = 6; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 1; /* x */
    block[1] = 4; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[1] -= 1; /* x */
    start[2] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[2] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0] = 8; /* x */
    start[1] = 5; /* y */
    start[2] = 3; /* z */

    stride[0] = 20; /* x */
    stride[1] = 20; /* y */
    stride[2] = 20; /* z */

    count[0] = 1; /* x */
    count[1] = 1; /* y */
    count[2] = 1; /* z */

    block[0] = 1; /* x */
    block[1] = 2; /* y */
    block[2] = 2; /* z */
    ret      = H5Sselect_hyperslab(small_cube_yz_slice_0_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the starting point to the origin */
    start[1] -= 1; /* x */
    start[2] -= 2; /* y */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_1_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* move the irregular selection to the upper right hand corner */
    start[0] += 5; /* x */
    start[2] += 5; /* y */
    ret = H5Sselect_hyperslab(small_cube_yz_slice_2_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* setup is done -- run the tests: */

    /* Compare against "xy" selection */
    check = H5Sselect_shape_same(small_cube_xy_slice_0_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xy_slice_1_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xy_slice_2_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "xz" selection */
    check = H5Sselect_shape_same(small_cube_xz_slice_0_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xz_slice_1_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_xz_slice_2_sid, small_square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Compare against "yz" selection */
    check = H5Sselect_shape_same(small_cube_yz_slice_0_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_1_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(small_cube_yz_slice_2_sid, small_square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(small_square_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xy_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_xz_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(small_cube_yz_slice_2_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__smoke_check_3() */

/****************************************************************
**
**  test_shape_same_dr__smoke_check_4():
**
**    Create a square, 2-D dataspace (10 X 10), and select
**    the entire space.
**
**    Similarly, create 3-D and 4-D dataspaces:
**
**        (1 X 10 X 10)
**        (10 X 1 X 10)
**        (10 X 10 X 1)
**        (10 X 10 X 10)
**
**        (1 X 1 X 10 X 10)
**        (1 X 10 X 1 X 10)
**        (1 X 10 X 10 X 1)
**        (10 X 1 X 1 X 10)
**        (10 X 1 X 10 X 1)
**        (10 X 10 X 1 X 1)
**        (10 X 1 X 10 X 10)
**
**    And select these entire spaces as well.
**
**    Compare the 2-D space against all the other spaces
**    with H5Sselect_shape_same().  The (1 X 10 X 10) &
**    (1 X 1 X 10 X 10) should return TRUE.  All others
**    should return FALSE.
**
****************************************************************/
static void
test_shape_same_dr__smoke_check_4(void)
{
    hid_t   square_sid;
    hid_t   three_d_space_0_sid;
    hid_t   three_d_space_1_sid;
    hid_t   three_d_space_2_sid;
    hid_t   three_d_space_3_sid;
    hid_t   four_d_space_0_sid;
    hid_t   four_d_space_1_sid;
    hid_t   four_d_space_2_sid;
    hid_t   four_d_space_3_sid;
    hid_t   four_d_space_4_sid;
    hid_t   four_d_space_5_sid;
    hid_t   four_d_space_6_sid;
    hsize_t dims[] = {10, 10, 10, 10};
    htri_t  check; /* Shape comparison return value */
    herr_t  ret;   /* Generic return value    */

    MESSAGE(7, ("    Smoke check 4: Spaces of different dimension but same size.\n"));

    /* Create the 10 x 10 dataspace  */
    square_sid = H5Screate_simple(2, dims, NULL);
    CHECK(square_sid, FAIL, "H5Screate_simple");

    /* create (1 X 10 X 10) dataspace */
    dims[0]             = 1;
    dims[1]             = 10;
    dims[2]             = 10;
    three_d_space_0_sid = H5Screate_simple(3, dims, NULL);
    CHECK(three_d_space_0_sid, FAIL, "H5Screate_simple");

    /* create (10 X 1 X 10) dataspace */
    dims[0]             = 10;
    dims[1]             = 1;
    dims[2]             = 10;
    three_d_space_1_sid = H5Screate_simple(3, dims, NULL);
    CHECK(three_d_space_1_sid, FAIL, "H5Screate_simple");

    /* create (10 X 10 X 1) dataspace */
    dims[0]             = 10;
    dims[1]             = 10;
    dims[2]             = 1;
    three_d_space_2_sid = H5Screate_simple(3, dims, NULL);
    CHECK(three_d_space_2_sid, FAIL, "H5Screate_simple");

    /* create (10 X 10 X 10) dataspace */
    dims[0]             = 10;
    dims[1]             = 10;
    dims[2]             = 10;
    three_d_space_3_sid = H5Screate_simple(3, dims, NULL);
    CHECK(three_d_space_3_sid, FAIL, "H5Screate_simple");

    /* create (1 X 1 X 10 X 10) dataspace */
    dims[0]            = 1;
    dims[1]            = 1;
    dims[2]            = 10;
    dims[3]            = 10;
    four_d_space_0_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_0_sid, FAIL, "H5Screate_simple");

    /* create (1 X 10 X 1 X 10) dataspace */
    dims[0]            = 1;
    dims[1]            = 10;
    dims[2]            = 1;
    dims[3]            = 10;
    four_d_space_1_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_1_sid, FAIL, "H5Screate_simple");

    /* create (1 X 10 X 10 X 1) dataspace */
    dims[0]            = 1;
    dims[1]            = 10;
    dims[2]            = 10;
    dims[3]            = 1;
    four_d_space_2_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_2_sid, FAIL, "H5Screate_simple");

    /* create (10 X 1 X 1 X 10) dataspace */
    dims[0]            = 10;
    dims[1]            = 1;
    dims[2]            = 1;
    dims[3]            = 10;
    four_d_space_3_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_3_sid, FAIL, "H5Screate_simple");

    /* create (10 X 1 X 10 X 1) dataspace */
    dims[0]            = 10;
    dims[1]            = 1;
    dims[2]            = 10;
    dims[3]            = 1;
    four_d_space_4_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_4_sid, FAIL, "H5Screate_simple");

    /* create (10 X 10 X 1 X 1) dataspace */
    dims[0]            = 10;
    dims[1]            = 10;
    dims[2]            = 1;
    dims[3]            = 1;
    four_d_space_5_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_5_sid, FAIL, "H5Screate_simple");

    /* create (10 X 1 X 10 X 10) dataspace */
    dims[0]            = 10;
    dims[1]            = 1;
    dims[2]            = 10;
    dims[3]            = 10;
    four_d_space_6_sid = H5Screate_simple(4, dims, NULL);
    CHECK(four_d_space_6_sid, FAIL, "H5Screate_simple");

    /* setup is done -- run the tests: */

    check = H5Sselect_shape_same(three_d_space_0_sid, square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(three_d_space_1_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(three_d_space_2_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(three_d_space_3_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_0_sid, square_sid);
    VERIFY(check, TRUE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_1_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_2_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_3_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_4_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_5_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    check = H5Sselect_shape_same(four_d_space_6_sid, square_sid);
    VERIFY(check, FALSE, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(square_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(three_d_space_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(three_d_space_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(three_d_space_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(three_d_space_3_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_1_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_2_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_3_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_4_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_5_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(four_d_space_6_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__smoke_check_4() */

/****************************************************************
**
**  test_shape_same_dr__full_space_vs_slice(): Tests selection
**    of a full n-cube dataspace vs an n-dimensional slice of
**    of an m-cube (m > n) in a call to H5Sselect_shape_same().
**    Note that this test does not require the n-cube and the
**    n-dimensional slice to have the same rank (although
**    H5Sselect_shape_same() should always return FALSE if
**    they don't).
**
**    Per Quincey's suggestion, only test up to 5 dimensional
**    spaces.
**
****************************************************************/
static void
test_shape_same_dr__full_space_vs_slice(int test_num, int small_rank, int large_rank, int offset,
                                        hsize_t edge_size, hbool_t dim_selected[], hbool_t expected_result)
{
    char     test_desc_0[128];
    char     test_desc_1[256];
    int      i;
    hid_t    n_cube_0_sid; /* the fully selected hyper cube */
    hid_t    n_cube_1_sid; /* the hyper cube in which a slice is selected */
    hsize_t  dims[SS_DR_MAX_RANK];
    hsize_t  start[SS_DR_MAX_RANK];
    hsize_t *start_ptr;
    hsize_t  stride[SS_DR_MAX_RANK];
    hsize_t *stride_ptr;
    hsize_t  count[SS_DR_MAX_RANK];
    hsize_t *count_ptr;
    hsize_t  block[SS_DR_MAX_RANK];
    hsize_t *block_ptr;
    htri_t   check; /* Shape comparison return value */
    herr_t   ret;   /* Generic return value    */

    HDassert(0 < small_rank);
    HDassert(small_rank <= large_rank);
    HDassert(large_rank <= SS_DR_MAX_RANK);
    HDassert(0 <= offset);
    HDassert(offset < large_rank);
    HDassert(edge_size > 0);
    HDassert(edge_size <= 1000);

    HDsprintf(test_desc_0, "\tn-cube slice through m-cube (n <= m) test %d.\n", test_num);
    MESSAGE(7, (test_desc_0));

    /* This statement must be updated if SS_DR_MAX_RANK is changed */
    HDsprintf(test_desc_1, "\t\tranks: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d.\n", small_rank,
              large_rank, offset, (int)dim_selected[0], (int)dim_selected[1], (int)dim_selected[2],
              (int)dim_selected[3], (int)dim_selected[4]);
    MESSAGE(7, (test_desc_1));

    /* copy the edge size into the dims array */
    for (i = 0; i < SS_DR_MAX_RANK; i++)
        dims[i] = edge_size;

    /* Create the small n-cube */
    n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
    CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");

    /* Create the large n-cube */
    n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
    CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");

    /* set up start, stride, count, and block for the hyperslab selection */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        stride[i] = 2 * edge_size; /* a bit silly in this case */
        count[i]  = 1;
        if (dim_selected[i]) {
            start[i] = 0;
            block[i] = edge_size;
        } /* end if */
        else {
            start[i] = (hsize_t)offset;
            block[i] = 1;
        } /* end else */
    }     /* end for */

    /* since large rank may be less than SS_DR_MAX_RANK, we may not
     * use the entire start, stride, count, and block arrays.  This
     * is a problem, since it is inconvenient to set up the dim_selected
     * array to reflect the large rank, and thus if large_rank <
     * SS_DR_MAX_RANK, we need to hide the lower index entries
     * from H5Sselect_hyperslab().
     *
     * Do this by setting up pointers to the first valid entry in start,
     * stride, count, and block below, and pass these pointers in
     * to H5Sselect_hyperslab() instead of the array base addresses.
     */

    i = SS_DR_MAX_RANK - large_rank;
    HDassert(i >= 0);

    start_ptr  = &(start[i]);
    stride_ptr = &(stride[i]);
    count_ptr  = &(count[i]);
    block_ptr  = &(block[i]);

    /* select the hyperslab */
    ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* setup is done -- run the test: */
    check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
    VERIFY(check, expected_result, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(n_cube_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(n_cube_1_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__full_space_vs_slice() */

/****************************************************************
**
**  test_shape_same_dr__run_full_space_vs_slice_tests():
**
**    Run the test_shape_same_dr__full_space_vs_slice() test
**    over a variety of ranks and offsets.
**
**    At present, we test H5Sselect_shape_same() with
**    fully selected 1, 2, 3, and 4 cubes as one parameter, and
**    1, 2, 3, and 4 dimensional slices through a n-cube of rank
**    no more than 5 (and at least the rank of the slice).
**     We stop at rank 5, as Quincey suggested that it would be
**    sufficient.
**
**    All the n-cubes will have lengths of the same size, so
**    H5Sselect_shape_same() should return true iff:
**
**    1) the rank for the fully selected n cube equals the
**         number of dimensions selected in the slice through the
**         m-cube (m >= n).
**
**    2) The dimensions selected in the slice through the m-cube
**       are the dimesnions with the most quickly changing
**       indices.
**
****************************************************************/
static void
test_shape_same_dr__run_full_space_vs_slice_tests(void)
{
    hbool_t dim_selected[5];
    hbool_t expected_result;
    int     i, j;
    int     v, w, x, y, z;
    int     test_num = 0;
    int     small_rank;
    int     large_rank;
    hsize_t edge_size = 10;

    for (large_rank = 1; large_rank <= 5; large_rank++) {
        for (small_rank = 1; small_rank <= large_rank; small_rank++) {
            v = 0;
            do {
                if (v == 0)
                    dim_selected[0] = FALSE;
                else
                    dim_selected[0] = TRUE;

                w = 0;
                do {
                    if (w == 0)
                        dim_selected[1] = FALSE;
                    else
                        dim_selected[1] = TRUE;

                    x = 0;
                    do {
                        if (x == 0)
                            dim_selected[2] = FALSE;
                        else
                            dim_selected[2] = TRUE;

                        y = 0;
                        do {
                            if (y == 0)
                                dim_selected[3] = FALSE;
                            else
                                dim_selected[3] = TRUE;

                            z = 0;
                            do {
                                if (z == 0)
                                    dim_selected[4] = FALSE;
                                else
                                    dim_selected[4] = TRUE;

                                /* compute the expected result: */
                                i               = 0;
                                j               = 4;
                                expected_result = TRUE;
                                while ((i < small_rank) && expected_result) {
                                    if (!dim_selected[j])
                                        expected_result = FALSE;
                                    i++;
                                    j--;
                                } /* end while */

                                while ((i < large_rank) && expected_result) {
                                    if (dim_selected[j])
                                        expected_result = FALSE;
                                    i++;
                                    j--;
                                } /* end while */

                                /* everything is set up -- run the tests */

                                test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank, 0,
                                                                        edge_size, dim_selected,
                                                                        expected_result);

                                test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank,
                                                                        large_rank / 2, edge_size,
                                                                        dim_selected, expected_result);

                                test_shape_same_dr__full_space_vs_slice(test_num++, small_rank, large_rank,
                                                                        large_rank - 1, edge_size,
                                                                        dim_selected, expected_result);

                                z++;
                            } while ((z < 2) && (large_rank >= 1));

                            y++;
                        } while ((y < 2) && (large_rank >= 2));

                        x++;
                    } while ((x < 2) && (large_rank >= 3));

                    w++;
                } while ((w < 2) && (large_rank >= 4));

                v++;
            } while ((v < 2) && (large_rank >= 5));
        } /* end for */
    }     /* end for */
} /* test_shape_same_dr__run_full_space_vs_slice_tests() */

/****************************************************************
**
**  test_shape_same_dr__checkerboard(): Tests selection of a
**    "checker board" subset of a full n-cube dataspace vs
**     a "checker board" n-dimensional slice of an m-cube (m > n).
**    in a call to H5Sselect_shape_same().
**
**    Note that this test does not require the n-cube and the
**    n-dimensional slice to have the same rank (although
**    H5Sselect_shape_same() should always return FALSE if
**    they don't).
**
**    Per Quincey's suggestion, only test up to 5 dimensional
**    spaces.
**
****************************************************************/
static void
test_shape_same_dr__checkerboard(int test_num, int small_rank, int large_rank, int offset, hsize_t edge_size,
                                 hsize_t checker_size, hbool_t dim_selected[], hbool_t expected_result)
{
    char  test_desc_0[128];
    char  test_desc_1[256];
    int   i;
    int   dims_selected = 0;
    hid_t n_cube_0_sid; /* the checker board selected
                         * hyper cube
                         */
    hid_t n_cube_1_sid; /* the hyper cube in which a
                         * checkerboard slice is selected
                         */
    hsize_t  dims[SS_DR_MAX_RANK];
    hsize_t  base_start[2];
    hsize_t  start[SS_DR_MAX_RANK];
    hsize_t *start_ptr;
    hsize_t  base_stride[2];
    hsize_t  stride[SS_DR_MAX_RANK];
    hsize_t *stride_ptr;
    hsize_t  base_count[2];
    hsize_t  count[SS_DR_MAX_RANK];
    hsize_t *count_ptr;
    hsize_t  base_block[2];
    hsize_t  block[SS_DR_MAX_RANK];
    hsize_t *block_ptr;
    htri_t   check; /* Shape comparison return value */
    herr_t   ret;   /* Generic return value    */

    HDassert(0 < small_rank);
    HDassert(small_rank <= large_rank);
    HDassert(large_rank <= SS_DR_MAX_RANK);
    HDassert(0 < checker_size);
    HDassert(checker_size <= edge_size);
    HDassert(edge_size <= 1000);
    HDassert(0 <= offset);
    HDassert(offset < (int)edge_size);

    for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
        if (dim_selected[i] == TRUE)
            dims_selected++;

    HDassert(dims_selected >= 0);
    HDassert(dims_selected <= large_rank);

    HDsprintf(test_desc_0, "\tcheckerboard n-cube slice through m-cube (n <= m) test %d.\n", test_num);
    MESSAGE(7, (test_desc_0));

    /* This statement must be updated if SS_DR_MAX_RANK is changed */
    HDsprintf(test_desc_1,
              "\tranks: %d/%d edge/chkr size: %d/%d offset: %d dim_selected: %d/%d/%d/%d/%d:%d.\n",
              small_rank, large_rank, (int)edge_size, (int)checker_size, offset, (int)dim_selected[0],
              (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4],
              dims_selected);
    MESSAGE(7, (test_desc_1));

    /* copy the edge size into the dims array */
    for (i = 0; i < SS_DR_MAX_RANK; i++)
        dims[i] = edge_size;

    /* Create the small n-cube */
    n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
    CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");

    /* Select a "checkerboard" pattern in the small n-cube.
     *
     * In the 1-D case, the "checkerboard" would look like this:
     *
     *        * * - - * * - - * *
     *
     * and in the 2-D case, it would look like this:
     *
     *        * * - - * * - - * *
     *          * * - - * * - - * *
     *          - - * * - - * * - -
     *          - - * * - - * * - -
     *        * * - - * * - - * *
     *          * * - - * * - - * *
     *          - - * * - - * * - -
     *          - - * * - - * * - -
     *        * * - - * * - - * *
     *          * * - - * * - - * *
     *
     * In both cases, asterisks indicate selected elements,
     * and dashes indicate unselected elements.
     *
     * 3-D and 4-D ascii art is somewhat painful, so I'll
     * leave those selections to your imagination. :-)
     *
     * Note, that since the edge_size and checker_size are
     * parameters that are passed in, the selection need
     * not look exactly like the selection shown above.
     * At present, the function allows checker sizes that
     * are not even divisors of the edge size -- thus
     * something like the following is also possible:
     *
     *        * * * - - - * * * -
     *        * * * - - - * * * -
     *        * * * - - - * * * -
     *          - - - * * * - - - *
     *          - - - * * * - - - *
     *          - - - * * * - - - *
     *        * * * - - - * * * -
     *        * * * - - - * * * -
     *        * * * - - - * * * -
     *          - - - * * * - - - *
     *
     * As the above pattern can't be selected in one
     * call to H5Sselect_hyperslab(), and since the
     * values in the start, stride, count, and block
     * arrays will be repeated over all entries in
     * the selected space case, and over all selected
     * dimensions in the selected hyperslab case, we
     * compute these values first and store them in
     * in the base_start, base_stride, base_count,
     * and base_block arrays.
     */

    base_start[0] = 0;
    base_start[1] = checker_size;

    base_stride[0] = 2 * checker_size;
    base_stride[1] = 2 * checker_size;

    /* Note that the following computation depends on the C99
     * requirement that integer division discard any fraction
     * (truncation towards zero) to function correctly. As we
     * now require C99, this shouldn't be a problem, but noting
     * it may save us some pain if we are ever obliged to support
     * pre-C99 compilers again.
     */

    base_count[0] = edge_size / (checker_size * 2);
    if ((edge_size % (checker_size * 2)) > 0)
        base_count[0]++;

    base_count[1] = (edge_size - checker_size) / (checker_size * 2);
    if (((edge_size - checker_size) % (checker_size * 2)) > 0)
        base_count[1]++;

    base_block[0] = checker_size;
    base_block[1] = checker_size;

    /* now setup start, stride, count, and block arrays for
     * the first call to H5Sselect_hyperslab().
     */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        start[i]  = base_start[0];
        stride[i] = base_stride[0];
        count[i]  = base_count[0];
        block[i]  = base_block[0];
    } /* end for */

    ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* if small_rank == 1, or if edge_size == checker_size, we
     * are done, as either there is no added dimension in which
     * to place offset selected "checkers".
     *
     * Otherwise, set up start, stride, count and block, and
     * make the additional selection.
     */

    if ((small_rank > 1) && (checker_size < edge_size)) {
        for (i = 0; i < SS_DR_MAX_RANK; i++) {
            start[i]  = base_start[1];
            stride[i] = base_stride[1];
            count[i]  = base_count[1];
            block[i]  = base_block[1];
        } /* end for */

        ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end if */

    /* Wierdness alert:
     *
     * Some how, it seems that selections can extend beyond the
     * boundaries of the target dataspace -- hence the following
     * code to manually clip the selection back to the dataspace
     * proper.
     */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        start[i]  = 0;
        stride[i] = edge_size;
        count[i]  = 1;
        block[i]  = edge_size;
    } /* end for */

    ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the large n-cube */
    n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
    CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");

    /* Now select the checkerboard selection in the (possibly larger) n-cube.
     *
     * Since we have already calculated the base start, stride, count,
     * and block, re-use the values in setting up start, stride, count,
     * and block.
     */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        if (dim_selected[i]) {
            start[i]  = base_start[0];
            stride[i] = base_stride[0];
            count[i]  = base_count[0];
            block[i]  = base_block[0];
        } /* end if */
        else {
            start[i]  = (hsize_t)offset;
            stride[i] = (hsize_t)(2 * edge_size);
            count[i]  = 1;
            block[i]  = 1;
        } /* end else */
    }     /* end for */

    /* Since large rank may be less than SS_DR_MAX_RANK, we may not
     * use the entire start, stride, count, and block arrays.  This
     * is a problem, since it is inconvenient to set up the dim_selected
     * array to reflect the large rank, and thus if large_rank <
     * SS_DR_MAX_RANK, we need to hide the lower index entries
     * from H5Sselect_hyperslab().
     *
     * Do this by setting up pointers to the first valid entry in start,
     * stride, count, and block below, and pass these pointers in
     * to H5Sselect_hyperslab() instead of the array base addresses.
     */

    i = SS_DR_MAX_RANK - large_rank;
    HDassert(i >= 0);

    start_ptr  = &(start[i]);
    stride_ptr = &(stride[i]);
    count_ptr  = &(count[i]);
    block_ptr  = &(block[i]);

    /* select the hyperslab */
    ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_SET, start_ptr, stride_ptr, count_ptr, block_ptr);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* As before, if the number of dimensions selected is less than or
     * equal to 1, or if edge_size == checker_size, we are done, as
     * either there is no added dimension in which to place offset selected
     * "checkers", or the hyperslab is completely occupied by one
     * "checker".
     *
     * Otherwise, set up start, stride, count and block, and
     * make the additional selection.
     */
    if ((dims_selected > 1) && (checker_size < edge_size)) {
        for (i = 0; i < SS_DR_MAX_RANK; i++) {
            if (dim_selected[i]) {
                start[i]  = base_start[1];
                stride[i] = base_stride[1];
                count[i]  = base_count[1];
                block[i]  = base_block[1];
            } /* end if */
            else {
                start[i]  = (hsize_t)offset;
                stride[i] = (hsize_t)(2 * edge_size);
                count[i]  = 1;
                block[i]  = 1;
            } /* end else */
        }     /* end for */

        ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end if */

    /* Wierdness alert:
     *
     * Again, it seems that selections can extend beyond the
     * boundaries of the target dataspace -- hence the following
     * code to manually clip the selection back to the dataspace
     * proper.
     */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        start[i]  = 0;
        stride[i] = edge_size;
        count[i]  = 1;
        block[i]  = edge_size;
    } /* end for */

    ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* setup is done -- run the test: */
    check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
    VERIFY(check, expected_result, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(n_cube_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(n_cube_1_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__checkerboard() */

/****************************************************************
**
**  test_shape_same_dr__run_checkerboard_tests():
**
**    In this set of tests, we test H5Sselect_shape_same()
**      with a "checkerboard" selection of 1, 2, 3, and 4 cubes as
**      one parameter, and 1, 2, 3, and 4 dimensional checkerboard
**      slices through a n-cube of rank no more than 5 (and at
**      least the rank of the slice).
**
**      All the n-cubes will have lengths of the same size, so
**      H5Sselect_shape_same() should return true iff:
**
**      1) the rank of the n cube equals the number of dimensions
**         selected in the checker board slice through the m-cube
**         (m >= n).
**
**      2) The dimensions selected in the checkerboard slice
**         through the m-cube are the dimensions with the most
**         quickly changing indices.
**
****************************************************************/
static void
test_shape_same_dr__run_checkerboard_tests(void)
{
    hbool_t dim_selected[5];
    hbool_t expected_result;
    int     i, j;
    int     v, w, x, y, z;
    int     test_num = 0;
    int     small_rank;
    int     large_rank;

    for (large_rank = 1; large_rank <= 5; large_rank++) {
        for (small_rank = 1; small_rank <= large_rank; small_rank++) {
            v = 0;
            do {
                if (v == 0)
                    dim_selected[0] = FALSE;
                else
                    dim_selected[0] = TRUE;

                w = 0;
                do {
                    if (w == 0)
                        dim_selected[1] = FALSE;
                    else
                        dim_selected[1] = TRUE;

                    x = 0;
                    do {
                        if (x == 0)
                            dim_selected[2] = FALSE;
                        else
                            dim_selected[2] = TRUE;

                        y = 0;
                        do {
                            if (y == 0)
                                dim_selected[3] = FALSE;
                            else
                                dim_selected[3] = TRUE;

                            z = 0;
                            do {
                                if (z == 0)
                                    dim_selected[4] = FALSE;
                                else
                                    dim_selected[4] = TRUE;

                                /* compute the expected result: */
                                i               = 0;
                                j               = 4;
                                expected_result = TRUE;
                                while ((i < small_rank) && expected_result) {
                                    if (!dim_selected[j])
                                        expected_result = FALSE;
                                    i++;
                                    j--;
                                } /* end while */

                                while ((i < large_rank) && expected_result) {
                                    if (dim_selected[j])
                                        expected_result = FALSE;
                                    i++;
                                    j--;
                                } /* end while */

                                /* everything is set up -- run the tests */

                                /* run test with edge size 16, checker
                                 * size 1, and a variety of offsets
                                 */
                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 0,
                                                                 /* edge_size */ 16,
                                                                 /* checker_size */ 1, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 5,
                                                                 /* edge_size */ 16,
                                                                 /* checker_size */ 1, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 15,
                                                                 /* edge_size */ 16,
                                                                 /* checker_size */ 1, dim_selected,
                                                                 expected_result);

                                /* run test with edge size 10, checker
                                 * size 2, and a variety of offsets
                                 */
                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 0,
                                                                 /* edge_size */ 10,
                                                                 /* checker_size */ 2, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 5,
                                                                 /* edge_size */ 10,
                                                                 /* checker_size */ 2, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 9,
                                                                 /* edge_size */ 10,
                                                                 /* checker_size */ 2, dim_selected,
                                                                 expected_result);

                                /* run test with edge size 10, checker
                                 * size 3, and a variety of offsets
                                 */
                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 0,
                                                                 /* edge_size */ 10,
                                                                 /* checker_size */ 3, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 5,
                                                                 /* edge_size */ 10,
                                                                 /* checker_size */ 3, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 9,
                                                                 /* edge_size */ 10,
                                                                 /* checker_size */ 3, dim_selected,
                                                                 expected_result);

                                /* run test with edge size 8, checker
                                 * size 8, and a variety of offsets
                                 */
                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 0,
                                                                 /* edge_size */ 8,
                                                                 /* checker_size */ 8, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 4,
                                                                 /* edge_size */ 8,
                                                                 /* checker_size */ 8, dim_selected,
                                                                 expected_result);

                                test_shape_same_dr__checkerboard(test_num++, small_rank, large_rank,
                                                                 /* offset */ 7,
                                                                 /* edge_size */ 8,
                                                                 /* checker_size */ 8, dim_selected,
                                                                 expected_result);

                                z++;
                            } while ((z < 2) && (large_rank >= 1));

                            y++;
                        } while ((y < 2) && (large_rank >= 2));

                        x++;
                    } while ((x < 2) && (large_rank >= 3));

                    w++;
                } while ((w < 2) && (large_rank >= 4));

                v++;
            } while ((v < 2) && (large_rank >= 5));
        } /* end for */
    }     /* end for */
} /* test_shape_same_dr__run_checkerboard_tests() */

/****************************************************************
**
**  test_shape_same_dr__irregular():
**
**    Tests selection of an "irregular" subset of a full
**      n-cube dataspace vs an identical "irregular" subset
**    of an n-dimensional slice of an m-cube (m > n).
**    in a call to H5Sselect_shape_same().
**
**    Note that this test does not require the n-cube and the
**    n-dimensional slice to have the same rank (although
**    H5Sselect_shape_same() should always return FALSE if
**    they don't).
**
****************************************************************/
static void
test_shape_same_dr__irregular(int test_num, int small_rank, int large_rank, int pattern_offset,
                              int slice_offset, hbool_t dim_selected[], hbool_t expected_result)
{
    char  test_desc_0[128];
    char  test_desc_1[256];
    int   edge_size = 10;
    int   i;
    int   j;
    int   k;
    int   dims_selected = 0;
    hid_t n_cube_0_sid; /* the hyper cube containing
                         * an irregular selection
                         */
    hid_t n_cube_1_sid; /* the hyper cube in which a
                         * slice contains an irregular
                         * selection.
                         */
    hsize_t dims[SS_DR_MAX_RANK];
    hsize_t start_0[SS_DR_MAX_RANK]  = {2, 2, 2, 2, 5};
    hsize_t stride_0[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
    hsize_t count_0[SS_DR_MAX_RANK]  = {1, 1, 1, 1, 1};
    hsize_t block_0[SS_DR_MAX_RANK]  = {2, 2, 2, 2, 3};

    hsize_t start_1[SS_DR_MAX_RANK]  = {2, 2, 2, 5, 2};
    hsize_t stride_1[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
    hsize_t count_1[SS_DR_MAX_RANK]  = {1, 1, 1, 1, 1};
    hsize_t block_1[SS_DR_MAX_RANK]  = {2, 2, 2, 3, 2};

    hsize_t start_2[SS_DR_MAX_RANK]  = {2, 2, 5, 2, 2};
    hsize_t stride_2[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
    hsize_t count_2[SS_DR_MAX_RANK]  = {1, 1, 1, 1, 1};
    hsize_t block_2[SS_DR_MAX_RANK]  = {2, 2, 3, 2, 2};

    hsize_t start_3[SS_DR_MAX_RANK]  = {2, 5, 2, 2, 2};
    hsize_t stride_3[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
    hsize_t count_3[SS_DR_MAX_RANK]  = {1, 1, 1, 1, 1};
    hsize_t block_3[SS_DR_MAX_RANK]  = {2, 3, 2, 2, 2};

    hsize_t start_4[SS_DR_MAX_RANK]  = {5, 2, 2, 2, 2};
    hsize_t stride_4[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
    hsize_t count_4[SS_DR_MAX_RANK]  = {1, 1, 1, 1, 1};
    hsize_t block_4[SS_DR_MAX_RANK]  = {3, 2, 2, 2, 2};

    hsize_t clip_start[SS_DR_MAX_RANK]  = {0, 0, 0, 0, 0};
    hsize_t clip_stride[SS_DR_MAX_RANK] = {10, 10, 10, 10, 10};
    hsize_t clip_count[SS_DR_MAX_RANK]  = {1, 1, 1, 1, 1};
    hsize_t clip_block[SS_DR_MAX_RANK]  = {10, 10, 10, 10, 10};

    hsize_t *(starts[SS_DR_MAX_RANK])  = {start_0, start_1, start_2, start_3, start_4};
    hsize_t *(strides[SS_DR_MAX_RANK]) = {stride_0, stride_1, stride_2, stride_3, stride_4};
    hsize_t *(counts[SS_DR_MAX_RANK])  = {count_0, count_1, count_2, count_3, count_4};
    hsize_t *(blocks[SS_DR_MAX_RANK])  = {block_0, block_1, block_2, block_3, block_4};

    hsize_t  start[SS_DR_MAX_RANK];
    hsize_t *start_ptr;
    hsize_t  stride[SS_DR_MAX_RANK];
    hsize_t *stride_ptr;
    hsize_t  count[SS_DR_MAX_RANK];
    hsize_t *count_ptr;
    hsize_t  block[SS_DR_MAX_RANK];
    hsize_t *block_ptr;
    htri_t   check; /* Shape comparison return value */
    herr_t   ret;   /* Generic return value    */

    HDassert(0 < small_rank);
    HDassert(small_rank <= large_rank);
    HDassert(large_rank <= SS_DR_MAX_RANK);
    HDassert(9 <= edge_size);
    HDassert(edge_size <= 1000);
    HDassert(0 <= slice_offset);
    HDassert(slice_offset < edge_size);
    HDassert(-2 <= pattern_offset);
    HDassert(pattern_offset <= 2);

    for (i = SS_DR_MAX_RANK - large_rank; i < SS_DR_MAX_RANK; i++)
        if (dim_selected[i] == TRUE)
            dims_selected++;

    HDassert(dims_selected >= 0);
    HDassert(dims_selected <= large_rank);

    HDsprintf(test_desc_0, "\tirregular sub set of n-cube slice through m-cube (n <= m) test %d.\n",
              test_num);
    MESSAGE(7, (test_desc_0));

    /* This statement must be updated if SS_DR_MAX_RANK is changed */
    HDsprintf(test_desc_1, "\tranks: %d/%d edge: %d s/p offset: %d/%d dim_selected: %d/%d/%d/%d/%d:%d.\n",
              small_rank, large_rank, edge_size, slice_offset, pattern_offset, (int)dim_selected[0],
              (int)dim_selected[1], (int)dim_selected[2], (int)dim_selected[3], (int)dim_selected[4],
              dims_selected);
    MESSAGE(7, (test_desc_1));

    /* copy the edge size into the dims array */
    for (i = 0; i < SS_DR_MAX_RANK; i++)
        dims[i] = (hsize_t)edge_size;

    /* Create the small n-cube */
    n_cube_0_sid = H5Screate_simple(small_rank, dims, NULL);
    CHECK(n_cube_0_sid, FAIL, "H5Screate_simple");

    /* Select an "irregular" pattern in the small n-cube.  This
     * pattern can be though of a set of four 3 x 2 x 2 X 2
     * four dimensional prisims, each parallel to one of the
     * axies and none of them intersecting with the other.
     *
     * In the lesser dimensional cases, this 4D pattern is
     * projected onto the lower dimensional space.
     *
     * In the 1-D case, the projection of the pattern looks
     * like this:
     *
     *          - - * * - * * * - -
     *            0 1 2 3 4 5 6 7 8 9 x
     *
     * and in the 2-D case, it would look like this:
     *
     *
     *        y
     *        9 - - - - - - - - - -
     *        8 - - - - - - - - - -
     *        7 - - * * - - - - - -
     *        6 - - * * - - - - - -
     *        5 - - * * - - - - - -
     *        4 - - - - - - - - - -
     *        3 - - * * - * * * - -
     *        2 - - * * - * * * - -
     *        1 - - - - - - - - - -
     *         0 - - - - - - - - - -
     *            0 1 2 3 4 5 6 7 8 9 x
     *
     * In both cases, asterisks indicate selected elements,
     * and dashes indicate unselected elements.
     *
     * Note that is this case, since the edge size is fixed,
     * the pattern does not change.  However, we do use the
     * displacement parameter to allow it to be moved around
     * within the n-cube or hyperslab.
     */

    /* first, ensure that the small n-cube has no selection */
    ret = H5Sselect_none(n_cube_0_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* now, select the irregular pattern */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_OR, starts[i], strides[i], counts[i], blocks[i]);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end for */

    /* finally, clip the selection to ensure that it lies fully
     * within the n-cube.
     */
    ret = H5Sselect_hyperslab(n_cube_0_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create the large n-cube */
    n_cube_1_sid = H5Screate_simple(large_rank, dims, NULL);
    CHECK(n_cube_1_sid, FAIL, "H5Screate_simple");

    /* Ensure that the large n-cube has no selection */
    H5Sselect_none(n_cube_1_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Since large rank may be less than SS_DR_MAX_RANK, we may not
     * use the entire start, stride, count, and block arrays.  This
     * is a problem, since it is inconvenient to set up the dim_selected
     * array to reflect the large rank, and thus if large_rank <
     * SS_DR_MAX_RANK, we need to hide the lower index entries
     * from H5Sselect_hyperslab().
     *
     * Do this by setting up pointers to the first valid entry in start,
     * stride, count, and block below, and pass these pointers in
     * to H5Sselect_hyperslab() instead of the array base addresses.
     */

    i = SS_DR_MAX_RANK - large_rank;
    HDassert(i >= 0);

    start_ptr  = &(start[i]);
    stride_ptr = &(stride[i]);
    count_ptr  = &(count[i]);
    block_ptr  = &(block[i]);

    /* Now select the irregular selection in the (possibly larger) n-cube.
     *
     * Basic idea is to project the pattern used in the smaller n-cube
     * onto the dimensions selected in the larger n-cube, with the displacement
     * specified.
     */
    for (i = 0; i < SS_DR_MAX_RANK; i++) {
        j = 0;
        for (k = 0; k < SS_DR_MAX_RANK; k++) {
            if (dim_selected[k]) {
                start[k]  = (starts[i])[j] + (hsize_t)pattern_offset;
                stride[k] = (strides[i])[j];
                count[k]  = (counts[i])[j];
                block[k]  = (blocks[i])[j];
                j++;
            } /* end if */
            else {
                start[k]  = (hsize_t)slice_offset;
                stride[k] = (hsize_t)(2 * edge_size);
                count[k]  = 1;
                block[k]  = 1;
            } /* end else */
        }     /* end for */

        /* select the hyperslab */
        ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_OR, start_ptr, stride_ptr, count_ptr, block_ptr);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
    } /* end for */

    /* it is possible that the selection extends beyond the dataspace.
     * clip the selection to ensure that it doesn't.
     */
    ret = H5Sselect_hyperslab(n_cube_1_sid, H5S_SELECT_AND, clip_start, clip_stride, clip_count, clip_block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* setup is done -- run the test: */
    check = H5Sselect_shape_same(n_cube_0_sid, n_cube_1_sid);
    VERIFY(check, expected_result, "H5Sselect_shape_same");

    /* Close dataspaces */
    ret = H5Sclose(n_cube_0_sid);
    CHECK(ret, FAIL, "H5Sclose");

    ret = H5Sclose(n_cube_1_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_shape_same_dr__irregular() */

/****************************************************************
**
**  test_shape_same_dr__run_irregular_tests():
**
**    In this set of tests, we test H5Sselect_shape_same()
**      with an "irregular" subselection of 1, 2, 3, and 4 cubes as
**      one parameter, and irregular subselections of 1, 2, 3,
**      and 4 dimensional slices through a n-cube of rank no more
**      than 5 (and at least the rank of the slice) as the other.
**      Note that the "irregular" selection may be offset between
**    the n-cube and the slice.
**
**      All the irregular selections will be identical (modulo rank)
**      so H5Sselect_shape_same() should return true iff:
**
**      1) the rank of the n cube equals the number of dimensions
**         selected in the irregular slice through the m-cube
**         (m >= n).
**
**      2) The dimensions selected in the irregular slice
**         through the m-cube are the dimensions with the most
**         quickly changing indices.
**
****************************************************************/
static void
test_shape_same_dr__run_irregular_tests(void)
{
    hbool_t dim_selected[5];
    hbool_t expected_result;
    int     i, j;
    int     v, w, x, y, z;
    int     test_num = 0;
    int     small_rank;
    int     large_rank;

    for (large_rank = 1; large_rank <= 5; large_rank++) {
        for (small_rank = 1; small_rank <= large_rank; small_rank++) {
            v = 0;
            do {
                if (v == 0)
                    dim_selected[0] = FALSE;
                else
                    dim_selected[0] = TRUE;

                w = 0;
                do {
                    if (w == 0)
                        dim_selected[1] = FALSE;
                    else
                        dim_selected[1] = TRUE;

                    x = 0;
                    do {
                        if (x == 0)
                            dim_selected[2] = FALSE;
                        else
                            dim_selected[2] = TRUE;

                        y = 0;
                        do {
                            if (y == 0)
                                dim_selected[3] = FALSE;
                            else
                                dim_selected[3] = TRUE;

                            z = 0;
                            do {
                                if (z == 0)
                                    dim_selected[4] = FALSE;
                                else
                                    dim_selected[4] = TRUE;

                                /* compute the expected result: */
                                i               = 0;
                                j               = 4;
                                expected_result = TRUE;
                                while ((i < small_rank) && expected_result) {
                                    if (!dim_selected[j])
                                        expected_result = FALSE;
                                    i++;
                                    j--;
                                } /* end while */

                                while ((i < large_rank) && expected_result) {
                                    if (dim_selected[j])
                                        expected_result = FALSE;
                                    i++;
                                    j--;
                                } /* end while */

                                /* everything is set up -- run the tests */

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ -2,
                                                              /* slice_offset */ 0, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ -2,
                                                              /* slice_offset */ 4, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ -2,
                                                              /* slice_offset */ 9, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ 0,
                                                              /* slice_offset */ 0, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ 0,
                                                              /* slice_offset */ 6, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ 0,
                                                              /* slice_offset */ 9, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ 2,
                                                              /* slice_offset */ 0, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ 2,
                                                              /* slice_offset */ 5, dim_selected,
                                                              expected_result);

                                test_shape_same_dr__irregular(test_num++, small_rank, large_rank,
                                                              /* pattern_offset */ 2,
                                                              /* slice_offset */ 9, dim_selected,
                                                              expected_result);

                                z++;
                            } while ((z < 2) && (large_rank >= 1));

                            y++;
                        } while ((y < 2) && (large_rank >= 2));

                        x++;
                    } while ((x < 2) && (large_rank >= 3));

                    w++;
                } while ((w < 2) && (large_rank >= 4));

                v++;
            } while ((v < 2) && (large_rank >= 5));
        } /* end for */
    }     /* end for */
} /* test_shape_same_dr__run_irregular_tests() */

/****************************************************************
**
**  test_shape_same_dr(): Tests selections on dataspace with
**      different ranks, to verify that "shape same" routine
**    is now handling this case correctly.
**
****************************************************************/
static void
test_shape_same_dr(void)
{
    /* Output message about test being performed */
    MESSAGE(6, ("Testing Same Shape/Different Rank Comparisons\n"));

    /* first run some smoke checks */
    test_shape_same_dr__smoke_check_1();
    test_shape_same_dr__smoke_check_2();
    test_shape_same_dr__smoke_check_3();
    test_shape_same_dr__smoke_check_4();

    /* now run more intensive tests. */
    test_shape_same_dr__run_full_space_vs_slice_tests();
    test_shape_same_dr__run_checkerboard_tests();
    test_shape_same_dr__run_irregular_tests();
} /* test_shape_same_dr() */

/****************************************************************
**
**  test_space_rebuild(): Tests selection rebuild routine,
**  We will test whether selection in span-tree form can be rebuilt
**  into a regular selection.
**
**
****************************************************************/
static void
test_space_rebuild(void)
{
    /* regular space IDs in span-tree form */
    hid_t sid_reg1, sid_reg2, sid_reg3, sid_reg4, sid_reg5;

    /* Original regular Space IDs */
    hid_t sid_reg_ori1, sid_reg_ori2, sid_reg_ori3, sid_reg_ori4, sid_reg_ori5;

    /* Irregular space IDs */
    hid_t sid_irreg1, sid_irreg2, sid_irreg3, sid_irreg4, sid_irreg5;

    /* rebuild status state */
    H5S_diminfo_valid_t rebuild_stat1, rebuild_stat2;
    htri_t              rebuild_check;
    herr_t              ret;

    /* dimensions of rank 1 to rank 5 */
    hsize_t dims1[] = {SPACERE1_DIM0};
    hsize_t dims2[] = {SPACERE2_DIM0, SPACERE2_DIM1};
    hsize_t dims3[] = {SPACERE3_DIM0, SPACERE3_DIM1, SPACERE3_DIM2};
    hsize_t dims4[] = {SPACERE4_DIM0, SPACERE4_DIM1, SPACERE4_DIM2, SPACERE4_DIM3};
    hsize_t dims5[] = {SPACERE5_DIM0, SPACERE5_DIM1, SPACERE5_DIM2, SPACERE5_DIM3, SPACERE5_DIM4};

    /* The start of the hyperslab */
    hsize_t start1[SPACERE1_RANK], start2[SPACERE2_RANK], start3[SPACERE3_RANK], start4[SPACERE4_RANK],
        start5[SPACERE5_RANK];

    /* The stride of the hyperslab */
    hsize_t stride1[SPACERE1_RANK], stride2[SPACERE2_RANK], stride3[SPACERE3_RANK], stride4[SPACERE4_RANK],
        stride5[SPACERE5_RANK];

    /* The number of blocks for the hyperslab */
    hsize_t count1[SPACERE1_RANK], count2[SPACERE2_RANK], count3[SPACERE3_RANK], count4[SPACERE4_RANK],
        count5[SPACERE5_RANK];

    /* The size of each block for the hyperslab */
    hsize_t block1[SPACERE1_RANK], block2[SPACERE2_RANK], block3[SPACERE3_RANK], block4[SPACERE4_RANK],
        block5[SPACERE5_RANK];

    /* Declarations for special test of rebuild */
    hid_t sid_spec;

    /* Output message about test being performed */
    MESSAGE(6, ("Testing functionality to rebuild regular hyperslab selection\n"));

    MESSAGE(7, ("Testing functionality to rebuild 1-D hyperslab selection\n"));

    /* Create 1-D dataspace */
    sid_reg1     = H5Screate_simple(SPACERE1_RANK, dims1, NULL);
    sid_reg_ori1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);

    /* Build up the original one dimensional regular selection */
    start1[0]  = 1;
    count1[0]  = 3;
    stride1[0] = 5;
    block1[0]  = 4;
    ret        = H5Sselect_hyperslab(sid_reg_ori1, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Build up one dimensional regular selection with H5_SELECT_OR,
       inside HDF5, it will be treated as an irregular selection. */

    start1[0]  = 1;
    count1[0]  = 2;
    stride1[0] = 5;
    block1[0]  = 4;
    ret        = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start1[0]  = 11;
    count1[0]  = 1;
    stride1[0] = 5;
    block1[0]  = 4;
    ret        = H5Sselect_hyperslab(sid_reg1, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_reg1, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 and rebuild_stat2 should be
     * H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (ret != FAIL) {
        /* In this case, rebuild_check should be TRUE. */
        rebuild_check = H5Sselect_shape_same(sid_reg1, sid_reg_ori1);
        CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
    }

    /* For irregular hyperslab */
    sid_irreg1 = H5Screate_simple(SPACERE1_RANK, dims1, NULL);

    /* Build up one dimensional irregular selection with H5_SELECT_OR */
    start1[0]  = 1;
    count1[0]  = 2;
    stride1[0] = 5;
    block1[0]  = 4;
    ret        = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start1[0]  = 12; /* Just one position switch */
    count1[0]  = 1;
    stride1[0] = 5;
    block1[0]  = 4;
    ret        = H5Sselect_hyperslab(sid_irreg1, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_irreg1, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    MESSAGE(7, ("Testing functionality to rebuild 2-D hyperslab selection\n"));
    /* Create 2-D dataspace */
    sid_reg2     = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
    sid_reg_ori2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);

    /* Build up the original two dimensional regular selection */
    start2[0]  = 2;
    count2[0]  = 2;
    stride2[0] = 7;
    block2[0]  = 5;
    start2[1]  = 1;
    count2[1]  = 3;
    stride2[1] = 3;
    block2[1]  = 2;

    ret = H5Sselect_hyperslab(sid_reg_ori2, H5S_SELECT_SET, start2, stride2, count2, block2);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Build up two dimensional regular selection with H5_SELECT_OR, inside HDF5,
       it will be treated as an irregular selection. */

    start2[1]  = 1;
    count2[1]  = 2;
    stride2[1] = 3;
    block2[1]  = 2;

    ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_SET, start2, stride2, count2, block2);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start2[1]  = 7; /* 7 = start(1) + count(2) * stride(3) */
    count2[1]  = 1;
    stride2[1] = 3;
    block2[1]  = 2;

    ret = H5Sselect_hyperslab(sid_reg2, H5S_SELECT_OR, start2, stride2, count2, block2);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_reg2, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 and rebuild_stat2 should be
     * H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    } /* end if */
    if (ret != FAIL) {
        /* In this case, rebuild_check should be TRUE. */
        rebuild_check = H5Sselect_shape_same(sid_reg2, sid_reg_ori2);
        CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
    }

    /* 2-D irregular case */
    sid_irreg2 = H5Screate_simple(SPACERE2_RANK, dims2, NULL);
    /* Build up two dimensional irregular selection with H5_SELECT_OR */

    start2[0]  = 2;
    count2[0]  = 2;
    stride2[0] = 7;
    block2[0]  = 5;
    start2[1]  = 1;
    count2[1]  = 1;
    stride2[1] = 3;
    block2[1]  = 2;
    ret        = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_SET, start2, stride2, count2, block2);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start2[1]  = 4;
    count2[1]  = 2;
    stride2[1] = 4;
    block2[1]  = 3; /* Just add one element for the block */

    ret = H5Sselect_hyperslab(sid_irreg2, H5S_SELECT_OR, start2, stride2, count2, block2);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_irreg2, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    MESSAGE(7, ("Testing functionality to rebuild 3-D hyperslab selection\n"));

    /* Create 3-D dataspace */
    sid_reg3     = H5Screate_simple(SPACERE3_RANK, dims3, NULL);
    sid_reg_ori3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);

    /* Build up the original three dimensional regular selection */
    start3[0]  = 2;
    count3[0]  = 2;
    stride3[0] = 3;
    block3[0]  = 2;
    start3[1]  = 1;
    count3[1]  = 3;
    stride3[1] = 3;
    block3[1]  = 2;

    start3[2]  = 1;
    count3[2]  = 2;
    stride3[2] = 4;
    block3[2]  = 2;

    ret = H5Sselect_hyperslab(sid_reg_ori3, H5S_SELECT_SET, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Build up three dimensional regular selection with H5_SELECT_OR, inside HDF5,
       it will be treated as an irregular selection. */
    start3[2]  = 1;
    count3[2]  = 1;
    stride3[2] = 4;
    block3[2]  = 2;

    ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_SET, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start3[2]  = 5;
    count3[2]  = 1;
    stride3[2] = 4;
    block3[2]  = 2;

    ret = H5Sselect_hyperslab(sid_reg3, H5S_SELECT_OR, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_reg3, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 and rebuild_stat2 should be
     * H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (ret != FAIL) {
        /* In this case, rebuild_check should be TRUE. */
        rebuild_check = H5Sselect_shape_same(sid_reg3, sid_reg_ori3);
        CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
    }

    sid_irreg3 = H5Screate_simple(SPACERE3_RANK, dims3, NULL);

    /* Build up three dimensional irregular selection with H5_SELECT_OR */
    start3[0]  = 2;
    count3[0]  = 2;
    stride3[0] = 3;
    block3[0]  = 2;
    start3[1]  = 1;
    count3[1]  = 3;
    stride3[1] = 3;
    block3[1]  = 2;

    start3[2]  = 1;
    count3[2]  = 2;
    stride3[2] = 2;
    block3[2]  = 1;

    ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_SET, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start3[2]  = 3;
    count3[2]  = 2;
    stride3[2] = 3; /* Just add one element for the stride */
    block3[2]  = 1;

    ret = H5Sselect_hyperslab(sid_irreg3, H5S_SELECT_OR, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_irreg3, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    MESSAGE(7, ("Testing functionality to rebuild 4-D hyperslab selection\n"));

    /* Create 4-D dataspace */
    sid_reg4     = H5Screate_simple(SPACERE4_RANK, dims4, NULL);
    sid_reg_ori4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);

    /* Build up the original four dimensional regular selection */
    start4[0]  = 2;
    count4[0]  = 2;
    stride4[0] = 3;
    block4[0]  = 2;

    start4[1]  = 1;
    count4[1]  = 3;
    stride4[1] = 3;
    block4[1]  = 2;

    start4[2]  = 1;
    count4[2]  = 2;
    stride4[2] = 4;
    block4[2]  = 2;

    start4[3]  = 1;
    count4[3]  = 2;
    stride4[3] = 4;
    block4[3]  = 2;

    ret = H5Sselect_hyperslab(sid_reg_ori4, H5S_SELECT_SET, start4, stride4, count4, block4);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Build up four dimensional regular selection with H5_SELECT_OR, inside HDF5,
       it will be treated as an irregular selection. */
    start4[3]  = 1;
    count4[3]  = 1;
    stride4[3] = 4;
    block4[3]  = 2;

    ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_SET, start4, stride4, count4, block4);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start4[3]  = 5;
    count4[3]  = 1;
    stride4[3] = 4;
    block4[3]  = 2;

    ret = H5Sselect_hyperslab(sid_reg4, H5S_SELECT_OR, start4, stride4, count4, block4);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_reg4, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 and rebuild_stat2 should be
     * H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (ret != FAIL) {
        /* In this case, rebuild_check should be TRUE. */
        rebuild_check = H5Sselect_shape_same(sid_reg4, sid_reg_ori4);
        CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
    }

    /* Testing irregular selection */
    sid_irreg4 = H5Screate_simple(SPACERE4_RANK, dims4, NULL);

    /* Build up four dimensional irregular selection with H5_SELECT_OR */
    start4[0]  = 2;
    count4[0]  = 2;
    stride4[0] = 3;
    block4[0]  = 2;
    start4[1]  = 1;
    count4[1]  = 3;
    stride4[1] = 3;
    block4[1]  = 2;

    start4[2]  = 1;
    count4[2]  = 1;
    stride4[2] = 4;
    block4[2]  = 2;

    start4[3]  = 1;
    count4[3]  = 2;
    stride4[3] = 4;
    block4[3]  = 2; /* sub-block is one element difference */

    ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_SET, start4, stride4, count4, block4);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start4[2]  = 5;
    count4[2]  = 1;
    stride4[2] = 4;
    block4[2]  = 2;

    start4[3]  = 1;
    count4[3]  = 2;
    stride4[3] = 4;
    block4[3]  = 3; /* sub-block is one element difference */

    ret = H5Sselect_hyperslab(sid_irreg4, H5S_SELECT_OR, start4, stride4, count4, block4);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_irreg4, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    MESSAGE(7, ("Testing functionality to rebuild 5-D hyperslab selection\n"));

    /* Create 5-D dataspace */
    sid_reg5     = H5Screate_simple(SPACERE5_RANK, dims5, NULL);
    sid_reg_ori5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);

    /* Build up the original five dimensional regular selection */
    start5[0]  = 2;
    count5[0]  = 2;
    stride5[0] = 3;
    block5[0]  = 2;

    start5[1]  = 1;
    count5[1]  = 3;
    stride5[1] = 3;
    block5[1]  = 2;

    start5[2]  = 1;
    count5[2]  = 2;
    stride5[2] = 4;
    block5[2]  = 2;

    start5[3]  = 1;
    count5[3]  = 2;
    stride5[3] = 4;
    block5[3]  = 2;

    start5[4]  = 1;
    count5[4]  = 2;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_reg_ori5, H5S_SELECT_SET, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Build up five dimensional regular selection with H5_SELECT_OR, inside HDF5,
       it will be treated as an irregular selection. */
    start5[4]  = 1;
    count5[4]  = 1;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_SET, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start5[4]  = 5;
    count5[4]  = 1;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_reg5, H5S_SELECT_OR, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_reg5, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 and rebuild_stat2 should be
     * H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (ret != FAIL) {
        /* In this case, rebuild_check should be TRUE. */
        rebuild_check = H5Sselect_shape_same(sid_reg5, sid_reg_ori5);
        CHECK(rebuild_check, FALSE, "H5Sselect_shape_same");
    }

    sid_irreg5 = H5Screate_simple(SPACERE5_RANK, dims5, NULL);

    /* Build up five dimensional irregular selection with H5_SELECT_OR */
    start5[0]  = 2;
    count5[0]  = 2;
    stride5[0] = 3;
    block5[0]  = 2;

    start5[1]  = 1;
    count5[1]  = 3;
    stride5[1] = 3;
    block5[1]  = 2;

    start5[2]  = 1;
    count5[2]  = 2;
    stride5[2] = 4;
    block5[2]  = 2;

    start5[3]  = 1;
    count5[3]  = 1;
    stride5[3] = 4;
    block5[3]  = 2;

    start5[4]  = 2; /* One element difference */
    count5[4]  = 1;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_SET, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start5[3]  = 5;
    count5[3]  = 1;
    stride5[3] = 4;
    block5[3]  = 2;

    start5[4]  = 1; /* One element difference */
    count5[4]  = 2;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_irreg5, H5S_SELECT_OR, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_irreg5, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    /* We use 5-D to test a special case with
       rebuilding routine TRUE, FALSE and TRUE */
    sid_spec = H5Screate_simple(SPACERE5_RANK, dims5, NULL);

    /* Build up the original five dimensional regular selection */
    start5[0]  = 2;
    count5[0]  = 2;
    stride5[0] = 3;
    block5[0]  = 2;

    start5[1]  = 1;
    count5[1]  = 3;
    stride5[1] = 3;
    block5[1]  = 2;

    start5[2]  = 1;
    count5[2]  = 2;
    stride5[2] = 4;
    block5[2]  = 2;

    start5[3]  = 1;
    count5[3]  = 2;
    stride5[3] = 4;
    block5[3]  = 2;

    start5[4]  = 1;
    count5[4]  = 1;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_SET, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 and rebuild_stat2 should both be
     * H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    /* Adding some selections to make it real irregular */
    start5[3]  = 1;
    count5[3]  = 1;
    stride5[3] = 4;
    block5[3]  = 2;

    start5[4]  = 5;
    count5[4]  = 1;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_IMPOSSIBLE. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    /* Add more selections to make it regular again */
    start5[3]  = 5;
    count5[3]  = 1;
    stride5[3] = 4;
    block5[3]  = 2;

    start5[4]  = 5;
    count5[4]  = 1;
    stride5[4] = 4;
    block5[4]  = 2;

    ret = H5Sselect_hyperslab(sid_spec, H5S_SELECT_OR, start5, stride5, count5, block5);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5S__get_rebuild_status_test(sid_spec, &rebuild_stat1, &rebuild_stat2);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    /* In this case, rebuild_stat1 should be H5S_DIMINFO_VALID_NO and
     * rebuild_stat2 should be H5S_DIMINFO_VALID_YES. */
    if (rebuild_stat1 != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    if (rebuild_stat2 != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    }
    /* No need to do shape comparision */

    H5Sclose(sid_reg1);
    CHECK(ret, FAIL, "H5Sclose");
    H5Sclose(sid_irreg1);
    CHECK(ret, FAIL, "H5Sclose");

    H5Sclose(sid_reg2);
    CHECK(ret, FAIL, "H5Sclose");
    H5Sclose(sid_irreg2);
    CHECK(ret, FAIL, "H5Sclose");

    H5Sclose(sid_reg3);
    CHECK(ret, FAIL, "H5Sclose");
    H5Sclose(sid_irreg3);
    CHECK(ret, FAIL, "H5Sclose");

    H5Sclose(sid_reg4);
    CHECK(ret, FAIL, "H5Sclose");
    H5Sclose(sid_irreg4);
    CHECK(ret, FAIL, "H5Sclose");

    H5Sclose(sid_reg5);
    CHECK(ret, FAIL, "H5Sclose");
    H5Sclose(sid_irreg5);
    CHECK(ret, FAIL, "H5Sclose");

    H5Sclose(sid_spec);
    CHECK(ret, FAIL, "H5Sclose");
}

/****************************************************************
**
**  test_space_update_diminfo(): Tests selection diminfo update
**  routine.  We will test whether regular selections can be
**  quickly updated when the selection is modified.
**
**
****************************************************************/
static void
test_space_update_diminfo(void)
{
    hid_t               space_id;       /* Dataspace id */
    H5S_diminfo_valid_t diminfo_valid;  /* Diminfo status */
    H5S_diminfo_valid_t rebuild_status; /* Diminfo status after rebuid */
    H5S_sel_type        sel_type;       /* Selection type */
    herr_t              ret;            /* Return value */

    /* dimensions of rank 1 to rank 5 */
    hsize_t dims1[] = {SPACEUD1_DIM0};
    hsize_t dims3[] = {SPACEUD3_DIM0, SPACEUD3_DIM1, SPACEUD3_DIM2};

    /* The start of the hyperslab */
    hsize_t start1[1], start3[3];

    /* The stride of the hyperslab */
    hsize_t stride1[1], stride3[3];

    /* The number of blocks for the hyperslab */
    hsize_t count1[1], count3[3];

    /* The size of each block for the hyperslab */
    hsize_t block1[1], block3[3];

    /* Output message about test being performed */
    MESSAGE(6, ("Testing functionality to update hyperslab dimension info\n"));

    MESSAGE(7, ("Testing functionality to update 1-D hyperslab dimension info\n"));

    /*
     * Test adding regularly spaced distinct blocks
     */

    /* Create 1-D dataspace */
    space_id = H5Screate_simple(1, dims1, NULL);

    /* Create single block */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block after first, with OR */
    start1[0] = 6;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block before first, this time with XOR */
    start1[0] = 0;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add two blocks after current block */
    start1[0]  = 9;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add two blocks overlapping current block, with OR */
    start1[0]  = 9;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add two blocks partially overlapping current block, with OR */
    start1[0]  = 12;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add two blocks partially overlapping current block, with XOR */
    start1[0]  = 15;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO, after rebuild it should be IMPOSSIBLE */
    ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */
    if (rebuild_status != H5S_DIMINFO_VALID_IMPOSSIBLE) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    } /* end if */

    /* Fill in missing block */
    start1[0] = 15;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO, after rebuild it should be YES */
    ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */
    if (rebuild_status != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    } /* end if */

    /*
     * Test adding contiguous blocks
     */

    /* Create single block */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block immediately after first, with OR */
    start1[0] = 5;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block immediately before first, with XOR */
    start1[0] = 1;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add differently size block immediately after current, with OR */
    start1[0] = 7;
    count1[0] = 1;
    block1[0] = 7;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /*
     * Test adding overlapping blocks
     */

    /* Create single block */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block completely overlapping first, with OR */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block parially overlapping first, with OR */
    start1[0] = 4;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block completely enclosing current, with OR */
    start1[0] = 2;
    count1[0] = 1;
    block1[0] = 5;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add block completely enclosed by current, with OR */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add equally sized block parially overlapping current, with XOR */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 5;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Fill in hole in block */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 4;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO, after rebuild it should be YES */
    ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */
    if (rebuild_status != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    } /* end if */

    /* Add differently sized block parially overlapping current, with XOR */
    start1[0] = 4;
    count1[0] = 1;
    block1[0] = 5;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Fill in hole in block */
    start1[0] = 4;
    count1[0] = 1;
    block1[0] = 4;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO, after rebuild it should be YES */
    ret = H5S__get_rebuild_status_test(space_id, &diminfo_valid, &rebuild_status);
    CHECK(ret, FAIL, "H5S__get_rebuild_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */
    if (rebuild_status != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_rebuild");
    } /* end if */

    /* Add block completely overlapping current, with XOR */
    start1[0] = 2;
    count1[0] = 1;
    block1[0] = 7;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_XOR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    sel_type = H5Sget_select_type(space_id);
    VERIFY(sel_type, H5S_SEL_NONE, "H5Sget_select_type");

    /*
     * Test various conditions that break the fast algorithm
     */

    /* Create multiple blocks */
    start1[0]  = 3;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create single block with start out of phase */
    start1[0] = 8;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks */
    start1[0]  = 3;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks with start out of phase */
    start1[0]  = 8;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks */
    start1[0]  = 3;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks with wrong stride */
    start1[0]  = 9;
    stride1[0] = 4;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create single block */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create single block with wrong size */
    start1[0] = 6;
    count1[0] = 1;
    block1[0] = 1;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create single block */
    start1[0] = 3;
    count1[0] = 1;
    block1[0] = 2;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks with wrong size */
    start1[0]  = 6;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 1;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks */
    start1[0]  = 3;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create single block with wrong size */
    start1[0] = 9;
    count1[0] = 1;
    block1[0] = 1;
    ret       = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, NULL, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks */
    start1[0]  = 3;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks with wrong size */
    start1[0]  = 9;
    stride1[0] = 3;
    count1[0]  = 2;
    block1[0]  = 1;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start1, stride1, count1, block1);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    ret = H5Sclose(space_id);
    CHECK(ret, FAIL, "H5Sclose");

    MESSAGE(7, ("Testing functionality to update 3-D hyperslab dimension info\n"));

    /* Create 3-D dataspace */
    space_id = H5Screate_simple(3, dims3, NULL);

    /* Create multiple blocks */
    start3[0]  = 0;
    start3[1]  = 1;
    start3[2]  = 2;
    stride3[0] = 2;
    stride3[1] = 3;
    stride3[2] = 4;
    count3[0]  = 4;
    count3[1]  = 3;
    count3[2]  = 2;
    block3[0]  = 1;
    block3[1]  = 2;
    block3[2]  = 3;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add blocks with same values in all dimensions */
    ret = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add blocks with same values in two dimensions */
    start3[0]  = 8;
    stride3[0] = 1;
    count3[0]  = 1;
    block3[0]  = 1;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks */
    start3[0]  = 0;
    start3[1]  = 1;
    start3[2]  = 2;
    stride3[0] = 2;
    stride3[1] = 3;
    stride3[2] = 4;
    count3[0]  = 4;
    count3[1]  = 3;
    count3[2]  = 2;
    block3[0]  = 1;
    block3[1]  = 2;
    block3[2]  = 3;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add blocks with same values in one dimension */
    start3[0]  = 8;
    start3[1]  = 10;
    stride3[0] = 1;
    stride3[1] = 1;
    count3[0]  = 1;
    count3[1]  = 1;
    block3[0]  = 1;
    block3[1]  = 2;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Create multiple blocks */
    start3[0]  = 0;
    start3[1]  = 1;
    start3[2]  = 2;
    stride3[0] = 2;
    stride3[1] = 3;
    stride3[2] = 4;
    count3[0]  = 4;
    count3[1]  = 3;
    count3[2]  = 2;
    block3[0]  = 1;
    block3[1]  = 2;
    block3[2]  = 3;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_SET, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be YES */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_YES) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    /* Add blocks with same values in no dimensions */
    start3[0]  = 8;
    start3[1]  = 10;
    start3[2]  = 10;
    stride3[0] = 1;
    stride3[1] = 1;
    stride3[2] = 1;
    count3[0]  = 1;
    count3[1]  = 1;
    count3[2]  = 1;
    block3[0]  = 1;
    block3[1]  = 2;
    block3[2]  = 3;
    ret        = H5Sselect_hyperslab(space_id, H5S_SELECT_OR, start3, stride3, count3, block3);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* diminfo_valid should be NO */
    ret = H5S__get_diminfo_status_test(space_id, &diminfo_valid);
    CHECK(ret, FAIL, "H5S__get_diminfo_status_test");
    if (diminfo_valid != H5S_DIMINFO_VALID_NO) {
        ret = FAIL;
        CHECK(ret, FAIL, "H5S_hyper_update_diminfo");
    } /* end if */

    ret = H5Sclose(space_id);
    CHECK(ret, FAIL, "H5Sclose");
} /* end test_space_update_diminfo() */

/****************************************************************
**
**  test_select_hyper_chunk_offset(): Tests selections on dataspace,
**      verify that offsets for hyperslab selections are working in
**      chunked datasets.
**
****************************************************************/
static void
test_select_hyper_chunk_offset(void)
{
    hid_t         fid;                              /* File ID  */
    hid_t         sid;                              /* Dataspace ID */
    hid_t         msid;                             /* Memory dataspace ID */
    hid_t         did;                              /* Dataset ID */
    const hsize_t mem_dims[1] = {SPACE10_DIM1};     /* Dataspace dimensions for memory */
    const hsize_t dims[1]     = {0};                /* Dataspace initial dimensions */
    const hsize_t maxdims[1]  = {H5S_UNLIMITED};    /* Dataspace mam dims */
    int *         wbuf;                             /* Buffer for writing data */
    int *         rbuf;                             /* Buffer for reading data */
    hid_t         dcpl;                             /* Dataset creation property list ID */
    hsize_t       chunks[1] = {SPACE10_CHUNK_SIZE}; /* Chunk size */
    hsize_t       start[1]  = {0};                  /* The start of the hyperslab */
    hsize_t       count[1]  = {SPACE10_CHUNK_SIZE}; /* The size of the hyperslab */
    int           i, j;                             /* Local index */
    herr_t        ret;                              /* Generic return value */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing hyperslab selections using offsets in chunked datasets\n"));

    /* Allocate buffers */
    wbuf = (int *)HDmalloc(sizeof(int) * SPACE10_DIM1);
    CHECK_PTR(wbuf, "HDmalloc");
    rbuf = (int *)HDcalloc(sizeof(int), SPACE10_DIM1);
    CHECK_PTR(rbuf, "HDcalloc");

    /* Initialize the write buffer */
    for (i = 0; i < SPACE10_DIM1; i++)
        wbuf[i] = i;

    /* Create file */
    fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid, FAIL, "H5Fcreate");

    /* Create a dataset creation property list */
    dcpl = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(dcpl, FAIL, "H5Pcreate");

    /* Set to chunked storage layout */
    ret = H5Pset_layout(dcpl, H5D_CHUNKED);
    CHECK(ret, FAIL, "H5Pset_layout");

    /* Set the chunk size */
    ret = H5Pset_chunk(dcpl, 1, chunks);
    CHECK(ret, FAIL, "H5Pset_chunk");

    /* Create dataspace for memory */
    msid = H5Screate_simple(1, mem_dims, NULL);
    CHECK(msid, FAIL, "H5Screate_simple");

    /* Select the correct chunk in the memory dataspace */
    ret = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for dataset */
    sid = H5Screate_simple(1, dims, maxdims);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Create the dataset */
    did = H5Dcreate2(fid, "fooData", H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
    CHECK(did, FAIL, "H5Dcreate2");

    /* Close the dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close the dataset creation property list */
    ret = H5Pclose(dcpl);
    CHECK(ret, FAIL, "H5Pclose");

    /* Loop over writing out each chunk */
    for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) {
        hssize_t offset[1]; /* Offset of selection */
        hid_t    fsid;      /* File dataspace ID */
        hsize_t  size[1];   /* The size to extend the dataset to */

        /* Extend the dataset */
        size[0] = (hsize_t)i; /* The size to extend the dataset to */
        ret     = H5Dset_extent(did, size);
        CHECK(ret, FAIL, "H5Dset_extent");

        /* Get the (extended) dataspace from the dataset */
        fsid = H5Dget_space(did);
        CHECK(fsid, FAIL, "H5Dget_space");

        /* Select the correct chunk in the dataset */
        ret = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");

        /* Set the selection offset for the file dataspace */
        offset[0] = i - SPACE10_CHUNK_SIZE;
        ret       = H5Soffset_simple(fsid, offset);
        CHECK(ret, FAIL, "H5Soffset_simple");

        /* Set the selection offset for the memory dataspace */
        offset[0] = SPACE10_DIM1 - i;
        ret       = H5Soffset_simple(msid, offset);
        CHECK(ret, FAIL, "H5Soffset_simple");

        /* Write the data to the chunk */
        ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
        CHECK(ret, FAIL, "H5Dwrite");

        /* Close the file dataspace copy */
        ret = H5Sclose(fsid);
        CHECK(ret, FAIL, "H5Sclose");
    }

    /* Read the data back in */
    ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Verify the information read in */
    for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE)
        for (j = 0; j < SPACE10_CHUNK_SIZE; j++)
            if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j])
                TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j,
                              rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]);

    /* Check with 'OR'ed set of hyperslab selections, which makes certain the
     * hyperslab spanlist code gets tested. -QAK
     */

    /* Re-initialize the write buffer */
    for (i = 0; i < SPACE10_DIM1; i++)
        wbuf[i] = i * 2;

    /* Change the selected the region in the memory dataspace */
    start[0] = 0;
    count[0] = SPACE10_CHUNK_SIZE / 3;
    ret      = H5Sselect_hyperslab(msid, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    start[0] = (2 * SPACE10_CHUNK_SIZE) / 3;
    ret      = H5Sselect_hyperslab(msid, H5S_SELECT_OR, start, NULL, count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Loop over writing out each chunk */
    for (i = SPACE10_CHUNK_SIZE; i <= SPACE10_DIM1; i += SPACE10_CHUNK_SIZE) {
        hssize_t offset[1]; /* Offset of selection */
        hid_t    fsid;      /* File dataspace ID */
        hsize_t  size[1];   /* The size to extend the dataset to */

        /* Extend the dataset */
        size[0] = (hsize_t)i; /* The size to extend the dataset to */
        ret     = H5Dset_extent(did, size);
        CHECK(ret, FAIL, "H5Dset_extent");

        /* Get the (extended) dataspace from the dataset */
        fsid = H5Dget_space(did);
        CHECK(fsid, FAIL, "H5Dget_space");

        /* Select the correct region in the dataset */
        start[0] = 0;
        ret      = H5Sselect_hyperslab(fsid, H5S_SELECT_SET, start, NULL, count, NULL);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");
        start[0] = (2 * SPACE10_CHUNK_SIZE) / 3;
        ret      = H5Sselect_hyperslab(fsid, H5S_SELECT_OR, start, NULL, count, NULL);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");

        /* Set the selection offset for the file dataspace */
        offset[0] = i - SPACE10_CHUNK_SIZE;
        ret       = H5Soffset_simple(fsid, offset);
        CHECK(ret, FAIL, "H5Soffset_simple");

        /* Set the selection offset for the memory dataspace */
        offset[0] = SPACE10_DIM1 - i;
        ret       = H5Soffset_simple(msid, offset);
        CHECK(ret, FAIL, "H5Soffset_simple");

        /* Write the data to the chunk */
        ret = H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, wbuf);
        CHECK(ret, FAIL, "H5Soffset_simple");

        /* Close the file dataspace copy */
        ret = H5Sclose(fsid);
        CHECK(ret, FAIL, "H5Sclose");
    }

    /* Read the data back in */
    ret = H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Verify the information read in */
    for (i = 0; i < SPACE10_DIM1; i += SPACE10_CHUNK_SIZE)
        for (j = 0; j < SPACE10_CHUNK_SIZE; j++)
            /* We're not writing out the "middle" of each chunk, so don't check that */
            if (j < (SPACE10_CHUNK_SIZE / 3) || j >= ((2 * SPACE10_CHUNK_SIZE) / 3))
                if (wbuf[i + j] != rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j])
                    TestErrPrintf("Line: %d - Error! i=%d, j=%d, rbuf=%d, wbuf=%d\n", __LINE__, i, j,
                                  rbuf[((SPACE10_DIM1 - i) - SPACE10_CHUNK_SIZE) + j], wbuf[i + j]);

    /* Close the memory dataspace */
    ret = H5Sclose(msid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Close the dataset */
    ret = H5Dclose(did);
    CHECK(ret, FAIL, "H5Dclose");

    /* Close the file */
    ret = H5Fclose(fid);
    CHECK(ret, FAIL, "H5Fclose");

    /* Free the buffers */
    HDfree(wbuf);
    HDfree(rbuf);
} /* test_select_hyper_chunk_offset() */

/****************************************************************
**
**  test_select_hyper_chunk_offset2(): Tests selections on dataspace,
**      another test to verify that offsets for hyperslab selections are
**      working in chunked datasets.
**
****************************************************************/
static void
test_select_hyper_chunk_offset2(void)
{
    hid_t    file, dataset; /* handles */
    hid_t    dataspace;
    hid_t    memspace;
    hid_t    dcpl; /* Dataset creation property list */
    herr_t   status;
    unsigned data_out[SPACE12_DIM0];                          /* output buffer */
    unsigned data_in[SPACE12_CHUNK_DIM0];                     /* input buffer */
    hsize_t  dims[SPACE12_RANK]       = {SPACE12_DIM0};       /* Dimension size */
    hsize_t  chunk_dims[SPACE12_RANK] = {SPACE12_CHUNK_DIM0}; /* Chunk size */
    hsize_t  start[SPACE12_RANK];                             /* Start of hyperslab */
    hsize_t  count[SPACE12_RANK];                             /* Size of hyperslab */
    hssize_t offset[SPACE12_RANK];                            /* hyperslab offset in the file */
    unsigned u, v;                                            /* Local index variables */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing more hyperslab selections using offsets in chunked datasets\n"));

    /* Initialize data to write out */
    for (u = 0; u < SPACE12_DIM0; u++)
        data_out[u] = u;

    /* Create the file */
    file = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(file, FAIL, "H5Fcreate");

    /* Create dataspace */
    dataspace = H5Screate_simple(SPACE12_RANK, dims, NULL);
    CHECK(dataspace, FAIL, "H5Screate_simple");

    /* Create dataset creation property list */
    dcpl = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(dcpl, FAIL, "H5Pcreate");

    /* Set chunk sizes */
    status = H5Pset_chunk(dcpl, SPACE12_RANK, chunk_dims);
    CHECK(status, FAIL, "H5Pset_chunk");

    /* Create dataset */
    dataset = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_UINT, dataspace, H5P_DEFAULT, dcpl, H5P_DEFAULT);
    CHECK(dataset, FAIL, "H5Dcreate2");

    /* Close DCPL */
    status = H5Pclose(dcpl);
    CHECK(status, FAIL, "H5Pclose");

    /* Write out entire dataset */
    status = H5Dwrite(dataset, H5T_NATIVE_UINT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_out);
    CHECK(status, FAIL, "H5Dclose");

    /* Create memory dataspace (same size as a chunk) */
    memspace = H5Screate_simple(SPACE12_RANK, chunk_dims, NULL);
    CHECK(dataspace, FAIL, "H5Screate_simple");

    /*
     * Define hyperslab in the file dataspace.
     */
    start[0] = 0;
    count[0] = SPACE12_CHUNK_DIM0;
    status   = H5Sselect_hyperslab(dataspace, H5S_SELECT_SET, start, NULL, count, NULL);
    CHECK(status, FAIL, "H5Sselect_hyperslab");

    /* Loop through retrieving data from file, checking it against data written */
    for (u = 0; u < SPACE12_DIM0; u += SPACE12_CHUNK_DIM0) {
        /* Set the offset of the file selection */
        offset[0] = u;
        status    = H5Soffset_simple(dataspace, offset);
        CHECK(status, FAIL, "H5Soffset_simple");

        /* Read in buffer of data */
        status = H5Dread(dataset, H5T_NATIVE_UINT, memspace, dataspace, H5P_DEFAULT, data_in);
        CHECK(status, FAIL, "H5Dread");

        /* Check data read in */
        for (v = 0; v < SPACE12_CHUNK_DIM0; v++)
            if (data_out[u + v] != data_in[v])
                TestErrPrintf("Error! data_out[%u]=%u, data_in[%u]=%u\n", (unsigned)(u + v), data_out[u + v],
                              v, data_in[v]);
    } /* end for */

    status = H5Dclose(dataset);
    CHECK(status, FAIL, "H5Dclose");

    status = H5Sclose(dataspace);
    CHECK(status, FAIL, "H5Sclose");

    status = H5Sclose(memspace);
    CHECK(status, FAIL, "H5Sclose");

    status = H5Fclose(file);
    CHECK(status, FAIL, "H5Fclose");
} /* test_select_hyper_chunk_offset2() */

/****************************************************************
**
**  test_select_bounds(): Tests selection bounds on dataspaces,
**      both with and without offsets.
**
****************************************************************/
static void
test_select_bounds(void)
{
    hid_t         sid;                                               /* Dataspace ID */
    const hsize_t dims[SPACE11_RANK] = {SPACE11_DIM1, SPACE11_DIM2}; /* Dataspace dimensions */
    hsize_t       coord[SPACE11_NPOINTS][SPACE11_RANK];              /* Coordinates for point selection */
    hsize_t       start[SPACE11_RANK];                               /* The start of the hyperslab */
    hsize_t       stride[SPACE11_RANK];      /* The stride between block starts for the hyperslab */
    hsize_t       count[SPACE11_RANK];       /* The number of blocks for the hyperslab */
    hsize_t       block[SPACE11_RANK];       /* The size of each block for the hyperslab */
    hssize_t      offset[SPACE11_RANK];      /* Offset amount for selection */
    hsize_t       low_bounds[SPACE11_RANK];  /* The low bounds for the selection */
    hsize_t       high_bounds[SPACE11_RANK]; /* The high bounds for the selection */
    herr_t        ret;                       /* Generic return value */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing selection bounds\n"));

    /* Create dataspace */
    sid = H5Screate_simple(SPACE11_RANK, dims, NULL);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Get bounds for 'all' selection */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 0, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds");

    /* Set offset for selection */
    offset[0] = 1;
    offset[1] = 1;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for 'all' selection with offset (which should be ignored) */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 0, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], SPACE11_DIM1 - 1, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], SPACE11_DIM2 - 1, "H5Sget_select_bounds");

    /* Reset offset for selection */
    offset[0] = 0;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Set 'none' selection */
    ret = H5Sselect_none(sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Get bounds for 'none' selection */
    H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_select_bo unds");

    /* Set point selection */
    coord[0][0] = 3;
    coord[0][1] = 3;
    coord[1][0] = 3;
    coord[1][1] = 96;
    coord[2][0] = 96;
    coord[2][1] = 3;
    coord[3][0] = 96;
    coord[3][1] = 96;
    ret         = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE11_NPOINTS, (const hsize_t *)coord);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Get bounds for point selection */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 3, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 3, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], SPACE11_DIM1 - 4, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], SPACE11_DIM2 - 4, "H5Sget_select_bounds");

    /* Set bad offset for selection */
    offset[0] = 5;
    offset[1] = -5;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for hyperslab selection with negative offset */
    H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_select_bounds");

    /* Set valid offset for selection */
    offset[0] = 2;
    offset[1] = -2;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for point selection with offset */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 5, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 1, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], SPACE11_DIM1 - 2, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], SPACE11_DIM2 - 6, "H5Sget_select_bounds");

    /* Reset offset for selection */
    offset[0] = 0;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Set "regular" hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 10;
    stride[1] = 10;
    count[0]  = 4;
    count[1]  = 4;
    block[0]  = 5;
    block[1]  = 5;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Get bounds for hyperslab selection */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 2, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 2, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], 36, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], 36, "H5Sget_select_bounds");

    /* Set bad offset for selection */
    offset[0] = 5;
    offset[1] = -5;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for hyperslab selection with negative offset */
    H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_select_bounds");

    /* Set valid offset for selection */
    offset[0] = 5;
    offset[1] = -2;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for hyperslab selection with offset */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 7, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], 41, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], 34, "H5Sget_select_bounds");

    /* Reset offset for selection */
    offset[0] = 0;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Make "irregular" hyperslab selection */
    start[0]  = 20;
    start[1]  = 20;
    stride[0] = 20;
    stride[1] = 20;
    count[0]  = 2;
    count[1]  = 2;
    block[0]  = 10;
    block[1]  = 10;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Get bounds for hyperslab selection */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 2, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 2, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], 49, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], 49, "H5Sget_select_bounds");

    /* Set bad offset for selection */
    offset[0] = 5;
    offset[1] = -5;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for hyperslab selection with negative offset */
    H5E_BEGIN_TRY { ret = H5Sget_select_bounds(sid, low_bounds, high_bounds); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_select_bounds");

    /* Set valid offset for selection */
    offset[0] = 5;
    offset[1] = -2;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Get bounds for hyperslab selection with offset */
    ret = H5Sget_select_bounds(sid, low_bounds, high_bounds);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(low_bounds[0], 7, "H5Sget_select_bounds");
    VERIFY(low_bounds[1], 0, "H5Sget_select_bounds");
    VERIFY(high_bounds[0], 54, "H5Sget_select_bounds");
    VERIFY(high_bounds[1], 47, "H5Sget_select_bounds");

    /* Reset offset for selection */
    offset[0] = 0;
    offset[1] = 0;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Close the dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_select_bounds() */

/****************************************************************
**
**  test_hyper_regular(): Tests query operations on regular hyperslabs
**
****************************************************************/
static void
test_hyper_regular(void)
{
    hid_t         sid;                                                             /* Dataspace ID */
    const hsize_t dims[SPACE13_RANK] = {SPACE13_DIM1, SPACE13_DIM2, SPACE13_DIM3}; /* Dataspace dimensions */
    hsize_t       coord[SPACE13_NPOINTS][SPACE13_RANK]; /* Coordinates for point selection */
    hsize_t       start[SPACE13_RANK];                  /* The start of the hyperslab */
    hsize_t       stride[SPACE13_RANK];   /* The stride between block starts for the hyperslab */
    hsize_t       count[SPACE13_RANK];    /* The number of blocks for the hyperslab */
    hsize_t       block[SPACE13_RANK];    /* The size of each block for the hyperslab */
    hsize_t       t_start[SPACE13_RANK];  /* Temporary start of the hyperslab */
    hsize_t       t_count[SPACE13_RANK];  /* Temporary number of blocks for the hyperslab */
    hsize_t       q_start[SPACE13_RANK];  /* The queried start of the hyperslab */
    hsize_t       q_stride[SPACE13_RANK]; /* The queried stride between block starts for the hyperslab */
    hsize_t       q_count[SPACE13_RANK];  /* The queried number of blocks for the hyperslab */
    hsize_t       q_block[SPACE13_RANK];  /* The queried size of each block for the hyperslab */
    htri_t        is_regular;             /* Whether a hyperslab selection is regular */
    unsigned      u;                      /* Local index variable */
    herr_t        ret;                    /* Generic return value */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing queries on regular hyperslabs\n"));

    /* Create dataspace */
    sid = H5Screate_simple(SPACE13_RANK, dims, NULL);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Query if 'all' selection is regular hyperslab (should fail) */
    H5E_BEGIN_TRY { is_regular = H5Sis_regular_hyperslab(sid); }
    H5E_END_TRY;
    VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");

    /* Query regular hyperslab selection info (should fail) */
    H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");

    /* Set 'none' selection */
    ret = H5Sselect_none(sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Query if 'none' selection is regular hyperslab (should fail) */
    H5E_BEGIN_TRY { is_regular = H5Sis_regular_hyperslab(sid); }
    H5E_END_TRY;
    VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");

    /* Query regular hyperslab selection info (should fail) */
    H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");

    /* Set point selection */
    coord[0][0] = 3;
    coord[0][1] = 3;
    coord[0][2] = 3;
    coord[1][0] = 3;
    coord[1][1] = 48;
    coord[1][2] = 48;
    coord[2][0] = 48;
    coord[2][1] = 3;
    coord[2][2] = 3;
    coord[3][0] = 48;
    coord[3][1] = 48;
    coord[3][2] = 48;
    ret         = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)SPACE13_NPOINTS, (const hsize_t *)coord);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Query if 'point' selection is regular hyperslab (should fail) */
    H5E_BEGIN_TRY { is_regular = H5Sis_regular_hyperslab(sid); }
    H5E_END_TRY;
    VERIFY(is_regular, FAIL, "H5Sis_regular_hyperslab");

    /* Query regular hyperslab selection info (should fail) */
    H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");

    /* Set "regular" hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    start[2]  = 2;
    stride[0] = 5;
    stride[1] = 5;
    stride[2] = 5;
    count[0]  = 3;
    count[1]  = 3;
    count[2]  = 3;
    block[0]  = 4;
    block[1]  = 4;
    block[2]  = 4;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */
    is_regular = H5Sis_regular_hyperslab(sid);
    VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab");

    /* Retrieve the hyperslab parameters */
    ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
    CHECK(ret, FAIL, "H5Sget_regular_hyperslab");

    /* Verify the hyperslab parameters */
    for (u = 0; u < SPACE13_RANK; u++) {
        if (start[u] != q_start[u])
            ERROR("H5Sget_regular_hyperslab, start");
        if (stride[u] != q_stride[u])
            ERROR("H5Sget_regular_hyperslab, stride");
        if (count[u] != q_count[u])
            ERROR("H5Sget_regular_hyperslab, count");
        if (block[u] != q_block[u])
            ERROR("H5Sget_regular_hyperslab, block");
    } /* end for */

    /* 'OR' in another point */
    t_start[0] = 0;
    t_start[1] = 0;
    t_start[2] = 0;
    t_count[0] = 1;
    t_count[1] = 1;
    t_count[2] = 1;
    ret        = H5Sselect_hyperslab(sid, H5S_SELECT_OR, t_start, NULL, t_count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Query if 'hyperslab' selection is regular hyperslab (should be FALSE) */
    is_regular = H5Sis_regular_hyperslab(sid);
    VERIFY(is_regular, FALSE, "H5Sis_regular_hyperslab");

    /* Query regular hyperslab selection info (should fail) */
    H5E_BEGIN_TRY { ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block); }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Sget_regular_hyperslab");

    /* 'XOR' in the point again, to remove it, which should make it regular again */
    t_start[0] = 0;
    t_start[1] = 0;
    t_start[2] = 0;
    t_count[0] = 1;
    t_count[1] = 1;
    t_count[2] = 1;
    ret        = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, t_start, NULL, t_count, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Query if 'hyperslab' selection is regular hyperslab (should be TRUE) */
    is_regular = H5Sis_regular_hyperslab(sid);
    VERIFY(is_regular, TRUE, "H5Sis_regular_hyperslab");

    /* Retrieve the hyperslab parameters */
    ret = H5Sget_regular_hyperslab(sid, q_start, q_stride, q_count, q_block);
    CHECK(ret, FAIL, "H5Sget_regular_hyperslab");

    /* Verify the hyperslab parameters */
    for (u = 0; u < SPACE13_RANK; u++) {
        if (start[u] != q_start[u])
            ERROR("H5Sget_regular_hyperslab, start");
        if (stride[u] != q_stride[u])
            ERROR("H5Sget_regular_hyperslab, stride");
        if (count[u] != q_count[u])
            ERROR("H5Sget_regular_hyperslab, count");
        if (block[u] != q_block[u])
            ERROR("H5Sget_regular_hyperslab, block");
    } /* end for */

    /* Close the dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_hyper_regular() */

/****************************************************************
**
**  test_hyper_unlim(): Tests unlimited hyperslab selections
**
****************************************************************/
static void
test_hyper_unlim_check(hid_t sid, hsize_t *dims, hssize_t enpoints, hssize_t enblocks, hsize_t *eblock1,
                       hsize_t *eblock2)
{
    hid_t        lim_sid;
    hsize_t      start[3];
    H5S_sel_type sel_type;
    hssize_t     npoints;
    hssize_t     nblocks;
    hsize_t      blocklist[12];
    herr_t       ret;

    HDassert(enblocks <= 2);

    /* Copy sid to lim_sid */
    lim_sid = H5Scopy(sid);
    CHECK(lim_sid, FAIL, "H5Scopy");

    /* "And" lim_sid with dims to create limited selection */
    HDmemset(start, 0, sizeof(start));
    ret = H5Sselect_hyperslab(lim_sid, H5S_SELECT_AND, start, NULL, dims, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Check number of elements */
    npoints = H5Sget_select_npoints(lim_sid);
    CHECK(npoints, FAIL, "H5Sget_select_npoints");
    VERIFY(npoints, enpoints, "H5Sget_select_npoints");

    /* Get selection type */
    sel_type = H5Sget_select_type(lim_sid);
    CHECK(sel_type, H5S_SEL_ERROR, "H5Sget_select_type");

    /* Only examine blocks for hyperslab selection */
    if (sel_type == H5S_SEL_HYPERSLABS) {
        /* Get number of blocks */
        nblocks = H5Sget_select_hyper_nblocks(lim_sid);
        CHECK(nblocks, FAIL, "H5Sget_select_hyper_nblocks");
        VERIFY(nblocks, enblocks, "H5Sget_select_hyper_nblocks");

        if (nblocks > 0) {
            /* Get blocklist */
            ret = H5Sget_select_hyper_blocklist(lim_sid, (hsize_t)0, (hsize_t)nblocks, blocklist);
            CHECK(ret, FAIL, "H5Sget_select_hyper_blocklist");

            /* Verify blocklist */
            if (nblocks == (hssize_t)1) {
                if (HDmemcmp(blocklist, eblock1, 6 * sizeof(eblock1[0])))
                    ERROR("H5Sget_select_hyper_blocklist");
            } /* end if */
            else {
                HDassert(nblocks == (hssize_t)2);
                if (HDmemcmp(blocklist, eblock1, 6 * sizeof(eblock1[0]))) {
                    if (HDmemcmp(blocklist, eblock2, 6 * sizeof(eblock2[0])))
                        ERROR("H5Sget_select_hyper_blocklist");
                    if (HDmemcmp(&blocklist[6], eblock1, 6 * sizeof(eblock1[0])))
                        ERROR("H5Sget_select_hyper_blocklist");
                } /* end if */
                else if (HDmemcmp(&blocklist[6], eblock2, 6 * sizeof(eblock2[0])))
                    ERROR("H5Sget_select_hyper_blocklist");
            } /* end else */
        }     /* end if */
    }         /* end if */
    else if (sel_type != H5S_SEL_NONE)
        ERROR("H5Sget_select_type");

    /* Close the limited dataspace */
    ret = H5Sclose(lim_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* end test_hyper_unlim_check() */

static void
test_hyper_unlim(void)
{
    hid_t    sid;
    hsize_t  dims[3]   = {4, 4, 7};
    hsize_t  mdims[3]  = {4, H5S_UNLIMITED, 7};
    hsize_t  start[3]  = {1, 2, 1};
    hsize_t  stride[3] = {1, 1, 3};
    hsize_t  count[3]  = {1, 1, 2};
    hsize_t  block[3]  = {2, H5S_UNLIMITED, 2};
    hsize_t  start2[3];
    hsize_t  count2[3];
    hsize_t  eblock1[6] = {1, 2, 1, 2, 3, 2};
    hsize_t  eblock2[6] = {1, 2, 4, 2, 3, 5};
    hssize_t offset[3]  = {0, -1, 0};
    hssize_t ssize_out;
    herr_t   ret;

    /* Output message about test being performed */
    MESSAGE(6, ("Testing unlimited hyperslab selections\n"));

    /* Create dataspace */
    sid = H5Screate_simple(3, dims, mdims);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Select unlimited hyperslab */
    ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Check with unlimited dimension clipped to 4 */
    test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 3 */
    dims[1]    = 3;
    eblock1[4] = 2;
    eblock2[4] = 2;
    test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)2, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 2 */
    dims[1] = 2;
    test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 1 */
    dims[1] = 1;
    test_hyper_unlim_check(sid, dims, (hssize_t)0, (hssize_t)0, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 7 */
    dims[1]    = 7;
    eblock1[4] = 6;
    eblock2[4] = 6;
    test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2);

    /* Set offset of selection */
    ret = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Check with adjusted offset (should not affect result) */
    test_hyper_unlim_check(sid, dims, (hssize_t)40, (hssize_t)2, eblock1, eblock2);

    /* Reset offset of selection */
    offset[1] = (hssize_t)0;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /*
     * Now try with multiple blocks in unlimited dimension
     */
    stride[1] = 3;
    stride[2] = 1;
    count[1]  = H5S_UNLIMITED;
    count[2]  = 1;
    block[1]  = 2;

    /* Select unlimited hyperslab */
    ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Check with new selection */
    eblock1[1] = 2;
    eblock1[4] = 3;
    eblock2[1] = 5;
    eblock2[2] = 1;
    eblock2[4] = 6;
    eblock2[5] = 2;
    test_hyper_unlim_check(sid, dims, (hssize_t)16, (hssize_t)2, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 3 */
    dims[1]    = 3;
    eblock1[4] = 2;
    test_hyper_unlim_check(sid, dims, (hssize_t)4, (hssize_t)1, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 4 */
    dims[1]    = 4;
    eblock1[4] = 3;
    test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 5 */
    dims[1]    = 5;
    eblock1[4] = 3;
    test_hyper_unlim_check(sid, dims, (hssize_t)8, (hssize_t)1, eblock1, eblock2);

    /* Check with unlimited dimension clipped to 6 */
    dims[1]    = 6;
    eblock1[4] = 3;
    eblock2[4] = 5;
    test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);

    /* Set offset of selection */
    offset[1] = (hssize_t)-1;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Check with adjusted offset (should not affect result) */
    test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);

    /* Set offset of selection */
    offset[1] = (hssize_t)3;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /* Check with adjusted offset (should not affect result) */
    test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);

    /* Reset offset of selection */
    offset[1] = (hssize_t)0;
    ret       = H5Soffset_simple(sid, offset);
    CHECK(ret, FAIL, "H5Soffset_simple");

    /*
     * Now try invalid operations
     */
    H5E_BEGIN_TRY
    {
        /* Try multiple unlimited dimensions */
        start[0]  = 1;
        start[1]  = 2;
        start[2]  = 1;
        stride[0] = 1;
        stride[1] = 3;
        stride[2] = 3;
        count[0]  = 1;
        count[1]  = H5S_UNLIMITED;
        count[2]  = H5S_UNLIMITED;
        block[0]  = 2;
        block[1]  = 2;
        block[2]  = 2;
        ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");

        /* Try unlimited count and block */
        count[2] = 2;
        block[1] = H5S_UNLIMITED;
        ret      = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
    }
    H5E_END_TRY

    /* Try operations with two unlimited selections */
    block[1] = 2;
    ret      = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    H5E_BEGIN_TRY
    {
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, count, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, NULL, count, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, count, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, count, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, NULL, count, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
    }
    H5E_END_TRY

    /* Try invalid combination operations */
    H5E_BEGIN_TRY
    {
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, NULL, block, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, NULL, block, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, NULL, block, NULL);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
    }
    H5E_END_TRY
    ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, NULL, block, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    H5E_BEGIN_TRY
    {
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_XOR, start, stride, count, block);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start, stride, count, block);
        VERIFY(ret, FAIL, "H5Sselect_hyperslab");
    }
    H5E_END_TRY

    /*
     * Now test valid combination operations
     */
    /* unlim AND non-unlim */
    count[0] = 1;
    count[1] = H5S_UNLIMITED;
    count[2] = 2;
    block[0] = 2;
    block[1] = 2;
    block[2] = 2;
    ret      = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    start2[0] = 2;
    start2[1] = 2;
    start2[2] = 0;
    count2[0] = 5;
    count2[1] = 4;
    count2[2] = 2;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start2, NULL, count2, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    eblock1[0] = 2;
    eblock1[3] = 2;
    eblock1[1] = 2;
    eblock1[4] = 3;
    eblock1[2] = 1;
    eblock1[5] = 1;
    eblock2[0] = 2;
    eblock2[3] = 2;
    eblock2[1] = 5;
    eblock2[4] = 5;
    eblock2[2] = 1;
    eblock2[5] = 1;
    dims[0]    = 50;
    dims[1]    = 50;
    dims[2]    = 50;
    test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2);

    /* unlim NOTA non-unlim */
    count[0] = 1;
    count[1] = H5S_UNLIMITED;
    count[2] = 2;
    block[0] = 2;
    block[1] = 2;
    block[2] = 2;
    ret      = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    start2[0] = 1;
    start2[1] = 5;
    start2[2] = 2;
    count2[0] = 2;
    count2[1] = 2;
    count2[2] = 6;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_NOTA, start2, NULL, count2, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    eblock1[0] = 1;
    eblock1[3] = 2;
    eblock1[1] = 5;
    eblock1[4] = 6;
    eblock1[2] = 3;
    eblock1[5] = 3;
    eblock2[0] = 1;
    eblock2[3] = 2;
    eblock2[1] = 5;
    eblock2[4] = 6;
    eblock2[2] = 6;
    eblock2[5] = 7;
    dims[0]    = 50;
    dims[1]    = 50;
    dims[2]    = 50;
    test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);

    /* non-unlim AND unlim */
    start2[0] = 2;
    start2[1] = 2;
    start2[2] = 0;
    count2[0] = 5;
    count2[1] = 4;
    count2[2] = 2;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    count[0] = 1;
    count[1] = H5S_UNLIMITED;
    count[2] = 2;
    block[0] = 2;
    block[1] = 2;
    block[2] = 2;
    ret      = H5Sselect_hyperslab(sid, H5S_SELECT_AND, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    eblock1[0] = 2;
    eblock1[3] = 2;
    eblock1[1] = 2;
    eblock1[4] = 3;
    eblock1[2] = 1;
    eblock1[5] = 1;
    eblock2[0] = 2;
    eblock2[3] = 2;
    eblock2[1] = 5;
    eblock2[4] = 5;
    eblock2[2] = 1;
    eblock2[5] = 1;
    dims[0]    = 50;
    dims[1]    = 50;
    dims[2]    = 50;
    test_hyper_unlim_check(sid, dims, (hssize_t)3, (hssize_t)2, eblock1, eblock2);

    /* non-unlim NOTB unlim */
    start2[0] = 1;
    start2[1] = 5;
    start2[2] = 2;
    count2[0] = 2;
    count2[1] = 2;
    count2[2] = 6;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start2, NULL, count2, NULL);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    count[0] = 1;
    count[1] = H5S_UNLIMITED;
    count[2] = 2;
    block[0] = 2;
    block[1] = 2;
    block[2] = 2;
    ret      = H5Sselect_hyperslab(sid, H5S_SELECT_NOTB, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    eblock1[0] = 1;
    eblock1[3] = 2;
    eblock1[1] = 5;
    eblock1[4] = 6;
    eblock1[2] = 3;
    eblock1[5] = 3;
    eblock2[0] = 1;
    eblock2[3] = 2;
    eblock2[1] = 5;
    eblock2[4] = 6;
    eblock2[2] = 6;
    eblock2[5] = 7;
    dims[0]    = 50;
    dims[1]    = 50;
    dims[2]    = 50;
    test_hyper_unlim_check(sid, dims, (hssize_t)12, (hssize_t)2, eblock1, eblock2);

    /* Test H5Sget_select_npoints() */
    ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");
    ssize_out = H5Sget_select_npoints(sid);
    VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_npoints");

    /* Test H5Sget_select_hyper_nblocks() */
    ssize_out = H5Sget_select_hyper_nblocks(sid);
    VERIFY(ssize_out, (hssize_t)H5S_UNLIMITED, "H5Sget_select_hyper_nblocks");

    /* Test H5Sget_select_bounds() */
    ret = H5Sget_select_bounds(sid, start2, count2);
    CHECK(ret, FAIL, "H5Sget_select_bounds");
    VERIFY(start2[0], start[0], "H5Sget_select_bounds");
    VERIFY(start2[1], start[1], "H5Sget_select_bounds");
    VERIFY(start2[2], start[2], "H5Sget_select_bounds");
    VERIFY(count2[0], (long)(start[0] + (stride[0] * (count[0] - 1)) + block[0] - 1), "H5Sget_select_bounds");
    VERIFY(count2[1], H5S_UNLIMITED, "H5Sget_select_bounds");
    VERIFY(count2[2], (long)(start[2] + (stride[2] * (count[2] - 1)) + block[2] - 1), "H5Sget_select_bounds");

    /* Close the dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* end test_hyper_unlim() */

/****************************************************************
**
**  test_internal_consistency(): Tests selections on dataspace, then
**  verify that internal states of data structures of selections are
**  consistent.
**
****************************************************************/
static void
test_internal_consistency(void)
{
    hid_t all_sid;              /* Dataspace ID    with "all" selection */
    hid_t none_sid;             /* Dataspace ID    with "none" selection */
    hid_t single_pt_sid;        /* Dataspace ID    with single point selection */
    hid_t mult_pt_sid;          /* Dataspace ID    with multiple point selection */
    hid_t single_hyper_sid;     /* Dataspace ID    with single block hyperslab selection */
    hid_t single_hyper_all_sid; /* Dataspace ID    with single block hyperslab
                                 * selection that is the entire dataspace
                                 */
    hid_t single_hyper_pt_sid;  /* Dataspace ID    with single block hyperslab
                                 * selection that is the same as the single
                                 * point selection
                                 */
    hid_t   regular_hyper_sid;  /* Dataspace ID    with regular hyperslab selection */
    hid_t   irreg_hyper_sid;    /* Dataspace ID    with irregular hyperslab selection */
    hid_t   none_hyper_sid;     /* Dataspace ID    with "no hyperslabs" selection */
    hid_t   scalar_all_sid;     /* ID for scalar dataspace with "all" selection */
    hid_t   scalar_none_sid;    /* ID for scalar dataspace with "none" selection */
    hid_t   tmp_sid;            /* Temporary dataspace ID */
    hsize_t dims[] = {SPACE9_DIM1, SPACE9_DIM2};
    hsize_t coord1[1][SPACE2_RANK];           /* Coordinates for single point selection */
    hsize_t coord2[SPACE9_DIM2][SPACE9_RANK]; /* Coordinates for multiple point selection */
    hsize_t start[SPACE9_RANK];               /* Hyperslab start */
    hsize_t stride[SPACE9_RANK];              /* Hyperslab stride */
    hsize_t count[SPACE9_RANK];               /* Hyperslab block count */
    hsize_t block[SPACE9_RANK];               /* Hyperslab block size */
    htri_t  check;                            /* Shape comparison return value */
    herr_t  ret;                              /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Consistency of Internal States\n"));
    HDassert(SPACE9_DIM2 >= POINT1_NPOINTS);

    /* Create dataspace for "all" selection */
    all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(all_sid, FAIL, "H5Screate_simple");

    /* Select entire extent for dataspace */
    ret = H5Sselect_all(all_sid);
    CHECK(ret, FAIL, "H5Sselect_all");

    /* Create dataspace for "none" selection */
    none_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(none_sid, FAIL, "H5Screate_simple");

    /* Un-Select entire extent for dataspace */
    ret = H5Sselect_none(none_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Create dataspace for single point selection */
    single_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_pt_sid, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for multiple point selection */
    coord1[0][0] = 2;
    coord1[0][1] = 2;
    ret          = H5Sselect_elements(single_pt_sid, H5S_SELECT_SET, (size_t)1, (const hsize_t *)coord1);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create dataspace for multiple point selection */
    mult_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(mult_pt_sid, FAIL, "H5Screate_simple");

    /* Select sequence of ten points for multiple point selection */
    coord2[0][0] = 2;
    coord2[0][1] = 2;
    coord2[1][0] = 7;
    coord2[1][1] = 2;
    coord2[2][0] = 1;
    coord2[2][1] = 4;
    coord2[3][0] = 2;
    coord2[3][1] = 6;
    coord2[4][0] = 0;
    coord2[4][1] = 8;
    coord2[5][0] = 3;
    coord2[5][1] = 2;
    coord2[6][0] = 4;
    coord2[6][1] = 4;
    coord2[7][0] = 1;
    coord2[7][1] = 0;
    coord2[8][0] = 5;
    coord2[8][1] = 1;
    coord2[9][0] = 9;
    coord2[9][1] = 3;
    ret = H5Sselect_elements(mult_pt_sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord2);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Create dataspace for single hyperslab selection */
    single_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_hyper_sid, FAIL, "H5Screate_simple");

    /* Select 10x10 hyperslab for single hyperslab selection  */
    start[0]  = 1;
    start[1]  = 1;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = (SPACE9_DIM1 - 2);
    block[1]  = (SPACE9_DIM2 - 2);
    ret       = H5Sselect_hyperslab(single_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for single hyperslab selection with entire extent selected */
    single_hyper_all_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_hyper_all_sid, FAIL, "H5Screate_simple");

    /* Select entire extent for hyperslab selection */
    start[0]  = 0;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = SPACE9_DIM1;
    block[1]  = SPACE9_DIM2;
    ret       = H5Sselect_hyperslab(single_hyper_all_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for single hyperslab selection with single point selected */
    single_hyper_pt_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(single_hyper_pt_sid, FAIL, "H5Screate_simple");

    /* Select entire extent for hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(single_hyper_pt_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for regular hyperslab selection */
    regular_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(regular_hyper_sid, FAIL, "H5Screate_simple");

    /* Select regular, strided hyperslab selection */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 2;
    stride[1] = 2;
    count[0]  = 5;
    count[1]  = 2;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(regular_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for irregular hyperslab selection */
    irreg_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(irreg_hyper_sid, FAIL, "H5Screate_simple");

    /* Create irregular hyperslab selection by OR'ing two blocks together */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0]  = 4;
    start[1]  = 4;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 3;
    block[1]  = 3;
    ret       = H5Sselect_hyperslab(irreg_hyper_sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create dataspace for "no" hyperslab selection */
    none_hyper_sid = H5Screate_simple(SPACE9_RANK, dims, NULL);
    CHECK(none_hyper_sid, FAIL, "H5Screate_simple");

    /* Create "no" hyperslab selection by XOR'ing same blocks together */
    start[0]  = 2;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 1;
    count[1]  = 1;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    ret = H5Sselect_hyperslab(none_hyper_sid, H5S_SELECT_XOR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Create scalar dataspace for "all" selection */
    scalar_all_sid = H5Screate(H5S_SCALAR);
    CHECK(scalar_all_sid, FAIL, "H5Screate");

    /* Create scalar dataspace for "none" selection */
    scalar_none_sid = H5Screate(H5S_SCALAR);
    CHECK(scalar_none_sid, FAIL, "H5Screate");

    /* Un-Select entire extent for dataspace */
    ret = H5Sselect_none(scalar_none_sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Test all the selections created */

    /* Test the copy of itself */
    tmp_sid = H5Scopy(all_sid);
    CHECK(tmp_sid, FAIL, "H5Scopy");

    check = H5S__internal_consistency_test(tmp_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    ret = H5Sclose(tmp_sid);
    CHECK(ret, FAIL, "H5Sclose");

    /* Test "none" selection */
    check = H5S__internal_consistency_test(none_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test single point selection */
    check = H5S__internal_consistency_test(single_pt_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test multiple point selection */
    check = H5S__internal_consistency_test(mult_pt_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test "plain" single hyperslab selection */
    check = H5S__internal_consistency_test(single_hyper_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test "all" single hyperslab selection */
    check = H5S__internal_consistency_test(single_hyper_all_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test "single point" single hyperslab selection */
    check = H5S__internal_consistency_test(single_hyper_pt_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test regular, strided hyperslab selection */
    check = H5S__internal_consistency_test(regular_hyper_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test irregular hyperslab selection */
    check = H5S__internal_consistency_test(irreg_hyper_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test "no" hyperslab selection */
    check = H5S__internal_consistency_test(none_hyper_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test scalar "all" hyperslab selection */
    check = H5S__internal_consistency_test(scalar_all_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Test scalar "none" hyperslab selection */
    check = H5S__internal_consistency_test(scalar_none_sid);
    VERIFY(check, TRUE, "H5S__internal_consistency_test");

    /* Close dataspaces */
    ret = H5Sclose(all_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(none_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(mult_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_all_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(single_hyper_pt_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(regular_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(irreg_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(none_hyper_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(scalar_all_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(scalar_none_sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_internal_consistency() */

/****************************************************************
**
**  test_irreg_io(): Tests unusual selections on datasets, to stress the
**  new hyperslab code.
**
****************************************************************/
static void
test_irreg_io(void)
{
    hid_t         fid;                    /* File ID */
    hid_t         did;                    /* Dataset ID */
    hid_t         dcpl_id;                /* Dataset creation property list ID */
    hid_t         sid;                    /* File dataspace ID */
    hid_t         mem_sid;                /* Memory dataspace ID */
    hsize_t       dims[]       = {6, 12}; /* Dataspace dimensions */
    hsize_t       chunk_dims[] = {2, 2};  /* Chunk dimensions */
    hsize_t       mem_dims[]   = {32};    /* Memory dataspace dimensions */
    hsize_t       start[2];               /* Hyperslab start */
    hsize_t       stride[2];              /* Hyperslab stride */
    hsize_t       count[2];               /* Hyperslab block count */
    hsize_t       block[2];               /* Hyperslab block size */
    unsigned char wbuf[72];               /* Write buffer */
    unsigned char rbuf[32];               /* Read buffer */
    unsigned      u;                      /* Local index variable */
    herr_t        ret;                    /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Irregular Hyperslab I/O\n"));

    /* Create file */
    fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid, FAIL, "H5Fcreate");

    /* Create dataspace for dataset */
    sid = H5Screate_simple(2, dims, NULL);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Set chunk dimensions for dataset */
    dcpl_id = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(dcpl_id, FAIL, "H5Pcreate");
    ret = H5Pset_chunk(dcpl_id, 2, chunk_dims);
    CHECK(ret, FAIL, "H5Pset_chunk");

    /* Create a dataset */
    did = H5Dcreate2(fid, SPACE1_NAME, H5T_NATIVE_UCHAR, sid, H5P_DEFAULT, dcpl_id, H5P_DEFAULT);
    CHECK(did, FAIL, "H5Dcreate2");

    /* Initialize the write buffer */
    for (u = 0; u < 72; u++)
        wbuf[u] = (unsigned char)u;

    /* Write entire dataset to disk */
    ret = H5Dwrite(did, H5T_NATIVE_UCHAR, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf);
    CHECK(ret, FAIL, "H5Dwrite");

    /* Close the DCPL */
    ret = H5Pclose(dcpl_id);
    CHECK(ret, FAIL, "H5Pclose");

    /* Create dataspace for memory selection */
    mem_sid = H5Screate_simple(1, mem_dims, NULL);
    CHECK(mem_sid, FAIL, "H5Screate_simple");

    /* Select 'L'-shaped region within dataset */
    start[0]  = 0;
    start[1]  = 10;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 4;
    count[1]  = 2;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    start[0]  = 4;
    start[1]  = 0;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 2;
    count[1]  = 12;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Reset the buffer */
    HDmemset(rbuf, 0, sizeof(rbuf));

    /* Read selection from disk */
    ret = H5Dread(did, H5T_NATIVE_UCHAR, mem_sid, sid, H5P_DEFAULT, rbuf);
    CHECK(ret, FAIL, "H5Dread");

    /* Close everything */
    ret = H5Sclose(mem_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Dclose(did);
    CHECK(ret, FAIL, "H5Dclose");
    ret = H5Fclose(fid);
    CHECK(ret, FAIL, "H5Fclose");
} /* test_irreg_io() */

/****************************************************************
**
**  test_sel_iter(): Test selection iterator API routines.
**
****************************************************************/
static void
test_sel_iter(void)
{
    hid_t        sid;                       /* Dataspace ID */
    hid_t        iter_id;                   /* Dataspace selection iterator ID */
    hsize_t      dims1[] = {6, 12};         /* 2-D Dataspace dimensions */
    hsize_t      coord1[POINT1_NPOINTS][2]; /* Coordinates for point selection */
    hsize_t      start[2];                  /* Hyperslab start */
    hsize_t      stride[2];                 /* Hyperslab stride */
    hsize_t      count[2];                  /* Hyperslab block count */
    hsize_t      block[2];                  /* Hyperslab block size */
    size_t       nseq;                      /* # of sequences retrieved */
    size_t       nbytes;                    /* # of bytes retrieved */
    hsize_t      off[SEL_ITER_MAX_SEQ];     /* Offsets for retrieved sequences */
    size_t       len[SEL_ITER_MAX_SEQ];     /* Lengths for retrieved sequences */
    H5S_sel_type sel_type;                  /* Selection type */
    unsigned     sel_share;                 /* Whether to share selection with dataspace */
    unsigned     sel_iter_flags;            /* Flags for selection iterator creation */
    herr_t       ret;                       /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Dataspace Selection Iterators\n"));

    /* Create dataspace */
    sid = H5Screate_simple(2, dims1, NULL);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Try creating selection iterator object with bad parameters */
    H5E_BEGIN_TRY
    { /* Bad dataspace ID */
        iter_id = H5Ssel_iter_create(H5I_INVALID_HID, (size_t)1, (unsigned)0);
    }
    H5E_END_TRY;
    VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
    H5E_BEGIN_TRY
    { /* Bad element size */
        iter_id = H5Ssel_iter_create(sid, (size_t)0, (unsigned)0);
    }
    H5E_END_TRY;
    VERIFY(iter_id, FAIL, "H5Ssel_iter_create");
    H5E_BEGIN_TRY
    { /* Bad flag(s) */
        iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)0xffff);
    }
    H5E_END_TRY;
    VERIFY(iter_id, FAIL, "H5Ssel_iter_create");

    /* Try closing selection iterator, with bad parameters */
    H5E_BEGIN_TRY
    { /* Invalid ID */
        ret = H5Ssel_iter_close(H5I_INVALID_HID);
    }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Ssel_iter_close");
    H5E_BEGIN_TRY
    { /* Not a selection iterator ID */
        ret = H5Ssel_iter_close(sid);
    }
    H5E_END_TRY;
    VERIFY(ret, FAIL, "H5Ssel_iter_close");

    /* Try with no selection sharing, and with sharing */
    for (sel_share = 0; sel_share < 2; sel_share++) {
        /* Set selection iterator sharing flags */
        if (sel_share)
            sel_iter_flags = H5S_SEL_ITER_SHARE_WITH_DATASPACE;
        else
            sel_iter_flags = 0;

        /* Create selection iterator object */
        iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
        CHECK(iter_id, FAIL, "H5Ssel_iter_create");

        /* Close selection iterator */
        ret = H5Ssel_iter_close(iter_id);
        CHECK(ret, FAIL, "H5Ssel_iter_close");

        /* Try closing selection iterator twice */
        H5E_BEGIN_TRY
        { /* Invalid ID */
            ret = H5Ssel_iter_close(iter_id);
        }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_close");

        /* Create selection iterator object */
        iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
        CHECK(iter_id, FAIL, "H5Ssel_iter_create");

        /* Try resetting selection iterator with bad parameters */
        H5E_BEGIN_TRY { ret = H5Ssel_iter_reset(H5I_INVALID_HID, sid); }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_reset");
        H5E_BEGIN_TRY { ret = H5Ssel_iter_reset(iter_id, H5I_INVALID_HID); }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_reset");

        /* Try retrieving sequences, with bad parameters */
        H5E_BEGIN_TRY
        { /* Invalid ID */
            ret = H5Ssel_iter_get_seq_list(H5I_INVALID_HID, (size_t)1, (size_t)1, &nseq, &nbytes, off, len);
        }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
        H5E_BEGIN_TRY
        { /* Invalid nseq pointer */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, NULL, &nbytes, off, len);
        }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
        H5E_BEGIN_TRY
        { /* Invalid nbytes pointer */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, NULL, off, len);
        }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
        H5E_BEGIN_TRY
        { /* Invalid offset array */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, NULL, len);
        }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");
        H5E_BEGIN_TRY
        { /* Invalid length array */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)1, &nseq, &nbytes, off, NULL);
        }
        H5E_END_TRY;
        VERIFY(ret, FAIL, "H5Ssel_iter_get_seq_list");

        /* Close selection iterator */
        ret = H5Ssel_iter_close(iter_id);
        CHECK(ret, FAIL, "H5Ssel_iter_close");

        /* Test iterators on various basic selection types */
        for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) {
            switch (sel_type) {
                case H5S_SEL_NONE: /* "None" selection */
                    ret = H5Sselect_none(sid);
                    CHECK(ret, FAIL, "H5Sselect_none");
                    break;

                case H5S_SEL_POINTS: /* Point selection */
                    /* Select sequence of ten points */
                    coord1[0][0] = 0;
                    coord1[0][1] = 9;
                    coord1[1][0] = 1;
                    coord1[1][1] = 2;
                    coord1[2][0] = 2;
                    coord1[2][1] = 4;
                    coord1[3][0] = 0;
                    coord1[3][1] = 6;
                    coord1[4][0] = 1;
                    coord1[4][1] = 8;
                    coord1[5][0] = 2;
                    coord1[5][1] = 10;
                    coord1[6][0] = 0;
                    coord1[6][1] = 11;
                    coord1[7][0] = 1;
                    coord1[7][1] = 4;
                    coord1[8][0] = 2;
                    coord1[8][1] = 1;
                    coord1[9][0] = 0;
                    coord1[9][1] = 3;
                    ret          = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS,
                                             (const hsize_t *)coord1);
                    CHECK(ret, FAIL, "H5Sselect_elements");
                    break;

                case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
                    /* Select regular hyperslab */
                    start[0]  = 3;
                    start[1]  = 0;
                    stride[0] = 2;
                    stride[1] = 2;
                    count[0]  = 2;
                    count[1]  = 5;
                    block[0]  = 1;
                    block[1]  = 1;
                    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
                    CHECK(ret, FAIL, "H5Sselect_hyperslab");
                    break;

                case H5S_SEL_ALL: /* "All" selection */
                    ret = H5Sselect_all(sid);
                    CHECK(ret, FAIL, "H5Sselect_all");
                    break;

                case H5S_SEL_ERROR:
                case H5S_SEL_N:
                default:
                    HDassert(0 && "Can't occur");
                    break;
            } /* end switch */

            /* Create selection iterator object */
            iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
            CHECK(iter_id, FAIL, "H5Ssel_iter_create");

            /* Try retrieving no sequences, with 0 for maxseq & maxbytes */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
            VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
            VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
            VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
            VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");

            /* Try retrieving all sequences */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                           &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");

            /* Check results from retrieving sequence list */
            switch (sel_type) {
                case H5S_SEL_NONE: /* "None" selection */
                    VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_POINTS: /* Point selection */
                    VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
                    VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_ALL: /* "All" selection */
                    VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_ERROR:
                case H5S_SEL_N:
                default:
                    HDassert(0 && "Can't occur");
                    break;
            } /* end switch */

            /* Close selection iterator */
            ret = H5Ssel_iter_close(iter_id);
            CHECK(ret, FAIL, "H5Ssel_iter_close");
        } /* end for */

        /* Create selection iterator object */
        iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
        CHECK(iter_id, FAIL, "H5Ssel_iter_create");

        /* Test iterators on various basic selection types using
         * H5Ssel_iter_reset instead of creating multiple iterators */
        for (sel_type = H5S_SEL_NONE; sel_type <= H5S_SEL_ALL; sel_type = (H5S_sel_type)(sel_type + 1)) {
            switch (sel_type) {
                case H5S_SEL_NONE: /* "None" selection */
                    ret = H5Sselect_none(sid);
                    CHECK(ret, FAIL, "H5Sselect_none");
                    break;

                case H5S_SEL_POINTS: /* Point selection */
                    /* Select sequence of ten points */
                    coord1[0][0] = 0;
                    coord1[0][1] = 9;
                    coord1[1][0] = 1;
                    coord1[1][1] = 2;
                    coord1[2][0] = 2;
                    coord1[2][1] = 4;
                    coord1[3][0] = 0;
                    coord1[3][1] = 6;
                    coord1[4][0] = 1;
                    coord1[4][1] = 8;
                    coord1[5][0] = 2;
                    coord1[5][1] = 10;
                    coord1[6][0] = 0;
                    coord1[6][1] = 11;
                    coord1[7][0] = 1;
                    coord1[7][1] = 4;
                    coord1[8][0] = 2;
                    coord1[8][1] = 1;
                    coord1[9][0] = 0;
                    coord1[9][1] = 3;
                    ret          = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS,
                                             (const hsize_t *)coord1);
                    CHECK(ret, FAIL, "H5Sselect_elements");
                    break;

                case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
                    /* Select regular hyperslab */
                    start[0]  = 3;
                    start[1]  = 0;
                    stride[0] = 2;
                    stride[1] = 2;
                    count[0]  = 2;
                    count[1]  = 5;
                    block[0]  = 1;
                    block[1]  = 1;
                    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
                    CHECK(ret, FAIL, "H5Sselect_hyperslab");
                    break;

                case H5S_SEL_ALL: /* "All" selection */
                    ret = H5Sselect_all(sid);
                    CHECK(ret, FAIL, "H5Sselect_all");
                    break;

                case H5S_SEL_ERROR:
                case H5S_SEL_N:
                default:
                    HDassert(0 && "Can't occur");
                    break;
            } /* end switch */

            /* Try retrieving no sequences, with 0 for maxseq & maxbytes */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)0, (size_t)1, &nseq, &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
            VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
            VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)1, (size_t)0, &nseq, &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
            VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
            VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");

            /* Reset iterator */
            ret = H5Ssel_iter_reset(iter_id, sid);
            CHECK(ret, FAIL, "H5Ssel_iter_reset");

            /* Try retrieving all sequences */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                           &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");

            /* Check results from retrieving sequence list */
            switch (sel_type) {
                case H5S_SEL_NONE: /* "None" selection */
                    VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_POINTS: /* Point selection */
                    VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
                    VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_ALL: /* "All" selection */
                    VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_ERROR:
                case H5S_SEL_N:
                default:
                    HDassert(0 && "Can't occur");
                    break;
            } /* end switch */

            /* Reset iterator */
            ret = H5Ssel_iter_reset(iter_id, sid);
            CHECK(ret, FAIL, "H5Ssel_iter_reset");

            /* Try retrieving all sequences again */
            ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                           &nbytes, off, len);
            CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");

            /* Check results from retrieving sequence list */
            switch (sel_type) {
                case H5S_SEL_NONE: /* "None" selection */
                    VERIFY(nseq, 0, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 0, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_POINTS: /* Point selection */
                    VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_HYPERSLABS: /* Hyperslab selection */
                    VERIFY(nseq, 10, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_ALL: /* "All" selection */
                    VERIFY(nseq, 1, "H5Ssel_iter_get_seq_list");
                    VERIFY(nbytes, 72, "H5Ssel_iter_get_seq_list");
                    break;

                case H5S_SEL_ERROR:
                case H5S_SEL_N:
                default:
                    HDassert(0 && "Can't occur");
                    break;
            } /* end switch */

            /* Reset iterator */
            ret = H5Ssel_iter_reset(iter_id, sid);
            CHECK(ret, FAIL, "H5Ssel_iter_reset");
        } /* end for */

        /* Close selection iterator */
        ret = H5Ssel_iter_close(iter_id);
        CHECK(ret, FAIL, "H5Ssel_iter_close");

        /* Point selection which will merge into smaller # of sequences */
        coord1[0][0] = 0;
        coord1[0][1] = 9;
        coord1[1][0] = 0;
        coord1[1][1] = 10;
        coord1[2][0] = 0;
        coord1[2][1] = 11;
        coord1[3][0] = 0;
        coord1[3][1] = 6;
        coord1[4][0] = 1;
        coord1[4][1] = 8;
        coord1[5][0] = 2;
        coord1[5][1] = 10;
        coord1[6][0] = 0;
        coord1[6][1] = 11;
        coord1[7][0] = 1;
        coord1[7][1] = 4;
        coord1[8][0] = 1;
        coord1[8][1] = 5;
        coord1[9][0] = 1;
        coord1[9][1] = 6;
        ret = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)POINT1_NPOINTS, (const hsize_t *)coord1);
        CHECK(ret, FAIL, "H5Sselect_elements");

        /* Create selection iterator object */
        iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
        CHECK(iter_id, FAIL, "H5Ssel_iter_create");

        /* Try retrieving all sequences */
        ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                       &nbytes, off, len);
        CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
        VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
        VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");

        /* Reset iterator */
        ret = H5Ssel_iter_reset(iter_id, sid);
        CHECK(ret, FAIL, "H5Ssel_iter_reset");

        /* Try retrieving all sequences again */
        ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                       &nbytes, off, len);
        CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
        VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
        VERIFY(nbytes, 10, "H5Ssel_iter_get_seq_list");

        /* Close selection iterator */
        ret = H5Ssel_iter_close(iter_id);
        CHECK(ret, FAIL, "H5Ssel_iter_close");

        /* Select irregular hyperslab, which will merge into smaller # of sequences  */
        start[0]  = 3;
        start[1]  = 0;
        stride[0] = 2;
        stride[1] = 2;
        count[0]  = 2;
        count[1]  = 5;
        block[0]  = 1;
        block[1]  = 1;
        ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");

        start[0]  = 3;
        start[1]  = 3;
        stride[0] = 2;
        stride[1] = 2;
        count[0]  = 2;
        count[1]  = 5;
        block[0]  = 1;
        block[1]  = 1;
        ret       = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");

        /* Create selection iterator object */
        iter_id = H5Ssel_iter_create(sid, (size_t)1, (unsigned)sel_iter_flags);
        CHECK(iter_id, FAIL, "H5Ssel_iter_create");

        /* Try retrieving all sequences */
        ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                       &nbytes, off, len);
        CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
        VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
        VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list");

        /* Reset iterator */
        ret = H5Ssel_iter_reset(iter_id, sid);
        CHECK(ret, FAIL, "H5Ssel_iter_reset");

        /* Try retrieving all sequences again */
        ret = H5Ssel_iter_get_seq_list(iter_id, (size_t)SEL_ITER_MAX_SEQ, (size_t)(1024 * 1024), &nseq,
                                       &nbytes, off, len);
        CHECK(ret, FAIL, "H5Ssel_iter_get_seq_list");
        VERIFY(nseq, 6, "H5Ssel_iter_get_seq_list");
        VERIFY(nbytes, 20, "H5Ssel_iter_get_seq_list");

        /* Close selection iterator */
        ret = H5Ssel_iter_close(iter_id);
        CHECK(ret, FAIL, "H5Ssel_iter_close");

    } /* end for */

    /* Close dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_sel_iter() */

/****************************************************************
**
**  test_select_intersect_block(): Test selections on dataspace,
**    verify that "intersect block" routine is working correctly.
**
****************************************************************/
static void
test_select_intersect_block(void)
{
    hid_t   sid;                     /* Dataspace ID */
    hsize_t dims1[]       = {6, 12}; /* 2-D Dataspace dimensions */
    hsize_t block_start[] = {1, 3};  /* Start offset for block */
    hsize_t block_end[]   = {2, 5};  /* End offset for block */
    hsize_t block_end2[]  = {0, 5};  /* Bad end offset for block */
    hsize_t block_end3[]  = {2, 2};  /* Another bad end offset for block */
    hsize_t block_end4[]  = {1, 3};  /* End offset that makes a single element block */
    hsize_t coord[10][2];            /* Coordinates for point selection */
    hsize_t start[2];                /* Starting location of hyperslab */
    hsize_t stride[2];               /* Stride of hyperslab */
    hsize_t count[2];                /* Element count of hyperslab */
    hsize_t block[2];                /* Block size of hyperslab */
    htri_t  status;                  /* Intersection status */
    herr_t  ret;                     /* Generic return value    */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Dataspace Selection Block Intersection\n"));

    /* Create dataspace */
    sid = H5Screate_simple(2, dims1, NULL);
    CHECK(sid, FAIL, "H5Screate_simple");

    /* Try intersection calls with bad parameters */
    H5E_BEGIN_TRY
    { /* Bad dataspace ID */
        status = H5Sselect_intersect_block(H5I_INVALID_HID, block_start, block_end);
    }
    H5E_END_TRY;
    VERIFY(status, FAIL, "H5Sselect_intersect_block");
    H5E_BEGIN_TRY
    { /* Bad start pointer */
        status = H5Sselect_intersect_block(sid, NULL, block_end);
    }
    H5E_END_TRY;
    VERIFY(status, FAIL, "H5Sselect_intersect_block");
    H5E_BEGIN_TRY
    { /* Bad end pointer */
        status = H5Sselect_intersect_block(sid, block_start, NULL);
    }
    H5E_END_TRY;
    VERIFY(status, FAIL, "H5Sselect_intersect_block");
    H5E_BEGIN_TRY
    { /* Invalid block */
        status = H5Sselect_intersect_block(sid, block_start, block_end2);
    }
    H5E_END_TRY;
    VERIFY(status, FAIL, "H5Sselect_intersect_block");
    H5E_BEGIN_TRY
    { /* Another invalid block */
        status = H5Sselect_intersect_block(sid, block_start, block_end3);
    }
    H5E_END_TRY;
    VERIFY(status, FAIL, "H5Sselect_intersect_block");

    /* Set selection to 'none' */
    ret = H5Sselect_none(sid);
    CHECK(ret, FAIL, "H5Sselect_none");

    /* Test block intersection with 'none' selection (always false) */
    status = H5Sselect_intersect_block(sid, block_start, block_end);
    VERIFY(status, FALSE, "H5Sselect_intersect_block");

    /* Set selection to 'all' */
    ret = H5Sselect_all(sid);
    CHECK(ret, FAIL, "H5Sselect_all");

    /* Test block intersection with 'all' selection (always true) */
    status = H5Sselect_intersect_block(sid, block_start, block_end);
    VERIFY(status, TRUE, "H5Sselect_intersect_block");

    /* Select sequence of ten points */
    coord[0][0] = 0;
    coord[0][1] = 10;
    coord[1][0] = 1;
    coord[1][1] = 2;
    coord[2][0] = 2;
    coord[2][1] = 4;
    coord[3][0] = 0;
    coord[3][1] = 6;
    coord[4][0] = 1;
    coord[4][1] = 8;
    coord[5][0] = 2;
    coord[5][1] = 11;
    coord[6][0] = 0;
    coord[6][1] = 4;
    coord[7][0] = 1;
    coord[7][1] = 0;
    coord[8][0] = 2;
    coord[8][1] = 1;
    coord[9][0] = 0;
    coord[9][1] = 3;
    ret         = H5Sselect_elements(sid, H5S_SELECT_SET, (size_t)10, (const hsize_t *)coord);
    CHECK(ret, FAIL, "H5Sselect_elements");

    /* Test block intersection with 'point' selection */
    status = H5Sselect_intersect_block(sid, block_start, block_end);
    VERIFY(status, TRUE, "H5Sselect_intersect_block");
    status = H5Sselect_intersect_block(sid, block_start, block_end4);
    VERIFY(status, FALSE, "H5Sselect_intersect_block");

    /* Select single 4x6 hyperslab block at (2,1) */
    start[0]  = 2;
    start[1]  = 1;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 4;
    count[1]  = 6;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Test block intersection with single 'hyperslab' selection */
    status = H5Sselect_intersect_block(sid, block_start, block_end);
    VERIFY(status, TRUE, "H5Sselect_intersect_block");
    status = H5Sselect_intersect_block(sid, block_start, block_end4);
    VERIFY(status, FALSE, "H5Sselect_intersect_block");

    /* 'OR' another hyperslab block in, making an irregular hyperslab selection */
    start[0]  = 3;
    start[1]  = 2;
    stride[0] = 1;
    stride[1] = 1;
    count[0]  = 4;
    count[1]  = 6;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_OR, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Test block intersection with 'hyperslab' selection */
    status = H5Sselect_intersect_block(sid, block_start, block_end);
    VERIFY(status, TRUE, "H5Sselect_intersect_block");
    status = H5Sselect_intersect_block(sid, block_start, block_end4);
    VERIFY(status, FALSE, "H5Sselect_intersect_block");

    /* Select regular, strided hyperslab selection */
    start[0]  = 2;
    start[1]  = 1;
    stride[0] = 2;
    stride[1] = 2;
    count[0]  = 2;
    count[1]  = 4;
    block[0]  = 1;
    block[1]  = 1;
    ret       = H5Sselect_hyperslab(sid, H5S_SELECT_SET, start, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Test block intersection with single 'hyperslab' selection */
    status = H5Sselect_intersect_block(sid, block_start, block_end);
    VERIFY(status, TRUE, "H5Sselect_intersect_block");
    status = H5Sselect_intersect_block(sid, block_start, block_end4);
    VERIFY(status, FALSE, "H5Sselect_intersect_block");

    /* Close dataspace */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
} /* test_select_intersect_block() */

/****************************************************************
**
**  test_hyper_io_1d():
**  Test to verify all the selected 10th element in the 1-d file
**  dataspace is read correctly into the 1-d contiguous memory space.
**  This is modeled after the test scenario described in HDFFV-10585
**  that demonstrated the hyperslab slowness.  A fix to speed up
**  performance is in place to handle the special case for 1-d disjoint
**  file dataspace into 1-d single block contiguous memory space.
**
****************************************************************/
static void
test_hyper_io_1d(void)
{
    hid_t        fid;                           /* File ID */
    hid_t        did;                           /* Dataset ID */
    hid_t        sid, mid;                      /* Dataspace IDs */
    hid_t        dcpl;                          /* Dataset creation property list ID */
    hsize_t      dims[1], maxdims[1], dimsm[1]; /* Dataset dimension sizes */
    hsize_t      chunk_dims[1];                 /* Chunk dimension size */
    hsize_t      offset[1];                     /* Starting offset for hyperslab */
    hsize_t      stride[1];                     /* Distance between blocks in the hyperslab selection */
    hsize_t      count[1];                      /* # of blocks in the the hyperslab selection */
    hsize_t      block[1];                      /* Size of block in the hyperslab selection */
    unsigned int wdata[CHUNKSZ];                /* Data to be written */
    unsigned int rdata[NUM_ELEMENTS / 10];      /* Data to be read */
    herr_t       ret;                           /* Generic return value	*/
    unsigned     i;                             /* Local index variable */

    /* Output message about test being performed */
    MESSAGE(6, ("Testing Hyperslab I/O for 1-d single block memory space\n"));

    for (i = 0; i < CHUNKSZ; i++)
        wdata[i] = i;

    /* Create the file file */
    fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
    CHECK(fid, H5I_INVALID_HID, "H5Fcreate");

    /* Create file dataspace */
    dims[0]    = CHUNKSZ;
    maxdims[0] = H5S_UNLIMITED;
    sid        = H5Screate_simple(RANK, dims, maxdims);
    CHECK(sid, H5I_INVALID_HID, "H5Pcreate");

    /* Create memory dataspace */
    dimsm[0] = CHUNKSZ;
    mid      = H5Screate_simple(RANK, dimsm, NULL);
    CHECK(mid, H5I_INVALID_HID, "H5Pcreate");

    /* Set up to create a chunked dataset */
    dcpl = H5Pcreate(H5P_DATASET_CREATE);
    CHECK(dcpl, H5I_INVALID_HID, "H5Pcreate");

    chunk_dims[0] = CHUNKSZ;
    ret           = H5Pset_chunk(dcpl, RANK, chunk_dims);
    CHECK(ret, FAIL, "H5Pset_chunk");

    /* Create a chunked dataset */
    did = H5Dcreate2(fid, DNAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, dcpl, H5P_DEFAULT);
    CHECK(did, H5I_INVALID_HID, "H5Dcreate2");

    /* Set up hyperslab selection for file dataspace */
    offset[0] = 0;
    stride[0] = 1;
    count[0]  = 1;
    block[0]  = CHUNKSZ;

    /* Write to each chunk in the dataset */
    for (i = 0; i < NUMCHUNKS; i++) {
        /* Set the hyperslab selection */
        ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block);
        CHECK(ret, FAIL, "H5Sselect_hyperslab");

        /* Write to the dataset */
        ret = H5Dwrite(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, wdata);
        CHECK(ret, FAIL, "H5Dwrite");

        /* Extend the dataset's dataspace */
        if (i < (NUMCHUNKS - 1)) {
            offset[0] = offset[0] + CHUNKSZ;
            dims[0]   = dims[0] + CHUNKSZ;
            ret       = H5Dset_extent(did, dims);
            CHECK(ret, FAIL, "H5Dset_extent");

            /* Get the dataset's current dataspace */
            sid = H5Dget_space(did);
            CHECK(sid, H5I_INVALID_HID, "H5Dget_space");
        }
    }

    /* Closing */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(mid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Dclose(did);
    CHECK(ret, FAIL, "H5Dclose");
    ret = H5Pclose(dcpl);
    CHECK(ret, FAIL, "H5Pclose");
    ret = H5Fclose(fid);
    CHECK(ret, FAIL, "H5Fclose");

    /* Open the file */
    fid = H5Fopen(FILENAME, H5F_ACC_RDONLY, H5P_DEFAULT);
    CHECK(fid, H5I_INVALID_HID, "H5Fopen");

    /* Open the dataset */
    did = H5Dopen2(fid, DNAME, H5P_DEFAULT);
    CHECK(did, H5I_INVALID_HID, "H5Dopen");

    /* Set up to read every 10th element in file dataspace */
    offset[0] = 1;
    stride[0] = 10;
    count[0]  = NUM_ELEMENTS / 10;
    block[0]  = 1;

    /* Get the dataset's dataspace */
    sid = H5Dget_space(did);
    CHECK(sid, H5I_INVALID_HID, "H5Dget_space");
    ret = H5Sselect_hyperslab(sid, H5S_SELECT_SET, offset, stride, count, block);
    CHECK(ret, FAIL, "H5Sselect_hyperslab");

    /* Set up contiguous memory dataspace for the selected elements */
    dimsm[0] = count[0];
    mid      = H5Screate_simple(RANK, dimsm, NULL);
    CHECK(mid, H5I_INVALID_HID, "H5Screate_simple");

    /* Read all the selected 10th elements in the dataset into "rdata" */
    ret = H5Dread(did, H5T_NATIVE_INT, mid, sid, H5P_DEFAULT, rdata);
    CHECK(ret, FAIL, "H5Dread");

    /* Verify data read is correct */
    for (i = 0; i < 6; i += 2) {
        VERIFY(rdata[i], 1, "H5Dread\n");
        VERIFY(rdata[i + 1], 11, "H5Dread\n");
    }

    /* Closing */
    ret = H5Sclose(mid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Dclose(did);
    CHECK(ret, FAIL, "H5Dclose");
    ret = H5Fclose(fid);
    CHECK(ret, FAIL, "H5Fclose");

} /* test_hyper_io_1d() */

/****************************************************************
**
**  test_h5s_set_extent_none:
**  Test to verify the behavior of dataspace code when passed
**  a dataspace modified by H5Sset_extent_none().
**
****************************************************************/
static void
test_h5s_set_extent_none(void)
{
    hid_t       sid          = H5I_INVALID_HID;
    hid_t       dst_sid      = H5I_INVALID_HID;
    hid_t       null_sid     = H5I_INVALID_HID;
    int         rank         = 1;
    hsize_t     current_dims = 123;
    H5S_class_t cls;
    int         out_rank;
    hsize_t     out_dims;
    hsize_t     out_maxdims;
    hssize_t    out_points;
    htri_t      equal;
    herr_t      ret;

    /* Specific values here don't matter as we're just going to reset */
    sid = H5Screate_simple(rank, &current_dims, NULL);
    CHECK(sid, H5I_INVALID_HID, "H5Screate_simple");

    /* Dataspace class will be H5S_NULL after this.
     * In versions prior to 1.10.7 / 1.12.1 this would produce a
     * dataspace with the internal H5S_NO_CLASS class.
     */
    ret = H5Sset_extent_none(sid);
    CHECK(ret, FAIL, "H5Sset_extent_none");
    cls = H5Sget_simple_extent_type(sid);
    VERIFY(cls, H5S_NULL, "H5Sget_simple_extent_type");

    /* Extent getters should generate normal results and not segfault.
     */
    out_rank = H5Sget_simple_extent_dims(sid, &out_dims, &out_maxdims);
    VERIFY(out_rank, 0, "H5Sget_simple_extent_dims");
    out_rank = H5Sget_simple_extent_ndims(sid);
    VERIFY(out_rank, 0, "H5Sget_simple_extent_ndims");
    out_points = H5Sget_simple_extent_npoints(sid);
    VERIFY(out_points, 0, "H5Sget_simple_extent_npoints");

    /* Check that copying the new (non-)extent works.
     */
    dst_sid = H5Screate_simple(rank, &current_dims, NULL);
    CHECK(dst_sid, H5I_INVALID_HID, "H5Screate_simple");
    ret = H5Sextent_copy(dst_sid, sid);
    CHECK(ret, FAIL, "H5Sextent_copy");

    /* Check that H5Sset_extent_none() produces the same extent as
     * H5Screate(H5S_NULL).
     */
    null_sid = H5Screate(H5S_NULL);
    CHECK(null_sid, H5I_INVALID_HID, "H5Screate");
    equal = H5Sextent_equal(sid, null_sid);
    VERIFY(equal, TRUE, "H5Sextent_equal");

    /* Close */
    ret = H5Sclose(sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(dst_sid);
    CHECK(ret, FAIL, "H5Sclose");
    ret = H5Sclose(null_sid);
    CHECK(ret, FAIL, "H5Sclose");

} /* test_h5s_set_extent_none() */

/****************************************************************
**
**  test_select(): Main H5S selection testing routine.
**
****************************************************************/
void
test_select(void)
{
    hid_t    plist_id;                     /* Property list for reading random hyperslabs */
    hid_t    fapl;                         /* Property list accessing the file */
    int      mdc_nelmts;                   /* Metadata number of elements */
    size_t   rdcc_nelmts;                  /* Raw data number of elements */
    size_t   rdcc_nbytes;                  /* Raw data number of bytes */
    double   rdcc_w0;                      /* Raw data write percentage */
    hssize_t offset[SPACE7_RANK] = {1, 1}; /* Offset for testing selection offsets */
    herr_t   ret;                          /* Generic return value        */

    /* Output message about test being performed */
    MESSAGE(5, ("Testing Selections\n"));

    /* Create a dataset transfer property list */
    plist_id = H5Pcreate(H5P_DATASET_XFER);
    CHECK(plist_id, FAIL, "H5Pcreate");

    /* test I/O with a very small buffer for reads */
    ret = H5Pset_buffer(plist_id, (size_t)59, NULL, NULL);
    CHECK(ret, FAIL, "H5Pset_buffer");

    /* These next tests use the same file */
    test_select_hyper(H5P_DEFAULT); /* Test basic H5S hyperslab selection code */
    test_select_hyper(plist_id);    /* Test basic H5S hyperslab selection code */
    test_select_point(H5P_DEFAULT); /* Test basic H5S element selection code, also tests appending to existing
                                       element selections */
    test_select_point(plist_id);    /* Test basic H5S element selection code, also tests appending to existing
                                       element selections */
    test_select_all(H5P_DEFAULT);   /* Test basic all & none selection code */
    test_select_all(plist_id);      /* Test basic all & none selection code */
    test_select_all_hyper(H5P_DEFAULT); /* Test basic all & none selection code */
    test_select_all_hyper(plist_id);    /* Test basic all & none selection code */

    /* These next tests use the same file */
    test_select_combo();                   /* Test combined hyperslab & element selection code */
    test_select_hyper_stride(H5P_DEFAULT); /* Test strided hyperslab selection code */
    test_select_hyper_stride(plist_id);    /* Test strided hyperslab selection code */
    test_select_hyper_contig(H5T_STD_U16LE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */
    test_select_hyper_contig(H5T_STD_U16LE, plist_id);    /* Test contiguous hyperslab selection code */
    test_select_hyper_contig(H5T_STD_U16BE, H5P_DEFAULT); /* Test contiguous hyperslab selection code */
    test_select_hyper_contig(H5T_STD_U16BE, plist_id);    /* Test contiguous hyperslab selection code */
    test_select_hyper_contig2(H5T_STD_U16LE,
                              H5P_DEFAULT);             /* Test more contiguous hyperslab selection cases */
    test_select_hyper_contig2(H5T_STD_U16LE, plist_id); /* Test more contiguous hyperslab selection cases */
    test_select_hyper_contig2(H5T_STD_U16BE,
                              H5P_DEFAULT);             /* Test more contiguous hyperslab selection cases */
    test_select_hyper_contig2(H5T_STD_U16BE, plist_id); /* Test more contiguous hyperslab selection cases */
    test_select_hyper_contig3(H5T_STD_U16LE,
                              H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
    test_select_hyper_contig3(H5T_STD_U16LE,
                              plist_id); /* Test yet more contiguous hyperslab selection cases */
    test_select_hyper_contig3(H5T_STD_U16BE,
                              H5P_DEFAULT); /* Test yet more contiguous hyperslab selection cases */
    test_select_hyper_contig3(H5T_STD_U16BE,
                              plist_id); /* Test yet more contiguous hyperslab selection cases */
    test_select_hyper_contig_dr(H5T_STD_U16LE, H5P_DEFAULT);
    test_select_hyper_contig_dr(H5T_STD_U16LE, plist_id);
    test_select_hyper_contig_dr(H5T_STD_U16BE, H5P_DEFAULT);
    test_select_hyper_contig_dr(H5T_STD_U16BE, plist_id);
    test_select_hyper_checker_board_dr(H5T_STD_U16LE, H5P_DEFAULT);
    test_select_hyper_checker_board_dr(H5T_STD_U16LE, plist_id);
    test_select_hyper_checker_board_dr(H5T_STD_U16BE, H5P_DEFAULT);
    test_select_hyper_checker_board_dr(H5T_STD_U16BE, plist_id);
    test_select_hyper_copy();    /* Test hyperslab selection copying code */
    test_select_point_copy();    /* Test point selection copying code */
    test_select_hyper_offset();  /* Test selection offset code with hyperslabs */
    test_select_hyper_offset2(); /* Test more selection offset code with hyperslabs */
    test_select_point_offset();  /* Test selection offset code with elements */
    test_select_hyper_union();   /* Test hyperslab union code */

    /* Fancy hyperslab API tests */
    test_select_hyper_union_stagger();     /* Test hyperslab union code for staggered slabs */
    test_select_hyper_union_3d();          /* Test hyperslab union code for 3-D dataset */
    test_select_hyper_valid_combination(); /* Test different input combinations */

    test_select_hyper_and_2d();  /* Test hyperslab intersection (AND) code for 2-D dataset */
    test_select_hyper_xor_2d();  /* Test hyperslab XOR code for 2-D dataset */
    test_select_hyper_notb_2d(); /* Test hyperslab NOTB code for 2-D dataset */
    test_select_hyper_nota_2d(); /* Test hyperslab NOTA code for 2-D dataset */

    /* test the random hyperslab I/O with the default property list for reading */
    test_select_hyper_union_random_5d(H5P_DEFAULT); /* Test hyperslab union code for random 5-D hyperslabs */

    /* test random hyperslab I/O with a small buffer for reads */
    test_select_hyper_union_random_5d(plist_id); /* Test hyperslab union code for random 5-D hyperslabs */

    /* Create a dataset transfer property list */
    fapl = H5Pcreate(H5P_FILE_ACCESS);
    CHECK(fapl, FAIL, "H5Pcreate");

    /* Get the default file access properties for caching */
    ret = H5Pget_cache(fapl, &mdc_nelmts, &rdcc_nelmts, &rdcc_nbytes, &rdcc_w0);
    CHECK(ret, FAIL, "H5Pget_cache");

    /* Increase the size of the raw data cache */
    rdcc_nbytes = 10 * 1024 * 1024;

    /* Set the file access properties for caching */
    ret = H5Pset_cache(fapl, mdc_nelmts, rdcc_nelmts, rdcc_nbytes, rdcc_w0);
    CHECK(ret, FAIL, "H5Pset_cache");

    /* Test reading in a large hyperslab with a chunked dataset */
    test_select_hyper_chunk(fapl, H5P_DEFAULT);

    /* Test reading in a large hyperslab with a chunked dataset a small amount at a time */
    test_select_hyper_chunk(fapl, plist_id);

    /* Close file access property list */
    ret = H5Pclose(fapl);
    CHECK(ret, FAIL, "H5Pclose");

    /* Close dataset transfer property list */
    ret = H5Pclose(plist_id);
    CHECK(ret, FAIL, "H5Pclose");

    /* More tests for checking validity of selections */
    test_select_valid();

    /* Tests for combining "all" and "none" selections with hyperslabs */
    test_select_combine();

    /* Test filling selections */
    /* (Also tests iterating through each selection */
    test_select_fill_all();
    test_select_fill_point(NULL);
    test_select_fill_point(offset);
    test_select_fill_hyper_simple(NULL);
    test_select_fill_hyper_simple(offset);
    test_select_fill_hyper_regular(NULL);
    test_select_fill_hyper_regular(offset);
    test_select_fill_hyper_irregular(NULL);
    test_select_fill_hyper_irregular(offset);

    /* Test 0-sized selections */
    test_select_none();

    /* Test selections on scalar dataspaces */
    test_scalar_select();
    test_scalar_select2();
    test_scalar_select3();

    /* Test "same shape" routine */
    test_shape_same();

    /* Test "same shape" routine for selections of different rank */
    test_shape_same_dr();

    /* Test "re-build" routine */
    test_space_rebuild();

    /* Test "update diminfo" routine */
    test_space_update_diminfo();

    /* Test point selections in chunked datasets */
    test_select_point_chunk();

    /* Test scalar dataspaces in chunked datasets */
    test_select_scalar_chunk();

    /* Test using selection offset on hyperslab in chunked dataset */
    test_select_hyper_chunk_offset();
    test_select_hyper_chunk_offset2();

    /* Test selection bounds with & without offsets */
    test_select_bounds();

    /* Test 'regular' hyperslab query routines */
    test_hyper_regular();

    /* Test unlimited hyperslab selections */
    test_hyper_unlim();

    /* Test the consistency of internal data structures of selection */
    test_internal_consistency();

    /* Test irregular selection I/O */
    test_irreg_io();

    /* Test selection iterators */
    test_sel_iter();

    /* Test selection intersection with block  */
    test_select_intersect_block();

    /* Test reading of 1-d disjoint file space to 1-d single block memory space */
    test_hyper_io_1d();

    /* Test H5Sset_extent_none() functionality after we updated it to set
     * the class to H5S_NULL instead of H5S_NO_CLASS.
     */
    test_h5s_set_extent_none();

} /* test_select() */

/*-------------------------------------------------------------------------
 * Function:    cleanup_select
 *
 * Purpose:    Cleanup temporary test files
 *
 * Return:    none
 *
 * Programmer:    Albert Cheng
 *              July 2, 1998
 *
 *-------------------------------------------------------------------------
 */
void
cleanup_select(void)
{
    HDremove(FILENAME);
}