/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Copyright by The HDF Group. * * All rights reserved. * * * * This file is part of HDF5. The full HDF5 copyright notice, including * * terms governing use, modification, and redistribution, is contained in * * the COPYING file, which can be found at the root of the source code * * distribution tree, or in https://www.hdfgroup.org/licenses. * * If you do not have access to either file, you may request a copy from * * help@hdfgroup.org. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* * Purpose: Tests the basic features of Virtual File Drivers */ #include "h5test.h" #define KB 1024U #define FAMILY_NUMBER 4 #define FAMILY_SIZE (1 * KB) #define FAMILY_SIZE2 (5 * KB) #define MULTI_SIZE 128 #define SPLITTER_SIZE 8 /* dimensions of a dataset */ #define CORE_INCREMENT (4 * KB) #define CORE_PAGE_SIZE (1024 * KB) #define CORE_DSET_NAME "core dset" #define CORE_DSET_DIM1 1024 #define CORE_DSET_DIM2 32 #define DSET1_NAME "dset1" #define DSET1_DIM1 1024 #define DSET1_DIM2 32 #define DSET3_NAME "dset3" /* Macros for Direct VFD */ #ifdef H5_HAVE_DIRECT #define MBOUNDARY 512 #define FBSIZE (4 * KB) #define CBSIZE (8 * KB) #define THRESHOLD 1 #define DSET2_NAME "dset2" #define DSET2_DIM 4 #endif /* H5_HAVE_DIRECT */ static const char *FILENAME[] = {"sec2_file", /*0*/ "core_file", /*1*/ "family_file", /*2*/ "new_family_v16", /*3*/ "multi_file", /*4*/ "direct_file", /*5*/ "log_file", /*6*/ "stdio_file", /*7*/ "windows_file", /*8*/ "new_multi_file_v16", /*9*/ "ro_s3_file", /*10*/ "splitter_rw_file", /*11*/ "splitter_wo_file", /*12*/ "splitter.log", /*13*/ "ctl_file", /*14*/ "ctl_splitter_wo_file", /*15*/ NULL}; #define LOG_FILENAME "log_vfd_out.log" #define COMPAT_BASENAME "family_v16" #define MULTI_COMPAT_BASENAME "multi_file_v16" #define SPLITTER_DATASET_NAME "dataset" /* Macro: HEXPRINT() * Helper macro to pretty-print hexadecimal output of a buffer of known size. * Each line has the address of the first printed byte, and four columns of * four-byte data. */ static int __k; #define HEXPRINT(size, buf) \ do { \ for (__k = 0; __k < (size); __k++) { \ if (__k % 16 == 0) { \ printf("\n%04x", __k); \ } \ printf((__k % 4 == 0) ? " %02X" : " %02X", (unsigned char)(buf)[__k]); \ } \ } while (0) /* end #define HEXPRINT() */ /* Macro SET_SIZE() * * Helper macro to track the sizes of entries in a vector * I/O call when stepping through the vector incrementally. * Assuming that bool_size_fixed is initialized to false * before the scan, this macro will detect the sizes array * optimization for the case in which all remaining entries * are of the same size, and set size_value accordingly. * * JRM -- 3/11/21 */ #define SET_SIZE(bool_size_fixed, sizes_array, size_value, idx) \ do { \ if (!(bool_size_fixed)) { \ \ if ((sizes_array)[idx] == 0) { \ \ assert((idx) > 0); \ (bool_size_fixed) = true; \ } \ else { \ \ (size_value) = (sizes_array)[idx]; \ } \ } \ } while (false) /* Macro SET_TYPE() * * Helper macro to track the types of entries in a vector * I/O call when stepping through the vector incrementally. * Assuming that bool_type_fixed is initialized to false * before the scan, this macro will detect the types array * optimization for the case in which all remaining entries * are of the same type, and set type_value accordingly. * * JRM -- 3/11/21 */ #define SET_TYPE(bool_type_fixed, types_array, type_value, idx) \ do { \ if (!(bool_type_fixed)) { \ \ if ((types_array)[idx] == H5FD_MEM_NOLIST) { \ \ assert((idx) > 0); \ (bool_type_fixed) = true; \ } \ else { \ \ (type_value) = (types_array)[idx]; \ } \ } \ } while (false) /* Helper structure to pass around dataset information. */ struct splitter_dataset_def { void *buf; /* contents of dataset */ const char *dset_name; /* dataset name, always added to root group */ hid_t mem_type_id; /* datatype */ const hsize_t *dims; /* dimensions */ int n_dims; /* rank */ }; /* Op code type enum for ctl callback test */ typedef enum { CTL_OPC_KNOWN_PASSTHROUGH, /* op code known to passthrough VFD */ CTL_OPC_KNOWN_TERMINAL, /* op code known to terminal VFD */ CTL_OPC_UNKNOWN /* unknown op code */ } ctl_test_opc_type; static int splitter_prepare_file_paths(H5FD_splitter_vfd_config_t *vfd_config, char *filename_rw_out); static int splitter_create_single_file_at(const char *filename, hid_t fapl_id, const struct splitter_dataset_def *data); static int splitter_compare_expected_data(hid_t file_id, const struct splitter_dataset_def *data); static int run_splitter_test(const struct splitter_dataset_def *data, bool ignore_wo_errors, bool provide_logfile_path, const hid_t sub_fapl_ids[2]); static int splitter_RO_test(const struct splitter_dataset_def *data, hid_t child_fapl_id); static int splitter_tentative_open_test(hid_t child_fapl_id); static int file_exists(const char *filename, hid_t fapl_id); static herr_t run_ctl_test(uint64_t op_code, uint64_t flags, ctl_test_opc_type opc_type, hid_t fapl_id); static H5FD_t *H5FD__ctl_test_vfd_open(const char *name, unsigned flags, hid_t fapl_id, haddr_t maxaddr); static herr_t H5FD__ctl_test_vfd_close(H5FD_t *_file); static haddr_t H5FD__ctl_test_vfd_get_eoa(const H5FD_t *_file, H5FD_mem_t type); static herr_t H5FD__ctl_test_vfd_set_eoa(H5FD_t *_file, H5FD_mem_t type, haddr_t addr); static haddr_t H5FD__ctl_test_vfd_get_eof(const H5FD_t *_file, H5FD_mem_t type); static herr_t H5FD__ctl_test_vfd_read(H5FD_t *_file, H5FD_mem_t type, hid_t dxpl_id, haddr_t addr, size_t size, void *buf); static herr_t H5FD__ctl_test_vfd_write(H5FD_t *_file, H5FD_mem_t type, hid_t dxpl_id, haddr_t addr, size_t size, const void *buf); static herr_t H5FD__ctl_test_vfd_ctl(H5FD_t *_file, uint64_t op_code, uint64_t flags, const void *input, void **output); /*------------------------------------------------------------------------- * Function: test_sec2 * * Purpose: Tests the file handle interface for SEC2 driver * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_sec2(void) { hid_t fid = H5I_INVALID_HID; /* file ID */ hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */ hid_t fapl_id_out = H5I_INVALID_HID; /* from H5Fget_access_plist */ hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; /* filename */ void *os_file_handle = NULL; /* OS file handle */ hsize_t file_size; /* file size */ TESTING("SEC2 file driver"); /* Set property list and file name for SEC2 driver. */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_sec2(fapl_id) < 0) TEST_ERROR; h5_fixname(FILENAME[0], fapl_id, filename, sizeof(filename)); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl_id)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_POSIX_COMPAT_HANDLE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_SUPPORTS_SWMR_IO)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_POSIX_COMPAT_HANDLE | H5FD_FEAT_SUPPORTS_SWMR_IO | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) TEST_ERROR; /* Retrieve the access property list... */ if ((fapl_id_out = H5Fget_access_plist(fid)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_SEC2 != H5Pget_driver(fapl_id_out)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(fapl_id_out) < 0) TEST_ERROR; /* Check that we can get an operating-system-specific handle from * the library. */ if (H5Fget_vfd_handle(fid, H5P_DEFAULT, &os_file_handle) < 0) TEST_ERROR; if (os_file_handle == NULL) FAIL_PUTS_ERROR("NULL os-specific vfd/file handle was returned from H5Fget_vfd_handle"); /* There is no guarantee the size of metadata in file is constant. * Just try to check if it's reasonable. * * Currently it should be around 2 KB. */ if (H5Fget_filesize(fid, &file_size) < 0) TEST_ERROR; if (file_size < 1 * KB || file_size > 4 * KB) FAIL_PUTS_ERROR("suspicious file size obtained from H5Fget_filesize"); /* Close and delete the file */ if (H5Fclose(fid) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[0], fapl_id); /* Close the fapl */ if (H5Pclose(fapl_id) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl_id); H5Pclose(fapl_id_out); H5Fclose(fid); } H5E_END_TRY return -1; } /* end test_sec2() */ /*------------------------------------------------------------------------- * Function: test_core * * Purpose: Tests the file handle interface for CORE driver * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_core(void) { hid_t fid = H5I_INVALID_HID; /* file ID */ hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */ hid_t fapl_id_out = H5I_INVALID_HID; /* from H5Fget_access_plist */ hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ hid_t did = H5I_INVALID_HID; /* dataset ID */ hid_t sid = H5I_INVALID_HID; /* dataspace ID */ char filename[1024]; /* filename */ void *os_file_handle = NULL; /* OS file handle */ hsize_t file_size; /* file size */ size_t increment; /* core VFD increment */ bool backing_store; /* use backing store? */ bool use_write_tracking; /* write tracking flag */ size_t write_tracking_page_size; /* write tracking page size */ int *data_w = NULL; /* data written to the dataset */ int *data_r = NULL; /* data read from the dataset */ int val; /* data value */ int *pw = NULL, *pr = NULL; /* pointers for iterating over data arrays (write & read) */ hsize_t dims[2]; /* dataspace dimensions */ int i, j; /* iterators */ htri_t status; /* return value from H5Lexists */ TESTING("CORE file driver"); /* Get a file access property list and fix up the file name */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; h5_fixname(FILENAME[1], fapl_id, filename, sizeof(filename)); /************************************************************************ * Check that the backing store flag works by creating a file, close * it, and ensure that the file does not exist. ************************************************************************/ /* Make sure it's not present at the start of the test */ if (HDaccess(filename, F_OK) != -1) if (HDremove(filename) < 0) FAIL_PUTS_ERROR("unable to remove backing store file"); /* Create and close file w/ backing store off */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, false) < 0) TEST_ERROR; /* Check that the VFD feature flags are correct. * Note that the H5FDdriver_query() API call does not require a file * so backing-store related flags will not be returned here. */ if ((driver_id = H5Pget_driver(fapl_id)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ALLOW_FILE_IMAGE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_CAN_USE_FILE_IMAGE_CALLBACKS)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_ALLOW_FILE_IMAGE | H5FD_FEAT_CAN_USE_FILE_IMAGE_CALLBACKS)) TEST_ERROR; if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) TEST_ERROR; if (H5Fclose(fid) < 0) TEST_ERROR; /* Check for the backing store file */ if (HDaccess(filename, F_OK) != -1) FAIL_PUTS_ERROR("file created when backing store set to false"); /************************************************************************ * Check basic core VFD operation and properties. This is done with the * backing store on so a file will be created for later use. ************************************************************************/ /* Turn the backing store on */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0) TEST_ERROR; /* Check that write tracking is off by default and that the default * page size is non-zero. */ if (H5Pget_core_write_tracking(fapl_id, &use_write_tracking, &write_tracking_page_size) < 0) TEST_ERROR; if (false != use_write_tracking) FAIL_PUTS_ERROR("write tracking should be off by default"); if (0 == write_tracking_page_size) FAIL_PUTS_ERROR("write tracking page size should never be zero"); /* Set core VFD properties */ if (H5Pset_core_write_tracking(fapl_id, true, CORE_PAGE_SIZE) < 0) TEST_ERROR; /* Create the file */ if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) TEST_ERROR; /* Retrieve the access property list */ if ((fapl_id_out = H5Fget_access_plist(fid)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_CORE != H5Pget_driver(fapl_id_out)) TEST_ERROR; /* Get the basic VFD properties from the fapl and ensure that * they are correct. */ if (H5Pget_fapl_core(fapl_id_out, &increment, &backing_store) < 0) TEST_ERROR; if (increment != (size_t)CORE_INCREMENT) FAIL_PUTS_ERROR("incorrect increment from file fapl"); if (backing_store != true) FAIL_PUTS_ERROR("incorrect backing store flag from file fapl"); /* Check that the backing store write tracking info was saved */ /* TODO: There is a bug where H5Fget_access_plist() does not return * the write tracking properties. Until this bug is fixed, just * test the main fapl_id. */ if (H5Pget_core_write_tracking(fapl_id, &use_write_tracking, &write_tracking_page_size) < 0) TEST_ERROR; if (true != use_write_tracking) FAIL_PUTS_ERROR("write tracking flag incorrect in fapl obtained from H5Fget_access_plist"); if (CORE_PAGE_SIZE != write_tracking_page_size) FAIL_PUTS_ERROR("write tracking page size incorrect in fapl obtained from H5Fget_access_plist"); /* Close the property list */ if (H5Pclose(fapl_id_out) < 0) TEST_ERROR; /* Check that we can get an operating-system-specific handle from * the library. */ if (H5Fget_vfd_handle(fid, H5P_DEFAULT, &os_file_handle) < 0) TEST_ERROR; if (os_file_handle == NULL) FAIL_PUTS_ERROR("NULL os-specific vfd/file handle was returned from H5Fget_vfd_handle"); /* There is no guarantee the size of metadata in file is constant. * Just try to check if it's reasonable. * * TODO: Needs justification of why is this is a reasonable size. */ if (H5Fget_filesize(fid, &file_size) < 0) TEST_ERROR; if (file_size < 2 * KB || file_size > 6 * KB) FAIL_PUTS_ERROR("suspicious file size obtained from H5Fget_filesize"); /* Close the file */ if (H5Fclose(fid) < 0) TEST_ERROR; /************************************************************************ * Make changes to the file with the backing store flag OFF to ensure * that they ARE NOT propagated. ************************************************************************/ /* Open the file with backing store off for read and write. * Changes won't be saved in file. */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, false) < 0) TEST_ERROR; if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0) TEST_ERROR; /* Allocate memory for data set. */ if (NULL == (data_w = (int *)malloc(DSET1_DIM1 * DSET1_DIM2 * sizeof(int)))) FAIL_PUTS_ERROR("unable to allocate memory for input array"); if (NULL == (data_r = (int *)malloc(DSET1_DIM1 * DSET1_DIM2 * sizeof(int)))) FAIL_PUTS_ERROR("unable to allocate memory for output array"); /* Initialize the buffers */ val = 0; pw = data_w; for (i = 0; i < CORE_DSET_DIM1; i++) for (j = 0; j < CORE_DSET_DIM2; j++) *pw++ = val++; memset(data_r, 0, DSET1_DIM1 * DSET1_DIM2 * sizeof(int)); /* Create the dataspace */ dims[0] = CORE_DSET_DIM1; dims[1] = CORE_DSET_DIM2; if ((sid = H5Screate_simple(2, dims, NULL)) < 0) TEST_ERROR; /* Create the dataset */ if ((did = H5Dcreate2(fid, CORE_DSET_NAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; /* Write the data to the dataset */ if (H5Dwrite(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_w) < 0) TEST_ERROR; /* Close and reopen the dataset */ if (H5Dclose(did) < 0) TEST_ERROR; if ((did = H5Dopen2(fid, CORE_DSET_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; /* Read the data back from dset1 */ if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_r) < 0) TEST_ERROR; /* Check that the values read are the same as the values written */ pw = data_w; pr = data_r; for (i = 0; i < CORE_DSET_DIM1; i++) for (j = 0; j < CORE_DSET_DIM2; j++) if (*pr++ != *pw++) { H5_FAILED(); printf(" Read different values than written in data set.\n"); printf(" At index %d,%d\n", i, j); TEST_ERROR; } /* end if */ /* Close everything except the dataspace ID (needed below)*/ if (H5Dclose(did) < 0) TEST_ERROR; if (H5Fclose(fid) < 0) TEST_ERROR; /* Reopen the file and ensure that the dataset does not exist */ if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0) TEST_ERROR; status = H5Lexists(fid, CORE_DSET_NAME, H5P_DEFAULT); if (status < 0) TEST_ERROR; if (status > 0) FAIL_PUTS_ERROR("core VFD dataset created in file when backing store disabled"); /* Close the file */ if (H5Fclose(fid) < 0) TEST_ERROR; /************************************************************************ * Make changes to the file with the backing store flag ON to ensure * that they ARE propagated. ************************************************************************/ /* Open the file with backing store on for read and write. * Changes will be saved in file. */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0) TEST_ERROR; if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0) TEST_ERROR; /* Create the dataset */ if ((did = H5Dcreate2(fid, CORE_DSET_NAME, H5T_NATIVE_INT, sid, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; /* Write the data to the dataset */ if (H5Dwrite(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_w) < 0) TEST_ERROR; /* Close everything and reopen */ if (H5Dclose(did) < 0) TEST_ERROR; if (H5Fclose(fid) < 0) TEST_ERROR; if ((fid = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) < 0) TEST_ERROR; if ((did = H5Dopen2(fid, CORE_DSET_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; /* Read the data back from the dataset */ memset(data_r, 0, DSET1_DIM1 * DSET1_DIM2 * sizeof(int)); if (H5Dread(did, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, data_r) < 0) TEST_ERROR; /* Check that the values read are the same as the values written */ pw = data_w; pr = data_r; for (i = 0; i < CORE_DSET_DIM1; i++) for (j = 0; j < CORE_DSET_DIM2; j++) if (*pw++ != *pr++) { H5_FAILED(); printf(" Read different values than written in data set.\n"); printf(" At index %d,%d\n", i, j); TEST_ERROR; } /* end if */ /* Check file size API. * There is no guarantee the size of metadata in file is constant. * Just try to check if it's reasonable. * * TODO: Needs justification of why is this is a reasonable size. */ if (H5Fget_filesize(fid, &file_size) < 0) TEST_ERROR; if (file_size < 64 * KB || file_size > 256 * KB) FAIL_PUTS_ERROR("suspicious file size obtained from H5Fget_filesize"); /* Close everything */ if (H5Sclose(sid) < 0) TEST_ERROR; if (H5Dclose(did) < 0) TEST_ERROR; free(data_w); free(data_r); /* Close and delete the file */ if (H5Fclose(fid) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[1], fapl_id); /************************************************************************ * Check that delete behavior works correctly ************************************************************************/ /* Create and close a file */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0) TEST_ERROR; if ((fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) < 0) TEST_ERROR; if (H5Fclose(fid) < 0) TEST_ERROR; /* Try to delete the file with the backing store off (shouldn't delete anything) */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, false) < 0) TEST_ERROR; if (H5Fdelete(filename, fapl_id) < 0) TEST_ERROR; if (-1 == HDaccess(filename, F_OK)) FAIL_PUTS_ERROR("file deleted when backing store set to false"); /* Try to delete the file with the backing store on (should work) */ if (H5Pset_fapl_core(fapl_id, (size_t)CORE_INCREMENT, true) < 0) TEST_ERROR; if (H5Fdelete(filename, fapl_id) < 0) TEST_ERROR; if (0 == HDaccess(filename, F_OK)) FAIL_PUTS_ERROR("file not deleted when backing store set to true"); /************************************************************************ * Clean up ************************************************************************/ /* Close the fapl */ if (H5Pclose(fapl_id) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Sclose(sid); H5Dclose(did); H5Pclose(fapl_id_out); H5Pclose(fapl_id); H5Fclose(fid); } H5E_END_TRY if (data_w) free(data_w); if (data_r) free(data_r); return -1; } /* end test_core() */ /*------------------------------------------------------------------------- * Function: test_direct * * Purpose: Tests the file handle interface for DIRECT I/O driver * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_direct(void) { #ifdef H5_HAVE_DIRECT hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, access_fapl = H5I_INVALID_HID; hid_t dset1 = H5I_INVALID_HID, dset2 = H5I_INVALID_HID, space1 = H5I_INVALID_HID, space2 = H5I_INVALID_HID; char filename[1024]; int *fhandle = NULL; hsize_t file_size; hsize_t dims1[2], dims2[1]; size_t mbound; size_t fbsize; size_t cbsize; void *proto_points = NULL, *proto_check = NULL; int *points = NULL, *check = NULL, *p1 = NULL, *p2 = NULL; int wdata2[DSET2_DIM] = {11, 12, 13, 14}; int rdata2[DSET2_DIM]; int i, j, n; #endif /*H5_HAVE_DIRECT*/ TESTING("DIRECT I/O file driver"); #ifndef H5_HAVE_DIRECT SKIPPED(); return 0; #else /*H5_HAVE_DIRECT*/ /* Set property list and file name for Direct driver. Set memory alignment boundary * and file block size to 512 which is the minimum for Linux 2.6. */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_direct(fapl, MBOUNDARY, FBSIZE, CBSIZE) < 0) TEST_ERROR; h5_fixname(FILENAME[5], fapl, filename, sizeof filename); /* Verify the file access properties */ if (H5Pget_fapl_direct(fapl, &mbound, &fbsize, &cbsize) < 0) TEST_ERROR; if (mbound != MBOUNDARY || fbsize != FBSIZE || cbsize != CBSIZE) TEST_ERROR; if (H5Pset_alignment(fapl, (hsize_t)THRESHOLD, (hsize_t)FBSIZE) < 0) TEST_ERROR; H5E_BEGIN_TRY { file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl); } H5E_END_TRY if (file < 0) { H5Pclose(fapl); SKIPPED(); printf(" Probably the file system doesn't support Direct I/O\n"); return 0; } /* Retrieve the access property list... */ if ((access_fapl = H5Fget_access_plist(file)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_DIRECT != H5Pget_driver(access_fapl)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(access_fapl) < 0) TEST_ERROR; /* Check file handle API */ if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0) TEST_ERROR; if (*fhandle < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* There is no guarantee of the number of metadata allocations, but it's * 4 currently and the size of the file should be between 3 & 4 file buffer * sizes.. */ if (file_size < (FBSIZE * 3) || file_size >= (FBSIZE * 4)) TEST_ERROR; /* Allocate aligned memory for data set 1. For data set 1, everything is aligned including * memory address, size of data, and file address. */ if (0 != posix_memalign(&proto_points, (size_t)FBSIZE, (size_t)(DSET1_DIM1 * DSET1_DIM2 * sizeof(int)))) TEST_ERROR; points = proto_points; if (0 != posix_memalign(&proto_check, (size_t)FBSIZE, (size_t)(DSET1_DIM1 * DSET1_DIM2 * sizeof(int)))) TEST_ERROR; check = proto_check; /* Initialize the dset1 */ p1 = points; for (i = n = 0; i < DSET1_DIM1; i++) for (j = 0; j < DSET1_DIM2; j++) *p1++ = n++; /* Create the data space1 */ dims1[0] = DSET1_DIM1; dims1[1] = DSET1_DIM2; if ((space1 = H5Screate_simple(2, dims1, NULL)) < 0) TEST_ERROR; /* Create the dset1 */ if ((dset1 = H5Dcreate2(file, DSET1_NAME, H5T_NATIVE_INT, space1, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; /* Write the data to the dset1 */ if (H5Dwrite(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, points) < 0) TEST_ERROR; if (H5Dclose(dset1) < 0) TEST_ERROR; if ((dset1 = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; /* Read the data back from dset1 */ if (H5Dread(dset1, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, check) < 0) TEST_ERROR; /* Check that the values read are the same as the values written */ p1 = points; p2 = check; for (i = 0; i < DSET1_DIM1; i++) for (j = 0; j < DSET1_DIM2; j++) if (*p1++ != *p2++) { H5_FAILED(); printf(" Read different values than written in data set 1.\n"); printf(" At index %d,%d\n", i, j); TEST_ERROR; } /* end if */ /* Create the data space2. For data set 2, memory address and data size are not aligned. */ dims2[0] = DSET2_DIM; if ((space2 = H5Screate_simple(1, dims2, NULL)) < 0) TEST_ERROR; /* Create the dset2 */ if ((dset2 = H5Dcreate2(file, DSET2_NAME, H5T_NATIVE_INT, space2, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; /* Write the data to the dset1 */ if (H5Dwrite(dset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata2) < 0) TEST_ERROR; if (H5Dclose(dset2) < 0) TEST_ERROR; if ((dset2 = H5Dopen2(file, DSET2_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; /* Read the data back from dset1 */ if (H5Dread(dset2, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, rdata2) < 0) TEST_ERROR; /* Check that the values read are the same as the values written */ for (i = 0; i < DSET2_DIM; i++) if (wdata2[i] != rdata2[i]) { H5_FAILED(); printf(" Read different values than written in data set 2.\n"); printf(" At index %d\n", i); TEST_ERROR; } /* end if */ if (H5Sclose(space1) < 0) TEST_ERROR; if (H5Dclose(dset1) < 0) TEST_ERROR; if (H5Sclose(space2) < 0) TEST_ERROR; if (H5Dclose(dset2) < 0) TEST_ERROR; free(points); free(check); /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[5], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl); H5Sclose(space1); H5Dclose(dset1); H5Sclose(space2); H5Dclose(dset2); H5Fclose(file); } H5E_END_TRY if (proto_points) free(proto_points); if (proto_check) free(proto_check); return -1; #endif /*H5_HAVE_DIRECT*/ } /*------------------------------------------------------------------------- * Function: test_family_opens * * Purpose: Private function for test_family() to tests wrong ways of * reopening family file. * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ /* Disable warning for "format not a string literal" here -QAK */ /* * This pragma only needs to surround the snprintf() calls with * 'first_name' in the code below, but early (4.4.7, at least) gcc only * allows diagnostic pragmas to be toggled outside of functions. */ H5_GCC_CLANG_DIAG_OFF("format-nonliteral") static herr_t test_family_opens(char *fname, hid_t fa_pl) { hid_t file = H5I_INVALID_HID; char first_name[1024]; char wrong_name[1024]; int i; /* Case 1: reopen file with 1st member file name and default property list */ snprintf(first_name, sizeof(first_name), fname, 0); H5E_BEGIN_TRY { file = H5Fopen(first_name, H5F_ACC_RDWR, H5P_DEFAULT); } H5E_END_TRY if (file >= 0) TEST_ERROR; /* Case 2: reopen file with correct name template but default property list */ H5E_BEGIN_TRY { file = H5Fopen(fname, H5F_ACC_RDWR, H5P_DEFAULT); } H5E_END_TRY if (file >= 0) TEST_ERROR; /* Case 3: reopen file with wrong member size */ if (H5Pset_fapl_family(fa_pl, (hsize_t)128, H5P_DEFAULT) < 0) TEST_ERROR; H5E_BEGIN_TRY { file = H5Fopen(fname, H5F_ACC_RDWR, fa_pl); } H5E_END_TRY if (file >= 0) TEST_ERROR; /* Case 4: reopen file with wrong name template */ strcpy(wrong_name, fname); for (i = 0; i < 1024; i++) if (wrong_name[i] == '5') { wrong_name[i] = '4'; break; } if (H5Pset_fapl_family(fa_pl, (hsize_t)FAMILY_SIZE, H5P_DEFAULT) < 0) TEST_ERROR; H5E_BEGIN_TRY { file = H5Fopen(wrong_name, H5F_ACC_RDWR, fa_pl); } H5E_END_TRY if (file >= 0) TEST_ERROR; return 0; error: return -1; } /* end test_family_opens() */ H5_GCC_CLANG_DIAG_ON("format-nonliteral") /*------------------------------------------------------------------------- * Function: test_family * * Purpose: Tests the file handle interface for FAMILY driver * * Return: SUCCEED/FAIL * *------------------------------------------------------------------------- */ static herr_t test_family(void) { hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, fapl2 = H5I_INVALID_HID, space = H5I_INVALID_HID, dset = H5I_INVALID_HID; hid_t access_fapl = H5I_INVALID_HID; hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; char dname[] = "dataset"; unsigned int i, j; int *fhandle = NULL, *fhandle2 = NULL; int **buf = NULL; int *buf_data = NULL; hsize_t dims[2] = {FAMILY_NUMBER, FAMILY_SIZE}; hsize_t file_size; TESTING("FAMILY file driver"); /* Set up data array */ if (NULL == (buf_data = (int *)calloc(FAMILY_NUMBER * FAMILY_SIZE, sizeof(int)))) TEST_ERROR; if (NULL == (buf = (int **)calloc(FAMILY_NUMBER, sizeof(buf_data)))) TEST_ERROR; for (i = 0; i < FAMILY_NUMBER; i++) buf[i] = buf_data + (i * FAMILY_SIZE); /* Set property list and file name for FAMILY driver */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_family(fapl, (hsize_t)FAMILY_SIZE, H5P_DEFAULT) < 0) TEST_ERROR; h5_fixname(FILENAME[2], fapl, filename, sizeof(filename)); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Test different wrong ways to reopen family files where there's only * one member file existing. */ if (test_family_opens(filename, fapl) < 0) TEST_ERROR; /* Reopen the file with default member file size */ if (H5Pset_fapl_family(fapl, (hsize_t)H5F_FAMILY_DEFAULT, H5P_DEFAULT) < 0) TEST_ERROR; if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* The file size is supposed to be about 800 bytes right now. */ if (file_size < (KB / 2) || file_size > KB) TEST_ERROR; /* Create and write dataset */ if ((space = H5Screate_simple(2, dims, NULL)) < 0) TEST_ERROR; /* Retrieve the access property list... */ if ((access_fapl = H5Fget_access_plist(file)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_FAMILY != H5Pget_driver(access_fapl)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(access_fapl) < 0) TEST_ERROR; if ((dset = H5Dcreate2(file, dname, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; for (i = 0; i < FAMILY_NUMBER; i++) for (j = 0; j < FAMILY_SIZE; j++) buf[i][j] = (int)((i * 10000) + j); if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) < 0) TEST_ERROR; /* check file handle API */ if ((fapl2 = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_family_offset(fapl2, (hsize_t)0) < 0) TEST_ERROR; if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle) < 0) TEST_ERROR; if (*fhandle < 0) TEST_ERROR; if (H5Pset_family_offset(fapl2, (hsize_t)(FAMILY_SIZE * 2)) < 0) TEST_ERROR; if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle2) < 0) TEST_ERROR; if (*fhandle2 < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* Some data has been written. The file size should be bigger (18KB+976) * bytes if int size is 4 bytes) now. */ #if H5_SIZEOF_INT <= 4 if (file_size < (18 * KB) || file_size > (20 * KB)) TEST_ERROR; #elif H5_SIZEOF_INT >= 8 if (file_size < (32 * KB) || file_size > (40 * KB)) TEST_ERROR; #endif if (H5Sclose(space) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if (H5Pclose(fapl2) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Test different wrong ways to reopen family files when there're multiple * member files existing. */ if (test_family_opens(filename, fapl) < 0) TEST_ERROR; /* Reopen the file with correct member file size. */ if (H5Pset_fapl_family(fapl, (hsize_t)FAMILY_SIZE, H5P_DEFAULT) < 0) TEST_ERROR; if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[2], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; free(buf); free(buf_data); PASSED(); return SUCCEED; error: H5E_BEGIN_TRY { H5Sclose(space); H5Dclose(dset); H5Pclose(fapl); H5Pclose(fapl2); H5Fclose(file); } H5E_END_TRY free(buf); free(buf_data); return FAIL; } /* end test_family() */ /*------------------------------------------------------------------------- * Function: test_family_compat * * Purpose: Tests the backward compatibility for FAMILY driver. * See if we can open files created with v1.6 library. * The source file was created by the test/file_handle.c * of the v1.6 library. Then tools/misc/h5repart.c was * used to concatenated. The command was "h5repart -m 5k * family_file%05d.h5 family_v16_%05d.h5". * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ /* Disable warning for "format not a string literal" here -QAK */ /* * This pragma only needs to surround the snprintf() calls with * 'newname_individual', etc. in the code below, but early (4.4.7, at least) gcc only * allows diagnostic pragmas to be toggled outside of functions. */ H5_GCC_CLANG_DIAG_OFF("format-nonliteral") static herr_t test_family_compat(void) { hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID; hid_t dset = H5I_INVALID_HID; char dname[] = "dataset"; char filename[1024]; char pathname[1024], pathname_individual[1024]; char newname[1024], newname_individual[1024]; int counter = 0; TESTING("FAMILY file driver backward compatibility"); /* Set property list and file name for FAMILY driver */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_family(fapl, (hsize_t)FAMILY_SIZE2, H5P_DEFAULT) < 0) TEST_ERROR; h5_fixname(COMPAT_BASENAME, fapl, filename, sizeof(filename)); h5_fixname(FILENAME[3], fapl, newname, sizeof(newname)); pathname[0] = '\0'; strcat(pathname, filename); /* The following code makes the copies of the family files in the source directory. * Since we're going to open the files with write mode, this protects the original * files. */ snprintf(newname_individual, sizeof(newname_individual), newname, counter); snprintf(pathname_individual, sizeof(pathname_individual), pathname, counter); while (h5_make_local_copy(pathname_individual, newname_individual) >= 0) { counter++; snprintf(newname_individual, sizeof(newname_individual), newname, counter); snprintf(pathname_individual, sizeof(pathname_individual), pathname, counter); } /* end while */ /* Make sure we can open the file. Use the read and write mode to flush the * superblock. */ if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; if ((dset = H5Dopen2(file, dname, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Open the file again to make sure it isn't corrupted. */ if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; if ((dset = H5Dopen2(file, dname, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[3], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Fclose(file); H5Pclose(fapl); } H5E_END_TRY return -1; } /* end test_family_compat() */ H5_GCC_CLANG_DIAG_ON("format-nonliteral") /*------------------------------------------------------------------------- * Function: test_family_member_fapl * * Purpose: Actually use the member fapl input to the member vfd. * * Return: SUCCEED/FAIL * *------------------------------------------------------------------------- */ static herr_t test_family_member_fapl(void) { hid_t file = H5I_INVALID_HID; hid_t fapl_id = H5I_INVALID_HID; hid_t memb_fapl_id = H5I_INVALID_HID; hid_t space = H5I_INVALID_HID; hid_t dset = H5I_INVALID_HID; char filename[1024]; char dname[] = "dataset"; unsigned i = 0; unsigned j = 0; int **buf = NULL; int *buf_data = NULL; hsize_t dims[2] = {FAMILY_NUMBER, FAMILY_SIZE}; TESTING("Family member FAPL"); /* Set up data array */ if (NULL == (buf_data = (int *)calloc(FAMILY_NUMBER * FAMILY_SIZE, sizeof(int)))) TEST_ERROR; if (NULL == (buf = (int **)calloc(FAMILY_NUMBER, sizeof(buf_data)))) TEST_ERROR; for (i = 0; i < FAMILY_NUMBER; i++) buf[i] = buf_data + (i * FAMILY_SIZE); if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID) TEST_ERROR; if ((memb_fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID) TEST_ERROR; if (H5Pset_fapl_sec2(memb_fapl_id) == FAIL) TEST_ERROR; if (H5Pset_fapl_family(fapl_id, (hsize_t)FAMILY_SIZE, memb_fapl_id) == FAIL) TEST_ERROR; h5_fixname(FILENAME[2], fapl_id, filename, sizeof(filename)); if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id)) == H5I_INVALID_HID) TEST_ERROR; if ((space = H5Screate_simple(2, dims, NULL)) == H5I_INVALID_HID) TEST_ERROR; /* Create and write to dataset, then close file. */ if ((dset = H5Dcreate2(file, dname, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) == H5I_INVALID_HID) TEST_ERROR; for (i = 0; i < FAMILY_NUMBER; i++) { for (j = 0; j < FAMILY_SIZE; j++) { buf[i][j] = (int)((i * 10000) + j); } } if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) == FAIL) TEST_ERROR; if (H5Dclose(dset) == FAIL) TEST_ERROR; if (H5Sclose(space) == FAIL) TEST_ERROR; if (H5Fclose(file) == FAIL) TEST_ERROR; /* "Close" member FAPL at top level and re-open file. * Should succeed, with library managing reference count properly */ if (H5Pclose(memb_fapl_id) == FAIL) TEST_ERROR; if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl_id)) == H5I_INVALID_HID) TEST_ERROR; if (H5Fclose(file) == FAIL) TEST_ERROR; h5_delete_test_file(FILENAME[2], fapl_id); if (H5Pclose(fapl_id) == FAIL) TEST_ERROR; free(buf); free(buf_data); PASSED(); return SUCCEED; error: H5E_BEGIN_TRY { H5Sclose(space); H5Dclose(dset); H5Pclose(memb_fapl_id); H5Pclose(fapl_id); H5Fclose(file); } H5E_END_TRY free(buf); free(buf_data); return FAIL; } /* end test_family_member_fapl() */ /*------------------------------------------------------------------------- * Function: test_multi_opens * * Purpose: Private function for test_multi() to tests wrong ways of * reopening multi file. * * Return: SUCCEED/FAIL * *------------------------------------------------------------------------- */ /* Disable warning for "format not a string literal" here -QAK */ /* * This pragma only needs to surround the snprintf() calls with * 'sf_name' in the code below, but early (4.4.7, at least) gcc only * allows diagnostic pragmas to be toggled outside of functions. */ H5_GCC_CLANG_DIAG_OFF("format-nonliteral") static herr_t test_multi_opens(char *fname) { hid_t fid = H5I_INVALID_HID; char super_name[1024]; /*name string "%%s-s.h5"*/ char sf_name[1024]; /*name string "multi_file-s.h5"*/ /* Case: reopen with the name of super file and default property list */ snprintf(super_name, sizeof(super_name), "%%s-%c.h5", 's'); snprintf(sf_name, sizeof(sf_name), super_name, fname); H5E_BEGIN_TRY { fid = H5Fopen(sf_name, H5F_ACC_RDWR, H5P_DEFAULT); } H5E_END_TRY return (fid >= 0 ? FAIL : SUCCEED); } /* end test_multi_opens() */ H5_GCC_CLANG_DIAG_ON("format-nonliteral") /*------------------------------------------------------------------------- * Function: test_multi * * Purpose: Tests the file handle interface for MULTI driver * * Return: SUCCEED/FAIL * *------------------------------------------------------------------------- */ static herr_t test_multi(void) { hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, fapl2 = H5I_INVALID_HID, dset = H5I_INVALID_HID, space = H5I_INVALID_HID; hid_t root = H5I_INVALID_HID, attr = H5I_INVALID_HID, aspace = H5I_INVALID_HID, atype = H5I_INVALID_HID; hid_t access_fapl = H5I_INVALID_HID; hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; int *fhandle2 = NULL, *fhandle = NULL; hsize_t file_size; H5FD_mem_t mt, memb_map[H5FD_MEM_NTYPES]; hid_t memb_fapl[H5FD_MEM_NTYPES]; haddr_t memb_addr[H5FD_MEM_NTYPES]; const char *memb_name[H5FD_MEM_NTYPES]; char sv[H5FD_MEM_NTYPES][32]; hsize_t dims[2] = {MULTI_SIZE, MULTI_SIZE}; hsize_t adims[1] = {1}; char dname[] = "dataset"; char meta[] = "this is some metadata on this file"; int i, j; int **buf = NULL; int *buf_data = NULL; TESTING("MULTI file driver"); /* Set up data array */ if (NULL == (buf_data = (int *)calloc(MULTI_SIZE * MULTI_SIZE, sizeof(int)))) TEST_ERROR; if (NULL == (buf = (int **)calloc(MULTI_SIZE, sizeof(buf_data)))) TEST_ERROR; for (i = 0; i < MULTI_SIZE; i++) buf[i] = buf_data + (i * MULTI_SIZE); /* Set file access property list for MULTI driver */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; memset(memb_map, 0, sizeof(memb_map)); memset(memb_fapl, 0, sizeof(memb_fapl)); memset(memb_name, 0, sizeof(memb_name)); memset(memb_addr, 0, sizeof(memb_addr)); memset(sv, 0, sizeof(sv)); for (mt = H5FD_MEM_DEFAULT; mt < H5FD_MEM_NTYPES; mt++) { memb_fapl[mt] = H5P_DEFAULT; memb_map[mt] = H5FD_MEM_SUPER; } memb_map[H5FD_MEM_DRAW] = H5FD_MEM_DRAW; memb_map[H5FD_MEM_BTREE] = H5FD_MEM_BTREE; memb_map[H5FD_MEM_GHEAP] = H5FD_MEM_GHEAP; snprintf(sv[H5FD_MEM_SUPER], 32, "%%s-%c.h5", 's'); memb_name[H5FD_MEM_SUPER] = sv[H5FD_MEM_SUPER]; memb_addr[H5FD_MEM_SUPER] = 0; snprintf(sv[H5FD_MEM_BTREE], 32, "%%s-%c.h5", 'b'); memb_name[H5FD_MEM_BTREE] = sv[H5FD_MEM_BTREE]; memb_addr[H5FD_MEM_BTREE] = HADDR_MAX / 4; snprintf(sv[H5FD_MEM_DRAW], 32, "%%s-%c.h5", 'r'); memb_name[H5FD_MEM_DRAW] = sv[H5FD_MEM_DRAW]; memb_addr[H5FD_MEM_DRAW] = HADDR_MAX / 2; snprintf(sv[H5FD_MEM_GHEAP], 32, "%%s-%c.h5", 'g'); memb_name[H5FD_MEM_GHEAP] = sv[H5FD_MEM_GHEAP]; memb_addr[H5FD_MEM_GHEAP] = (HADDR_MAX / 4) * 3; if (H5Pset_fapl_multi(fapl, memb_map, memb_fapl, memb_name, memb_addr, true) < 0) TEST_ERROR; h5_fixname(FILENAME[4], fapl, filename, sizeof filename); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_USE_ALLOC_SIZE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_PAGED_AGGR)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_USE_ALLOC_SIZE | H5FD_FEAT_PAGED_AGGR)) TEST_ERROR; if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Test wrong ways to reopen multi files */ if (test_multi_opens(filename) < 0) TEST_ERROR; /* Reopen the file */ if ((file = H5Fopen(filename, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; /* Create and write data set */ if ((space = H5Screate_simple(2, dims, NULL)) < 0) TEST_ERROR; /* Retrieve the access property list... */ if ((access_fapl = H5Fget_access_plist(file)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_MULTI != H5Pget_driver(access_fapl)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(access_fapl) < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* Before any data is written, the raw data file is empty. So * the file size is only the size of b-tree + HADDR_MAX/4. */ if (file_size < HADDR_MAX / 4 || file_size > HADDR_MAX / 2) TEST_ERROR; if ((dset = H5Dcreate2(file, dname, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; for (i = 0; i < MULTI_SIZE; i++) for (j = 0; j < MULTI_SIZE; j++) buf[i][j] = i * 10000 + j; if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) < 0) TEST_ERROR; if ((fapl2 = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_multi_type(fapl2, H5FD_MEM_SUPER) < 0) TEST_ERROR; if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle) < 0) TEST_ERROR; if (*fhandle < 0) TEST_ERROR; if (H5Pset_multi_type(fapl2, H5FD_MEM_DRAW) < 0) TEST_ERROR; if (H5Fget_vfd_handle(file, fapl2, (void **)&fhandle2) < 0) TEST_ERROR; if (*fhandle2 < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* After the data is written, the file size is huge because the * beginning of raw data file is set at HADDR_MAX/2. It's supposed * to be (HADDR_MAX/2 + 128*128*4) */ if (file_size < HADDR_MAX / 2 || file_size > HADDR_MAX) TEST_ERROR; if (H5Sclose(space) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if (H5Pclose(fapl2) < 0) TEST_ERROR; /* Create and write attribute for the root group. */ if ((root = H5Gopen2(file, "/", H5P_DEFAULT)) < 0) TEST_ERROR; /* Attribute string. */ if ((atype = H5Tcopy(H5T_C_S1)) < 0) TEST_ERROR; if (H5Tset_size(atype, strlen(meta) + 1) < 0) TEST_ERROR; if (H5Tset_strpad(atype, H5T_STR_NULLTERM) < 0) TEST_ERROR; /* Create and write attribute */ if ((aspace = H5Screate_simple(1, adims, NULL)) < 0) TEST_ERROR; if ((attr = H5Acreate2(root, "Metadata", atype, aspace, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Awrite(attr, atype, meta) < 0) TEST_ERROR; /* Close IDs */ if (H5Tclose(atype) < 0) TEST_ERROR; if (H5Sclose(aspace) < 0) TEST_ERROR; if (H5Aclose(attr) < 0) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[4], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; free(buf); free(buf_data); PASSED(); return SUCCEED; error: H5E_BEGIN_TRY { H5Sclose(space); H5Dclose(dset); H5Pclose(fapl); H5Pclose(fapl2); H5Fclose(file); H5Aclose(attr); } H5E_END_TRY free(buf); free(buf_data); return FAIL; } /* end test_multi() */ /*------------------------------------------------------------------------- * Function: test_multi_compat * * Purpose: Tests the backward compatibility for MULTI driver. * See if we can open files created with v1.6 library. * The source file was created by the test/file_handle.c * of the v1.6 library. This test verifies the fix for * Issue 2598. In v1.6 library, there was EOA for the whole * MULTI file saved in the super block. We took it out in * v1.8 library because it's meaningless for the MULTI file. * v1.8 library saves the EOA for the metadata file, instead. * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_multi_compat(void) { hid_t file = H5I_INVALID_HID, fapl = H5I_INVALID_HID, dset = H5I_INVALID_HID, space = H5I_INVALID_HID; char newname[1024]; char filename_s[1024], newname_s[1024]; char filename_r[1024], newname_r[1024]; H5FD_mem_t mt, memb_map[H5FD_MEM_NTYPES]; hid_t memb_fapl[H5FD_MEM_NTYPES]; haddr_t memb_addr[H5FD_MEM_NTYPES]; const char *memb_name[H5FD_MEM_NTYPES]; char sv[H5FD_MEM_NTYPES][32]; hsize_t dims[2] = {MULTI_SIZE, MULTI_SIZE}; int i, j; int **buf = NULL; int *buf_data = NULL; TESTING("MULTI file driver backward compatibility"); /* Set up data array */ if (NULL == (buf_data = (int *)calloc(MULTI_SIZE * MULTI_SIZE, sizeof(int)))) TEST_ERROR; if (NULL == (buf = (int **)calloc(MULTI_SIZE, sizeof(buf_data)))) TEST_ERROR; for (i = 0; i < MULTI_SIZE; i++) buf[i] = buf_data + (i * MULTI_SIZE); /* Set file access property list for MULTI driver */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; memset(memb_map, 0, sizeof memb_map); memset(memb_fapl, 0, sizeof memb_fapl); memset(memb_name, 0, sizeof memb_name); memset(memb_addr, 0, sizeof memb_addr); memset(sv, 0, sizeof sv); for (mt = H5FD_MEM_DEFAULT; mt < H5FD_MEM_NTYPES; mt++) memb_map[mt] = H5FD_MEM_SUPER; memb_map[H5FD_MEM_DRAW] = H5FD_MEM_DRAW; memb_fapl[H5FD_MEM_SUPER] = H5P_DEFAULT; snprintf(sv[H5FD_MEM_SUPER], 32, "%%s-%c.h5", 's'); memb_name[H5FD_MEM_SUPER] = sv[H5FD_MEM_SUPER]; memb_addr[H5FD_MEM_SUPER] = 0; memb_fapl[H5FD_MEM_DRAW] = H5P_DEFAULT; snprintf(sv[H5FD_MEM_DRAW], 32, "%%s-%c.h5", 'r'); memb_name[H5FD_MEM_DRAW] = sv[H5FD_MEM_DRAW]; memb_addr[H5FD_MEM_DRAW] = HADDR_MAX / 2; if (H5Pset_fapl_multi(fapl, memb_map, memb_fapl, memb_name, memb_addr, true) < 0) TEST_ERROR; h5_fixname(FILENAME[9], fapl, newname, sizeof newname); /* Make copy for the data file in the build directory, to protect the * original file in the source directory */ snprintf(filename_s, sizeof(filename_s), "%s-%c.h5", MULTI_COMPAT_BASENAME, 's'); snprintf(newname_s, sizeof(newname_s), "%s-%c.h5", FILENAME[9], 's'); h5_make_local_copy(filename_s, newname_s); snprintf(filename_r, sizeof(filename_r), "%s-%c.h5", MULTI_COMPAT_BASENAME, 'r'); snprintf(newname_r, sizeof(newname_r), "%s-%c.h5", FILENAME[9], 'r'); h5_make_local_copy(filename_r, newname_r); /* Reopen the file for read only. Verify 1.8 library can open file * created with 1.6 library. */ if ((file = H5Fopen(newname, H5F_ACC_RDONLY, fapl)) < 0) TEST_ERROR; if ((dset = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Make sure we can reopen the file for read and write */ if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; if ((dset = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Reopen the file for adding another dataset. The new EOA for metadata file * should be written to the file */ if ((file = H5Fopen(newname, H5F_ACC_RDWR, fapl)) < 0) TEST_ERROR; /* Create and write data set */ if ((space = H5Screate_simple(2, dims, NULL)) < 0) TEST_ERROR; if ((dset = H5Dcreate2(file, DSET3_NAME, H5T_NATIVE_INT, space, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT)) < 0) TEST_ERROR; for (i = 0; i < MULTI_SIZE; i++) for (j = 0; j < MULTI_SIZE; j++) buf[i][j] = i * 10000 + j; if (H5Dwrite(dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, buf_data) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if (H5Sclose(space) < 0) TEST_ERROR; if (H5Fclose(file) < 0) TEST_ERROR; /* Reopen the file for read only again. Verify the library can handle * the EOA correctly */ if ((file = H5Fopen(newname, H5F_ACC_RDONLY, fapl)) < 0) TEST_ERROR; if ((dset = H5Dopen2(file, DSET1_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; if ((dset = H5Dopen2(file, DSET3_NAME, H5P_DEFAULT)) < 0) TEST_ERROR; if (H5Dclose(dset) < 0) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[9], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; free(buf); free(buf_data); PASSED(); return SUCCEED; error: H5E_BEGIN_TRY { H5Sclose(space); H5Dclose(dset); H5Pclose(fapl); H5Fclose(file); } H5E_END_TRY free(buf); free(buf_data); return FAIL; } /* end test_multi_compat() */ /*------------------------------------------------------------------------- * Function: test_log * * Purpose: Tests the file handle interface for log driver * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_log(void) { hid_t file = H5I_INVALID_HID; hid_t fapl = H5I_INVALID_HID; hid_t access_fapl = H5I_INVALID_HID; hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; int *fhandle = NULL; hsize_t file_size = 0; unsigned int flags = H5FD_LOG_ALL; size_t buf_size = 4 * KB; herr_t ret = SUCCEED; TESTING("LOG file driver"); if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; /* Make sure calling with an invalid fapl doesn't crash */ H5E_BEGIN_TRY { ret = H5Pset_fapl_log(H5I_INVALID_HID, LOG_FILENAME, 0, 0); } H5E_END_TRY if (SUCCEED == ret) TEST_ERROR; /* Set property list and file name for log driver. */ if (H5Pset_fapl_log(fapl, LOG_FILENAME, flags, buf_size) < 0) TEST_ERROR; h5_fixname(FILENAME[6], fapl, filename, sizeof filename); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_POSIX_COMPAT_HANDLE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_SUPPORTS_SWMR_IO)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_POSIX_COMPAT_HANDLE | H5FD_FEAT_SUPPORTS_SWMR_IO | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; /* Create the test file */ if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) TEST_ERROR; /* Retrieve the access property list... */ if ((access_fapl = H5Fget_access_plist(file)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_LOG != H5Pget_driver(access_fapl)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(access_fapl) < 0) TEST_ERROR; /* Check file handle API */ if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0) TEST_ERROR; if (*fhandle < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* There is no guarantee the size of metadata in file is constant. * Just try to check if it's reasonable. It's 2KB right now. */ if (file_size < 1 * KB || file_size > 4 * KB) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[6], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl); H5Fclose(file); } H5E_END_TRY return -1; } /*------------------------------------------------------------------------- * Function: test_stdio * * Purpose: Tests the file handle interface for STDIO driver * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_stdio(void) { hid_t file = H5I_INVALID_HID; hid_t fapl = H5I_INVALID_HID; hid_t access_fapl = H5I_INVALID_HID; hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; FILE *fhandle = NULL; hsize_t file_size = 0; TESTING("STDIO file driver"); /* Set property list and file name for STDIO driver. */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_stdio(fapl) < 0) TEST_ERROR; h5_fixname(FILENAME[7], fapl, filename, sizeof filename); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) TEST_ERROR; /* Retrieve the access property list... */ if ((access_fapl = H5Fget_access_plist(file)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_STDIO != H5Pget_driver(access_fapl)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(access_fapl) < 0) TEST_ERROR; /* Check file handle API */ if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0) TEST_ERROR; if (NULL == fhandle) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* There is no guarantee the size of metadata in file is constant. * Just try to check if it's reasonable. It's 2KB right now. */ if (file_size < 1 * KB || file_size > 4 * KB) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[7], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl); H5Fclose(file); } H5E_END_TRY return -1; } /*------------------------------------------------------------------------- * Function: test_windows * * Purpose: Tests the file handle interface for WINDOWS driver * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_windows(void) { #ifdef H5_HAVE_WINDOWS hid_t file = H5I_INVALID_HID; hid_t fapl = H5I_INVALID_HID; hid_t access_fapl = H5I_INVALID_HID; hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; int *fhandle = NULL; hsize_t file_size = 0; #endif /*H5_HAVE_WINDOWS*/ TESTING("WINDOWS file driver"); #ifndef H5_HAVE_WINDOWS SKIPPED(); return 0; #else /* H5_HAVE_WINDOWS */ /* Set property list and file name for WINDOWS driver. */ if ((fapl = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_windows(fapl) < 0) TEST_ERROR; h5_fixname(FILENAME[8], fapl, filename, sizeof filename); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_ACCUMULATE_METADATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_AGGREGATE_SMALLDATA)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_POSIX_COMPAT_HANDLE)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_SUPPORTS_SWMR_IO)) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_AGGREGATE_METADATA | H5FD_FEAT_ACCUMULATE_METADATA | H5FD_FEAT_DATA_SIEVE | H5FD_FEAT_AGGREGATE_SMALLDATA | H5FD_FEAT_POSIX_COMPAT_HANDLE | H5FD_FEAT_SUPPORTS_SWMR_IO | H5FD_FEAT_DEFAULT_VFD_COMPATIBLE)) TEST_ERROR; if ((file = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl)) < 0) TEST_ERROR; /* Retrieve the access property list... */ if ((access_fapl = H5Fget_access_plist(file)) < 0) TEST_ERROR; /* Check that the driver is correct */ if (H5FD_WINDOWS != H5Pget_driver(access_fapl)) TEST_ERROR; /* ...and close the property list */ if (H5Pclose(access_fapl) < 0) TEST_ERROR; /* Check file handle API */ if (H5Fget_vfd_handle(file, H5P_DEFAULT, (void **)&fhandle) < 0) TEST_ERROR; if (*fhandle < 0) TEST_ERROR; /* Check file size API */ if (H5Fget_filesize(file, &file_size) < 0) TEST_ERROR; /* There is no guarantee the size of metadata in file is constant. * Just try to check if it's reasonable. It's 2KB right now. */ if (file_size < 1 * KB || file_size > 4 * KB) TEST_ERROR; /* Close and delete the file */ if (H5Fclose(file) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[8], fapl); /* Close the fapl */ if (H5Pclose(fapl) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl); H5Fclose(file); } H5E_END_TRY return -1; #endif /* H5_HAVE_WINDOWS */ } /* end test_windows() */ /*------------------------------------------------------------------------- * Function: test_ros3 * * Purpose: Tests the file handle interface for the ROS3 driver * * As the ROS3 driver is 1) read only, 2) requires access * to an S3 server (minio for now), this test is quite * different from the other tests. * * For now, test only fapl & flags. Extend as the * work on the VFD continues. * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_ros3(void) { #ifdef H5_HAVE_ROS3_VFD hid_t fid = H5I_INVALID_HID; /* file ID */ hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */ hid_t fapl_id_out = H5I_INVALID_HID; /* from H5Fget_access_plist */ hid_t driver_id = H5I_INVALID_HID; /* ID for this VFD */ unsigned long driver_flags = 0; /* VFD feature flags */ char filename[1024]; /* filename */ H5FD_ros3_fapl_t test_ros3_fa; H5FD_ros3_fapl_t ros3_fa_0 = { /* version = */ H5FD_CURR_ROS3_FAPL_T_VERSION, /* authenticate = */ false, /* aws_region = */ "", /* secret_id = */ "", /* secret_key = */ "plugh", }; #endif /*H5_HAVE_ROS3_VFD */ TESTING("Read-only S3 file driver"); #ifndef H5_HAVE_ROS3_VFD SKIPPED(); return 0; #else /* H5_HAVE_ROS3_VFD */ /* Set property list and file name for ROS3 driver. */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (H5Pset_fapl_ros3(fapl_id, &ros3_fa_0) < 0) TEST_ERROR; /* verify that the ROS3 FAPL entry is set as expected */ if (H5Pget_fapl_ros3(fapl_id, &test_ros3_fa) < 0) TEST_ERROR; /* need a macro to compare instances of H5FD_ros3_fapl_t */ if ((test_ros3_fa.version != ros3_fa_0.version) || (test_ros3_fa.authenticate != ros3_fa_0.authenticate) || (strcmp(test_ros3_fa.aws_region, ros3_fa_0.aws_region) != 0) || (strcmp(test_ros3_fa.secret_id, ros3_fa_0.secret_id) != 0) || (strcmp(test_ros3_fa.secret_key, ros3_fa_0.secret_key) != 0)) TEST_ERROR; h5_fixname(FILENAME[10], fapl_id, filename, sizeof(filename)); /* Check that the VFD feature flags are correct */ if ((driver_id = H5Pget_driver(fapl_id)) < 0) TEST_ERROR; if (H5FDdriver_query(driver_id, &driver_flags) < 0) TEST_ERROR; if (!(driver_flags & H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; /* Check for extra flags not accounted for above */ if (driver_flags != (H5FD_FEAT_DATA_SIEVE)) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl_id); H5Pclose(fapl_id_out); H5Fclose(fid); } H5E_END_TRY return -1; #endif /* H5_HAVE_ROS3_VFD */ } /* end test_ros3() */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * Macro: SPLITTER_TEST_FAULT() * * utility macro, helps create stack-like backtrace on error. * requires defined in the calling function: * * variable `int ret_value` (return -1 on error)` * * label `done` for exit on fault * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ #define SPLITTER_TEST_FAULT(mesg) \ do { \ H5_FAILED(); \ AT(); \ fprintf(stderr, mesg); \ H5Eprint2(H5E_DEFAULT, stderr); \ fflush(stderr); \ ret_value = -1; \ goto done; \ } while (0) /*------------------------------------------------------------------------- * Function: compare_splitter_config_info * * Purpose: Helper function to compare configuration info found in a * FAPL against a canonical structure. * * Return: Success: 0, if config info in FAPL matches info structure. * Failure: -1, if difference detected. * *------------------------------------------------------------------------- */ static int compare_splitter_config_info(hid_t fapl_id, H5FD_splitter_vfd_config_t *info) { int ret_value = 0; H5FD_splitter_vfd_config_t *fetched_info = NULL; if (NULL == (fetched_info = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) SPLITTER_TEST_FAULT("memory allocation for fetched_info struct failed"); fetched_info->magic = H5FD_SPLITTER_MAGIC; fetched_info->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION; fetched_info->rw_fapl_id = H5I_INVALID_HID; fetched_info->wo_fapl_id = H5I_INVALID_HID; if (H5Pget_fapl_splitter(fapl_id, fetched_info) < 0) { SPLITTER_TEST_FAULT("can't get splitter info"); } if (info->rw_fapl_id == H5P_DEFAULT) { if (H5Pget_driver(fetched_info->rw_fapl_id) != H5Pget_driver(H5P_FILE_ACCESS_DEFAULT)) { SPLITTER_TEST_FAULT("Read-Write driver mismatch (default)\n"); } } else { if (H5Pget_driver(fetched_info->rw_fapl_id) != H5Pget_driver(info->rw_fapl_id)) { SPLITTER_TEST_FAULT("Read-Write driver mismatch\n"); } } if (info->wo_fapl_id == H5P_DEFAULT) { if (H5Pget_driver(fetched_info->wo_fapl_id) != H5Pget_driver(H5P_FILE_ACCESS_DEFAULT)) { SPLITTER_TEST_FAULT("Write-Only driver mismatch (default)\n"); } } else { if (H5Pget_driver(fetched_info->wo_fapl_id) != H5Pget_driver(info->wo_fapl_id)) { SPLITTER_TEST_FAULT("Write-Only driver mismatch\n"); } } if ((strlen(info->wo_path) != strlen(fetched_info->wo_path)) || strncmp(info->wo_path, fetched_info->wo_path, H5FD_SPLITTER_PATH_MAX) != 0) { fprintf(stderr, "MISMATCH: '%s' :: '%s'\n", info->wo_path, fetched_info->wo_path); HEXPRINT(H5FD_SPLITTER_PATH_MAX, info->wo_path); HEXPRINT(H5FD_SPLITTER_PATH_MAX, fetched_info->wo_path); SPLITTER_TEST_FAULT("Write-Only file path mismatch\n"); } done: free(fetched_info); return ret_value; } /* end compare_splitter_config_info() */ /*------------------------------------------------------------------------- * Function: run_splitter_test * * Purpose: Auxiliary function for test_splitter(). * * Return: Success: 0 * Failure: -1 * * Description: * Perform basic open-write-close with the Splitter VFD. * Prior to operations, removes files from a previous run, * if they exist. * After writing, compares read-write and write-only files. * Includes FAPL sanity testing. * *------------------------------------------------------------------------- */ static int run_splitter_test(const struct splitter_dataset_def *data, bool ignore_wo_errors, bool provide_logfile_path, const hid_t sub_fapl_ids[2]) { hid_t file_id = H5I_INVALID_HID; hid_t fapl_id = H5I_INVALID_HID; hid_t dset_id = H5I_INVALID_HID; hid_t space_id = H5I_INVALID_HID; hid_t fapl_id_out = H5I_INVALID_HID; hid_t fapl_id_cpy = H5I_INVALID_HID; H5FD_splitter_vfd_config_t *vfd_config = NULL; char *filename_rw = NULL; FILE *logfile = NULL; int ret_value = 0; if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) SPLITTER_TEST_FAULT("memory allocation for vfd_config struct failed"); if (NULL == (filename_rw = calloc(H5FD_SPLITTER_PATH_MAX + 1, sizeof(char)))) SPLITTER_TEST_FAULT("memory allocation for filename_rw string failed"); vfd_config->magic = H5FD_SPLITTER_MAGIC; vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION; vfd_config->ignore_wo_errs = ignore_wo_errors; vfd_config->rw_fapl_id = sub_fapl_ids[0]; vfd_config->wo_fapl_id = sub_fapl_ids[1]; if (splitter_prepare_file_paths(vfd_config, filename_rw) < 0) { SPLITTER_TEST_FAULT("can't prepare file paths\n"); } if (provide_logfile_path == false) { vfd_config->log_file_path[0] = '\0'; /* reset as empty string */ } /* Create a new fapl to use the SPLITTER file driver */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID) { SPLITTER_TEST_FAULT("can't create FAPL ID\n"); } if (H5Pset_fapl_splitter(fapl_id, vfd_config) < 0) { SPLITTER_TEST_FAULT("can't set splitter FAPL\n"); } if (H5Pget_driver(fapl_id) != H5FD_SPLITTER) { SPLITTER_TEST_FAULT("set FAPL not SPLITTER\n"); } if (compare_splitter_config_info(fapl_id, vfd_config) < 0) { SPLITTER_TEST_FAULT("information mismatch\n"); } /* * Copy property list, light compare, and close the copy. * Helps test driver-implemented FAPL-copying and library ID management. */ fapl_id_cpy = H5Pcopy(fapl_id); if (H5I_INVALID_HID == fapl_id_cpy) { SPLITTER_TEST_FAULT("can't copy FAPL\n"); } if (compare_splitter_config_info(fapl_id_cpy, vfd_config) < 0) { SPLITTER_TEST_FAULT("information mismatch\n"); } if (H5Pclose(fapl_id_cpy) < 0) { SPLITTER_TEST_FAULT("can't close fapl copy\n"); } /* * Proceed with test. Create file. */ file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); if (file_id < 0) { SPLITTER_TEST_FAULT("can't create file\n"); } /* * Check driver from file */ fapl_id_out = H5Fget_access_plist(file_id); if (H5I_INVALID_HID == fapl_id_out) { SPLITTER_TEST_FAULT("can't get file's FAPL\n"); } if (H5Pget_driver(fapl_id_out) != H5FD_SPLITTER) { SPLITTER_TEST_FAULT("wrong file FAPL driver\n"); } if (compare_splitter_config_info(fapl_id_out, vfd_config) < 0) { SPLITTER_TEST_FAULT("information mismatch\n"); } if (H5Pclose(fapl_id_out) < 0) { SPLITTER_TEST_FAULT("can't close file's FAPL\n"); } /* * Create and write the dataset */ space_id = H5Screate_simple(data->n_dims, data->dims, NULL); if (space_id < 0) { SPLITTER_TEST_FAULT("can't create dataspace\n"); } dset_id = H5Dcreate2(file_id, data->dset_name, data->mem_type_id, space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (dset_id < 0) { SPLITTER_TEST_FAULT("can't create dataset\n"); } if (H5Dwrite(dset_id, data->mem_type_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, data->buf) < 0) { SPLITTER_TEST_FAULT("can't write data to dataset\n"); } /* Close everything */ if (H5Dclose(dset_id) < 0) { SPLITTER_TEST_FAULT("can't close dset\n"); } if (H5Sclose(space_id) < 0) { SPLITTER_TEST_FAULT("can't close space\n"); } if (H5Pclose(fapl_id) < 0) { SPLITTER_TEST_FAULT("can't close fapl\n"); } if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file\n"); } /* Verify that the R/W and W/O files are identical */ if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n"); } /* Verify existence of logfile if appropriate */ logfile = fopen(vfd_config->log_file_path, "r"); if ((true == provide_logfile_path && NULL == logfile) || (false == provide_logfile_path && NULL != logfile)) { SPLITTER_TEST_FAULT("no logfile when one was expected\n"); } done: if (ret_value < 0) { H5E_BEGIN_TRY { H5Dclose(dset_id); H5Sclose(space_id); H5Pclose(fapl_id_out); H5Pclose(fapl_id_cpy); H5Pclose(fapl_id); H5Fclose(file_id); } H5E_END_TRY } if (logfile != NULL) fclose(logfile); free(vfd_config); free(filename_rw); return ret_value; } /* end run_splitter_test() */ /*------------------------------------------------------------------------- * Function: driver_is_splitter_compatible * * Purpose: Determine whether the driver set in the FAPL ID is compatible * with the Splitter VFD -- specifically, Write-Only channel. * * Return: Success: 0 * Failure: -1 * * Description: Attempts to put the given FAPL ID as the W/O channel. * Uses driver's own mechanisms to generate error, and catches * error. * *------------------------------------------------------------------------- */ static int driver_is_splitter_compatible(hid_t fapl_id) { H5FD_splitter_vfd_config_t *vfd_config = NULL; hid_t split_fapl_id = H5I_INVALID_HID; herr_t ret = SUCCEED; int ret_value = 0; if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) { FAIL_PUTS_ERROR("memory allocation for vfd_config struct failed"); } if (H5I_INVALID_HID == (split_fapl_id = H5Pcreate(H5P_FILE_ACCESS))) { FAIL_PUTS_ERROR("Can't create contained FAPL"); } vfd_config->magic = H5FD_SPLITTER_MAGIC; vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION; vfd_config->ignore_wo_errs = false; vfd_config->rw_fapl_id = H5P_DEFAULT; vfd_config->wo_fapl_id = fapl_id; strncpy(vfd_config->wo_path, "nonesuch", H5FD_SPLITTER_PATH_MAX); vfd_config->log_file_path[0] = '\0'; H5E_BEGIN_TRY { ret = H5Pset_fapl_splitter(split_fapl_id, vfd_config); } H5E_END_TRY if (SUCCEED == ret) { ret_value = -1; } if (H5Pclose(split_fapl_id) < 0) { FAIL_PUTS_ERROR("Can't close contained FAPL"); } split_fapl_id = H5I_INVALID_HID; free(vfd_config); return ret_value; error: H5E_BEGIN_TRY { H5Pclose(split_fapl_id); } H5E_END_TRY free(vfd_config); return -1; } /* end driver_is_splitter_compatible() */ /*------------------------------------------------------------------------- * Function: splitter_RO_test * * Purpose: Verify Splitter VFD with the Read-Only access flag. * * Return: Success: 0 * Failure: -1 * * Description: Attempt read-only opening of files with different * permutations of files already existing on-disk. * *------------------------------------------------------------------------- */ static int splitter_RO_test(const struct splitter_dataset_def *data, hid_t child_fapl_id) { char *filename_rw = NULL; H5FD_splitter_vfd_config_t *vfd_config = NULL; hid_t fapl_id = H5I_INVALID_HID; hid_t file_id = H5I_INVALID_HID; int ret_value = 0; if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) SPLITTER_TEST_FAULT("memory allocation for vfd_config struct failed"); if (NULL == (filename_rw = calloc(H5FD_SPLITTER_PATH_MAX + 1, sizeof(char)))) SPLITTER_TEST_FAULT("memory allocation for filename_rw string failed"); vfd_config->magic = H5FD_SPLITTER_MAGIC; vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION; vfd_config->ignore_wo_errs = false; vfd_config->rw_fapl_id = child_fapl_id; vfd_config->wo_fapl_id = child_fapl_id; if (splitter_prepare_file_paths(vfd_config, filename_rw) < 0) { SPLITTER_TEST_FAULT("can't prepare splitter file paths\n"); } /* Create a new fapl to use the SPLITTER file driver */ fapl_id = H5Pcreate(H5P_FILE_ACCESS); if (H5I_INVALID_HID == fapl_id) { SPLITTER_TEST_FAULT("can't create FAPL ID\n"); } if (H5Pset_fapl_splitter(fapl_id, vfd_config) < 0) { SPLITTER_TEST_FAULT("can't set splitter FAPL\n"); } if (H5Pget_driver(fapl_id) != H5FD_SPLITTER) { SPLITTER_TEST_FAULT("set FAPL not SPLITTER\n"); } /* Attempt R/O open when both files are nonexistent * Should fail. */ H5E_BEGIN_TRY { file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id); } H5E_END_TRY if (file_id >= 0) { SPLITTER_TEST_FAULT("R/O open on nonexistent files unexpectedly successful\n"); } /* Attempt R/O open when only W/O file exists * Should fail. */ if (splitter_create_single_file_at(vfd_config->wo_path, vfd_config->wo_fapl_id, data) < 0) { SPLITTER_TEST_FAULT("can't write W/O file\n"); } H5E_BEGIN_TRY { file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id); } H5E_END_TRY if (file_id >= 0) { SPLITTER_TEST_FAULT("R/O open with extant W/O file unexpectedly successful\n"); } HDremove(vfd_config->wo_path); /* Attempt R/O open when only R/W file exists * Should fail. */ if (splitter_create_single_file_at(filename_rw, vfd_config->rw_fapl_id, data) < 0) { SPLITTER_TEST_FAULT("can't create R/W file\n"); } H5E_BEGIN_TRY { file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id); } H5E_END_TRY if (file_id >= 0) { SPLITTER_TEST_FAULT("R/O open with extant R/W file unexpectedly successful\n"); } /* Attempt R/O open when both R/W and W/O files exist */ if (splitter_create_single_file_at(vfd_config->wo_path, vfd_config->wo_fapl_id, data) < 0) { SPLITTER_TEST_FAULT("can't create W/O file\n"); } file_id = H5Fopen(filename_rw, H5F_ACC_RDONLY, fapl_id); if (file_id < 0) { SPLITTER_TEST_FAULT("R/O open on two extant files failed\n"); } if (splitter_compare_expected_data(file_id, data) < 0) { SPLITTER_TEST_FAULT("data mismatch in R/W file\n"); } if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file(s)\n"); } file_id = H5I_INVALID_HID; /* Cleanup */ if (H5Pclose(fapl_id) < 0) { SPLITTER_TEST_FAULT("can't close FAPL ID\n"); } fapl_id = H5I_INVALID_HID; done: if (ret_value < 0) { H5E_BEGIN_TRY { H5Pclose(fapl_id); H5Fclose(file_id); } H5E_END_TRY } free(vfd_config); free(filename_rw); return ret_value; } /* end splitter_RO_test() */ /*------------------------------------------------------------------------- * Function: splitter_prepare_file_paths * * Purpose: Get file paths ready for use by the Splitter VFD tests. * * Return: Success: 0 * Failure: -1 * * Description: * Use h5_fixname to adjust the splitter-relevant file paths * from those given in FILENAMES. * * REMOVES EXISTING FILES AT THE PATH LOCATIONS PRIOR TO RETURN. * * The relevant file paths will be set in filename_rw_out and * inside the config structure (wo_path, log_file_path). * * `filename_rw_out` must be at least H5FD_SPLITTER_PATH_MAX+1 * characters long. * * `vfd_config` must have its child FAPL IDs preset. * *------------------------------------------------------------------------- */ static int splitter_prepare_file_paths(H5FD_splitter_vfd_config_t *vfd_config, char *filename_rw_out) { int ret_value = 0; if (vfd_config == NULL || vfd_config->magic != H5FD_SPLITTER_MAGIC) { SPLITTER_TEST_FAULT("invalid splitter config pointer\n"); } if (filename_rw_out == NULL) { SPLITTER_TEST_FAULT("NULL filename_rw pointer\n"); } /* TODO: sanity-check fapl IDs? */ /* Build the r/w file, w/o file, and the log file paths. * Output is stored in the associated string pointers. */ h5_fixname(FILENAME[11], vfd_config->rw_fapl_id, filename_rw_out, H5FD_SPLITTER_PATH_MAX); h5_fixname(FILENAME[12], vfd_config->wo_fapl_id, vfd_config->wo_path, H5FD_SPLITTER_PATH_MAX); h5_fixname_no_suffix(FILENAME[13], vfd_config->wo_fapl_id, vfd_config->log_file_path, H5FD_SPLITTER_PATH_MAX); /* Delete any existing files on disk. */ HDremove(filename_rw_out); HDremove(vfd_config->wo_path); HDremove(vfd_config->log_file_path); done: return ret_value; } /* end splitter_prepare_file_paths() */ /*------------------------------------------------------------------------- * Function: splitter_crate_single_file_at * * Purpose: Create a file, optionally w/ dataset. * * Return: Success: 0 * Failure: -1 * * Description: * Create a file at the given location with the given FAPL, * and write data as defined in `data` in a pre-determined location in the file. * * If the dataset definition pointer is NULL, no data is written * to the file. * * Will always overwrite an existing file with the given name/path. * *------------------------------------------------------------------------- */ static int splitter_create_single_file_at(const char *filename, hid_t fapl_id, const struct splitter_dataset_def *data) { hid_t file_id = H5I_INVALID_HID; hid_t space_id = H5I_INVALID_HID; hid_t dset_id = H5I_INVALID_HID; int ret_value = 0; if (filename == NULL || *filename == '\0') { SPLITTER_TEST_FAULT("filename is invalid\n"); } /* TODO: sanity-check fapl id? */ file_id = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); if (file_id < 0) { SPLITTER_TEST_FAULT("can't create file\n"); } if (data) { /* TODO: sanity-check data, if it exists? */ space_id = H5Screate_simple(data->n_dims, data->dims, NULL); if (space_id < 0) { SPLITTER_TEST_FAULT("can't create dataspace\n"); } dset_id = H5Dcreate2(file_id, data->dset_name, data->mem_type_id, space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); if (dset_id < 0) { SPLITTER_TEST_FAULT("can't create dataset\n"); } if (H5Dwrite(dset_id, data->mem_type_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, data->buf) < 0) { SPLITTER_TEST_FAULT("can't write data to dataset\n"); } if (H5Dclose(dset_id) < 0) { SPLITTER_TEST_FAULT("can't close dset\n"); } if (H5Sclose(space_id) < 0) { SPLITTER_TEST_FAULT("can't close space\n"); } } /* end if data definition is provided */ if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file\n"); } done: if (ret_value < 0) { H5E_BEGIN_TRY { H5Dclose(dset_id); H5Sclose(space_id); H5Fclose(file_id); } H5E_END_TRY } /* end if error */ return ret_value; } /* end splitter_create_single_file_at() */ /*------------------------------------------------------------------------- * Function: splitter_compare_expected_data * * Purpose: Compare data within a predermined dataset. * * Return: Success: 0 * Failure: -1 * * Description: Read data from the file at a predetermined location, and * compare its contents byte-for-byte with that expected in * the `data` definition structure. * *------------------------------------------------------------------------- */ static int splitter_compare_expected_data(hid_t file_id, const struct splitter_dataset_def *data) { hid_t dset_id = H5I_INVALID_HID; int buf[SPLITTER_SIZE][SPLITTER_SIZE]; int expected[SPLITTER_SIZE][SPLITTER_SIZE]; size_t i = 0; size_t j = 0; int ret_value = 0; if (sizeof((void *)buf) != sizeof(data->buf)) { SPLITTER_TEST_FAULT("invariant size of expected data does not match that received!\n"); } memcpy(expected, data->buf, sizeof(expected)); dset_id = H5Dopen2(file_id, data->dset_name, H5P_DEFAULT); if (dset_id < 0) { SPLITTER_TEST_FAULT("can't open dataset\n"); } if (H5Dread(dset_id, data->mem_type_id, H5S_ALL, H5S_ALL, H5P_DEFAULT, (void *)buf) < 0) { SPLITTER_TEST_FAULT("can't read dataset\n"); } for (i = 0; i < SPLITTER_SIZE; i++) { for (j = 0; j < SPLITTER_SIZE; j++) { if (buf[i][j] != expected[i][j]) { SPLITTER_TEST_FAULT("mismatch in expected data\n"); } } } if (H5Dclose(dset_id) < 0) { SPLITTER_TEST_FAULT("can't close dataset\n"); } done: if (ret_value < 0) { H5E_BEGIN_TRY { H5Dclose(dset_id); } H5E_END_TRY } return ret_value; } /* end splitter_compare_expected_data() */ /*------------------------------------------------------------------------- * Function: splitter_tentative_open_test() * * Purpose: Verifies Splitter behavior with "tentative" H5F_open. * * Return: Success: 0 * Failure: -1 * * Description: * H5F_open() has a two-stage opening process when given a * Read/Write access flag -- first it performs a "tentative * open", where it checks to see whether files already exist * on the system, done in such a way as to not "alter its state" * (i.e., truncate). * This can cause problems with the Splitter VFD, as the * file on the R/W channel might exist already, but that on the * W/O channel will not, and vice-versa. * * This test exists to verify that in any event, files will be * created as required. * *------------------------------------------------------------------------- */ static int splitter_tentative_open_test(hid_t child_fapl_id) { const char *filename_tmp = "splitter_tmp.h5"; char *filename_rw = NULL; H5FD_splitter_vfd_config_t *vfd_config = NULL; hid_t fapl_id = H5I_INVALID_HID; hid_t file_id = H5I_INVALID_HID; int buf[SPLITTER_SIZE][SPLITTER_SIZE]; /* for comparison */ hsize_t dims[2] = {SPLITTER_SIZE, SPLITTER_SIZE}; /* for comparison */ int i = 0; /* for comparison */ int j = 0; /* for comparison */ struct splitter_dataset_def data; /* for comparison */ int ret_value = 0; if (NULL == (vfd_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) SPLITTER_TEST_FAULT("memory allocation for vfd_config struct failed"); if (NULL == (filename_rw = calloc(H5FD_SPLITTER_PATH_MAX + 1, sizeof(char)))) SPLITTER_TEST_FAULT("memory allocation for filename_rw string failed"); /* pre-fill data buffer to write */ for (i = 0; i < SPLITTER_SIZE; i++) { for (j = 0; j < SPLITTER_SIZE; j++) { buf[i][j] = i * 100 + j; } } /* Dataset info */ data.buf = (void *)buf; data.mem_type_id = H5T_NATIVE_INT; data.dims = dims; data.n_dims = 2; data.dset_name = SPLITTER_DATASET_NAME; vfd_config->magic = H5FD_SPLITTER_MAGIC; vfd_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION; vfd_config->ignore_wo_errs = false; vfd_config->rw_fapl_id = child_fapl_id; vfd_config->wo_fapl_id = child_fapl_id; if (splitter_prepare_file_paths(vfd_config, filename_rw) < 0) { SPLITTER_TEST_FAULT("can't prepare splitter file paths\n"); } /* Create a new fapl to use the SPLITTER file driver */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) == H5I_INVALID_HID) { SPLITTER_TEST_FAULT("can't create FAPL ID\n"); } if (H5Pset_fapl_splitter(fapl_id, vfd_config) < 0) { SPLITTER_TEST_FAULT("can't set splitter FAPL\n"); } if (H5Pget_driver(fapl_id) != H5FD_SPLITTER) { SPLITTER_TEST_FAULT("set FAPL not SPLITTER\n"); } /* Create instance of file on disk. * Will be copied verbatim as needed, to avoid issues where differences in * the creation time would befoul comparisons. */ if (splitter_create_single_file_at(filename_tmp, child_fapl_id, &data) < 0) { SPLITTER_TEST_FAULT("can't write W/O file\n"); } /* * H5Fopen() with RDWR access. * Neither file exist already * Should fail. */ H5E_BEGIN_TRY { file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id); } H5E_END_TRY if (file_id != H5I_INVALID_HID) { SPLITTER_TEST_FAULT("open with both nonexistent files unexpectedly succeeded\n"); } if (file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file unexpectedly created\n"); } if (file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file unexpectedly created\n"); } /* * H5Fopen() with RDWR access. * Only W/O file present. * Should fail. */ if (h5_duplicate_file_by_bytes(filename_tmp, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("Can't create W/O file copy.\n"); } H5E_BEGIN_TRY { file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id); } H5E_END_TRY if (file_id != H5I_INVALID_HID) { SPLITTER_TEST_FAULT("open with nonexistent R/W file unexpectedly succeeded\n"); } if (file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file unexpectedly created\n"); } if (!file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n"); } HDremove(vfd_config->wo_path); if (file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("failed to remove W/O file\n"); } /* * H5Fopen() with RDWR access. * Only R/W file present. * Should fail. */ if (h5_duplicate_file_by_bytes(filename_tmp, filename_rw) < 0) { SPLITTER_TEST_FAULT("Can't create R/W file copy.\n"); } H5E_BEGIN_TRY { file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id); } H5E_END_TRY if (file_id != H5I_INVALID_HID) { SPLITTER_TEST_FAULT("open with nonexistent W/O unexpectedly succeeded\n"); } if (!file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n"); } if (file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file unexpectedly created\n"); } /* * H5Fopen() with RDWR access. * Both files present. */ if (h5_duplicate_file_by_bytes(filename_tmp, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("Can't create W/O file copy.\n"); } file_id = H5Fopen(filename_rw, H5F_ACC_RDWR, fapl_id); if (file_id == H5I_INVALID_HID) { SPLITTER_TEST_FAULT("file-open failed with both present\n"); } /* Open successful; close file then inspect presence again */ if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file ID\n"); } if (!file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n"); } if (!file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n"); } /* * H5Fcreate() with TRUNC access. * Both files present. */ file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); if (file_id == H5I_INVALID_HID) { SPLITTER_TEST_FAULT("file-open failed with both present\n"); } /* Open successful; close file then inspect presence again */ if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file ID\n"); } if (!file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n"); } if (!file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n"); } if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n"); } HDremove(filename_rw); HDremove(vfd_config->wo_path); /* * H5Fcreate() with TRUNC access. * R/W already exists. */ if (h5_duplicate_file_by_bytes(filename_tmp, filename_rw) < 0) { SPLITTER_TEST_FAULT("Can't create R/W file copy.\n"); } if (file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("failed to remove W/O file\n"); } file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); if (file_id == H5I_INVALID_HID) { SPLITTER_TEST_FAULT("file-open failed with both present\n"); } /* Open successful; close file then inspect presence again */ if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file ID\n"); } if (!file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n"); } if (!file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n"); } if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n"); } HDremove(filename_rw); HDremove(vfd_config->wo_path); /* * H5Fcreate() with TRUNC access. * Only W/O present. */ if (h5_duplicate_file_by_bytes(filename_tmp, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("Can't create W/O file copy.\n"); } if (file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("failed to remove R/W file\n"); } file_id = H5Fcreate(filename_rw, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id); if (file_id == H5I_INVALID_HID) { SPLITTER_TEST_FAULT("file-open failed with both present\n"); } /* Open successful; close file then inspect presence again */ if (H5Fclose(file_id) < 0) { SPLITTER_TEST_FAULT("can't close file ID\n"); } if (!file_exists(filename_rw, child_fapl_id)) { SPLITTER_TEST_FAULT("R/W file mysteriously disappeared\n"); } if (!file_exists(vfd_config->wo_path, child_fapl_id)) { SPLITTER_TEST_FAULT("W/O file mysteriously disappeared\n"); } if (h5_compare_file_bytes(filename_rw, vfd_config->wo_path) < 0) { SPLITTER_TEST_FAULT("files are not byte-for-byte equivalent\n"); } HDremove(filename_rw); HDremove(vfd_config->wo_path); /* H5Fcreate with both files absent is tested elsewhere */ /* * Cleanup */ if (H5Pclose(fapl_id) < 0) { SPLITTER_TEST_FAULT("can't close splitter FAPL ID\n"); } done: if (ret_value < 0) { H5E_BEGIN_TRY { H5Pclose(fapl_id); H5Fclose(file_id); } H5E_END_TRY } free(vfd_config); free(filename_rw); return ret_value; } /* end splitter_tentative_open_test() */ /*------------------------------------------------------------------------- * Function: file_exists() * * Purpose: Determine whether a file exists on-system * * Return: Non-zero (1) if it exists (H5Fopen successful), * zero (0) if absent (cannot be opened). * * Description: Attempt H5Fopen with the given FAPL ID and RDONLY access flag. * *------------------------------------------------------------------------- */ static int file_exists(const char *filename, hid_t fapl_id) { hid_t file_id = H5I_INVALID_HID; int ret_value = 0; H5E_BEGIN_TRY { file_id = H5Fopen(filename, H5F_ACC_RDONLY, fapl_id); } H5E_END_TRY if (file_id != H5I_INVALID_HID) { ret_value = 1; if (H5Fclose(file_id) < 0) { FAIL_PUTS_ERROR("can't close file ID\n"); } } return ret_value; error: H5E_BEGIN_TRY { H5Fclose(file_id); } H5E_END_TRY return ret_value; } /* end file_exists() */ /*------------------------------------------------------------------------- * Function: test_splitter * * Purpose: Tests the Splitter VFD * * Return: Success: 0 * Failure: -1 * * Description: * This test function uses the Splitter VFD to produce a r/w * file and a w/o file. It will verify that the two files * are identical. * *------------------------------------------------------------------------- */ static herr_t test_splitter(void) { int buf[SPLITTER_SIZE][SPLITTER_SIZE]; hsize_t dims[2] = {SPLITTER_SIZE, SPLITTER_SIZE}; hid_t child_fapl_id = H5I_INVALID_HID; int i = 0; int j = 0; struct splitter_dataset_def data; TESTING("SPLITTER file driver"); /* pre-fill data buffer to write */ for (i = 0; i < SPLITTER_SIZE; i++) { for (j = 0; j < SPLITTER_SIZE; j++) { buf[i][j] = i * 100 + j; } } /* Dataset info */ data.buf = (void *)buf; data.mem_type_id = H5T_NATIVE_INT; data.dims = dims; data.n_dims = 2; data.dset_name = SPLITTER_DATASET_NAME; /* Stand-in for manual FAPL creation * Enables verification with arbitrary VFDs via `make check-vfd` */ child_fapl_id = h5_fileaccess(); if (child_fapl_id < 0) { TEST_ERROR; } if (!driver_is_splitter_compatible(child_fapl_id)) { SKIPPED(); printf(" given driver is not Splitter W/O compatible.\n"); return 0; } /* Test Read-Only access, including when a file on the W/O channel * does not exist. */ if (splitter_RO_test(&data, child_fapl_id) < 0) { TEST_ERROR; } /* Test opening of files when the W/O channel does not exist. */ if (splitter_tentative_open_test(child_fapl_id) < 0) { TEST_ERROR; } /* Test file creation, utilizing different child FAPLs (default vs. * specified), logfile, and Write Channel error ignoring behavior. */ for (i = 0; i < 4; i++) { bool ignore_wo_errors = (i & 1) ? true : false; bool provide_logfile_path = (i & 2) ? true : false; hid_t child_fapl_ids[2] = {H5P_DEFAULT, H5P_DEFAULT}; /* Test child driver definition/default combination */ for (j = 0; j < 4; j++) { child_fapl_ids[0] = (j & 1) ? child_fapl_id : H5P_DEFAULT; child_fapl_ids[1] = (j & 2) ? child_fapl_id : H5P_DEFAULT; if (run_splitter_test(&data, ignore_wo_errors, provide_logfile_path, child_fapl_ids) < 0) { TEST_ERROR; } } /* end for child fapl definition/pairing */ } /* end for behavior-flag loops */ /* TODO: SWMR open? */ /* Concurrent opens with both drivers using the Splitter */ if (H5Pclose(child_fapl_id) == FAIL) { TEST_ERROR; } PASSED(); return 0; error: if (child_fapl_id != H5I_INVALID_HID) H5Pclose(child_fapl_id); return -1; } /* end test_splitter() */ #undef SPLITTER_TEST_FAULT /***************************************************************************** * * Function setup_rand() * * Purpose: Use gettimeofday() to obtain a seed for rand(), print the * seed to stdout, and then pass it to srand(). * * This is a version of the same routine in * testpar/t_cache.c modified for use in serial tests. * * Return: void. * *****************************************************************************/ static void setup_rand(void) { bool use_predefined_seed = false; unsigned predefined_seed = 18669; unsigned seed; struct timeval tv; if (use_predefined_seed) { seed = predefined_seed; fprintf(stdout, "\n%s: predefined_seed = %d.\n\n", __func__, seed); fflush(stdout); HDsrand(seed); } else { if (HDgettimeofday(&tv, NULL) != 0) { fprintf(stdout, "\n%s: gettimeofday() failed -- srand() not called.\n\n", __func__); fflush(stdout); } else { seed = (unsigned)tv.tv_usec; fprintf(stdout, "\n%s: seed = %d.\n\n", __func__, seed); fflush(stdout); HDsrand(seed); } } return; } /* setup_rand() */ /* * Callback implementations for ctl feature testing VFD */ static H5FD_t * H5FD__ctl_test_vfd_open(const char H5_ATTR_UNUSED *name, unsigned H5_ATTR_UNUSED flags, hid_t H5_ATTR_UNUSED fapl_id, haddr_t H5_ATTR_UNUSED maxaddr) { return calloc(1, sizeof(H5FD_t)); } static herr_t H5FD__ctl_test_vfd_close(H5FD_t H5_ATTR_UNUSED *_file) { free(_file); return SUCCEED; } static haddr_t H5FD__ctl_test_vfd_get_eoa(const H5FD_t H5_ATTR_UNUSED *file, H5FD_mem_t H5_ATTR_UNUSED type) { return HADDR_UNDEF; } static herr_t H5FD__ctl_test_vfd_set_eoa(H5FD_t H5_ATTR_UNUSED *_file, H5FD_mem_t H5_ATTR_UNUSED type, haddr_t H5_ATTR_UNUSED addr) { return FAIL; } static haddr_t H5FD__ctl_test_vfd_get_eof(const H5FD_t H5_ATTR_UNUSED *file, H5FD_mem_t H5_ATTR_UNUSED type) { return HADDR_UNDEF; } static herr_t H5FD__ctl_test_vfd_read(H5FD_t H5_ATTR_UNUSED *_file, H5FD_mem_t H5_ATTR_UNUSED type, hid_t H5_ATTR_UNUSED fapl_id, haddr_t H5_ATTR_UNUSED addr, size_t H5_ATTR_UNUSED size, void H5_ATTR_UNUSED *buf) { return FAIL; } static herr_t H5FD__ctl_test_vfd_write(H5FD_t H5_ATTR_UNUSED *_file, H5FD_mem_t H5_ATTR_UNUSED type, hid_t H5_ATTR_UNUSED fapl_id, haddr_t H5_ATTR_UNUSED addr, size_t H5_ATTR_UNUSED size, const void H5_ATTR_UNUSED *buf) { return FAIL; } static herr_t H5FD__ctl_test_vfd_ctl(H5FD_t H5_ATTR_UNUSED *_file, uint64_t op_code, uint64_t flags, const void H5_ATTR_UNUSED *input, void H5_ATTR_UNUSED **output) { herr_t ret_value = SUCCEED; switch (op_code) { /* Op code for testing purposes */ case H5FD_CTL_TEST_OPCODE: break; /* Unknown op code */ default: if (flags & H5FD_CTL_FAIL_IF_UNKNOWN_FLAG) ret_value = FAIL; break; } return ret_value; } /* Minimal VFD for ctl feature tests */ static const H5FD_class_t H5FD_ctl_test_vfd_g = { H5FD_CLASS_VERSION, /* struct version */ (H5FD_class_value_t)201, /* value */ "ctl_test_vfd", /* name */ HADDR_MAX, /* maxaddr */ H5F_CLOSE_SEMI, /* fc_degree */ NULL, /* terminate */ NULL, /* sb_size */ NULL, /* sb_encode */ NULL, /* sb_decode */ 0, /* fapl_size */ NULL, /* fapl_get */ NULL, /* fapl_copy */ NULL, /* fapl_free */ 0, /* dxpl_size */ NULL, /* dxpl_copy */ NULL, /* dxpl_free */ H5FD__ctl_test_vfd_open, /* open */ H5FD__ctl_test_vfd_close, /* close */ NULL, /* cmp */ NULL, /* query */ NULL, /* get_type_map */ NULL, /* alloc */ NULL, /* free */ H5FD__ctl_test_vfd_get_eoa, /* get_eoa */ H5FD__ctl_test_vfd_set_eoa, /* set_eoa */ H5FD__ctl_test_vfd_get_eof, /* get_eof */ NULL, /* get_handle */ H5FD__ctl_test_vfd_read, /* read */ H5FD__ctl_test_vfd_write, /* write */ NULL, /* read_vector */ NULL, /* write_vector */ NULL, /* read_selection */ NULL, /* write_selection */ NULL, /* flush */ NULL, /* truncate */ NULL, /* lock */ NULL, /* unlock */ NULL, /* del */ H5FD__ctl_test_vfd_ctl, /* ctl */ H5FD_FLMAP_DICHOTOMY /* fl_map */ }; /*------------------------------------------------------------------------- * Function: run_ctl_test * * Purpose: Helper method for VFD "ctl" callback test * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ static herr_t run_ctl_test(uint64_t op_code, uint64_t flags, ctl_test_opc_type opc_type, hid_t fapl_id) { bool fail_if_unknown = false; bool routing_flag_set = false; bool is_passthrough_vfd = false; bool expect_fail = false; H5FD_t *file_drv_ptr = NULL; herr_t ctl_result = SUCCEED; hid_t driver_id = H5I_INVALID_HID; char filename[1024]; /* Check for a few ctl function flags */ fail_if_unknown = (flags & H5FD_CTL_FAIL_IF_UNKNOWN_FLAG); routing_flag_set = (flags & H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG); /* Determine if the top-level VFD is a passthrough VFD */ if ((driver_id = H5Pget_driver(fapl_id)) < 0) PUTS_ERROR("couldn't get VFD ID from FAPL"); is_passthrough_vfd = ((driver_id == H5FD_SPLITTER) || (driver_id == H5FD_MULTI)); /* * "Open" testing file. Note that our VFD for testing the ctl * feature doesn't actually create or open files, so we don't * need to create the testing file; we just need the VFD to * give us a pointer to a H5FD_t structure. */ h5_fixname(FILENAME[14], fapl_id, filename, sizeof(filename)); if (NULL == (file_drv_ptr = H5FDopen(filename, H5F_ACC_RDWR, fapl_id, HADDR_UNDEF))) PUTS_ERROR("couldn't get pointer to H5FD_t structure"); /* Determine whether the H5FDctl call is expected to fail */ expect_fail = fail_if_unknown && (CTL_OPC_UNKNOWN == opc_type); if (is_passthrough_vfd) { /* Should fail if op code is unknown to passthrough VFD * (but known to terminal VFD), no routing flag is specified * and the "fail if unknown" flag is specified. */ expect_fail = expect_fail || ((CTL_OPC_KNOWN_TERMINAL == opc_type) && !routing_flag_set && fail_if_unknown); } /* Issue opcode to VFD */ if (expect_fail) { H5E_BEGIN_TRY { ctl_result = H5FDctl(file_drv_ptr, op_code, flags, NULL, NULL); } H5E_END_TRY } else ctl_result = H5FDctl(file_drv_ptr, op_code, flags, NULL, NULL); /* Verify result of H5FDctl call */ if (expect_fail) { if (ctl_result == SUCCEED) PUTS_ERROR("H5FDctl call succeeded when it should have failed"); } else { if (ctl_result != SUCCEED) PUTS_ERROR("H5FDctl call failed when it should have succeeded"); } /* Close H5FD_t structure pointer */ if (H5FDclose(file_drv_ptr) < 0) PUTS_ERROR("couldn't close H5FD_t structure pointer"); file_drv_ptr = NULL; return 0; error: H5E_BEGIN_TRY { H5FDclose(file_drv_ptr); } H5E_END_TRY return -1; } /*------------------------------------------------------------------------- * Function: test_ctl * * Purpose: Tests the VFD "ctl" callback * * Return: Non-negative on success/Negative on failure * *------------------------------------------------------------------------- */ static herr_t test_ctl(void) { H5FD_splitter_vfd_config_t *splitter_config = NULL; uint64_t op_code; uint64_t flags; hid_t driver_id = H5I_INVALID_HID; hid_t fapl_id = H5I_INVALID_HID; hid_t sub_fapl_id = H5I_INVALID_HID; TESTING("VFD ctl callback"); puts(""); /* Register VFD for test */ if ((driver_id = H5FDregister(&H5FD_ctl_test_vfd_g)) < 0) PUTS_ERROR("couldn't register VFD for testing"); if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) PUTS_ERROR("couldn't create FAPL"); if (H5Pset_driver(fapl_id, driver_id, NULL) < 0) PUTS_ERROR("couldn't set testing VFD on FAPL"); TESTING_2("known op code to terminal VFD (without fail on unknown flag)"); op_code = H5FD_CTL_TEST_OPCODE; flags = 0; /* H5FDctl call should succeed normally */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("known op code to terminal VFD (with fail on unknown flag)"); op_code = H5FD_CTL_TEST_OPCODE; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG; /* H5FDctl call should succeed normally */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("known op code to terminal VFD (without fail on unknown flag/route to terminal VFD)"); op_code = H5FD_CTL_TEST_OPCODE; flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* H5FDctl call should succeed normally */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("known op code to terminal VFD (with fail on unknown flag/route to terminal VFD)"); op_code = H5FD_CTL_TEST_OPCODE; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* H5FDctl call should succeed normally */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to terminal VFD (without fail on unknown flag)"); op_code = H5FD_CTL_OPC_RESERVED; flags = 0; /* H5FDctl call should silently ignore unknown op code and succeed */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to terminal VFD (with fail on unknown flag)"); op_code = H5FD_CTL_OPC_RESERVED; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG; /* H5FDctl call should fail due to 'fail if unknown' flag being specified */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to terminal VFD (without fail on unknown flag/route to terminal VFD)"); op_code = H5FD_CTL_OPC_RESERVED; flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* H5FDctl call should silently ignore unknown op code and succeed */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to terminal VFD (with fail on unknown flag/route to terminal VFD)"); op_code = H5FD_CTL_OPC_RESERVED; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* H5FDctl call should fail due to 'fail if unknown' flag being specified */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); /* Set up splitter VFD config */ if (NULL == (splitter_config = calloc(1, sizeof(H5FD_splitter_vfd_config_t)))) TEST_ERROR; splitter_config->magic = H5FD_SPLITTER_MAGIC; splitter_config->version = H5FD_CURR_SPLITTER_VFD_CONFIG_VERSION; splitter_config->ignore_wo_errs = true; splitter_config->rw_fapl_id = H5P_DEFAULT; splitter_config->wo_fapl_id = H5P_DEFAULT; h5_fixname(FILENAME[15], splitter_config->wo_fapl_id, splitter_config->wo_path, H5FD_SPLITTER_PATH_MAX); if ((sub_fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) PUTS_ERROR("couldn't create FAPL"); if (H5Pset_driver(sub_fapl_id, driver_id, NULL) < 0) PUTS_ERROR("couldn't set testing VFD on FAPL"); splitter_config->rw_fapl_id = sub_fapl_id; if (H5Pset_fapl_splitter(fapl_id, splitter_config) < 0) PUTS_ERROR("couldn't set splitter VFD on FAPL"); TESTING_2("known op code through passthrough VFD to terminal VFD (without fail on unknown flag/no " "routing flag)"); op_code = H5FD_CTL_TEST_OPCODE; flags = 0; /* * H5FDctl call should silently ignore unknown op code in * passthrough VFD since no routing flag is specified and * 'fail if unknown' flag is not specified. */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2( "known op code through passthrough VFD to terminal VFD (with fail on unknown flag/no routing flag)"); op_code = H5FD_CTL_TEST_OPCODE; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG; /* * H5FDctl call should fail since op code is unknown to * passthrough VFD (though known to terminal VFD), no * routing flag is specified and the 'fail if unknown' * flag is specified. */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("known op code through passthrough VFD to terminal VFD (without fail on unknown flag/route to " "terminal VFD)"); op_code = H5FD_CTL_TEST_OPCODE; flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* * H5Dctl call should succeed since the passthrough VFD * doesn't recognize the op code, but has been instructed * to route it down to the terminal VFD. */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("known op code through passthrough VFD to terminal VFD (with fail on unknown flag/route to " "terminal VFD)"); op_code = H5FD_CTL_TEST_OPCODE; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* * H5Dctl call should succeed since the passthrough VFD * doesn't recognize the op code, but has been instructed * to route it down to the terminal VFD. */ if (run_ctl_test(op_code, flags, CTL_OPC_KNOWN_TERMINAL, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to passthrough VFD (without fail on unknown flag)"); op_code = H5FD_CTL_OPC_RESERVED; flags = 0; /* * H5FDctl call should silently ignore unknown op code in * passthrough VFD since no routing flag is specified and * 'fail if unknown' flag is not specified. */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to passthrough VFD (with fail on unknown flag)"); op_code = H5FD_CTL_OPC_RESERVED; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG; /* * H5FDctl call should fail since op code is unknown to * passthrough VFD, no routing flag is specified and the * 'fail if unknown' flag is specified. */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to passthrough VFD (without fail on unknown flag/route to terminal VFD)"); op_code = H5FD_CTL_OPC_RESERVED; flags = H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* * H5Dctl call should succeed since the passthrough VFD * doesn't recognize the op code, but has been instructed * to route it down to the terminal VFD and the 'fail if * unknown' flag has not been specified. Therefore, the * terminal VFD should silently ignore the unknown op * code. */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("unknown op code to passthrough VFD (with fail on unknown flag/route to terminal VFD)"); op_code = H5FD_CTL_OPC_RESERVED; flags = H5FD_CTL_FAIL_IF_UNKNOWN_FLAG | H5FD_CTL_ROUTE_TO_TERMINAL_VFD_FLAG; /* * H5Dctl call should fail since the passthrough VFD * doesn't recognize the op code, but has been instructed * to route it down to the terminal VFD and the 'fail if * unknown' flag has been specified. Therefore, the * terminal VFD will throw an error for the unknown op * code. */ if (run_ctl_test(op_code, flags, CTL_OPC_UNKNOWN, fapl_id) < 0) TEST_ERROR; PASSED(); TESTING_2("test cleanup"); free(splitter_config); if (H5FDunregister(driver_id) < 0) TEST_ERROR; if (H5Pclose(sub_fapl_id) < 0) TEST_ERROR; if (H5Pclose(fapl_id) < 0) TEST_ERROR; PASSED(); return 0; error: H5E_BEGIN_TRY { if (splitter_config) free(splitter_config); H5FDunregister(driver_id); H5Pclose(sub_fapl_id); H5Pclose(fapl_id); } H5E_END_TRY return -1; } /*------------------------------------------------------------------------- * Function: test_vector_io__setup_v * * Purpose: Construct and initialize a vector of I/O requests used * to test vector I/O. Note that while the vectors are * allocated and initialized, they are not assigned * base addresses. * * All arrays parameters are presumed to be of length * count. * * Return: Return true if successful, and false if any errors * are encountered. * *------------------------------------------------------------------------- */ static bool test_vector_io__setup_v(uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[], const void *write_bufs[], void *read_bufs[], char base_fill_char) { bool result = true; /* will set to false on failure */ char fill_char = base_fill_char; void *temp_buf = NULL; uint32_t i; uint32_t j; H5FD_mem_t mem_types[6] = {H5FD_MEM_SUPER, H5FD_MEM_BTREE, H5FD_MEM_DRAW, H5FD_MEM_GHEAP, H5FD_MEM_LHEAP, H5FD_MEM_OHDR}; /* set the arrays of pointers to the write and read buffers to NULL, * so that we can release memory on failure. */ for (i = 0; i < count; i++) { write_bufs[i] = NULL; read_bufs[i] = NULL; } for (i = 0; i < count; i++) { types[i] = mem_types[i % 6]; addrs[i] = HADDR_UNDEF; sizes[i] = (size_t)((rand() & 1023) + 1); temp_buf = malloc(sizes[i] + 1); read_bufs[i] = malloc(sizes[i] + 1); if ((NULL == temp_buf) || (NULL == read_bufs[i])) { fprintf(stderr, "%s: can't malloc read / write bufs.\n", __func__); result = false; break; } for (j = 0; j < sizes[i]; j++) { ((char *)temp_buf)[j] = fill_char; ((char *)(read_bufs[i]))[j] = '\0'; } ((char *)temp_buf)[sizes[i]] = '\0'; ((char *)(read_bufs[i]))[sizes[i]] = '\0'; write_bufs[i] = (const void *)temp_buf; temp_buf = NULL; fill_char++; } if (!result) { /* free buffers */ free(temp_buf); for (i = 0; i < count; i++) { if (write_bufs[i]) { h5_free_const(write_bufs[i]); write_bufs[i] = NULL; } if (read_bufs[i]) { free(read_bufs[i]); read_bufs[i] = NULL; } } } return (result); } /* end test_vector_io__setup_v() */ /*------------------------------------------------------------------------- * Function: test_vector_io__setup_fixed_size_v * * Purpose: To test the optimization allowing short sizes and types * arrays, construct and initialize a vector of I/O requests * with each request of the same size and type, and use the * optimizatin to allow reduced length sizes and types * vectors. Since the function is supplied with types and * sizes vectors of length count, simulate shorter vectors * by initializing the sizes and types vectors to values * that will cause failure if used. * * All arrays parameters are presumed to be of length * count. Count is presumed to be a power of 2, and at * least 2. * * Return: Return true if successful, and false if any errors * are encountered. * *------------------------------------------------------------------------- */ static bool test_vector_io__setup_fixed_size_v(uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[], const void *write_bufs[], void *read_bufs[], char base_fill_char) { bool result = true; /* will set to false on failure */ char fill_char = base_fill_char; void *temp_buf = NULL; uint32_t fix_point; uint32_t i; uint32_t j; uint32_t k; H5FD_mem_t mem_types[6] = {H5FD_MEM_SUPER, H5FD_MEM_BTREE, H5FD_MEM_DRAW, H5FD_MEM_GHEAP, H5FD_MEM_LHEAP, H5FD_MEM_OHDR}; /* set the arrays of pointers to the write and read buffers to NULL, * so that we can release memory on failure. * * Set the types[] and sizes[] arrays to invalid / improbable values * so that use of these values will trigger failures. */ for (i = 0; i < count; i++) { write_bufs[i] = NULL; read_bufs[i] = NULL; types[i] = H5FD_MEM_NTYPES; sizes[i] = SIZE_MAX; } /* randomly select the point in the vector after which all entries are * fixed at the same size and type. Observe that 0 <= fix_point < * count / 2. */ fix_point = ((uint32_t)rand() & (count - 1)) / 2; assert(fix_point < count / 2); for (i = 0; i < count; i++) { if (i <= fix_point) { types[i] = mem_types[i % 6]; addrs[i] = HADDR_UNDEF; sizes[i] = (size_t)((rand() & 1023) + 1); temp_buf = malloc(sizes[i] + 1); read_bufs[i] = malloc(sizes[i] + 1); } else { if (i == fix_point + 1) { /* set the sentinels that indicate that all remaining * types and sizes are the same as the previous value. */ types[i] = H5FD_MEM_NOLIST; sizes[i] = 0; } addrs[i] = HADDR_UNDEF; temp_buf = malloc(sizes[fix_point] + 1); read_bufs[i] = malloc(sizes[fix_point] + 1); } if ((NULL == temp_buf) || (NULL == read_bufs[i])) { fprintf(stderr, "%s: can't malloc read / write bufs.\n", __func__); result = false; break; } /* need to avoid examining sizes beyond the fix_point */ k = MIN(i, fix_point); for (j = 0; j < sizes[k]; j++) { ((char *)temp_buf)[j] = fill_char; ((char *)(read_bufs[i]))[j] = '\0'; } ((char *)temp_buf)[sizes[k]] = '\0'; ((char *)(read_bufs[i]))[sizes[k]] = '\0'; write_bufs[i] = (const void *)temp_buf; temp_buf = NULL; fill_char++; } if (!result) { /* free buffers */ free(temp_buf); for (i = 0; i < count; i++) { if (write_bufs[i]) { h5_free_const(write_bufs[i]); write_bufs[i] = NULL; } if (read_bufs[i]) { free(read_bufs[i]); read_bufs[i] = NULL; } } } return (result); } /* end test_vector_io__setup_fixed_size_v() */ /*------------------------------------------------------------------------- * Function: test_vector_io__read_v_indiv * * Purpose: Read the supplied vector as a sequence of individual * reads. * * All arrays parameters are presumed to be of length * count. * * Return: Return true if successful, and false if any errors * are encountered. * *------------------------------------------------------------------------- */ static bool test_vector_io__read_v_indiv(H5FD_t *lf, uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[], void *read_bufs[]) { bool size_fixed = false; bool type_fixed = false; bool result = true; /* will set to false on failure */ bool verbose = false; uint32_t i; size_t size = SIZE_MAX; H5FD_mem_t type = H5FD_MEM_NTYPES; for (i = 0; i < count; i++) { SET_SIZE(size_fixed, sizes, size, i); SET_TYPE(type_fixed, types, type, i); if (H5FDread(lf, type, H5P_DEFAULT, addrs[i], size, read_bufs[i]) < 0) { if (verbose) { fprintf(stdout, "%s: H5FDread() failed on entry %d.\n", __func__, i); } result = false; break; } } return (result); } /* end test_vector_io__read_v_indiv() */ /*------------------------------------------------------------------------- * Function: test_vector_io__write_v_indiv * * Purpose: Write the supplied vector as a sequence of individual * writes. * * All arrays parameters are presumed to be of length * count. * * Return: Return true if successful, and false if any errors * are encountered. * *------------------------------------------------------------------------- */ static bool test_vector_io__write_v_indiv(H5FD_t *lf, uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[], const void *write_bufs[]) { bool size_fixed = false; bool type_fixed = false; bool result = true; /* will set to false on failure */ bool verbose = false; uint32_t i; size_t size = SIZE_MAX; H5FD_mem_t type = H5FD_MEM_NTYPES; for (i = 0; i < count; i++) { SET_SIZE(size_fixed, sizes, size, i); SET_TYPE(type_fixed, types, type, i); if (H5FDwrite(lf, type, H5P_DEFAULT, addrs[i], size, write_bufs[i]) < 0) { if (verbose) { fprintf(stdout, "%s: HDwrite() failed on entry %d.\n", __func__, i); } result = false; break; } } return (result); } /* end test_vector_io__write_v_indiv() */ /*------------------------------------------------------------------------- * * Function: test_vector_io__verify_v * * Purpose: Verify that the read and write buffers of the supplied * vectors are identical. * * Return: true if the read and write vectors are identical, and * false otherwise. * *------------------------------------------------------------------------- */ static bool test_vector_io__verify_v(uint32_t count, H5FD_mem_t types[], size_t sizes[], const void *write_bufs[], void *read_bufs[], const char *name) { bool size_fixed = false; bool type_fixed = false; bool identical = true; bool verbose = true; uint32_t i; size_t j; const char *w_buf; char *r_buf; const char *mem_type_names[7] = {"H5FD_MEM_DEFAULT", "H5FD_MEM_SUPER", "H5FD_MEM_BTREE", "H5FD_MEM_DRAW", "H5FD_MEM_GHEAP", "H5FD_MEM_LHEAP", "H5FD_MEM_OHDR"}; size_t size = SIZE_MAX; H5FD_mem_t type = H5FD_MEM_NTYPES; i = 0; while ((i < count) && (identical)) { SET_SIZE(size_fixed, sizes, size, i); SET_TYPE(type_fixed, types, type, i); w_buf = (const char *)(write_bufs[i]); r_buf = (char *)(read_bufs[i]); j = 0; while ((j < size) && (identical)) { if (w_buf[j] != r_buf[j]) { identical = false; if (verbose) { fprintf(stdout, "\n\nread/write buf mismatch in vector/entry"); fprintf(stdout, "\"%s\"/%u at offset %llu/%llu w/r = %c/%c type = %s\n\n", name, (unsigned)i, (long long unsigned)j, (long long unsigned)size, w_buf[j], r_buf[j], mem_type_names[type]); } } j++; } i++; } return (identical); } /* end test_vector_io__verify_v() */ /*------------------------------------------------------------------------- * * Function: test_vector_io__dump_test_vectors * * Purpose: Print a set of test vectors to stdout. * Vectors are assumed to be of length count, and * buffers must be either NULL, or null terminate strings * of char. * * Return: void. * *------------------------------------------------------------------------- */ static void test_vector_io__dump_test_vectors(uint32_t count, H5FD_mem_t types[], haddr_t addrs[], size_t sizes[], const void *write_bufs[], void *read_bufs[], const char *name) { bool size_fixed = false; bool type_fixed = false; uint32_t i; const char *mem_type_names[7] = {"H5FD_MEM_DEFAULT", "H5FD_MEM_SUPER", "H5FD_MEM_BTREE", "H5FD_MEM_DRAW", "H5FD_MEM_GHEAP", "H5FD_MEM_LHEAP", "H5FD_MEM_OHDR"}; size_t size = SIZE_MAX; H5FD_mem_t type = H5FD_MEM_NTYPES; const char *w_buf; char *r_buf; fprintf(stdout, "\n\nDumping test vector \"%s\" of length %d\n\n", name, count); for (i = 0; i < count; i++) { SET_SIZE(size_fixed, sizes, size, i); SET_TYPE(type_fixed, types, type, i); assert((H5FD_MEM_DEFAULT <= type) && (type <= H5FD_MEM_OHDR)); w_buf = (const char *)(write_bufs[i]); if (read_bufs) { r_buf = (char *)(read_bufs[i]); } else { r_buf = NULL; } fprintf(stdout, "%u: addr/len = %llu/%llu, type = %s, w_buf = \"%s\"\n", (unsigned)i, (long long unsigned)(addrs[i]), (long long unsigned)(size), mem_type_names[type], w_buf); if (r_buf) { fprintf(stdout, " r_buf = \"%s\"\n", r_buf); } } return; } /* end test_vector_io__dump_test_vectors() */ /*------------------------------------------------------------------------- * Function: test_vector_io * * Purpose: Test I/O using the vector I/O VFD public VFD calls. * * Test proceeds as follows: * * 1) read / write vectors and verify results * * 2) write individual / read vector and verify results * * 3) write vector / read individual and verify results * * 4) Close and then re-open the file, verify data written * above. * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ #define VECTOR_LEN 16 static herr_t test_vector_io(const char *vfd_name) { char test_title[80]; bool size_fixed_0 = false; /* whether remaining entry */ bool size_fixed_1 = false; /* sizes in vector are fixed. */ bool size_fixed_2 = false; /* */ bool type_fixed_0 = false; /* whether remaining entry */ bool type_fixed_1 = false; /* types in vector are fixed. */ bool type_fixed_2 = false; /* */ bool verbose = false; hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */ haddr_t eoa; /* file eoa */ char filename[1024]; /* filename */ char *buf; /* tmp ptr to buf */ unsigned flags = 0; /* file open flags */ H5FD_t *lf = NULL; /* VFD struct ptr */ uint32_t i; /* index */ uint32_t j; /* index */ uint32_t count = VECTOR_LEN; /* length of vectors */ H5FD_mem_t types_0[VECTOR_LEN]; /* types vector */ H5FD_mem_t types_1[VECTOR_LEN]; /* types vector */ H5FD_mem_t types_2[VECTOR_LEN]; /* types vector */ H5FD_mem_t f_types_0[VECTOR_LEN]; /* fixed types vector */ H5FD_mem_t f_types_1[VECTOR_LEN]; /* fixed types vector */ H5FD_mem_t f_types_2[VECTOR_LEN]; /* fixed types vector */ H5FD_mem_t f_type_0 = H5FD_MEM_NTYPES; /* current type for f vector 0 */ H5FD_mem_t f_type_1 = H5FD_MEM_NTYPES; /* current type for f vector 1 */ H5FD_mem_t f_type_2 = H5FD_MEM_NTYPES; /* current type for f vector 2 */ haddr_t addrs_0[VECTOR_LEN]; /* addresses vector */ haddr_t addrs_1[VECTOR_LEN]; /* addresses vector */ haddr_t addrs_2[VECTOR_LEN]; /* addresses vector */ haddr_t f_addrs_0[VECTOR_LEN]; /* fixed addresses vector */ haddr_t f_addrs_1[VECTOR_LEN]; /* fixed addresses vector */ haddr_t f_addrs_2[VECTOR_LEN]; /* fixed addresses vector */ size_t sizes_0[VECTOR_LEN]; /* sizes vector */ size_t sizes_1[VECTOR_LEN]; /* sizes vector */ size_t sizes_2[VECTOR_LEN]; /* sizes vector */ size_t f_sizes_0[VECTOR_LEN]; /* fixed sizes vector */ size_t f_sizes_1[VECTOR_LEN]; /* fixed sizes vector */ size_t f_sizes_2[VECTOR_LEN]; /* fixed sizes vector */ size_t f_size_0 = 0; /* current size for f vector 0 */ size_t f_size_1 = 0; /* current size for f vector 1 */ size_t f_size_2 = 0; /* current size for f vector 2 */ const void *write_bufs_0[VECTOR_LEN]; /* write bufs vector */ const void *write_bufs_1[VECTOR_LEN]; /* write bufs vector */ const void *write_bufs_2[VECTOR_LEN]; /* write bufs vector */ const void *f_write_bufs_0[VECTOR_LEN]; /* fixed write bufs vector */ const void *f_write_bufs_1[VECTOR_LEN]; /* fixed write bufs vector */ const void *f_write_bufs_2[VECTOR_LEN]; /* fixed write bufs vector */ void *read_bufs_0[VECTOR_LEN]; /* read bufs vector */ void *read_bufs_1[VECTOR_LEN]; /* read bufs vector */ void *read_bufs_2[VECTOR_LEN]; /* read bufs vector */ void *f_read_bufs_0[VECTOR_LEN]; /* fixed read bufs vector */ void *f_read_bufs_1[VECTOR_LEN]; /* fixed read bufs vector */ void *f_read_bufs_2[VECTOR_LEN]; /* fixed read bufs vector */ snprintf(test_title, sizeof(test_title), "vector I/O with %s VFD", vfd_name); TESTING(test_title); /* Set property list and file name for target driver */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (strcmp(vfd_name, "sec2") == 0) { if (H5Pset_fapl_sec2(fapl_id) < 0) TEST_ERROR; h5_fixname(FILENAME[0], fapl_id, filename, sizeof(filename)); } else if (strcmp(vfd_name, "stdio") == 0) { if (H5Pset_fapl_stdio(fapl_id) < 0) TEST_ERROR; h5_fixname(FILENAME[7], fapl_id, filename, sizeof filename); } else { fprintf(stdout, "un-supported VFD\n"); TEST_ERROR; } /* setup the test vectors -- note that addresses are not set until * we allocate space via the file driver. */ if (!(test_vector_io__setup_v(count, types_0, addrs_0, sizes_0, write_bufs_0, read_bufs_0, 'a') && test_vector_io__setup_v(count, types_1, addrs_1, sizes_1, write_bufs_1, read_bufs_1, 'e') && test_vector_io__setup_v(count, types_2, addrs_2, sizes_2, write_bufs_2, read_bufs_2, 'A'))) TEST_ERROR; if (!(test_vector_io__setup_fixed_size_v(count, f_types_0, f_addrs_0, f_sizes_0, f_write_bufs_0, f_read_bufs_0, 'b') && test_vector_io__setup_fixed_size_v(count, f_types_1, f_addrs_1, f_sizes_1, f_write_bufs_1, f_read_bufs_1, 'f') && test_vector_io__setup_fixed_size_v(count, f_types_2, f_addrs_2, f_sizes_2, f_write_bufs_2, f_read_bufs_2, 'B'))) TEST_ERROR; flags = H5F_ACC_RDWR | H5F_ACC_CREAT | H5F_ACC_TRUNC; if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF))) TEST_ERROR; /* allocate space for the data in the test vectors */ for (i = 0; i < count; i++) { addrs_0[i] = H5FDalloc(lf, types_0[i], H5P_DEFAULT, (hsize_t)(sizes_0[i])); addrs_1[i] = H5FDalloc(lf, types_1[i], H5P_DEFAULT, (hsize_t)(sizes_1[i])); addrs_2[i] = H5FDalloc(lf, types_2[i], H5P_DEFAULT, (hsize_t)(sizes_2[i])); if ((addrs_0[i] == HADDR_UNDEF) || (addrs_1[i] == HADDR_UNDEF) || (addrs_2[i] == HADDR_UNDEF)) TEST_ERROR; SET_SIZE(size_fixed_0, f_sizes_0, f_size_0, i); SET_SIZE(size_fixed_1, f_sizes_1, f_size_1, i); SET_SIZE(size_fixed_2, f_sizes_2, f_size_2, i); SET_TYPE(type_fixed_0, f_types_0, f_type_0, i); SET_TYPE(type_fixed_1, f_types_1, f_type_1, i); SET_TYPE(type_fixed_2, f_types_2, f_type_2, i); f_addrs_0[i] = H5FDalloc(lf, f_type_0, H5P_DEFAULT, (hsize_t)(f_size_0)); f_addrs_1[i] = H5FDalloc(lf, f_type_1, H5P_DEFAULT, (hsize_t)(f_size_1)); f_addrs_2[i] = H5FDalloc(lf, f_type_2, H5P_DEFAULT, (hsize_t)(f_size_2)); if ((f_addrs_0[i] == HADDR_UNDEF) || (f_addrs_1[i] == HADDR_UNDEF) || (f_addrs_2[i] == HADDR_UNDEF)) TEST_ERROR; } if (verbose) { test_vector_io__dump_test_vectors(count, types_0, addrs_0, sizes_0, write_bufs_0, NULL, "zero"); test_vector_io__dump_test_vectors(count, types_1, addrs_1, sizes_1, write_bufs_1, NULL, "one"); test_vector_io__dump_test_vectors(count, types_2, addrs_2, sizes_2, write_bufs_2, NULL, "two"); test_vector_io__dump_test_vectors(count, f_types_0, f_addrs_0, f_sizes_0, f_write_bufs_0, NULL, "fixed zero"); test_vector_io__dump_test_vectors(count, f_types_1, f_addrs_1, f_sizes_1, f_write_bufs_1, NULL, "fixed one"); test_vector_io__dump_test_vectors(count, f_types_2, f_addrs_2, f_sizes_2, f_write_bufs_2, NULL, "fixed two"); } /* write and then read using vector I/O. First, read/write vector * of length 1, then of length 2, then remainder of vector */ if (H5FDwrite_vector(lf, H5P_DEFAULT, 1, &(types_0[0]), &(addrs_0[0]), &(sizes_0[0]), &(write_bufs_0[0])) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, 1, &(types_0[0]), &(addrs_0[0]), &(sizes_0[0]), &(read_bufs_0[0])) < 0) TEST_ERROR; if (H5FDwrite_vector(lf, H5P_DEFAULT, 2, &(types_0[1]), &(addrs_0[1]), &(sizes_0[1]), &(write_bufs_0[1])) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, 2, &(types_0[1]), &(addrs_0[1]), &(sizes_0[1]), &(read_bufs_0[1])) < 0) TEST_ERROR; if (H5FDwrite_vector(lf, H5P_DEFAULT, count - 3, &(types_0[3]), &(addrs_0[3]), &(sizes_0[3]), &(write_bufs_0[3])) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count - 3, &(types_0[3]), &(addrs_0[3]), &(sizes_0[3]), &(read_bufs_0[3])) < 0) TEST_ERROR; /* for fixed size / type vector, just write and read as single operations */ if (H5FDwrite_vector(lf, H5P_DEFAULT, count, f_types_0, f_addrs_0, f_sizes_0, f_write_bufs_0) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_0, f_addrs_0, f_sizes_0, f_read_bufs_0) < 0) TEST_ERROR; /* verify that the expected data is read */ if (!test_vector_io__verify_v(count, types_0, sizes_0, write_bufs_0, read_bufs_0, "zero")) TEST_ERROR; if (!test_vector_io__verify_v(count, f_types_0, f_sizes_0, f_write_bufs_0, f_read_bufs_0, "fixed zero")) TEST_ERROR; /* write the contents of a vector individually, and then read it back * in several vector reads. */ if (!test_vector_io__write_v_indiv(lf, count, types_1, addrs_1, sizes_1, write_bufs_1)) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, 1, &(types_1[0]), &(addrs_1[0]), &(sizes_1[0]), &(read_bufs_1[0])) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, 2, &(types_1[1]), &(addrs_1[1]), &(sizes_1[1]), &(read_bufs_1[1])) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count - 3, &(types_1[3]), &(addrs_1[3]), &(sizes_1[3]), &(read_bufs_1[3])) < 0) TEST_ERROR; /* for fixed size, write individually, and the read back in a single call */ if (!test_vector_io__write_v_indiv(lf, count, f_types_1, f_addrs_1, f_sizes_1, f_write_bufs_1)) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_1, f_addrs_1, f_sizes_1, f_read_bufs_1) < 0) TEST_ERROR; /* verify that the expected data is read */ if (!test_vector_io__verify_v(count, types_1, sizes_1, write_bufs_1, read_bufs_1, "one")) TEST_ERROR; if (!test_vector_io__verify_v(count, f_types_1, f_sizes_1, f_write_bufs_1, f_read_bufs_1, "fixed one")) TEST_ERROR; /* Write the contents of a vector as several vector writes, then * read it back in individual reads. */ if (H5FDwrite_vector(lf, H5P_DEFAULT, 1, &(types_2[0]), &(addrs_2[0]), &(sizes_2[0]), &(write_bufs_2[0])) < 0) TEST_ERROR; if (H5FDwrite_vector(lf, H5P_DEFAULT, 2, &(types_2[1]), &(addrs_2[1]), &(sizes_2[1]), &(write_bufs_2[1])) < 0) TEST_ERROR; if (H5FDwrite_vector(lf, H5P_DEFAULT, count - 3, &(types_2[3]), &(addrs_2[3]), &(sizes_2[3]), &(write_bufs_2[3])) < 0) TEST_ERROR; if (!test_vector_io__read_v_indiv(lf, count, types_2, addrs_2, sizes_2, read_bufs_2)) TEST_ERROR; /* for fixed size, write as a single vector, read back individually */ if (H5FDwrite_vector(lf, H5P_DEFAULT, count, f_types_2, f_addrs_2, f_sizes_2, f_write_bufs_2) < 0) TEST_ERROR; if (!test_vector_io__read_v_indiv(lf, count, f_types_2, f_addrs_2, f_sizes_2, f_read_bufs_2)) TEST_ERROR; /* verify that the expected data is read */ if (!test_vector_io__verify_v(count, types_2, sizes_2, write_bufs_2, read_bufs_2, "two")) TEST_ERROR; if (!test_vector_io__verify_v(count, f_types_2, f_sizes_2, f_write_bufs_2, f_read_bufs_2, "fixed two")) TEST_ERROR; /* make note of eoa -- needed after we re-open the file */ if (HADDR_UNDEF == (eoa = H5FDget_eoa(lf, H5FD_MEM_DEFAULT))) TEST_ERROR; /* close the file and then re-open it */ if (H5FDclose(lf) < 0) TEST_ERROR; flags = H5F_ACC_RDWR; if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF))) TEST_ERROR; /* The EOA is set to 0 on open. To avoid errors, we must set it * to its correct value before we do any reads. * * Note: In the context of using the VFD layer without the HDF5 * library on top, this doesn't make much sense. Consider * adding an open flag that sets the EOA to the current file * size. */ if (H5FDset_eoa(lf, H5FD_MEM_DEFAULT, eoa) < 0) TEST_ERROR; /* Null the read vectors */ size_fixed_0 = false; size_fixed_1 = false; size_fixed_2 = false; for (i = 0; i < count; i++) { buf = read_bufs_0[i]; for (j = 0; j < sizes_0[i]; j++) { buf[j] = '\0'; } buf = read_bufs_1[i]; for (j = 0; j < sizes_1[i]; j++) { buf[j] = '\0'; } buf = read_bufs_2[i]; for (j = 0; j < sizes_2[i]; j++) { buf[j] = '\0'; } SET_SIZE(size_fixed_0, f_sizes_0, f_size_0, i); SET_SIZE(size_fixed_1, f_sizes_1, f_size_1, i); SET_SIZE(size_fixed_2, f_sizes_2, f_size_2, i); buf = f_read_bufs_0[i]; for (j = 0; j < f_size_0; j++) { buf[j] = '\0'; } buf = f_read_bufs_1[i]; for (j = 0; j < f_size_1; j++) { buf[j] = '\0'; } buf = f_read_bufs_2[i]; for (j = 0; j < f_size_2; j++) { buf[j] = '\0'; } } /* read the contents of the file */ if (H5FDread_vector(lf, H5P_DEFAULT, count, types_0, addrs_0, sizes_0, read_bufs_0) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, types_1, addrs_1, sizes_1, read_bufs_1) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, types_2, addrs_2, sizes_2, read_bufs_2) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_0, f_addrs_0, f_sizes_0, f_read_bufs_0) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_1, f_addrs_1, f_sizes_1, f_read_bufs_1) < 0) TEST_ERROR; if (H5FDread_vector(lf, H5P_DEFAULT, count, f_types_2, f_addrs_2, f_sizes_2, f_read_bufs_2) < 0) TEST_ERROR; /* verify the contents. */ if (!test_vector_io__verify_v(count, types_0, sizes_0, write_bufs_0, read_bufs_0, "zero-")) TEST_ERROR; if (!test_vector_io__verify_v(count, types_1, sizes_1, write_bufs_1, read_bufs_1, "one-")) TEST_ERROR; if (!test_vector_io__verify_v(count, types_2, sizes_2, write_bufs_2, read_bufs_2, "two-")) TEST_ERROR; if (!test_vector_io__verify_v(count, f_types_0, f_sizes_0, f_write_bufs_0, f_read_bufs_0, "fixed zero-")) TEST_ERROR; if (!test_vector_io__verify_v(count, f_types_1, f_sizes_1, f_write_bufs_1, f_read_bufs_1, "fixed one-")) TEST_ERROR; if (!test_vector_io__verify_v(count, f_types_2, f_sizes_2, f_write_bufs_2, f_read_bufs_2, "fixed two-")) TEST_ERROR; if (H5FDclose(lf) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[0], fapl_id); /* Close the fapl */ if (H5Pclose(fapl_id) < 0) TEST_ERROR; /* discard the read and write buffers */ for (i = 0; i < count; i++) { h5_free_const(write_bufs_0[i]); write_bufs_0[i] = NULL; h5_free_const(write_bufs_1[i]); write_bufs_1[i] = NULL; h5_free_const(write_bufs_2[i]); write_bufs_2[i] = NULL; free(read_bufs_0[i]); read_bufs_0[i] = NULL; free(read_bufs_1[i]); read_bufs_1[i] = NULL; free(read_bufs_2[i]); read_bufs_2[i] = NULL; h5_free_const(f_write_bufs_0[i]); f_write_bufs_0[i] = NULL; h5_free_const(f_write_bufs_1[i]); f_write_bufs_1[i] = NULL; h5_free_const(f_write_bufs_2[i]); f_write_bufs_2[i] = NULL; free(f_read_bufs_0[i]); f_read_bufs_0[i] = NULL; free(f_read_bufs_1[i]); f_read_bufs_1[i] = NULL; free(f_read_bufs_2[i]); f_read_bufs_2[i] = NULL; } PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl_id); H5FDclose(lf); } H5E_END_TRY return -1; } /* end test_vector_io() */ /*------------------------------------------------------------------------- * Function: test_selection_io_write * * Purpose: Updates write buffers to ensure a unique value is written * to each element and issues a selection write call. * * Return: Success: true * Failure: false *------------------------------------------------------------------------- */ /* Array dimensions, used for all selection I/O tests. Currently both must be * even. 1-Dimensional arrays have a size of SEL_IO_DIM0 * SEL_IO_DIM1. */ #define SEL_IO_DIM0 8 #define SEL_IO_DIM1 10 static herr_t test_selection_io_write(H5FD_t *lf, H5FD_mem_t type, uint32_t count, hid_t mem_spaces[], hid_t file_spaces[], haddr_t offsets[], size_t element_sizes[], int *wbufs[]) { const void **bufs; /* Avoids cast/const warnings */ int i; int j; if (NULL == (bufs = calloc(count, sizeof(void *)))) TEST_ERROR; /* Update write buffer */ for (i = 0; i < (int)count; i++) { if (wbufs[i] && (i == 0 || wbufs[i] != wbufs[i - 1])) for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) wbufs[i][j] += 2 * SEL_IO_DIM0 * SEL_IO_DIM1; bufs[i] = wbufs[i]; } /* Issue write call */ if (H5FDwrite_selection(lf, type, H5P_DEFAULT, count, mem_spaces, file_spaces, offsets, element_sizes, bufs) < 0) TEST_ERROR; free(bufs); return 0; error: free(bufs); return -1; } /* end test_selection_io_write() */ /*------------------------------------------------------------------------- * Function: test_selection_io_read_verify * * Purpose: Issues a selection read call and compares the result to * the arrays provided in erbufs. If rbufcount is less than * count the last element in erbufs will be repeated to make * up the difference. * * Return: Success: true * Failure: false * *------------------------------------------------------------------------- */ static herr_t test_selection_io_read_verify(H5FD_t *lf, H5FD_mem_t type, uint32_t count, hid_t mem_spaces[], hid_t file_spaces[], haddr_t offsets[], size_t element_sizes[], uint32_t rbufcount, int *erbufs[], bool shorten_rbufs) { int rbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; int rbuf2[SEL_IO_DIM0 * SEL_IO_DIM1]; int *rbufs[2] = {rbuf1, rbuf2}; int i; int j; /* Initialize read buffer */ for (i = 0; i < (int)rbufcount; i++) for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) rbufs[i][j] = -1; /* Handle elements in count that are not part of rbufcount */ for (i = (int)rbufcount; i < (int)count; i++) if (shorten_rbufs) rbufs[i] = NULL; else rbufs[i] = rbufs[rbufcount - 1]; /* Issue read call */ if (H5FDread_selection(lf, type, H5P_DEFAULT, count, mem_spaces, file_spaces, offsets, element_sizes, (void **)rbufs) < 0) TEST_ERROR; /* Verify result */ for (i = 0; i < (int)rbufcount; i++) for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) if (rbufs[i][j] != erbufs[i][j]) { H5_FAILED(); AT(); printf("data read from file does not match expected values at mapping array location %d\n", i); printf("expected data: \n"); for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) { printf("%6d", erbufs[i][j]); if (!((j + 1) % SEL_IO_DIM1)) printf("\n"); } printf("read data: \n"); for (j = 0; j < SEL_IO_DIM0 * SEL_IO_DIM1; j++) { printf("%6d", rbufs[i][j]); if (!((j + 1) % SEL_IO_DIM1)) printf("\n"); } goto error; } return 0; error: return -1; } /* end test_selection_io_read_verify() */ /*------------------------------------------------------------------------- * Function: test_selection_io * * Purpose: Test I/O using the selection I/O VFD public VFD calls. * * Tests various combinations of 1D, 2D, contiguous, and * strided selections with different file data types and * with and without shortened arrays. * * Return: Success: 0 * Failure: -1 * *------------------------------------------------------------------------- */ static herr_t test_selection_io(const char *vfd_name) { char test_title[80]; hid_t fapl_id = H5I_INVALID_HID; /* file access property list ID */ char filename[1024]; /* filename */ unsigned flags = 0; /* file open flags */ H5FD_t *lf = NULL; /* VFD struct ptr */ int i; /* index */ int j; /* index */ int i2; /* index */ int j2; /* index */ hid_t mem_spaces[2] = {H5I_INVALID_HID, H5I_INVALID_HID}; /* memory dataspaces vector */ hid_t file_spaces[2] = {H5I_INVALID_HID, H5I_INVALID_HID}; /* file dataspaces vector */ hsize_t dims1[1] = {SEL_IO_DIM0 * SEL_IO_DIM1}; /* 1D dataspace dimensions */ hsize_t dims2[2] = {SEL_IO_DIM0, SEL_IO_DIM1}; /* 1D dataspace dimensions */ hsize_t start[2]; /* start for hyperslab */ hsize_t stride[2]; /* stride for hyperslab */ hsize_t count[2]; /* count for hyperslab */ hsize_t block[2]; /* block for hyperslab */ H5FD_mem_t type; /* file data type */ haddr_t addrs[2]; /* addresses vector */ size_t element_sizes[2] = {sizeof(int), sizeof(int)}; /* element sizes vector */ int wbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; /* 1D write buffer */ int wbuf2[SEL_IO_DIM0][SEL_IO_DIM1]; /* 2D write buffer */ int *wbufs[2] = {wbuf1, wbuf2[0]}; /* Array of write buffers */ int fbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; /* 1D file buffer */ int fbuf2[SEL_IO_DIM0][SEL_IO_DIM1]; /* 2D file buffer */ int *fbufs[2] = {fbuf1, fbuf2[0]}; /* Array of file buffers */ int erbuf1[SEL_IO_DIM0 * SEL_IO_DIM1]; /* 1D expected read buffer */ int erbuf2[SEL_IO_DIM0][SEL_IO_DIM1]; /* 2D expected read buffer */ int *erbufs[2] = {erbuf1, erbuf2[0]}; /* Array of expected read buffers */ int shorten_element_sizes; /* Whether to shorten the element sizes array */ snprintf(test_title, sizeof(test_title), "selection I/O with %s VFD", vfd_name); TESTING(test_title); /* Set property list and file name for target driver */ if ((fapl_id = H5Pcreate(H5P_FILE_ACCESS)) < 0) TEST_ERROR; if (strcmp(vfd_name, "sec2") == 0) { if (H5Pset_fapl_sec2(fapl_id) < 0) TEST_ERROR; h5_fixname(FILENAME[0], fapl_id, filename, sizeof(filename)); } else if (strcmp(vfd_name, "stdio") == 0) { if (H5Pset_fapl_stdio(fapl_id) < 0) TEST_ERROR; h5_fixname(FILENAME[7], fapl_id, filename, sizeof filename); } else { fprintf(stdout, "un-supported VFD\n"); TEST_ERROR; } /* Initialize write buffers */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) { wbuf1[(i * SEL_IO_DIM1) + j] = (i * SEL_IO_DIM1) + j; wbuf2[i][j] = (i * SEL_IO_DIM1) + j + (SEL_IO_DIM0 * SEL_IO_DIM1); } /* Create dataspaces - location 0 will be 1D and location 1 will be 2D */ if ((mem_spaces[0] = H5Screate_simple(1, dims1, NULL)) < 0) TEST_ERROR; if ((mem_spaces[1] = H5Screate_simple(2, dims2, NULL)) < 0) TEST_ERROR; if ((file_spaces[0] = H5Screate_simple(1, dims1, NULL)) < 0) TEST_ERROR; if ((file_spaces[1] = H5Screate_simple(2, dims2, NULL)) < 0) TEST_ERROR; /* Create file */ flags = H5F_ACC_RDWR | H5F_ACC_CREAT | H5F_ACC_TRUNC; if (NULL == (lf = H5FDopen(filename, flags, fapl_id, HADDR_UNDEF))) TEST_ERROR; /* Loop over memory types */ for (type = 1; type < H5FD_MEM_NTYPES; type++) { /* Allocate space for I/O */ addrs[0] = H5FDalloc(lf, type, H5P_DEFAULT, (hsize_t)(sizeof(int) * SEL_IO_DIM0 * SEL_IO_DIM1)); addrs[1] = H5FDalloc(lf, type, H5P_DEFAULT, (hsize_t)(sizeof(int) * SEL_IO_DIM0 * SEL_IO_DIM1)); /* * Test 1: Simple 1D contiguous I/O */ /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, (int **)&wbufs[0]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < SEL_IO_DIM0 * SEL_IO_DIM1; i++) fbuf1[i] = wbuf1[i]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&fbufs[0], false) < 0) TEST_ERROR; /* * Test 2: Simple 2D contiguous I/O */ /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, (int **)&wbufs[1]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) fbuf2[i][j] = wbuf2[i][j]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&fbufs[1], false) < 0) TEST_ERROR; /* * Test 3: Strided <> Contiguous 1D I/O */ /* SEL_IO_DIM1 must be even */ assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2); /* Strided selection in memory */ start[0] = 1; stride[0] = 2; count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; block[0] = 1; if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Contiguous selection in file */ if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, NULL, count, NULL) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, (int **)&wbufs[0]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) fbuf1[i + 1] = wbuf1[(2 * i) + 1]; /* Update expected read buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++) erbuf1[i] = -1; for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) erbuf1[(2 * i) + 1] = wbuf1[(2 * i) + 1]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&erbufs[0], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[0]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&fbufs[0], false) < 0) TEST_ERROR; /* * Test 4: Contiguous <> Strided 1D I/O */ /* SEL_IO_DIM1 must be even */ assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2); /* Contiguous selection in memory */ start[0] = 1; stride[0] = 2; if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, NULL, count, NULL) < 0) TEST_ERROR; /* Strided selection in file */ count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; block[0] = 1; if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, (int **)&wbufs[0]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) fbuf1[(2 * i) + 1] = wbuf1[i + 1]; /* Update expected read buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++) erbuf1[i] = -1; for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) erbuf1[i + 1] = wbuf1[i + 1]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&erbufs[0], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[0]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&fbufs[0], false) < 0) TEST_ERROR; /* * Test 5: Strided <> Strided 1D I/O */ /* SEL_IO_DIM1 must be even */ assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2); /* Strided selection in memory */ start[0] = 1; stride[0] = 2; count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; block[0] = 1; if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection in file */ start[0] = 0; if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, (int **)&wbufs[0]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) fbuf1[2 * i] = wbuf1[(2 * i) + 1]; /* Update expected read buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++) erbuf1[i] = -1; for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) erbuf1[(2 * i) + 1] = wbuf1[(2 * i) + 1]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&erbufs[0], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[0]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&fbufs[0], false) < 0) TEST_ERROR; /* * Test 6: Strided <> Contiguous 2D I/O */ /* Strided selection in memory */ start[0] = 1; start[1] = 0; stride[0] = 2; stride[1] = 1; count[0] = SEL_IO_DIM0 / 2; count[1] = SEL_IO_DIM1; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Contiguous selection in file */ if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, NULL, count, NULL) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, (int **)&wbufs[1]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < SEL_IO_DIM0 / 2; i++) for (j = 0; j < SEL_IO_DIM1; j++) fbuf2[i + 1][j] = wbuf2[(2 * i) + 1][j]; /* Update expected read buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = -1; for (i = 0; i < SEL_IO_DIM0 / 2; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[(2 * i) + 1][j] = wbuf2[(2 * i) + 1][j]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&erbufs[1], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[1]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[1]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&fbufs[1], false) < 0) TEST_ERROR; /* * Test 7: Contiguous <> Strided 2D I/O */ /* Contiguous selection in memory */ start[0] = 0; start[1] = 1; count[0] = SEL_IO_DIM0; count[1] = SEL_IO_DIM1 / 2; if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, NULL, count, NULL) < 0) TEST_ERROR; /* Strided selection in file */ stride[0] = 1; stride[1] = 2; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, (int **)&wbufs[1]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1 / 2; j++) fbuf2[i][(2 * j) + 1] = wbuf2[i][j + 1]; /* Update expected read buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = -1; for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1 / 2; j++) erbuf2[i][j + 1] = wbuf2[i][j + 1]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&erbufs[1], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[1]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[1]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&fbufs[1], false) < 0) TEST_ERROR; /* * Test 8: Strided <> Strided 2D I/O */ /* SEL_IO_DIM0 and SEL_IO_DIM1 must be even */ assert(SEL_IO_DIM0 / 2 == (SEL_IO_DIM0 + 1) / 2); assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2); /* Strided selection (across dim 1) in memory */ start[0] = 0; start[1] = 1; stride[0] = 1; stride[1] = 2; count[0] = SEL_IO_DIM0; count[1] = SEL_IO_DIM1 / 2; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection (across dim 0) in file */ start[0] = 1; start[1] = 0; stride[0] = 2; stride[1] = 1; count[0] = SEL_IO_DIM0 / 2; count[1] = SEL_IO_DIM1; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, (int **)&wbufs[1]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0, i2 = 1, j2 = 0; i < SEL_IO_DIM0; i++) for (j = 1; j < SEL_IO_DIM1; j += 2) { assert(i2 < SEL_IO_DIM0); fbuf2[i2][j2] = wbuf2[i][j]; if (++j2 == SEL_IO_DIM1) { i2 += 2; j2 = 0; } } /* Update expected read buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = -1; for (i = 0; i < SEL_IO_DIM0; i++) for (j = 1; j < SEL_IO_DIM1; j += 2) erbuf2[i][j] = wbuf2[i][j]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&erbufs[1], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[1]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[1]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&fbufs[1], false) < 0) TEST_ERROR; /* * Test 9: Strided 1D <> Strided 2D I/O */ /* Strided selection in memory */ start[0] = 1; stride[0] = 2; count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; block[0] = 1; if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection (across dim 1) in file */ start[0] = 0; start[1] = 1; stride[0] = 1; stride[1] = 2; count[0] = SEL_IO_DIM0; count[1] = SEL_IO_DIM1 / 2; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[0], &file_spaces[1], &addrs[1], element_sizes, (int **)&wbufs[0]) < 0) TEST_ERROR; /* Update file buf */ for (i = 1, i2 = 0, j2 = 1; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i += 2) { assert(i2 < SEL_IO_DIM0); fbuf2[i2][j2] = wbuf1[i]; j2 += 2; if (j2 >= SEL_IO_DIM1) { i2++; j2 = 1; } } /* Update expected read buf */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++) erbuf1[i] = -1; for (i = 1; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i += 2) erbuf1[i] = wbuf1[i]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&erbufs[0], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[1]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[0], &file_spaces[1], &addrs[1], element_sizes, 1, (int **)&fbufs[1], false) < 0) TEST_ERROR; /* * Test 10: Strided 2D <> Strided 1D I/O */ /* Strided selection (across dim 0) in memory */ start[0] = 0; start[1] = 0; stride[0] = 2; stride[1] = 1; count[0] = SEL_IO_DIM0 / 2; count[1] = SEL_IO_DIM1; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection in file */ start[0] = 0; stride[0] = 2; count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; block[0] = 1; if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 1, &mem_spaces[1], &file_spaces[0], &addrs[0], element_sizes, (int **)&wbufs[1]) < 0) TEST_ERROR; /* Update file buf */ for (i = 0, i2 = 0; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) { assert(i2 < (SEL_IO_DIM0 * SEL_IO_DIM1)); fbuf1[i2] = wbuf2[i][j]; i2 += 2; } /* Update expected read buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = -1; for (i = 0; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = wbuf2[i][j]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&erbufs[1], false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[1]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[0]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 1, &mem_spaces[1], &file_spaces[0], &addrs[0], element_sizes, 1, (int **)&fbufs[0], false) < 0) TEST_ERROR; /* Run tests with full and partial element sizes array */ for (shorten_element_sizes = 0; shorten_element_sizes <= 1; shorten_element_sizes++) { /* * Test 11: Strided <> Strided 1D and 2D I/O */ /* SEL_IO_DIM1 must be even */ assert(SEL_IO_DIM1 / 2 == (SEL_IO_DIM1 + 1) / 2); /* Strided selection in memory (1D) */ start[0] = 0; stride[0] = 2; count[0] = (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; block[0] = 1; if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection in file (1D) */ start[0] = 1; if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection (across dim 0) in memory (2D) */ start[0] = 1; start[1] = 0; stride[0] = 2; stride[1] = 1; count[0] = SEL_IO_DIM0 / 2; count[1] = SEL_IO_DIM1; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection (across dim 1) in file (2D) */ start[0] = 0; start[1] = 1; stride[0] = 1; stride[1] = 2; count[0] = SEL_IO_DIM0; count[1] = SEL_IO_DIM1 / 2; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Issue write call */ if (test_selection_io_write(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, (int **)wbufs) < 0) TEST_ERROR; /* Update file bufs */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) fbuf1[(2 * i) + 1] = wbuf1[2 * i]; for (i = 1, i2 = 0, j2 = 1; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) { assert(i2 < SEL_IO_DIM0); fbuf2[i2][j2] = wbuf2[i][j]; j2 += 2; if (j2 >= SEL_IO_DIM1) { i2++; j2 = 1; } } /* Update expected read bufs */ for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1); i++) erbuf1[i] = -1; for (i = 0; i < (SEL_IO_DIM0 * SEL_IO_DIM1) / 2; i++) erbuf1[2 * i] = wbuf1[2 * i]; for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = -1; for (i = 1; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = wbuf2[i][j]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 2, (int **)erbufs, false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(mem_spaces[1]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[1]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 2, (int **)fbufs, false) < 0) TEST_ERROR; /* * Test 12: Strided <> Strided 2D I/O, 2 different selections in the same memory buffer */ /* Switch mem and file spaces to both be 2D */ if (H5Sset_extent_simple(mem_spaces[0], 2, dims2, NULL) < 0) TEST_ERROR; if (H5Sset_extent_simple(file_spaces[0], 2, dims2, NULL) < 0) TEST_ERROR; /* Strided selection in memory (1st) */ start[0] = 0; start[1] = 0; stride[0] = 2; stride[1] = 1; count[0] = SEL_IO_DIM0 / 2; count[1] = SEL_IO_DIM1; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(mem_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection (across dim 0) in memory (2nd) */ start[0] = 1; if (H5Sselect_hyperslab(mem_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection in file (1st) */ start[0] = 0; start[1] = 0; stride[0] = 1; stride[1] = 2; count[0] = SEL_IO_DIM0; count[1] = SEL_IO_DIM1 / 2; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(file_spaces[0], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Strided selection (across dim 1) in file (2nd) */ start[0] = 0; start[1] = 1; stride[0] = 1; stride[1] = 2; count[0] = SEL_IO_DIM0; count[1] = SEL_IO_DIM1 / 2; block[0] = 1; block[1] = 1; if (H5Sselect_hyperslab(file_spaces[1], H5S_SELECT_SET, start, stride, count, block) < 0) TEST_ERROR; /* Use the same memory buffer for both selections */ wbufs[0] = wbuf2[0]; /* Shorten wbuf array */ if (shorten_element_sizes) wbufs[1] = NULL; else wbufs[1] = wbufs[0]; /* Issue write call */ if (test_selection_io_write(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, (int **)wbufs) < 0) TEST_ERROR; /* Update file bufs - need to reuse 1D array so data stays consistent, so use math to * find 1D index into 2D array */ for (i = 0, i2 = 0, j2 = 0; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) { assert(i2 < SEL_IO_DIM0); fbuf1[(i2 * SEL_IO_DIM1) + j2] = wbuf2[i][j]; j2 += 2; if (j2 >= SEL_IO_DIM1) { i2++; j2 = 0; } } for (i = 1, i2 = 0, j2 = 1; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) { assert(i2 < SEL_IO_DIM0); fbuf2[i2][j2] = wbuf2[i][j]; j2 += 2; if (j2 >= SEL_IO_DIM1) { i2++; j2 = 1; } } /* Update expected read buf */ for (i = 0; i < SEL_IO_DIM0; i++) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = -1; for (i = 0; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = wbuf2[i][j]; for (i = 1; i < SEL_IO_DIM0; i += 2) for (j = 0; j < SEL_IO_DIM1; j++) erbuf2[i][j] = wbuf2[i][j]; /* Read and verify */ if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 1, (int **)&erbufs[1], shorten_element_sizes ? true : false) < 0) TEST_ERROR; /* Reset selections */ if (H5Sselect_all(mem_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[0]) < 0) TEST_ERROR; if (H5Sselect_all(mem_spaces[1]) < 0) TEST_ERROR; if (H5Sselect_all(file_spaces[1]) < 0) TEST_ERROR; /* Read entire file buffer and verify */ if (test_selection_io_read_verify(lf, type, 2, mem_spaces, file_spaces, addrs, element_sizes, 2, (int **)fbufs, false) < 0) TEST_ERROR; /* Reset first spaces to 1D */ if (H5Sset_extent_simple(mem_spaces[0], 1, dims1, NULL) < 0) TEST_ERROR; if (H5Sset_extent_simple(file_spaces[0], 1, dims1, NULL) < 0) TEST_ERROR; /* Reset write buffer array */ wbufs[0] = wbuf1; wbufs[1] = wbuf2[0]; /* Change to shortened element sizes array */ element_sizes[1] = 0; } /* Reset element sizes array */ element_sizes[1] = element_sizes[0]; } /* * Cleanup */ /* Close file */ if (H5FDclose(lf) < 0) TEST_ERROR; h5_delete_test_file(FILENAME[0], fapl_id); /* Close the fapl */ if (H5Pclose(fapl_id) < 0) TEST_ERROR; /* Close dataspaces */ for (i = 0; i < 2; i++) { if (H5Sclose(mem_spaces[i]) < 0) TEST_ERROR; if (H5Sclose(file_spaces[i]) < 0) TEST_ERROR; } PASSED(); return 0; error: H5E_BEGIN_TRY { H5Pclose(fapl_id); H5FDclose(lf); for (i = 0; i < 2; i++) { H5Sclose(mem_spaces[i]); H5Sclose(file_spaces[i]); } } H5E_END_TRY return -1; } /* end test_selection_io() */ /*------------------------------------------------------------------------- * Function: main * * Purpose: Tests the basic features of Virtual File Drivers * * Return: EXIT_SUCCESS/EXIT_FAILURE * *------------------------------------------------------------------------- */ int main(void) { char *env_h5_drvr = NULL; int nerrors = 0; /* Don't run VFD tests when HDF5_DRIVER is set. These tests expect a * specific VFD to be set and HDF5_DRIVER being set can interfere * with that. */ env_h5_drvr = getenv(HDF5_DRIVER); if (env_h5_drvr) { printf(" -- SKIPPED VFD tests because %s is set -- \n", HDF5_DRIVER); exit(EXIT_SUCCESS); } h5_reset(); printf("Testing basic Virtual File Driver functionality.\n"); setup_rand(); nerrors += test_sec2() < 0 ? 1 : 0; nerrors += test_core() < 0 ? 1 : 0; nerrors += test_direct() < 0 ? 1 : 0; nerrors += test_family() < 0 ? 1 : 0; nerrors += test_family_compat() < 0 ? 1 : 0; nerrors += test_family_member_fapl() < 0 ? 1 : 0; nerrors += test_multi() < 0 ? 1 : 0; nerrors += test_multi_compat() < 0 ? 1 : 0; nerrors += test_log() < 0 ? 1 : 0; nerrors += test_stdio() < 0 ? 1 : 0; nerrors += test_windows() < 0 ? 1 : 0; nerrors += test_ros3() < 0 ? 1 : 0; nerrors += test_splitter() < 0 ? 1 : 0; nerrors += test_vector_io("sec2") < 0 ? 1 : 0; nerrors += test_vector_io("stdio") < 0 ? 1 : 0; nerrors += test_selection_io("sec2") < 0 ? 1 : 0; nerrors += test_selection_io("stdio") < 0 ? 1 : 0; nerrors += test_ctl() < 0 ? 1 : 0; if (nerrors) { printf("***** %d Virtual File Driver TEST%s FAILED! *****\n", nerrors, nerrors > 1 ? "S" : ""); return EXIT_FAILURE; } printf("All Virtual File Driver tests passed.\n"); return EXIT_SUCCESS; } /* end main() */