/* $Id$ */ /* * Parallel tests for datasets */ /* * Example of using the parallel HDF5 library to access datasets. * * This program contains two major parts. Part 1 tests fixed dimension * datasets, for both independent and collective transfer modes. * Part 2 tests extendible datasets, for independent transfer mode * only. Collective mode for extendible datasets are not supported yet. */ #include <testphdf5.h> /* * The following are various utility routines used by the tests. */ /* * Setup the dimensions of the hyperslab. * Two modes--by rows or by columns. * Assume dimension rank is 2. * BYROW divide into slabs of rows * BYCOL divide into blocks of columns * ZROW same as BYROW except process 0 gets 0 rows * ZCOL same as BYCOL except process 0 gets 0 columns */ void slab_set(int mpi_rank, int mpi_size, hssize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], int mode) { switch (mode){ case BYROW: /* Each process takes a slabs of rows. */ block[0] = dim0/mpi_size; block[1] = dim1; stride[0] = block[0]; stride[1] = block[1]; count[0] = 1; count[1] = 1; start[0] = mpi_rank*block[0]; start[1] = 0; if (verbose) printf("slab_set BYROW\n"); break; case BYCOL: /* Each process takes a block of columns. */ block[0] = dim0; block[1] = dim1/mpi_size; stride[0] = block[0]; stride[1] = block[1]; count[0] = 1; count[1] = 1; start[0] = 0; start[1] = mpi_rank*block[1]; if (verbose) printf("slab_set BYCOL\n"); break; case ZROW: /* Similar to BYROW except process 0 gets 0 row */ block[0] = (mpi_rank ? dim0/mpi_size : 0); block[1] = dim1; stride[0] = block[0]; stride[1] = block[1]; count[0] = 1; count[1] = 1; start[0] = (mpi_rank? mpi_rank*block[0] : 0); start[1] = 0; if (verbose) printf("slab_set ZROW\n"); break; case ZCOL: /* Similar to BYCOL except process 0 gets 0 column */ block[0] = dim0; block[1] = (mpi_rank ? dim1/mpi_size : 0); stride[0] = block[0]; stride[1] = block[1]; count[0] = 1; count[1] = 1; start[0] = 0; start[1] = (mpi_rank? mpi_rank*block[1] : 0); if (verbose) printf("slab_set ZCOL\n"); break; default: /* Unknown mode. Set it to cover the whole dataset. */ printf("unknown slab_set mode (%d)\n", mode); block[0] = dim0; block[1] = dim1; stride[0] = block[0]; stride[1] = block[1]; count[0] = 1; count[1] = 1; start[0] = 0; start[1] = 0; if (verbose) printf("slab_set wholeset\n"); break; } if (verbose){ printf("start[]=(%ld,%ld), count[]=(%lu,%lu), stride[]=(%lu,%lu), block[]=(%lu,%lu), total datapoints=%lu\n", start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1], block[0]*block[1]*count[0]*count[1]); } } /* * Fill the dataset with trivial data for testing. * Assume dimension rank is 2 and data is stored contiguous. */ void dataset_fill(hssize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE * dataset) { DATATYPE *dataptr = dataset; int i, j; /* put some trivial data in the data_array */ for (i=0; i < block[0]; i++){ for (j=0; j < block[1]; j++){ *dataptr = (i+start[0])*100 + (j+start[1]+1); dataptr++; } } } /* * Print the content of the dataset. */ void dataset_print(hssize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE * dataset) { DATATYPE *dataptr = dataset; int i, j; /* print the column heading */ printf("%-8s", "Cols:"); for (j=0; j < block[1]; j++){ printf("%3ld ", start[1]+j); } printf("\n"); /* print the slab data */ for (i=0; i < block[0]; i++){ printf("Row %2ld: ", i+start[0]); for (j=0; j < block[1]; j++){ printf("%03d ", *dataptr++); } printf("\n"); } } /* * Print the content of the dataset. */ int dataset_vrfy(hssize_t start[], hsize_t count[], hsize_t stride[], hsize_t block[], DATATYPE *dataset, DATATYPE *original) { #define MAX_ERR_REPORT 10 /* Maximum number of errors reported */ DATATYPE *dataptr = dataset; DATATYPE *originptr = original; int i, j, vrfyerrs; /* print it if verbose */ if (verbose) { printf("dataset_vrfy dumping:::\n"); printf("start(%ld, %ld), count(%lu, %lu), stride(%lu, %lu), block(%lu, %lu)\n", start[0], start[1], count[0], count[1], stride[0], stride[1], block[0], block[1]); printf("original values:\n"); dataset_print(start, count, stride, block, original); printf("compared values:\n"); dataset_print(start, count, stride, block, dataset); } vrfyerrs = 0; for (i=0; i < block[0]; i++){ for (j=0; j < block[1]; j++){ if (*dataset != *original){ if (vrfyerrs++ < MAX_ERR_REPORT || verbose){ printf("Dataset Verify failed at [%d][%d](row %d, col %d): expect %d, got %d\n", i, j, (int)(i+start[0]), (int)(j+start[1]), *(original), *(dataset)); } dataset++; original++; } } } if (vrfyerrs > MAX_ERR_REPORT && !verbose) printf("[more errors ...]\n"); if (vrfyerrs) printf("%d errors found in dataset_vrfy\n", vrfyerrs); return(vrfyerrs); } /* * Part 1.a--Independent read/write for fixed dimension datasets. */ /* * Example of using the parallel HDF5 library to create two datasets * in one HDF5 files with parallel MPIO access support. * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. * Each process controls only a slab of size dim0 x dim1 within each * dataset. */ void dataset_writeInd(char *filename) { hid_t fid; /* HDF5 file ID */ hid_t acc_tpl; /* File access templates */ hid_t sid; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ hsize_t dims[RANK]; /* dataset dim sizes */ DATATYPE *data_array1 = NULL; /* data buffer */ hssize_t start[RANK]; /* for hyperslab setting */ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ hsize_t block[RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int i, j; int mpi_size, mpi_rank; char *fname; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; if (verbose) printf("Independent write test on file %s\n", filename); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); /* allocate memory for data buffer */ data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); /* ---------------------------------------- * CREATE AN HDF5 FILE WITH PARALLEL ACCESS * ---------------------------------------*/ /* setup file access template with parallel IO access. */ acc_tpl = H5Pcreate (H5P_FILE_ACCESS); VRFY((acc_tpl >= 0), "H5Pcreate access succeeded"); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(acc_tpl, comm, info); VRFY((ret >= 0), "H5Pset_fapl_mpio succeeded"); /* create the file collectively */ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl); VRFY((fid >= 0), "H5Fcreate succeeded"); /* Release file-access template */ ret=H5Pclose(acc_tpl); VRFY((ret >= 0), ""); /* --------------------------------------------- * Define the dimensions of the overall datasets * and the slabs local to the MPI process. * ------------------------------------------- */ /* setup dimensionality object */ dims[0] = dim0; dims[1] = dim1; sid = H5Screate_simple (RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create a dataset collectively */ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT); VRFY((dataset1 >= 0), "H5Dcreate succeeded"); /* create another dataset collectively */ dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid, H5P_DEFAULT); VRFY((dataset2 >= 0), "H5Dcreate succeeded"); /* * To test the independent orders of writes between processes, all * even number processes write to dataset1 first, then dataset2. * All odd number processes write to dataset2 first, then dataset1. */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* put some trivial data in the data_array */ dataset_fill(start, count, stride, block, data_array1); MESG("data_array initialized"); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* write data independently */ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); /* write data independently */ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); /* setup dimensions again to write with zero rows for process 0 */ if (verbose) printf("writeInd by some with zero row\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ if (MAINPROCESS){ ret=H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("writeInd by some with zero row"); if ((mpi_rank/2)*2 != mpi_rank){ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); } MPI_Barrier(MPI_COMM_WORLD); /* release dataspace ID */ H5Sclose(file_dataspace); /* close dataset collectively */ ret=H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); ret=H5Dclose(dataset2); VRFY((ret >= 0), "H5Dclose2 succeeded"); /* release all IDs created */ H5Sclose(sid); /* close the file collectively */ H5Fclose(fid); /* release data buffers */ if (data_array1) free(data_array1); } /* Example of using the parallel HDF5 library to read a dataset */ void dataset_readInd(char *filename) { hid_t fid; /* HDF5 file ID */ hid_t acc_tpl; /* File access templates */ hid_t sid; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ DATATYPE *data_array1 = NULL; /* data buffer */ DATATYPE *data_origin1 = NULL; /* expected data buffer */ hssize_t start[RANK]; /* for hyperslab setting */ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ hsize_t block[RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int i, j; int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; if (verbose) printf("Independent read test on file %s\n", filename); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); /* allocate memory for data buffer */ data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); /* setup file access template */ acc_tpl = H5Pcreate (H5P_FILE_ACCESS); VRFY((acc_tpl >= 0), ""); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(acc_tpl, comm, info); VRFY((ret >= 0), ""); /* open the file collectively */ fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); VRFY((fid >= 0), ""); /* Release file-access template */ ret=H5Pclose(acc_tpl); VRFY((ret >= 0), ""); /* open the dataset1 collectively */ dataset1 = H5Dopen(fid, DATASETNAME1); VRFY((dataset1 >= 0), ""); /* open another dataset collectively */ dataset2 = H5Dopen(fid, DATASETNAME1); VRFY((dataset2 >= 0), ""); /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), ""); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, count, stride, block, data_origin1); /* read data independently */ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), ""); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); if (ret) nerrors++; /* read data independently */ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), ""); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); if (ret) nerrors++; /* close dataset collectively */ ret=H5Dclose(dataset1); VRFY((ret >= 0), ""); ret=H5Dclose(dataset2); VRFY((ret >= 0), ""); /* release all IDs created */ H5Sclose(file_dataspace); /* close the file collectively */ H5Fclose(fid); /* release data buffers */ if (data_array1) free(data_array1); if (data_origin1) free(data_origin1); } /* * Part 1.b--Collective read/write for fixed dimension datasets. */ /* * Example of using the parallel HDF5 library to create two datasets * in one HDF5 file with collective parallel access support. * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. * Each process controls only a slab of size dim0 x dim1 within each * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and * each process controls a hyperslab within.] */ void dataset_writeAll(char *filename) { hid_t fid; /* HDF5 file ID */ hid_t acc_tpl; /* File access templates */ hid_t xfer_plist; /* Dataset transfer properties list */ hid_t sid; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ hid_t datatype; /* Datatype ID */ hsize_t dims[RANK]; /* dataset dim sizes */ DATATYPE *data_array1 = NULL; /* data buffer */ hssize_t start[RANK]; /* for hyperslab setting */ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ hsize_t block[RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; if (verbose) printf("Collective write test on file %s\n", filename); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); /* allocate memory for data buffer */ data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); /* ------------------- * START AN HDF5 FILE * -------------------*/ /* setup file access template with parallel IO access. */ acc_tpl = H5Pcreate (H5P_FILE_ACCESS); VRFY((acc_tpl >= 0), "H5Pcreate access succeeded"); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(acc_tpl, comm, info); VRFY((ret >= 0), "H5Pset_fapl_mpio succeeded"); /* create the file collectively */ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl); VRFY((fid >= 0), "H5Fcreate succeeded"); /* Release file-access template */ ret=H5Pclose(acc_tpl); VRFY((ret >= 0), ""); /* -------------------------- * Define the dimensions of the overall datasets * and create the dataset * ------------------------- */ /* setup dimensionality object */ dims[0] = dim0; dims[1] = dim1; sid = H5Screate_simple (RANK, dims, NULL); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create a dataset collectively */ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, H5P_DEFAULT); VRFY((dataset1 >= 0), "H5Dcreate succeeded"); /* create another dataset collectively */ datatype = H5Tcopy(H5T_NATIVE_INT); ret = H5Tset_order(datatype, H5T_ORDER_LE); VRFY((ret >= 0), "H5Tset_order succeeded"); dataset2 = H5Dcreate(fid, DATASETNAME2, datatype, sid, H5P_DEFAULT); VRFY((dataset2 >= 0), "H5Dcreate 2 succeeded"); /* * Set up dimensions of the slab this process accesses. */ /* Dataset1: each process takes a block of rows. */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill the local slab with some trivial data */ dataset_fill(start, count, stride, block, data_array1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* set up the collective transfer properties list */ xfer_plist = H5Pcreate (H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret=H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); /* write data collectively */ MESG("writeAll by Row"); ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 succeeded"); /* setup dimensions again to writeAll with zero rows for process 0 */ if (verbose) printf("writeAll by some with zero row\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ if (MAINPROCESS){ ret=H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("writeAll by some with zero row"); ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 by ZROW succeeded"); /* release all temporary handles. */ /* Could have used them for dataset2 but it is cleaner */ /* to create them again.*/ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); /* Dataset2: each process takes a block of columns. */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* put some trivial data in the data_array */ dataset_fill(start, count, stride, block, data_array1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill the local slab with some trivial data */ dataset_fill(start, count, stride, block, data_array1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* set up the collective transfer properties list */ xfer_plist = H5Pcreate (H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret=H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); /* write data independently */ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset2 succeeded"); /* setup dimensions again to writeAll with zero columns for process 0 */ if (verbose) printf("writeAll by some with zero col\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ if (MAINPROCESS){ ret=H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("writeAll by some with zero col"); ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dwrite dataset1 by ZCOL succeeded"); /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); /* * All writes completed. Close datasets collectively */ ret=H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); ret=H5Dclose(dataset2); VRFY((ret >= 0), "H5Dclose2 succeeded"); /* release all IDs created */ H5Sclose(sid); /* close the file collectively */ H5Fclose(fid); /* release data buffers */ if (data_array1) free(data_array1); } /* * Example of using the parallel HDF5 library to read two datasets * in one HDF5 file with collective parallel access support. * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. * Each process controls only a slab of size dim0 x dim1 within each * dataset. [Note: not so yet. Datasets are of sizes dim0xdim1 and * each process controls a hyperslab within.] */ void dataset_readAll(char *filename) { hid_t fid; /* HDF5 file ID */ hid_t acc_tpl; /* File access templates */ hid_t xfer_plist; /* Dataset transfer properties list */ hid_t sid; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ DATATYPE *data_array1 = NULL; /* data buffer */ DATATYPE *data_origin1 = NULL; /* expected data buffer */ hssize_t start[RANK]; /* for hyperslab setting */ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ hsize_t block[RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; if (verbose) printf("Collective read test on file %s\n", filename); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); /* allocate memory for data buffer */ data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); /* ------------------- * OPEN AN HDF5 FILE * -------------------*/ /* setup file access template with parallel IO access. */ acc_tpl = H5Pcreate (H5P_FILE_ACCESS); VRFY((acc_tpl >= 0), "H5Pcreate access succeeded"); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(acc_tpl, comm, info); VRFY((ret >= 0), "H5Pset_fapl_mpio succeeded"); /* open the file collectively */ fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); VRFY((fid >= 0), "H5Fopen succeeded"); /* Release file-access template */ ret=H5Pclose(acc_tpl); VRFY((ret >= 0), ""); /* -------------------------- * Open the datasets in it * ------------------------- */ /* open the dataset1 collectively */ dataset1 = H5Dopen(fid, DATASETNAME1); VRFY((dataset1 >= 0), "H5Dopen succeeded"); /* open another dataset collectively */ dataset2 = H5Dopen(fid, DATASETNAME2); VRFY((dataset2 >= 0), "H5Dopen 2 succeeded"); /* * Set up dimensions of the slab this process accesses. */ /* Dataset1: each process takes a block of columns. */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, count, stride, block, data_origin1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_origin1); } /* set up the collective transfer properties list */ xfer_plist = H5Pcreate (H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret=H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); /* read data collectively */ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset1 succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); if (ret) nerrors++; /* setup dimensions again to readAll with zero columns for process 0 */ if (verbose) printf("readAll by some with zero col\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZCOL); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ if (MAINPROCESS){ ret=H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("readAll by some with zero col"); ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset1 by ZCOL succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); if (ret) nerrors++; /* release all temporary handles. */ /* Could have used them for dataset2 but it is cleaner */ /* to create them again.*/ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); /* Dataset2: each process takes a block of rows. */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, count, stride, block, data_origin1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_origin1); } /* set up the collective transfer properties list */ xfer_plist = H5Pcreate (H5P_DATASET_XFER); VRFY((xfer_plist >= 0), ""); ret=H5Pset_dxpl_mpio(xfer_plist, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); /* read data collectively */ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset2 succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); if (ret) nerrors++; /* setup dimensions again to readAll with zero rows for process 0 */ if (verbose) printf("readAll by some with zero row\n"); slab_set(mpi_rank, mpi_size, start, count, stride, block, ZROW); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* need to make mem_dataspace to match for process 0 */ if (MAINPROCESS){ ret=H5Sselect_hyperslab(mem_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab mem_dataspace succeeded"); } MESG("readAll by some with zero row"); ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, xfer_plist, data_array1); VRFY((ret >= 0), "H5Dread dataset1 by ZROW succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); if (ret) nerrors++; /* release all temporary handles. */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); H5Pclose(xfer_plist); /* * All reads completed. Close datasets collectively */ ret=H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); ret=H5Dclose(dataset2); VRFY((ret >= 0), "H5Dclose2 succeeded"); /* close the file collectively */ H5Fclose(fid); /* release data buffers */ if (data_array1) free(data_array1); if (data_origin1) free(data_origin1); } /* * Part 2--Independent read/write for extendible datasets. */ /* * Example of using the parallel HDF5 library to create two extendible * datasets in one HDF5 file with independent parallel MPIO access support. * The Datasets are of sizes (number-of-mpi-processes x dim0) x dim1. * Each process controls only a slab of size dim0 x dim1 within each * dataset. */ void extend_writeInd(char *filename) { hid_t fid; /* HDF5 file ID */ hid_t acc_tpl; /* File access templates */ hid_t sid; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ hsize_t dims[RANK]; /* dataset dim sizes */ hsize_t max_dims[RANK] = {H5S_UNLIMITED, H5S_UNLIMITED}; /* dataset maximum dim sizes */ DATATYPE *data_array1 = NULL; /* data buffer */ hsize_t chunk_dims[RANK]; /* chunk sizes */ hid_t dataset_pl; /* dataset create prop. list */ hssize_t start[RANK]; /* for hyperslab setting */ hsize_t count[RANK]; /* for hyperslab setting */ hsize_t stride[RANK]; /* for hyperslab setting */ hsize_t block[RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int i, j; int mpi_size, mpi_rank; char *fname; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; if (verbose) printf("Extend independent write test on file %s\n", filename); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); /* setup chunk-size. Make sure sizes are > 0 */ chunk_dims[0] = chunkdim0; chunk_dims[1] = chunkdim1; /* allocate memory for data buffer */ data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); /* ------------------- * START AN HDF5 FILE * -------------------*/ /* setup file access template with parallel IO access. */ acc_tpl = H5Pcreate (H5P_FILE_ACCESS); VRFY((acc_tpl >= 0), "H5Pcreate access succeeded"); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(acc_tpl, comm, info); VRFY((ret >= 0), "H5Pset_fapl_mpio succeeded"); /* create the file collectively */ fid=H5Fcreate(filename,H5F_ACC_TRUNC,H5P_DEFAULT,acc_tpl); VRFY((fid >= 0), "H5Fcreate succeeded"); /* Release file-access template */ ret=H5Pclose(acc_tpl); VRFY((ret >= 0), ""); /* -------------------------------------------------------------- * Define the dimensions of the overall datasets and create them. * ------------------------------------------------------------- */ /* set up dataset storage chunk sizes and creation property list */ if (verbose) printf("chunks[]=%lu,%lu\n", chunk_dims[0], chunk_dims[1]); dataset_pl = H5Pcreate(H5P_DATASET_CREATE); VRFY((dataset_pl >= 0), "H5Pcreate succeeded"); ret = H5Pset_chunk(dataset_pl, RANK, chunk_dims); VRFY((ret >= 0), "H5Pset_chunk succeeded"); /* setup dimensionality object */ /* start out with no rows, extend it later. */ dims[0] = dims[1] = 0; sid = H5Screate_simple (RANK, dims, max_dims); VRFY((sid >= 0), "H5Screate_simple succeeded"); /* create an extendible dataset collectively */ dataset1 = H5Dcreate(fid, DATASETNAME1, H5T_NATIVE_INT, sid, dataset_pl); VRFY((dataset1 >= 0), "H5Dcreate succeeded"); /* create another extendible dataset collectively */ dataset2 = H5Dcreate(fid, DATASETNAME2, H5T_NATIVE_INT, sid, dataset_pl); VRFY((dataset2 >= 0), "H5Dcreate succeeded"); /* release resource */ H5Sclose(sid); /* ------------------------- * Test writing to dataset1 * -------------------------*/ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* put some trivial data in the data_array */ dataset_fill(start, count, stride, block, data_array1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* Extend its current dim sizes before writing */ dims[0] = dim0; dims[1] = dim1; ret = H5Dextend (dataset1, dims); VRFY((ret >= 0), "H5Dextend succeeded"); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently */ ret = H5Dwrite(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release resource */ H5Sclose(file_dataspace); H5Sclose(mem_dataspace); /* ------------------------- * Test writing to dataset2 * -------------------------*/ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* put some trivial data in the data_array */ dataset_fill(start, count, stride, block, data_array1); MESG("data_array initialized"); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* Try write to dataset2 beyond its current dim sizes. Should fail. */ /* Temporary turn off auto error reporting */ H5Eget_auto(&old_func, &old_client_data); H5Eset_auto(NULL, NULL); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently. Should fail. */ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret < 0), "H5Dwrite failed as expected"); /* restore auto error reporting */ H5Eset_auto(old_func, old_client_data); H5Sclose(file_dataspace); /* Extend dataset2 and try again. Should succeed. */ dims[0] = dim0; dims[1] = dim1; ret = H5Dextend (dataset2, dims); VRFY((ret >= 0), "H5Dextend succeeded"); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset2); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), "H5Sset_hyperslab succeeded"); /* write data independently */ ret = H5Dwrite(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dwrite succeeded"); /* release resource */ ret=H5Sclose(file_dataspace); VRFY((ret >= 0), "H5Sclose succeeded"); ret=H5Sclose(mem_dataspace); VRFY((ret >= 0), "H5Sclose succeeded"); /* close dataset collectively */ ret=H5Dclose(dataset1); VRFY((ret >= 0), "H5Dclose1 succeeded"); ret=H5Dclose(dataset2); VRFY((ret >= 0), "H5Dclose2 succeeded"); /* close the file collectively */ H5Fclose(fid); /* release data buffers */ if (data_array1) free(data_array1); } /* Example of using the parallel HDF5 library to read an extendible dataset */ void extend_readInd(char *filename) { hid_t fid; /* HDF5 file ID */ hid_t acc_tpl; /* File access templates */ hid_t sid; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ hsize_t dims[RANK]; /* dataset dim sizes */ DATATYPE *data_array1 = NULL; /* data buffer */ DATATYPE *data_array2 = NULL; /* data buffer */ DATATYPE *data_origin1 = NULL; /* expected data buffer */ hssize_t start[RANK]; /* for hyperslab setting */ hsize_t count[RANK], stride[RANK]; /* for hyperslab setting */ hsize_t block[RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int i, j; int mpi_size, mpi_rank; MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; if (verbose) printf("Extend independent read test on file %s\n", filename); /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&mpi_size); MPI_Comm_rank(MPI_COMM_WORLD,&mpi_rank); /* allocate memory for data buffer */ data_array1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array1 != NULL), "data_array1 malloc succeeded"); data_array2 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_array2 != NULL), "data_array2 malloc succeeded"); data_origin1 = (DATATYPE *)malloc(dim0*dim1*sizeof(DATATYPE)); VRFY((data_origin1 != NULL), "data_origin1 malloc succeeded"); /* ------------------- * OPEN AN HDF5 FILE * -------------------*/ /* setup file access template */ acc_tpl = H5Pcreate (H5P_FILE_ACCESS); VRFY((acc_tpl >= 0), ""); /* set Parallel access with communicator */ ret = H5Pset_fapl_mpio(acc_tpl, comm, info); VRFY((ret >= 0), ""); /* open the file collectively */ fid=H5Fopen(filename,H5F_ACC_RDONLY,acc_tpl); VRFY((fid >= 0), ""); /* Release file-access template */ ret=H5Pclose(acc_tpl); VRFY((ret >= 0), ""); /* open the dataset1 collectively */ dataset1 = H5Dopen(fid, DATASETNAME1); VRFY((dataset1 >= 0), ""); /* open another dataset collectively */ dataset2 = H5Dopen(fid, DATASETNAME1); VRFY((dataset2 >= 0), ""); /* Try extend dataset1 which is open RDONLY. Should fail. */ /* first turn off auto error reporting */ H5Eget_auto(&old_func, &old_client_data); H5Eset_auto(NULL, NULL); file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), "H5Dget_space succeeded"); ret=H5Sget_simple_extent_dims(file_dataspace, dims, NULL); VRFY((ret > 0), "H5Sget_simple_extent_dims succeeded"); dims[0]++; ret=H5Dextend(dataset1, dims); VRFY((ret < 0), "H5Dextend failed as expected"); /* restore auto error reporting */ H5Eset_auto(old_func, old_client_data); H5Sclose(file_dataspace); /* Read dataset1 using BYROW pattern */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYROW); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); VRFY((file_dataspace >= 0), ""); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, count, stride, block, data_origin1); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* read data independently */ ret = H5Dread(dataset1, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dread succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); VRFY((ret == 0), "dataset1 read verified correct"); if (ret) nerrors++; H5Sclose(mem_dataspace); H5Sclose(file_dataspace); /* Read dataset2 using BYCOL pattern */ /* set up dimensions of the slab this process accesses */ slab_set(mpi_rank, mpi_size, start, count, stride, block, BYCOL); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset2); VRFY((file_dataspace >= 0), ""); ret=H5Sselect_hyperslab(file_dataspace, H5S_SELECT_SET, start, stride, count, block); VRFY((ret >= 0), ""); /* create a memory dataspace independently */ mem_dataspace = H5Screate_simple (RANK, block, NULL); VRFY((mem_dataspace >= 0), ""); /* fill dataset with test data */ dataset_fill(start, count, stride, block, data_origin1); if (verbose){ MESG("data_array created"); dataset_print(start, count, stride, block, data_array1); } /* read data independently */ ret = H5Dread(dataset2, H5T_NATIVE_INT, mem_dataspace, file_dataspace, H5P_DEFAULT, data_array1); VRFY((ret >= 0), "H5Dread succeeded"); /* verify the read data with original expected data */ ret = dataset_vrfy(start, count, stride, block, data_array1, data_origin1); VRFY((ret == 0), "dataset2 read verified correct"); if (ret) nerrors++; H5Sclose(mem_dataspace); H5Sclose(file_dataspace); /* close dataset collectively */ ret=H5Dclose(dataset1); VRFY((ret >= 0), ""); ret=H5Dclose(dataset2); VRFY((ret >= 0), ""); /* close the file collectively */ H5Fclose(fid); /* release data buffers */ if (data_array1) free(data_array1); if (data_array2) free(data_array2); if (data_origin1) free(data_origin1); }