/* $Id$ */ #include "testphdf5.h" #define DIM 2 #define SIZE 32 #define NDATASET 4 #define GROUP_DEPTH 128 enum obj_type { is_group, is_dset }; void write_dataset(hid_t, hid_t, hid_t); int read_dataset(hid_t, hid_t, hid_t); void create_group_recursive(hid_t, hid_t, hid_t, int); void recursive_read_group(hid_t, hid_t, hid_t, int); void write_attribute(hid_t, int, int); int read_attribute(hid_t, int, int); int check_value(DATATYPE *, DATATYPE *); void get_slab(hssize_t[], hsize_t[], hsize_t[], hsize_t[]); /* * Example of using PHDF5 to create ndatasets datasets. Each process write * a slab of array to the file. */ void multiple_dset_write(char *filename, int ndatasets) { int i, j, n, mpi_size, mpi_rank; hid_t iof, plist, dataset, memspace, filespace; hid_t dcpl; /* Dataset creation property list */ hssize_t chunk_origin [DIM]; hsize_t chunk_dims [DIM], file_dims [DIM]; hsize_t count[DIM]={1,1}; double outme [SIZE][SIZE]; double fill=1.0; /* Fill value */ char dname [100]; herr_t ret; MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size (MPI_COMM_WORLD, &mpi_size); VRFY((mpi_size <= SIZE), "mpi_size <= SIZE"); chunk_origin [0] = mpi_rank * (SIZE / mpi_size); chunk_origin [1] = 0; chunk_dims [0] = SIZE / mpi_size; chunk_dims [1] = SIZE; for (i = 0; i < DIM; i++) file_dims [i] = SIZE; plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); H5Pclose (plist); memspace = H5Screate_simple (DIM, chunk_dims, NULL); filespace = H5Screate_simple (DIM, file_dims, NULL); ret = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); VRFY((ret>=0), "mdata hyperslab selection"); /* Create a dataset creation property list */ dcpl = H5Pcreate(H5P_DATASET_CREATE); VRFY((dcpl>=0), "dataset creation property list succeeded"); ret=H5Pset_fill_value(dcpl, H5T_NATIVE_DOUBLE, &fill); VRFY((ret>=0), "set fill-value succeeded"); for (n = 0; n < ndatasets; n++) { sprintf (dname, "dataset %d", n); dataset = H5Dcreate (iof, dname, H5T_NATIVE_DOUBLE, filespace, dcpl); VRFY((dataset > 0), dname); /* calculate data to write */ for (i = 0; i < SIZE; i++) for (j = 0; j < SIZE; j++) outme [i][j] = n*1000 + mpi_rank; H5Dwrite (dataset, H5T_NATIVE_DOUBLE, memspace, filespace, H5P_DEFAULT, outme); H5Dclose (dataset); #ifdef BARRIER_CHECKS if (! ((n+1) % 10)) { printf("created %d datasets\n", n+1); MPI_Barrier(MPI_COMM_WORLD); } #endif /* BARRIER_CHECKS */ } H5Sclose (filespace); H5Sclose (memspace); H5Pclose (dcpl); H5Fclose (iof); } /* Example of using PHDF5 to create, write, and read compact dataset. * Hyperslab is prohibited for write. */ void compact_dataset(char *filename) { int i, j, mpi_size, mpi_rank, err_num=0; hid_t iof, plist, dcpl, dxpl, dataset, memspace, filespace; hssize_t chunk_origin [DIM]; hsize_t chunk_dims [DIM], file_dims [DIM]; hsize_t count[DIM]={1,1}; double outme [SIZE][SIZE], inme[SIZE][SIZE]; char dname[]="dataset"; herr_t ret; MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size (MPI_COMM_WORLD, &mpi_size); VRFY((mpi_size <= SIZE), "mpi_size <= SIZE"); chunk_origin [0] = mpi_rank * (SIZE / mpi_size); chunk_origin [1] = 0; chunk_dims [0] = SIZE / mpi_size; chunk_dims [1] = SIZE; for (i = 0; i < DIM; i++) file_dims [i] = SIZE; plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); iof = H5Fcreate (filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); /* Define data space */ memspace = H5Screate_simple (DIM, chunk_dims, NULL); filespace = H5Screate_simple (DIM, file_dims, NULL); /* Create a compact dataset */ dcpl = H5Pcreate(H5P_DATASET_CREATE); VRFY((dcpl>=0), "dataset creation property list succeeded"); ret=H5Pset_layout(dcpl, H5D_COMPACT); VRFY((dcpl >= 0), "set property list for compact dataset"); ret=H5Pset_alloc_time(dcpl, H5D_ALLOC_TIME_EARLY); VRFY((ret >= 0), "set space allocation time for compact dataset"); dataset = H5Dcreate (iof, dname, H5T_NATIVE_DOUBLE, filespace, dcpl); VRFY((dataset >= 0), "H5Dcreate succeeded"); /* Define hyperslab */ ret = H5Sselect_hyperslab (filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); VRFY((ret>=0), "mdata hyperslab selection"); /* set up the collective transfer properties list */ dxpl = H5Pcreate (H5P_DATASET_XFER); VRFY((dxpl >= 0), ""); ret=H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); /* calculate data to write */ for (i = 0; i < SIZE; i++) for (j = 0; j < SIZE; j++) outme [i][j] = (i+j)*1000 + mpi_rank; /* Test hyperslab writing. Supposed to fail */ H5E_BEGIN_TRY { ret=H5Dwrite(dataset, H5T_NATIVE_DOUBLE, memspace, filespace, dxpl, outme); } H5E_END_TRY; VRFY((ret < 0), "H5Dwrite hyperslab write failed as expected"); /* Recalculate data to write. Each process writes the same data. */ for (i = 0; i < SIZE; i++) for (j = 0; j < SIZE; j++) outme [i][j] = (i+j)*1000; ret=H5Dwrite (dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, dxpl, outme); VRFY((ret >= 0), "H5Dwrite succeeded"); H5Pclose (dcpl); H5Pclose (plist); H5Dclose (dataset); H5Sclose (filespace); H5Sclose (memspace); H5Fclose (iof); /* Open the file and dataset, read and compare the data. */ plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); iof = H5Fopen(filename, H5F_ACC_RDONLY, plist); VRFY((iof >= 0), "H5Fopen succeeded"); /* set up the collective transfer properties list */ dxpl = H5Pcreate (H5P_DATASET_XFER); VRFY((dxpl >= 0), ""); ret=H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE); VRFY((ret >= 0), "H5Pcreate xfer succeeded"); dataset = H5Dopen(iof, dname); VRFY((dataset >= 0), "H5Dcreate succeeded"); ret = H5Dread(dataset, H5T_NATIVE_DOUBLE, H5S_ALL, H5S_ALL, dxpl, inme); VRFY((ret >= 0), "H5Dread succeeded"); /* Verify data value */ for (i = 0; i < SIZE; i++) for (j = 0; j < SIZE; j++) if(inme[i][j] != outme[i][j]) if(err_num++ < MAX_ERR_REPORT || verbose) printf("Dataset Verify failed at [%d][%d]: expect %f, got %f\n", i, j, outme[i][j], inme[i][j]); H5Pclose(plist); H5Pclose(dxpl); H5Dclose(dataset); H5Fclose(iof); } /* * Example of using PHDF5 to create multiple groups. Under the root group, * it creates ngroups groups. Under the first group just created, it creates * recursive subgroups of depth GROUP_DEPTH. In each created group, it * generates NDATASETS datasets. Each process write a hyperslab of an array * into the file. The structure is like * * root group * | * ---------------------------- ... ... ------------------------ * | | | ... ... | | * group0*+' group1*+' group2*+' ... ... group ngroups*+' * | * 1st_child_group*' * | * 2nd_child_group*' * | * : * : * | * GROUP_DEPTHth_child_group*' * * * means the group has dataset(s). * + means the group has attribute(s). * ' means the datasets in the groups have attribute(s). */ void multiple_group_write(char *filename, int ngroups) { int mpi_rank, mpi_size; int m; char gname[64]; hid_t fid, gid, plist, memspace, filespace; hssize_t chunk_origin[DIM]; hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; herr_t ret1, ret2; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); fid = H5Fcreate(filename, H5F_ACC_TRUNC, H5P_DEFAULT, plist); H5Pclose(plist); /* decide the hyperslab according to process number. */ get_slab(chunk_origin, chunk_dims, count, file_dims); /* select hyperslab in memory and file spaces. These two operations are * identical since the datasets are the same. */ memspace = H5Screate_simple(DIM, file_dims, NULL); ret1 = H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); filespace = H5Screate_simple(DIM, file_dims, NULL); ret2 = H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); VRFY((memspace>=0), "memspace"); VRFY((filespace>=0), "filespace"); VRFY((ret1>=0), "mgroup memspace selection"); VRFY((ret2>=0), "mgroup filespace selection"); /* creates ngroups groups under the root group, writes datasets in * parallel. */ for(m = 0; m < ngroups; m++) { sprintf(gname, "group%d", m); gid = H5Gcreate(fid, gname, 0); VRFY((gid > 0), gname); /* create attribute for these groups. */ write_attribute(gid, is_group, m); if(m != 0) write_dataset(memspace, filespace, gid); H5Gclose(gid); #ifdef BARRIER_CHECKS if(! ((m+1) % 10)) { printf("created %d groups\n", m+1); MPI_Barrier(MPI_COMM_WORLD); } #endif /* BARRIER_CHECKS */ } /* recursively creates subgroups under the first group. */ gid = H5Gopen(fid, "group0"); create_group_recursive(memspace, filespace, gid, 0); H5Gclose(gid); H5Sclose(filespace); H5Sclose(memspace); H5Fclose(fid); } /* * In a group, creates NDATASETS datasets. Each process writes a hyperslab * of a data array to the file. */ void write_dataset(hid_t memspace, hid_t filespace, hid_t gid) { int i, j, n; int mpi_rank, mpi_size; char dname[32]; DATATYPE outme[SIZE][SIZE]; hid_t did; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); for(n=0; n < NDATASET; n++) { sprintf(dname, "dataset%d", n); did = H5Dcreate(gid, dname, H5T_NATIVE_INT, filespace, H5P_DEFAULT); VRFY((did > 0), dname); for(i=0; i < SIZE; i++) for(j=0; j < SIZE; j++) outme[i][j] = n*1000 + mpi_rank; H5Dwrite(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, outme); /* create attribute for these datasets.*/ write_attribute(did, is_dset, n); H5Dclose(did); } } /* * Creates subgroups of depth GROUP_DEPTH recursively. Also writes datasets * in parallel in each group. */ void create_group_recursive(hid_t memspace, hid_t filespace, hid_t gid, int counter) { hid_t child_gid; int mpi_rank; char gname[64]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); #ifdef BARRIER_CHECKS if(! ((counter+1) % 10)) { printf("created %dth child groups\n", counter+1); MPI_Barrier(MPI_COMM_WORLD); } #endif /* BARRIER_CHECKS */ sprintf(gname, "%dth_child_group", counter+1); child_gid = H5Gcreate(gid, gname, 0); VRFY((child_gid > 0), gname); /* write datasets in parallel. */ write_dataset(memspace, filespace, gid); if( counter < GROUP_DEPTH ) create_group_recursive(memspace, filespace, child_gid, counter+1); H5Gclose(child_gid); } /* * This function is to verify the data from multiple group testing. It opens * every dataset in every group and check their correctness. */ void multiple_group_read(char *filename, int ngroups) { int mpi_rank, mpi_size, error_num; int m; char gname[64]; hid_t plist, fid, gid, memspace, filespace; hssize_t chunk_origin[DIM]; hsize_t chunk_dims[DIM], file_dims[DIM], count[DIM]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); plist = create_faccess_plist(MPI_COMM_WORLD, MPI_INFO_NULL, facc_type); fid = H5Fopen(filename, H5F_ACC_RDONLY, plist); H5Pclose(plist); /* decide hyperslab for each process */ get_slab(chunk_origin, chunk_dims, count, file_dims); /* select hyperslab for memory and file space */ memspace = H5Screate_simple(DIM, file_dims, NULL); H5Sselect_hyperslab(memspace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); filespace = H5Screate_simple(DIM, file_dims, NULL); H5Sselect_hyperslab(filespace, H5S_SELECT_SET, chunk_origin, chunk_dims, count, chunk_dims); /* open every group under root group. */ for(m=0; m 0), gname); /* check the data. */ if(m != 0) if( (error_num = read_dataset(memspace, filespace, gid))>0) nerrors += error_num; /* check attribute.*/ error_num = 0; if( (error_num = read_attribute(gid, is_group, m))>0 ) nerrors += error_num; H5Gclose(gid); #ifdef BARRIER_CHECKS if(!((m+1)%10)) MPI_Barrier(MPI_COMM_WORLD); #endif /* BARRIER_CHECKS */ } /* open all the groups in vertical direction. */ gid = H5Gopen(fid, "group0"); VRFY((gid>0), "group0"); recursive_read_group(memspace, filespace, gid, 0); H5Gclose(gid); H5Sclose(filespace); H5Sclose(memspace); H5Fclose(fid); } /* * This function opens all the datasets in a certain, checks the data using * dataset_vrfy function. */ int read_dataset(hid_t memspace, hid_t filespace, hid_t gid) { int i, j, n, mpi_rank, mpi_size, attr_errors=0, vrfy_errors=0; char dname[32]; DATATYPE *outdata, *indata; hid_t did; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); indata = (DATATYPE*)malloc(SIZE*SIZE*sizeof(DATATYPE)); outdata = (DATATYPE*)malloc(SIZE*SIZE*sizeof(DATATYPE)); for(n=0; n0), dname); H5Dread(did, H5T_NATIVE_INT, memspace, filespace, H5P_DEFAULT, indata); /* this is the original value */ for(i=0; i0 ) vrfy_errors += attr_errors; H5Dclose(did); } free(indata); free(outdata); return vrfy_errors; } /* * This recursive function opens all the groups in vertical direction and * checks the data. */ void recursive_read_group(hid_t memspace, hid_t filespace, hid_t gid, int counter) { hid_t child_gid; int mpi_rank, err_num=0; char gname[64]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); #ifdef BARRIER_CHECKS if((counter+1) % 10) MPI_Barrier(MPI_COMM_WORLD); #endif /* BARRIER_CHECKS */ if( (err_num = read_dataset(memspace, filespace, gid)) ) nerrors += err_num; if( counter < GROUP_DEPTH ) { sprintf(gname, "%dth_child_group", counter+1); child_gid = H5Gopen(gid, gname); VRFY((child_gid>0), gname); recursive_read_group(memspace, filespace, child_gid, counter+1); H5Gclose(child_gid); } } /* Create and write attribute for a group or a dataset. For groups, attribute * is a scalar datum; for dataset, it is a one-dimensional array. */ void write_attribute(hid_t obj_id, int this_type, int num) { hid_t sid, aid; hsize_t dspace_dims[1]={8}; int i, mpi_rank, attr_data[8], dspace_rank=1; char attr_name[32]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); if(this_type == is_group) { sprintf(attr_name, "Group Attribute %d", num); sid = H5Screate(H5S_SCALAR); aid = H5Acreate(obj_id, attr_name, H5T_NATIVE_INT, sid, H5P_DEFAULT); H5Awrite(aid, H5T_NATIVE_INT, &num); H5Aclose(aid); H5Sclose(sid); } else if(this_type == is_dset) { sprintf(attr_name, "Dataset Attribute %d", num); for(i=0; i<8; i++) attr_data[i] = i; sid = H5Screate_simple(dspace_rank, dspace_dims, NULL); aid = H5Acreate(obj_id, attr_name, H5T_NATIVE_INT, sid, H5P_DEFAULT); H5Awrite(aid, H5T_NATIVE_INT, attr_data); H5Aclose(aid); H5Sclose(sid); } } /* Read and verify attribute for group or dataset. */ int read_attribute(hid_t obj_id, int this_type, int num) { hid_t aid; hsize_t group_block[2]={1,1}, dset_block[2]={1, 8}; int i, mpi_rank, in_num, in_data[8], out_data[8], vrfy_errors = 0; char attr_name[32]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); if(this_type == is_group) { sprintf(attr_name, "Group Attribute %d", num); aid = H5Aopen_name(obj_id, attr_name); if(MAINPROCESS) { H5Aread(aid, H5T_NATIVE_INT, &in_num); vrfy_errors = dataset_vrfy(NULL, NULL, NULL, group_block, &in_num, &num); } H5Aclose(aid); } else if(this_type == is_dset) { sprintf(attr_name, "Dataset Attribute %d", num); for(i=0; i<8; i++) out_data[i] = i; aid = H5Aopen_name(obj_id, attr_name); if(MAINPROCESS) { H5Aread(aid, H5T_NATIVE_INT, in_data); vrfy_errors = dataset_vrfy(NULL, NULL, NULL, dset_block, in_data, out_data); } H5Aclose(aid); } return vrfy_errors; } /* This functions compares the original data with the read-in data for its * hyperslab part only by process ID. */ int check_value(DATATYPE *indata, DATATYPE *outdata) { int mpi_rank, mpi_size, err_num=0; hsize_t i, j; hssize_t chunk_origin[DIM]; hsize_t chunk_dims[DIM], count[DIM]; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); get_slab(chunk_origin, chunk_dims, count, NULL); indata += chunk_origin[0]*SIZE; outdata += chunk_origin[0]*SIZE; for(i=chunk_origin[0]; i<(chunk_origin[0]+chunk_dims[0]); i++) for(j=chunk_origin[1]; j<(chunk_origin[1]+chunk_dims[1]); j++) { if( *indata != *outdata ) if(err_num++ < MAX_ERR_REPORT || verbose) printf("Dataset Verify failed at [%ld][%ld](row %ld, col%ld): expect %d, got %d\n", (long)i, (long)j, (long)i, (long)j, *outdata, *indata); } if(err_num > MAX_ERR_REPORT && !verbose) printf("[more errors ...]\n"); if(err_num) printf("%d errors found in check_value\n", err_num); return err_num; } /* Decide the portion of data chunk in dataset by process ID. */ void get_slab(hssize_t chunk_origin[], hsize_t chunk_dims[], hsize_t count[], hsize_t file_dims[]) { int mpi_rank, mpi_size; MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank); MPI_Comm_size(MPI_COMM_WORLD, &mpi_size); if(chunk_origin != NULL) { chunk_origin[0] = mpi_rank * (SIZE/mpi_size); chunk_origin[1] = 0; } if(chunk_dims != NULL) { chunk_dims[0] = SIZE/mpi_size; chunk_dims[1] = SIZE; } if(file_dims != NULL) file_dims[0] = file_dims[1] = SIZE; if(count != NULL) count[0] = count[1] = 1; } /*============================================================================= * End of t_mdset.c *===========================================================================*/