/* * Example of using the parallel HDF5 library to access datasets. * * This program contains two parts. In the first part, the mpi processes * collectively create a new parallel HDF5 file and create two fixed * dimension datasets in it. Then each process writes a hyperslab into * each dataset in an independent mode. All processes collectively * close the datasets and the file. * In the second part, the processes collectively open the created file * and the two datasets in it. Then each process reads a hyperslab from * each dataset in an independent mode and prints them out. * All processes collectively close the datasets and the file. */ #include #include #include #include /* Temporary source code */ #include /* temporary code end */ /* Constants definitions */ #ifdef HAVE_PARALLEL #define FILE1 "ufs:ParaEg1.h5" #define FILE2 "ufs:ParaEg2.h5" #else #define FILE1 "Eg1.h5" #define FILE2 "Eg2.h5" #endif /* 24 is a multiple of 2, 3, 4, 6, 8, 12. Neat for parallel tests. */ #define SPACE1_DIM1 24 #define SPACE1_DIM2 20 #define SPACE1_RANK 2 #define DATASETNAME1 "Data1" #define DATASETNAME2 "Data2" #define DATASETNAME3 "Data3" /* Example of using the parallel HDF5 library to create a dataset */ void phdf5write() { hid_t fid1, fid2; /* HDF5 file IDs */ hid_t acc_tpl1; /* File access templates */ hid_t sid1,sid2; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ uint32 rank = SPACE1_RANK; /* Logical rank of dataspace */ size_t dims1[SPACE1_RANK] = {SPACE1_DIM1,SPACE1_DIM2}; /* dataspace dim sizes */ int32 data_array1[SPACE1_DIM1][SPACE1_DIM2]; /* data buffer */ int start[SPACE1_RANK]; /* for hyperslab setting */ size_t count[SPACE1_RANK], stride[SPACE1_RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ int i, j; int numprocs, myid; #ifdef HAVE_PARALLEL MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid); #else numprocs = 1; myid = 0; #endif /* setup file access template */ acc_tpl1 = H5Ccreate (H5C_FILE_ACCESS); assert(acc_tpl1 != FAIL); MESG("H5Ccreate access succeed"); #ifdef HAVE_PARALLEL /* set Independent Parallel access with communicator */ ret = H5Cset_mpi(acc_tpl1, comm, info, H5ACC_INDEPENDENT); assert(ret != FAIL); MESG("H5Cset_mpi succeed"); #endif /* create the file collectively */ fid1=H5Fcreate(FILE1,H5F_ACC_TRUNC,H5C_DEFAULT,acc_tpl1); assert(fid1 != FAIL); MESG("H5Fcreate succeed"); /* Release file-access template */ ret=H5Mclose(acc_tpl1); assert(ret != FAIL); /* setup dimensionality object */ sid1 = H5Pcreate_simple (SPACE1_RANK, dims1, NULL); assert (sid1 != FAIL); MESG("H5Pcreate_simple succeed"); /* create a dataset collectively */ dataset1 = H5Dcreate(fid1, DATASETNAME1, H5T_NATIVE_INT32, sid1, H5C_DEFAULT); assert(dataset1 != FAIL); MESG("H5Dcreate succeed"); /* create another dataset collectively */ dataset2 = H5Dcreate(fid1, DATASETNAME2, H5T_NATIVE_INT32, sid1, H5C_DEFAULT); assert(dataset2 != FAIL); MESG("H5Dcreate succeed"); /* set up dimensions of the slab this process accesses */ start[0] = myid*SPACE1_DIM1/numprocs; start[1] = 0; count[0] = SPACE1_DIM1/numprocs; count[1] = SPACE1_DIM2; stride[0] = 1; stride[1] =1; printf("start[]=(%d,%d), count[]=(%lu,%lu), total datapoints=%lu\n", start[0], start[1], count[0], count[1], count[0]*count[1]); /* put some trivial data in the data_array */ for (i=0; i < count[0]; i++){ for (j=0; j < count[1]; j++){ data_array1[i][j] = (i+start[0])*100 + (j+1); } } MESG("data_array initialized"); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); assert(file_dataspace != FAIL); MESG("H5Dget_space succeed"); ret=H5Pset_hyperslab(file_dataspace, start, count, stride); assert(ret != FAIL); MESG("H5Pset_hyperslab succeed"); /* create a memory dataspace independently */ mem_dataspace = H5Pcreate_simple (SPACE1_RANK, count, NULL); assert (mem_dataspace != FAIL); /* write data independently */ ret = H5Dwrite(dataset1, H5T_NATIVE_INT32, mem_dataspace, file_dataspace, H5C_DEFAULT, data_array1); assert(ret != FAIL); MESG("H5Dwrite succeed"); /* write data independently */ ret = H5Dwrite(dataset2, H5T_NATIVE_INT32, mem_dataspace, file_dataspace, H5C_DEFAULT, data_array1); assert(ret != FAIL); MESG("H5Dwrite succeed"); /* release dataspace ID */ H5Pclose(file_dataspace); /* close dataset collectively */ ret=H5Dclose(dataset1); assert(ret != FAIL); ret=H5Dclose(dataset2); assert(ret != FAIL); /* release all IDs created */ H5Mclose(sid1); /* close the file collectively */ H5Fclose(fid1); } /* Example of using the parallel HDF5 library to read a dataset */ void phdf5read() { hid_t fid1, fid2; /* HDF5 file IDs */ hid_t acc_tpl1; /* File access templates */ hid_t sid1,sid2; /* Dataspace ID */ hid_t file_dataspace; /* File dataspace ID */ hid_t mem_dataspace; /* memory dataspace ID */ hid_t dataset1, dataset2; /* Dataset ID */ uint32 rank = SPACE1_RANK; /* Logical rank of dataspace */ size_t dims1[] = {SPACE1_DIM1,SPACE1_DIM2}; /* dataspace dim sizes */ int32 data_array1[SPACE1_DIM1][SPACE1_DIM2]; /* data buffer */ int start[SPACE1_RANK]; /* for hyperslab setting */ size_t count[SPACE1_RANK], stride[SPACE1_RANK]; /* for hyperslab setting */ herr_t ret; /* Generic return value */ intn i, j; int numprocs, myid; #ifdef HAVE_PARALLEL MPI_Comm comm = MPI_COMM_WORLD; MPI_Info info = MPI_INFO_NULL; /* set up MPI parameters */ MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid); #else numprocs = 1; myid = 0; #endif /* setup file access template */ acc_tpl1 = H5Ccreate (H5C_FILE_ACCESS); assert(acc_tpl1 != FAIL); #ifdef HAVE_PARALLEL /* set Independent Parallel access with communicator */ ret = H5Cset_mpi(acc_tpl1, comm, info, H5ACC_INDEPENDENT); assert(ret != FAIL); #endif /* open the file collectively */ fid1=H5Fopen(FILE1,H5F_ACC_RDWR,acc_tpl1); assert(fid1 != FAIL); /* Release file-access template */ ret=H5Mclose(acc_tpl1); assert(ret != FAIL); /* open the dataset1 collectively */ dataset1 = H5Dopen(fid1, DATASETNAME1); assert(dataset1 != FAIL); /* open another dataset collectively */ dataset2 = H5Dopen(fid1, DATASETNAME1); assert(dataset2 != FAIL); /* set up dimensions of the slab this process accesses */ start[0] = myid*SPACE1_DIM1/numprocs; start[1] = 0; count[0] = SPACE1_DIM1/numprocs; count[1] = SPACE1_DIM2; stride[0] = 1; stride[1] =1; printf("start[]=(%d,%d), count[]=(%lu,%lu), total datapoints=%lu\n", start[0], start[1], count[0], count[1], count[0]*count[1]); /* create a file dataspace independently */ file_dataspace = H5Dget_space (dataset1); assert(file_dataspace != FAIL); ret=H5Pset_hyperslab(file_dataspace, start, count, stride); assert(ret != FAIL); /* create a memory dataspace independently */ mem_dataspace = H5Pcreate_simple (SPACE1_RANK, count, NULL); assert (mem_dataspace != FAIL); /* read data independently */ ret = H5Dread(dataset1, H5T_NATIVE_INT32, mem_dataspace, file_dataspace, H5C_DEFAULT, data_array1); assert(ret != FAIL); /* print the slab read */ for (i=0; i < count[0]; i++){ printf("Row %d: ", i+start[0]); for (j=0; j < count[1]; j++){ printf("%d ", data_array1[i][j]); } printf("\n"); } /* read data independently */ ret = H5Dread(dataset2, H5T_NATIVE_INT32, mem_dataspace, file_dataspace, H5C_DEFAULT, data_array1); assert(ret != FAIL); /* print the slab read */ for (i=0; i < count[0]; i++){ printf("Row %d: ", i+start[0]); for (j=0; j < count[1]; j++){ printf("%d ", data_array1[i][j]); } printf("\n"); } /* close dataset collectively */ ret=H5Dclose(dataset1); assert(ret != FAIL); ret=H5Dclose(dataset2); assert(ret != FAIL); /* release all IDs created */ H5Pclose(file_dataspace); /* close the file collectively */ H5Fclose(fid1); } void usage() { printf("Usage: testphdf5 [-r] [-w]\n"); printf("\t-r\b\bno read\n"); printf("\t-w\b\bno write\n"); printf("\tdefault do write then read\n"); printf("\n"); } main(int argc, char **argv) { int numprocs, myid, namelen; char processor_name[MPI_MAX_PROCESSOR_NAME]; int doread=1; /* read test */ int dowrite=1; /* write test */ void usage(); #ifdef HAVE_PARALLEL MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD,&numprocs); MPI_Comm_rank(MPI_COMM_WORLD,&myid); MPI_Get_processor_name(processor_name,&namelen); pause_proc(MPI_COMM_WORLD, myid, processor_name, namelen, argc, argv); #endif /* parse option */ while (--argc){ if (**(++argv) != '-'){ break; }else{ switch(*(*argv+1)){ case 'r': doread = 0; break; case 'w': dowrite = 0; break; default: usage(); break; } } } if (dowrite){ MPI_BANNER("testing PHDF5 writing dataset ..."); phdf5write(); } if (doread){ MPI_BANNER("testing PHDF5 reading dataset ..."); phdf5read(); } if (!(dowrite || doread)) usage(); else MPI_BANNER("PHDF5 tests finished"); #ifdef HAVE_PARALLEL MPI_Finalize(); #endif return(0); }