summaryrefslogtreecommitdiffstats
path: root/doc/html/Datatypes.html
blob: f738d44a4a08db2d372d8bbd84cb958dac71aea7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
  <head>
    <title>Datatype Interface (H5T)</title>

<!-- #BeginLibraryItem "/ed_libs/styles_UG.lbi" -->
<!--
  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
  * Copyright by the Board of Trustees of the University of Illinois.         *
  * All rights reserved.                                                      *
  *                                                                           *
  * This file is part of HDF5.  The full HDF5 copyright notice, including     *
  * terms governing use, modification, and redistribution, is contained in    *
  * the files COPYING and Copyright.html.  COPYING can be found at the root   *
  * of the source code distribution tree; Copyright.html can be found at the  *
  * root level of an installed copy of the electronic HDF5 document set and   *
  * is linked from the top-level documents page.  It can also be found at     *
  * http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html.  If you do not have     *
  * access to either file, you may request a copy from hdfhelp@ncsa.uiuc.edu. *
  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 -->

<link href="ed_styles/UGelect.css" rel="stylesheet" type="text/css">
<!-- #EndLibraryItem --></head>

  <body bgcolor="#FFFFFF">
  
  
<!-- #BeginLibraryItem "/ed_libs/NavBar_UG.lbi" --><hr>
<center>
<table border=0 width=98%>
<tr><td valign=top align=left>
    <a href="index.html">HDF5 documents and links</a>&nbsp;<br>
    <a href="H5.intro.html">Introduction to HDF5</a>&nbsp;<br>
    <a href="RM_H5Front.html">HDF5 Reference Manual</a>&nbsp;<br>   
    <a href="http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/index.html">HDF5 User's Guide for Release 1.6</a>&nbsp;<br>
    <!--
    <a href="Glossary.html">Glossary</a><br>
    -->
</td>
<td valign=top align=right>
    And in this document, the 
    <a href="H5.user.html"><strong>HDF5 User's Guide from Release 1.4.5:</strong></a>&nbsp;&nbsp;&nbsp;&nbsp;
        <br>
        <a href="Files.html">Files</a>&nbsp;&nbsp;
        <a href="Datasets.html">Datasets</a>&nbsp;&nbsp;
        <a href="Datatypes.html">Datatypes</a>&nbsp;&nbsp;
        <a href="Dataspaces.html">Dataspaces</a>&nbsp;&nbsp;
        <a href="Groups.html">Groups</a>&nbsp;&nbsp;
        <br>
        <a href="References.html">References</a>&nbsp;&nbsp;
        <a href="Attributes.html">Attributes</a>&nbsp;&nbsp;
        <a href="Properties.html">Property Lists</a>&nbsp;&nbsp;
        <a href="Errors.html">Error Handling</a>&nbsp;&nbsp;
        <br>
        <a href="Filters.html">Filters</a>&nbsp;&nbsp;
        <a href="Caching.html">Caching</a>&nbsp;&nbsp;
        <a href="Chunking.html">Chunking</a>&nbsp;&nbsp;
        <a href="MountingFiles.html">Mounting Files</a>&nbsp;&nbsp;
        <br>
        <a href="Performance.html">Performance</a>&nbsp;&nbsp;
        <a href="Debugging.html">Debugging</a>&nbsp;&nbsp;
        <a href="Environment.html">Environment</a>&nbsp;&nbsp;
        <a href="ddl.html">DDL</a>&nbsp;&nbsp;
</td></tr>
</table>
</center>
<hr>
<!-- #EndLibraryItem --><h1>The Datatype Interface (H5T)</h1>

    <h2>1. Introduction</h2>
    
    <p>The datatype interface provides a mechanism to describe the
      storage format of individual data points of a data set and is
      hopefully designed in such a way as to allow new features to be
      easily added without disrupting applications that use the 
      datatype interface.  A dataset (the H5D interface) is composed of a
      collection or raw data points of homogeneous type organized
      according to the data space (the H5S interface).

    <p>A datatype is a collection of datatype properties, all of
      which can be stored on disk, and which when taken as a whole,
      provide complete information for data conversion to or from that
      datatype.  The interface provides functions to set and query
      properties of a datatype.
      
    <p>A <em>data point</em> is an instance of a <em>datatype</em>,
      which is an instance of a <em>type class</em>.  We have defined
      a set of type classes and properties which can be extended at a
      later time.  The atomic type classes are those which describe
      types which cannot be decomposed at the datatype interface
      level; all other classes are compound.

    <h2>2. General Datatype Operations</h2>

    <p>The functions defined in this section operate on datatypes as
      a whole. New datatypes can be created from scratch or copied
      from existing datatypes.  When a datatype is no longer needed
      its resources should be released by calling <code>H5Tclose()</code>.

    <p> Datatypes come in two flavors: named datatypes and transient
      datatypes. A named datatype is stored in a file while the
      transient flavor is independent of any file. Named datatypes
      are always read-only, but transient types come in three
      varieties: modifiable, read-only, and immutable.  The difference 
      between read-only and immutable types is that immutable types
      cannot be closed except when the entire library is closed (the
      predefined types like <code>H5T_NATIVE_INT</code> are immutable
      transient types).

    <dl>
      <dt><code>hid_t H5Tcreate (H5T_class_t <em>class</em>, size_t
	  <em>size</em>)</code>
      <dd> Datatypes can be created by calling this
	function, where <em>class</em> is a datatype class
	identifier.  However, the only class currently allowed is
	<code>H5T_COMPOUND</code> to create a new empty compound 
	datatype where <em>size</em> is the total size in bytes of an
	instance of this datatype.  Other datatypes are created with
	<code>H5Tcopy()</code>. All functions that return datatype
	identifiers return a negative value for failure.

	<br><br>
      <dt><code>hid_t H5Topen (hid_t <em>location</em>, const char
	  *<em>name</em>)</code>
      <dd>A named datatype can be opened by calling this function,
	which returns a datatype identifier.  The identifier should
	eventually be released by calling <code>H5Tclose()</code> to
	release resources. The named datatype returned by this
	function is read-only or a negative value is returned for
	failure.  The <em>location</em> is either a file or group
	identifier.

	<br><br>
      <dt><code>herr_t H5Tcommit (hid_t <em>location</em>, const char
	  *<em>name</em>, hid_t <em>type</em>)</code>
      <dd>A transient datatype (not immutable) can be committed to a
	file and turned into a named datatype by calling this
	function.  The <em>location</em> is either a file or group
	identifier and when combined with <em>name</em> refers to a new
	named datatype.

	<br><br>
      <dt><code>htri_t H5Tcommitted (hid_t <em>type</em>)</code>
      <dd>A type can be queried to determine if it is a named type or
	a transient type.  If this function returns a positive value
	then the type is named (that is, it has been committed perhaps 
	by some other application).  Datasets which return committed
	datatypes with <code>H5Dget_type()</code> are able to share
	the datatype with other datasets in the same file.

	<br><br>
      <dt><code>hid_t H5Tcopy (hid_t <em>type</em>)</code>
      <dd>This function returns a modifiable transient datatype
	which is a copy of <em>type</em> or a negative value for
	failure.  If <em>type</em> is a dataset identifier then the type
	returned is a modifiable transient copy of the datatype of
	the specified dataset.

	<br><br>
      <dt><code>herr_t H5Tclose (hid_t <em>type</em>)</code>
      <dd>Releases resources associated with a datatype.  The 
	datatype identifier should not be subsequently used since the
	results would be unpredictable.  It is illegal to close an
	immutable transient datatype.

	<br><br>
      <dt><code>htri_t H5Tequal (hid_t <em>type1</em>, hid_t
	  <em>type2</em>)</code>
      <dd>Determines if two types are equal.  If <em>type1</em> and
	<em>type2</em> are the same then this function returns
	<code>TRUE</code>, otherwise it returns <code>FALSE</code> (an
	error results in a negative return value).

	<br><br>
      <dt><code>herr_t H5Tlock (hid_t <em>type</em>)</code>
      <dd>A transient datatype can be locked, making it immutable
	(read-only and not closable). The library does this to all
	predefined types to prevent the application from inadvertently
	modifying or deleting (closing) them, but the application is
	also allowed to do this for its own datatypes.  Immutable
	datatypes are closed when the library closes (either by
	<code>H5close()</code> or by normal program termination).
    </dl>

    <h2>3. Properties of Atomic Types</h2>

    <p>An atomic type is a type which cannot be decomposed into
      smaller units at the API level.  All atomic types have a common
      set of properties which are augmented by properties specific to
      a particular type class.  Some of these properties also apply to
      compound datatypes, but we discuss them only as they apply to
      atomic datatypes here. The properties and the functions that
      query and set their values are:

    <dl>
      <dt><code>H5T_class_t H5Tget_class (hid_t <em>type</em>)</code>
      <dd>This property holds one of the class names:
	<code>H5T_INTEGER, H5T_FLOAT, H5T_TIME, H5T_STRING, or
	H5T_BITFIELD</code>.  This property is read-only and is set
	when the datatype is created or copied (see
	<code>H5Tcreate()</code>, <code>H5Tcopy()</code>). If this
	function fails it returns <code>H5T_NO_CLASS</code> which has
	a negative value (all other class constants are non-negative).

	<br><br>
      <dt><code>size_t H5Tget_size (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_size (hid_t <em>type</em>, size_t
	  <em>size</em>)</code>
      <dd>This property is total size of the datum in bytes, including
	padding which may appear on either side of the actual value.
	If this property is reset to a smaller value which would cause
	the significant part of the data to extend beyond the edge of
	the datatype then the <code>offset</code> property is
	decremented a bit at a time.  If the offset reaches zero and
	the significant part of the data still extends beyond the edge
	of the datatype then the <code>precision</code> property is
	decremented a bit at a time.  Decreasing the size of a 
	datatype may fail if the <code>H5T_FLOAT</code> bit fields would
	extend beyond the significant part of the type.  Adjusting the
	size of an <code>H5T_STRING</code> automatically adjusts the
	precision as well.  On error, <code>H5Tget_size()</code>
	returns zero which is never a valid size.

	<br><br>
      <dt><code>H5T_order_t H5Tget_order (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_order (hid_t <em>type</em>, H5T_order_t
	  <em>order</em>)</code>
      <dd>All atomic datatypes have a byte order which describes how
	the bytes of the datatype are layed out in memory.  If the
	lowest memory address contains the least significant byte of
	the datum then it is said to be <em>little-endian</em> or
	<code>H5T_ORDER_LE</code>.  If the bytes are in the oposite
	order then they are said to be <em>big-endian</em> or
	<code>H5T_ORDER_BE</code>. Some datatypes have the same byte
	order on all machines and are <code>H5T_ORDER_NONE</code>
	(like character strings).  If <code>H5Tget_order()</code>
	fails then it returns <code>H5T_ORDER_ERROR</code> which is a
	negative value (all successful return values are
	non-negative).

	<br><br>
      <dt><code>size_t H5Tget_precision (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_precision (hid_t <em>type</em>, size_t
	  <em>precision</em>)</code>
      <dd>Some datatypes occupy more bytes than what is needed to
	store the value.  For instance, a <code>short</code> on a Cray
	is 32 significant bits in an eight-byte field.  The
	<code>precision</code> property identifies the number of
	significant bits of a datatype and the <code>offset</code>
	property (defined below) identifies its location.  The
	<code>size</code> property defined above represents the entire
	size (in bytes) of the datatype.  If the precision is
	decreased then padding bits are inserted on the MSB side of
	the significant bits (this will fail for
	<code>H5T_FLOAT</code> types if it results in the sign,
	mantissa, or exponent bit field extending beyond the edge of
	the significant bit field).  On the other hand, if the
	precision is increased so that it "hangs over" the edge of the
	total size then the <code>offset</code> property is
	decremented a bit at a time.  If the <code>offset</code>
	reaches zero and the significant bits still hang over the
	edge, then the total size is increased a byte at a time.  The
	precision of an <code>H5T_STRING</code> is read-only and is
	always eight times the value returned by
	<code>H5Tget_size()</code>.  <code>H5Tget_precision()</code>
	returns zero on failure since zero is never a valid precision.

	<br><br>
      <dt><code>size_t H5Tget_offset (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_offset (hid_t <em>type</em>, size_t
	  <em>offset</em>)</code>
      <dd>While the <code>precision</code> property defines the number
	of significant bits, the <code>offset</code> property defines
	the location of those bits within the entire datum.  The bits
	of the entire data are numbered beginning at zero at the least
	significant bit of the least significant byte (the byte at the
	lowest memory address for a little-endian type or the byte at
	the highest address for a big-endian type).  The
	<code>offset</code> property defines the bit location of the
	least signficant bit of a bit field whose length is
	<code>precision</code>.  If the offset is increased so the
	significant bits "hang over" the edge of the datum, then the
	<code>size</code> property is automatically incremented.  The
	offset is a read-only property of an <code>H5T_STRING</code>
	and is always zero.  <code>H5Tget_offset()</code> returns zero
	on failure which is also a valid offset, but is guaranteed to
	succeed if a call to <code>H5Tget_precision()</code> succeeds
	with the same arguments.
	
	<br><br>
      <dt><code>herr_t H5Tget_pad (hid_t <em>type</em>, H5T_pad_t
	  *<em>lsb</em>, H5T_pad_t *<em>msb</em>)</code>
      <dt><code>herr_t H5Tset_pad (hid_t <em>type</em>, H5T_pad_t
	  <em>lsb</em>, H5T_pad_t <em>msb</em>)</code>
      <dd>The bits of a datum which are not significant as defined by
	the <code>precision</code> and <code>offset</code> properties
	are called <em>padding</em>.  Padding falls into two
	categories: padding in the low-numbered bits is <em>lsb</em>
	padding and padding in the high-numbered bits is <em>msb</em>
	padding (bits are numbered according to the description for
	the <code>offset</code> property).  Padding bits can always be
	set to zero (<code>H5T_PAD_ZERO</code>) or always set to one
	(<code>H5T_PAD_ONE</code>). The current pad types are returned
	through arguments of <code>H5Tget_pad()</code> either of which
	may be null pointers.
    </dl>

    <h3>3.1. Properties of Integer Atomic Types</h3>

    <p>Integer atomic types (<code>class=H5T_INTEGER</code>)
      describe integer number formats. Such types include the
      following information which describes the type completely and
      allows conversion between various integer atomic types.

    <dl>
      <dt><code>H5T_sign_t H5Tget_sign (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_sign (hid_t <em>type</em>, H5T_sign_t
	  <em>sign</em>)</code>
      <dd>Integer data can be signed two's complement
	(<code>H5T_SGN_2</code>) or unsigned
	(<code>H5T_SGN_NONE</code>). Whether data is signed or not
	becomes important when converting between two integer 
	datatypes of differing sizes as it determines how values are
	truncated and sign extended.
    </dl>

    <h3>3.2. Properties of Floating-point Atomic Types</h3>

    <p>The library supports floating-point atomic types
      (<code>class=H5T_FLOAT</code>) as long as the bits of the
      exponent are contiguous and stored as a biased positive number,
      the bits of the mantissa are contiguous and stored as a positive
      magnitude, and a sign bit exists which is set for negative
      values.  Properties specific to floating-point types are:

    <dl>
      <dt><code>herr_t H5Tget_fields (hid_t <em>type</em>, size_t
	  *<em>spos</em>, size_t *<em>epos</em>, size_t
	  *<em>esize</em>, size_t *<em>mpos</em>, size_t
	  *<em>msize</em>)</code>
      <dt><code>herr_t H5Tset_fields (hid_t <em>type</em>, size_t
	  <em>spos</em>, size_t <em>epos</em>, size_t <em>esize</em>,
	  size_t <em>mpos</em>, size_t <em>msize</em>)</code>
      <dd>A floating-point datum has bit fields which are the exponent
	and mantissa as well as a mantissa sign bit.  These properties
	define the location (bit position of least significant bit of
	the field) and size (in bits) of each field.  The bit
	positions are numbered beginning at zero at the beginning of
	the significant part of the datum (see the descriptions of the
	<code>precision</code> and <code>offset</code>
	properties). The sign bit is always of length one and none of
	the fields are allowed to overlap.  When expanding a
	floating-point type one should set the precision first; when
	decreasing the size one should set the field positions and
	sizes first.
	
	<br><br>
      <dt><code>size_t H5Tget_ebias (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_ebias (hid_t <em>type</em>, size_t
	  <em>ebias</em>)</code>
      <dd>The exponent is stored as a non-negative value which is
	<code>ebias</code> larger than the true exponent.
	<code>H5Tget_ebias()</code> returns zero on failure which is
	also a valid exponent bias, but the function is guaranteed to
	succeed if <code>H5Tget_precision()</code> succeeds when
	called with the same arguments.

	<br><br>
      <dt><code>H5T_norm_t H5Tget_norm (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_norm (hid_t <em>type</em>, H5T_norm_t
	  <em>norm</em>)</code>
      <dd>This property determines the normalization method of the
	mantissa.
	<ul>
	  <li>If the value is <code>H5T_NORM_MSBSET</code> then the
	    mantissa is shifted left (if non-zero) until the first bit
	    after the radix point is set and the exponent is adjusted
	    accordingly.  All bits of the mantissa after the radix
	    point are stored.

	  <li>If its value is <code>H5T_NORM_IMPLIED</code> then the
	    mantissa is shifted left (if non-zero) until the first bit
	    after the radix point is set and the exponent is adjusted
	    accordingly. The first bit after the radix point is not stored
	    since it's always set.

	  <li>If its value is <code>H5T_NORM_NONE</code> then the fractional
	    part of the mantissa is stored without normalizing it.
	</ul>

	<br><br>
      <dt><code>H5T_pad_t H5Tget_inpad (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_inpad (hid_t <em>type</em>, H5T_pad_t
	  <em>inpad</em>)</code>
      <dd>If any internal bits (that is, bits between the sign bit,
	the mantissa field, and the exponent field but within the
	precision field) are unused, then they will be filled
	according to the value of this property.  The <em>inpad</em>
	argument can be <code>H5T_PAD_ZERO</code> if the internal
	padding should always be set to zero, or <code>H5T_PAD_ONE</code>
	if it should always be set to one.
	<code>H5Tget_inpad()</code> returns <code>H5T_PAD_ERROR</code>
	on failure which is a negative value (successful return is
	always non-negative).
    </dl>

    <h3>3.3. Properties of Date and Time Atomic Types</h3>

    <p>Dates and times (<code>class=H5T_TIME</code>) are stored as
      character strings in one of the ISO-8601 formats like
      "<em>1997-12-05 16:25:30</em>"; as character strings using the
      Unix asctime(3) format like "<em>Thu Dec 05 16:25:30 1997</em>";
      as an integer value by juxtaposition of the year, month, and
      day-of-month, hour, minute and second in decimal like
      <em>19971205162530</em>; as an integer value in Unix time(2)
      format; or other variations.

    <h3>3.4. Properties of Character String Atomic Types</h3>

    <p>Fixed-length character string types are used to store textual
      information.  The <code>offset</code> property of a string is
      always zero and the <code>precision</code> property is eight
      times as large as the value returned by
      <code>H5Tget_size()</code> (since precision is measured in bits
      while size is measured in bytes).  Both properties are
      read-only.

    <dl>
      <dt><code>H5T_cset_t H5Tget_cset (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_cset (hid_t <em>type</em>, H5T_cset_t
	  <em>cset</em>)</code>
      <dd>HDF5 is able to distinguish between character sets of
	different nationalities and to convert between them to the
	extent possible.  The only character set currently supported
	is <code>H5T_CSET_ASCII</code>.

	<br><br>
      <dt><code>H5T_str_t H5Tget_strpad (hid_t <em>type</em>)</code>
      <dt><code>herr_t H5Tset_strpad (hid_t <em>type</em>, H5T_str_t
	  <em>strpad</em>)</code>
      <dd>The method used to store character strings differs with the
	programming language: C usually null terminates strings while
	Fortran left-justifies and space-pads strings.  This property
	defines the storage mechanism and can be

	<p>
	<dl>
	  <dt><code>H5T_STR_NULLTERM</code>
	  <dd>A C-style string which is guaranteed to be null
	    terminated.  When converting  from a longer string the
	    value will be truncated and then a null character
	    appended.

	    <br><br>
	  <dt><code>H5T_STR_NULLPAD</code>
	  <dd>A C-style string which is padded with null characters
	    but not necessarily null terminated.  Conversion from a
	    long string to a shorter <code>H5T_STR_NULLPAD</code>
	    string will truncate but not null terminate.  Conversion
	    from a short value to a longer value will append null
	    characters as with <code>H5T_STR_NULLTERM</code>.

	    <br><br>
	  <dt><code>H5T_STR_SPACEPAD</code>
	  <dd>A Fortran-style string which is padded with space
	    characters.  This is the same as
	    <code>H5T_STR_NULLPAD</code> except the padding character
	    is a space instead of a null.
	</dl>

	<p><code>H5Tget_strpad()</code> returns
	<code>H5T_STR_ERROR</code> on failure, a negative value (all
	successful return values are non-negative).
    </dl>

    <h3>3.5. Properties of Bit Field Atomic Types</h3>

    <p>Converting a bit field (<code>class=H5T_BITFIELD</code>) from
      one type to another simply copies the significant bits.  If the
      destination is smaller than the source then bits are truncated.
      Otherwise new bits are filled according to the <code>msb</code>
      padding type.

    <h3>3.6. Character and String Datatype Issues</h3>

      The <code>H5T_NATIVE_CHAR</code> and <code>H5T_NATIVE_UCHAR</code> 
      datatypes are actually numeric data (1-byte integers).  If the 
      application wishes to store character data, then an HDF5 
      <em>string</em> datatype should be derived from 
      <code>H5T_C_S1</code> instead.

        <h4>Motivation</h4>

          HDF5 defines at least three classes of datatypes: 
          integer data, floating point data, and character data.  
          However, the C language defines only integer and 
          floating point datatypes; character data in C is 
          overloaded on the 8- or 16-bit integer types and 
          character strings are overloaded on arrays of those 
          integer types which, by convention, are terminated with 
          a zero element.

          In C, the variable <code>unsigned char s[256]</code> is 
          either an array of numeric data, a single character string 
          with at most 255 characters, or an array of 256 characters, 
          depending entirely on usage.  For uniformity with the 
          other <code>H5T_NATIVE_</code> types, HDF5 uses the 
          numeric interpretation of <code>H5T_NATIVE_CHAR</code> 
          and <code>H5T_NATIVE_UCHAR</code>.


        <h4>Usage</h4>

          To store <code>unsigned char s[256]</code> data as an 
          array of integer values, use the HDF5 datatype 
          <code>H5T_NATIVE_UCHAR</code> and a data space that 
          describes the 256-element array. Some other application 
          that reads the data will then be able to read, say, a 
          256-element array of 2-byte integers and HDF5 will 
          perform the numeric translation.

          To store <code>unsigned char s[256]</code> data as a 
          character string, derive a fixed length string datatype 
          from <code>H5T_C_S1</code> by increasing its size to 
          256 characters. Some other application that reads the 
          data will be able to read, say, a space padded string 
          of 16-bit characters and HDF5 will perform the character 
          and padding translations.

          <pre>
                hid_t s256 = H5Tcopy(H5T_C_S1);
                             H5Tset_size(s256, 256);
          </pre>

          To store <code>unsigned char s[256]</code> data as 
          an array of 256 ASCII characters, use an 
          HDF5 data space to describe the array and derive a 
          one-character string type from <code>H5T_C_S1</code>. 
          Some other application will be able to read a subset 
          of the array as 16-bit characters and HDF5 will 
          perform the character translations.  
          The <code>H5T_STR_NULLPAD</code> is necessary because 
          if <code>H5T_STR_NULLTERM</code> were used 
          (the default) then the single character of storage 
          would be for the null terminator and no useful data 
          would actually be stored (unless the length were 
          incremented to more than one character).

          <pre>
                hid_t s1 = H5Tcopy(H5T_C_S1);
                           H5Tset_strpad(s1, H5T_STR_NULLPAD);
          </pre>

        <h4>Summary</h4>

          The C language uses the term <code>char</code> to 
          represent one-byte numeric data and does not make 
          character strings a first-class datatype.  
          HDF5 makes a distinction between integer and 
          character data and maps the C <code>signed char</code> 
          (<code>H5T_NATIVE_CHAR</code>) and 
          <code>unsigned char</code> (<code>H5T_NATIVE_UCHAR</code>) 
          datatypes to the HDF5 integer type class.

    <h2>4. Properties of Opaque Types</h2>

    <p>Opaque types (<code>class=H5T_OPAQUE</code>) provide the
      application with a mechanism for describing data which cannot be 
      otherwise described by HDF5. The only properties associated with 
      opaque types are a size in bytes and an ASCII tag which is
      manipulated with <code>H5Tset_tag()</code> and
      <code>H5Tget_tag()</code> functions. The library contains no
      predefined conversion functions but the application is free to
      register conversions between any two opaque types or between an
      opaque type and some other type.

    <h2>5. Properties of Compound Types</h2>

    <p>A compound datatype is similar to a <code>struct</code> in C
      or a common block in Fortran: it is a collection of one or more
      atomic types or small arrays of such types.  Each
      <em>member</em> of a compound type has a name which is unique
      within that type, and a byte offset that determines the first
      byte (smallest byte address) of that member in a compound datum.
      A compound datatype has the following properties:

    <dl>
      <dt><code>H5T_class_t H5Tget_class (hid_t <em>type</em>)</code>
      <dd>All compound datatypes belong to the type class
      <code>H5T_COMPOUND</code>.  This property is read-only and is
      defined when a datatype is created or copied (see
      <code>H5Tcreate()</code> or <code>H5Tcopy()</code>).

	<br><br>
      <dt><code>size_t H5Tget_size (hid_t <em>type</em>)</code>
      <dd>Compound datatypes have a total size in bytes which is
	returned by this function.  All members of a compound 
	datatype must exist within this size.  A value of zero is returned
	for failure; all successful return values are positive.

	<br><br>
      <dt><code>int H5Tget_nmembers (hid_t <em>type</em>)</code>
      <dd>A compound datatype consists of zero or more members
	(defined in any order) with unique names and which occupy
	non-overlapping regions within the datum.  In the functions
	that follow, individual members are referenced by an index
	number between zero and <em>N</em>-1, inclusive, where
	<em>N</em> is the value returned by this function.
	<code>H5Tget_nmembers()</code> returns -1 on failure.

	<br><br>
      <dt><code>char *H5Tget_member_name (hid_t <em>type</em>, int
	  <em>membno</em>)</code>
      <dd>Each member has a name which is unique among its siblings in
	a compound datatype.  This function returns a pointer to a
	null-terminated copy of the name allocated with
	<code>malloc()</code> or the null pointer on failure.  The
	caller is responsible for freeing the memory returned by this
	function.

	<br><br>
      <dt><code>size_t H5Tget_member_offset (hid_t <em>type</em>, int
	  <em>membno</em>)</code>
      <dd>The byte offset of member number <em>membno</em> with
	respect to the beginning of the containing compound datum is
	returned by this function.  A zero is returned on failure
	which is also a valid offset, but this function is guaranteed
	to succeed if a call to <code>H5Tget_member_class()</code>
	succeeds when called with the same <em>type</em> and
	<em>membno</em> arguments.

	<br><br>
      <dt><code>hid_t H5Tget_member_type (hid_t <em>type</em>, int
	  <em>membno</em>)</code>
      <dd>Each member has its own datatype, a copy of which is
	returned by this function.  The returned datatype identifier
	should be released by eventually calling
	<code>H5Tclose()</code> on that type.
    </dl>

    <p>Properties of members of a compound datatype are
      defined when the member is added to the compound type (see
      <code>H5Tinsert()</code>) and cannot be subsequently modified.
      This makes it imposible to define recursive data structures.


    <a name="DTypes-PredefinedAtomic">
    <h2>6. Predefined Atomic Datatypes</h2>
    </a>

    <p>The library predefines a modest number of datatypes having
      names like <code>H5T_<em>arch</em>_<em>base</em></code> where
      <em>arch</em> is an architecture name and <em>base</em> is a
      programming type name.  New types can be derived from the
      predifined types by copying the predefined type (see
      <code>H5Tcopy()</code>) and then modifying the result.

    <p>
      <center>
	<table align=center width="80%">
	  <tr>
	    <th align=left width="20%">Architecture Name</th>
	    <th align=left width="80%">Description</th>
	  </tr>

	  <tr valign=top>
	    <td><code>IEEE</code></td>
	    <td>This architecture defines standard floating point
	      types in various byte orders.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>STD</code></td>
	    <td>This is an architecture that contains semi-standard
	      datatypes like signed two's complement integers,
	      unsigned integers, and bitfields in various byte
	      orders.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>UNIX</code></td>
	    <td>Types which are specific to Unix operating systems are 
	      defined in this architecture.  The only type currently
	      defined is the Unix date and time types
	      (<code>time_t</code>).</td>
	  </tr>

	  <tr valign=top>
	    <td><code>C<br>FORTRAN</code></td>
	    <td>Types which are specific to the C or Fortran
	      programming languages are defined in these
	      architectures.  For instance, <code>H5T_C_STRING</code>
	      defines a base string type with null termination which
	      can be used to derive string types of other
	      lengths.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>NATIVE</code></td>
	    <td>This architecture contains C-like datatypes for the
	      machine on which the library was compiled.  The types
	      were actually defined by running the
	      <code>H5detect</code> program when the library was
	      compiled. In order to be portable, applications should
	      almost always use this architecture to describe things
	      in memory.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>CRAY</code></td>
	    <td>Cray architectures.  These are word-addressable,
	      big-endian systems with non-IEEE floating point.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>INTEL</code></td>
	    <td>All Intel and compatible CPU's including 80286, 80386,
	      80486, Pentium, Pentium-Pro, and Pentium-II. These are
	      little-endian systems with IEEE floating-point.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>MIPS</code></td>
	    <td>All MIPS CPU's commonly used in SGI systems.  These
	      are big-endian systems with IEEE floating-point.</td>
	  </tr>

	  <tr valign=top>
	    <td><code>ALPHA</code></td>
	    <td>All DEC Alpha CPU's, little-endian systems with IEEE
	    floating-point.</td>
	  </tr>
	</table>
      </center>

    <p>The base name of most types consists of a letter, a precision
      in bits, and an indication of the byte order.  The letters are:

    <p>
      <center>
	<table border align=center width="40%">
	  <tr>
	    <td align=center width="30%">B</td>
	    <td width="70%">Bitfield</td>
	  </tr>
	  <tr>
	    <td align=center>D</td>
	    <td>Date and time</td>
	  </tr>
	  <tr>
	    <td align=center>F</td>
	    <td>Floating point</td>
	  </tr>
	  <tr>
	    <td align=center>I</td>
	    <td>Signed integer</td>
	  </tr>
	  <tr>
	    <td align=center>R</td>
	    <td>References</td>
	  </tr>
	  <tr>
	    <td align=center>S</td>
	    <td>Character string</td>
	  </tr>
	  <tr>
	    <td align=center>U</td>
	    <td>Unsigned integer</td>
	  </tr>
	</table>
      </center>
	
    <p>The byte order is a two-letter sequence:

    <p>
      <center>
	<table border align=center width="40%">
	  <tr>
	    <td align=center width="30%">BE</td>
	    <td width="70%">Big endian</td>
	  </tr>
	  <tr>
	    <td align=center>LE</td>
	    <td>Little endian</td>
	  </tr>
	  <tr>
	    <td align=center>VX</td>
	    <td>Vax order</td>
	  </tr>
	</table>
      </center>

    <p>
      <center>
	<table align=center width="80%">
	  <tr>
	    <th align=left><br><br>Example</th>
	    <th align=left><br><br>Description</th>
	  </tr>
	  
	  <tr valign=top>
	    <td><code>H5T_IEEE_F64LE</code></td>
	    <td>Eight-byte, little-endian, IEEE floating-point</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_IEEE_F32BE</code></td>
	    <td>Four-byte, big-endian, IEEE floating point</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_STD_I32LE</code></td>
	    <td>Four-byte, little-endian, signed two's complement integer</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_STD_U16BE</code></td>
	    <td>Two-byte, big-endian, unsigned integer</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_UNIX_D32LE</code></td>
	    <td>Four-byte, little-endian, time_t</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_C_S1</code></td>
	    <td>One-byte, null-terminated string of eight-bit characters</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_INTEL_B64</code></td>
	    <td>Eight-byte bit field on an Intel CPU</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_CRAY_F64</code></td>
	    <td>Eight-byte Cray floating point</td>
	  </tr>
	  <tr valign=top>
	    <td><code>H5T_STD_ROBJ</code></td>
	    <td>Reference to an entire object in a file</td>
	  </tr>
	</table>
      </center>

    <p>The <code>NATIVE</code> architecture has base names which don't 
      follow the same rules as the others.  Instead, native type names 
      are similar to the C type names.  Here are some examples:

    <p>
      <center>
	<table align=center width="80%">
	  <tr>
	    <th align=left><br><br>Example</th>
	    <th align=left><br><br>Corresponding C Type</th>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_CHAR</code></td>
	    <td><code>char</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_SCHAR</code></td>
	    <td><code>signed char</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_UCHAR</code></td>
	    <td><code>unsigned char</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_SHORT</code></td>
	    <td><code>short</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_USHORT</code></td>
	    <td><code>unsigned short</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_INT</code></td>
	    <td><code>int</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_UINT</code></td>
	    <td><code>unsigned</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_LONG</code></td>
	    <td><code>long</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_ULONG</code></td>
	    <td><code>unsigned long</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_LLONG</code></td>
	    <td><code>long long</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_ULLONG</code></td>
	    <td><code>unsigned long long</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_FLOAT</code></td>
	    <td><code>float</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_DOUBLE</code></td>
	    <td><code>double</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_LDOUBLE</code></td>
	    <td><code>long double</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_HSIZE</code></td>
	    <td><code>hsize_t</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_HSSIZE</code></td>
	    <td><code>hssize_t</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_HERR</code></td>
	    <td><code>herr_t</code></td>
	  </tr>
	  <tr>
	    <td><code>H5T_NATIVE_HBOOL</code></td>
	    <td><code>hbool_t</code></td>
	  </tr>
	</table>
      </center>

    <p>
      <center>
	<table border align=center width="100%">
 	  <caption align=bottom><h4>Example:  A 128-bit
	      integer</h4></caption>
	  <tr>
	    <td>
	      <p>To create a 128-bit, little-endian signed integer
		type one could use the following (increasing the
		precision of a type automatically increases the total
		size):

	      <p><code><pre>
hid_t new_type = H5Tcopy (H5T_NATIVE_INT);
H5Tset_precision (new_type, 128);
H5Tset_order (new_type, H5T_ORDER_LE);
	      </pre></code>
	    </td>
	  </tr>
	</table>
      </center>
    
    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: An 80-character
	      string</h4></caption> 
	  <tr>
	    <td>
	      <p>To create an 80-byte null terminated string type one
		might do this (the offset of a character string is
		always zero and the precision is adjusted
		automatically to match the size):

	      <p><code><pre>
hid_t str80 = H5Tcopy (H5T_C_S1);
H5Tset_size (str80, 80);
	      </pre></code>
	    </td>
	  </tr>
	</table>
      </center>

    <p>A complete list of the datatypes predefined in HDF5 can be found in 
      <a href="PredefDTypes.html"><cite>HDF5 Predefined Datatypes</cite></a>
      in the <a href="RM_H5Front.html"><cite>HDF5 Reference Manual</cite></a>.


    <h2>7. Defining Compound Datatypes</h2>

    <p>Unlike atomic datatypes which are derived from other atomic
      datatypes, compound datatypes are created from scratch. First,
      one creates an empty compound datatype and specifies it's total
      size.  Then members are added to the compound datatype in any
      order.

    <p>Usually a C struct will be defined to hold a data point in
      memory, and the offsets of the members in memory will be the
      offsets of the struct members from the beginning of an instance
      of the struct.

    <dl>
      <dt><code>HOFFSET(s,m)</code>
      <dd>This macro computes the offset of member <em>m</em> within
	a struct <em>s</em>.
      <dt><code>offsetof(s,m)</code>
      <dd>This macro defined in <code>stddef.h</code> does
	exactly the same thing as the <code>HOFFSET()</code> macro.
    </dl>

    <p>Each member must have a descriptive name which is the
      key used to uniquely identify the member within the compound
      datatype.  A member name in an HDF5 datatype does not
      necessarily have to be the same as the name of the member in the
      C struct, although this is often the case.  Nor does one need to
      define all members of the C struct in the HDF5 compound 
      datatype (or vice versa).

    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: A simple struct</h4></caption>
	  <tr>
	    <td>
	      <p>An HDF5 datatype is created to describe complex
		numbers whose type is defined by the
		<code>complex_t</code> struct.

	      <p><code><pre>
typedef struct {
   double re;   /*real part*/
   double im;   /*imaginary part*/
} complex_t;

hid_t complex_id = H5Tcreate (H5T_COMPOUND, sizeof tmp);
H5Tinsert (complex_id, "real", HOFFSET(complex_t,re),
           H5T_NATIVE_DOUBLE);
H5Tinsert (complex_id, "imaginary", HOFFSET(complex_t,im),
           H5T_NATIVE_DOUBLE);
	      </pre></code>
	    </td>
	  </tr>
	</table>
      </center>

    <p>Member alignment is handled by the <code>HOFFSET</code>
      macro.  However, data stored on disk does not require alignment,
      so unaligned versions of compound data structures can be created
      to improve space efficiency on disk.  These unaligned compound
      datatypes can be created by computing offsets by hand to
      eliminate inter-member padding, or the members can be packed by
      calling <code>H5Tpack()</code> (which modifies a datatype
      directly, so it is usually preceded by a call to
      <code>H5Tcopy()</code>):

    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: A packed struct</h4></caption>
	  <tr>
	    <td>
	      <p>This example shows how to create a disk version of a
		compound datatype in order to store data on disk in
		as compact a form as possible.  Packed compound 
		datatypes should generally not be used to describe memory
		as they may violate alignment constraints for the
		architecture being used.  Note also that using a
		packed datatype for disk storage may involve a higher
		data conversion cost.
	      <p><code><pre>
hid_t complex_disk_id = H5Tcopy (complex_id);
H5Tpack (complex_disk_id);
	      </pre></code>
	    </td>
	  </tr>
	</table>
      </center>


    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: A flattened struct</h4></caption>
	  <tr>
	    <td>
	      <p>Compound datatypes that have a compound datatype
		member can be handled two ways.  This example shows
		that the compound datatype can be flattened,
		resulting in a compound type with only atomic
		members.

	      <p><code><pre>
typedef struct {
   complex_t x;
   complex_t y;
} surf_t;

hid_t surf_id = H5Tcreate (H5T_COMPOUND, sizeof tmp);
H5Tinsert (surf_id, "x-re", HOFFSET(surf_t,x.re),
           H5T_NATIVE_DOUBLE);
H5Tinsert (surf_id, "x-im", HOFFSET(surf_t,x.im),
           H5T_NATIVE_DOUBLE);
H5Tinsert (surf_id, "y-re", HOFFSET(surf_t,y.re),
           H5T_NATIVE_DOUBLE);
H5Tinsert (surf_id, "y-im", HOFFSET(surf_t,y.im),
           H5T_NATIVE_DOUBLE);
	      </code></pre>
	    </td>
	  </tr>
	</table>
      </center>

    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: A nested struct</h4></caption>
	  <tr>
	    <td>
	      <p>However, when the <code>complex_t</code> is used
		often it becomes inconvenient to list its members over
		and over again.  So the alternative approach to
		flattening is to define a compound datatype and then
		use it as the type of the compound members, as is done
		here (the typedefs are defined in the previous
		examples).

	      <p><code><pre>
hid_t complex_id, surf_id; /*hdf5 datatypes*/

complex_id = H5Tcreate (H5T_COMPOUND, sizeof c);
H5Tinsert (complex_id, "re", HOFFSET(complex_t,re),
           H5T_NATIVE_DOUBLE);
H5Tinsert (complex_id, "im", HOFFSET(complex_t,im),
           H5T_NATIVE_DOUBLE);

surf_id = H5Tcreate (H5T_COMPOUND, sizeof s);
H5Tinsert (surf_id, "x", HOFFSET(surf_t,x), complex_id);
H5Tinsert (surf_id, "y", HOFFSET(surf_t,y), complex_id);
	      </code></pre>
	    </td>
	  </tr>
	</table>
      </center>



    <a name="Datatypes_Enum">&nbsp;</a>
    <h2>8. Enumeration Datatypes</h2>

    <h3>8.1. Introduction</h3>

    <p>An HDF enumeration datatype is a 1:1 mapping between a set of
      symbols and a set of integer values, and an order is imposed on
      the symbols by their integer values.  The symbols are passed
      between the application and library as character strings and all
      the values for a particular enumeration type are of the same
      integer type, which is not necessarily a native type.

    <h3>8.2. Creation</h3>
    
    <p>Creation of an enumeration datatype resembles creation of a
      compound datatype: first an empty enumeration type is created,
      then members are added to the type, then the type is optionally
      locked.

    <dl>
      <dt><code>hid_t H5Tcreate(H5T_class_t <em>type_class</em>,
	  size_t <em>size</em>)</code>
      <dd>This function creates a new empty enumeration datatype based 
	on a native signed integer type. The first argument is the
	constant <code>H5T_ENUM</code> and the second argument is the
	size in bytes of the native integer on which the enumeration
	type is based. If the architecture does not support a native
	signed integer of the specified size then an error is
	returned.

	<pre>
/* Based on a native signed short */
hid_t hdf_en_colors = H5Tcreate(H5T_ENUM, sizeof(short));</pre>


      <dt><code>hid_t H5Tenum_create(hid_t <em>base</em>)</code>
      <dd>This function creates a new empty enumeration datatype based 
	on some integer datatype <em>base</em> and is a
	generalization of the <code>H5Tcreate()</code> function.  This 
	function is useful when creating an enumeration type based on
	some non-native integer datatype, but it can be used for
	native types as well.

	<pre>
/* Based on a native unsigned short */
hid_t hdf_en_colors_1 = H5Tenum_create(H5T_NATIVE_USHORT);

/* Based on a MIPS 16-bit unsigned integer */
hid_t hdf_en_colors_2 = H5Tenum_create(H5T_MIPS_UINT16);

/* Based on a big-endian 16-bit unsigned integer */
hid_t hdf_en_colors_3 = H5Tenum_create(H5T_STD_U16BE);</pre>


      <dt><code>herr_t H5Tenum_insert(hid_t <em>etype</em>, const char
	  *<em>symbol</em>, void *<em>value</em>)</code>
      <dd>Members are inserted into the enumeration datatype
	<em>etype</em> with this function.  Each member has a symbolic 
	name <em>symbol</em> and some integer representation
	<em>value</em>.  The <em>value</em> argument must point to a value
	of the same datatype as specified when the enumeration type
	was created. The order of member insertion is not important
	but all symbol names and values must be unique within a
	particular enumeration type.

	<pre>
short val;
H5Tenum_insert(hdf_en_colors, "RED",   (val=0,&amp;val));
H5Tenum_insert(hdf_en_colors, "GREEN", (val=1,&amp;val));
H5Tenum_insert(hdf_en_colors, "BLUE",  (val=2,&amp;val));
H5Tenum_insert(hdf_en_colors, "WHITE", (val=3,&amp;val));
H5Tenum_insert(hdf_en_colors, "BLACK", (val=4,&amp;val));</pre>


      <dt><code>herr_t H5Tlock(hid_t <em>etype</em>)</code>
      <dd>This function locks a datatype so it cannot be modified or
	freed unless the entire HDF5 library is closed.  Its use is
	completely optional but using it on an application datatype
	makes that datatype act like a predefined datatype.

	<pre>
H5Tlock(hdf_en_colors);</pre>

    </dl>

    <h3>8.3. Integer Operations</h3>

    <p>Because an enumeration datatype is derived from an integer
      datatype, any operation which can be performed on integer 
      datatypes can also be performed on enumeration datatypes.  This
      includes:

    <p>
      <center>
	  <table>
	    <tr>
	      <td><code>H5Topen()</code></td>
	      <td><code>H5Tcreate()</code></td>
	      <td><code>H5Tcopy()</code></td>
	      <td><code>H5Tclose()</code></td>
	    </tr><tr>
	      <td><code>H5Tequal()</code></td>
	      <td><code>H5Tlock()</code></td>
	      <td><code>H5Tcommit()</code></td>
	      <td><code>H5Tcommitted()</code></td>
	    </tr><tr>
	      <td><code>H5Tget_class()</code></td>
	      <td><code>H5Tget_size()</code></td>
	      <td><code>H5Tget_order()</code></td>
	      <td><code>H5Tget_pad()</code></td>
	    </tr><tr>
	      <td><code>H5Tget_precision()</code></td>
	      <td><code>H5Tget_offset()</code></td>
	      <td><code>H5Tget_sign()</code></td>
	      <td><code>H5Tset_size()</code></td>
	    </tr><tr>
	      <td><code>H5Tset_order()</code></td>
	      <td><code>H5Tset_precision()</code></td>
	      <td><code>H5Tset_offset()</code></td>
	      <td><code>H5Tset_pad()</code></td>
	    </tr><tr>
	      <td><code>H5Tset_sign()</code></td>
	    </tr>
	  </table>
      </center>

    <p>In addition, the new function <code>H5Tget_super()</code> will
      be defined for all datatypes that are derived from existing
      types (currently just enumeration types).

    <dl>
      <dt><code>hid_t H5Tget_super(hid_t <em>type</em>)</code>
      <dd>Return the datatype from which <em>type</em> is
	derived. When <em>type</em> is an enumeration datatype then
	the returned value will be an integer datatype but not
	necessarily a native type.  One use of this function would be
	to create a new enumeration type based on the same underlying
	integer type and values but with possibly different symbols.

	<pre>
hid_t itype = H5Tget_super(hdf_en_colors);
hid_t hdf_fr_colors = H5Tenum_create(itype);
H5Tclose(itype);

short val;
H5Tenum_insert(hdf_fr_colors, "ouge",  (val=0,&amp;val));
H5Tenum_insert(hdf_fr_colors, "vert",  (val=1,&amp;val));
H5Tenum_insert(hdf_fr_colors, "bleu",  (val=2,&amp;val));
H5Tenum_insert(hdf_fr_colors, "blanc", (val=3,&amp;val));
H5Tenum_insert(hdf_fr_colors, "noir",  (val=4,&amp;val));
H5Tlock(hdf_fr_colors);</pre>
    </dl>

    <h3>8.4. Type Functions</h3>

    <p>A small set of functions is available for querying properties
      of an enumeration type.  These functions are likely to be used
      by browsers to display datatype information.

    <dl>
      <dt><code>int H5Tget_nmembers(hid_t <em>etype</em>)</code>
      <dd>When given an enumeration datatype <em>etype</em> this
	function returns the number of members defined for that
	type. This function is already implemented for compound 
	datatypes.

	<br><br>
      <dt><code>char *H5Tget_member_name(hid_t <em>etype</em>, int
	  <em>membno</em>)</code>
      <dd>Given an enumeration datatype <em>etype</em> this function
	returns the symbol name for the member indexed by
	<em>membno</em>. Members are numbered from zero to
	<em>N</em>-1 where <em>N</em> is the return value from
	<code>H5Tget_nmembers()</code>. The members are stored in no
	particular order.  This function is already implemented for
	compound datatypes.  If an error occurs then the null pointer 
	is returned.  The return value should be freed by calling
	<code>free()</code>.

	<br><br>
      <dt><code>herr_t H5Tget_member_value(hid_t <em>etype</em>, int
	  <em>membno</em>, void *<em>value</em>/*out*/)</code>
      <dd>Given an enumeration datatype <em>etype</em> this function
	returns the value associated with the member indexed by
	<em>membno</em> (as described for
	<code>H5Tget_member_name()</code>). The value returned
	is in the domain of the underlying integer
	datatype which is often a native integer type. The
	application should ensure that the memory pointed to by
	<em>value</em> is large enough to contain the result (the size 
	can be obtained by calling <code>H5Tget_size()</code> on
	either the enumeration type or the underlying integer type
	when the type is not known by the C compiler.

	<pre>
int i, n = H5Tget_nmembers(hdf_en_colors);
for (i=0; i&lt;n; i++) {
    char *symbol = H5Tget_member_name(hdf_en_colors, i);
    short val;
    H5Tget_member_value(hdf_en_colors, i, &amp;val);
    printf("#%d %20s = %d\n", i, symbol, val);
    free(symbol);
}</pre>

	  <p>
          Output:
	  <pre>
#0                BLACK = 4
#1                 BLUE = 2
#2                GREEN = 1
#3                  RED = 0
#4                WHITE = 3</pre>
    </dl>

    <h3>8.5. Data Functions</h3>

    <p>In addition to querying about the enumeration type properties,
      an application may want to make queries about enumerated
      data. These functions perform efficient mappings between symbol
      names and values.

    <dl>
      <dt><code>herr_t H5Tenum_valueof(hid_t <em>etype</em>, const char 
	  *<em>symbol</em>, void *<em>value</em>/*out*/)</code>
      <dd>Given an enumeration datatype <em>etype</em> this function
      returns through <em>value</em> the bit pattern associated with
      the symbol name <em>symbol</em>.  The <em>value</em> argument
      should point to memory which is large enough to hold the result, 
      which is returned as the underlying integer datatype specified
      when the enumeration type was created, often a native integer
      type.

	<br><br>
      <dt><code>herr_t H5Tenum_nameof(hid_t <em>etype</em>, void
	  *<em>value</em>, char *<em>symbol</em>, size_t
	  <em>size</em>)</code>
      <dd>This function translates a bit pattern pointed to by
	<em>value</em> to a symbol name according to the mapping
	defined in the enumeration datatype <em>etype</em> and stores
	at most <em>size</em> characters of that name (counting the
	null terminator) to the <em>symbol</em> buffer. If the name is 
	longer than the result buffer then the result is not null
	terminated and the function returns failure. If <em>value</em> 
	points to a bit pattern which is not in the domain of the
	enumeration type then the first byte of the <em>symbol</em>
	buffer is set to zero and the function fails.

	<pre>
short data[1000] = {4, 2, 0, 0, 5, 1, ...};
int i;
char symbol[32];

for (i=0; i&lt;1000; i++) {
    if (H5Tenum_nameof(hdf_en_colors, data+i, symbol,
                       sizeof symbol))&lt;0) {
        if (symbol[0]) {
            strcpy(symbol+sizeof(symbol)-4, "...");
        } else {
            strcpy(symbol, "UNKNOWN");
        }
    }
    printf("%d %s\n", data[i], symbol);
}
printf("}\n");</pre>

	  <p>
          Output:
	  <pre>
4 BLACK
2 BLUE
0 RED
0 RED
5 UNKNOWN
1 GREEN
...</pre>
    </dl>

    <h3>8.6. Conversion</h3>

    <p>Enumerated data can be converted from one type to another
      provided the destination enumeration type contains all the
      symbols of the source enumeration type. The conversion operates
      by matching up the symbol names of the source and destination
      enumeration types to build a mapping from source value to
      destination value.  For instance, if we are translating from an
      enumeration type that defines a sequence of integers as the
      values for the colors to a type that defines a different bit for 
      each color then the mapping might look like this:

    <p><img src="EnumMap.gif" alt="Enumeration Mapping">

    <p>That is, a source value of <code>2</code> which corresponds to
      <code>BLUE</code> would be mapped to <code>0x0004</code>. The
      following code snippet builds the second datatype, then
      converts a raw data array from one datatype to another, and
      then prints the result.

      <pre>
/* Create a new enumeration type */
short val;
hid_t bits = H5Tcreate(H5T_ENUM, sizeof val);
H5Tenum_insert(bits, "RED",   (val=0x0001,&amp;val));
H5Tenum_insert(bits, "GREEN", (val=0x0002,&amp;val));
H5Tenum_insert(bits, "BLUE",  (val=0x0004,&amp;val));
H5Tenum_insert(bits, "WHITE", (val=0x0008,&amp;val));
H5Tenum_insert(bits, "BLACK", (val=0x0010,&amp;val));

/* The data */
short data[6] = {1, 4, 2, 0, 3, 5};

/* Convert the data from one type to another */
H5Tconvert(hdf_en_colors, bits, 5, data, NULL, plist_id);

/* Print the data */
for (i=0; i&lt;6; i++) {
    printf("0x%04x\n", (unsigned)(data[i]));
}</pre>

        <p>
        Output:
	<pre>

0x0002
0x0010
0x0004
0x0001
0x0008
0xffff</pre>

    <p>If the source data stream contains values which are not in the
      domain of the conversion map then an overflow exception is
      raised within the library, causing the application defined
      overflow handler to be invoked (see
      <code>H5Tset_overflow()</code>). If no overflow handler is
      defined then all bits of the destination value will be set.

    <p>The HDF library will not provide conversions between enumerated 
      data and integers although the application is free to do so
      (this is a policy we apply to all classes of HDF datatypes). 
      However, since enumeration types are derived from
      integer types it is permissible to treat enumerated data as
      integers and perform integer conversions in that context.

    <h3>8.7. Symbol Order</h3>

    <p>Symbol order is determined by the integer values associated
      with each symbol.  When the integer datatype is a native type,
      testing the relative order of two symbols is an easy process:
      simply compare the values of the symbols.  If only the symbol
      names are available then the values must first be determined by
      calling <code>H5Tenum_valueof()</code>.

      <pre>
short val1, val2;
H5Tenum_valueof(hdf_en_colors, "WHITE", &amp;val1);
H5Tenum_valueof(hdf_en_colors, "BLACK", &amp;val2);
if (val1 &lt; val2) ...</pre>

    <p>When the underlying integer datatype is not a native type then 
      the easiest way to compare symbols is to first create a similar
      enumeration type that contains all the same symbols but has a
      native integer type (HDF type conversion features can be used to
      convert the non-native values to native values). Once we have a
      native type we can compare symbol order as just described.  If
      <code>foreign</code> is some non-native enumeration type then a
      native type can be created as follows:

      <pre>
int n = H5Tget_nmembers(foreign);
hid_t itype = H5Tget_super(foreign);
void *val = malloc(n * MAX(H5Tget_size(itype), sizeof(int)));
char *name = malloc(n * sizeof(char*));
int i;

/* Get foreign type information */
for (i=0; i&lt;n; i++) {
    name[i] = H5Tget_member_name(foreign, i);
    H5Tget_member_value(foreign, i,
                        (char*)val+i*H5Tget_size(foreign));
}

/* Convert integer values to new type */
H5Tconvert(itype, H5T_NATIVE_INT, n, val, NULL, plist_id);

/* Build a native type */
hid_t native = H5Tenum_create(H5T_NATIVE_INT);
for (i=0; i&lt;n; i++) {
    H5Tenum_insert(native, name[i], ((int*)val)[i]);
    free(name[i]);
}
free(name);
free(val);</pre>

    <p>It is also possible to convert enumerated data to a new type
      that has a different order defined for the symbols.  For
      instance, we can define a new type, <code>reverse</code> that
      defines the same five colors but in the reverse order.

      <pre>
short val;
int i;
char sym[8];
short data[5] = {0, 1, 2, 3, 4};

hid_t reverse = H5Tenum_create(H5T_NATIVE_SHORT);
H5Tenum_insert(reverse, "BLACK", (val=0,&amp;val));
H5Tenum_insert(reverse, "WHITE", (val=1,&amp;val));
H5Tenum_insert(reverse, "BLUE",  (val=2,&amp;val));
H5Tenum_insert(reverse, "GREEN", (val=3,&amp;val));
H5Tenum_insert(reverse, "RED",   (val=4,&amp;val));

/* Print data */
for (i=0; i&lt;5; i++) {
    H5Tenum_nameof(hdf_en_colors, data+i, sym, sizeof sym);
    printf ("%d %s\n", data[i], sym);
}

puts("Converting...");
H5Tconvert(hdf_en_colors, reverse, 5, data, NULL, plist_id);

/* Print data */
for (i=0; i&lt;5; i++) {
    H5Tenum_nameof(reverse, data+i, sym, sizeof sym);
    printf ("%d %s\n", data[i], sym);
}</pre>
	
      <p>
      Output:
      <pre>
0 RED
1 GREEN
2 BLUE
3 WHITE
4 BLACK
Converting...
4 RED
3 GREEN
2 BLUE
1 WHITE
0 BLACK</pre>

    <h3>8.8. Equality</h3>

    <p>The order that members are inserted into an enumeration type is 
      unimportant; the important part is the associations between the
      symbol names and the values.  Thus, two enumeration datatypes
      will be considered equal if and only if both types have the same
      symbol/value associations and both have equal underlying integer
      datatypes. Type equality is tested with the
      <code>H5Tequal()</code> function.

    <h3>8.9. Interacting with C's <code>enum</code> Type</h3>

    <p>Although HDF enumeration datatypes are similar to C
      <code>enum</code> datatypes, there are some important
      differences:

    <p>
      <center>
	<table border width="80%">
	  <tr>
	    <th>Difference</th>
	    <th>Motivation/Implications</th>
	  </tr>

	  <tr>
	    <td valign=top>Symbols are unquoted in C but quoted in
	      HDF.</td>
	    <td valign=top>This allows the application to manipulate
	      symbol names in ways that are not possible with C.</td>
	  </tr>

	  <tr>
	    <td valign=top>The C compiler automatically replaces all
	      symbols with their integer values but HDF requires
	      explicit calls to do the same.</td>
	    <td valign=top>C resolves symbols at compile time while
	      HDF resolves symbols at run time.</td>
	  </tr>

	  <tr>
	    <td valign=top>The mapping from symbols to integers is
	      <em>N</em>:1 in C but 1:1 in HDF.</td>
	    <td valign=top>HDF can translate from value to name
	      uniquely and large <code>switch</code> statements are
	      not necessary to print values in human-readable
	      format.</td>
	  </tr>

	  <tr>
	    <td valign=top>A symbol must appear in only one C
	      <code>enum</code> type but may appear in multiple HDF
	      enumeration types.</td>
	    <td valign=top>The translation from symbol to value in HDF 
	      requires the datatype to be specified while in C the
	      datatype is not necessary because it can be inferred
	      from the symbol.</td>
	  </tr>

	  <tr>
	    <td valign=top>The underlying integer value is always a
	      native integer in C but can be a foreign integer type in 
	      HDF.</td>
	    <td valign=top>This allows HDF to describe data that might 
	      reside on a foreign architecture, such as data stored in 
	      a file.</td>
	  </tr>

	  <tr>
	    <td valign=top>The sign and size of the underlying integer 
	      datatype is chosen automatically by the C compiler but
	      must be fully specified with HDF.</td>
	    <td valign=top>Since HDF doesn't require finalization of a 
	      datatype, complete specification of the type must be
	      supplied before the type is used.  Requiring that
	      information at the time of type creation was a design
	      decision to simplify the library.</td>
	  </tr>
	</table>
      </center>

    <p>The examples below use the following C datatypes:

    <p>
      <table width="90%" bgcolor="white">
	<tr>
	  <td>
	    <code><pre>
/* English color names */
typedef enum {
    RED,
    GREEN,
    BLUE,
    WHITE,
    BLACK
} c_en_colors;

/* Spanish color names, reverse order */
typedef enum {
    NEGRO
    BLANCO,
    AZUL,
    VERDE,
    ROJO,
} c_sp_colors;

/* No enum definition for French names */
	    </pre></code>
	  </td>
	</tr>
      </table>

    <h4>Creating HDF Types from C Types</h4>

    <p>An HDF enumeration datatype can be created from a C
      <code>enum</code> type simply by passing pointers to the C
      <code>enum</code> values to <code>H5Tenum_insert()</code>.  For
      instance, to create HDF types for the <code>c_en_colors</code>
      type shown above:

    <p>
      <table width="90%" bgcolor="white">
	<tr>
	  <td>
	    <code><pre>

c_en_colors val;
hid_t hdf_en_colors = H5Tcreate(H5T_ENUM, sizeof(c_en_colors));
H5Tenum_insert(hdf_en_colors, "RED",   (val=RED,  &amp;val));
H5Tenum_insert(hdf_en_colors, "GREEN", (val=GREEN,&amp;val));
H5Tenum_insert(hdf_en_colors, "BLUE",  (val=BLUE, &amp;val));
H5Tenum_insert(hdf_en_colors, "WHITE", (val=WHITE,&amp;val));
H5Tenum_insert(hdf_en_colors, "BLACK", (val=BLACK,&amp;val));</pre></code>
	  </td>
	</tr>
      </table>

    <h4>Name Changes between Applications</h4>

    <p>Occassionally two applicatons wish to exchange data but they
      use different names for the constants they exchange.  For
      instance, an English and a Spanish program may want to
      communicate color names although they use different symbols in
      the C <code>enum</code> definitions. The communication is still
      possible although the applications must agree on common terms
      for the colors. The following example shows the Spanish code to
      read the values assuming that the applications have agreed that
      the color information will be exchanged using Enlish color
      names:

    <p>
      <table width="90%" bgcolor="white">
	<tr>
	  <td>
	    <code><pre>

c_sp_colors val, data[1000];
hid_t hdf_sp_colors = H5Tcreate(H5T_ENUM, sizeof(c_sp_colors));
H5Tenum_insert(hdf_sp_colors, "RED",   (val=ROJO,   &amp;val));
H5Tenum_insert(hdf_sp_colors, "GREEN", (val=VERDE,  &amp;val));
H5Tenum_insert(hdf_sp_colors, "BLUE",  (val=AZUL,   &amp;val));
H5Tenum_insert(hdf_sp_colors, "WHITE", (val=BLANCO, &amp;val));
H5Tenum_insert(hdf_sp_colors, "BLACK", (val=NEGRO,  &amp;val));

H5Dread(dataset, hdf_sp_colors, H5S_ALL, H5S_ALL, H5P_DEFAULT, data);</pre></code>
	  </td>
	</tr>
      </table>


    <h4>Symbol Ordering across Applications</h4>

    <p>Since symbol ordering is completely determined by the integer values
      assigned to each symbol in the <code>enum</code> definition,
      ordering of <code>enum</code> symbols cannot be preserved across
      files like with HDF enumeration types.  HDF can convert from one
      application's integer values to the other's so a symbol in one
      application's C <code>enum</code> gets mapped to the same symbol
      in the other application's C <code>enum</code>, but the relative
      order of the symbols is not preserved.

    <p>For example, an application may be defined to use the
      definition of <code>c_en_colors</code> defined above where
      <code>WHITE</code> is less than <code>BLACK</code>, but some
      other application might define the colors in some other
      order. If each application defines an HDF enumeration type based 
      on that application's C <code>enum</code> type then HDF will
      modify the integer values as data is communicated from one
      application to the other so that a <code>RED</code> value
      in the first application is also a <code>RED</code> value in the
      other application.

    <p>A case of this reordering of symbol names was also shown in the 
      previous code snippet (as well as a change of language), where
      HDF changed the integer values so 0 (<code>RED</code>) in the
      input file became 4 (<code>ROJO</code>) in the <code>data</code>
      array. In the input file, <code>WHITE</code> was less than
      <code>BLACK</code>; in the application the opposite is true.

    <p>In fact, the ability to change the order of symbols is often
      convenient when the enumeration type is used only to group
      related symbols that don't have any well defined order
      relationship.

    <h4>Internationalization</h4>

    <p>The HDF enumeration type conversion features can also be used
      to provide internationalization of debugging output.  A program
      written with the <code>c_en_colors</code> datatype could define 
      a separate HDF datatype for languages such as English, Spanish, 
      and French and cast the enumerated value to one of these HDF
      types to print the result.

    <p>
      <table width="90%" bgcolor="white">
	<tr>
	  <td>
	    <code><pre>

c_en_colors val, *data=...;

hid_t hdf_sp_colors = H5Tcreate(H5T_ENUM, sizeof val);
H5Tenum_insert(hdf_sp_colors, "ROJO",   (val=RED,   &amp;val));
H5Tenum_insert(hdf_sp_colors, "VERDE",  (val=GREEN, &amp;val));
H5Tenum_insert(hdf_sp_colors, "AZUL",   (val=BLUE,  &amp;val));
H5Tenum_insert(hdf_sp_colors, "BLANCO", (val=WHITE, &amp;val));
H5Tenum_insert(hdf_sp_colors, "NEGRO",  (val=BLACK, &amp;val));

hid_t hdf_fr_colors = H5Tcreate(H5T_ENUM, sizeof val);
H5Tenum_insert(hdf_fr_colors, "OUGE",  (val=RED,   &amp;val));
H5Tenum_insert(hdf_fr_colors, "VERT",  (val=GREEN, &amp;val));
H5Tenum_insert(hdf_fr_colors, "BLEU",  (val=BLUE,  &amp;val));
H5Tenum_insert(hdf_fr_colors, "BLANC", (val=WHITE, &amp;val));
H5Tenum_insert(hdf_fr_colors, "NOIR",  (val=BLACK, &amp;val));

void
nameof(lang_t language, c_en_colors val, char *name, size_t size)
{
    switch (language) {
    case ENGLISH:
        H5Tenum_nameof(hdf_en_colors, &amp;val, name, size);
        break;
    case SPANISH:
        H5Tenum_nameof(hdf_sp_colors, &amp;val, name, size);
        break;
    case FRENCH:
        H5Tenum_nameof(hdf_fr_colors, &amp;val, name, size);
        break;
    }
}</pre></code>
	  </td>
	</tr>
      </table>

    <h3>8.10. Goals That Have Been Met</h3>

    <p>The main goal of enumeration types is to provide communication
      of enumerated data using symbolic equivalence.  That is, a
      symbol written to a dataset by one application should be read as
      the same symbol by some other application.

    <p>
      <table width="90%">
	<tr>
	  <td valign=top><b>Architecture Independence</b></td>
	  <td valign=top>Two applications shall be able to exchange
	    enumerated data even when the underlying integer values
	    have different storage formats. HDF accomplishes this for
	    enumeration types by building them upon integer types.</td>
	</tr>

	<tr>
	  <td valign=top><b>Preservation of Order Relationship</b></td>
	  <td valign=top>The relative order of symbols shall be
	    preserved between two applications that use equivalent
	    enumeration datatypes. Unlike numeric values that have
	    an implicit ordering, enumerated data has an explicit
	    order defined by the enumeration datatype and HDF
	    records this order in the file.</td>
	</tr>

	<tr>
	  <td valign=top><b>Order Independence</b></td>
	  <td valign=top>An application shall be able to change the
	    relative ordering of the symbols in an enumeration 
	    datatype.  This is accomplished by defining a new type with
	    different integer values and converting data from one type 
	    to the other.</td>
	</tr>

	<tr>
	  <td valign=top><b>Subsets</b></td>
	  <td valign=top>An application shall be able to read
	    enumerated data from an archived dataset even after the
	    application has defined additional members for the
	    enumeration type. An application shall be able to write
	    to a dataset when the dataset contains a superset of the 
	    members defined by the application.  Similar rules apply 
	    for in-core conversions between enumerated datatypes.</td>
	</tr>

	<tr>
	  <td valign=top><b>Targetable</b></td>
	  <td valign=top>An application shall be able to target a
	    particular architecture or application when storing
	    enumerated data. This is accomplished by allowing
	    non-native underlying integer types and converting the
	    native data to non-native data.</td>
	</tr>

	<tr>
	  <td valign=top><b>Efficient Data Transfer</b></td>
	  <td valign=top>An application that defines a file dataset
	    that corresponds to some native C enumerated data array
	    shall be able to read and write to that dataset directly
	    using only Posix read and write functions. HDF already
	    optimizes this case for integers, so the same optimization 
	    will apply to enumerated data.
	</tr>

	<tr>
	  <td valign=top><b>Efficient Storage</b></td>
	  <td valign=top>Enumerated data shall be stored in a manner 
	    which is space efficient. HDF stores the enumerated data
	    as integers and allows the application to chose the size
	    and format of those integers.</td>
	</tr>
      </table>







<h2>9. Variable-length Datatypes</h2>

<h3>9.1. Overview And Justification</h3>

Variable-length (VL) datatypes are sequences of an existing datatype
(atomic, VL, or compound) which are not fixed in length from one dataset location
to another.  In essence, they are similar to C character strings -- a sequence of 
a type which is pointed to by a particular type of <em>pointer</em> -- although 
they are implemented more closely to FORTRAN strings by including an explicit 
length in the pointer instead of using a particular value to terminate the 
sequence.

<p>
VL datatypes are useful to the scientific community in many different ways,
some of which are listed below:
<ul>
    <li>Ragged arrays: Multi-dimensional ragged arrays can be implemented with
        the last (fastest changing) dimension being ragged by using a
        VL datatype as the type of the element stored. (Or as a field in a
        compound datatype.)
    <li>Fractal arrays: If a compound datatype has a VL field of another compound
        type with VL fields (a <em>nested</em> VL datatype), this can be used to
        implement ragged arrays of ragged arrays, to whatever nesting depth is
        required for the user.
    <li>Polygon lists: A common storage requirement is to efficiently store arrays
        of polygons with different numbers of vertices.  VL datatypes can be
        used to efficiently and succinctly describe an array of polygons with
        different numbers of vertices.
    <li>Character strings: Perhaps the most common use of VL datatypes will be to
        store C-like VL character strings in dataset elements or as attributes
        of objects.
    <li>Indices: An array of VL object references could be used as an index to
        all the objects in a file which contain a particular sequence of
        dataset values. Perhaps an array something like the following:
        <pre>
            Value1: Object1, Object3,  Object9
            Value2: Object0, Object12, Object14, Object21, Object22
            Value3: Object2
            Value4: &lt;none&gt;
            Value5: Object1, Object10, Object12
                .
                .
        </pre>
    <li>Object Tracking: An array of VL dataset region references can be used as
        a method of tracking objects or features appearing in a sequence of
        datasets.  Perhaps an array of them would look like:
        <pre>
            Feature1: Dataset1:Region,  Dataset3:Region,  Dataset9:Region
            Feature2: Dataset0:Region,  Dataset12:Region, Dataset14:Region,
                      Dataset21:Region, Dataset22:Region
            Feature3: Dataset2:Region
            Feature4: &lt;none&gt;
            Feature5: Dataset1:Region,  Dataset10:Region, Dataset12:Region
                .
                .
        </pre>
</ul>


<h3>9.2. Variable-length Datatype Memory Management</h3>

With each element possibly being of different sequence lengths for a
dataset with a VL datatype, the memory for the VL datatype must be dynamically
allocated.  Currently there are two methods of managing the memory for 
VL datatypes: the standard C malloc/free memory allocation routines or a method
of calling user-defined memory management routines to allocate or free memory.
Since the memory allocated when reading (or writing) may be complicated to
release, an HDF5 routine is provided to traverse a memory buffer and free the
VL datatype information without leaking memory.


<h4>Variable-length datatypes cannot be divided</h4>

VL datatypes are designed so that they cannot be subdivided by the library
with selections, etc.  This design was chosen due to the complexities in
specifying selections on each VL element of a dataset through a selection API
that is easy to understand.  Also, the selection APIs work on dataspaces, not
on datatypes.  At some point in time, we may want to create a way for
dataspaces to have VL components to them and we would need to allow selections
of those VL regions, but that is beyond the scope of this document.


<h4>What happens if the library runs out of memory while reading?</h4>

It is possible for a call to <code>H5Dread</code> to fail while reading in 
VL datatype information if the memory required exceeds that which is available.  
In this case, the <code>H5Dread</code> call will fail gracefully and any 
VL data which has been allocated prior to the memory shortage will be returned 
to the system via the memory management routines detailed below.  
It may be possible to design a <em>partial read</em> API function at a 
later date, if demand for such a function warrants.


<h4>Strings as variable-length datatypes</h4>

Since character strings are a special case of VL data that is implemented
in many different ways on different machines and in different programming 
languages, they are handled somewhat differently from other VL datatypes in HDF5.

<p>
HDF5 has native VL strings for each language API, which are stored the
same way on disk, but are exported through each language API in a natural way
for that language.  When retrieving VL strings from a dataset, users may choose
to have them stored in memory as a native VL string or in HDF5's <code>hvl_t</code> 
struct for VL datatypes.

<p>
VL strings may be created in one of two ways: by creating a VL datatype with
a base type of <code>H5T_NATIVE_ASCII</code>, <code>H5T_NATIVE_UNICODE</code>, 
etc., or by creating a string datatype and setting its length to 
<code>H5T_VARIABLE</code>.  The second method is used to access 
native VL strings in memory.  The library will convert between the two types, 
but they are stored on disk using different datatypes and have different 
memory representations.

<p>
Multi-byte character representations, such as UNICODE or <em>wide</em> 
characters in C/C++, will need the appropriate character and string datatypes 
created so that they can be described properly through the datatype API.  
Additional conversions between these types and the current ASCII characters 
will also be required.

<p>
Variable-width character strings (which might be compressed data or some
other encoding) are not currently handled by this design.  We will evaluate
how to implement them based on user feedback.


<h3>9.3. Variable-length Datatype API</h3>

<h4>Creation</h4>

VL datatypes are created with the <code>H5Tvlen_create()</code> function 
as follows:
<dl>
    <dd><em>type_id</em> = <code>H5Tvlen_create</code>(<em>hid_t</em> <code>base_type_id</code>);
</dl>

<p>
The base datatype will be the datatype that the sequence is composed of,
characters for character strings, vertex coordinates for polygon lists, etc.
The base datatype specified for the VL datatype can be of any HDF5 datatype,
including another VL datatype, a compound datatype, or an atomic datatype.


<h4>Query base datatype of VL datatype</h4>

It may be necessary to know the base datatype of a VL datatype before 
memory is allocated, etc.  The base datatype is queried with the 
<code>H5Tget_super()</code> function, described in the H5T documentation.


<h4>Query minimum memory required for VL information</h4>

It order to predict the memory usage that <code>H5Dread</code> may need 
to allocate to store VL data while reading the data, the 
<code>H5Dget_vlen_size()</code> function is provided:
<dl>
    <dd><em>herr_t</em> 
        <code>H5Dget_vlen_buf_size</code>(<em>hid_t</em> <code>dataset_id</code>, 
        <em>hid_t</em> <code>type_id</code>,
        <em>hid_t</em> <code>space_id</code>, 
        <em>hsize_t</em> *<code>size</code>) 
</dl>
        (This function is not implemented in Release 1.2.)

<p>
This routine checks the number of bytes required to store the VL data from
the dataset, using the <code>space_id</code> for the selection in the dataset 
on disk and the <code>type_id</code> for the memory representation of the 
VL data in memory.  The *<code>size</code> value is modified according to 
how many bytes are required to store the VL data in memory.


<h4>Specifying how to manage memory for the VL datatype</h4>

The memory management method is determined by dataset transfer properties
passed into the <code>H5Dread</code> and <code>H5Dwrite</code> functions 
with the dataset transfer property list.  

<p>
Default memory management is set by using <code>H5P_DEFAULT</code> 
for the dataset transfer property list identifier.
If <code>H5P_DEFAULT</code> is used with <code>H5Dread</code>,
the system <code>malloc</code> and <code>free</code> calls
will be used for allocating and freeing memory.
In such a case,  <code>H5P_DEFAULT</code> should also be passed
as the property list identifier to <code>H5Dvlen_reclaim</code>.

<p>
The rest of this subsection is relevant only to those who choose 
<i>not</i> to use default memory management.

<p>
The user can choose whether to use the 
system <code>malloc</code> and <code>free</code> calls  or
user-defined, or custom, memory management functions.
If user-defined memory management functions are to be used, 
the memory allocation and free routines must be defined via 
<code>H5Pset_vlen_mem_manager()</code>, as follows:
<dl>
    <dd><em>herr_t</em> 
        <code>H5Pset_vlen_mem_manager</code>(<em>hid_t</em> <code>plist_id</code>,
        <em>H5MM_allocate_t</em> <code>alloc</code>, 
        <em>void</em> *<code>alloc_info</code>,
        <em>H5MM_free_t</em> <code>free</code>, 
        <em>void</em> *<code>free_info</code>)
</dl>


<p>
The <code>alloc</code> and <code>free</code> parameters 
identify the memory management routines to be used.
If the user has defined custom memory management routines,
<code>alloc</code> and/or <code>free</code> should be set to make 
those routine calls (i.e., the name of the routine is used as 
the value of the parameter);  
if the user prefers to use the system's <code> malloc</code>
and/or <code>free</code>, the <code>alloc</code> and 
<code>free</code> parameters, respectively, should be set to 
<code> NULL</code>
<p>
The prototypes for the user-defined functions would appear as follows:
<dl>
    <dd><code>typedef</code> <em>void</em> 
        *(*<code>H5MM_allocate_t</code>)(<em>size_t</em> <code>size</code>, 
        <em>void</em> *<code>info</code>) ;
    <dd><code>typedef</code> <em>void</em> 
        (*<code>H5MM_free_t</code>)(<em>void</em> *<code>mem</code>, 
        <em>void</em> *<code>free_info</code>) ;
</dl>

<p>
The <code>alloc_info</code> and <code>free_info</code> parameters can be 
used to pass along any required information to the user's memory management 
routines.

<p>
In summary, if the user has defined custom memory management 
routines, the name(s) of the routines are passed in the 
<code>alloc</code> and <code>free</code> parameters and the 
custom routines' parameters are passed in the 
<code>alloc_info</code> and <code>free_info</code> parameters.
If the user wishes to use the system <code> malloc</code> and 
<code>free</code> functions, the <code>alloc</code> and/or 
<code>free</code> parameters are set to <code> NULL</code> 
and the  <code>alloc_info</code> and <code>free_info</code> 
parameters are ignored.

<h4>Recovering memory from VL buffers read in</h4>

The complex memory buffers created for a VL datatype may be reclaimed with
the <code>H5Dvlen_reclaim()</code> function call, as follows:
<dl>
    <dd><em>herr_t</em> 
        <code>H5Dvlen_reclaim</code>(<em>hid_t</em> <code>type_id</code>, 
        <em>hid_t</em> <code>space_id</code>, 
        <em>hid_t</em> <code>plist_id</code>,
        <em>void</em> *<code>buf</code>);
</dl>

<p>
The <code>type_id</code> must be the datatype stored in the buffer, 
<code>space_id</code> describes the selection for the memory buffer 
to free the VL datatypes within, 
<code>plist_id</code> is the dataset transfer property list which 
was used for the I/O transfer to create the buffer, and 
<code>buf</code> is the pointer to the buffer to free the VL memory within.  
The VL structures (<code>hvl_t</code>) in the user's buffer are 
modified to zero out the VL information after it has been freed.

<p>
If nested VL datatypes were used to create the buffer, 
this routine frees them from the bottom up, 
releasing all the memory without creating memory leaks.


<h3>9.4. Code Examples</h3>

The following example creates the following one-dimensional array 
of size 4 of variable-length datatype.
<pre>
          0 10 20 30
            11 21 31
               22 32
                  33
</pre>
Each element of the VL datatype is of H5T_NATIVE_UINT type.
<p>
The array is stored in the dataset and then read back into memory. 
Default memory management routines are used for writing the VL data.
Custom memory management routines are used for reading the VL data and
reclaiming memory space.

<center>
<table border align=center width="100%">
  <caption align=bottom><h4>Example: Variable-length Datatypes</h4></caption>
  <tr>
    <td>
      <pre>
#include &lt;hdf5.h&gt;

#define FILE   "vltypes.h5"
#define MAX(X,Y)        ((X)&gt;(Y)?(X):(Y))

/* 1-D dataset with fixed dimensions */
#define SPACE_NAME  "Space"
#define SPACE_RANK	1
#define SPACE_DIM	4

void *vltypes_alloc_custom(size_t size, void *info);
void vltypes_free_custom(void *mem, void *info);

/****************************************************************
**
**  vltypes_alloc_custom():  VL datatype custom memory
**      allocation routine.  This routine just uses malloc to
**      allocate the memory and increments the amount of memory
**      allocated.
** 
****************************************************************/
void *vltypes_alloc_custom(size_t size, void *info)
{

    void *ret_value=NULL;       /* Pointer to return */
    int *mem_used=(int *)info;  /* Get the pointer to the memory used */
    size_t extra;               /* Extra space needed */

    /*
     *  This weird contortion is required on the DEC Alpha to keep the
     *  alignment correct.
     */
    extra=MAX(sizeof(void *),sizeof(int));

    if((ret_value=(void *)malloc(extra+size))!=NULL) {
        *(int *)ret_value=size;
        *mem_used+=size;
    } /* end if */
    ret_value=((unsigned char *)ret_value)+extra;
    return(ret_value);
}
/******************************************************************
**  vltypes_free_custom(): VL datatype custom memory
**      allocation routine.  This routine just uses free to
**      release the memory and decrements the amount of memory
**      allocated.
** ****************************************************************/
void vltypes_free_custom(void *_mem, void *info)

{  
    unsigned char *mem;
    int *mem_used=(int *)info;  /* Get the pointer to the memory used */
    size_t extra;               /* Extra space needed */    
    /*
     *  This weird contortion is required on the DEC Alpha to keep the
     *  alignment correct.      
     */ 
    extra=MAX(sizeof(void *),sizeof(int));
    if(_mem!=NULL) {        
        mem=((unsigned char *)_mem)-extra;
       *mem_used-=*(int *)mem; 
       free(mem); 
    } /* end if */
}

int main(void)

{   
    hvl_t wdata[SPACE_DIM];   /* Information to write */
    hvl_t rdata[SPACE_DIM];   /* Information read in */
    hid_t		fid;	   /* HDF5 File IDs */  
    hid_t		dataset;   /* Dataset ID */
    hid_t		sid;       /* Dataspace ID */
    hid_t		tid;       /* Datatype ID	   	 */
    hid_t       xfer_pid;   /* Dataset transfer property list ID */
    hsize_t		dims[] = {SPACE_DIM};
    uint       i,j;        /* counting variables */
    int         mem_used=0; /* Memory used during allocation */
    herr_t		ret;		/* Generic return value	 */

    /*
     * Allocate and initialize VL data to write 
     */
    for(i=0; i&lt;SPACE_DIM; i++) {

        wdata[i].p= (unsigned int *)malloc((i+1)*sizeof(unsigned int));
        wdata[i].len=i+1;
        for(j=0; j&lt;(i+1); j++)
            ((unsigned int *)wdata[i].p)[j]=i*10+j;
    } /* end for */

    /* 
     * Create file. 
     */
    fid = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

    /* 
     * Create dataspace for datasets. 
     */
    sid = H5Screate_simple(SPACE_RANK, dims, NULL);

    /* 
     * Create a datatype to refer to. 
     */
    tid = H5Tvlen_create (H5T_NATIVE_UINT);

    /* 
     * Create a dataset. 
     */
    dataset=H5Dcreate(fid, "Dataset", tid, sid, H5P_DEFAULT);

    /* 
     * Write dataset to disk. 
     */
    ret=H5Dwrite(dataset, tid, H5S_ALL, H5S_ALL, H5P_DEFAULT, wdata);

    /* 
     * Change to the custom memory allocation routines for reading 
     * VL data 
     */
    xfer_pid=H5Pcreate(H5P_DATASET_XFER);

    ret=H5Pset_vlen_mem_manager(xfer_pid, vltypes_alloc_custom,
                                &mem_used, vltypes_free_custom, 
                                &mem_used);

    /* 
     * Read dataset from disk. vltypes_alloc_custom and
     * will be used to manage memory.
     */
    ret=H5Dread(dataset, tid, H5S_ALL, H5S_ALL, xfer_pid, rdata);   

    /* 
     * Display data read in 
     */
    for(i=0; i&lt;SPACE_DIM; i++) {
        printf("%d-th element length is %d \n", i, 
                                   (unsigned) rdata[i].len);
        for(j=0; j&lt;rdata[i].len; j++) {
            printf(" %d ",((unsigned int *)rdata[i].p)[j] );   
        } 
        printf("\n"); 
    } /* end for */

    /* 
     * Reclaim the read VL data. vltypes_free_custom will be used 
     * to reclaim the space. 
     */
    ret=H5Dvlen_reclaim(tid, sid, xfer_pid, rdata);

    /* 
     * Reclaim the write VL data.  C language free function will be 
     * used to reclaim space. 
     */
    ret=H5Dvlen_reclaim(tid, sid, H5P_DEFAULT, wdata);

    /* 
     * Close Dataset 
     */
    ret = H5Dclose(dataset);

    /* 
     * Close datatype 
     */
    ret = H5Tclose(tid);

    /* 
     * Close disk dataspace 
     */
    ret = H5Sclose(sid);
    
    /* 
     * Close dataset transfer property list 
     */
    ret = H5Pclose(xfer_pid);
    
    /* 
     * Close file 
     */
    ret = H5Fclose(fid);

} 
      </pre>
    </td>
  </tr>
</table>
</center>

And the output from this sample code would be as follows:

<center>
<table border align=center width="100%">
  <caption align=bottom><h4>Example: Variable-length Datatypes, Sample Output</h4></caption>
  <tr>
    <td>
      <pre>
0-th element length is 1 
0 
1-th element length is 2 
10  11 
2-th element length is 3 
20  21  22 
3-th element length is 4 
30  31  32  33 
      </pre>
    </td>
  </tr>
</table>
</center>

<p>
For further samples of VL datatype code, see the tests in <code>test/tvltypes.c</code> 
in the HDF5 distribution.




<h2>10. Array Datatypes</h2>

The array class of datatypes, <code>H5T_ARRAY</code>, allows the 
construction of true, homogeneous, multi-dimensional arrays.  
Since these are homogeneous arrays, each element of the array will be 
of the same datatype, designated at the time the array is created.

<p>
Arrays can be nested.
Not only is an array datatype used as an element of an HDF5 dataset,
but the elements of an array datatype may be of any datatype, 
including another array datatype.

<p>
Array datatypes cannot be subdivided for I/O; the entire array must 
be transferred from one dataset to another. 

<p>
Within the limitations outlined in the next paragraph, array datatypes 
may be <em>N</em>-dimensional and of any dimension size.  
Unlimited dimensions, however, are not supported. 
Functionality similar to unlimited dimension arrays is available through 
the use of variable-length datatypes.

<p>
The maximum number of dimensions, i.e., the maximum rank, of an array
datatype is specified by the HDF5 library constant <code>H5S_MAX_RANK</code>.
The minimum rank is 1 (one).
All dimension sizes must be greater than 0 (zero). 

<p>
One array dataype may only be converted to another array datatype 
if the number of dimensions and the sizes of the dimensions are equal 
and the datatype of the first array's elements can be converted 
to the datatype of the second array's elements.

<h3>10.1 Array Datatype APIs</h2>

The functions for creating and manipulating array datadypes are 
as follows:

<dir>
<table>
    <tr>
        <td><code><b>H5Tarray_create</b></code>
        </td><td>&nbsp;&nbsp;
        </td><td>Creates an array datatype.
        </td></tr><tr><td colspan=3><dir>
            <em>hid_t</em> <code>H5Tarray_create</code>(
                       <em>hid_t</em> <code>base</code>,
                       <em>int</em> <code>rank</code>,
                       <em>const hsize_t</em> <code>dims[/*rank*/]</code>,
                       <em>const int</em> <code>perm[/*rank*/]</code>
            )
        </dir>
    </td></tr><tr>
        <td><code><b>H5Tget_array_ndims</b></code>
        </td><td>&nbsp;&nbsp;
        </td><td>Retrieves the rank of the array datatype.
        </td></tr><tr><td colspan=3><dir>
            <em>int</em> <code>H5Tget_array_ndims</code>(
                       <em>hid_t</em> <code>adtype_id</code>
            )
        </dir>
    </td></tr><tr>
        <td><code><b>H5Tget_array_dims</b></code>
        </td><td>&nbsp;&nbsp;
        </td><td>Retrieves the dimension sizes of the array datatype.
        </td></tr><tr><td colspan=3><dir>
            <em>int</em> <code>H5Tget_array_dims</code>(
                       <em>hid_t</em> <code>adtype_id</code>,
                       <em>hsize_t *</em><code>dims[]</code>,
                       <em>int *</em><code>perm[]</code>
            )
        </dir>
    </td></tr>
</table>
</dir>


<h3>10.2 Transition Issues in Adapting Existing Software<br>
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
(Transition to HDF5 Release 1.4 Only)</h3>

The array datatype class is new with Release 1.4;  
prior releases included an array element for compound datatypes.
<p>
The use of the array datatype class will not interfere with the 
use of existing compound datatypes.  Applications may continue to 
read and write the older field arrays, but they will no longer be 
able to create array fields in newly-defined compound datatypes.
<p>
Existing array fields will be transparently mapped to array datatypes
when they are read in.


<h3>10.3 Code Example</h3>

The following example creates an array datatype and a dataset 
containing elements of the array datatype in an HDF5 file.
It then writes the dataset to the file.  
<p>

<center>
<table border align=center width="100%">
  <caption align=bottom><h4>Example: Array Datatype</h4></caption>
  <tr>
    <td>
      <pre>
#include &lt;hdf5.h&gt;

#define FILE        "SDS_array_type.h5"
#define DATASETNAME "IntArray" 
#define ARRAY_DIM1     5                      /* array dimensions and rank */
#define ARRAY_DIM2     4 
#define ARRAY_RANK     2 
#define SPACE_DIM     10                      /* dataset dimensions and rank */ 
#define RANK  1 

int
main (void)
{
    hid_t       file, dataset;         /* file and dataset handles */
    hid_t       datatype, dataspace;   /* handles */
    hsize_t     sdims[] = {SPACE_DIM};              /* dataset dimensions */
    hsize_t     adims[] = {ARRAY_DIM1, ARRAY_DIM2}; /* array dimensions */
    hsize_t     adims_out[2]; 
    herr_t      status;                             
    int         data[SPACE_DIM][ARRAY_DIM1][ARRAY_DIM2];   /* data to write */
    int         k, i, j;
    int         array_rank_out; 

    /* 
     * Data  and output buffer initialization. 
     */
    for (k = 0; k &lt; SPACE_DIM; k++) {
      for (j = 0; j &lt; ARRAY_DIM1; j++) {
	for (i = 0; i &lt; ARRAY_DIM2; i++)
               data[k][j][i] = k;
      }
    }     
    /*
     * Create a new file using H5F_ACC_TRUNC access,
     * default file creation properties, and default file
     * access properties.
     */
    file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

    /*
     * Describe the size of the array and create the data space for fixed
     * size dataset. 
     */
    dataspace = H5Screate_simple(RANK, sdims, NULL); 

    /* 
     * Define array datatype for the data in the file.
     */
    datatype = H5Tarray_create(H5T_NATIVE_INT, ARRAY_RANK, adims, NULL);

    /*
     * Create a new dataset within the file using defined dataspace and
     * datatype and default dataset creation properties.
     */
    dataset = H5Dcreate(file, DATASETNAME, datatype, dataspace,
			H5P_DEFAULT);

    /*
     * Write the data to the dataset using default transfer properties.
     */
    status = H5Dwrite(dataset, datatype, H5S_ALL, H5S_ALL,
		      H5P_DEFAULT, data);


    /*
     * Close/release resources.
     */
    H5Sclose(dataspace);
    H5Tclose(datatype);
    H5Dclose(dataset);
    /*
     * Reopen dataset, and return information about its datatype.
     */
    dataset = H5Dopen(file, DATASETNAME);
    datatype = H5Dget_type(dataset);
    array_rank_out = H5Tget_array_ndims(datatype);
    status = H5Tget_array_dims(datatype, adims_out, NULL); 
    printf(" Array datatype rank is %d \n", array_rank_out);
    printf(" Array dimensions are %d x %d \n", (int)adims_out[0],   
                                               (int)adims_out[1]);

    H5Tclose(datatype);
    H5Dclose(dataset);
    H5Fclose(file);
 
    return 0;
}     
      </pre>
    </td>
  </tr>
</table>
</center>



    <h2>11. Sharing Datatypes among Datasets</h2>

    <p>If a file has lots of datasets which have a common datatype,
      then the file could be made smaller by having all the datasets
      share a single datatype.  Instead of storing a copy of the 
      datatype in each dataset object header, a single datatype is stored
      and the object headers point to it.  The space savings is
      probably only significant for datasets with a compound datatype,
      since the atomic datatypes can be described with just a few
      bytes anyway.

    <p>To create a bunch of datasets that share a single datatype
      just create the datasets with a committed (named) datatype.

    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: Shared Datatypes</h4></caption>
	  <tr>
	    <td>
	      <p>To create two datasets that share a common datatype
		one just commits the datatype, giving it a name, and
		then uses that datatype to create the datasets.

	      <p><code><pre>
hid_t t1 = ...some transient type...;
H5Tcommit (file, "shared_type", t1);
hid_t dset1 = H5Dcreate (file, "dset1", t1, space, H5P_DEFAULT);
hid_t dset2 = H5Dcreate (file, "dset2", t1, space, H5P_DEFAULT);
	      </code></pre>

	      <p>And to create two additional datasets later which
		share the same type as the first two datasets:

	      <p><code><pre>
hid_t dset1 = H5Dopen (file, "dset1");
hid_t t2 = H5Dget_type (dset1);
hid_t dset3 = H5Dcreate (file, "dset3", t2, space, H5P_DEFAULT);
hid_t dset4 = H5Dcreate (file, "dset4", t2, space, H5P_DEFAULT);
	      </code></pre>
	    </td>
	  </tr>
	</table>
      </center>




    <a name="Datatypes-DataConversion">
    <h2>12. Data Conversion</h2>
    </a>

    <p>The library is capable of converting data from one type to
      another and does so automatically when reading or writing the
      raw data of a dataset, attribute data, or fill values. The
      application can also change the type of data stored in an array.

    <p>In order to insure that data conversion exceeds disk I/O rates,
      common data conversion paths can be hand-tuned and optimized for
      performance.  The library contains very efficient code for
      conversions between most native datatypes and a few non-native
      datatypes, but if a hand-tuned conversion function is not
      available, then the library falls back to a slower but more
      general conversion function.  The application programmer can
      define additional conversion functions when the libraries
      repertoire is insufficient. In fact, if an application does
      define a conversion function which would be of general interest,
      we request that the function be submitted to the HDF5
      development team for inclusion in the library.

    <p><b>Note:</b> The HDF5 library contains a deliberately limited
      set of conversion routines.  It can convert from one integer
      format to another, from one floating point format to another,
      and from one struct to another.  It can also perform byte
      swapping when the source and destination types are otherwise the
      same.  The library does not contain any functions for converting
      data between integer and floating point formats.  It is
      anticipated that some users will find it necessary to develop
      float to integer or integer to float conversion functions at the
      application level; users are invited to submit those functions
      to be considered for inclusion in future versions of the
      library.

    <p>A conversion path contains a source and destination datatype
      and each path contains a <em>hard</em> conversion function
      and/or a <em>soft</em> conversion function.  The only difference
      between hard and soft functions is the way in which the library
      chooses which function applies: A hard function applies to a
      specific conversion path while a soft function may apply to
      multiple paths.  When both hard and soft functions apply to a
      conversion path, then the hard function is favored and when
      multiple soft functions apply, the one defined last is favored.

    <p>A data conversion function is of type <code>H5T_conv_t</code>,
	which is defined as follows:

<dir><pre><em>typedef</em> herr_t (<em>*H5T_conv_t</em>) (hid_t <em>src_id</em>, 
                              hid_t <em>dst_id</em>, 
                              H5T_cdata_t *<em>cdata</em>,
                              hsize_t <em>nelmts</em>, 
                              size_t <em>buf_stride</em>, 
                              size_t <em>bkg_stride</em>, 
                              void *<em>buffer</em>, 
                              void *<em>bkg_buffer</em>,
                              hid_t <em>dset_xfer_plist</em>);</pre></dir>
      

    <p>The conversion function is called with 
      the source and destination datatypes (<em>src_id</em> and 
          <em>dst_id</em>), 
      the path-constant data struct (<em>cdata</em>), 
      the number of instances of the datatype to convert (<em>nelmts</em>), 
      a conversion buffer (<em>buffer</em>) which initially contains 
          an array of data having the source type and on return will 
          contain an array of data having the destination type, 
      a temporary or background buffer (<em>bkg_buffer</em>, 
          see description of <code>H5T_BKG_YES</code> below),
      conversion and background buffer strides (<em>buf_stride</em> and
          <em>bkg_stride</em>) that indicate what data is to be converted, and
      a dataset transfer properties list (<em>dset_xfer_plist</em>).  

     <p><em>buf_stride</em> and <em>bkg_stride</em> are in bytes and
      are related to the size of the datatype.
      If every data element is to be converted, the parameter's value 
      is equal to the size of the datatype; 
      if every other data element is to be converted, the parameter's value
      is equal to twice the size of the datatype; etc.

     <p><em>dset_xfer_plist</em> may contain properties that are passed
      to the read and write calls.  
      This parameter is currently used only with variable-length data.

     <p><em>bkg_buffer</em> and <em>bkg_stride</em> are used only with 
      compound datatypes.

     <p>The path-constant data struct, <code>H5T_cdata_t</code>, 
      is declared as follows:
        
<dir><pre><em>typedef</em> struct <em>*H5T_cdata_t</em> (H5T_cmd_t <em>command</em>, 
                             H5T_bkg_t <em>need_bkg</em>, 
                             hbool_t *<em>recalc</em>,
                             void *<em>priv</em>)</pre></dir>

    <p>The <code>command</code> field of the <em>cdata</em> argument
      determines what happens within the conversion function.  It's
      values can be:

    <dl>
      <dt><code>H5T_CONV_INIT</code>
      <dd>This command is to hard conversion functions when they're
	registered or soft conversion functions when the library is
	determining if a conversion can be used for a particular path.
	The <em>src_type</em> and <em>dst_type</em> are the end-points
	of the path being queried and <em>cdata</em> is all zero.  The
	library should examine the source and destination types and
	return zero if the conversion is possible and negative
	otherwise (hard conversions need not do this since they've
	presumably been registered only on paths they support).  If
	the conversion is possible the library may allocate and
	initialize private data and assign the pointer to the
	<code>priv</code> field of <em>cdata</em> (or private data can
	be initialized later). It should also initialize the
	<code>need_bkg</code> field described below.  The <em>buf</em>
	and <em>background</em> pointers will be null pointers.

	<br><br>
      <dt><code>H5T_CONV_CONV</code>
      <dd>This command indicates that data points should be converted.
	The conversion function should initialize the
	<code>priv</code> field of <em>cdata</em> if it wasn't
	initialize during the <code>H5T_CONV_INIT</code> command and
	then convert <em>nelmts</em> instances of the
	<em>src_type</em> to the <em>dst_type</em>. The
	<em>buffer</em> serves as both input and output.  The
	<em>background</em> buffer is supplied according to the value
	of the <code>need_bkg</code> field of <em>cdata</em> (the
	values are described below).

	<br><br>
      <dt><code>H5T_CONV_FREE</code>
      <dd>The conversion function is about to be removed from some
	path and the private data (the
	<code><em>cdata</em>->priv</code> pointer) should be freed and
	set to null.  All other pointer arguments are null, the
	<em>src_type</em> and <em>dst_type</em> are invalid
	(negative), and the <em>nelmts</em> argument is zero.

	<br><br>
      <dt><em>Others...</em>
      <dd>Other commands might be implemented later and conversion
	functions that don't support those commands should return a
	negative value.
    </dl>


    <p>Whether a background buffer is supplied to a conversion
      function, and whether the background buffer is initialized
      depends on the value of <code><em>cdata</em>->need_bkg</code>
      which the conversion function should have initialized during the
      H5T_CONV_INIT command.  It can have one of these values:

    <dl>
      <dt><code>H5T_BKG_NONE</code>
      <dd>No background buffer will be supplied to the conversion
	function. This is the default.

	<br><br>
      <dt><code>H5T_BKG_TEMP</code>
      <dd>A background buffer will be supplied but it will not be
	initialized. This is useful for those functions requiring some
	extra buffer space as the buffer can probably be allocated
	more efficiently by the library (the application can supply
	the buffer as part of the dataset transfer property list).

	<br><br>
      <dt><code>H5T_BKG_YES</code>
      <dd>An initialized background buffer is passed to the conversion
	function.  The buffer is initialized with the current values
	of the destination for the data which is passed in through the
	<em>buffer</em> argument. It can be used to "fill in between
	the cracks".  For instance, if the destination type is a
	compound datatype and we are initializing only part of the
	compound datatype from the source type then the background
	buffer can be used to initialize the other part of the
	destination.
    </dl>

    <p>The <code>recalc</code> field of <em>cdata</em> is set when the 
      conversion path table changes. It can be used by conversion
      function that cache other conversion paths so they know when
      their cache needs to be recomputed.


    <p>Once a conversion function is written it can be registered and
      unregistered with these functions:

    <dl>
      <dt><code>herr_t H5Tregister(H5T_pers_t <em>pers</em>, const
	  char *<em>name</em>, hid_t <em>src_type</em>, hid_t
	  <em>dest_type</em>, H5T_conv_t <em>func</em>)</code>
      <dd>Once a conversion function is written, the library must be
	notified so it can be used.  The function can be registered as
	a hard (<code>H5T_PERS_HARD</code>) or soft
	(<code>H5T_PERS_SOFT</code>) conversion depending on the value
	of <em>pers</em>, displacing any previous conversions for all
	applicable paths.  The <em>name</em> is used only for
	debugging but must be supplied.  If <em>pers</em> is
	<code>H5T_PERS_SOFT</code> then only the type classes of the
	<em>src_type</em> and <em>dst_type</em> are used. For
	instance, to register a general soft conversion function that
	can be applied to any integer to integer conversion one could
	say: <code>H5Tregister(H5T_PERS_SOFT, "i2i", H5T_NATIVE_INT,
	H5T_NATIVE_INT, convert_i2i)</code>.  One special conversion
	path called the "no-op" conversion path is always defined by
	the library and used as the conversion function when no data
	transformation is necessary. The application can redefine this 
	path by specifying a new hard conversion function with a
	negative value for both the source and destination datatypes, 
	but the library might not call the function under certain
	circumstances.

	<br><br>
      <dt><code>herr_t H5Tunregister (H5T_pers_t <em>pers</em>, const
	  char *<em>name</em>, hid_t <em>src_type</em>, hid_t
	  <em>dest_type</em>, H5T_conv_t <em>func</em>)</code>
      <dd>Any conversion path or function that matches the critera
	specified by a call to this function is removed from the type
	conversion table. All fields have the same interpretation as
	for <code>H5Tregister()</code> with the added feature that any
	(or all) may be wild cards.  The
	<code>H5T_PERS_DONTCARE</code> constant should be used to
	indicate a wild card for the <em>pers</em> argument. The wild
	card <em>name</em> is the null pointer or empty string, the
	wild card for the <em>src_type</em> and <em>dest_type</em>
	arguments is any negative value, and the wild card for the
	<em>func</em> argument is the null pointer.  The special no-op 
	conversion path is never removed by this function.
    </dl>

    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: A conversion
	      function</h4></caption>
	  <tr>
	    <td>
	      <p>Here's an example application-level function that
		converts Cray <code>unsigned short</code> to any other
		16-bit unsigned big-endian integer.  A cray
		<code>short</code> is a big-endian value which has 32
		bits of precision in the high-order bits of a 64-bit
		word.

	      <p><code><pre>
 1 typedef struct {
 2     size_t dst_size;
 3     int direction;
 4 } cray_ushort2be_t;
 5 
 6 herr_t
 7 cray_ushort2be (hid_t src, hid_t dst,
 8                 H5T_cdata_t *cdata, hsize_t nelmts, 
 9                 size_t buf_str, size_t bkg_str, void *buf, 
10                 const void *background, hid_t plist)
11 {
12     unsigned char *src = (unsigned char *)buf;
13     unsigned char *dst = src;
14     cray_ushort2be_t *priv = NULL;
15 
16     switch (cdata-&gt;command) {
17     case H5T_CONV_INIT:
18         /*
19          * We are being queried to see if we handle this
20          * conversion.  We can handle conversion from
21          * Cray unsigned short to any other big-endian
22          * unsigned integer that doesn't have padding.
23          */
24         if (!H5Tequal (src, H5T_CRAY_USHORT) ||
25             H5T_ORDER_BE != H5Tget_order (dst) ||
26             H5T_SGN_NONE != H5Tget_signed (dst) ||
27             8*H5Tget_size (dst) != H5Tget_precision (dst)) {
28             return -1;
29         }
30 
31         /*
32          * Initialize private data.  If the destination size
33          * is larger than the source size, then we must
34          * process the elements from right to left.
35          */
36         cdata-&gt;priv = priv = malloc (sizeof(cray_ushort2be_t));
37         priv-&gt;dst_size = H5Tget_size (dst);
38         if (priv-&gt;dst_size&gt;8) {
39             priv-&gt;direction = -1;
40         } else {
41             priv-&gt;direction = 1;
42         }
43         break;
44 
45     case H5T_CONV_FREE:
46         /*
47          * Free private data.
48          */
49         free (cdata-&gt;priv);
50         cdata-&gt;priv = NULL;
51         break;
52 
53     case H5T_CONV_CONV:
54         /*
55          * Convert each element, watch out for overlap src
56          * with dst on the left-most element of the buffer.
57          */
58         priv = (cray_ushort2be_t *)(cdata-&gt;priv);
59         if (priv-&gt;direction&lt;0) {
60             src += (nelmts - 1) * 8;
61             dst += (nelmts - 1) * dst_size;
62         }
63         for (i=0; i&lt;n; i++) {
64             if (src==dst && dst_size&lt;4) {
65                 for (j=0; j&lt;dst_size; j++) {
66                     dst[j] = src[j+4-dst_size];
67                 }
68             } else {
69                 for (j=0; j&lt;4 && j&lt;dst_size; j++) {
70                     dst[dst_size-(j+1)] = src[3-j];
71                 }
72                 for (j=4; j&lt;dst_size; j++) {
73                     dst[dst_size-(j+1)] = 0;
74                 }
75             }
76             src += 8 * direction;
77             dst += dst_size * direction;
78         }
79         break;
80 
81     default:
82         /*
83          * Unknown command.
84          */
85         return -1;
86     }
87     return 0;
88 }
	      </pre></code>

	      <p>The <em>background</em> argument is ignored since
		it's generally not applicable to atomic datatypes.
	    </td>
	  </tr>
	</table>
      </center>

    <p>
      <center>
	<table border align=center width="100%">
	  <caption align=bottom><h4>Example: Soft
	      Registration</h4></caption>
	  <tr>
	    <td>
	      <p>The convesion function described in the previous
		example applies to more than one conversion path.
		Instead of enumerating all possible paths, we register
		it as a soft function and allow it to decide which
		paths it can handle.

	      <p><code><pre>
H5Tregister(H5T_PERS_SOFT, "cus2be",
            H5T_NATIVE_INT, H5T_NATIVE_INT,
            cray_ushort2be);
	      </pre></code>

	      <p>This causes it to be consulted for any conversion
		from an integer type to another integer type.  The
		first argument is just a short identifier which will
		be printed with the datatype conversion statistics.
	    </td>
	  </tr>
	</table>
      </center>


    <p><b>NOTE:</b> The idea of a master soft list and being able to
      query conversion functions for their abilities tries to overcome
      problems we saw with AIO.  Namely, that there was a dichotomy
      between generic conversions and specific conversions that made
      it very difficult to write a conversion function that operated
      on, say, integers of any size and order as long as they don't
      have zero padding.  The AIO mechanism required such a function
      to be explicitly registered (like
      <code>H5Tregister_hard()</code>) for each an every possible
      conversion path whether that conversion path was actually used
      or not.</p>


<!-- #BeginLibraryItem "/ed_libs/NavBar_UG.lbi" --><hr>
<center>
<table border=0 width=98%>
<tr><td valign=top align=left>
    <a href="index.html">HDF5 documents and links</a>&nbsp;<br>
    <a href="H5.intro.html">Introduction to HDF5</a>&nbsp;<br>
    <a href="RM_H5Front.html">HDF5 Reference Manual</a>&nbsp;<br>   
    <a href="http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/index.html">HDF5 User's Guide for Release 1.6</a>&nbsp;<br>
    <!--
    <a href="Glossary.html">Glossary</a><br>
    -->
</td>
<td valign=top align=right>
    And in this document, the 
    <a href="H5.user.html"><strong>HDF5 User's Guide from Release 1.4.5:</strong></a>&nbsp;&nbsp;&nbsp;&nbsp;
        <br>
        <a href="Files.html">Files</a>&nbsp;&nbsp;
        <a href="Datasets.html">Datasets</a>&nbsp;&nbsp;
        <a href="Datatypes.html">Datatypes</a>&nbsp;&nbsp;
        <a href="Dataspaces.html">Dataspaces</a>&nbsp;&nbsp;
        <a href="Groups.html">Groups</a>&nbsp;&nbsp;
        <br>
        <a href="References.html">References</a>&nbsp;&nbsp;
        <a href="Attributes.html">Attributes</a>&nbsp;&nbsp;
        <a href="Properties.html">Property Lists</a>&nbsp;&nbsp;
        <a href="Errors.html">Error Handling</a>&nbsp;&nbsp;
        <br>
        <a href="Filters.html">Filters</a>&nbsp;&nbsp;
        <a href="Caching.html">Caching</a>&nbsp;&nbsp;
        <a href="Chunking.html">Chunking</a>&nbsp;&nbsp;
        <a href="MountingFiles.html">Mounting Files</a>&nbsp;&nbsp;
        <br>
        <a href="Performance.html">Performance</a>&nbsp;&nbsp;
        <a href="Debugging.html">Debugging</a>&nbsp;&nbsp;
        <a href="Environment.html">Environment</a>&nbsp;&nbsp;
        <a href="ddl.html">DDL</a>&nbsp;&nbsp;
</td></tr>
</table>
</center>
<hr>
<!-- #EndLibraryItem --><!-- #BeginLibraryItem "/ed_libs/Footer.lbi" --><address>
<a href="mailto:hdfhelp@ncsa.uiuc.edu">HDF Help Desk</a> 
<br>
Describes HDF5 Release 1.4.5, February 2003
</address><!-- #EndLibraryItem --><!-- Created: Thu Dec  4 14:57:32 EST 1997 -->
<!-- hhmts start -->
Last modified: 2 August 2001 
<!-- hhmts end -->


</body>
</html>