1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
|
/*
* h5ff_time_datasets2.c: Do timings of various write / persist / prefetch / read operations for datasets
*
* /DL is dataset that is read back from transaction logs in BB
* /DP is dataset that is read back from prefetched replica in BB
* /DS is dataset that is read back from stored data (DAOS)
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include <sys/time.h>
#include "mpi.h"
#include "hdf5.h"
/* define filename for this app, and max size after username prepended */
#define FILENAME_APP "eff_time_datasets2.h5"
#define FILENAME_SIZE 256
/* define default sizing parameters - can be changed via command line arguments */
//#define DEFAULT_COLS_PER_ROW 131072 /* = 1 MiB/row => ( 1024*1024 /8 bytes per cell) */
//#define DEFAULT_ROWS_PER_WRITE 2 /* = 2 MiB writes with 1MiB/row */
//#define DEFAULT_ROWS_PER_READ 2 /* = 2 MiB writes with 1MiB/row */
//#define DEFAULT_ROWS_PER_RANK 5120 /* = 5 GiB/rank with 1MiB/row */
/* Sized for testing - with verbose */
#define DEFAULT_COLS_PER_ROW 6
#define DEFAULT_ROWS_PER_WRITE 2
#define DEFAULT_ROWS_PER_READ 1
#define DEFAULT_ROWS_PER_RANK 4
/* macros related to error reporting */
#define STATUS (ret >= 0) ? " " : " - FAILED"
#define ASSERT_RET assert( ret >= 0 )
/* option flags */
int cols_per_row = DEFAULT_COLS_PER_ROW;
int rows_per_write = DEFAULT_ROWS_PER_WRITE;
int rows_per_read = DEFAULT_ROWS_PER_READ;
int rows_per_rank = DEFAULT_ROWS_PER_RANK;
int logged_dset = 0; /* Create DL - defaults to no (unless neither DP nor DS are created ) */
int prefetched_dset = 0; /* Create DP - defaults to no */
int stored_dset = 0; /* Create DS - defaults to no */
int num_iterations = 1; /* Number of times to perform the commit/persist/evict/prefetch/read/evict cycle */
int persist_rate = 1; /* Rate at which transactions are persisted */
int enable_checksums = 0; /* Enable checksums on raw data - defaults to no */
int detailed_timing = 0; /* Print detailed timing information for each write & read - defaults to no */
int verbose = 0; /* Verbose output - defaults to no */
/* global variables and macros used to make timing easier */
struct timeval tv_start;
struct timeval tv_end;
#define START_TIME gettimeofday( &tv_start, NULL )
#define END_TIME gettimeofday( &tv_end, NULL )
#define ELAPSED_TIME (ulong)( (tv_end.tv_usec + 1000000*tv_end.tv_sec) - (tv_start.tv_usec + 1000000*tv_start.tv_sec) )
/* function prototypes */
void fill_stats( int*, ulong*, ulong*, ulong*, ulong );
void print_container_contents( hid_t, hid_t, int );
int parse_options( int, char**, int, int );
void usage( const char* );
/**************************************************************************************************************/
int main( int argc, char **argv ) {
/* MPI */
int my_rank, comm_size;
int provided;
/* Container */
char *user_name; /* We'll prepend username to make filename unique */
char file_name[FILENAME_SIZE]; /* Actual filename to be opened will be user_name + FILENAME_APP */
hid_t fapl_id;
hid_t file_id;
/* Dataspaces and hyperslab selection parameters */
hid_t space_l_id;
hid_t space_p_id;
hid_t space_s_id;
hsize_t rank_offset[2], rank_count[2];
/* Datasets */
hid_t dset_l_id;
hid_t dset_p_id;
hid_t dset_s_id;
hsize_t dset_size[2];
hid_t space_id;
/* Data creation and transfer properties */
hid_t dcpl_id;
hid_t dxpl_l_id;
hid_t dxpl_p_id;
hid_t dxpl_s_id;
/* Replicas */
hrpl_t dset_p_replica;
/* Container Version & Read Contexts */
uint64_t version, versionH;
hid_t rc_id, rc_idH;
/* Transactions */
uint64_t tr_num;
hid_t tr_id;
hid_t trspl_id;
int num_tr_leaders;
/* Memory buffer to hold data for 1 rank and memory hyperslab selection parameters */
uint64_t *mbuf;
uint64_t mbuf_offset;
hsize_t mbuf_size[1];
hid_t mem_space_id;
hsize_t mem_offset[1], mem_count[1];
/* Variables used for reading data written by a neighbor rank */
int neighbor_rank;
hid_t neighbor_space_l_id;
hid_t neighbor_space_p_id;
hid_t neighbor_space_s_id;
hsize_t neighbor_offset[2], neighbor_count[2];
/* Misc */
herr_t ret;
uint64_t u, r, c;
uint64_t bytesPerCell, bytesPerWrite, bytesPerRead, bytesPerRank, bytesPerDataset, bytesPerContainer;
double megabytesPerWrite, megabytesPerRead, megabytesPerRank, megabytesPerDataset, megabytesPerContainer;
int rows_transferred;
ulong elapsed_time;
double rate;
ulong e_min, e_max, e_sum;
int cnt;
int i;
int iteration;
int iter_since_last_persist;
/****
* Initialize and create container
****/
/* Confirm needed MPI functionality is available */
MPI_Init_thread( &argc, &argv, MPI_THREAD_MULTIPLE, &provided );
if ( MPI_THREAD_MULTIPLE != provided ) {
fprintf( stderr, "APP: ERROR: MPI does not have MPI_THREAD_MULTIPLE support\n" );
exit( 1 );
}
/* Find MPI rank & communicator size */
MPI_Comm_rank( MPI_COMM_WORLD, &my_rank );
MPI_Comm_size( MPI_COMM_WORLD, &comm_size );
/* Parse command-line options controlling behavior */
if ( parse_options( argc, argv, my_rank, comm_size ) != 0 ) {
exit( 1 );
}
if ( my_rank == 0 ) {
fprintf( stderr, "APP-r%d: Number of MPI processes = %d\n", my_rank, comm_size );
fprintf( stderr, "APP-r%d: Datasets will have %d columns.\n", my_rank, cols_per_row );
fprintf( stderr, "APP-r%d: Datasets will be written %d rows at a time.\n", my_rank, rows_per_write );
fprintf( stderr, "APP-r%d: Datasets will be read %d rows at a time.\n", my_rank, rows_per_read );
fprintf( stderr, "APP-r%d: Datasets will have %d rows (%d per rank).\n", my_rank, (rows_per_rank*comm_size), rows_per_rank );
fprintf( stderr, "APP-r%d: There will be %d iterations.\n", my_rank, num_iterations );
fprintf( stderr, "APP-r%d: Persists will occur every %d iterations.\n", my_rank, persist_rate );
if ( ( prefetched_dset==0 ) && ( stored_dset==0 ) ) { /* Make sure something is created! */
logged_dset = 1;
}
if ( logged_dset ) {
fprintf( stderr, "APP-r%d: /DL will be created\n", my_rank );
}
if ( prefetched_dset ) {
fprintf( stderr, "APP-r%d: /DP will be created\n", my_rank );
}
if ( stored_dset ) {
fprintf( stderr, "APP-r%d: /DS will be created\n", my_rank );
}
}
/* Initialize the EFF stack, starting FS client, registering HDF5 VOL calls, requesting IOD init */
fprintf( stderr, "APP-r%d: Initialize EFF stack\n", my_rank );
EFF_init( MPI_COMM_WORLD, MPI_INFO_NULL );
/* Specify the IOD VOL plugin should be used and create H5File (EFF container), with user name prepended */
user_name = getenv( "USER" );
snprintf( file_name, FILENAME_SIZE, "%s_%s", user_name, FILENAME_APP );
fprintf( stderr, "APP-r%d: Create %s\n", my_rank, file_name );
fapl_id = H5Pcreate( H5P_FILE_ACCESS ); assert( fapl_id >= 0 );
ret = H5Pset_fapl_iod( fapl_id, MPI_COMM_WORLD, MPI_INFO_NULL ); ASSERT_RET;
file_id = H5Fcreate_ff( file_name, H5F_ACC_TRUNC, H5P_DEFAULT, fapl_id, H5_EVENT_STACK_NULL ); assert( file_id >= 0 );
/* Create the memory buffer that will be used in many places - both for writing and reading */
bytesPerCell = sizeof( uint64_t );
bytesPerWrite = bytesPerCell * rows_per_write * cols_per_row; /* Bytes written in a single operation*/
bytesPerRead = bytesPerCell * rows_per_read * cols_per_row; /* Bytes read in a single operations */
bytesPerRank = bytesPerCell * rows_per_rank * cols_per_row; /* Bytes per rank to each dset */
bytesPerDataset = bytesPerRank * comm_size; /* Bytes written by all ranks to each dset */
bytesPerContainer = bytesPerDataset; /* Bytes written by all ranks to all dsets */
if ( prefetched_dset ) {
bytesPerContainer += bytesPerDataset;
}
if ( stored_dset ) {
bytesPerContainer += bytesPerDataset;
}
megabytesPerWrite = (double)bytesPerWrite/(1024*1024);
megabytesPerRead = (double)bytesPerRead/(1024*1024);
megabytesPerRank = (double)bytesPerRank/(1024*1024);
megabytesPerDataset = (double)bytesPerDataset/(1024*1024);
megabytesPerContainer = (double)bytesPerContainer/(1024*1024);
if ( my_rank == 0 ) {
fprintf( stderr, "APP-r%d: Bytes per Cell = %lu\n", my_rank, bytesPerCell );
fprintf( stderr, "APP-r%d: Bytes per Write = %lu\n", my_rank, bytesPerWrite );
fprintf( stderr, "APP-r%d: Bytes per Read = %lu\n", my_rank, bytesPerRead );
fprintf( stderr, "APP-r%d: Bytes per Rank = %lu\n", my_rank, bytesPerRank );
fprintf( stderr, "APP-r%d: Bytes per Dataset = %lu\n", my_rank, bytesPerDataset );
fprintf( stderr, "APP-r%d: Bytes per Container = %lu\n", my_rank, bytesPerContainer );
fprintf( stderr, "APP-r%d: MiB per Write = %f\n", my_rank, megabytesPerWrite );
fprintf( stderr, "APP-r%d: MiB per Read = %f\n", my_rank, megabytesPerRead );
fprintf( stderr, "APP-r%d: MiB per Rank = %f\n", my_rank, megabytesPerRank );
fprintf( stderr, "APP-r%d: MiB per Dataset = %f\n", my_rank, megabytesPerDataset );
fprintf( stderr, "APP-r%d: MiB per Container = %f\n", my_rank, megabytesPerContainer );
}
mbuf = (uint64_t *) calloc( bytesPerRank, 1 );
if ( mbuf == NULL ) {
fprintf( stderr, "APP-r%d: calloc failed when trying to allocate %lu bytes\n", my_rank, bytesPerRank );
exit( -1 );
}
/****
* Transaction 2: Rank 0 creates H5Objects in the container
****/
tr_num = 2; /* Set tr_num here so all ranks can later access the value */
if ( my_rank == 0 ) {
/* Acquire read context for CV 1 */
version = 1;
rc_id = H5RCacquire( file_id, &version, H5P_DEFAULT, H5_EVENT_STACK_NULL ); assert( rc_id >= 0); assert( version == 1 );
fprintf( stderr, "APP-r%d: rc %lu - Acquired\n", my_rank, version );
/* Start a transaction with a single leader (the default) */
fprintf( stderr, "APP-r%d: tr %lu - Start\n", my_rank, tr_num );
tr_id = H5TRcreate( file_id, rc_id, tr_num ); assert( tr_id >= 0 );
ret = H5TRstart( tr_id, H5P_DEFAULT, H5_EVENT_STACK_NULL ); ASSERT_RET;
/* Set Dataset Creation Property List to control use of checksums at IOD level */
dcpl_id = H5Pcreate( H5P_DATASET_CREATE );
if ( enable_checksums ) {
/* enabled by default */
} else {
H5Pset_ocpl_enable_checksum( dcpl_id, 0 );
}
/* Create Dataspace for Datasets */
dset_size[0] = rows_per_rank * comm_size;
dset_size[1] = cols_per_row;
space_id = H5Screate_simple( 2, dset_size, dset_size ); assert( space_id >= 0 );
/* Add updates to the transaction for Dataset creates */
fprintf( stderr, "APP-r%d: tr %d - Create Dataset(s)\n", my_rank, tr_num );
if ( logged_dset ) {
dset_l_id = H5Dcreate_ff( file_id, "DL", H5T_NATIVE_UINT64, space_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT, tr_id,
H5_EVENT_STACK_NULL ); assert( dset_l_id >= 0 );
}
if ( prefetched_dset ) {
dset_p_id = H5Dcreate_ff( file_id, "DP", H5T_NATIVE_UINT64, space_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT, tr_id,
H5_EVENT_STACK_NULL ); assert( dset_p_id >= 0 );
}
if ( stored_dset ) {
dset_s_id = H5Dcreate_ff( file_id, "DS", H5T_NATIVE_UINT64, space_id, H5P_DEFAULT, dcpl_id, H5P_DEFAULT, tr_id,
H5_EVENT_STACK_NULL ); assert( dset_s_id >= 0 );
}
ret = H5Sclose( space_id ); ASSERT_RET;
/* Finish and commit TR and get RC for it */
ret = H5TRfinish( tr_id, H5P_DEFAULT, &rc_idH, H5_EVENT_STACK_NULL ); ASSERT_RET;
ret = H5TRclose( tr_id ); ASSERT_RET;
fprintf( stderr, "APP-r%d: tr %lu - Finished\n", my_rank, tr_num );
assert( rc_idH >= 0 );
versionH = tr_num;
fprintf( stderr, "APP-r%d: rc %lu - Acquired\n", my_rank, versionH );
/* Release the read handle and close read context on earlier CV */
ret = H5RCrelease( rc_id, H5_EVENT_STACK_NULL); ASSERT_RET;
ret = H5RCclose( rc_id ); ASSERT_RET;
fprintf( stderr, "APP-r%d: rc %lu - Released and Closed\n", my_rank, version );
/* The just-acquired RC is now the primary rc_id we'll work with (for awhile) */
rc_id = rc_idH;
version = versionH;
}
/* Rank 0 notifies other ranks that transaction 2 committed and RC acquired */
MPI_Bcast( &version, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD );
/****
* Read Context 2: Other ranks create RC and open HObjects created by rank 0.
****/
if ( my_rank != 0 ) {
rc_id = H5RCcreate( file_id, version );
assert( rc_id >= 0 ); assert ( version == 2 );
fprintf( stderr, "APP-r%d: rc %lu - Created for rank\n", my_rank, version );
if ( logged_dset ) {
dset_l_id = H5Dopen_ff( file_id, "DL", H5P_DEFAULT, rc_id, H5_EVENT_STACK_NULL ); assert( dset_l_id >= 0 );
}
if ( prefetched_dset ) {
dset_p_id = H5Dopen_ff( file_id, "DP", H5P_DEFAULT, rc_id, H5_EVENT_STACK_NULL ); assert( dset_p_id >= 0 );
}
if ( stored_dset ) {
dset_s_id = H5Dopen_ff( file_id, "DS", H5P_DEFAULT, rc_id, H5_EVENT_STACK_NULL ); assert( dset_s_id >= 0 );
}
} else {
if ( verbose ) print_container_contents( file_id, rc_id, my_rank );
}
/* Keep track of my_rank's neighbor */
neighbor_rank = my_rank + 1;
if ( neighbor_rank == comm_size ) {
neighbor_rank = 0;
}
/* Get the dataspaces for the three datasets and make a copy of each for neighbor's */
if ( logged_dset ) {
space_l_id = H5Dget_space( dset_l_id ); assert ( space_l_id >= 0 );
neighbor_space_l_id = H5Scopy( space_l_id );
}
if ( prefetched_dset ) {
space_p_id = H5Dget_space( dset_p_id ); assert ( space_p_id >= 0 );
neighbor_space_p_id = H5Scopy( space_p_id );
}
if ( stored_dset ) {
space_s_id = H5Dget_space( dset_s_id ); assert ( space_s_id >= 0 );
neighbor_space_s_id = H5Scopy( space_s_id );
}
/* Create the memory dataspace for one rank worth of data */
mbuf_size[0] = rows_per_rank * cols_per_row;
mem_space_id = H5Screate_simple( 1, mbuf_size, mbuf_size ); assert( mem_space_id >= 0 );
/* Create property lists that will be used */
if ( logged_dset ) {
dxpl_l_id = H5Pcreate( H5P_DATASET_XFER );
if ( enable_checksums ) {
ret = H5Pset_rawdata_integrity_scope( dxpl_l_id, H5_CHECKSUM_ALL ); ASSERT_RET;
} else {
ret = H5Pset_rawdata_integrity_scope( dxpl_l_id, H5_CHECKSUM_NONE ); ASSERT_RET;
}
}
if ( prefetched_dset ) {
dxpl_p_id = H5Pcreate( H5P_DATASET_XFER );
if ( enable_checksums ) {
ret = H5Pset_rawdata_integrity_scope( dxpl_p_id, H5_CHECKSUM_ALL ); ASSERT_RET;
} else {
ret = H5Pset_rawdata_integrity_scope( dxpl_p_id, H5_CHECKSUM_NONE ); ASSERT_RET;
}
}
if ( stored_dset ) {
dxpl_s_id = H5Pcreate( H5P_DATASET_XFER );
if ( enable_checksums ) {
ret = H5Pset_rawdata_integrity_scope( dxpl_s_id, H5_CHECKSUM_ALL ); ASSERT_RET;
} else {
ret = H5Pset_rawdata_integrity_scope( dxpl_s_id, H5_CHECKSUM_NONE ); ASSERT_RET;
}
}
iter_since_last_persist = 0;
for ( iteration = 1; iteration <= num_iterations; iteration++ ) {
/****
* Cycle of:
* Tranasction N Start / Update / Commit: All ranks update Dataset(s) then commit
* CV N Persist: Rank 0
* Prefetch: Rank 0
* Read rank data: All Ranks
* Read neighbor rank data: All Ranks
* Read all data: All Ranks
****/
tr_num = tr_num + 1;
num_tr_leaders = comm_size;
/* Create a transaction and start it. */
fprintf( stderr, "APP-r%d: iter %05d tr %lu - Transaction Start with %d leaders\n",
my_rank, iteration, tr_num, num_tr_leaders );
tr_id = H5TRcreate( file_id, rc_id, tr_num ); assert( tr_id >= 0 );
trspl_id = H5Pcreate( H5P_TR_START ); assert( trspl_id >= 0 );
ret = H5Pset_trspl_num_peers( trspl_id, num_tr_leaders ); ASSERT_RET;
ret = H5TRstart( tr_id, trspl_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
/* Set cell values (in memory) for this rank based on Row, Rank, Column, Transaction */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
mbuf[u] = ( my_rank*10000 + r*1000 + c*100 + tr_num ) ;
u++;
}
}
fprintf( stderr, "APP-r%d: iter %05d tr %lu - Add updates to transaction.\n", my_rank, iteration, tr_num );
/* Add dataset updates to transaction */
if ( logged_dset ) {
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_write * cols_per_row;
mbuf_offset = 0;
rank_offset[0] = my_rank * rows_per_rank;
rank_offset[1] = 0;
rank_count[0] = rows_per_write;
rank_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_write) <= rows_per_rank ) { /* final rows left unfilled if not exact multiple */
/* Select the hyperslabs for this write */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( space_l_id, H5S_SELECT_SET, rank_offset, NULL, rank_count, NULL ); ASSERT_RET;
START_TIME;
ret = H5Dwrite_ff( dset_l_id, H5T_NATIVE_UINT64, mem_space_id, space_l_id, dxpl_l_id, &mbuf[mbuf_offset],
tr_id, H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerWrite/((double)elapsed_time/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 01: Time to add Write updates for /DL (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerWrite, elapsed_time, rate );
}
/* Advance in preparation for next write */
rows_transferred += rows_per_write;
rank_offset[0] += rows_per_write;
mem_offset[0] += ( rows_per_write * cols_per_row );
mbuf_offset += ( rows_per_write * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerWrite/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 01: Average Time to add Write updates for /DL (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerWrite, e_min, e_max, e_sum/cnt, rate );
}
}
if ( prefetched_dset ) {
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_write * cols_per_row;
mbuf_offset = 0;
rank_offset[0] = my_rank * rows_per_rank;
rank_offset[1] = 0;
rank_count[0] = rows_per_write;
rank_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_write) <= rows_per_rank ) { /* final rows left unfilled if not exact multiple */
/* Select the hyperslabs for this write */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( space_p_id, H5S_SELECT_SET, rank_offset, NULL, rank_count, NULL ); ASSERT_RET;
START_TIME;
ret = H5Dwrite_ff( dset_p_id, H5T_NATIVE_UINT64, mem_space_id, space_p_id, dxpl_p_id, &mbuf[mbuf_offset], tr_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerWrite/((double)elapsed_time/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 02: Time to add Write updates for /DP (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerWrite, elapsed_time, rate );
}
/* Advance in preparation for next write */
rows_transferred += rows_per_write;
rank_offset[0] += rows_per_write;
mem_offset[0] += ( rows_per_write * cols_per_row );
mbuf_offset += ( rows_per_write * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerWrite/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 02: Average Time to add Write updates for /DP (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerWrite, e_min, e_max, e_sum/cnt, rate );
}
}
if ( stored_dset ) {
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_write * cols_per_row;
mbuf_offset = 0;
rank_offset[0] = my_rank * rows_per_rank;
rank_offset[1] = 0;
rank_count[0] = rows_per_write;
rank_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_write) <= rows_per_rank ) { /* final rows left unfilled if not exact multiple */
/* Select the hyperslabs for this write */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( space_s_id, H5S_SELECT_SET, rank_offset, NULL, rank_count, NULL ); ASSERT_RET;
START_TIME;
ret = H5Dwrite_ff( dset_s_id, H5T_NATIVE_UINT64, mem_space_id, space_s_id, dxpl_s_id, &mbuf[mbuf_offset], tr_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerWrite/((double)elapsed_time/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 03: Time to add Write updates for /DS (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerWrite, elapsed_time, rate );
}
/* Advance in preparation for next write */
rows_transferred += rows_per_write;
rank_offset[0] += rows_per_write;
mem_offset[0] += ( rows_per_write * cols_per_row );
mbuf_offset += ( rows_per_write * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerWrite/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 03: Average Time to add Write updates for /DS (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerWrite, e_min, e_max, e_sum/cnt, rate );
}
}
/* Finish, (commit), and close transaction */
fprintf( stderr, "APP-r%d: iter %05d tr %lu - Finish and Commit\n", my_rank, iteration, tr_num );
ret = H5TRfinish( tr_id, H5P_DEFAULT, NULL, H5_EVENT_STACK_NULL ); ASSERT_RET;
ret = H5TRclose( tr_id ); ASSERT_RET;
ret = H5Pclose( trspl_id ); ASSERT_RET;
/* After commit completes on all ranks, acquire RC on rank 0 and create local handle for RC on other ranks */
MPI_Barrier( MPI_COMM_WORLD );
versionH = tr_num;
if ( my_rank == 0 ) {
rc_idH = H5RCacquire( file_id, &versionH, H5P_DEFAULT, H5_EVENT_STACK_NULL );
assert( rc_idH >= 0 ); assert ( versionH == tr_num );
fprintf( stderr, "APP-r%d: iter %05d rc %lu - Acquired\n", my_rank, iteration, versionH );
} else {
rc_idH = H5RCcreate( file_id, versionH );
assert( rc_idH >= 0 ); assert ( versionH == tr_num );
fprintf( stderr, "APP-r%d: iter %05d rc %lu - Created\n", my_rank, iteration, versionH );
}
MPI_Barrier( MPI_COMM_WORLD ); /* Wait to make sure rank 0 has acquired from IOD before proceeding */
/* Release previous Read Context */
if ( my_rank == 0 ) {
ret = H5RCrelease( rc_id, H5_EVENT_STACK_NULL); ASSERT_RET;
fprintf( stderr, "APP-r%d: iter %05d rc %lu - Released\n", my_rank, iteration, version );
}
ret = H5RCclose( rc_id ); ASSERT_RET;
fprintf( stderr, "APP-r%d: iter %05d rc %lu - Closed\n", my_rank, iteration, version );
/* The just-acquired RC is now the primary rc_id we'll work with (for awhile) */
rc_id = rc_idH;
version = versionH;
iter_since_last_persist++; /* We've done the commit of a TR, so advance iter ctr */
/* Rank 0:
if this is a persist iteration:
- persists the container
- evicts DP & DS
- prefetches DP
*/
if ( my_rank == 0 ) {
if ( verbose ) print_container_contents( file_id, rc_id, my_rank );
if ( iter_since_last_persist == persist_rate ) {
START_TIME;
ret = H5RCpersist( rc_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
rate = megabytesPerContainer/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 04: Time to Persist container (%lu bytes + KVs): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerContainer, elapsed_time, rate );
if ( prefetched_dset ) {
START_TIME;
ret = H5Devict_ff( dset_p_id, version, H5P_DEFAULT, H5_EVENT_STACK_NULL ); ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
rate = megabytesPerDataset/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 05: Time to Evict /DP (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerDataset, elapsed_time, rate );
}
if ( stored_dset ) {
START_TIME;
ret = H5Devict_ff( dset_s_id, version, H5P_DEFAULT, H5_EVENT_STACK_NULL ); ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
rate = megabytesPerDataset/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 06: Time to Evict /DS (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerDataset, elapsed_time, rate );
}
if ( prefetched_dset ) {
START_TIME;
ret = H5Dprefetch_ff( dset_p_id, rc_id, &dset_p_replica, H5P_DEFAULT, H5_EVENT_STACK_NULL ); ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
rate = megabytesPerDataset/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 07: Time to Prefetch (%lu bytes) /DP: %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerDataset, elapsed_time, rate );
}
}
}
/* We only prefetch if a persist occurred */
if ( ( prefetched_dset ) && ( iter_since_last_persist == persist_rate ) ) {
MPI_Bcast( &dset_p_replica, 1, MPI_UINT64_T, 0, MPI_COMM_WORLD );
ret = H5Pset_dxpl_replica( dxpl_p_id, dset_p_replica ); ASSERT_RET;
}
MPI_Barrier( MPI_COMM_WORLD ); /* Make sure all are here before continuing, (esp in case of no prefetch Bcast) */
/*
* All ranks read 'their' part of the written dataset (s)
* For /DL, read every iteration.
* For /DP and DS, only read on persisted iterations.
*/
if ( logged_dset ) {
/* Zero the memory buf so we can be sure we are reading */
if ( verbose ) {
bzero( (void*) mbuf, bytesPerRank );
}
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_read * cols_per_row;
mbuf_offset = 0;
rank_offset[0] = my_rank * rows_per_rank;
rank_offset[1] = 0;
rank_count[0] = rows_per_read;
rank_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_read) <= rows_per_rank ) { /* final rows left unread if not exact multiple */
/* Select the hyperslabs for this read */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( space_l_id, H5S_SELECT_SET, rank_offset, NULL, rank_count, NULL ); ASSERT_RET;
START_TIME;
ret = H5Dread_ff( dset_l_id, H5T_NATIVE_UINT64, mem_space_id, space_l_id, dxpl_l_id, &mbuf[mbuf_offset], rc_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerRead/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 08: Time to Read my entries for /DL (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerRead, elapsed_time, rate );
}
fprintf( stderr, "APP-r%d: first value read in /DL: %09lu\n", my_rank, mbuf[mbuf_offset] );
if ( ( verbose ) && ( my_rank == 0 ) ) { /* print all mbuf on rank 0 to confirm correctness while developing */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
fprintf( stderr, "%lu ", mbuf[u] );
u++;
}
fprintf( stderr, "\n" );
}
}
/* Advance in preparation for next read */
rows_transferred += rows_per_read;
rank_offset[0] += rows_per_read;
mem_offset[0] += ( rows_per_read * cols_per_row );
mbuf_offset += ( rows_per_read * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerRead/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 08: Average Time to Read my entries for /DL (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerRead, e_min, e_max, e_sum/cnt, rate );
}
}
if ( ( prefetched_dset ) && ( iter_since_last_persist == persist_rate ) ) {
/* Zero the memory buf so we can be sure we are reading */
if ( verbose ) {
bzero( (void*) mbuf, bytesPerRank );
}
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_read * cols_per_row;
mbuf_offset = 0;
rank_offset[0] = my_rank * rows_per_rank;
rank_offset[1] = 0;
rank_count[0] = rows_per_read;
rank_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_read) <= rows_per_rank ) { /* final rows left unread if not exact multiple */
/* Select the hyperslabs for this read */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( space_p_id, H5S_SELECT_SET, rank_offset, NULL, rank_count, NULL ); ASSERT_RET;
START_TIME;
ret = H5Dread_ff( dset_p_id, H5T_NATIVE_UINT64, mem_space_id, space_p_id, dxpl_p_id, &mbuf[mbuf_offset], rc_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerRead/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 09: Time to Read my entries for /DP (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerRead, elapsed_time, rate );
}
fprintf( stderr, "APP-r%d: first value read in /DP: %09lu\n", my_rank, mbuf[mbuf_offset] );
if ( ( verbose ) && ( my_rank == 0 ) ) { /* print all mbuf on rank 0 to confirm correctness while developing */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
fprintf( stderr, "%lu ", mbuf[u] );
u++;
}
fprintf( stderr, "\n" );
}
}
/* Advance in preparation for next read */
rows_transferred += rows_per_read;
rank_offset[0] += rows_per_read;
mem_offset[0] += ( rows_per_read * cols_per_row );
mbuf_offset += ( rows_per_read * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerRead/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 09: Average Time to Read my entries for /DP (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerRead, e_min, e_max, e_sum/cnt, rate );
}
}
if ( ( stored_dset ) && ( iter_since_last_persist == persist_rate ) ) {
/* Zero the memory buf so we can be sure we are reading */
if ( verbose ) {
bzero( (void*) mbuf, bytesPerRank );
}
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_read * cols_per_row;
mbuf_offset = 0;
rank_offset[0] = my_rank * rows_per_rank;
rank_offset[1] = 0;
rank_count[0] = rows_per_read;
rank_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_read) <= rows_per_rank ) { /* final rows left unread if not exact multiple */
/* Select the hyperslabs for this read */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( space_s_id, H5S_SELECT_SET, rank_offset, NULL, rank_count, NULL ); ASSERT_RET;
START_TIME;
ret = H5Dread_ff( dset_s_id, H5T_NATIVE_UINT64, mem_space_id, space_s_id, dxpl_s_id, &mbuf[mbuf_offset], rc_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerRead/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 10: Time to Read my entries for /DS (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerRead, elapsed_time, rate );
}
fprintf( stderr, "APP-r%d: first value read in /DS: %09lu\n", my_rank, mbuf[mbuf_offset] );
if ( ( verbose ) && ( my_rank == 0 ) ) { /* print all mbuf on rank 0 to confirm correctness while developing */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
fprintf( stderr, "%lu ", mbuf[u] );
u++;
}
fprintf( stderr, "\n" );
}
}
/* Advance in preparation for next read */
rows_transferred += rows_per_read;
rank_offset[0] += rows_per_read;
mem_offset[0] += ( rows_per_read * cols_per_row );
mbuf_offset += ( rows_per_read * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerRead/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 10: Average Time to Read my entries for /DS (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerRead, e_min, e_max, e_sum/cnt, rate );
}
}
/*
* All ranks read the values "next rank" neighbor updated in last transaction
* For /DL, read every iteration.
* For /DP and DS, only read on persisted iterations.
*/
if ( logged_dset && ( my_rank != neighbor_rank ) ) {
/* Zero the memory buf so we can be sure we are reading */
if ( verbose ) {
bzero( (void*) mbuf, bytesPerRank );
}
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_read * cols_per_row;
mbuf_offset = 0;
neighbor_offset[0] = neighbor_rank * rows_per_rank;
neighbor_offset[1] = 0;
neighbor_count[0] = rows_per_read;
neighbor_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_read) <= rows_per_rank ) { /* final rows left unread if not exact multiple */
/* Select the hyperslabs for this read */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( neighbor_space_l_id, H5S_SELECT_SET, neighbor_offset, NULL, neighbor_count, NULL );
ASSERT_RET;
START_TIME;
ret = H5Dread_ff( dset_l_id, H5T_NATIVE_UINT64, mem_space_id, neighbor_space_l_id, dxpl_l_id, &mbuf[mbuf_offset], rc_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerRead/((double)elapsed_time/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 11: Time to Read neighbor's entries for /DL (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerRead, elapsed_time, rate );
}
fprintf( stderr, "APP-r%d: neighbor's first value read in /DL: %09lu\n", my_rank, mbuf[mbuf_offset] );
if ( ( verbose ) && ( my_rank == 0 ) ) { /* print all mbuf on rank 0 to confirm correctness while developing */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
fprintf( stderr, "%lu ", mbuf[u] );
u++;
}
fprintf( stderr, "\n" );
}
}
/* Advance in preparation for next read */
rows_transferred += rows_per_read;
neighbor_offset[0] += rows_per_read;
mem_offset[0] += ( rows_per_read * cols_per_row );
mbuf_offset += ( rows_per_read * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerRead/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 11: Average Time to Read neighbor's entries for /DL (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerRead, e_min, e_max, e_sum/cnt, rate );
}
}
if ( ( prefetched_dset ) && ( iter_since_last_persist == persist_rate ) && ( my_rank != neighbor_rank ) ) {
/* Zero the memory buf so we can be sure we are reading */
if ( verbose ) {
bzero( (void*) mbuf, bytesPerRank );
}
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_read * cols_per_row;
mbuf_offset = 0;
neighbor_offset[0] = neighbor_rank * rows_per_rank;
neighbor_offset[1] = 0;
neighbor_count[0] = rows_per_read;
neighbor_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_read) <= rows_per_rank ) { /* final rows left unread if not exact multiple */
/* Select the hyperslabs for this read */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( neighbor_space_p_id, H5S_SELECT_SET, neighbor_offset, NULL, neighbor_count, NULL );
ASSERT_RET;
START_TIME;
ret = H5Dread_ff( dset_p_id, H5T_NATIVE_UINT64, mem_space_id, neighbor_space_p_id, dxpl_p_id, &mbuf[mbuf_offset], rc_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerRead/((double)elapsed_time/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 12: Time to Read neighbor's entries for /DP (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerRead, elapsed_time, rate );
}
fprintf( stderr, "APP-r%d: neighbor's first value read in /DP: %09lu\n", my_rank, mbuf[mbuf_offset] );
if ( ( verbose ) && ( my_rank == 0 ) ) { /* print all mbuf on rank 0 to confirm correctness while developing */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
fprintf( stderr, "%lu ", mbuf[u] );
u++;
}
fprintf( stderr, "\n" );
}
}
/* Advance in preparation for next read */
rows_transferred += rows_per_read;
neighbor_offset[0] += rows_per_read;
mem_offset[0] += ( rows_per_read * cols_per_row );
mbuf_offset += ( rows_per_read * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerRead/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 12: Average Time to Read neighbor's entries for /DP (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerRead, e_min, e_max, e_sum/cnt, rate );
}
}
if ( ( stored_dset ) && ( iter_since_last_persist == persist_rate ) && ( my_rank != neighbor_rank ) ) {
/* Zero the memory buf so we can be sure we are reading */
if ( verbose ) {
bzero( (void*) mbuf, bytesPerRank );
}
cnt = e_min = e_max = e_sum = 0;
/* Set parameters that will be used to select the initial hyperslabs for this rank */
mem_offset[0] = 0;
mem_count[0] = rows_per_read * cols_per_row;
mbuf_offset = 0;
neighbor_offset[0] = neighbor_rank * rows_per_rank;
neighbor_offset[1] = 0;
neighbor_count[0] = rows_per_read;
neighbor_count[1] = cols_per_row;
rows_transferred = 0;
while ( (rows_transferred+rows_per_read) <= rows_per_rank ) { /* final rows left unread if not exact multiple */
/* Select the hyperslabs for this read */
ret = H5Sselect_hyperslab( mem_space_id, H5S_SELECT_SET, mem_offset, NULL, mem_count, NULL ); ASSERT_RET;
ret = H5Sselect_hyperslab( neighbor_space_s_id, H5S_SELECT_SET, neighbor_offset, NULL, neighbor_count, NULL );
ASSERT_RET;
START_TIME;
ret = H5Dread_ff( dset_s_id, H5T_NATIVE_UINT64, mem_space_id, neighbor_space_s_id, dxpl_s_id, &mbuf[mbuf_offset], rc_id,
H5_EVENT_STACK_NULL );
ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
fill_stats( &cnt, &e_min, &e_max, &e_sum, elapsed_time );
if ( detailed_timing ) {
rate = megabytesPerRead/((double)elapsed_time/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 13: Time to Read neighbor's entries for /DS (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerRead, elapsed_time, rate );
}
fprintf( stderr, "APP-r%d: neighbor's first value read in /DS: %09lu\n", my_rank, mbuf[mbuf_offset] );
if ( ( verbose ) && ( my_rank == 0 ) ) { /* print all mbuf on rank 0 to confirm correctness while developing */
u = 0;
for ( r = 0; r < rows_per_rank; r++ ) {
for ( c = 0; c < cols_per_row; c++ ) {
fprintf( stderr, "%lu ", mbuf[u] );
u++;
}
fprintf( stderr, "\n" );
}
}
/* Advance in preparation for next read */
rows_transferred += rows_per_read;
neighbor_offset[0] += rows_per_read;
mem_offset[0] += ( rows_per_read * cols_per_row );
mbuf_offset += ( rows_per_read * cols_per_row );
}
if ( cnt > 0 ) {
rate = megabytesPerRead/((double)(e_sum/cnt)/1000000);
fprintf( stderr,
"APP-r%d: iter %05d step 13: Average Time to Read neighbor's entries for /DS (%lu bytes): Min: %lu usec; Max: %lu usec; Avg: %lu usec - Avg %f MiB/sec\n",
my_rank, iteration, bytesPerRead, e_min, e_max, e_sum/cnt, rate );
}
}
/* For persisted iterations, reset the counter & if we prefetched a replica, evict it */
if ( iter_since_last_persist == persist_rate ) {
iter_since_last_persist = 0;
MPI_Barrier( MPI_COMM_WORLD ); /* Make sure all ranks done reading the replica before evicting */
/* Rank 0 evicts the replica */
if ( ( my_rank == 0 ) && ( prefetched_dset ) ) {
START_TIME;
ret = H5Devict_ff( dset_p_id, version, dxpl_p_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
END_TIME;
elapsed_time = ELAPSED_TIME;
rate = megabytesPerDataset/((double)elapsed_time/1000000);
fprintf( stderr, "APP-r%d: iter %05d step 17: Time to Evict Replica of /DP (%lu bytes): %lu usec - %f MiB/sec\n",
my_rank, iteration, bytesPerDataset, elapsed_time, rate );
}
}
}
/*
* Wrap-up
*/
if ( my_rank == 0 ) {
if ( verbose ) print_container_contents( file_id, rc_id, my_rank );
}
fprintf( stderr, "APP-r%d: Closing H5Objects\n", my_rank );
ret = H5Sclose( mem_space_id ); ASSERT_RET;
if ( logged_dset ) {
ret = H5Dclose_ff( dset_l_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
ret = H5Sclose( space_l_id ); ASSERT_RET;
ret = H5Sclose( neighbor_space_l_id ); ASSERT_RET;
ret = H5Pclose( dxpl_l_id ); ASSERT_RET;
}
if ( prefetched_dset ) {
ret = H5Dclose_ff( dset_p_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
ret = H5Sclose( space_p_id ); ASSERT_RET;
ret = H5Sclose( neighbor_space_p_id ); ASSERT_RET;
ret = H5Pclose( dxpl_p_id ); ASSERT_RET;
}
if ( stored_dset ) {
ret = H5Dclose_ff( dset_s_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
ret = H5Sclose( space_s_id ); ASSERT_RET;
ret = H5Sclose( neighbor_space_s_id ); ASSERT_RET;
ret = H5Pclose( dxpl_s_id ); ASSERT_RET;
}
/* Release the read handle and close read context */
MPI_Barrier( MPI_COMM_WORLD ); /* Make sure all ranks done with RC */
if ( my_rank == 0 ) {
ret = H5RCrelease( rc_id, H5_EVENT_STACK_NULL); ASSERT_RET;
fprintf( stderr, "APP-r%d: rc %lu - Released\n", my_rank, version );
}
ret = H5RCclose( rc_id ); ASSERT_RET;
fprintf( stderr, "APP-r%d: rc %lu - Closed\n", my_rank, version );
/* Close H5 Objects that are still open */
fprintf( stderr, "APP-r%d: Closing %s\n", my_rank, file_name );
MPI_Barrier( MPI_COMM_WORLD );
ret = H5Fclose_ff( file_id, 1, H5_EVENT_STACK_NULL ); ASSERT_RET;
ret = H5Pclose( fapl_id ); ASSERT_RET;
/* Perform wrap-up operations */
fprintf( stderr, "APP-r%d: Finalize EFF stack\n", my_rank );
MPI_Barrier( MPI_COMM_WORLD );
EFF_finalize();
MPI_Finalize();
return 0;
}
/*
* Helper function to keep track of timing info
*/
void
fill_stats( int* cnt, ulong* min, ulong* max, ulong* sum, ulong elapsed )
{
if ( *min == 0 ) {
*min = elapsed;
*max = elapsed;
} else {
if ( elapsed < *min ) {
*min = elapsed;
}
if ( elapsed > *max ) {
*max = elapsed;
}
}
*sum += elapsed;
*cnt += 1;
}
/*
* Helper function used to recursively read and print container contents
* for container identified by "file_id"
* in read context identified by "rc_id"
* "my_rank" used to identify the process doing the reading / printing.
*/
void
print_container_contents( hid_t file_id, hid_t rc_id, int my_rank )
{
herr_t ret;
uint64_t cv;
hbool_t exists;
char path_to_object[1024];
char name[30];
int i, d;
char preface[128];
/* Get the container version for the read context */
ret = H5RCget_version( rc_id, &cv ); ASSERT_RET;
/* Set up the preface and adding version number */
sprintf( preface, "APP-r%d: cv %d: ", my_rank, (int)cv );
/* Start the printing */
fprintf( stderr, "%s ----- Container Contents ------------\n", preface );
for ( d = 0; d < 3; d++ ) {
if ( d == 0 ) {
sprintf( path_to_object, "%s", "/DL" );
} else if ( d == 1 ) {
sprintf( path_to_object, "%s", "/DP" );
} else if ( d == 2 ) {
sprintf( path_to_object, "%s", "/DS" );
}
ret = H5Lexists_ff( file_id, path_to_object, H5P_DEFAULT, &exists, rc_id, H5_EVENT_STACK_NULL );
if ( exists ) {
hid_t dset_id;
hid_t space_id;
int nDims;
hsize_t current_size[2];
hsize_t max_size[2];
hsize_t totalSize;
hid_t dxpl_id;
uint64_t *data;
uint64_t u, e;
dset_id = H5Dopen_ff( file_id, path_to_object, H5P_DEFAULT, rc_id, H5_EVENT_STACK_NULL );
assert( dset_id >= 0 );
space_id = H5Dget_space( dset_id ); assert ( space_id >= 0 );
nDims = H5Sget_simple_extent_dims( space_id, current_size, max_size );
assert( nDims == 2 );
totalSize = current_size[0] * current_size[1];
data = (uint64_t *)calloc( totalSize, sizeof(uint64_t) ); assert( data != NULL );
dxpl_id = H5Pcreate( H5P_DATASET_XFER );
if ( enable_checksums ) {
ret = H5Pset_rawdata_integrity_scope( dxpl_id, H5_CHECKSUM_ALL ); ASSERT_RET;
} else {
ret = H5Pset_rawdata_integrity_scope( dxpl_id, H5_CHECKSUM_NONE ); ASSERT_RET;
}
ret = H5Dread_ff( dset_id, H5T_NATIVE_UINT64, space_id, space_id, dxpl_id, data, rc_id, H5_EVENT_STACK_NULL );
ASSERT_RET;
/* note that by printing piece-by-piece, other output may be interspersed. trade-off since won't know line size */
fprintf( stderr, "%s %s data:\n", preface, path_to_object );
e = 0;
for ( i = 0; i < totalSize; i++ ) {
if ( e == 0 ) fprintf( stderr, "%s\t", preface );
fprintf( stderr, "%09lu ", data[i] );
if ( ++e == cols_per_row ) {
fprintf( stderr, "\n" );
e = 0;
}
}
free( data );
sleep( 1 ); /* give output a chance to be printed before diag messages from lower layers on close */
ret = H5Pclose( dxpl_id ); ASSERT_RET;
ret = H5Sclose( space_id ); ASSERT_RET;
ret = H5Dclose_ff( dset_id, H5_EVENT_STACK_NULL ); ASSERT_RET;
}
}
/* End printing */
fprintf( stderr, "%s -----------------\n", preface );
return;
}
/*
* parse_options - parse command line options
*/
int
parse_options( int argc, char** argv, int my_rank, int comm_size ) {
int i, n;
char* app = argv[0];
while ( --argc ) {
if ( **(++argv) != '-' ) {
break;
} else {
switch( *(*argv+1) ) {
case 'c':
if ( ( --argc == 0 ) || ( **(argv+1) == '-' ) ) {
if ( my_rank == 0 ) {
printf( "Error: No number specified after -c option.\n" );
usage( app );
}
return( 1 );
} else {
++argv;
cols_per_row = atoi( *argv );
}
break;
case 'w':
if ( ( --argc == 0 ) || ( **(argv+1) == '-' ) ) {
if ( my_rank == 0 ) {
printf( "Error: No number specified after -w option.\n" );
usage( app );
}
return( 1 );
} else {
++argv;
rows_per_write = atoi( *argv );
}
break;
case 'r':
if ( ( --argc == 0 ) || ( **(argv+1) == '-' ) ) {
if ( my_rank == 0 ) {
printf( "Error: No number specified after -r option.\n" );
usage( app );
}
return( 1 );
} else {
++argv;
rows_per_read = atoi( *argv );
}
break;
case 'b':
if ( ( --argc == 0 ) || ( **(argv+1) == '-' ) ) {
if ( my_rank == 0 ) {
printf( "Error: No number specified after -b option.\n" );
usage( app );
}
return( 1 );
} else {
++argv;
rows_per_rank = atoi( *argv );
}
break;
case 'i':
if ( ( --argc == 0 ) || ( **(argv+1) == '-' ) ) {
if ( my_rank == 0 ) {
printf( "APP-r0: Error: No number specified after -i option.\n" );
usage( app );
}
return( 1 );
} else {
++argv;
num_iterations = atoi( *argv );
}
break;
case 'p':
if ( ( --argc == 0 ) || ( **(argv+1) == '-' ) ) {
if ( my_rank == 0 ) {
printf( "APP-r0: Error: No number specified after -p option.\n" );
usage( app );
}
return( 1 );
} else {
++argv;
persist_rate = atoi( *argv );
}
break;
case 'e':
enable_checksums = 1;
break;
case 'L':
logged_dset = 1;
break;
case 'P':
prefetched_dset = 1;
break;
case 'S':
stored_dset = 1;
break;
case 'd':
detailed_timing = 1;
break;
case 'v':
verbose = 1;
break;
default:
if ( my_rank == 0 ) {
usage( app );
}
return( 1 );
}
}
}
return( 0 );
}
/*
* usage - display usage message
*/
void
usage( const char* app ) {
printf( "Usage: %s [-c cols_per_row] [-w rows_per_write] [-r rows_per_read] [-b rows_per_rank] [-i num_iterations] [-p persist_rate] [-e] [-L] [-P] [-S] [-d] [-v] \n", app );
printf( "\tc: number of columns per row (each cell is 8 bytes)\n" );
printf( "\tw: number of rows per write per rank\n" );
printf( "\tr: number of rows per read per rank\n" );
printf( "\tb: number of rows in each rank's block (if not multiple of w or r, may not be fully written or read)\n" );
printf( "\ti: number of iterations to do writes/commit/[persist/evict/prefetch/reads/evict]\n" );
printf( "\tp: persist rate; for /DP and /DS, also impacts evict/prefetch/read/evict\n" );
printf( "\te: enable checksums on raw data in H5Datasets\n" );
printf( "\tL: create /DL dataset - data will not be evicted (created by default if no /DP nor /DS)\n" );
printf( "\tP: create /DP dataset - data will be evicted, replica prefetched, reads from replica\n" );
printf( "\tS: create /DS dataset - data will be evicted, reads from storage (DAOS)\n" );
printf( "\td: print detailed timing information for each read and write operation\n" );
printf( "\tv: verbose output of data values - intended for use only with small arrays and few iterations\n" );
}
|