summaryrefslogtreecommitdiffstats
path: root/java/src/jni/h5util.h
blob: 33f1ea72f24b9086af15df1eb28b2c1836f0c7ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://www.hdfgroup.org/licenses.               *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 *  For details of the HDF libraries, see the HDF Documentation at:
 *    http://hdfgroup.org/HDF5/doc/
 *
 */

#ifndef H5UTIL_H__
#define H5UTIL_H__

#include "h5jni.h"

#ifndef SUCCEED
#define SUCCEED 0
#endif

#ifndef FAIL
#define FAIL (-1)
#endif

typedef struct h5str_t {
    char * s;
    size_t max; /* the allocated size of the string */
} h5str_t;

extern void   h5str_new(h5str_t *str, size_t len);
extern void   h5str_free(h5str_t *str);
extern void   h5str_resize(h5str_t *str, size_t new_len);
extern char * h5str_append(h5str_t *str, const char *cstr);
extern size_t h5str_convert(JNIEnv *env, char **in_str, hid_t container, hid_t tid, void *out_buf,
                            size_t out_buf_offset);
extern int    h5str_sprint_reference(JNIEnv *env, h5str_t *out_str, hid_t region_obj, void *ref_buf);
extern size_t h5str_sprintf(JNIEnv *env, h5str_t *out_str, hid_t container, hid_t tid, void *in_buf,
                            int expand_data);
extern void   h5str_array_free(char **strs, size_t len);
extern int    h5str_dump_simple_dset(JNIEnv *env, FILE *stream, hid_t dset, int binary_order);
extern int    h5str_dump_simple_mem(JNIEnv *env, FILE *stream, hid_t attr, int binary_order);

extern htri_t H5Tdetect_variable_str(hid_t tid);

/*
 * Symbols used to format the output of h5str_sprintf and
 * to interpret the input to h5str_convert.
 */
#define H5_COMPOUND_BEGIN_INDICATOR "{"
#define H5_COMPOUND_END_INDICATOR   "}"
#define H5_ARRAY_BEGIN_INDICATOR    "["
#define H5_ARRAY_END_INDICATOR      "]"
#define H5_VLEN_BEGIN_INDICATOR     "("
#define H5_VLEN_END_INDICATOR       ")"

/*
 * Class:     hdf_hdf5lib_H5
 * Method:    H5AreadComplex
 * Signature: (JJ[Ljava/lang/String;)I
 */
JNIEXPORT jint JNICALL Java_hdf_hdf5lib_H5_H5AreadComplex(JNIEnv *, jclass, jlong, jlong, jobjectArray);

/*
 * Copies the content of one dataset to another dataset
 * Class:     hdf_hdf5lib_H5
 * Method:    H5Acopy
 * Signature: (JJ)I
 */
JNIEXPORT jint JNICALL Java_hdf_hdf5lib_H5_H5Acopy(JNIEnv *, jclass, jlong, jlong);

/*
 * Copies the content of one dataset to another dataset
 * Class:     hdf_hdf5lib_H5
 * Method:    H5Dcopy
 * Signature: (JJ)I
 */
JNIEXPORT jint JNICALL Java_hdf_hdf5lib_H5_H5Dcopy(JNIEnv *, jclass, jlong, jlong);

/*
 * Class:     hdf_hdf5lib_H5
 * Method:    H5Gget_obj_info_full
 * Signature: (JLjava/lang/String;[Ljava/lang/String;[I[I[J[JIII)I
 */
JNIEXPORT jint JNICALL Java_hdf_hdf5lib_H5_H5Gget_1obj_1info_1full(JNIEnv *, jclass, jlong, jstring,
                                                                   jobjectArray, jintArray, jintArray,
                                                                   jlongArray, jlongArray, jint, jint, jint);

/*
 * Class:     hdf_hdf5lib_H5
 * Method:    H5Gget_obj_info_max
 * Signature: (J[Ljava/lang/String;[I[I[JJI)I
 */
JNIEXPORT jint JNICALL Java_hdf_hdf5lib_H5_H5Gget_1obj_1info_1max(JNIEnv *, jclass, jlong, jobjectArray,
                                                                  jintArray, jintArray, jlongArray, jlong,
                                                                  jint);

/*
 * Class:     hdf_hdf5lib_H5
 * Method:    H5export_dataset
 * Signature: (Ljava/lang/String;JLjava/lang/String;I)V
 */
JNIEXPORT void JNICALL Java_hdf_hdf5lib_H5_H5export_1dataset(JNIEnv *, jclass, jstring, jlong, jstring, jint);

/*
 * Class:     hdf_hdf5lib_H5
 * Method:    H5export_attribute
 * Signature: (Ljava/lang/String;JLjava/lang/String;I)V
 */
JNIEXPORT void JNICALL Java_hdf_hdf5lib_H5_H5export_1attribute(JNIEnv *, jclass, jstring, jlong, jstring,
                                                               jint);

#endif /* H5UTIL_H__ */
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
 * Copyright by The HDF Group.                                               *
 * Copyright by the Board of Trustees of the University of Illinois.         *
 * All rights reserved.                                                      *
 *                                                                           *
 * This file is part of HDF5.  The full HDF5 copyright notice, including     *
 * terms governing use, modification, and redistribution, is contained in    *
 * the COPYING file, which can be found at the root of the source code       *
 * distribution tree, or in https://support.hdfgroup.org/ftp/HDF5/releases.  *
 * If you do not have access to either file, you may request a copy from     *
 * help@hdfgroup.org.                                                        *
 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

/*
 * Programmer: Robb Matzke <matzke@llnl.gov>
 *	       Friday, October 10, 1997
 */


#include "H5private.h"
#include "H5Eprivate.h"
#include "H5Oprivate.h"
#include "H5VMprivate.h"

/* Local typedefs */
typedef struct H5VM_memcpy_ud_t {
    unsigned char *dst;         /* Pointer to destination buffer */
    const unsigned char *src;   /* Pointer to source buffer */
} H5VM_memcpy_ud_t;

/* Local macros */
#define H5VM_HYPER_NDIMS H5O_LAYOUT_NDIMS

/* Local prototypes */
static void
H5VM_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1);
static void
H5VM_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1, hsize_t *stride2);
#ifdef LATER
static void
H5VM_stride_copy2(hsize_t nelmts, hsize_t elmt_size,
     unsigned dst_n, const hsize_t *dst_size, const ssize_t *dst_stride, void *_dst,
     unsigned src_n, const hsize_t *src_size, const ssize_t *src_stride, const void *_src);
#endif /* LATER */


/*-------------------------------------------------------------------------
 * Function:	H5VM_stride_optimize1
 *
 * Purpose:	Given a stride vector which references elements of the
 *		specified size, optimize the dimensionality, the stride
 *		vector, and the element size to minimize the dimensionality
 *		and the number of memory accesses.
 *
 *		All arguments are passed by reference and their values may be
 *		modified by this function.
 *
 * Return:	None
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
H5VM_stride_optimize1(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1)
{
    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /*
     * This has to be true because if we optimize the dimensionality down to
     * zero we still must make one reference.
     */
    HDassert(1 == H5VM_vector_reduce_product(0, NULL));

    /*
     * Combine adjacent memory accesses
     */
    while (*np && stride1[*np-1]>0 &&
           (hsize_t)(stride1[*np-1])==*elmt_size) {
        *elmt_size *= size[*np-1];
        if (--*np)
            stride1[*np-1] += size[*np] * stride1[*np];
    }

    FUNC_LEAVE_NOAPI_VOID
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_stride_optimize2
 *
 * Purpose:	Given two stride vectors which reference elements of the
 *		specified size, optimize the dimensionality, the stride
 *		vectors, and the element size to minimize the dimensionality
 *		and the number of memory accesses.
 *
 *		All arguments are passed by reference and their values may be
 *		modified by this function.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
static void
H5VM_stride_optimize2(unsigned *np/*in,out*/, hsize_t *elmt_size/*in,out*/,
		     const hsize_t *size, hsize_t *stride1, hsize_t *stride2)
{
    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /*
     * This has to be true because if we optimize the dimensionality down to
     * zero we still must make one reference.
     */
    HDassert(1 == H5VM_vector_reduce_product(0, NULL));
    HDassert(*elmt_size>0);

    /*
     * Combine adjacent memory accesses
     */

    /* Unroll loop for common cases */
    switch(*np) {
        case 1: /* For 0-D datasets (dunno if this ever gets used...) */
            if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                *elmt_size *= size[0];
                --*np;  /* *np decrements to a value of 0 now */
            } /* end if */
            break;

        case 2: /* For 1-D datasets */
            if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
                *elmt_size *= size[1];
                --*np;  /* *np decrements to a value of 1 now */
                stride1[0] += size[1] * stride1[1];
                stride2[0] += size[1] * stride2[1];

                if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                    *elmt_size *= size[0];
                    --*np;  /* *np decrements to a value of 0 now */
                } /* end if */
            } /* end if */
            break;

        case 3: /* For 2-D datasets */
            if(stride1[2] == *elmt_size && stride2[2] == *elmt_size) {
                *elmt_size *= size[2];
                --*np;  /* *np decrements to a value of 2 now */
                stride1[1] += size[2] * stride1[2];
                stride2[1] += size[2] * stride2[2];

                if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
                    *elmt_size *= size[1];
                    --*np;  /* *np decrements to a value of 1 now */
                    stride1[0] += size[1] * stride1[1];
                    stride2[0] += size[1] * stride2[1];

                    if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                        *elmt_size *= size[0];
                        --*np;  /* *np decrements to a value of 0 now */
                    } /* end if */
                } /* end if */
            } /* end if */
            break;

        case 4: /* For 3-D datasets */
            if(stride1[3] == *elmt_size && stride2[3] == *elmt_size) {
                *elmt_size *= size[3];
                --*np;  /* *np decrements to a value of 3 now */
                stride1[2] += size[3] * stride1[3];
                stride2[2] += size[3] * stride2[3];

                if(stride1[2] == *elmt_size && stride2[2] == *elmt_size) {
                    *elmt_size *= size[2];
                    --*np;  /* *np decrements to a value of 2 now */
                    stride1[1] += size[2] * stride1[2];
                    stride2[1] += size[2] * stride2[2];

                    if(stride1[1] == *elmt_size && stride2[1] == *elmt_size) {
                        *elmt_size *= size[1];
                        --*np;  /* *np decrements to a value of 1 now */
                        stride1[0] += size[1] * stride1[1];
                        stride2[0] += size[1] * stride2[1];

                        if(stride1[0] == *elmt_size && stride2[0] == *elmt_size) {
                            *elmt_size *= size[0];
                            --*np;  /* *np decrements to a value of 0 now */
                        } /* end if */
                    } /* end if */
                } /* end if */
            } /* end if */
            break;

        default:
            while (*np &&
                    stride1[*np-1] == *elmt_size &&
                    stride2[*np-1] == *elmt_size) {
                *elmt_size *= size[*np-1];
                if (--*np) {
                    stride1[*np-1] += size[*np] * stride1[*np];
                    stride2[*np-1] += size[*np] * stride2[*np];
                }
            }
            break;
    } /* end switch */

    FUNC_LEAVE_NOAPI_VOID
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_hyper_stride
 *
 * Purpose:	Given a description of a hyperslab, this function returns
 *		(through STRIDE[]) the byte strides appropriate for accessing
 *		all bytes of the hyperslab and the byte offset where the
 *		striding will begin.  The SIZE can be passed to the various
 *		stride functions.
 *
 *		The dimensionality of the whole array, the hyperslab, and the
 *		returned stride array is N.  The whole array dimensions are
 *		TOTAL_SIZE and the hyperslab is at offset OFFSET and has
 *		dimensions SIZE.
 *
 *		The stride and starting point returned will cause the
 *		hyperslab elements to be referenced in C order.
 *
 * Return:	Success:	Byte offset from beginning of array to start
 *				of striding.
 *
 *		Failure:	abort() -- should never fail
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5VM_hyper_stride(unsigned n, const hsize_t *size,
		 const hsize_t *total_size, const hsize_t *offset,
		 hsize_t *stride/*out*/)
{
    hsize_t	    skip;	/*starting point byte offset		*/
    hsize_t	    acc;	/*accumulator				*/
    int		i;		/*counter				*/
    hsize_t	    ret_value;  /* Return value */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(n <= H5VM_HYPER_NDIMS);
    HDassert(size);
    HDassert(total_size);
    HDassert(stride);

    /* init */
    HDassert(n>0);
    stride[n-1] = 1;
    skip = offset ? offset[n-1] : 0;

    switch(n) {
        case 2: /* 1-D dataset */
            HDassert(total_size[1]>=size[1]);
            stride[0] = total_size[1]-size[1]; /*overflow checked*/
            acc = total_size[1];
            skip += acc * (offset ? offset[0] : 0);
            break;

        case 3: /* 2-D dataset */
            HDassert(total_size[2]>=size[2]);
            stride[1] = total_size[2]-size[2]; /*overflow checked*/
            acc = total_size[2];
            skip += acc * (offset ? (hsize_t)offset[1] : 0);

            HDassert(total_size[1]>=size[1]);
            stride[0] = acc * (total_size[1] - size[1]); /*overflow checked*/
            acc *= total_size[1];
            skip += acc * (offset ? (hsize_t)offset[0] : 0);
            break;

        case 4: /* 3-D dataset */
            HDassert(total_size[3]>=size[3]);
            stride[2] = total_size[3]-size[3]; /*overflow checked*/
            acc = total_size[3];
            skip += acc * (offset ? (hsize_t)offset[2] : 0);

            HDassert(total_size[2]>=size[2]);
            stride[1] = acc * (total_size[2] - size[2]); /*overflow checked*/
            acc *= total_size[2];
            skip += acc * (offset ? (hsize_t)offset[1] : 0);

            HDassert(total_size[1]>=size[1]);
            stride[0] = acc * (total_size[1] - size[1]); /*overflow checked*/
            acc *= total_size[1];
            skip += acc * (offset ? (hsize_t)offset[0] : 0);
            break;

        default:
            /* others */
            for (i=(int)(n-2), acc=1; i>=0; --i) {
                HDassert(total_size[i+1]>=size[i+1]);
                stride[i] = acc * (total_size[i+1] - size[i+1]); /*overflow checked*/
                acc *= total_size[i+1];
                skip += acc * (offset ? (hsize_t)offset[i] : 0);
            }
            break;
    } /* end switch */

    /* Set return value */
    ret_value=skip;

    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_hyper_eq
 *
 * Purpose:	Determines whether two hyperslabs are equal.  This function
 *		assumes that both hyperslabs are relative to the same array,
 *		for if not, they could not possibly be equal.
 *
 * Return:	Success:	TRUE if the hyperslabs are equal (that is,
 *				both refer to exactly the same elements of an
 *				array)
 *
 *				FALSE otherwise.
 *
 *		Failure:	TRUE the rank is zero or if both hyperslabs
 *				are of zero size.
 *
 * Programmer:	Robb Matzke
 *		Friday, October 17, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
htri_t
H5VM_hyper_eq(unsigned n,
	     const hsize_t *offset1, const hsize_t *size1,
	     const hsize_t *offset2, const hsize_t *size2)
{
    hsize_t	nelmts1 = 1, nelmts2 = 1;
    unsigned	i;
    htri_t      ret_value=TRUE;         /* Return value */

    /* Use FUNC_ENTER_NOAPI_NOINIT_NOERR here to avoid performance issues */
    FUNC_ENTER_NOAPI_NOINIT_NOERR

    if (n == 0) HGOTO_DONE(TRUE)

    for (i=0; i<n; i++) {
	if ((offset1 ? offset1[i] : 0) != (offset2 ? offset2[i] : 0))
	    HGOTO_DONE(FALSE)
	if ((size1 ? size1[i] : 0) != (size2 ? size2[i] : 0))
	    HGOTO_DONE(FALSE)
	if (0 == (nelmts1 *= (size1 ? size1[i] : 0)))
            HGOTO_DONE(FALSE)
	if (0 == (nelmts2 *= (size2 ? size2[i] : 0)))
            HGOTO_DONE(FALSE)
    }

done:
    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_hyper_fill
 *
 * Purpose:	Similar to memset() except it operates on hyperslabs...
 *
 *		Fills a hyperslab of array BUF with some value VAL.  BUF
 *		is treated like a C-order array with N dimensions where the
 *		size of each dimension is TOTAL_SIZE[].	 The hyperslab which
 *		will be filled with VAL begins at byte offset OFFSET[] from
 *		the minimum corner of BUF and continues for SIZE[] bytes in
 *		each dimension.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_hyper_fill(unsigned n, const hsize_t *_size,
	       const hsize_t *total_size, const hsize_t *offset, void *_dst,
	       unsigned fill_value)
{
    uint8_t	*dst = (uint8_t*)_dst;	/*cast for ptr arithmetic	*/
    hsize_t	size[H5VM_HYPER_NDIMS];	/*a modifiable copy of _size	*/
    hsize_t	dst_stride[H5VM_HYPER_NDIMS]; /*destination stride info  */
    hsize_t	dst_start;		/*byte offset to start of stride*/
    hsize_t	elmt_size = 1;		/*bytes per element		*/
    herr_t	ret_value;		/*function return status	*/
#ifndef NDEBUG
    unsigned	u;
#endif

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* check args */
    HDassert(n > 0 && n <= H5VM_HYPER_NDIMS);
    HDassert(_size);
    HDassert(total_size);
    HDassert(dst);
#ifndef NDEBUG
    for (u = 0; u < n; u++) {
        HDassert(_size[u] > 0);
        HDassert(total_size[u] > 0);
    }
#endif

    /* Copy the size vector so we can modify it */
    H5VM_vector_cpy(n, size, _size);

    /* Compute an optimal destination stride vector */
    dst_start = H5VM_hyper_stride(n, size, total_size, offset, dst_stride);
    H5VM_stride_optimize1(&n, &elmt_size, size, dst_stride);

    /* Copy */
    ret_value = H5VM_stride_fill(n, elmt_size, size, dst_stride, dst+dst_start,
			     fill_value);

    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_hyper_copy
 *
 * Purpose:	Copies a hyperslab from the source to the destination.
 *
 *		A hyperslab is a logically contiguous region of
 *		multi-dimensional size SIZE of an array whose dimensionality
 *		is N and whose total size is DST_TOTAL_SIZE or SRC_TOTAL_SIZE.
 *		The minimum corner of the hyperslab begins at a
 *		multi-dimensional offset from the minimum corner of the DST
 *		(destination) or SRC (source) array.  The sizes and offsets
 *		are assumed to be in C order, that is, the first size/offset
 *		varies the slowest while the last varies the fastest in the
 *		mapping from N-dimensional space to linear space.  This
 *		function assumes that the array elements are single bytes (if
 *		your array has multi-byte elements then add an additional
 *		dimension whose size is that of your element).
 *
 *		The SRC and DST array may be the same array, but the results
 *		are undefined if the source hyperslab overlaps the
 *		destination hyperslab.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *              Unrolled loops for common cases
 *              Quincey Koziol
 *		?, ? ?, 2001?
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_hyper_copy(unsigned n, const hsize_t *_size,

	       /*destination*/
	       const hsize_t *dst_size, const hsize_t *dst_offset,
	       void *_dst,

	       /*source*/
	       const hsize_t *src_size, const hsize_t *src_offset,
	       const void *_src)
{
    const uint8_t *src = (const uint8_t*)_src;	/*cast for ptr arithmtc */
    uint8_t	*dst = (uint8_t*) _dst;		/*cast for ptr arithmtc */
    hsize_t	size[H5VM_HYPER_NDIMS];		/*a modifiable _size	*/
    hsize_t	src_stride[H5VM_HYPER_NDIMS];	/*source stride info	*/
    hsize_t	dst_stride[H5VM_HYPER_NDIMS];	/*dest stride info	*/
    hsize_t	dst_start, src_start;		/*offset to start at	*/
    hsize_t	elmt_size = 1;			/*element size in bytes */
    herr_t	ret_value;			/*return status		*/
#ifndef NDEBUG
    unsigned	u;
#endif

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* check args */
    HDassert(n > 0 && n <= H5VM_HYPER_NDIMS);
    HDassert(_size);
    HDassert(dst_size);
    HDassert(src_size);
    HDassert(dst);
    HDassert(src);
#ifndef NDEBUG
    for (u = 0; u < n; u++) {
        HDassert(_size[u] > 0);
        HDassert(dst_size[u] > 0);
        HDassert(src_size[u] > 0);
    }
#endif

    /* Copy the size vector so we can modify it */
    H5VM_vector_cpy(n, size, _size);

    /* Compute stride vectors for source and destination */
#ifdef NO_INLINED_CODE
    dst_start = H5VM_hyper_stride(n, size, dst_size, dst_offset, dst_stride);
    src_start = H5VM_hyper_stride(n, size, src_size, src_offset, src_stride);
#else /* NO_INLINED_CODE */
    /* in-line version of two calls to H5VM_hyper_stride() */
    {
        hsize_t	    dst_acc;	/*accumulator				*/
        hsize_t	    src_acc;	/*accumulator				*/
        int        ii;		    /*counter				*/

        /* init */
        HDassert(n>0);
        dst_stride[n-1] = 1;
        src_stride[n-1] = 1;
        dst_start = dst_offset ? dst_offset[n-1] : 0;
        src_start = src_offset ? src_offset[n-1] : 0;

        /* Unroll loop for common cases */
        switch(n) {
            case 2:
                HDassert(dst_size[1]>=size[1]);
                HDassert(src_size[1]>=size[1]);
                dst_stride[0] = dst_size[1] - size[1]; /*overflow checked*/
                src_stride[0] = src_size[1] - size[1]; /*overflow checked*/
                dst_acc = dst_size[1];
                src_acc = src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            case 3:
                HDassert(dst_size[2]>=size[2]);
                HDassert(src_size[2]>=size[2]);
                dst_stride[1] = dst_size[2] - size[2]; /*overflow checked*/
                src_stride[1] = src_size[2] - size[2]; /*overflow checked*/
                dst_acc = dst_size[2];
                src_acc = src_size[2];
                dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
                src_start += src_acc * (src_offset ? src_offset[1] : 0);

                HDassert(dst_size[1]>=size[1]);
                HDassert(src_size[1]>=size[1]);
                dst_stride[0] = dst_acc * (dst_size[1] - size[1]); /*overflow checked*/
                src_stride[0] = src_acc * (src_size[1] - size[1]); /*overflow checked*/
                dst_acc *= dst_size[1];
                src_acc *= src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            case 4:
                HDassert(dst_size[3]>=size[3]);
                HDassert(src_size[3]>=size[3]);
                dst_stride[2] = dst_size[3] - size[3]; /*overflow checked*/
                src_stride[2] = src_size[3] - size[3]; /*overflow checked*/
                dst_acc = dst_size[3];
                src_acc = src_size[3];
                dst_start += dst_acc * (dst_offset ? dst_offset[2] : 0);
                src_start += src_acc * (src_offset ? src_offset[2] : 0);

                HDassert(dst_size[2]>=size[2]);
                HDassert(src_size[2]>=size[2]);
                dst_stride[1] = dst_acc * (dst_size[2] - size[2]); /*overflow checked*/
                src_stride[1] = src_acc * (src_size[2] - size[2]); /*overflow checked*/
                dst_acc *= dst_size[2];
                src_acc *= src_size[2];
                dst_start += dst_acc * (dst_offset ? dst_offset[1] : 0);
                src_start += src_acc * (src_offset ? src_offset[1] : 0);

                HDassert(dst_size[1]>=size[1]);
                HDassert(src_size[1]>=size[1]);
                dst_stride[0] = dst_acc * (dst_size[1] - size[1]); /*overflow checked*/
                src_stride[0] = src_acc * (src_size[1] - size[1]); /*overflow checked*/
                dst_acc *= dst_size[1];
                src_acc *= src_size[1];
                dst_start += dst_acc * (dst_offset ? dst_offset[0] : 0);
                src_start += src_acc * (src_offset ? src_offset[0] : 0);
                break;

            default:
                /* others */
                for (ii=(int)(n-2), dst_acc=1, src_acc=1; ii>=0; --ii) {
                    HDassert(dst_size[ii+1]>=size[ii+1]);
                    HDassert(src_size[ii+1]>=size[ii+1]);
                    dst_stride[ii] = dst_acc * (dst_size[ii+1] - size[ii+1]); /*overflow checked*/
                    src_stride[ii] = src_acc * (src_size[ii+1] - size[ii+1]); /*overflow checked*/
                    dst_acc *= dst_size[ii+1];
                    src_acc *= src_size[ii+1];
                    dst_start += dst_acc * (dst_offset ? dst_offset[ii] : 0);
                    src_start += src_acc * (src_offset ? src_offset[ii] : 0);
                }
                break;
        } /* end switch */
    }
#endif /* NO_INLINED_CODE */

    /* Optimize the strides as a pair */
    H5VM_stride_optimize2(&n, &elmt_size, size, dst_stride, src_stride);

    /* Perform the copy in terms of stride */
    ret_value = H5VM_stride_copy(n, elmt_size, size,
             dst_stride, dst+dst_start, src_stride, src+src_start);

    FUNC_LEAVE_NOAPI(ret_value)
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_stride_fill
 *
 * Purpose:	Fills all bytes of a hyperslab with the same value using
 *		memset().
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_stride_fill(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hsize_t *stride, void *_dst, unsigned fill_value)
{
    uint8_t	*dst = (uint8_t*)_dst; 	/*cast for ptr arithmetic	*/
    hsize_t	idx[H5VM_HYPER_NDIMS]; 	/*1-origin indices		*/
    hsize_t	nelmts;			/*number of elements to fill	*/
    hsize_t	i;			/*counter			*/
    int	j;			/*counter			*/
    hbool_t	carry;			/*subtraction carray value	*/

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(elmt_size < SIZET_MAX);

    H5VM_vector_cpy(n, idx, size);
    nelmts = H5VM_vector_reduce_product(n, size);
    for (i=0; i<nelmts; i++) {
        /* Copy an element */
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemset(dst, (int)fill_value, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

        /* Decrement indices and advance pointer */
        for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
            dst += stride[j];

            if (--idx[j])
                carry = FALSE;
            else {
                HDassert(size);
                idx[j] = size[j];
            } /* end else */
        }
    }

    FUNC_LEAVE_NOAPI(SUCCEED)
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_stride_copy
 *
 * Purpose:	Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
 *		DST and SRC while copying bytes from SRC to DST.  This
 *		function minimizes the number of calls to memcpy() by
 *		combining various strides, but it will never touch memory
 *		outside the hyperslab defined by the strides.
 *
 * Note:	If the src_stride is all zero and elmt_size is one, then it's
 *		probably more efficient to use H5VM_stride_fill() instead.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_stride_copy(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hsize_t *dst_stride, void *_dst,
		const hsize_t *src_stride, const void *_src)
{
    uint8_t	*dst = (uint8_t*)_dst;		/*cast for ptr arithmetic*/
    const uint8_t *src = (const uint8_t*) _src;	/*cast for ptr arithmetic*/
    hsize_t	idx[H5VM_HYPER_NDIMS];		/*1-origin indices	*/
    hsize_t	nelmts;				/*num elements to copy	*/
    hsize_t	i;				/*counter		*/
    int	j;				/*counters		*/
    hbool_t	carry;				/*carray for subtraction*/

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(elmt_size<SIZET_MAX);

    if (n) {
        H5VM_vector_cpy(n, idx, size);
        nelmts = H5VM_vector_reduce_product(n, size);
        for (i=0; i<nelmts; i++) {

            /* Copy an element */
            H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
            HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

            /* Decrement indices and advance pointers */
            for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
                src += src_stride[j];
                dst += dst_stride[j];

                if (--idx[j])
                    carry = FALSE;
                else {
                    HDassert(size);
                    idx[j] = size[j];
                }
            }
        }
    } else {
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemcpy (dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
    }

    FUNC_LEAVE_NOAPI(SUCCEED)
}


/*-------------------------------------------------------------------------
 * Function:	H5VM_stride_copy_s
 *
 * Purpose:	Uses DST_STRIDE and SRC_STRIDE to advance through the arrays
 *		DST and SRC while copying bytes from SRC to DST.  This
 *		function minimizes the number of calls to memcpy() by
 *		combining various strides, but it will never touch memory
 *		outside the hyperslab defined by the strides.
 *
 * Note:	If the src_stride is all zero and elmt_size is one, then it's
 *		probably more efficient to use H5VM_stride_fill() instead.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_stride_copy_s(unsigned n, hsize_t elmt_size, const hsize_t *size,
		const hssize_t *dst_stride, void *_dst,
		const hssize_t *src_stride, const void *_src)
{
    uint8_t	*dst = (uint8_t*)_dst;		/*cast for ptr arithmetic*/
    const uint8_t *src = (const uint8_t*) _src;	/*cast for ptr arithmetic*/
    hsize_t	idx[H5VM_HYPER_NDIMS];		/*1-origin indices	*/
    hsize_t	nelmts;				/*num elements to copy	*/
    hsize_t	i;				/*counter		*/
    int	j;				/*counters		*/
    hbool_t	carry;				/*carray for subtraction*/

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(elmt_size<SIZET_MAX);

    if (n) {
        H5VM_vector_cpy(n, idx, size);
        nelmts = H5VM_vector_reduce_product(n, size);
        for (i=0; i<nelmts; i++) {

            /* Copy an element */
            H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
            HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

            /* Decrement indices and advance pointers */
            for (j=(int)(n-1), carry=TRUE; j>=0 && carry; --j) {
                src += src_stride[j];
                dst += dst_stride[j];

                if (--idx[j])
                    carry = FALSE;
                else {
                    HDassert(size);
                    idx[j] = size[j];
                }
            }
        }
    } else {
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
        HDmemcpy (dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */
    }

    FUNC_LEAVE_NOAPI(SUCCEED)
}

#ifdef LATER

/*-------------------------------------------------------------------------
 * Function:	H5VM_stride_copy2
 *
 * Purpose:	Similar to H5VM_stride_copy() except the source and
 *		destination each have their own dimensionality and size and
 *		we copy exactly NELMTS elements each of size ELMT_SIZE.	 The
 *		size counters wrap if NELMTS is more than a size counter.
 *
 * Return:	None
 *
 * Programmer:	Robb Matzke
 *		Saturday, October 11, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static void
H5VM_stride_copy2(hsize_t nelmts, hsize_t elmt_size,

		 /* destination */
		 unsigned dst_n, const hsize_t *dst_size,
		 const hsize_t *dst_stride,
		 void *_dst,

		 /* source */
		 unsigned src_n, const hsize_t *src_size,
		 const hsize_t *src_stride,
		 const void *_src)
{
    uint8_t	*dst = (uint8_t *) _dst;
    const uint8_t *src = (const uint8_t *) _src;
    hsize_t	dst_idx[H5VM_HYPER_NDIMS];
    hsize_t	src_idx[H5VM_HYPER_NDIMS];
    hsize_t	i;              /* Local index variable */
    int		j;              /* Local index variable */
    hbool_t	carry;

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(elmt_size < SIZET_MAX);
    HDassert(dst_n>0);
    HDassert(src_n>0);

    H5VM_vector_cpy(dst_n, dst_idx, dst_size);
    H5VM_vector_cpy(src_n, src_idx, src_size);

    for (i=0; i<nelmts; i++) {

	/* Copy an element */
        H5_CHECK_OVERFLOW(elmt_size,hsize_t,size_t);
	HDmemcpy(dst, src, (size_t)elmt_size); /*lint !e671 The elmt_size will be OK */

	/* Decrement indices and advance pointers */
	for (j=(int)(dst_n-1), carry=TRUE; j>=0 && carry; --j) {
	    dst += dst_stride[j];
	    if (--dst_idx[j])
                carry = FALSE;
	    else {
                HDassert(dst_size);
                dst_idx[j] = dst_size[j];
            } /* end else */
	}
	for (j=(int)(src_n-1), carry=TRUE; j>=0 && carry; --j) {
	    src += src_stride[j];
	    if (--src_idx[j])
                carry = FALSE;
	    else {
                HDassert(src_size);
                src_idx[j] = src_size[j];
            } /* end else */
	}
    }

    FUNC_LEAVE_NOAPI_VOID
}
#endif /* LATER */


/*-------------------------------------------------------------------------
 * Function:	H5VM_array_fill
 *
 * Purpose:	Fills all bytes of an array with the same value using
 *		memset(). Increases amount copied by power of two until the
 *		halfway point is crossed, then copies the rest in one swoop.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Thursday, June 18, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_array_fill(void *_dst, const void *src, size_t size, size_t count)
{
    size_t      copy_size;          /* size of the buffer to copy	*/
    size_t      copy_items;         /* number of items currently copying*/
    size_t      items_left;         /* number of items left to copy 	*/
    uint8_t     *dst=(uint8_t*)_dst;/* alias for pointer arithmetic	*/

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(dst);
    HDassert(src);
    HDassert(size < SIZET_MAX && size > 0);
    HDassert(count < SIZET_MAX && count > 0);

    HDmemcpy(dst, src, size);   /* copy first item */

    /* Initialize counters, etc. while compensating for first element copied */
    copy_size = size;
    copy_items = 1;
    items_left = count - 1;
    dst += size;

    /* copy until we've copied at least half of the items */
    while (items_left >= copy_items)
    {
        HDmemcpy(dst, _dst, copy_size);   /* copy the current chunk */
        dst += copy_size;     /* move the offset for the next chunk */
        items_left -= copy_items;   /* decrement the number of items left */

        copy_size *= 2;     /* increase the size of the chunk to copy */
        copy_items *= 2;    /* increase the count of items we are copying */
    }   /* end while */
    if (items_left > 0)   /* if there are any items left to copy */
        HDmemcpy(dst, _dst, items_left * size);

    FUNC_LEAVE_NOAPI(SUCCEED)
}   /* H5VM_array_fill() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_array_down
 *
 * Purpose:	Given a set of dimension sizes, calculate the size of each
 *              "down" slice.  This is the size of the dimensions for all the
 *              dimensions below the current one, which is used for indexing
 *              offsets in this dimension.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Monday, April 28, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_array_down(unsigned n, const hsize_t *total_size, hsize_t *down)
{
    hsize_t	acc;	                /*accumulator			*/
    int	        i;		        /*counter			*/

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(n <= H5VM_HYPER_NDIMS);
    HDassert(total_size);
    HDassert(down);

    /* Build the sizes of each dimension in the array */
    /* (From fastest to slowest) */
    for(i=(int)(n-1),acc=1; i>=0; i--) {
        down[i]=acc;
        acc *= total_size[i];
    } /* end for */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5VM_array_down() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_array_offset_pre
 *
 * Purpose:	Given a coordinate description of a location in an array, this
 *      function returns the byte offset of the coordinate.
 *
 *		The dimensionality of the whole array, and the offset is N.
 *              The whole array dimensions are TOTAL_SIZE and the coordinate
 *              is at offset OFFSET.
 *
 * Return:	Success: Byte offset from beginning of array to element offset
 *		Failure: abort() -- should never fail
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, June 22, 1999
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5VM_array_offset_pre(unsigned n, const hsize_t *acc, const hsize_t *offset)
{
    unsigned        u;		/* Local index variable */
    hsize_t	    ret_value;  /* Return value */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    HDassert(n <= H5VM_HYPER_NDIMS);
    HDassert(acc);
    HDassert(offset);

    /* Compute offset in array */
    for(u = 0, ret_value = 0; u < n; u++)
        ret_value += acc[u] * offset[u];

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5VM_array_offset_pre() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_array_offset
 *
 * Purpose:	Given a coordinate description of a location in an array, this
 *      function returns the byte offset of the coordinate.
 *
 *		The dimensionality of the whole array, and the offset is N.
 *              The whole array dimensions are TOTAL_SIZE and the coordinate
 *              is at offset OFFSET.
 *
 * Return:	Success: Byte offset from beginning of array to element offset
 *		Failure: abort() -- should never fail
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, June 22, 1999
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5VM_array_offset(unsigned n, const hsize_t *total_size, const hsize_t *offset)
{
    hsize_t	acc_arr[H5VM_HYPER_NDIMS];	/* Accumulated size of down dimensions */
    hsize_t	ret_value;  /* Return value */

    FUNC_ENTER_NOAPI((HDabort(), 0)) /*lint !e527 Don't worry about unreachable statement */

    HDassert(n <= H5VM_HYPER_NDIMS);
    HDassert(total_size);
    HDassert(offset);

    /* Build the sizes of each dimension in the array */
    if(H5VM_array_down(n,total_size,acc_arr)<0)
        HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, UFAIL, "can't compute down sizes")

    /* Set return value */
    ret_value=H5VM_array_offset_pre(n,acc_arr,offset);

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5VM_array_offset() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_array_calc_pre
 *
 * Purpose:	Given a linear offset in an array, the dimensions of that
 *              array and the pre-computed 'down' (accumulator) sizes, this
 *              function computes the coordinates of that offset in the array.
 *
 *		The dimensionality of the whole array, and the coordinates is N.
 *              The array dimensions are TOTAL_SIZE and the coordinates
 *              are returned in COORD.  The linear offset is in OFFSET.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Thursday, July 16, 2009
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_array_calc_pre(hsize_t offset, unsigned n, const hsize_t *down,
    hsize_t *coords)
{
    unsigned    u;                      /* Local index variable */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* Sanity check */
    HDassert(n <= H5VM_HYPER_NDIMS);
    HDassert(coords);

    /* Compute the coordinates from the offset */
    for(u = 0; u < n; u++) {
        coords[u] = offset / down[u];
        offset %= down[u];
    } /* end for */

    FUNC_LEAVE_NOAPI(SUCCEED)
} /* end H5VM_array_calc_pre() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_array_calc
 *
 * Purpose:	Given a linear offset in an array and the dimensions of that
 *              array, this function computes the coordinates of that offset
 *              in the array.
 *
 *		The dimensionality of the whole array, and the coordinates is N.
 *              The array dimensions are TOTAL_SIZE and the coordinates
 *              are returned in COORD.  The linear offset is in OFFSET.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Wednesday, April 16, 2003
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5VM_array_calc(hsize_t offset, unsigned n, const hsize_t *total_size, hsize_t *coords)
{
    hsize_t	idx[H5VM_HYPER_NDIMS];	/* Size of each dimension in bytes */
    herr_t      ret_value = SUCCEED;    /* Return value */

    FUNC_ENTER_NOAPI(FAIL)

    /* Sanity check */
    HDassert(n <= H5VM_HYPER_NDIMS);
    HDassert(total_size);
    HDassert(coords);

    /* Build the sizes of each dimension in the array */
    if(H5VM_array_down(n, total_size, idx) < 0)
        HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, FAIL, "can't compute down sizes")

    /* Compute the coordinates from the offset */
    if(H5VM_array_calc_pre(offset, n, idx, coords) < 0)
        HGOTO_ERROR(H5E_INTERNAL, H5E_BADVALUE, FAIL, "can't compute coordinates")

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5VM_array_calc() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_chunk_index
 *
 * Purpose:	Given a coordinate offset (COORD), the size of each chunk
 *              (CHUNK), the number of chunks in each dimension (NCHUNKS)
 *              and the number of dimensions of all of these (NDIMS), calculate
 *              a "chunk index" for the chunk that the coordinate offset is
 *              located in.
 *
 *              The chunk index starts at 0 and increases according to the
 *              fastest changing dimension, then the next fastest, etc.
 *
 *              For example, with a 3x5 chunk size and 6 chunks in the fastest
 *              changing dimension and 3 chunks in the slowest changing
 *              dimension, the chunk indices are as follows:
 *
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              |  0  |  1  |  2  |  3  |  4  |  5  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              |  6  |  7  |  8  |  9  | 10  | 11  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              | 12  | 13  | 14  | 15  | 16  | 17  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *
 *              The chunk index is placed in the CHUNK_IDX location for return
 *              from this function
 *
 * Return:	Chunk index on success (can't fail)
 *
 * Programmer:	Quincey Koziol
 *		Monday, April 21, 2003
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5VM_chunk_index(unsigned ndims, const hsize_t *coord, const uint32_t *chunk,
    const hsize_t *down_nchunks)
{
    hsize_t scaled_coord[H5VM_HYPER_NDIMS];	/* Scaled, coordinates, in terms of chunks */
    hsize_t chunk_idx;          /* Chunk index computed */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* Sanity check */
    HDassert(ndims <= H5VM_HYPER_NDIMS);
    HDassert(coord);
    HDassert(chunk);
    HDassert(down_nchunks);

    /* Defer to H5VM_chunk_index_scaled */
    chunk_idx = H5VM_chunk_index_scaled(ndims, coord, chunk, down_nchunks, scaled_coord);
    
    FUNC_LEAVE_NOAPI(chunk_idx)
} /* end H5VM_chunk_index() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_chunk_scaled
 *
 * Purpose:	Compute the scaled coordinates for a chunk offset
 *
 * Return:	<none>
 *
 * Programmer:	Quincey Koziol
 *		Wednesday, November 19, 2014
 *
 *-------------------------------------------------------------------------
 */
void
H5VM_chunk_scaled(unsigned ndims, const hsize_t *coord, const uint32_t *chunk,
    hsize_t *scaled)
{
    unsigned u;                 /* Local index variable */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* Sanity check */
    HDassert(ndims <= H5VM_HYPER_NDIMS);
    HDassert(coord);
    HDassert(chunk);
    HDassert(scaled);

    /* Compute the scaled coordinates for actual coordinates */
    /* (Note that the 'scaled' array is an 'OUT' parameter) */
    for(u = 0; u < ndims; u++)
        scaled[u] = coord[u] / chunk[u];

    FUNC_LEAVE_NOAPI_VOID
} /* end H5VM_chunk_scaled() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_chunk_index_scaled
 *
 * Purpose:	Given a coordinate offset (COORD), the size of each chunk
 *              (CHUNK), the number of chunks in each dimension (NCHUNKS)
 *              and the number of dimensions of all of these (NDIMS), calculate
 *              a "chunk index" for the chunk that the coordinate offset is
 *              located in.
 *
 *              The chunk index starts at 0 and increases according to the
 *              fastest changing dimension, then the next fastest, etc.
 *
 *              For example, with a 3x5 chunk size and 6 chunks in the fastest
 *              changing dimension and 3 chunks in the slowest changing
 *              dimension, the chunk indices are as follows:
 *
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              |  0  |  1  |  2  |  3  |  4  |  5  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              |  6  |  7  |  8  |  9  | 10  | 11  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *              |     |     |     |     |     |     |
 *              | 12  | 13  | 14  | 15  | 16  | 17  |
 *              |     |     |     |     |     |     |
 *              +-----+-----+-----+-----+-----+-----+
 *
 *              The chunk index is placed in the CHUNK_IDX location for return
 *              from this function
 *
 * Note:	This routine is identical to H5VM_chunk_index(), except for
 *		caching the scaled information.  Make changes in both places.
 *
 * Return:	Chunk index on success (can't fail)
 *
 * Programmer:	Vailin Choi
 *		Monday, February 9, 2015
 *
 *-------------------------------------------------------------------------
 */
hsize_t
H5VM_chunk_index_scaled(unsigned ndims, const hsize_t *coord, const uint32_t *chunk,
    const hsize_t *down_nchunks, hsize_t *scaled)
{
    hsize_t chunk_idx;          /* Computed chunk index */
    unsigned u;                 /* Local index variable */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* Sanity check */
    HDassert(ndims <= H5VM_HYPER_NDIMS);
    HDassert(coord);
    HDassert(chunk);
    HDassert(down_nchunks);
    HDassert(scaled);

    /* Compute the scaled coordinates for actual coordinates */
    /* (Note that the 'scaled' array is an 'OUT' parameter) */
    for(u = 0; u < ndims; u++)
        scaled[u] = coord[u] / chunk[u];

    /* Compute the chunk index */
    chunk_idx = H5VM_array_offset_pre(ndims, down_nchunks, scaled); /*lint !e772 scaled_coord will always be initialized */

    FUNC_LEAVE_NOAPI(chunk_idx)
} /* end H5VM_chunk_index_scaled() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_opvv
 *
 * Purpose:	Perform an operation on a source & destination sequences
 *		of offset/length pairs.  Each set of sequnces has an array
 *		of lengths, an array of offsets, the maximum number of
 *		sequences and the current sequence to start at in the sequence.
 *
 *              There may be different numbers of bytes in the source and
 *              destination sequences, the operation stops when either the
 *              source or destination sequence runs out of information.
 *
 * Note:	The algorithm in this routine is [basically] the same as for
 *		H5VM_memcpyvv().  Changes should be made to both!
 *
 * Return:	Non-negative # of bytes operated on, on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Thursday, September 30, 2010
 *
 *-------------------------------------------------------------------------
 */
ssize_t
H5VM_opvv(size_t dst_max_nseq, size_t *dst_curr_seq, size_t dst_len_arr[],
    hsize_t dst_off_arr[],
    size_t src_max_nseq, size_t *src_curr_seq, size_t src_len_arr[],
    hsize_t src_off_arr[],
    H5VM_opvv_func_t op, void *op_data)
{
    hsize_t *max_dst_off_ptr, *max_src_off_ptr;  /* Pointers to max. source and destination offset locations */
    hsize_t *dst_off_ptr, *src_off_ptr; /* Pointers to source and destination offset arrays */
    size_t *dst_len_ptr, *src_len_ptr;  /* Pointers to source and destination length arrays */
    hsize_t tmp_dst_off, tmp_src_off;   /* Temporary source and destination offset values */
    size_t tmp_dst_len, tmp_src_len;    /* Temporary source and destination length values */
    size_t acc_len;             /* Accumulated length of sequences */
    ssize_t ret_value = 0;      /* Return value (Total size of sequence in bytes) */

    FUNC_ENTER_NOAPI(FAIL)

    /* Sanity check */
    HDassert(dst_curr_seq);
    HDassert(*dst_curr_seq < dst_max_nseq);
    HDassert(dst_len_arr);
    HDassert(dst_off_arr);
    HDassert(src_curr_seq);
    HDassert(*src_curr_seq < src_max_nseq);
    HDassert(src_len_arr);
    HDassert(src_off_arr);
    HDassert(op);

    /* Set initial offset & length pointers */
    dst_len_ptr = dst_len_arr + *dst_curr_seq;
    dst_off_ptr = dst_off_arr + *dst_curr_seq;
    src_len_ptr = src_len_arr + *src_curr_seq;
    src_off_ptr = src_off_arr + *src_curr_seq;

    /* Get temporary source & destination sequence offsets & lengths */
    tmp_dst_len = *dst_len_ptr;
    tmp_dst_off = *dst_off_ptr;
    tmp_src_len = *src_len_ptr;
    tmp_src_off = *src_off_ptr;

    /* Compute maximum offset pointer values */
    max_dst_off_ptr = dst_off_arr + dst_max_nseq;
    max_src_off_ptr = src_off_arr + src_max_nseq;

/* Work through the sequences */
/* (Choose smallest sequence available initially) */

    /* Source sequence is less than destination sequence */
    if(tmp_src_len < tmp_dst_len) {
src_smaller:
        acc_len = 0;
        do {
            /* Make operator callback */
            if((*op)(tmp_dst_off, tmp_src_off, tmp_src_len, op_data) < 0)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTOPERATE, FAIL, "can't perform operation")

            /* Accumulate number of bytes copied */
            acc_len += tmp_src_len;

            /* Update destination length */
            tmp_dst_off += tmp_src_len;
            tmp_dst_len -= tmp_src_len;

            /* Advance source offset & check for being finished */
            src_off_ptr++;
            if(src_off_ptr >= max_src_off_ptr) {
                /* Roll accumulated changes into appropriate counters */
                *dst_off_ptr = tmp_dst_off;
                *dst_len_ptr = tmp_dst_len;

                /* Done with sequences */
                goto finished;
            } /* end if */
            tmp_src_off = *src_off_ptr;

            /* Update source information */
            src_len_ptr++;
            tmp_src_len = *src_len_ptr;
        } while(tmp_src_len < tmp_dst_len);

        /* Roll accumulated sequence lengths into return value */
        ret_value += (ssize_t)acc_len;

        /* Transition to next state */
        if(tmp_dst_len < tmp_src_len)
            goto dst_smaller;
        else
            goto equal;
    } /* end if */
    /* Destination sequence is less than source sequence */
    else if(tmp_dst_len < tmp_src_len) {
dst_smaller:
        acc_len = 0;
        do {
            /* Make operator callback */
            if((*op)(tmp_dst_off, tmp_src_off, tmp_dst_len, op_data) < 0)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTOPERATE, FAIL, "can't perform operation")

            /* Accumulate number of bytes copied */
            acc_len += tmp_dst_len;

            /* Update source length */
            tmp_src_off += tmp_dst_len;
            tmp_src_len -= tmp_dst_len;

            /* Advance destination offset & check for being finished */
            dst_off_ptr++;
            if(dst_off_ptr >= max_dst_off_ptr) {
                /* Roll accumulated changes into appropriate counters */
                *src_off_ptr = tmp_src_off;
                *src_len_ptr = tmp_src_len;

                /* Done with sequences */
                goto finished;
            } /* end if */
            tmp_dst_off = *dst_off_ptr;

            /* Update destination information */
            dst_len_ptr++;
            tmp_dst_len = *dst_len_ptr;
        } while(tmp_dst_len < tmp_src_len);

        /* Roll accumulated sequence lengths into return value */
        ret_value += (ssize_t)acc_len;

        /* Transition to next state */
        if(tmp_src_len < tmp_dst_len)
            goto src_smaller;
        else
            goto equal;
    } /* end else-if */
    /* Destination sequence and source sequence are same length */
    else {
equal:
        acc_len = 0;
        do {
            /* Make operator callback */
            if((*op)(tmp_dst_off, tmp_src_off, tmp_dst_len, op_data) < 0)
                HGOTO_ERROR(H5E_INTERNAL, H5E_CANTOPERATE, FAIL, "can't perform operation")

            /* Accumulate number of bytes copied */
            acc_len += tmp_dst_len;

            /* Advance source & destination offset & check for being finished */
            src_off_ptr++;
            dst_off_ptr++;
            if(src_off_ptr >= max_src_off_ptr || dst_off_ptr >= max_dst_off_ptr)
                /* Done with sequences */
                goto finished;
            tmp_src_off = *src_off_ptr;
            tmp_dst_off = *dst_off_ptr;

            /* Update source information */
            src_len_ptr++;
            tmp_src_len = *src_len_ptr;

            /* Update destination information */
            dst_len_ptr++;
            tmp_dst_len = *dst_len_ptr;
        } while(tmp_dst_len == tmp_src_len);

        /* Roll accumulated sequence lengths into return value */
        ret_value += (ssize_t)acc_len;

        /* Transition to next state */
        if(tmp_dst_len < tmp_src_len)
            goto dst_smaller;
        else
            goto src_smaller;
    } /* end else */

finished:
    /* Roll accumulated sequence lengths into return value */
    ret_value += (ssize_t)acc_len;

    /* Update current sequence vectors */
    *dst_curr_seq = (size_t)(dst_off_ptr - dst_off_arr);
    *src_curr_seq = (size_t)(src_off_ptr - src_off_arr);

done:
    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5VM_opvv() */


/*-------------------------------------------------------------------------
 * Function:	H5VM_memcpyvv
 *
 * Purpose:	Given source and destination buffers in memory (SRC & DST)
 *              copy sequences of from the source buffer into the destination
 *              buffer.  Each set of sequnces has an array of lengths, an
 *              array of offsets, the maximum number of sequences and the
 *              current sequence to start at in the sequence.
 *
 *              There may be different numbers of bytes in the source and
 *              destination sequences, data copying stops when either the
 *              source or destination buffer runs out of sequence information.
 *
 * Note:	The algorithm in this routine is [basically] the same as for
 *		H5VM_opvv().  Changes should be made to both!
 *
 * Return:	Non-negative # of bytes copied on success/Negative on failure
 *
 * Programmer:	Quincey Koziol
 *		Friday, May 2, 2003
 *
 *-------------------------------------------------------------------------
 */
ssize_t
H5VM_memcpyvv(void *_dst,
    size_t dst_max_nseq, size_t *dst_curr_seq, size_t dst_len_arr[], hsize_t dst_off_arr[],
    const void *_src,
    size_t src_max_nseq, size_t *src_curr_seq, size_t src_len_arr[], hsize_t src_off_arr[])
{
    unsigned char *dst;         /* Destination buffer pointer */
    const unsigned char *src;   /* Source buffer pointer */
    hsize_t *max_dst_off_ptr, *max_src_off_ptr;  /* Pointers to max. source and destination offset locations */
    hsize_t *dst_off_ptr, *src_off_ptr;  /* Pointers to source and destination offset arrays */
    size_t *dst_len_ptr, *src_len_ptr;  /* Pointers to source and destination length arrays */
    size_t tmp_dst_len;         /* Temporary dest. length value */
    size_t tmp_src_len;         /* Temporary source length value */
    size_t acc_len;             /* Accumulated length of sequences */
    ssize_t ret_value = 0;      /* Return value (Total size of sequence in bytes) */

    FUNC_ENTER_NOAPI_NOINIT_NOERR

    /* Sanity check */
    HDassert(_dst);
    HDassert(dst_curr_seq);
    HDassert(*dst_curr_seq < dst_max_nseq);
    HDassert(dst_len_arr);
    HDassert(dst_off_arr);
    HDassert(_src);
    HDassert(src_curr_seq);
    HDassert(*src_curr_seq < src_max_nseq);
    HDassert(src_len_arr);
    HDassert(src_off_arr);

    /* Set initial offset & length pointers */
    dst_len_ptr = dst_len_arr + *dst_curr_seq;
    dst_off_ptr = dst_off_arr + *dst_curr_seq;
    src_len_ptr = src_len_arr + *src_curr_seq;
    src_off_ptr = src_off_arr + *src_curr_seq;

    /* Get temporary source & destination sequence lengths */
    tmp_dst_len = *dst_len_ptr;
    tmp_src_len = *src_len_ptr;

    /* Compute maximum offset pointer values */
    max_dst_off_ptr = dst_off_arr + dst_max_nseq;
    max_src_off_ptr = src_off_arr + src_max_nseq;

    /* Compute buffer offsets */
    dst = (unsigned char *)_dst + *dst_off_ptr;
    src = (const unsigned char *)_src + *src_off_ptr;

/* Work through the sequences */
/* (Choose smallest sequence available initially) */

    /* Source sequence is less than destination sequence */
    if(tmp_src_len < tmp_dst_len) {
src_smaller:
        acc_len = 0;
        do {
            /* Copy data */
            HDmemcpy(dst, src, tmp_src_len);

            /* Accumulate number of bytes copied */
            acc_len += tmp_src_len;

            /* Update destination length */
            tmp_dst_len -= tmp_src_len;

            /* Advance source offset & check for being finished */
            src_off_ptr++;
            if(src_off_ptr >= max_src_off_ptr) {
                /* Roll accumulated changes into appropriate counters */
                *dst_off_ptr += acc_len;
                *dst_len_ptr = tmp_dst_len;

                /* Done with sequences */
                goto finished;
            } /* end if */

            /* Update destination pointer */
            dst += tmp_src_len;

            /* Update source information */
            src_len_ptr++;
            tmp_src_len = *src_len_ptr;
            src = (const unsigned char *)_src + *src_off_ptr;
        } while(tmp_src_len < tmp_dst_len);

        /* Roll accumulated sequence lengths into return value */
        ret_value += (ssize_t)acc_len;

        /* Transition to next state */
        if(tmp_dst_len < tmp_src_len)
            goto dst_smaller;
        else
            goto equal;
    } /* end if */
    /* Destination sequence is less than source sequence */
    else if(tmp_dst_len < tmp_src_len) {
dst_smaller:
        acc_len = 0;
        do {
            /* Copy data */
            HDmemcpy(dst, src, tmp_dst_len);

            /* Accumulate number of bytes copied */
            acc_len += tmp_dst_len;

            /* Update source length */
            tmp_src_len -= tmp_dst_len;

            /* Advance destination offset & check for being finished */
            dst_off_ptr++;
            if(dst_off_ptr >= max_dst_off_ptr) {
                /* Roll accumulated changes into appropriate counters */
                *src_off_ptr += acc_len;
                *src_len_ptr = tmp_src_len;

                /* Done with sequences */
                goto finished;
            } /* end if */

            /* Update source pointer */
            src += tmp_dst_len;

            /* Update destination information */
            dst_len_ptr++;
            tmp_dst_len = *dst_len_ptr;
            dst = (unsigned char *)_dst + *dst_off_ptr;
        } while(tmp_dst_len < tmp_src_len);

        /* Roll accumulated sequence lengths into return value */
        ret_value += (ssize_t)acc_len;

        /* Transition to next state */
        if(tmp_src_len < tmp_dst_len)
            goto src_smaller;
        else
            goto equal;
    } /* end else-if */
    /* Destination sequence and source sequence are same length */
    else {
equal:
        acc_len = 0;
        do {
            /* Copy data */
            HDmemcpy(dst, src, tmp_dst_len);

            /* Accumulate number of bytes copied */
            acc_len += tmp_dst_len;

            /* Advance source & destination offset & check for being finished */
            src_off_ptr++;
            dst_off_ptr++;
            if(src_off_ptr >= max_src_off_ptr || dst_off_ptr >= max_dst_off_ptr)
                /* Done with sequences */
                goto finished;

            /* Update source information */
            src_len_ptr++;
            tmp_src_len = *src_len_ptr;
            src = (const unsigned char *)_src + *src_off_ptr;

            /* Update destination information */
            dst_len_ptr++;
            tmp_dst_len = *dst_len_ptr;
            dst = (unsigned char *)_dst + *dst_off_ptr;
        } while(tmp_dst_len == tmp_src_len);

        /* Roll accumulated sequence lengths into return value */
        ret_value += (ssize_t)acc_len;

        /* Transition to next state */
        if(tmp_dst_len < tmp_src_len)
            goto dst_smaller;
        else
            goto src_smaller;
    } /* end else */

finished:
    /* Roll accumulated sequence lengths into return value */
    ret_value += (ssize_t)acc_len;

    /* Update current sequence vectors */
    *dst_curr_seq = (size_t)(dst_off_ptr - dst_off_arr);
    *src_curr_seq = (size_t)(src_off_ptr - src_off_arr);

    FUNC_LEAVE_NOAPI(ret_value)
} /* end H5VM_memcpyvv() */