summaryrefslogtreecommitdiffstats
path: root/release_docs/HISTORY-1_12_0-1_14_0.txt
blob: c48517c7c7593524dc6fc6ca48533eae834a0f2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
HDF5 History
============

This file contains development history of the HDF5 1.13 releases from
the develop branch

05.      Release Information for hdf5-1.14.0
04.      Release Information for hdf5-1.13.3
03.      Release Information for hdf5-1.13.2
02.      Release Information for hdf5-1.13.1
01.      Release Information for hdf5-1.13.0

[Search on the string '%%%%' for section breaks of each release.]

%%%%1.14.0%%%%

HDF5 version 1.14.0 released on 2022-12-28

*** NOTE ***

This file reflects the 1.13.x experimental release history. In the 1.14.0
release, we consolidated the experimental release notes into a single
section.

*** NOTE ****

================================================================================


INTRODUCTION
============

This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.

Note that documentation in the links below will be updated at the time of each
final release.

Links to HDF5 documentation can be found on The HDF5 web page:

     https://portal.hdfgroup.org/display/HDF5/HDF5

The official HDF5 releases can be obtained from:

     https://www.hdfgroup.org/downloads/hdf5/

Changes from Release to Release and New Features in the HDF5-1.13.x release series
can be found at:

     https://portal.hdfgroup.org/display/HDF5/Release+Specific+Information

If you have any questions or comments, please send them to the HDF Help Desk:

     help@hdfgroup.org


CONTENTS
========

- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.13.3
- Platforms Tested
- Known Problems
- CMake vs. Autotools installations


New Features
============

    Configuration:
    -------------
    - Added new option to build libaec and zlib inline with CMake.

      Using the CMake FetchContent module, the external filters can populate
      content at configure time via any method supported by the ExternalProject
      module. Whereas ExternalProject_Add() downloads at build time, the
      FetchContent module makes content available immediately, allowing the
      configure step to use the content in commands like add_subdirectory(),
      include() or file() operations.

      The HDF options (and defaults) for using this are:
          BUILD_SZIP_WITH_FETCHCONTENT:BOOL=OFF
          LIBAEC_USE_LOCALCONTENT:BOOL=OFF
          BUILD_ZLIB_WITH_FETCHCONTENT:BOOL=OFF
          ZLIB_USE_LOCALCONTENT:BOOL=OFF

      The CMake variables to control the path and file names:
          LIBAEC_TGZ_ORIGPATH:STRING
          LIBAEC_TGZ_ORIGNAME:STRING
          ZLIB_TGZ_ORIGPATH:STRING
          ZLIB_TGZ_ORIGNAME:STRING

      See the CMakeFilters.cmake and config/cmake/cacheinit.cmake files for usage.

      (ADB - 2023/02/21)

    - Removal of MPE support

      The ability to build with MPE instrumentation has been removed along with
      the following configure options:

      Autotools:
          --with-mpe=

      CMake has never supported building with MPE support.

      (DER - 2022/11/08)

     - Removal of dmalloc support

      The ability to build with dmalloc support has been removed along with
      the following configure options:

      Autotools:
          --with-dmalloc=

      CMake:
          HDF5_ENABLE_USING_DMALLOC

      (DER - 2022/11/08)

    - Removal of memory allocation sanity checks configure options

      With the removal of the memory allocation sanity checks feature, the
      following configure options are no longer necessary and have been
      removed:

      Autotools:
          --enable-memory-alloc-sanity-check

      CMake:
          HDF5_MEMORY_ALLOC_SANITY_CHECK
          HDF5_ENABLE_MEMORY_STATS

      (DER - 2022/11/03)

    Library:
    --------
    - Added a Subfiling VFD configuration file prefix environment variable

      The Subfiling VFD now checks for values set in a new environment
      variable "H5FD_SUBFILING_CONFIG_FILE_PREFIX" to determine if the
      application has specified a pathname prefix to apply to the file
      path for its configuration file. For example, this can be useful
      for cases where the application wishes to write subfiles to a
      machine's node-local storage while placing the subfiling configuration
      file on a file system readable by all machine nodes.

      (JTH - 2023/02/22)

    - Overhauled the Virtual Object Layer (VOL)

      The virtual object layer (VOL) was added in HDF5 1.12.0 but the initial
      implementation required API-breaking changes to better support optional
      operations and pass-through VOL connectors. The original VOL API is
      now considered deprecated and VOL users and connector authors should
      target the 1.14 VOL API.

      The specific changes are too extensive to document in a release note, so
      VOL users and connector authors should consult the updated VOL connector
      author's guide and the 1.12-1.14 VOL migration guide.

      (DER - 2022/12/28)

    - H5VLquery_optional() signature change

      The last parameter of this API call has changed from a pointer to hbool_t
      to a pointer to uint64_t. Due to the changes in how optional operations
      are handled in the 1.14 VOL API, we cannot make the old API call work
      with the new scheme, so there is no API compatibility macro for it.

      (DER - 2022/12/28)

    - H5I_free_t callback signature change

      In order to support asynchronous operations and future IDs, the signature
      of the H5I_free_t callback has been modified to take a second 'request'
      parameter. Due to the nature of the internal library changes, no API
      compatibility macro is available for this change.

      (DER - 2022/12/28)

    - Fix for CVE-2019-8396

      Malformed HDF5 files may have truncated content which does not match
      the expected size. When H5O__pline_decode() attempts to decode these it
      may read past the end of the allocated space leading to heap overflows
      as bounds checking is incomplete.

      The fix ensures each element is within bounds before reading.

      (2022/11/09 - HDFFV-10712, CVE-2019-8396, GitHub #2209)

    - Removal of memory allocation sanity checks feature

      This feature added heap canaries and statistics tracking for internal
      library memory operations. Unfortunately, the heap canaries caused
      problems when library memory operations were mixed with standard C
      library memory operations (such as in the filter pipeline, where
      buffers may have to be reallocated). Since any platform with a C
      compiler also usually has much more sophisticated memory sanity
      checking tools than the HDF5 library provided (e.g., valgrind), we
      have decided to to remove the feature entirely.

      In addition to the configure changes described above, this also removes
      the following from the public API:
          H5get_alloc_stats()
          H5_alloc_stats_t

      (DER - 2022/11/03)

    Parallel Library:
    -----------------
    -


    Fortran Library:
    ----------------
    -


    C++ Library:
    ------------
    -


    Java Library:
    -------------
    -


    Tools:
    ------
    -


    High-Level APIs:
    ----------------
    -


    C Packet Table API:
    -------------------
    -


    Internal header file:
    ---------------------
    -


    Documentation:
    --------------
    - Ported the existing VOL Connector Author Guide document to doxygen.

      Added new dox file, VOLConnGuide.dox.

      (ADB - 2022/12/20)


Support for new platforms, languages and compilers
==================================================
    -
    
Bug Fixes since HDF5-1.13.3 release
===================================
    Library
    -------
    - Fixed issues in the Subfiling VFD when using the SELECT_IOC_EVERY_NTH_RANK
      or SELECT_IOC_TOTAL I/O concentrator selection strategies

      Multiple bugs involving these I/O concentrator selection strategies
      were fixed, including:

        * A bug that caused the selection strategy to be altered when
          criteria for the strategy was specified in the
          H5FD_SUBFILING_IOC_SELECTION_CRITERIA environment variable as
          a single value, rather than in the old and undocumented
          'integer:integer' format
        * Two bugs which caused a request for 'N' I/O concentrators to
          result in 'N - 1' I/O concentrators being assigned, which also
          lead to issues if only 1 I/O concentrator was requested

      Also added a regression test for these two I/O concentrator selection
      strategies to prevent future issues. 

      (JTH - 2023/03/15)

    - Fix CVE-2021-37501 / GHSA-rfgw-5vq3-wrjf

      Check for overflow when calculating on-disk attribute data size.

      A bogus hdf5 file may contain dataspace messages with sizes
      which lead to the on-disk data sizes to exceed what is addressable.
      When calculating the size, make sure, the multiplication does not
      overflow.
      The test case was crafted in a way that the overflow caused the
      size to be 0.

      (EFE - 2023/02/11 GH-2458)

    - Fixed an issue with collective metadata writes of global heap data

      New test failures in parallel netCDF started occurring with debug
      builds of HDF5 due to an assertion failure and this was reported in
      GitHub issue #2433. The assertion failure began happening after the
      collective metadata write pathway in the library was updated to use
      vector I/O so that parallel-enabled HDF5 Virtual File Drivers (other
      than the existing MPI I/O VFD) can support collective metadata writes.

      The assertion failure was fixed by updating collective metadata writes
      to treat global heap metadata as raw data, as done elsewhere in the
      library. 

      (JTH - 2023/02/16, GH #2433)

    - Seg fault on file close

      h5debug fails at file close with core dump on a file that has an
      illegal file size in its cache image.  In H5F_dest(), the library
      performs all the closing operations for the file and keeps track of
      the error encountered when reading the file cache image.  
      At the end of the routine, it frees the file's file structure and 
      returns error.  Due to the error return, the file object is not removed 
      from the ID node table.  This eventually causes assertion failure in 
      H5VL__native_file_close() when the library finally exits and tries to 
      access that file object in the table for closing.

      The closing routine, H5F_dest(), will not free the file structure if
      there is error, keeping a valid file structure in the ID node table.
      It will be freed later in H5VL__native_file_close() when the
      library exits and terminates the file package.

      (VC - 2022/12/14, HDFFV-11052, CVE-2020-10812)

    - Fix CVE-2018-13867 / GHSA-j8jr-chrh-qfrf
 
      Validate location (offset) of the accumulated metadata when comparing.

      Initially, the accumulated metadata location is initialized to HADDR_UNDEF
      - the highest available address. Bogus input files may provide a location
      or size matching this value. Comparing this address against such bogus
      values may provide false positives. Thus make sure, the value has been
      initialized or fail the comparison early and let other parts of the
      code deal with the bogus address/size.
      Note: To avoid unnecessary checks, it is assumed that if the 'dirty'
      member in the same structure is true the location is valid.

      (EFE - 2022/10/10 GH-2230)
      
    - Fix CVE-2018-16438 / GHSA-9xmm-cpf8-rgmx

      Make sure info block for external links has at least 3 bytes.
    
      According to the specification, the information block for external links
      contains 1 byte of version/flag information and two 0 terminated strings
      for the object linked to and the full path.
      Although not very useful, the minimum string length for each (with
      terminating 0) would be one byte.
      Checking this helps to avoid SEGVs triggered by bogus files.

      (EFE - 2022/10/09 GH-2233)

    - CVE-2021-46244 / GHSA-vrxh-5gxg-rmhm

      Compound datatypes may not have members of size 0
 
      A member size of 0 may lead to an FPE later on as reported in
      CVE-2021-46244. To avoid this, check for this as soon as the
      member is decoded.

      (EFE - 2022/10/05 GEH-2242)


    - Fix CVE-2021-45830 / GHSA-5h2h-fjjr-x9m2

      Make H5O__fsinfo_decode() more resilient to out-of-bound reads.

      When decoding a file space info message in H5O__fsinfo_decode()  make
      sure each element to be decoded is still within the message. Malformed
      hdf5 files may have trunkated content which does not match the
      expected size. Checking this will prevent attempting to decode
      unrelated data and heap overflows. So far, only free space manager
      address data was checked before decoding.

      (EFE - 2022/10/05 GH-2228)

    - Fix CVE-2021-46242 / GHSA-x9pw-hh7v-wjpf

      When evicting driver info block, NULL the corresponding entry.

      Since H5C_expunge_entry() called (from H5AC_expunge_entry()) sets the  flag
      H5C__FLUSH_INVALIDATE_FLAG, the driver info block will be freed. NULLing
      the pointer in f->shared->drvinfo will prevent use-after-free  when it is
      used in other functions (like  H5F__dest()) - as other places will check
      whether the pointer is initialized before using its value.

      (EFE - 2022/09/29 GH-2254)

    - Fix CVE-2021-45833 / GHSA-x57p-jwp6-4v79

      Report error if dimensions of chunked storage in data layout < 2
    
      For Data Layout Messages version 1 & 2 the specification state
      that the value stored in the data field is 1 greater than the
      number of dimensions in the dataspace. For version 3 this is
      not explicitly stated but the implementation suggests it to be
      the case.
      Thus the set value needs to be at least 2. For dimensionality
      < 2 an out-of-bounds access occurs.
 
      (EFE - 2022/09/28 GH-2240)
      
    - Fix CVE-2018-14031 / GHSA-2xc7-724c-r36j

      Parent of enum datatype message must have the same size as the
      enum datatype message itself.
      Functions accessing the enumeration values use the size of the
      enumeration datatype to determine the size of each element and
      how much data to copy.
      Thus the size of the enumeration and its parent need to match.
      Check in H5O_dtype_decode_helper()  to avoid unpleasant surprises
      later.

      (EFE - 2022/09/28 GH-2236)

    - Fix CVE-2018-17439 / GHSA-vcxv-vp43-rch7

      H5IMget_image_info(): Make sure to not exceed local array size

      Malformed hdf5 files may provide more dimensions than the array dim[] in
      H5IMget_image_info() is able to hold. Check number of elements first by calling
      H5Sget_simple_extent_dims() with NULL for both 'dims' and 'maxdims' arguments.
      This will cause the function to return only the number of dimensions.
      The fix addresses a stack overflow on write.

      (EFE - 2022/09/27 HDFFV-10589, GH-2226)


    Java Library
    ------------
    -


    Configuration
    -------------
    - Correct the CMake generated pkg-config file

      The pkg-config file generated by CMake had the order and placement of the
      libraries wrong. Also added support for debug library names.

      Changed the order of Libs.private libraries so that dependencies come after
      dependents. Did not move the compression libraries into Requires.private
      because there was not a way to determine if the compression libraries had
      supported pkconfig files. Still recommend that the CMake config file method
      be used for building projects with CMake.

      (ADB - 2023/02/16 GH-1546,GH-2259)

    - Remove Javadoc generation

      The use of doxygen now supersedes the requirement to build javadocs. We do not
      have the resources to continue to support two documentation methods and have
      chosen doxygen as our standard.

      (ADB - 2022/12/19)

    - Change the default for building the high-level tools

      The gif2hdf5 and hdf2gif high-level tools are deprecated and will be removed
      in a future release. The default build setting for them have been changed from enabled
      to disabled. A user can enable the build of these tools if needed.
          autotools:   --enable-hlgiftools
          cmake:       HDF5_BUILD_HL_GIF_TOOLS=ON

      (ADB - 2022/12/16)

    - Change the settings of the *pc files to use the correct format

      The pkg-config files generated by CMake uses incorrect syntax for the 'Requires'
      settings. Changing the set to use 'lib-name = version' instead 'lib-name-version'
      fixes the issue

      (ADB - 2022/12/06 HDFFV-11355)

    - Move MPI libraries link from PRIVATE to PUBLIC

      The install dependencies were not including the need for MPI libraries when
      an application or library was built with the C library. Also updated the
      CMake target link command to use the newer style MPI::MPI_C link variable.

      (ADB - 2022/10/27)


    Tools
    -----
    - Fix h5repack to only print output when verbose option is selected

      When timing option was added to h5repack, the check for verbose was
      incorrectly implemented.

      (ADB -  2022/12/02, GH #2270)


    Performance
    -------------
    -


    Fortran API
    -----------
    -

    High-Level Library
    ------------------
    -


    Fortran High-Level APIs
    -----------------------
    -


    Documentation
    -------------
    -


    F90 APIs
    --------
    -


    C++ APIs
    --------
    - 


    Testing
    -------
    -


Platforms Tested
===================

    Linux 5.16.14-200.fc35           GNU gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
    #1 SMP x86_64  GNU/Linux         GNU Fortran (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
    Fedora35                         clang version 13.0.0 (Fedora 13.0.0-3.fc35)
                                     (cmake and autotools)

    Linux 5.11.0-34-generic          GNU gcc (GCC) 9.3.0-17ubuntu1
    #36-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 9.3.0-17ubuntu1
    Ubuntu 20.04                     Ubuntu clang version 10.0.0-4
                                     (cmake and autotools)

    Linux 5.3.18-150300-cray_shasta_c cray-mpich/8.1.16
    #1 SMP x86_64 GNU/Linux              Cray clang 14.0.0
    (crusher)                            GCC 11.2.0
                                     (cmake)

    Linux 4.14.0-115.35.1.1chaos     openmpi 4.0.5
    #1 SMP aarch64 GNU/Linux             GCC 9.2.0 (ARM-build-5)
    (stria)                              GCC 7.2.0 (Spack GCC)
                                     (cmake)

    Linux 4.14.0-115.35.1.3chaos     spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 12.0.1
    (vortex)                             GCC 8.3.1
                                         XL 16.1.1
                                     (cmake)

    Linux-4.14.0-115.21.2            spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 12.0.1, 14.0.5
    (lassen)                             GCC 8.3.1
                                         XL 16.1.1.2, 2021,09.22, 2022.08.05
                                     (cmake)

    Linux-4.12.14-197.99-default     cray-mpich/7.7.14
    #1 SMP x86_64 GNU/Linux              cce 12.0.3
    (theta)                              GCC 11.2.0
                                         llvm 9.0
                                         Intel 19.1.2

    Linux 3.10.0-1160.36.2.el7.ppc64 gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    #1 SMP ppc64be GNU/Linux         g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    Power8 (echidna)                 GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)

    Linux 3.10.0-1160.24.1.el7       GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos7                              Version 4.8.5 20150623 (Red Hat 4.8.5-4)
    (jelly/kituo/moohan)                 Version 4.9.3, Version 5.3.0, Version 6.3.0,
                                         Version 7.2.0, Version 8.3.0, Version 9.1.0
                                     Intel(R) C (icc), C++ (icpc), Fortran (icc)
                                     compilers:
                                         Version 17.0.0.098 Build 20160721
                                     GNU C (gcc) and C++ (g++) 4.8.5 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     Intel(R) C (icc) and C++ (icpc) 17.0.0.098 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     MPICH 3.3 compiled with GCC 7.2.0
                                     OpenMPI 2.1.6 compiled with icc 18.0.1
                                     OpenMPI 3.1.3 and 4.0.0 compiled with GCC 7.2.0
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0
                                     (autotools and cmake)

    Linux-3.10.0-1160.0.0.1chaos     openmpi-4.1.2
    #1 SMP x86_64 GNU/Linux              clang 6.0.0, 11.0.1
    (quartz)                             GCC 7.3.0, 8.1.0
                                         Intel 19.0.4, 2022.2, oneapi.2022.2

    Linux-3.10.0-1160.71.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              GCC 7.2.0
    (skybridge)                          Intel/19.1
                                     (cmake)

    Linux-3.10.0-1160.66.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              GCC 7.2.0
    (attaway)                            Intel/19.1
                                     (cmake)

    Linux-3.10.0-1160.59.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              Intel/19.1
    (chama)                          (cmake)

    macOS Apple M1 11.6              Apple clang version 12.0.5 (clang-1205.0.22.11)
    Darwin 20.6.0 arm64              gfortran GNU Fortran (Homebrew GCC 11.2.0) 11.1.0
    (macmini-m1)                     Intel icc/icpc/ifort version 2021.3.0 202106092021.3.0 20210609

    macOS Big Sur 11.3.1             Apple clang version 12.0.5 (clang-1205.0.22.9)
    Darwin 20.4.0 x86_64             gfortran GNU Fortran (Homebrew GCC 10.2.0_3) 10.2.0
    (bigsur-1)                       Intel icc/icpc/ifort version 2021.2.0 20210228

    macOS High Sierra 10.13.6        Apple LLVM version 10.0.0 (clang-1000.10.44.4)
    64-bit                           gfortran GNU Fortran (GCC) 6.3.0
    (bear)                           Intel icc/icpc/ifort version 19.0.4.233 20190416

    macOS Sierra 10.12.6             Apple LLVM version 9.0.0 (clang-900.39.2)
    64-bit                           gfortran GNU Fortran (GCC) 7.4.0
    (kite)                           Intel icc/icpc/ifort version 17.0.2

    Mac OS X El Capitan 10.11.6      Apple clang version 7.3.0 from Xcode 7.3
    64-bit                           gfortran GNU Fortran (GCC) 5.2.0
    (osx1011test)                    Intel icc/icpc/ifort version 16.0.2


    Linux 2.6.32-573.22.1.el6        GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos6                              Version 4.4.7 20120313
    (platypus)                           Version 4.9.3, 5.3.0, 6.2.0
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Windows 10 x64                  Visual Studio 2015 w/ Intel C/C++/Fortran 18 (cmake)
                                    Visual Studio 2017 w/ Intel C/C++/Fortran 19 (cmake)
                                    Visual Studio 2019 w/ clang 12.0.0
                                        with MSVC-like command-line (C/C++ only - cmake)
                                    Visual Studio 2019 w/ Intel C/C++/Fortran oneAPI 2022 (cmake)
                                    Visual Studio 2022 w/ clang 15.0.1
                                        with MSVC-like command-line (C/C++ only - cmake)
                                    Visual Studio 2022 w/ Intel C/C++/Fortran oneAPI 2022 (cmake)
                                    Visual Studio 2019 w/ MSMPI 10.1 (C only - cmake)


Known Problems
==============

       ************************************************************
       *                                  _                       *
       *                                 (_)                      *
       *        __      ____ _ _ __ _ __  _ _ __   __ _           *
       *        \ \ /\ / / _` | '__| '_ \| | '_ \ / _` |          *
       *         \ V  V / (_| | |  | | | | | | | | (_| |          *
       *          \_/\_/ \__,_|_|  |_| |_|_|_| |_|\__, |          *
       *                                           __/ |          *
       *                                          |___/           *
       *                                                          *
       *  Please refrain from running any program (including      *
       *  HDF5 tests) which uses the subfiling VFD on Perlmutter  *
       *  at the National Energy Research Scientific Computing    *
       *  Center, NERSC.                                          *
       *  Doing so may cause a system disruption due to subfiling *
       *  crashing Lustre. The sytem's Lustre bug is expected     *
       *  to be resolved by 2023.                                 *
       *                                                          *
       ************************************************************

    CMake files do not behave correctly with paths containing spaces.
    Do not use spaces in paths because the required escaping for handling spaces
    results in very complex and fragile build files.
    ADB - 2019/05/07

    At present, metadata cache images may not be generated by parallel
    applications.  Parallel applications can read files with metadata cache
    images, but since this is a collective operation, a deadlock is possible
    if one or more processes do not participate.

    CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
    issue: HDFFV-10628.  This test will pass with VS2015 with Intel compiler.

    The subsetting option in ph5diff currently will fail and should be avoided.
    The subsetting option works correctly in serial h5diff.

    Several tests currently fail on certain platforms:
        MPI_TEST-t_bigio fails with spectrum-mpi on ppc64le platforms.

        MPI_TEST-t_subfiling_vfd and MPI_TEST_EXAMPLES-ph5_subfiling fail with
        cray-mpich on theta and with XL compilers on ppc64le platforms.

        MPI_TEST_testphdf5_tldsc fails with cray-mpich 7.7 on cori and theta.

    Known problems in previous releases can be found in the HISTORY*.txt files
    in the HDF5 source. Please report any new problems found to
    help@hdfgroup.org.


CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.

The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
  build scripts
  -------------
  Autotools: h5c++, h5cc, h5fc
  CMake: h5c++, h5cc, h5hlc++, h5hlcc

The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.

The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.

The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.

The issues with the gif tool are:
    HDFFV-10592 CVE-2018-17433
    HDFFV-10593 CVE-2018-17436
    HDFFV-11048 CVE-2020-10809
These CVE issues have not yet been addressed and are avoided by not building
the gif tool by default. Enable building the High-Level tools with these options:
    autotools:   --enable-hltools
    cmake:       HDF5_BUILD_HL_TOOLS=ON

%%%%1.13.3%%%%

HDF5 version 1.13.3 released on 2022-10-28
================================================================================


INTRODUCTION
============

This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.

Note that documentation in the links below will be updated at the time of each
final release.

Links to HDF5 documentation can be found on The HDF5 web page:

     https://portal.hdfgroup.org/display/HDF5/HDF5

The official HDF5 releases can be obtained from:

     https://www.hdfgroup.org/downloads/hdf5/

Changes from Release to Release and New Features in the HDF5-1.13.x release series
can be found at:

     https://portal.hdfgroup.org/display/HDF5/HDF5+Application+Developer%27s+Guide

If you have any questions or comments, please send them to the HDF Help Desk:

     help@hdfgroup.org


CONTENTS
========

- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.13.2
- Platforms Tested
- Known Problems
- CMake vs. Autotools installations

New features and bug fixes previously added in 1.13.0 - 1.13.2 releases can be 
found in release_docs/HISTORY-1_13.txt in the HDF5 source code.


New Features
============

    Configuration:
    -------------
    - Add new CMake configuration variable HDF5_USE_GNU_DIRS

      HDF5_USE_GNU_DIRS (default OFF) selects the use of GNU Coding Standard install
      directory variables by including the CMake module, GNUInstallDirs(see CMake
      documentation for details). The HDF_DIR_PATHS macro in the HDFMacros.cmake file
      sets various PATH variables for use during the build, test and install processes.
      By default, the historical settings for these variables will be used.

      (ADB - 2022/10/21, GH-2175, GH-1716)

    - Update CMake minimum version to 3.18

      Updated CMake minimum version from 3.12 to 3.18 and removed version checks
      which were added for Windows features not yet available in version 3.12. Also
      removed configure macros and code checks for old style code compile checks.

      (ADB - 2022/08/29, HDFFV-11329)


    Library:
    --------
    - Added multi dataset I/O feature

      Added H5Dread_multi, H5Dread_multi_async, H5Dwrite_multi, and
      H5Dwrite_multi_async API routines to allow I/O on multiple datasets with a
      single API call. Added H5Dread_multi_f and H5Dwrite_multi_f Fortran
      wrappers. Updated VOL callbacks for dataset I/O to support multi dataset
      I/O.

      (NAF - 2022/10/19)


    Parallel Library:
    -----------------
    -


    Fortran Library:
    ----------------
    - Added pointer based H5Dfill_f API

      Added Fortran H5Dfill_f, which is fully equivalent to the C API. It accepts pointers,
      fill value datatype and datatype of dataspace elements.

      (MSB - 2022/10/10, HDFFV-10734.)

    C++ Library:
    ------------
    -


    Java Library:
    -------------
    -


    Tools:
    ------
    -


    High-Level APIs:
    ----------------
    - 


    C Packet Table API:
    -------------------
    -


    Internal header file:
    ---------------------
    -


    Documentation:
    --------------
    - Doxygen User Guide documentation is available when configured and generated.
      The resulting documentation files will be in the share/html subdirectory
      of the HDF5 install directory.

        (ADB - 2022/08/09)


Support for new platforms, languages and compilers
==================================================
    -


Bug Fixes since HDF5-1.13.2 release
===================================
    Library
    -------
    - Fixed an issue with variable length attributes

      Previously, if a variable length attribute was held open while its file
      was opened through another handle, the same attribute was opened through
      the second file handle, and the second file and attribute handles were
      closed, attempting to write to the attribute through the first handle
      would cause an error.

      (NAF - 2022/10/24)

    - Memory leak 
    
      A memory leak was observed with variable-length fill value in 
      H5O_fill_convert() function in H5Ofill.c. The leak is
      manifested by running valgrind on test/set_extent.c.

      Previously, fill->buf is used for datatype conversion 
      if it is large enough and the variable-length information 
      is therefore lost.  A buffer is now allocated regardless 
      so that the element in fill->buf can later be reclaimed.

      (VC - 2022/10/10, HDFFV-10840)
 
    - Fixed an issue with hyperslab selections

      Previously, when combining hyperslab selections, it was possible for the
      library to produce an incorrect combined selection.

      (NAF - 2022/09/25)

    - Fixed an issue with attribute type conversion with compound datatypes

      Previously, when performing type conversion for attribute I/O with a
      compound datatype, the library would not fill the background buffer with
      the contents of the destination, potentially causing data to be lost when
      only writing to a subset of the compound fields.

      (NAF - 2022/08/22, GitHub #2016)


    Java Library
    ------------
    - Improve variable-length datatype handling in JNI.

      The existing JNI read-write functions could handle variable-length datatypes
      that were simple variable-length datatype with an atomic sub-datatype. More
      complex combinations could not be handled. Reworked the JNI read-write functions
      to recursively inspect datatypes for variable-length sub-datatypes.

      (ADB - 2022/10/12, HDFFV-8701,10375)


    Configuration
    -------------
    -


    Tools
    -----
    -


    Performance
    -------------
    -


    Fortran API
    -----------
    -

    High-Level Library
    ------------------
    -


    Fortran High-Level APIs
    -----------------------
    -


    Documentation
    -------------
    -


    F90 APIs
    --------
    -


    C++ APIs
    --------
    - 


    Testing
    -------
    -


Platforms Tested
===================

    Linux 5.16.14-200.fc35           GNU gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
    #1 SMP x86_64  GNU/Linux         GNU Fortran (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
    Fedora35                         clang version 13.0.0 (Fedora 13.0.0-3.fc35)
                                     (cmake and autotools)

    Linux 5.11.0-34-generic          GNU gcc (GCC) 9.3.0-17ubuntu1
    #36-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 9.3.0-17ubuntu1
    Ubuntu 20.04                     Ubuntu clang version 10.0.0-4
                                     (cmake and autotools)

    Linux 5.3.18-150300-cray_shasta_c cray-mpich/8.1.16
    #1 SMP x86_64 GNU/Linux              Cray clang 14.0.0
    (crusher)                            GCC 11.2.0
                                     (cmake)

    Linux 4.14.0-115.35.1.1chaos     openmpi 4.0.5
    #1 SMP aarch64 GNU/Linux             GCC 9.2.0 (ARM-build-5)
    (stria)                              GCC 7.2.0 (Spack GCC)
                                     (cmake)

    Linux 4.14.0-115.35.1.3chaos     spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 12.0.1
    (vortex)                             GCC 8.3.1
                                         XL 16.1.1
                                     (cmake)

    Linux-4.14.0-115.21.2            spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 12.0.1, 14.0.5
    (lassen)                             GCC 8.3.1
                                         XL 16.1.1.2, 2021,09.22, 2022.08.05
                                     (cmake)

    Linux-4.12.14-197.99-default     cray-mpich/7.7.14
    #1 SMP x86_64 GNU/Linux              cce 12.0.3
    (theta)                              GCC 11.2.0
                                         llvm 9.0
                                         Intel 19.1.2

    Linux 3.10.0-1160.36.2.el7.ppc64 gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    #1 SMP ppc64be GNU/Linux         g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    Power8 (echidna)                 GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)

    Linux 3.10.0-1160.24.1.el7       GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos7                              Version 4.8.5 20150623 (Red Hat 4.8.5-4)
    (jelly/kituo/moohan)                 Version 4.9.3, Version 5.3.0, Version 6.3.0,
                                         Version 7.2.0, Version 8.3.0, Version 9.1.0
                                     Intel(R) C (icc), C++ (icpc), Fortran (icc)
                                     compilers:
                                         Version 17.0.0.098 Build 20160721
                                     GNU C (gcc) and C++ (g++) 4.8.5 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     Intel(R) C (icc) and C++ (icpc) 17.0.0.098 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     MPICH 3.3 compiled with GCC 7.2.0
                                     OpenMPI 2.1.6 compiled with icc 18.0.1
                                     OpenMPI 3.1.3 and 4.0.0 compiled with GCC 7.2.0
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0
                                     (autotools and cmake)

    Linux-3.10.0-1160.0.0.1chaos     openmpi-4.1.2
    #1 SMP x86_64 GNU/Linux              clang 6.0.0, 11.0.1
    (quartz)                             GCC 7.3.0, 8.1.0
                                         Intel 19.0.4, 2022.2, oneapi.2022.2

    Linux-3.10.0-1160.71.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              GCC 7.2.0
    (skybridge)                          Intel/19.1
                                     (cmake)

    Linux-3.10.0-1160.66.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              GCC 7.2.0
    (attaway)                            Intel/19.1
                                     (cmake)

    Linux-3.10.0-1160.59.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              Intel/19.1
    (chama)                          (cmake)

    macOS Apple M1 11.6              Apple clang version 12.0.5 (clang-1205.0.22.11)
    Darwin 20.6.0 arm64              gfortran GNU Fortran (Homebrew GCC 11.2.0) 11.1.0
    (macmini-m1)                     Intel icc/icpc/ifort version 2021.3.0 202106092021.3.0 20210609

    macOS Big Sur 11.3.1             Apple clang version 12.0.5 (clang-1205.0.22.9)
    Darwin 20.4.0 x86_64             gfortran GNU Fortran (Homebrew GCC 10.2.0_3) 10.2.0
    (bigsur-1)                       Intel icc/icpc/ifort version 2021.2.0 20210228

    macOS High Sierra 10.13.6        Apple LLVM version 10.0.0 (clang-1000.10.44.4)
    64-bit                           gfortran GNU Fortran (GCC) 6.3.0
    (bear)                           Intel icc/icpc/ifort version 19.0.4.233 20190416

    macOS Sierra 10.12.6             Apple LLVM version 9.0.0 (clang-900.39.2)
    64-bit                           gfortran GNU Fortran (GCC) 7.4.0
    (kite)                           Intel icc/icpc/ifort version 17.0.2

    Mac OS X El Capitan 10.11.6      Apple clang version 7.3.0 from Xcode 7.3
    64-bit                           gfortran GNU Fortran (GCC) 5.2.0
    (osx1011test)                    Intel icc/icpc/ifort version 16.0.2


    Linux 2.6.32-573.22.1.el6        GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos6                              Version 4.4.7 20120313
    (platypus)                           Version 4.9.3, 5.3.0, 6.2.0
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Windows 10 x64                  Visual Studio 2015 w/ Intel C/C++/Fortran 18 (cmake)
                                    Visual Studio 2017 w/ Intel C/C++/Fortran 19 (cmake)
                                    Visual Studio 2019 w/ clang 12.0.0
                                        with MSVC-like command-line (C/C++ only - cmake)
                                    Visual Studio 2019 w/ Intel C/C++/Fortran oneAPI 2021 (cmake)
                                    Visual Studio 2019 w/ MSMPI 10.1 (C only - cmake)


Known Problems
==============

    ************************************************************
    *                                  _                       *
    *                                 (_)                      *
    *        __      ____ _ _ __ _ __  _ _ __   __ _           *
    *        \ \ /\ / / _` | '__| '_ \| | '_ \ / _` |          *
    *         \ V  V / (_| | |  | | | | | | | | (_| |          *
    *          \_/\_/ \__,_|_|  |_| |_|_|_| |_|\__, |          *
    *                                           __/ |          *
    *                                          |___/           *
    *                                                          *
    *  Please refrain from running any program (including      *
    *  HDF5 tests) which uses the subfiling VFD on Perlmutter  *
    *  at the National Energy Research Scientific Computing    *
    *  Center, NERSC.                                          *
    *  Doing so may cause a system disruption due to subfiling *
    *  crashing Lustre. The sytem's Lustre bug is expected     *
    *  to be resolved by 2023.                                 *
    *                                                          *
    ************************************************************

    CMake files do not behave correctly with paths containing spaces.
    Do not use spaces in paths because the required escaping for handling spaces
    results in very complex and fragile build files.
    ADB - 2019/05/07

    At present, metadata cache images may not be generated by parallel
    applications.  Parallel applications can read files with metadata cache
    images, but since this is a collective operation, a deadlock is possible
    if one or more processes do not participate.

    CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
    issue: HDFFV-10628.  This test will pass with VS2015 with Intel compiler.

    The subsetting option in ph5diff currently will fail and should be avoided.
    The subsetting option works correctly in serial h5diff.

    Several tests currently fail on certain platforms:
        MPI_TEST-t_bigio fails with spectrum-mpi on ppc64le platforms.

        MPI_TEST-t_subfiling_vfd and MPI_TEST_EXAMPLES-ph5_subfiling fail with
        cray-mpich on theta and with XL compilers on ppc64le platforms.

        MPI_TEST_testphdf5_tldsc fails with cray-mpich 7.7 on cori and theta.

    Known problems in previous releases can be found in the HISTORY*.txt files
    in the HDF5 source. Please report any new problems found to
    help@hdfgroup.org.


CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.

The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
  build scripts
  -------------
  Autotools: h5c++, h5cc, h5fc
  CMake: h5c++, h5cc, h5hlc++, h5hlcc

The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.

The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.

The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.

The issues with the gif tool are:
    HDFFV-10592 CVE-2018-17433
    HDFFV-10593 CVE-2018-17436
    HDFFV-11048 CVE-2020-10809
These CVE issues have not yet been addressed and can be avoided by not building
the gif tool. Disable building the High-Level tools with these options:
    autotools:   --disable-hltools
    cmake:       HDF5_BUILD_HL_TOOLS=OFF


%%%%1.13.2%%%%

HDF5 version 1.13.2 released on 2022-08-15
================================================================================


INTRODUCTION
============

This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.

Note that documentation in the links below will be updated at the time of each
final release.

Links to HDF5 documentation can be found on The HDF5 web page:

     https://portal.hdfgroup.org/display/HDF5/HDF5

The official HDF5 releases can be obtained from:

     https://www.hdfgroup.org/downloads/hdf5/

Changes from Release to Release and New Features in the HDF5-1.13.x release series
can be found at:

     https://portal.hdfgroup.org/display/HDF5/HDF5+Application+Developer%27s+Guide

If you have any questions or comments, please send them to the HDF Help Desk:

     help@hdfgroup.org


CONTENTS
========

- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.13.1
- Platforms Tested
- Known Problems
- CMake vs. Autotools installations


New Features
============

    Configuration:
    -------------
    - Correct the usage of CMAKE_Fortran_MODULE_DIRECTORY and where to
      install Fortran mod files.

      The Fortran modules files, ending in .mod are files describing a
      Fortran 90 (and above) module API and ABI. These are not like C
      header files describing an API, they are compiler dependent and
      arch dependent, and not easily readable by a human being. They are
      nevertheless searched for in the includes directories by gfortran
      (in directories specified with -I).

      Autotools configure uses the -fmoddir option to specify the folder.
      CMake will use "mod" folder by default unless overridden by the CMake
      variable; HDF5_INSTALL_MODULE_DIR.

      (ADB - 2022/07/21)

    - HDF5 memory allocation sanity checking is now off by default for
      Autotools debug builds

      HDF5 can be configured to perform sanity checking on internal memory
      allocations by adding heap canaries to these allocations. However,
      enabling this option can cause issues with external filter plugins
      when working with (reallocating/freeing/allocating and passing back)
      buffers.

      Previously, this option was off by default for all CMake build types,
      but only off by default for non-debug Autotools builds. Since debug
      is the default build mode for HDF5 when built from source with
      Autotools, this can result in surprising segfaults that don't occur
      when an application is built against a release version of HDF5.
      Therefore, this option is now off by default for all build types
      across both CMake and Autotools.

      (JTH - 2022/03/01)


    Library:
    --------
    - Onion VFD

      The onion VFD allows creating "versioned" HDF5 files. File open/close
      operations after initial file creation will add changes to an external
      "onion" file (.onion extension by default) instead of the original file.
      Each written revision can be opened independently.

      To open a file with the onion VFD, use the H5Pset_fapl_onion() API call
      (does not need to be used for the initial creation of the file). The
      options for the H5FD_onion_fapl_info_t struct are described in H5FDonion.h.

      The H5FDonion_get_revision_count() API call can be used to query a file
      to find out how many revisions have been created.

      (DER - 2022/08/02)

    - Subfiling VFD

      The HDF5 Subfiling VFD is a new MPI-based file driver that allows an
      HDF5 application to distribute an HDF5 file across a collection of
      "sub-files" in equal-sized data segment "stripes". I/O to the logical
      HDF5 file is then directed to the appropriate "sub-file" according to
      the Subfiling configuration and a system of I/O concentrators, which
      are MPI ranks operating worker threads.

      By allowing a configurable stripe size, number of I/O concentrators and
      method for selecting MPI ranks as I/O concentrators, the Subfiling VFD
      aims to enable an HDF5 application to find a middle ground between the
      single shared file and file-per-process approaches to parallel file I/O
      for the particular machine the application is running on. In general, the
      goal is to avoid some of the complexity of the file-per-process approach
      while also minimizing the locking issues of the single shared file approach
      on a parallel file system.

      Also included with the Subfiling VFD is a new h5fuse.sh script which
      reads a Subfiling configuration file and then combines the various
      sub-files back into a single HDF5 file. By default, the h5fuse.sh script
      looks in the current directory for the Subfiling configuration file,
      but can also be pointed to the configuration file with a command-line
      option.

      The Subfiling VFD can be used by calling H5Pset_fapl_subfiling() on a
      File Access Property List and using that FAPL for file operations. Note
      that the Subfiling VFD currently has the following limitations:

      * Does not currently support HDF5 collective I/O, other than collective
        metadata writes and reads as set by H5Pset_coll_metadata_write() and
        H5Pset_all_coll_metadata_ops()

      * The Subfiling VFD should not currently be used with an HDF5 library
        that has been built with thread-safety enabled. This can cause deadlocks
        when failures occur due to interactions between the VFD's internal
        threads and HDF5's global lock. 

      (JTH - 2022/07/22)


    Parallel Library:
    -----------------
    -


    Fortran Library:
    ----------------
    -


    C++ Library:
    ------------
    - Added two new constructors to H5::H5File class

      Two new constructors were added to allow opening a file with non-default
      access property list.


    Java Library:
    -------------
    - Added version of H5Rget_name to return the name as a Java string.

      Other functions that get_name process the get_size then get the name
      within the JNI implementation. Now H5Rget_name has a H5Rget_name_string.

      (ADB - 2022/07/12)

    - Added reference support to H5A and H5D read write vlen JNI functions.

      Added the implementation to handle VL references as an Array of Lists
      of byte arrays.

      The JNI wrappers translate the Array of Lists to/from the hvl_t vlen
      structures. The wrappers use the specified datatype arguments for the
      List type translation, it is expected that the Java type is correct.

      (ADB - 2022/07/11, HDFFV-11318)

    - H5A and H5D read write vlen JNI functions were incorrect.

      Corrected the vlen function implementations for the basic primitive types.
      The VLStrings functions now correctly use the implementation that had been
      the VL functions. (VLStrings functions did not have an implementation.)
      The new VL functions implementation now expect an Array of Lists between
      Java and the JNI wrapper. 

      The JNI wrappers translate the Array of Lists to/from the hvl_t vlen
      structures. The wrappers use the specified datatype arguments for the
      List type translation, it is expected that the Java type is correct.

      (ADB - 2022/07/07, HDFFV-11310)

    - H5A and H5D read write JNI functions had flawed vlen datatype check.

      Adapted tools function for JNI utils file. This reduced multiple calls
      to a single check and variable. The variable can then be used to call 
      the H5Treclaim function. Adjusted existing test and added new test.

      (ADB - 2022/06/22)


    Tools:
    ------
    - Building h5perf/h5perf_serial in "standalone mode" has been removed

      Building h5perf separately from the library was added circa 2008
      in HDF5 1.6.8. It's unclear what purpose this serves and the current
      implementation is currently broken. The existing files require
      H5private.h and the symbols we use to determine how the copied
      platform-independence scheme should be used come from H5pubconf.h,
      which may not match the compiler being used to build standalone h5perf.

      Due to the maintenance overhead and lack of a clear use case, support
      for building h5perf and h5perf_serial separately from the HDF5 library
      has been removed.

      (DER - 2022/07/15)

    - The perf tool has been removed

      The small `perf` tool didn't really do anything special and the name
      conflicts with gnu's perf tool.

      (DER - 2022/07/15, GitHub #1787)

    - 1.10 References in containers were not displayed properly by h5dump.

      Ported 1.10 tools display function to provide ability to inspect and
      display 1.10 reference data. 

      (ADB - 2022/06/22)


    High-Level APIs:
    ----------------
    - 


    C Packet Table API:
    -------------------
    -


    Internal header file:
    ---------------------
    - All the #defines named H5FD_CTL__* were renamed to H5FD_CTL_*, i.e. the double underscore was reduced to a single underscore.


    Documentation:
    --------------
    -


Support for new platforms, languages and compilers
==================================================
    -


Bug Fixes since HDF5-1.13.1 release
===================================
    Library
    -------
    - The offset parameter in H5Dchunk_iter() is now scaled properly

      In earlier HDF5 1.13.x versions, the chunk offset was not scaled by the
      chunk dimensions. This offset parameter in the callback now matches
      that of H5Dget_chunk_info().

      (@mkitti - 2022/08/06, GitHub #1419)

    - Converted an assertion on (possibly corrupt) file contents to a normal
      error check

      Previously, the library contained an assertion check that a read superblock
      doesn't contain a superblock extension message when the superblock
      version < 2. When a corrupt HDF5 file is read, this assertion can be triggered
      in debug builds of HDF5. In production builds, this situation could cause
      either a library error or a crash, depending on the platform.

      (JTH - 2022/07/08, HDFFV-11316/HDFFV-11317)


    Java Library
    ------------
    -


    Configuration
    -------------
    -


    Tools
    -----
    -


    Performance
    -------------
    -


    Fortran API
    -----------
    - h5open_f and h5close_f fixes
     * Fixed it so both h5open_f and h5close_f can be called multiple times.
     * Fixed an issue with open objects remaining after h5close_f was called.
     * Added additional tests.
       (MSB, 2022/04/19, HDFFV-11306)


    High-Level Library
    ------------------
    -


    Fortran High-Level APIs
    -----------------------
    -


    Documentation
    -------------
    -


    F90 APIs
    --------
    -


    C++ APIs
    --------
    - 


    Testing
    -------
    -


Platforms Tested
===================

    Linux 5.16.14-200.fc35           GNU gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
    #1 SMP x86_64  GNU/Linux         GNU Fortran (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9)
    Fedora35                         clang version 13.0.0 (Fedora 13.0.0-3.fc35)
                                     (cmake and autotools)

    Linux 5.11.0-34-generic          GNU gcc (GCC) 9.3.0-17ubuntu1
    #36-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 9.3.0-17ubuntu1
    Ubuntu 20.04                     Ubuntu clang version 10.0.0-4
                                     (cmake and autotools)

    Linux 5.3.18-150300-cray_shasta_c cray-mpich/8.1.16
    #1 SMP x86_64 GNU/Linux              Cray clang 14.0.0
    (crusher)                            GCC 11.2.0
                                     (cmake)

    Linux 5.3.18-24-cray_shasta_c    cray-mpich/8.1.12
    #1 SMP x86_64 GNU/Linux              Cray clang 13.0.0   
    (spock)                              AMD clang 13.0.0
                                         GCC 8.2.0, 11.2.0
                                     (cmake)

    Linux 4.14.0-115.35.1.1chaos     openmpi 4.0.5
    #1 SMP aarch64 GNU/Linux             GCC 9.2.0 (ARM-build-5)
    (stria)                              GCC 7.2.0 (Spack GCC)
                                     (cmake)

    Linux 4.14.0-115.35.1.3chaos     spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 12.0.1
    (vortex)                             GCC 8.3.1
                                         XL 16.1.1
                                     (cmake)

    Linux-4.14.0-115.21.2            spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 8.0.1, 11.0.1
    (lassen)                             GCC 7.3.1
                                         XL 16.1.1.2
                                     (cmake)

    Linux-4.12.14-150.75-default     cray-mpich/7.7.10
    #1 SMP x86_64 GNU/Linux              GCC 7.3.0, 8.2.0
    (cori)                               Intel (R) Version 19.0.3.199
                                     (cmake)

    Linux 3.10.0-1160.36.2.el7.ppc64 gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    #1 SMP ppc64be GNU/Linux         g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    Power8 (echidna)                 GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)

    Linux 3.10.0-1160.24.1.el7       GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos7                              Version 4.8.5 20150623 (Red Hat 4.8.5-4)
    (jelly/kituo/moohan)                 Version 4.9.3, Version 5.3.0, Version 6.3.0,
                                         Version 7.2.0, Version 8.3.0, Version 9.1.0
                                     Intel(R) C (icc), C++ (icpc), Fortran (icc)
                                     compilers:
                                         Version 17.0.0.098 Build 20160721
                                     GNU C (gcc) and C++ (g++) 4.8.5 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     Intel(R) C (icc) and C++ (icpc) 17.0.0.098 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     MPICH 3.3 compiled with GCC 7.2.0
                                     OpenMPI 2.1.6 compiled with icc 18.0.1
                                     OpenMPI 3.1.3 and 4.0.0 compiled with GCC 7.2.0
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0
                                     (autotools and cmake)

    Linux-3.10.0-1160.71.1.1chaos    openmpi-4.0.0
    #1 SMP x86_64 GNU/Linux              clang 6.0.0, 11.0.1
    (quartz)                             GCC 7.3.0, 8.1.0
                                         Intel 16.0.4, 18.0.2, 19.0.4
                                     (cmake)

    Linux-3.10.0-1160.71.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              GCC 7.2.0
    (skybridge)                          Intel/19.1
                                     (cmake)

    Linux-3.10.0-1160.66.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              GCC 7.2.0
    (attaway)                            Intel/19.1
                                     (cmake)

    Linux-3.10.0-1160.59.1.1chaos    openmpi/4.1
    #1 SMP x86_64 GNU/Linux              Intel/19.1
    (chama)                          (cmake)

    macOS Apple M1 11.6              Apple clang version 12.0.5 (clang-1205.0.22.11)
    Darwin 20.6.0 arm64              gfortran GNU Fortran (Homebrew GCC 11.2.0) 11.1.0
    (macmini-m1)                     Intel icc/icpc/ifort version 2021.3.0 202106092021.3.0 20210609

    macOS Big Sur 11.3.1             Apple clang version 12.0.5 (clang-1205.0.22.9)
    Darwin 20.4.0 x86_64             gfortran GNU Fortran (Homebrew GCC 10.2.0_3) 10.2.0
    (bigsur-1)                       Intel icc/icpc/ifort version 2021.2.0 20210228

    macOS High Sierra 10.13.6        Apple LLVM version 10.0.0 (clang-1000.10.44.4)
    64-bit                           gfortran GNU Fortran (GCC) 6.3.0
    (bear)                           Intel icc/icpc/ifort version 19.0.4.233 20190416

    macOS Sierra 10.12.6             Apple LLVM version 9.0.0 (clang-900.39.2)
    64-bit                           gfortran GNU Fortran (GCC) 7.4.0
    (kite)                           Intel icc/icpc/ifort version 17.0.2

    Mac OS X El Capitan 10.11.6      Apple clang version 7.3.0 from Xcode 7.3
    64-bit                           gfortran GNU Fortran (GCC) 5.2.0
    (osx1011test)                    Intel icc/icpc/ifort version 16.0.2


    Linux 2.6.32-573.22.1.el6        GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos6                              Version 4.4.7 20120313
    (platypus)                           Version 4.9.3, 5.3.0, 6.2.0
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Windows 10 x64                  Visual Studio 2015 w/ Intel C/C++/Fortran 18 (cmake)
                                    Visual Studio 2017 w/ Intel C/C++/Fortran 19 (cmake)
                                    Visual Studio 2019 w/ clang 12.0.0
                                        with MSVC-like command-line (C/C++ only - cmake)
                                    Visual Studio 2019 w/ Intel C/C++/Fortran oneAPI 2021 (cmake)
                                    Visual Studio 2019 w/ MSMPI 10.1 (C only - cmake)


Known Problems
==============
    Setting a variable-length dataset fill value will leak the memory allocated
    for the p field of the hvl_t struct. A fix is in progress for this.
    HDFFV-10840

    CMake files do not behave correctly with paths containing spaces.
    Do not use spaces in paths because the required escaping for handling spaces
    results in very complex and fragile build files.
    ADB - 2019/05/07

    At present, metadata cache images may not be generated by parallel
    applications.  Parallel applications can read files with metadata cache
    images, but since this is a collective operation, a deadlock is possible
    if one or more processes do not participate.

    CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
    issue: HDFFV-10628.  This test will pass with VS2015 with Intel compiler.

    The subsetting option in ph5diff currently will fail and should be avoided.
    The subsetting option works correctly in serial h5diff.

    Several tests currently fail on certain platforms:
        MPI_TEST-t_bigio fails with spectrum-mpi on ppc64le platforms.

        MPI_TEST-t_subfiling_vfd and MPI_TEST_EXAMPLES-ph5_subfiling fail with 
        cray-mpich on theta and with XL compilers on ppc64le platforms.

        MPI_TEST_testphdf5_tldsc fails with cray-mpich 7.7 on cori and theta.

    Known problems in previous releases can be found in the HISTORY*.txt files
    in the HDF5 source. Please report any new problems found to
    help@hdfgroup.org.


CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.

The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
  build scripts
  -------------
  Autotools: h5c++, h5cc, h5fc
  CMake: h5c++, h5cc, h5hlc++, h5hlcc

The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.

The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.

The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.

The issues with the gif tool are:
    HDFFV-10592 CVE-2018-17433
    HDFFV-10593 CVE-2018-17436
    HDFFV-11048 CVE-2020-10809
These CVE issues have not yet been addressed and can be avoided by not building
the gif tool. Disable building the High-Level tools with these options:
    autotools:   --disable-hltools
    cmake:       HDF5_BUILD_HL_TOOLS=OFF


%%%%1.13.1%%%%

HDF5 version 1.13.1 released on 2022-03-02
================================================================================


INTRODUCTION
============

This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.

Note that documentation in the links below will be updated at the time of each
final release.

Links to HDF5 documentation can be found on The HDF5 web page:

     https://portal.hdfgroup.org/display/HDF5/HDF5

The official HDF5 releases can be obtained from:

     https://www.hdfgroup.org/downloads/hdf5/

Changes from Release to Release and New Features in the HDF5-1.13.x release series
can be found at:

     https://portal.hdfgroup.org/display/HDF5/HDF5+Application+Developer%27s+Guide

If you have any questions or comments, please send them to the HDF Help Desk:

     help@hdfgroup.org


CONTENTS
========

- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.13.0
- Platforms Tested
- Known Problems
- CMake vs. Autotools installations


New Features
============

    Configuration:
    -------------
    - Reworked corrected path searched by CMake find_package command

      The install path for cmake find_package files had been changed to use
        "share/cmake"
      for all platforms. However setting the HDF5_ROOT variable failed to locate
      the configuration files. The build variable HDF5_INSTALL_CMAKE_DIR is now
      set to the <INSTALL_DIR>/cmake folder. The location of the configuration 
      files can still be specified by the "HDF5_DIR" variable.

      (ADB - 2022/02/02)

    - CPack will now generate RPM/DEB packages.

      Enabled the RPM and DEB CPack generators on linux. In addition to
      generating STGZ and TGZ packages, CPack will try to package the 
      library for RPM and DEB packages. This is the initial attempt and
      may change as issues are resolved.

      (ADB - 2022/01/27)

    - Added new option to the h5cc scripts produced by CMake.

      Add -showconfig option to h5cc scripts to cat the 
      libhdf5.settings file to the standard output.

      (ADB - 2022/01/25)

    - CMake will now run the PowerShell script tests in test/ by default
      on Windows.

      The test directory includes several shell script tests that previously
      were not run by CMake on Windows. These are now run by default.
      If TEST_SHELL_SCRIPTS is ON and PWSH is found, the PowerShell scripts
      will execute. Similar to the bash scripts on unix platforms.

      (ADB - 2021/11/23)


    Library:
    --------
    - Add a new public function, H5ESget_requests()

      This function allows the user to retrieve request pointers from an event
      set. It is intended for use primarily by VOL plugin developers.

      (NAF - 2022/01/11)


    Parallel Library:
    -----------------
    - Several improvements to parallel compression feature, including:

      * Improved support for collective I/O (for both writes and reads)

      * Significant reduction of memory usage for the feature as a whole

      * Reduction of copying of application data buffers passed to H5Dwrite

      * Addition of support for incremental file space allocation for filtered
        datasets created in parallel. Incremental file space allocation is the
        default for these types of datasets (early file space allocation is
        also still supported), while early file space allocation is still the
        default (and only supported at allocation time) for unfiltered datasets
        created in parallel. Incremental file space allocation should help with
        parallel HDF5 applications that wish to use fill values on filtered
        datasets, but would typically avoid doing so since dataset creation in
        parallel would often take an excessive amount of time. Since these
        datasets previously used early file space allocation, HDF5 would
        allocate space for and write fill values to every chunk in the dataset
        at creation time, leading to noticeable overhead. Instead, with
        incremental file space allocation, allocation of file space for chunks
        and writing of fill values to those chunks will be delayed until each
        individual chunk is initially written to.

      * Addition of support for HDF5's "don't filter partial edge chunks" flag
        (https://portal.hdfgroup.org/display/HDF5/H5P_SET_CHUNK_OPTS)

      * Addition of proper support for HDF5 fill values with the feature

      * Addition of 'H5_HAVE_PARALLEL_FILTERED_WRITES' macro to H5pubconf.h
        so HDF5 applications can determine at compile-time whether the feature
        is available

      * Addition of simple examples (ph5_filtered_writes.c and
        ph5_filtered_writes_no_sel.c) under examples directory to demonstrate
        usage of the feature

      * Improved coverage of regression testing for the feature

      (JTH - 2022/2/23)


Support for new platforms, languages and compilers
==================================================
    - None


Bug Fixes since HDF5-1.13.0 release
===================================
    Library
    -------
    - Fixed a metadata cache bug when resizing a pinned/protected cache entry

      When resizing a pinned/protected cache entry, the metadata
      cache code previously would wait until after resizing the
      entry to attempt to log the newly-dirtied entry. This 
      caused H5C_resize_entry to mark the entry as dirty and made
      H5AC_resize_entry think that it didn't need to add the
      newly-dirtied entry to the dirty entries skiplist.

      Thus, a subsequent H5AC__log_moved_entry would think it
      needed to allocate a new entry for insertion into the dirty
      entry skip list, since the entry didGn't exist on that list.
      This caused an assertion failure, as the code to allocate a
      new entry assumes that the entry is not dirty.

      (JRM - 2022/02/28)

    - Issue #1436 identified a problem with the H5_VERS_RELEASE check in the
      H5check_version function.

      Investigating the original fix, #812, we discovered some inconsistencies
      with a new block added to check H5_VERS_RELEASE for incompatibilities.
      This new block was not using the new warning text dealing with the
      H5_VERS_RELEASE check and would cause the warning to be duplicated.
      
      By removing the H5_VERS_RELEASE argument in the first check for 
      H5_VERS_MAJOR and H5_VERS_MINOR, the second check would only check
      the H5_VERS_RELEASE for incompatible release versions. This adheres
      to the statement that except for the develop branch, all release versions
      in a major.minor maintenance branch should be compatible. The prerequisite
      is that an application will not use any APIs not present in all release versions.

      (ADB - 2022/02/24, #1438)

    - Unified handling of collective metadata reads to correctly fix old bugs

      Due to MPI-related issues occurring in HDF5 from mismanagement of the
      status of collective metadata reads, they were forced to be disabled
      during chunked dataset raw data I/O in the HDF5 1.10.5 release. This
      wouldn't generally have affected application performance because HDF5
      already disables collective metadata reads during chunk lookup, since
      it is generally unlikely that the same chunks will be read by all MPI
      ranks in the I/O operation. However, this was only a partial solution
      that wasn't granular enough.

      This change now unifies the handling of the file-global flag and the
      API context-level flag for collective metadata reads in order to
      simplify querying of the true status of collective metadata reads. Thus,
      collective metadata reads are once again enabled for chunked dataset
      raw data I/O, but manually controlled at places where some processing
      occurs on MPI rank 0 only and would cause issues when collective
      metadata reads are enabled.

      (JTH - 2021/11/16, HDFFV-10501/HDFFV-10562)

    - Fixed several potential MPI deadlocks in library failure conditions

      In the parallel library, there were several places where MPI rank 0
      could end up skipping past collective MPI operations when some failure
      occurs in rank 0-specific processing. This would lead to deadlocks
      where rank 0 completes an operation while other ranks wait in the
      collective operation. These places have been rewritten to have rank 0
      push an error and try to cleanup after the failure, then continue to
      participate in the collective operation to the best of its ability.

      (JTH - 2021/11/09)


Platforms Tested
===================

    Linux 5.13.14-200.fc34           GNU gcc (GCC) 11.2.1 2021078 (Red Hat 11.2.1-1)
    #1 SMP x86_64  GNU/Linux         GNU Fortran (GCC) 11.2.1 2021078 (Red Hat 11.2.1-1)
    Fedora34                         clang version 12.0.1 (Fedora 12.0.1-1.fc34)
                                     (cmake and autotools)

    Linux 5.11.0-34-generic          GNU gcc (GCC) 9.3.0-17ubuntu1
    #36-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 9.3.0-17ubuntu1
    Ubuntu 20.04                     Ubuntu clang version 10.0.0-4
                                     (cmake and autotools)

    Linux 5.8.0-63-generic           GNU gcc (GCC) 10.3.0-1ubuntu1
    #71-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 10.3.0-1ubuntu1
    Ubuntu20.10                      Ubuntu clang version 11.0.0-2
                                     (cmake and autotools)

    Linux 5.3.18-22-default          GNU gcc (SUSE Linux) 7.5.0
    #1 SMP x86_64  GNU/Linux         GNU Fortran (SUSE Linux) 7.5.0
    SUSE15sp2                        clang version 7.0.1 (tags/RELEASE_701/final 349238)
                                     (cmake and autotools)

    Linux-4.14.0-115.21.2            spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 8.0.1, 11.0.1
    (lassen)                             GCC 7.3.1
                                         XL 16.1.1.2
                                     (cmake)

    Linux-3.10.0-1160.49.1           openmpi-intel/4.1
    #1 SMP x86_64 GNU/Linux              Intel(R) Version 18.0.5, 19.1.2
    (chama)                          (cmake)

    Linux-4.12.14-150.75-default     cray-mpich/7.7.10
    #1 SMP x86_64 GNU/Linux              GCC 7.3.0, 8.2.0
    (cori)                               Intel (R) Version 19.0.3.199
                                     (cmake)

    Linux-4.12.14-197.86-default     cray-mpich/7.7.6
    # 1SMP x86_64 GNU/Linux              GCC  7.3.0, 9.3.0, 10.2.0
    (mutrino)                            Intel (R) Version 17.0.4, 18.0.5, 19.1.3
                                     (cmake)

    Linux 3.10.0-1160.36.2.el7.ppc64 gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    #1 SMP ppc64be GNU/Linux         g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    Power8 (echidna)                 GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)

    Linux 3.10.0-1160.24.1.el7       GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos7                              Version 4.8.5 20150623 (Red Hat 4.8.5-4)
    (jelly/kituo/moohan)                 Version 4.9.3, Version 5.3.0, Version 6.3.0,
                                         Version 7.2.0, Version 8.3.0, Version 9.1.0
                                     Intel(R) C (icc), C++ (icpc), Fortran (icc)
                                     compilers:
                                         Version 17.0.0.098 Build 20160721
                                     GNU C (gcc) and C++ (g++) 4.8.5 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     Intel(R) C (icc) and C++ (icpc) 17.0.0.098 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     MPICH 3.3 compiled with GCC 7.2.0
                                     OpenMPI 2.1.6 compiled with icc 18.0.1
                                     OpenMPI 3.1.3 and 4.0.0 compiled with GCC 7.2.0
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Linux-3.10.0-1127.0.0.1chaos     openmpi-4.0.0
    #1 SMP x86_64 GNU/Linux              clang 6.0.0, 11.0.1
    (quartz)                             GCC 7.3.0, 8.1.0
                                         Intel 16.0.4, 18.0.2, 19.0.4

    macOS Apple M1 11.6              Apple clang version 12.0.5 (clang-1205.0.22.11)
    Darwin 20.6.0 arm64              gfortran GNU Fortran (Homebrew GCC 11.2.0) 11.1.0
    (macmini-m1)                     Intel icc/icpc/ifort version 2021.3.0 202106092021.3.0 20210609

    macOS Big Sur 11.3.1             Apple clang version 12.0.5 (clang-1205.0.22.9)
    Darwin 20.4.0 x86_64             gfortran GNU Fortran (Homebrew GCC 10.2.0_3) 10.2.0
    (bigsur-1)                       Intel icc/icpc/ifort version 2021.2.0 20210228

    macOS High Sierra 10.13.6        Apple LLVM version 10.0.0 (clang-1000.10.44.4)
    64-bit                           gfortran GNU Fortran (GCC) 6.3.0
    (bear)                           Intel icc/icpc/ifort version 19.0.4.233 20190416

    macOS Sierra 10.12.6             Apple LLVM version 9.0.0 (clang-900.39.2)
    64-bit                           gfortran GNU Fortran (GCC) 7.4.0
    (kite)                           Intel icc/icpc/ifort version 17.0.2

    Mac OS X El Capitan 10.11.6      Apple clang version 7.3.0 from Xcode 7.3
    64-bit                           gfortran GNU Fortran (GCC) 5.2.0
    (osx1011test)                    Intel icc/icpc/ifort version 16.0.2


    Linux 2.6.32-573.22.1.el6        GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos6                              Version 4.4.7 20120313
    (platypus)                           Version 4.9.3, 5.3.0, 6.2.0
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Windows 10 x64                  Visual Studio 2015 w/ Intel C/C++/Fortran 18 (cmake)
                                    Visual Studio 2017 w/ Intel C/C++/Fortran 19 (cmake)
                                    Visual Studio 2019 w/ clang 12.0.0
                                        with MSVC-like command-line (C/C++ only - cmake)
                                    Visual Studio 2019 w/ Intel Fortran 19 (cmake)
                                    Visual Studio 2019 w/ MSMPI 10.1 (C only - cmake)


Known Problems
==============
    Setting a variable-length dataset fill value will leak the memory allocated
    for the p field of the hvl_t struct. A fix is in progress for this.
    HDFFV-10840

    CMake files do not behave correctly with paths containing spaces.
    Do not use spaces in paths because the required escaping for handling spaces
    results in very complex and fragile build files.
    ADB - 2019/05/07

    At present, metadata cache images may not be generated by parallel
    applications.  Parallel applications can read files with metadata cache
    images, but since this is a collective operation, a deadlock is possible
    if one or more processes do not participate.

    CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
    issue: HDFFV-10628.  This test will pass with VS2015 with Intel compiler.

    The subsetting option in ph5diff currently will fail and should be avoided.
    The subsetting option works correctly in serial h5diff.

    Known problems in previous releases can be found in the HISTORY*.txt files
    in the HDF5 source. Please report any new problems found to
    help@hdfgroup.org.


CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.

The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
  build scripts
  -------------
  Autotools: h5c++, h5cc, h5fc
  CMake: h5c++, h5cc, h5hlc++, h5hlcc

The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.

The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.

The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.

The issues with the gif tool are:
    HDFFV-10592 CVE-2018-17433
    HDFFV-10593 CVE-2018-17436
    HDFFV-11048 CVE-2020-10809
These CVE issues have not yet been addressed and can be avoided by not building
the gif tool. Disable building the High-Level tools with these options:
    autotools:   --disable-hltools


%%%%1.13.0%%%%

HDF5 version 1.13.0 released on 2021-12-01
================================================================================


INTRODUCTION
============

This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.

Note that documentation in the links below will be updated at the time of each
final release.

Links to HDF5 documentation can be found on The HDF5 web page:

     https://portal.hdfgroup.org/display/HDF5/HDF5

The official HDF5 releases can be obtained from:

     https://www.hdfgroup.org/downloads/hdf5/

Changes from Release to Release and New Features in the HDF5-1.13.x release series
can be found at:

     https://portal.hdfgroup.org/display/HDF5/HDF5+Application+Developer%27s+Guide

If you have any questions or comments, please send them to the HDF Help Desk:

     help@hdfgroup.org


CONTENTS
========

- New Features
- New platforms, languages and compilers tested
- Bug Fixes since HDF5-1.12.0
- Platforms Tested
- Known Problems
- CMake vs. Autotools installations


New Features
============

    Configuration:
    -------------
    - Added new configure option to support building parallel tools.
      See Tools below (autotools - CMake):
            --enable-parallel-tools      HDF5_BUILD_PARALLEL_TOOLS

      (RAW - 2021/10/25)

    - Added new configure options to enable dimension scales APIs (H5DS*) to
      use new object references with the native VOL connector (aka native HDF5
      library). New references are always used for non-native terminal VOL
      connectors (e.g., DAOS).

      Autotools   --enable-dimension-scales-with-new-ref
      CMake       HDF5_DIMENSION_SCALES_NEW_REF=ON

      (EIP - 2021/10/25, HDFFV-11180)

    - Refactored the utils folder.

      Added subfolder test and moved the 'swmr_check_compat_vfd.c file'
      from test into utils/test. Deleted the duplicate swmr_check_compat_vfd.c
      file in hl/tools/h5watch folder. Also fixed vfd check options.

      (ADB - 2021/10/18)

    - Changed autotools and CMake configurations to derive both
      compilation warnings-as-errors and warnings-only-warn configurations
      from the same files, 'config/*/*error*'.  Removed redundant files
      'config/*/*noerror*'.

      (DCY - 2021/09/29)

    - Added new option to control the build of High-Level tools
      that default ON/enabled.

      Add configure options (autotools - CMake):
            --enable-hltools       HDF5_BUILD_HL_TOOLS

      Disabling this option prevents building the gif tool which
      contains the following CVEs:
          HDFFV-10592 CVE-2018-17433
          HDFFV-10593 CVE-2018-17436
          HDFFV-11048 CVE-2020-10809

      (ADB - 2021/09/16, HDFFV-11266)

    - Adds C++ Autotools configuration file for Intel

      * Checks for icpc as the compiler
      * Sets std=c++11
      * Copies most non-warning flags from intel-flags

      (DER - 2021/06/02)

    - Adds C++ Autotools configuration file for PGI

      * Checks for pgc++ as the compiler name (was: pgCC)
      * Sets -std=c++11
      * Other options basically match new C options (below)

      (DER - 2021/06/02)

    - Updates PGI C options

      * -Minform set to warn (was: inform) to suppress spurious messages
      * Sets -gopt -O2 as debug options
      * Sets -O4 as 'high optimization' option
      * Sets -O0 as 'no optimization' option
      * Removes specific settings for PGI 9 and 10

      (DER - 2021/06/02)

    - A C++11-compliant compiler is now required to build the C++ wrappers

      CMAKE_CXX_STANDARD is now set to 11 when building with CMake and
      -std=c++11 is added when building with clang/gcc via the Autotools.

      (DER - 2021/05/27)

    - CMake will now run the shell script tests in test/ by default

      The test directory includes several shell script tests that previously
      were not run by CMake. These are now run by default. TEST_SHELL_SCRIPTS
      has been set to ON and SH_PROGRAM has been set to bash (some test
      scripts use bash-isms). Platforms without bash (e.g., Windows) will
      ignore the script tests.

      (DER - 2021/05/23)

    - Removed unused HDF5_ENABLE_HSIZET option from CMake

      This has been unused for some time and has no effect.

      (DER - 2021/05/23)

    - CMake no longer builds the C++ library by default

      HDF5_BUILD_CPP_LIB now defaults to OFF, which is in line with the
      Autotools build defaults.

      (DER - 2021/04/20)

    - Removal of pre-VS2015 work-arounds

      HDF5 now requires Visual Studio 2015 or greater, so old work-around
      code and definitions have been removed, including:

      * <inttypes.h>
      * snprintf and vsnprintf
      * llround, llroundf, lround, lroundf, round, roundf
      * strtoll and strtoull
      * va_copy
      * struct timespec

      (DER - 2021/03/22)

    - Add CMake variable HDF5_LIB_INFIX

      This infix is added to all library names after 'hdf5'.
      e.g. the infix '_openmpi' results in the library name 'libhdf5_openmpi.so'
      This name is used in packages on debian based systems.
      (see https://packages.debian.org/jessie/amd64/libhdf5-openmpi-8/filelist)

      (barcode - 2021/03/22)

    - On macOS, Universal Binaries can now be built, allowing native execution on
      both Intel and Apple Silicon (ARM) based Macs.

      To do so, set CMAKE_OSX_ARCHITECTURES="x86_64;arm64"

      (SAM - 2021/02/07, github-311)

    - Added a configure-time option to control certain compiler warnings
      diagnostics

      A new configure-time option was added that allows some compiler warnings
      diagnostics to have the default operation. This is mainly intended for
      library developers and currently only works for gcc 10 and above. The
      diagnostics flags apply to C, C++ and Fortran compilers and will appear
      in "H5 C Flags", H5 C++ Flags" and H5 Fortran Flags, respectively. They
      will NOT be exported to h5cc, etc.

      The default is OFF, which will disable the warnings URL and color attributes
      for the warnings output. ON will not add the flags and allow default behavior.

      Autotools:    --enable-diags

      CMake:        HDF5_ENABLE_BUILD_DIAGS

      (ADB - 2021/02/05, HDFFV-11213)

    - CMake option to build the HDF filter plugins project as an external project

      The HDF filter plugins project is a collection of registered compression
      filters that can be dynamically loaded when needed to access data stored
      in a hdf5 file. This CMake-only option allows the plugins to be built and
      distributed with the hdf5 library and tools. Like the options for szip and
      zlib, either a tgz file or a git repository can be specified for the source.

      The option was refactored to use the CMake FetchContent process. This allows
      more control over the filter targets, but required external project command
      options to be moved to a CMake include file, HDF5PluginCache.cmake. Also
      enabled the filter examples to be used as tests for operation of the
      filter plugins.

      (ADB - 2020/12/10, OESS-98)

    - FreeBSD Autotools configuration now defaults to 'cc' and 'c++' compilers

      On FreeBSD, the autotools defaulted to 'gcc' as the C compiler and did
      not process C++ options. Since FreeBSD 10, the default compiler has
      been clang (via 'cc').

      The default compilers have been set to 'cc' for C and 'c++' for C++,
      which will pick up clang and clang++ respectively on FreeBSD 10+.
      Additionally, clang options are now set correctly for both C and C++
      and g++ options will now be set if that compiler is being used (an
      omission from the former functionality).

      (DER - 2020/11/28, HDFFV-11193)

    - Fixed POSIX problems when building w/ gcc on Solaris

      When building on Solaris using gcc, the POSIX symbols were not
      being set correctly, which could lead to issues like clock_gettime()
      not being found.

      The standard is now set to gnu99 when building with gcc on Solaris,
      which allows POSIX things to be #defined and linked correctly. This
      differs slightly from the gcc norm, where we set the standard to c99
      and manually set POSIX #define symbols.

      (DER - 2020/11/25, HDFFV-11191)

    - Added a configure-time option to consider certain compiler warnings
      as errors

      A new configure-time option was added that converts some compiler warnings
      to errors. This is mainly intended for library developers and currently
      only works for gcc and clang. The warnings that are considered errors
      will appear in the generated libhdf5.settings file. These warnings apply
      to C and C++ code and will appear in "H5 C Flags" and H5 C++ Flags",
      respectively. They will NOT be exported to h5cc, etc.

      The default is OFF. Building with this option may fail when compiling
      on operating systems and with compiler versions not commonly used by
      the library developers. Compilation may also fail when headers not
      under the control of the library developers (e.g., mpi.h, hdfs.h) raise
      warnings.

      Autotools:    --enable-warnings-as-errors

      CMake:        HDF5_ENABLE_WARNINGS_AS_ERRORS

      (DER - 2020/11/23, HDFFV-11189)

    - Autotools and CMake target added to produce doxygen generated documentation

      The default is OFF or disabled.
      Autoconf option is '--enable-doxygen'
        autotools make target is 'doxygen' and will build all doxygen targets
      CMake configure option is 'HDF5_BUILD_DOC'.
        CMake target is 'doxygen' for all available doxygen targets
        CMake target is 'hdf5lib_doc' for the src subdirectory

      (ADB - 2020/11/03)

    - CMake option to use MSVC naming conventions with MinGW

      HDF5_MSVC_NAMING_CONVENTION option enable to use MSVC naming conventions
      when using a MinGW toolchain

      (xan - 2020/10/30)

    - CMake option to statically link gcc libs with MinGW

      HDF5_MINGW_STATIC_GCC_LIBS allows to statically link libg/libstdc++
      with the MinGW toolchain

      (xan - 2020/10/30)

    - CMake option to build the HDF filter plugins project as an external project

      The HDF filter plugins project is a collection of registered compression
      filters that can be dynamically loaded when needed to access data stored
      in a hdf5 file. This CMake-only option allows the plugins to be built and
      distributed with the hdf5 library and tools. Like the options for szip and
      zlib, either a tgz file or a git repository can be specified for the source.

      The necessary options are (see the INSTALL_CMake.txt file):
        HDF5_ENABLE_PLUGIN_SUPPORT
        PLUGIN_TGZ_NAME or PLUGIN_GIT_URL
      There are more options necessary for various filters and the plugin project
      documents should be referenced.

      (ADB - 2020/09/27, OESS-98)

    - Added CMake option to format source files

      HDF5_ENABLE_FORMATTERS option will enable creation of targets using the
      pattern - HDF5_*_SRC_FORMAT - where * corresponds to the source folder
      or tool folder. All sources can be formatted by executing the format target;
      make format

      (ADB - 2020/08/24)

    - Add file locking configure and CMake options

      HDF5 1.10.0 introduced a file locking scheme, primarily to help
      enforce SWMR setup. Formerly, the only user-level control of the scheme
      was via the HDF5_USE_FILE_LOCKING environment variable.

      This change introduces configure-time options that control whether
      or not file locking will be used and whether or not the library
      ignores errors when locking has been disabled on the file system
      (useful on some HPC Lustre installations).

      In both the Autotools and CMake, the settings have the effect of changing
      the default property list settings (see the H5Pset/get_file_locking()
      entry, below).

      The yes/no/best-effort file locking configure setting has also been
      added to the libhdf5.settings file.

      Autotools:

        An --enable-file-locking=(yes|no|best-effort) option has been added.

        yes:          Use file locking.
        no:           Do not use file locking.
        best-effort:  Use file locking and ignore "disabled" errors.

      CMake:

        Two self-explanatory options have been added:

        HDF5_USE_FILE_LOCKING
        HDF5_IGNORE_DISABLED_FILE_LOCKS

        Setting both of these to ON is the equivalent to the Autotools'
        best-effort setting.

      NOTE:
      The precedence order of the various file locking control mechanisms is:

        1) HDF5_USE_FILE_LOCKING environment variable (highest)

        2) H5Pset_file_locking()

        3) configure/CMake options (which set the property list defaults)

        4) library defaults (currently best-effort)

      (DER - 2020/07/30, HDFFV-11092)

    - CMake option to link the generated Fortran MOD files into the include
      directory.

      The Fortran generation of MOD files by a Fortran compile can produce
      different binary files between SHARED and STATIC compiles with different
      compilers and/or different platforms. Note that it has been found that
      different versions of Fortran compilers will produce incompatible MOD
      files. Currently, CMake will locate these MOD files in subfolders of
      the include directory and add that path to the Fortran library target
      in the CMake config file, which can be used by the CMake find library
      process. For other build systems using the binary from a CMake install,
      a new CMake configuration can be used to copy the pre-chosen version
      of the Fortran MOD files into the install include directory.

      The default will depend on the configuration of
      BUILD_STATIC_LIBS and BUILD_SHARED_LIBS:
          YES                   YES         Default to SHARED
          YES                   NO          Default to STATIC
          NO                    YES         Default to SHARED
          NO                    NO          Default to SHARED
      The defaults can be overridden by setting the config option
          HDF5_INSTALL_MOD_FORTRAN to one of NO, SHARED, or STATIC

      (ADB - 2020/07/09, HDFFV-11116)

    - CMake option to use AEC (open source SZip) library instead of SZip

      The open source AEC library is a replacement library for SZip. In
      order to use it for hdf5 the libaec CMake source was changed to add
      "-fPIC" and exclude test files. Autotools does not build the
      compression libraries within hdf5 builds. New option USE_LIBAEC is
      required to compensate for the different files produced by AEC build.

      (ADB - 2020/04/22, OESS-65)

    - CMake ConfigureChecks.cmake file now uses CHECK_STRUCT_HAS_MEMBER

      Some handcrafted tests in HDFTests.c has been removed and the CMake
      CHECK_STRUCT_HAS_MEMBER module has been used.

      (ADB - 2020/03/24, TRILAB-24)

    - Both build systems use same set of warnings flags

      GNU C, C++ and gfortran warnings flags were moved to files in a config
      sub-folder named gnu-warnings. Flags that only are available for a specific
      version of the compiler are in files named with that version.
      Clang C warnings flags were moved to files in a config sub-folder
      named clang-warnings.
      Intel C, Fortran warnings flags were moved to files in a config sub-folder
      named intel-warnings.

      There are flags in named "error-xxx" files with warnings that may
      be promoted to errors. Some source files may still need fixes.

      There are also pairs of files named "developer-xxx" and "no-developer-xxx"
      that are chosen by the CMake option:HDF5_ENABLE_DEV_WARNINGS or the
      configure option:--enable-developer-warnings.

      In addition, CMake no longer applies these warnings for examples.

      (ADB - 2020/03/24, TRILAB-192)

    - Added test script for file size compare

      If CMake minimum version is at least 3.14, the fileCompareTest.cmake
      script will compare file sizes.

      (ADB - 2020/02/24, HDFFV-11036)

    - Update CMake minimum version to 3.12

      Updated CMake minimum version to 3.12 and added version checks
      for Windows features.

      (ADB - 2020/02/05, TRILABS-142)

    - Fixed CMake include properties for Fortran libraries

      Corrected the library properties for Fortran to use the
      correct path for the Fortran module files.

      (ADB - 2020/02/04, HDFFV-11012)

    - Added common warnings files for gnu and intel

      Added warnings files to use one common set of flags
      during configure for both autotools and CMake build
      systems. The initial implementation only affects a
      general set of flags for gnu and intel compilers.

      (ADB - 2020/01/17)

    - Added new options to CMake for control of testing

      Added CMake options (default ON);
        HDF5_TEST_SERIAL AND/OR HDF5_TEST_PARALLEL
        combined with:
          HDF5_TEST_TOOLS
          HDF5_TEST_EXAMPLES
          HDF5_TEST_SWMR
          HDF5_TEST_FORTRAN
          HDF5_TEST_CPP
          HDF5_TEST_JAVA

      (ADB - 2020/01/15, HDFFV-11001)

    - Added Clang sanitizers to CMake for analyzer support if compiler is clang.

      Added CMake code and files to execute the Clang sanitizers if
      HDF5_ENABLE_SANITIZERS is enabled and the USE_SANITIZER option
      is set to one of the following:
        Address
        Memory
        MemoryWithOrigins
        Undefined
        Thread
        Leak
        'Address;Undefined'

      (ADB - 2019/12/12, TRILAB-135)

    - Update CMake for VS2019 support

      CMake added support for VS2019 in version 3.15. Changes to the CMake
      generator setting required changes to scripts. Also updated version
      references in CMake files as necessary.

      (ADB - 2019/11/18, HDFFV-10962)

    - Update CMake options to match new autotools options

      Add configure options (autotools - CMake):
        enable-asserts       HDF5_ENABLE_ASSERTS
        enable-symbols       HDF5_ENABLE_SYMBOLS
        enable-profiling     HDF5_ENABLE_PROFILING
        enable-optimization  HDF5_ENABLE_OPTIMIZATION
      In addition NDEBUG is no longer forced defined and relies on the CMake
      process.

      (ADB - 2019/10/07, HDFFV-100901, HDFFV-10637, TRILAB-97)


    Library:
    --------
    - Adds new file driver-level memory copy operation for
      "ctl" callback and updates compact dataset I/O routines
      to utilize it

      When accessing an HDF5 file with a file driver that uses
      memory allocated in special ways (e.g., without standard
      library's `malloc`), a crash could be observed when HDF5
      tries to perform `memcpy` operations on such a memory
      region.

      These changes add a new H5FD_FEAT_MEMMANAGE VFD feature
      flag, which, if specified as supported by a VFD, will
      inform HDF5 that the VFD either uses special memory
      management routines or wishes to perform memory management
      in a specific way. Therefore, this flag instructs HDF5 to
      ask the file driver to perform memory management for
      certain operations.

      These changes also introduce a new "ctl" callback
      operation identified by the H5FD_CTL__MEM_COPY op code.
      This operation simply asks a VFD to perform a memory copy.
      The arguments to this operation are passed to the "ctl"
      callback's "input" parameter as a pointer to a struct
      defined as:

        struct H5FD_ctl_memcpy_args_t {
          void *      dstbuf;  /**< Destination buffer */
          hsize_t     dst_off; /**< Offset within destination buffer */
          const void *srcbuf;  /**< Source buffer */
          hsize_t     src_off; /**< Offset within source buffer */
          size_t      len;     /**< Length of data to copy from source buffer */
        } H5FD_ctl_memcpy_args_t;

      Further, HDF5's compact dataset I/O routines were
      identified as a problematic area that could cause a crash
      for VFDs that make use of special memory management. Those
      I/O routines were therefore updated to make use of this new
      "ctl" callback operation in order to ask the underlying
      file driver to correctly handle memory copies.

      (JTH - 2021/09/28)

    - Adds new "ctl" callback to VFD H5FD_class_t structure
      with the following prototype:

        herr_t (*ctl)(H5FD_t *file, uint64_t op_code,
                      uint64_t flags, const void *input,
                      void **output);

      This newly-added "ctl" callback allows Virtual File
      Drivers to intercept and handle arbitrary operations
      identified by an operation code. Its parameters are
      as follows:

        `file` [in] - A pointer to the file to be operated on
        `op_code` [in] - The operation code identifying the
                         operation to be performed
        `flags` [in] - Flags governing the behavior of the
                       operation performed (see H5FDpublic.h
                       for a list of valid flags)
        `input` [in] - A pointer to arguments passed to the
                       VFD performing the operation
        `output` [out] - A pointer for the receiving VFD to
                         use for output from the operation

      (JRM - 2021/08/16)

    - Change how the release part of version, in major.minor.release is checked
      for compatibility

      The HDF5 library uses a function, H5check_version, to check that
      the version defined in the header files, which is used to compile an
      application is compatible with the version codified in the library, which
      the application loads at runtime. This previously required an exact match
      or the library would print a warning, dump the build settings and then
      abort or continue. An environment variable controlled the logic.

      Now the function first checks that the library release version, in
      major.minor.release, is not older than the version in the headers.
      Secondly, if the release version is different, it checks if either
      the library version or the header version is in the exception list, in
      which case the release part of version, in major.minor.release, must
      be exact. An environment variable still controls the logic.

      (ADB - 2021/07/27)

    - gcc warning suppression macros were moved out of H5public.h

      The HDF5 library uses a set of macros to suppress warnings on gcc.
      These warnings were originally located in H5public.h so that the
      multi VFD (which only uses public headers) could also make use of them
      but internal macros should not be publicly exposed like this.

      These macros have now been moved to H5private.h. Pending future multi
      VFD refactoring, the macros have been duplicated in H5FDmulti.c to
      suppress the format string warnings there.

      (DER - 2021/06/03)

    - H5Gcreate1() now rejects size_hint parameters larger than UINT32_MAX

      The size_hint value is ultimately stored in a uint32_t struct field,
      so specifying a value larger than this on a 64-bit machine can cause
      undefined behavior including crashing the system.

      The documentation for this API call was also incorrect, stating that
      passing a negative value would cause the library to use a default
      value. Instead, passing a "negative" value actually passes a very large
      value, which is probably not what the user intends and can cause
      crashes on 64-bit systems.

      The Doxygen documentation has been updated and passing values larger
      than UINT32_MAX for size_hint will now produce a normal HDF5 error.

      (DER - 2021/04/29, HDFFV-11241)


    - H5Pset_fapl_log() no longer crashes when passed an invalid fapl ID

      When passed an invalid fapl ID, H5Pset_fapl_log() would usually
      segfault when attempting to free an uninitialized pointer in the error
      handling code. This behavior is more common in release builds or
      when the memory sanitization checks were not selected as a build
      option.

      The pointer is now correctly initialized and the API call now
      produces a normal HDF5 error when fed an invalid fapl ID.

      (DER - 2021/04/28, HDFFV-11240)

    - Fixes a segfault when H5Pset_mdc_log_options() is called multiple times

      The call incorrectly attempts to free an internal copy of the previous
      log location string, which causes a segfault. This only happens
      when the call is invoked multiple times on the same property list.
      On the first call to a given fapl, the log location is set to NULL so
      the segfault does not occur.

      The string is now handled properly and the segfault no longer occurs.

      (DER - 2021/04/27, HDFFV-11239)

    - HSYS_GOTO_ERROR now emits the results of GetLastError() on Windows

      HSYS_GOTO_ERROR is an internal macro that is used to produce error
      messages when system calls fail. These strings include errno and the
      the associated strerror() value, which are not particularly useful
      when a Win32 API call fails.

      On Windows, this macro has been updated to include the result of
      GetLastError(). When a system call fails on Windows, usually only
      one of errno and GetLastError() will be useful, however we emit both
      for the user to parse. The Windows error message is not emitted as
      it would be awkward to free the FormatMessage() buffer given the
      existing HDF5 error framework. Users will have to look up the error
      codes in MSDN.

      The format string on Windows has been changed from:

        "%s, errno = %d, error message = '%s'"

      to:

        "%s, errno = %d, error message = '%s', Win32 GetLastError() = %"PRIu32""

      for those inclined to parse it for error values.

      (DER - 2021/03/21)

    - File locking now works on Windows

      Since version 1.10.0, the HDF5 library has used a file locking scheme
      to help enforce one reader at a time accessing an HDF5 file, which can
      be helpful when setting up readers and writers to use the single-
      writer/multiple-readers (SWMR) access pattern.

      In the past, this was only functional on POSIX systems where flock() or
      fcntl() were present. Windows used a no-op stub that always succeeded.

      HDF5 now uses LockFileEx() and UnlockFileEx() to lock the file using the
      same scheme as POSIX systems. We lock the entire file when we set up the
      locks (by passing DWORDMAX as both size parameters to LockFileEx()).

      (DER - 2021/03/19, HDFFV-10191)

    - H5Epush_ret() now requires a trailing semicolon

      H5Epush_ret() is a function-like macro that has been changed to
      contain a `do {} while(0)` loop. Consequently, a trailing semicolon
      is now required to end the `while` statement. Previously, a trailing
      semi would work, but was not mandatory. This change was made to allow
      clang-format to correctly format the source code.

      (SAM - 2021/03/03)

    - Improved performance of H5Sget_select_elem_pointlist

      Modified library to cache the point after the last block of points
      retrieved by H5Sget_select_elem_pointlist, so a subsequent call to the
      same function to retrieve the next block of points from the list can
      proceed immediately without needing to iterate over the point list.

      (NAF - 2021/01/19)

    - Replaced H5E_ATOM with H5E_ID in H5Epubgen.h

      The term "atom" is archaic and not in line with current HDF5 library
      terminology, which uses "ID" instead. "Atom" has mostly been purged
      from the library internals and this change removes H5E_ATOM from
      the H5Epubgen.h (exposed via H5Epublic.h) and replaces it with
      H5E_ID.

      (DER - 2020/11/24, HDFFV-11190)

    - Add a new public function H5Ssel_iter_reset

      This function resets a dataspace selection iterator back to an
      initial state so that it may be used for iteration once more.
      This can be useful when needing to iterate over a selection
      multiple times without having to repeatedly create/destroy
      a selection iterator for that dataspace selection.

      (JTH - 2020/09/18)

    - Remove HDFS VFD stubs

      The original implementation of the HDFS VFD included non-functional
      versions of the following public API calls when the HDFS VFD is
      not built as a part of the HDF5 library:

      * H5FD_hdfs_init()
      * H5Pget_fapl_hdfs()
      * H5Pset_fapl_hdfs()

      They will remain present in HDF5 1.10 and HDF5 1.12 releases
      for binary compatibility purposes but have been removed as of 1.14.0.

      Note that this has nothing to do with the real HDFS VFD API calls
      that are fully functional when the HDFS VFD is configured and built.

      We simply changed:

        #ifdef LIBHDFS
          <real API call>
        #else
          <useless stub>
        #endif

      to:

        #ifdef LIBHDFS
          <real API call>
        #endif

      Which is how the other optional VFDs are handled.

      (DER - 2020/08/27)

    - Add Mirror VFD

      Use TCP/IP sockets to perform write-only (W/O) file I/O on a remote
      machine. Must be used in conjunction with the Splitter VFD.

      (JOS - 2020/03/13, TBD)

    - Add Splitter VFD

      Maintain separate R/W and W/O channels for "concurrent" file writes
      to two files using a single HDF5 file handle.

      (JOS - 2020/03/13, TBD)

    - Refactored public exposure of haddr_t type in favor of "object tokens"

      To better accommodate HDF5 VOL connectors where "object addresses in a file"
      may not make much sense, the following changes were made to the library:

      * Introduced new H5O_token_t "object token" type, which represents a
        unique and permanent identifier for referencing an HDF5 object within
        a container; these "object tokens" are meant to replace object addresses.
        Along with the new type, a new H5Oopen_by_token API call was introduced
        to open an object by a token, similar to how object addresses were
        previously used with H5Oopen_by_addr.

      * Introduced new H5Lget_info2, H5Lget_info_by_idx2, H5Literate2, H5Literate_by_name2,
        H5Lvisit2 and H5Lvisit_by_name2 API calls, along with their associated H5L_info2_t
        struct and H5L_iterate2_t callback function, which work with the newly-introduced
        object tokens, instead of object addresses. The original functions have been
        renamed to version 1 functions and are deprecated in favor of the new version 2
        functions. The H5L_info_t and H5L_iterate_t types have been renamed to version 1
        types and are now deprecated in favor of their version 2 counterparts. For each of
        the functions and types, compatibility macros take place of the original symbols.

      * Introduced new H5Oget_info3, H5Oget_info_by_name3, H5Oget_info_by_idx3,
        H5Ovisit3 and H5Ovisit_by_name3 API calls, along with their associated H5O_info2_t
        struct and H5O_iterate2_t callback function, which work with the newly-introduced
        object tokens, instead of object addresses. The version 2 functions are now
        deprecated in favor of the version 3 functions. The H5O_info_t and H5O_iterate_t
        types have been renamed to version 1 types and are now deprecated in favor of their
        version 2 counterparts. For each, compatibility macros take place of the original
        symbols.

      * Introduced new H5Oget_native_info, H5Oget_native_info_by_name and
        H5Oget_native_info_by_idx API calls, along with their associated H5O_native_info_t
        struct, which are used to retrieve the native HDF5 file format-specific information
        about an object. This information (such as object header info and B-tree/heap info)
        has been removed from the new H5O_info2_t struct so that the more generic
        H5Oget_info(_by_name/_by_idx)3 routines will not try to retrieve it for non-native
        VOL connectors.

      * Added new H5Otoken_cmp, H5Otoken_to_str and H5Otoken_from_str routines to compare
        two object tokens, convert an object token into a nicely-readable string format and
        to convert an object token string back into a real object token, respectively.

      (DER, QAK, JTH - 2020/01/16)

    - Add new public function H5Sselect_adjust.

      This function shifts a dataspace selection by a specified logical offset
      within the dataspace extent.  This can be useful for VOL developers to
      implement chunked datasets.

      (NAF - 2019/11/18)

    - Add new public function H5Sselect_project_intersection.

      This function computes the intersection between two dataspace selections
      and projects that intersection into a third selection.  This can be useful
      for VOL developers to implement chunked or virtual datasets.

      (NAF - 2019/11/13, ID-148)

    - Add new public function H5VLget_file_type.

      This function returns a datatype equivalent to the supplied datatype but
      with the location set to be in the file.  This datatype can then be used
      with H5Tconvert to convert data between file and in-memory representation.
      This function is intended for use only by VOL connector developers.

      (NAF - 2019/11/08, ID-127)


    Parallel Library:
    -----------------
    -


    Fortran Library:
    ----------------
    - H5Fget_name_f fixed to handle correctly trailing whitespaces and
      newly allocated buffers.

      (MSB - 2021/08/30, github-826,972)

    - Add wrappers for H5Pset/get_file_locking() API calls

        h5pget_file_locking_f()
        h5pset_file_locking_f()

      See the configure option discussion for HDFFV-11092 (above) for more
      information on the file locking feature and how it's controlled.

      (DER - 2020/07/30, HDFFV-11092)

    C++ Library:
    ------------
    - Add wrappers for H5Pset/get_file_locking() API calls

        FileAccPropList::setFileLocking()
        FileAccPropList::getFileLocking()

      See the configure option discussion for HDFFV-11092 (above) for more
      information on the file locking feature and how it's controlled.

      (DER - 2020/07/30, HDFFV-11092)


    Java Library:
    -------------
    - Replaced HDF5AtomException with HDF5IdException

      Since H5E_ATOM changed to H5E_ID in the C library, the Java exception
      that wraps the error category was also renamed. Its functionality
      remains unchanged aside from the name.

      (See also the HDFFV-11190 note in the C library section)

      (DER - 2020/11/24, HDFFV-11190)

    - Added new H5S functions.

      H5Sselect_copy, H5Sselect_shape_same, H5Sselect_adjust,
      H5Sselect_intersect_block, H5Sselect_project_intersection,
      H5Scombine_hyperslab, H5Smodify_select, H5Scombine_select
      wrapper functions added.

      (ADB - 2020/10/27, HDFFV-10868)

    - Add wrappers for H5Pset/get_file_locking() API calls

        H5Pset_file_locking()
        H5Pget_use_file_locking()
        H5Pget_ignore_disabled_file_locking()

      Unlike the C++ and Fortran wrappers, there are separate getters for the
      two file locking settings, each of which returns a boolean value.

      See the configure option discussion for HDFFV-11092 (above) for more
      information on the file locking feature and how it's controlled.

      (DER - 2020/07/30, HDFFV-11092)

    - Added ability to test java library with VOLs.

      Created a new CMake script that combines the java and vol test scripts.

      (ADB - 2020/02/03, HDFFV-10996)

    - Tests fail for non-English locales.

      In the JUnit tests with a non-English locale, only the part before
      the decimal comma is replaced by XXXX and this leads to a comparison
      error. Changed the regex for the Time substitution.

      (ADB - 2020/01/09, HDFFV-10995)


    Tools:
    ------
    - h5repack added an optional verbose value for reporting R/W timing.

      In addition to adding timing capture around the read/write calls in
      h5repack, added help text to indicate how to show timing for read/write;
           -v N, --verbose=N       Verbose mode, print object information.
              N - is an integer greater than 1, 2 displays read/write timing
      (ADB - 2021/11/08)

    - Added a new (unix ONLY) parallel meta tool 'h5dwalk', which utilizes the
      mpifileutils (https://hpc.github.io/mpifileutils) open source utility
      library to enable parallel execution of other HDF5 tools.
      This approach can greatly enhance the serial hdf5 tool performance over large
      collections of files by utilizing MPI parallelism to distribute an application
      load over many independent MPI ranks and files.

      An introduction to the mpifileutils library and initial 'User Guide' for
      the new 'h5dwalk" tool can be found at:
      https://github.com/HDFGroup/hdf5doc/tree/master/RFCs/HDF5/tools/parallel_tools

      (RAW - 2021/10/25)

    - Refactored the perform tools and removed depends on test library.

      Moved the perf and h5perf tools from tools/test/perform to
      tools/src/h5perf so that they can be installed. This required
      that the test library dependency be removed by copying the
      needed functions from h5test.c.
      The standalone scripts and other perform tools remain in the
      tools/test/perform folder.

      (ADB - 2021/08/10)

    - Removed partial long exceptions

      Some of the tools accepted shortened versions of the long options
      (ex: --datas instead of --dataset). These were implemented inconsistently,
      are difficult to maintain, and occasionally block useful long option
      names. These partial long options have been removed from all the tools.

      (DER - 2021/08/03)

    - h5repack added help text for user-defined filters.

      Added help text line that states the valid values of the filter flag
      for user-defined filters;
          filter_flag: 1 is OPTIONAL or 0 is MANDATORY

      (ADB - 2021/01/14, HDFFV-11099)

    - Added h5delete tool

      Deleting HDF5 storage when using the VOL can be tricky when the VOL
      does not create files. The h5delete tool is a simple wrapper around
      the H5Fdelete() API call that uses the VOL specified in the
      HDF5_VOL_CONNECTOR environment variable to delete a "file". If
      the call to H5Fdelete() fails, the tool will attempt to use
      the POSIX remove(3) call to remove the file.

      Note that the HDF5 library does currently have support for
      H5Fdelete() in the native VOL connector.

      (DER - 2020/12/16)

    - h5repack added options to control how external links are handled.

      Currently h5repack preserves external links and cannot copy and merge
      data from the external files. Two options, merge and prune, were added to
      control how to merge data from an external link into the resulting file.
          --merge             Follow external soft link recursively and merge data.
          --prune             Do not follow external soft links and remove link.
          --merge --prune     Follow external link, merge data and remove dangling link.

      (ADB - 2020/08/05, HDFFV-9984)

    - h5repack was fixed to repack the reference attributes properly.
      The code line that checks if the update of reference inside a compound
      datatype is misplaced outside the code block loop that carries out the
      check. In consequence, the next attribute that is not the reference
      type was repacked again as the reference type and caused the failure of
      repacking. The fix is to move the corresponding code line to the correct
      code block.

       (KY -2020/02/07, HDFFV-11014)

    - h5diff was updated to use the new reference APIs.

       h5diff uses the new reference APIs to compare references.
       Attribute references can also be compared.

      (ADB - 2019/12/19, HDFFV-10980)

    - h5dump and h5ls were updated to use the new reference APIs.

      The tools library now use the new reference APIs to inspect a
      file. Also the DDL spec was updated to reflect the format
      changes produced with the new APIs. The export API and support
      functions in the JNI were updated to match.

      (ADB - 2019/12/06, HDFFV-10876 and HDFFV-10877)


    High-Level APIs:
    ----------------
    - added set/get for unsigned long long attributes

      The attribute writing high-level API has been expanded to include
      public set/get functions for ULL attributes, analogously to the
      existing set/get for other types.

      (AF - 2021/09/08)

    C Packet Table API:
    -------------------
    -

    Internal header file:
    ---------------------
    -

    Documentation:
    --------------
    -


New platforms, languages and compilers tested
=============================================
    - Linux 5.13.14-200.fc34 #1 SMP x86_64  GNU/Linux Fedora34
    - Linux 5.11.0-34-generic #36-Ubuntu SMP x86_64 GNU/Linux Ubuntu 20.04
    - Linux 5.3.18-22-default #1 SMP x86_64  GNU/Linux SUSE15sp2
    - Linux-4.14.0-115.21.2 #1 SMP ppc64le GNU/Linux
    - Linux-4.12.14-150.75-default #1 SMP x86_64 GNU/Linux
    - macOS Apple M1 11.6 Darwin 20.6.0 arm64
    - macOS Big Sur 11.3.1 Darwin 20.4.0 x86_64
    - clang versions 11.0.1, 12.0.5
    - Visual Studio 2019 w/ clang 12.0.0 with MSVC-like command-line


Bug Fixes since HDF5-1.12.0 release
===================================
    Library
    -------
    - Fixed an H5Pget_filter_by_id1/2() assert w/ out of range filter IDs

      Both H5Pget_filter_by_id1 and 2 did not range check the filter ID, which
      could trip as assert in debug versions of the library. The library now
      returns a normal HDF5 error when the filter ID is out of range.

      (DER - 2021/11/23, HDFFV-11286)

    - Fixed an issue with collective metadata reads being permanently disabled
      after a dataset chunk lookup operation. This would usually cause a
      mismatched MPI_Bcast and MPI_ERR_TRUNCATE issue in the library for
      simple cases of H5Dcreate() -> H5Dwrite() -> H5Dcreate().

      (JTH - 2021/11/08, HDFFV-11090)

    - Fixed cross platform incompatibility of references within variable length
      types

      Reference types within variable length types previously could not be
      read on a platform with different endianness from where they were
      written. Fixed so cross platform portability is restored.

      (NAF - 2021/09/30)

    - Detection of simple data transform function "x"

      In the case of the simple data transform function "x" the (parallel)
      library recognizes this is the same as not applying this data transform
      function. This improves the I/O performance. In the case of the parallel
      library, it also avoids breaking to independent I/O, which makes it
      possible to apply a filter when writing or reading data to or from
      the HDF5 file.

      (JWSB - 2021/09/13)

    - Fixed an invalid read and memory leak when parsing corrupt file space
      info messages

      When the corrupt file from CVE-2020-10810 was parsed by the library,
      the code that imports the version 0 file space info object header
      message to the version 1 struct could read past the buffer read from
      the disk, causing an invalid memory read. Not catching this error would
      cause downstream errors that eventually resulted in a previously
      allocated buffer to be unfreed when the library shut down. In builds
      where the free lists are in use, this could result in an infinite loop
      and SIGABRT when the library shuts down.

      We now track the buffer size and raise an error on attempts to read
      past the end of it.

      (DER - 2021/08/12, HDFFV-11053)


    - Fixed CVE-2018-14460

      The tool h5repack produced a segfault when the rank in dataspace
      message was corrupted, causing invalid read while decoding the
      dimension sizes.

      The problem was fixed by ensuring that decoding the dimension sizes
      and max values will not go beyond the end of the buffer.

      (BMR - 2021/05/12, HDFFV-11223)

    - Fixed CVE-2018-11206

      The tool h5dump produced a segfault when the size of a fill value
      message was corrupted and caused a buffer overflow.

      The problem was fixed by verifying the fill value's size
      against the buffer size before attempting to access the buffer.

      (BMR - 2021/03/15, HDFFV-10480)

    - Fixed CVE-2018-14033 (same issue as CVE-2020-10811)

      The tool h5dump produced a segfault when the storage size message
      was corrupted and caused a buffer overflow.

      The problem was fixed by verifying the storage size against the
      buffer size before attempting to access the buffer.

      (BMR - 2021/03/15, HDFFV-11159/HDFFV-11049)

    - Remove underscores on header file guards

      Header file guards used a variety of underscores at the beginning of the define.

      Removed all leading (some trailing) underscores from header file guards.

      (ADB - 2021/03/03, #361)

    - Fixed a segmentation fault

      A segmentation fault occurred with a Mathworks corrupted file.

      A detection of accessing a null pointer was added to prevent the problem.

      (BMR - 2021/02/19, HDFFV-11150)

    - Fixed issue with MPI communicator and info object not being
      copied into new FAPL retrieved from H5F_get_access_plist

      Added logic to copy the MPI communicator and info object into
      the output FAPL. MPI communicator is retrieved from the VFD, while
      the MPI info object is retrieved from the file's original FAPL.

      (JTH - 2021/02/15, HDFFV-11109)

    - Fixed problems with vlens and refs inside compound using
      H5VLget_file_type()

      Modified library to properly ref count H5VL_object_t structs and only
      consider file vlen and reference types to be equal if their files are
      the same.

      (NAF - 2021/01/22)

    - Fixed CVE-2018-17432

      The tool h5repack produced a segfault on a corrupted file which had
      invalid rank for scalar or NULL datatype.

      The problem was fixed by modifying the dataspace encode and decode
      functions to detect and report invalid rank. h5repack now fails
      with an error message for the corrupted file.

      (BMR - 2020/10/26, HDFFV-10590)

    - Creation of dataset with optional filter

      When the combination of type, space, etc doesn't work for filter
      and the filter is optional, it was supposed to be skipped but it was
      not skipped and the creation failed.

      Allowed the creation of the dataset in such a situation.

      (BMR - 2020/08/13, HDFFV-10933)

    - Explicitly declared dlopen to use RTLD_LOCAL

      dlopen documentation states that if neither RTLD_GLOBAL nor
      RTLD_LOCAL are specified, then the default behavior is unspecified.
      The default on linux is usually RTLD_LOCAL while macos will default
      to RTLD_GLOBAL.

      (ADB - 2020/08/12, HDFFV-11127)

    - H5Sset_extent_none() sets the dataspace class to H5S_NO_CLASS which
      causes asserts/errors when passed to other dataspace API calls.

      H5S_NO_CLASS is an internal class value that should not have been
      exposed via a public API call.

      In debug builds of the library, this can cause assert() function to
      trip. In non-debug builds, it will produce normal library errors.

      The new library behavior is for H5Sset_extent_none() to convert
      the dataspace into one of type H5S_NULL, which is better handled
      by the library and easier for developers to reason about.

      (DER - 2020/07/27, HDFFV-11027)

    - Fixed issues CVE-2018-13870 and CVE-2018-13869

      When a buffer overflow occurred because a name length was corrupted
      and became very large, h5dump crashed on memory access violation.

      A check for reading pass the end of the buffer was added to multiple
      locations to prevent the crashes and h5dump now simply fails with an
      error message when this error condition occurs.

      (BMR - 2020/07/22, HDFFV-11120 and HDFFV-11121)

    - Fixed the segmentation fault when reading attributes with multiple threads

      It was reported that the reading of attributes with variable length string
      datatype will crash with segmentation fault particularly when the number of
      threads is high (>16 threads).  The problem was due to the file pointer that
      was set in the variable length string datatype for the attribute.  That file
      pointer was already closed when the attribute was accessed.

      The problem was fixed by setting the file pointer to the current opened file pointer
      when the attribute was accessed.  Similar patch up was done before when reading
      dataset with variable length string datatype.

      (VC - 2020/07/13, HDFFV-11080)

    - Fixed CVE-2020-10810

      The tool h5clear produced a segfault during an error recovery in
      the superblock decoding.  An internal pointer was reset to prevent
      further accessing when it is not assigned with a value.

      (BMR - 2020/06/29, HDFFV-11053)

    - Fixed CVE-2018-17435

      The tool h52gif produced a segfault when the size of an attribute
      message was corrupted and caused a buffer overflow.

      The problem was fixed by verifying the attribute message's size
      against the buffer size before accessing the buffer.  h52gif was
      also fixed to display the failure instead of silently exiting
      after the segfault was eliminated.

      (BMR - 2020/06/19, HDFFV-10591)


    Java Library
    ------------
    - JNI utility function does not handle new references.

      The JNI utility function for converting reference data to string did
      not use the new APIs. In addition to fixing that function, added new
      java tests for using the new APIs.

      (ADB - 2021/02/16, HDFFV-11212)

    - The H5FArray.java class, in which virtually the entire execution time
      is spent using the HDFNativeData method that converts from an array
      of bytes to an array of the destination Java type.

        1. Convert the entire byte array into a 1-d array of the desired type,
           rather than performing 1 conversion per row;
        2. Use the Java Arrays method copyOfRange to grab the section of the
           array from (1) that is desired to be inserted into the destination array.

      (PGT,ADB - 2020/12/13, HDFFV-10865)

    - Added ability to test java library with VOLs.

      Created a new CMake script that combines the java and vol test scripts.

      (ADB - 2020/02/03, HDFFV-10996)

    - Tests fail for non-English locales.

      In the JUnit tests with a non-English locale, only the part before
      the decimal comma is replaced by XXXX and this leads to a comparison
      error. Changed the regex for the Time substitution.

      (ADB - 2020/01/09, HDFFV-10995)


    Configuration
    -------------
    - Corrected path searched by CMake find_package command

      The install path for cmake find_package files had been changed to use
        "share/cmake"
      for all platforms. However the trailing "hdf5" directory was not removed.
      This "hdf5" additional directory has been removed.

      (ADB - 2021/09/27)

    - Corrected pkg-config compile script

      It was discovered that the position of the "$@" argument for the command
      in the compile script may fail on some platforms and configurations. The
      position of the "$@"command argument was moved before the pkg-config sub command.

      (ADB - 2021/08/30)

    - Fixed CMake C++ compiler flags

      A recent refactoring of the C++ configure files accidentally removed the
      file that executed the enable_language command for C++ needed by the
      HDFCXXCompilerFlags.cmake file. Also updated the intel warnings files,
      including adding support for windows platforms.

      (ADB - 2021/08/10)

    - Better support for libaec (open-source Szip library) in CMake

      Implemented better support for libaec 1.0.5 (or later) library. This version
      of libaec contains improvements for better integration with HDF5. Furthermore,
      the variable USE_LIBAEC_STATIC has been introduced to allow to make use of
      static version of libaec library. Use libaec_DIR or libaec_ROOT to set
      the location in which libaec can be found.

      Be aware, the Szip library of libaec 1.0.4 depends on another library within
      libaec library. This dependency is not specified in the current CMake
      configuration which means that one can not use the static Szip library of
      libaec 1.0.4 when building HDF5. This has been resolved in libaec 1.0.5.

      (JWSB - 2021/06/22)

    - Refactor CMake configure for Fortran

      The Fortran configure tests for KINDs reused a single output file that was
      read to form the Integer and Real Kinds defines. However, if config was run
      more then once, the CMake completed variable prevented the tests from executing
      again and the last value saved in the file was used to create the define.
      Creating separate files for each KIND solved the issue.

      In addition the test for H5_PAC_C_MAX_REAL_PRECISION was not pulling in
      defines for proper operation and did not define H5_PAC_C_MAX_REAL_PRECISION
      correctly for a zero value. This was fixed by supplying the required defines.
      In addition it was moved from the Fortran specific HDF5UseFortran.camke file
      to the C centric ConfigureChecks.cmake file.

      (ADB - 2021/06/03)

    - Move emscripten flag to compile flags

      The emscripten flag, -O0, was removed from target_link_libraries command
      to the correct target_compile_options command.

      (ADB - 2021/04/26 HDFFV-11083)

    - Remove arbitrary warning flag groups from CMake builds

      The arbitrary groups were created to reduce the quantity of warnings being
      reported that overwhelmed testing report systems. Considerable work has
      been accomplished to reduce the warning count and these arbitrary groups
      are no longer needed.
      Also the default for all warnings, HDF5_ENABLE_ALL_WARNINGS, is now ON.

      Visual Studio warnings C4100, C4706, and C4127 have been moved to
      developer warnings, HDF5_ENABLE_DEV_WARNINGS, and are disabled for normal builds.

      (ADB - 2021/03/22, HDFFV-11228)

    - Reclassify CMake messages, to allow new modes and --log-level option

      CMake message commands have a mode argument. By default, STATUS mode
      was chosen for any non-error message. CMake version 3.15 added additional
      modes, NOTICE, VERBOSE, DEBUG and TRACE. All message commands with a mode
      of STATUS were reviewed and most were reclassified as VERBOSE. The new
      mode was protected by a check for a CMake version of at least 3.15. If CMake
      version 3.17 or above is used, the user can use the command line option
      of "--log-level" to further restrict which message commands are displayed.

      (ADB - 2021/01/11, HDFFV-11144)

    - Fixes Autotools determination of the stat struct having an st_blocks field

      A missing parenthesis in an autoconf macro prevented building the test
      code used to determine if the stat struct contains the st_blocks field.
      Now that the test functions correctly, the H5_HAVE_STAT_ST_BLOCKS #define
      found in H5pubconf.h will be defined correctly on both the Autotools and
      CMake. This #define is only used in the tests and does not affect the
      HDF5 C library.

      (DER - 2021/01/07, HDFFV-11201)

    - Add missing ENV variable line to hdfoptions.cmake file

      Using the build options to use system SZIP/ZLIB libraries need to also
      specify the library root directory. Setting the {library}_ROOT ENV
      variable was added to the hdfoptions.cmake file.

      (ADB - 2020/10/19 HDFFV-11108)


    Tools
    -----
    - Changed how h5dump and h5ls identify long double.

      Long double support is not consistent across platforms. Tools will always
      identify long double as 128-bit [little/big]-endian float nn-bit precision.
      New test file created for datasets with attributes for float, double and
      long double. In addition any unknown integer or float datatype will now
      also show the number of bits for precision.
      These files are also used in the java tests.

      (ADB - 2021/03/24, HDFFV-11229,HDFFV-11113)

    - Fixed tools argument parsing.

      Tools parsing used the length of the option from the long array to match
      the option from the command line. This incorrectly matched a shorter long
      name option that happened to be a subset of another long option.
      Changed to match whole names.

      (ADB - 2021/01/19, HDFFV-11106)

    - The tools library was updated by standardizing the error stack process.

      General sequence is:
        h5tools_setprogname(PROGRAMNAME);
        h5tools_setstatus(EXIT_SUCCESS);
        h5tools_init();
        ... process the command-line (check for error-stack enable) ...
        h5tools_error_report();
        ... (do work) ...
        h5diff_exit(ret);

      (ADB - 2020/07/20, HDFFV-11066)

    - h5diff fixed a command line parsing error.

      h5diff would ignore the argument to -d (delta) if it is smaller than DBL_EPSILON.
      The macro H5_DBL_ABS_EQUAL was removed and a direct value comparison was used.

      (ADB - 2020/07/20, HDFFV-10897)

    - h5diff added a command line option to ignore attributes.

      h5diff would ignore all objects with a supplied path if the exclude-path argument is used.
      Adding the exclude-attribute argument will only exclude attributes, with the supplied path,
      from comparison.

      (ADB - 2020/07/20, HDFFV-5935)

    - h5diff added another level to the verbose argument to print filenames.

      Added verbose level 3 that is level 2 plus the filenames. The levels are:
        0 : Identical to '-v' or '--verbose'
        1 : All level 0 information plus one-line attribute status summary
        2 : All level 1 information plus extended attribute status report
        3 : All level 2 information plus file names

      (ADB - 2020/07/20, HDFFV-1005)

    - h5repack was fixed to repack the reference attributes properly.

      The code line that checks if the update of reference inside a compound
      datatype is misplaced outside the code block loop that carries out the
      check. In consequence, the next attribute that is not the reference
      type was repacked again as the reference type and caused the failure of
      repacking. The fix is to move the corresponding code line to the correct
      code block.

      (KY -2020/02/10, HDFFV-11014)

    - h5diff was updated to use the new reference APIs.

      h5diff uses the new reference APIs to compare references.
      Attribute references can also be compared.

      (ADB - 2019/12/19, HDFFV-10980)

    - h5dump and h5ls were updated to use the new reference APIs.

      The tools library now use the new reference APIs to inspect a
      file. Also the DDL spec was updated to reflect the format
      changes produced with the new APIs. The export API and support
      functions in the JNI were updated to match.

      (ADB - 2019/12/06, HDFFV-10876 and HDFFV-10877)


    Performance
    -------------
    -


    Fortran API
    -----------
    - Corrected INTERFACE INTENT(IN) to INTENT(OUT) for buf_size in h5fget_file_image_f.

      (MSB - 2020/02/18, HDFFV-11029)


    High-Level Library
    ------------------
    - Fixed HL_test_packet, test for packet table vlen of vlen.

      Incorrect length assignment.

      (ADB - 2021/10/14)


    Fortran High-Level APIs
    -----------------------
    -


    Documentation
    -------------
    -


    F90 APIs
    --------
    -


    C++ APIs
    --------
    - Added DataSet::operator=

      Some compilers complain if the copy constructor is given explicitly
      but the assignment operator is implicitly set to default.

      (2021/05/19)


    Testing
    -------
    - Stopped java/test/junit.sh.in installing libs for testing under ${prefix}

      Lib files needed are now copied to a subdirectory in the java/test
      directory, and on Macs the loader path for libhdf5.xxxs.so is changed
      in the temporary copy of libhdf5_java.dylib.

      (LRK, 2020/07/02, HDFFV-11063)


Platforms Tested
===================

    Linux 5.13.14-200.fc34           GNU gcc (GCC) 11.2.1 2021078 (Red Hat 11.2.1-1)
    #1 SMP x86_64  GNU/Linux         GNU Fortran (GCC) 11.2.1 2021078 (Red Hat 11.2.1-1)
    Fedora34                         clang version 12.0.1 (Fedora 12.0.1-1.fc34)
                                     (cmake and autotools)

    Linux 5.11.0-34-generic          GNU gcc (GCC) 9.3.0-17ubuntu1
    #36-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 9.3.0-17ubuntu1
    Ubuntu 20.04                     Ubuntu clang version 10.0.0-4
                                     (cmake and autotools)

    Linux 5.8.0-63-generic           GNU gcc (GCC) 10.3.0-1ubuntu1
    #71-Ubuntu SMP x86_64 GNU/Linux  GNU Fortran (GCC) 10.3.0-1ubuntu1
    Ubuntu20.10                      Ubuntu clang version 11.0.0-2
                                     (cmake and autotools)

    Linux 5.3.18-22-default          GNU gcc (SUSE Linux) 7.5.0
    #1 SMP x86_64  GNU/Linux         GNU Fortran (SUSE Linux) 7.5.0
    SUSE15sp2                        clang version 7.0.1 (tags/RELEASE_701/final 349238)
                                     (cmake and autotools)

    Linux-4.14.0-115.21.2            spectrum-mpi/rolling-release
    #1 SMP ppc64le GNU/Linux             clang 8.0.1, 11.0.1
    (lassen)                             GCC 7.3.1
                                         XL 16.1.1.2
                                     (cmake)

    Linux-4.12.14-150.75-default     cray-mpich/7.7.10
    #1 SMP x86_64 GNU/Linux              GCC 7.3.0, 8.2.0
    (cori)                               Intel (R) Version 19.0.3.199
                                     (cmake)

    Linux-4.12.14-197.86-default     cray-mpich/7.7.6
    # 1SMP x86_64 GNU/Linux              GCC  7.3.0, 9.3.0, 10.2.0
    (mutrino)                            Intel (R) Version 17.0.4, 18.0.5, 19.1.3
                                     (cmake)

    Linux 3.10.0-1160.36.2.el7.ppc64 gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    #1 SMP ppc64be GNU/Linux         g++ (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)
    Power8 (echidna)                 GNU Fortran (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)

    Linux 3.10.0-1160.24.1.el7       GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos7                              Version 4.8.5 20150623 (Red Hat 4.8.5-4)
    (jelly/kituo/moohan)                 Version 4.9.3, Version 5.3.0, Version 6.3.0,
                                         Version 7.2.0, Version 8.3.0, Version 9.1.0
                                     Intel(R) C (icc), C++ (icpc), Fortran (icc)
                                     compilers:
                                         Version 17.0.0.098 Build 20160721
                                     GNU C (gcc) and C++ (g++) 4.8.5 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     Intel(R) C (icc) and C++ (icpc) 17.0.0.098 compilers
                                         with NAG Fortran Compiler Release 6.1(Tozai)
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     MPICH 3.3 compiled with GCC 7.2.0
                                     OpenMPI 2.1.6 compiled with icc 18.0.1
                                     OpenMPI 3.1.3 and 4.0.0 compiled with GCC 7.2.0
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Linux-3.10.0-1127.0.0.1chaos     openmpi-4.0.0
    #1 SMP x86_64 GNU/Linux              clang 6.0.0, 11.0.1
    (quartz)                             GCC 7.3.0, 8.1.0
                                         Intel 16.0.4, 18.0.2, 19.0.4

    macOS Apple M1 11.6              Apple clang version 12.0.5 (clang-1205.0.22.11)
    Darwin 20.6.0 arm64              gfortran GNU Fortran (Homebrew GCC 11.2.0) 11.1.0
    (macmini-m1)                     Intel icc/icpc/ifort version 2021.3.0 202106092021.3.0 20210609

    macOS Big Sur 11.3.1             Apple clang version 12.0.5 (clang-1205.0.22.9)
    Darwin 20.4.0 x86_64             gfortran GNU Fortran (Homebrew GCC 10.2.0_3) 10.2.0
    (bigsur-1)                       Intel icc/icpc/ifort version 2021.2.0 20210228

    macOS High Sierra 10.13.6        Apple LLVM version 10.0.0 (clang-1000.10.44.4)
    64-bit                           gfortran GNU Fortran (GCC) 6.3.0
    (bear)                           Intel icc/icpc/ifort version 19.0.4.233 20190416

    macOS Sierra 10.12.6             Apple LLVM version 9.0.0 (clang-900.39.2)
    64-bit                           gfortran GNU Fortran (GCC) 7.4.0
    (kite)                           Intel icc/icpc/ifort version 17.0.2

    Mac OS X El Capitan 10.11.6      Apple clang version 7.3.0 from Xcode 7.3
    64-bit                           gfortran GNU Fortran (GCC) 5.2.0
    (osx1011test)                    Intel icc/icpc/ifort version 16.0.2


    Linux 2.6.32-573.22.1.el6        GNU C (gcc), Fortran (gfortran), C++ (g++)
    #1 SMP x86_64 GNU/Linux          compilers:
    Centos6                              Version 4.4.7 20120313
    (platypus)                           Version 4.9.3, 5.3.0, 6.2.0
                                     MPICH 3.1.4 compiled with GCC 4.9.3
                                     PGI C, Fortran, C++ for 64-bit target on
                                     x86_64;
                                         Version 19.10-0

    Windows 10 x64                  Visual Studio 2015 w/ Intel C/C++/Fortran 18 (cmake)
                                    Visual Studio 2017 w/ Intel C/C++/Fortran 19 (cmake)
                                    Visual Studio 2019 w/ clang 12.0.0
                                        with MSVC-like command-line (C/C++ only - cmake)
                                    Visual Studio 2019 w/ Intel Fortran 19 (cmake)
                                    Visual Studio 2019 w/ MSMPI 10.1 (C only - cmake)


Known Problems
==============
    Setting a variable-length dataset fill value will leak the memory allocated
    for the p field of the hvl_t struct. A fix is in progress for this.
    HDFFV-10840

    CMake files do not behave correctly with paths containing spaces.
    Do not use spaces in paths because the required escaping for handling spaces
    results in very complex and fragile build files.
    ADB - 2019/05/07

    At present, metadata cache images may not be generated by parallel
    applications.  Parallel applications can read files with metadata cache
    images, but since this is a collective operation, a deadlock is possible
    if one or more processes do not participate.

    CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
    issue: HDFFV-10628.  This test will pass with VS2015 with Intel compiler.

    The subsetting option in ph5diff currently will fail and should be avoided.
    The subsetting option works correctly in serial h5diff.

    Known problems in previous releases can be found in the HISTORY*.txt files
    in the HDF5 source. Please report any new problems found to
    help@hdfgroup.org.


CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.

The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
  build scripts
  -------------
  Autotools: h5c++, h5cc, h5fc
  CMake: h5c++, h5cc, h5hlc++, h5hlcc

The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.

The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.

The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.

The issues with the gif tool are:
    HDFFV-10592 CVE-2018-17433
    HDFFV-10593 CVE-2018-17436
    HDFFV-11048 CVE-2020-10809
These CVE issues have not yet been addressed and can be avoided by not building
the gif tool. Disable building the High-Level tools with these options:
    autotools:   --disable-hltools
    cmake:       HDF5_BUILD_HL_TOOLS=OFF
    cmake:       HDF5_BUILD_HL_TOOLS=OFF