1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
|
HDF5 version 1.10.6-snap1 currently under development
================================================================================
INTRODUCTION
This document describes the differences between this release and the previous
HDF5 release. It contains information on the platforms tested and known
problems in this release. For more details check the HISTORY*.txt files in the
HDF5 source.
Note that documentation in the links below will be updated at the time of each
final release.
Links to HDF5 documentation can be found on The HDF5 web page:
https://portal.hdfgroup.org/display/HDF5/HDF5
The official HDF5 releases can be obtained from:
https://www.hdfgroup.org/downloads/hdf5/
Changes from Release to Release and New Features in the HDF5-1.10.x release series
can be found at:
https://portal.hdfgroup.org/display/HDF5/HDF5+Application+Developer%27s+Guide
If you have any questions or comments, please send them to the HDF Help Desk:
help@hdfgroup.org
CONTENTS
- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.10.5
- Supported Platforms
- Tested Configuration Features Summary
- More Tested Platforms
- Known Problems
- CMake vs. Autotools installations
New Features
============
Configuration:
-------------
- Update CMake tests to use FIXTURES
CMake test fixtures allow setup/cleanup tests and other dependency
requirements as properties for tests. This is more flexible for
modern CMake code.
(ADB - 2019/07/23, HDFFV-10529)
- Windows PDB files are always installed
There are build configuration or flag settings for Windows that may not
generate PDB files. If those files are not generated then the install
utility will fail because those PDB files are not found. An optional
variable, DISABLE_PDB_FILES, was added to not install PDB files.
(ADB - 2019/07/17, HDFFV-10424)
- Add mingw CMake support with a toolchain file
There has been a number of mingw issues that has been linked under
HDFFV-10845. It has been decided to implement the CMake cross-compiling
technique of toolchain files. We will use a linux platform with the mingw
compiler stack for testing. Only the C language is fully supported, and
the error tests are skipped. The C++ language works for static but shared
builds has a shared library issue with the mingw Standard Exception Handling
library, which is not available on Windows. Fortran has a common cross-compile
problem with the fortran configure tests.
(ADB - 2019/07/12, HDFFV-10845, HDFFV-10595)
- Windows PDB files are installed incorrectly
For static builds, the PDB files for windows should be installed next
to the static libraries in the lib folder. Also the debug versions of
libraries and PDB files are now correctly built using the default
CMAKE_DEBUG_POSTFIX setting.
(ADB - 2019/07/09, HDFFV-10581)
- Add option to build only shared libs
A request was made to prevent building static libraries and only build
shared. A new option was added to CMake, ONLY_SHARED_LIBS, which will
skip building static libraries. Certain utility functions will build with
static libs but are not published. Tests are adjusted to use the correct
libraries depending on SHARED/STATIC settings.
(ADB - 2019/06/12, HDFFV-10805)
- Add options to enable or disable building tools and tests
Configure options --enable-tests and --enable-tools were added for
autotools configure. These options are enabled by default, and can be
disabled with either --disable-tests (or tools) or --enable-tests=no
(or --enable-tools=no). Build time is reduced ~20% when tools are
disabled, 35% when tests are disabled, 45% when both are disabled.
Reenabling them after the initial build requires running configure
again with the option(s) enabled.
(LRK - 2019/06/12, HDFFV-9976)
- Change tools test that test the error stack
There are some use cases which can cause the error stack of tools to be
different then the expected output. These tests now use grepTest.cmake,
this was changed to allow the error file to be searched for an expected string.
(ADB - 2019/04/15, HDFFV-10741)
Library:
--------
-
Parallel Library:
-----------------
-
C++ Library:
------------
- Added new wrappers for H5Pset/get_create_intermediate_group()
LinkCreatPropList::setCreateIntermediateGroup()
LinkCreatPropList::getCreateIntermediateGroup()
(BMR - 2019/04/22, HDFFV-10622)
Java Library:
----------------
- Fix a failure in JUnit-TestH5P on 32-bit architectures
(JTH - 2019/04/30)
Tools:
------
-
High-Level APIs:
---------------
-
C Packet Table API
------------------
-
Internal header file
--------------------
-
Documentation
-------------
-
Support for new platforms, languages and compilers.
=======================================
-
Bug Fixes since HDF5-1.10.5 release
==================================
Library
-------
- Fixed an issue where creating a file with non-default file space info
together with library high bound setting to H5F_LIBVER_V18.
When setting non-default file space info in fcpl via
H5Pset_file_space_strategy() and then creating a file with
both high and low library bounds set to
H5F_LIBVER_V18 in fapl, the library succeeds in creating the file.
File creation should fail because the feature of setting non-default
file space info does not exist in library release 1.8 or earlier.
This was fixed by setting and checking the proper version in the
file space info message based on the library low and high bounds
when creating and opening the HDF5 file.
(VC - 2019/6/25, HDFFV-10808)
- Fixed an issue where copying a version 1.8 dataset between files using
H5Ocopy fails due to an incompatible fill version
When using the HDF5 1.10.x H5Ocopy() API call to copy a version 1.8
dataset to a file created with both high and low library bounds set to
H5F_LIBVER_V18, the H5Ocopy() call will fail with the error stack indicating
that the fill value version is out of bounds.
This was fixed by changing the fill value message version to H5O_FILL_VERSION_3
(from H5O_FILL_VERSION_2) for H5F_LIBVER_V18.
(VC - 2019/6/14, HDFFV-10800)
- Fixed a bug that would cause an error or cause fill values to be
incorrectly read from a chunked dataset using the "single chunk" index if
the data was held in cache and there was no data on disk.
(NAF - 2019/03/06)
- Fixed a bug that could cause an error or cause fill values to be
incorrectly read from a dataset that was written to using H5Dwrite_chunk
if the dataset was not closed after writing.
(NAF - 2019/03/06, HDFFV-10716)
- Fixed memory leak in scale offset filter
In a special case where the MinBits is the same as the number of bits in
the datatype's precision, the filter's data buffer was not freed, causing
the memory usage to grow. In general the buffer was freed correctly. The
Minbits are the minimal number of bits to store the data values. Please
see the reference manual for H5Pset_scaleoffset for the detail.
(RL - 2019/3/4, HDFFV-10705)
Java Library:
----------------
-
Configuration
-------------
- Correct option for default API version
CMake options for default API version are not mutually exclusive.
Change the multiple BOOL options to a single STRING option with the
strings; v16, v18, v110.
(ADB - 2019/08/12, HDFFV-10879)
Fortran
--------
-
Tools
-----
-
High-Level APIs:
------
-
Fortran High-Level APIs:
------
-
Documentation
-------------
-
F90 APIs
--------
-
C++ APIs
--------
-
Testing
-------
-
Supported Platforms
===================
Linux 2.6.32-696.16.1.el6.ppc64 gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18)
#1 SMP ppc64 GNU/Linux g++ (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18)
(ostrich) GNU Fortran (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18)
IBM XL C/C++ V13.1
IBM XL Fortran V15.1
Linux 3.10.0-327.10.1.el7 GNU C (gcc), Fortran (gfortran), C++ (g++)
#1 SMP x86_64 GNU/Linux compilers:
(kituo/moohan) Version 4.8.5 20150623 (Red Hat 4.8.5-4)
Version 4.9.3, Version 5.2.0
Intel(R) C (icc), C++ (icpc), Fortran (icc)
compilers:
Version 17.0.0.098 Build 20160721
MPICH 3.1.4 compiled with GCC 4.9.3
SunOS 5.11 32- and 64-bit Sun C 5.12 SunOS_sparc
(emu) Sun Fortran 95 8.6 SunOS_sparc
Sun C++ 5.12 SunOS_sparc
Windows 7 Visual Studio 2015 w/ Intel Fortran 16 (cmake)
Windows 7 x64 Visual Studio 2013
Visual Studio 2015 w/ Intel Fortran 16 (cmake)
Visual Studio 2015 w/ Intel C, Fortran 2018 (cmake)
Visual Studio 2015 w/ MSMPI 8 (cmake)
Windows 10 Visual Studio 2015 w/ Intel Fortran 18 (cmake)
Windows 10 x64 Visual Studio 2015 w/ Intel Fortran 18 (cmake)
Visual Studio 2017 w/ Intel Fortran 18 (cmake)
Mac OS X Yosemite 10.10.5 Apple clang/clang++ version 6.1 from Xcode 7.0
64-bit gfortran GNU Fortran (GCC) 4.9.2
(osx1010dev/osx1010test) Intel icc/icpc/ifort version 15.0.3
Mac OS X El Capitan 10.11.6 Apple clang/clang++ version 7.3.0 from Xcode 7.3
64-bit gfortran GNU Fortran (GCC) 5.2.0
(osx1011dev/osx1011test) Intel icc/icpc/ifort version 16.0.2
Mac OS Sierra 10.12.6 Apple LLVM version 8.1.0 (clang/clang++-802.0.42)
64-bit gfortran GNU Fortran (GCC) 7.1.0
(swallow/kite) Intel icc/icpc/ifort version 17.0.2
Tested Configuration Features Summary
=====================================
In the tables below
y = tested
n = not tested in this release
C = Cluster
W = Workstation
x = not working in this release
dna = does not apply
( ) = footnote appears below second table
<blank> = testing incomplete on this feature or platform
Platform C F90/ F90 C++ zlib SZIP
parallel F2003 parallel
Solaris2.11 32-bit n y/y n y y y
Solaris2.11 64-bit n y/n n y y y
Windows 7 y y/y n y y y
Windows 7 x64 y y/y y y y y
Windows 7 Cygwin n y/n n y y y
Windows 7 x64 Cygwin n y/n n y y y
Windows 10 y y/y n y y y
Windows 10 x64 y y/y n y y y
Mac OS X Mavericks 10.9.5 64-bit n y/y n y y y
Mac OS X Yosemite 10.10.5 64-bit n y/y n y y y
Mac OS X El Capitan 10.11.6 64-bit n y/y n y y y
Mac OS Sierra 10.12.6 64-bit n y/y n y y y
CentOS 7.2 Linux 2.6.32 x86_64 PGI n y/y n y y y
CentOS 7.2 Linux 2.6.32 x86_64 GNU y y/y y y y y
CentOS 7.2 Linux 2.6.32 x86_64 Intel n y/y n y y y
Linux 2.6.32-573.18.1.el6.ppc64 n y/y n y y y
Platform Shared Shared Shared Thread-
C libs F90 libs C++ libs safe
Solaris2.11 32-bit y y y y
Solaris2.11 64-bit y y y y
Windows 7 y y y y
Windows 7 x64 y y y y
Windows 7 Cygwin n n n y
Windows 7 x64 Cygwin n n n y
Windows 10 y y y y
Windows 10 x64 y y y y
Mac OS X Mavericks 10.9.5 64-bit y n y y
Mac OS X Yosemite 10.10.5 64-bit y n y y
Mac OS X El Capitan 10.11.6 64-bit y n y y
Mac OS Sierra 10.12.6 64-bit y n y y
CentOS 7.2 Linux 2.6.32 x86_64 PGI y y y n
CentOS 7.2 Linux 2.6.32 x86_64 GNU y y y y
CentOS 7.2 Linux 2.6.32 x86_64 Intel y y y n
Linux 2.6.32-573.18.1.el6.ppc64 y y y n
Compiler versions for each platform are listed in the preceding
"Supported Platforms" table.
More Tested Platforms
=====================
The following platforms are not supported but have been tested for this release.
Linux 2.6.32-573.22.1.el6 GNU C (gcc), Fortran (gfortran), C++ (g++)
#1 SMP x86_64 GNU/Linux compilers:
(mayll/platypus) Version 4.4.7 20120313
Version 4.9.3, 5.3.0, 6.2.0
PGI C, Fortran, C++ for 64-bit target on
x86-64;
Version 17.10-0
Intel(R) C (icc), C++ (icpc), Fortran (icc)
compilers:
Version 17.0.4.196 Build 20170411
MPICH 3.1.4 compiled with GCC 4.9.3
Linux 3.10.0-327.18.2.el7 GNU C (gcc) and C++ (g++) compilers
#1 SMP x86_64 GNU/Linux Version 4.8.5 20150623 (Red Hat 4.8.5-4)
(jelly) with NAG Fortran Compiler Release 6.1(Tozai)
GCC Version 7.1.0
OpenMPI 3.0.0-GCC-7.2.0-2.29,
3.1.0-GCC-7.2.0-2.29
Intel(R) C (icc) and C++ (icpc) compilers
Version 17.0.0.098 Build 20160721
with NAG Fortran Compiler Release 6.1(Tozai)
Linux 3.10.0-327.10.1.el7 MPICH 3.2 compiled with GCC 5.3.0
#1 SMP x86_64 GNU/Linux
(moohan)
Linux 2.6.32-573.18.1.el6.ppc64 MPICH mpich 3.1.4 compiled with
#1 SMP ppc64 GNU/Linux IBM XL C/C++ for Linux, V13.1
(ostrich) and IBM XL Fortran for Linux, V15.1
Debian 8.4 3.16.0-4-amd64 #1 SMP Debian 3.16.36-1 x86_64 GNU/Linux
gcc, g++ (Debian 4.9.2-10) 4.9.2
GNU Fortran (Debian 4.9.2-10) 4.9.2
(cmake and autotools)
Fedora 24 4.7.2-201.fc24.x86_64 #1 SMP x86_64 x86_64 x86_64 GNU/Linux
gcc, g++ (GCC) 6.1.1 20160621
(Red Hat 6.1.1-3)
GNU Fortran (GCC) 6.1.1 20160621
(Red Hat 6.1.1-3)
(cmake and autotools)
Ubuntu 16.04.1 4.4.0-38-generic #57-Ubuntu SMP x86_64 GNU/Linux
gcc, g++ (Ubuntu 5.4.0-6ubuntu1~16.04.2)
5.4.0 20160609
GNU Fortran (Ubuntu 5.4.0-6ubuntu1~16.04.2)
5.4.0 20160609
(cmake and autotools)
Known Problems
==============
At present, metadata cache images may not be generated by parallel
applications. Parallel applications can read files with metadata cache
images, but since this is a collective operation, a deadlock is possible
if one or more processes do not participate.
Three tests fail with OpenMPI 3.0.0/GCC-7.2.0-2.29:
testphdf5 (ecdsetw, selnone, cchunk1, cchunk3, cchunk4, and actualio)
t_shapesame (sscontig2)
t_pflush1/fails on exit
The first two tests fail attempting collective writes.
CPP ptable test fails on VS2017 with Intel compiler, JIRA issue: HDFFV-10628.
This test will pass with VS2015 with Intel compiler.
Older MPI libraries such as OpenMPI 2.0.1 and MPICH 2.1.5 were tested
while attempting to resolve the Jira issue: HDFFV-10540.
The known problems of reading or writing > 2GBs when using MPI-2 was
partially resolved with the MPICH library. The proposed support recognizes
IO operations > 2GB and if the datatype is not a derived type, the library
breaks the IO into chunks which can be input or output with the existing
MPI 2 limitations, i.e. size reporting and function API size/count
arguments are restricted to be 32 bit integers. For derived types larger
than 2GB, MPICH 2.1.5 fails while attempting to read or write data.
OpenMPI in contrast, implements MPI-3 APIs even in the older releases
and thus does not suffer from the 32 bit size limitation described here.
OpenMPI releases prior to v3.1.3 appear to have other datatype issues however,
e.g. within a single parallel test (testphdf5) the subtests (cdsetr, eidsetr)
report data verfication errors before eventually aborting.
The most recent versions of OpenMPI (v3.1.3 or newer) have evidently
resolved these isses and parallel HDF5 testing does not currently report
errors though occasional hangs have been observed.
Known problems in previous releases can be found in the HISTORY*.txt files
in the HDF5 source. Please report any new problems found to
help@hdfgroup.org.
CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.
The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
build scripts
-------------
Autotools: h5c++, h5cc, h5fc
CMake: h5c++, h5cc, h5hlc++, h5hlcc
The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.
The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.
The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.
|