1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
|
HDF5 version 1.12.1-4 currently under development
================================================================================
INTRODUCTION
============
This document describes the new features introduced in the HDF5 1.12.0 release.
It contains information on the platforms tested and known problems in this
release. For more details check the HISTORY*.txt files in the HDF5 source.
Note that documentation in the links below will be updated at the time of the
release.
Links to HDF5 documentation can be found on The HDF5 web page:
https://portal.hdfgroup.org/display/HDF5/HDF5
The official HDF5 releases can be obtained from:
https://www.hdfgroup.org/downloads/hdf5/
More information about the new features can be found at:
https://portal.hdfgroup.org/display/HDF5/New+Features+in+HDF5+Release+1.12
If you have any questions or comments, please send them to the HDF Help Desk:
help@hdfgroup.org
CONTENTS
========
- New Features
- Support for new platforms and languages
- Bug Fixes since HDF5-1.12.0-alpha1
- Supported Platforms
- Tested Configuration Features Summary
- More Tested Platforms
- Known Problems
- CMake vs. Autotools installations
New Features
============
Configuration:
-------------
- Added an option to make the global thread-safe lock a recursive R/W lock
Prior to this release, the HDF5 library supported multi-threaded
applications by placing a recursive global lock on the entire library,
thus allowing only one thread into the library at a time.
While this is still the default, the library can now be built with the
recursive global lock replaced with a recursive read / write (R/W) lock
that allows recursive writer locks.
Currently, this change results in no functional change in the HDF5
library, as all threads will have to acquire a write lock on entry, and
thus obtain exclusive access to the HDF5 library as before. However, the
addition of the recursive R/W lock is a prerequisite for further work
directed at allowing some subset of the HDF5 API calls to enter the
library with read locks.
CMake: HDF5_USE_RECURSIVE_RW_LOCKS (default: OFF, advanced)
Autotools: --enable-recursive-rw-locks [default=no]
This feature only works with Pthreads. Win32 threads are not supported.
(DER - 2021/05/10)
- CMake no longer builds the C++ library by default
HDF5_BUILD_CPP_LIB now defaults to OFF, which is in line with the
Autotools build defaults.
(DER - 2021/04/20)
- Removal of pre-VS2015 work-arounds
HDF5 now requires Visual Studio 2015 or greater, so old work-around
code and definitions have been removed, including:
* <inttypes.h>
* snprintf and vsnprintf
* llround, llroundf, lround, lroundf, round, roundf
* strtoll and strtoull
* va_copy
* struct timespec
(DER - 2021/03/22)
- Add CMake variable HDF5_LIB_INFIX
This infix is added to all library names after 'hdf5'.
e.g. the infix '_openmpi' results in the library name 'libhdf5_openmpi.so'
This name is used in packages on debian based systems.
(see https://packages.debian.org/jessie/amd64/libhdf5-openmpi-8/filelist)
(barcode - 2021/03/22)
- On macOS, Universal Binaries can now be built, allowing native execution on
both Intel and Apple Silicon (ARM) based Macs.
To do so, set CMAKE_OSX_ARCHITECTURES="x86_64;arm64"
(SAM - 2021/02/07, https://github.com/HDFGroup/hdf5/issues/311)
- Added a configure-time option to control certain compiler warnings
diagnostics
A new configure-time option was added that allows some compiler warnings
diagnostics to have the default operation. This is mainly intended for
library developers and currently only works for gcc 10 and above. The
diagnostics flags apply to C, C++ and Fortran compilers and will appear
in "H5 C Flags", H5 C++ Flags" and H5 Fortran Flags, respectively. They
will NOT be exported to h5cc, etc.
The default is OFF, which will disable the warnings URL and color attributes
for the warnings output. ON will not add the flags and allow default behavior.
Autotools: --enable-diags
CMake: HDF5_ENABLE_BUILD_DIAGS
(ADB - 2021/02/05, HDFFV-11213)
- CMake option to build the HDF filter plugins project as an external project
The HDF filter plugins project is a collection of registered compression
filters that can be dynamically loaded when needed to access data stored
in a hdf5 file. This CMake-only option allows the plugins to be built and
distributed with the hdf5 library and tools. Like the options for szip and
zlib, either a tgz file or a git repository can be specified for the source.
The option was refactored to use the CMake FetchContent process. This allows
more control over the filter targets, but required external project command
options to be moved to a CMake include file, HDF5PluginCache.cmake. Also
enabled the filter examples to be used as tests for operation of the
filter plugins.
(ADB - 2020/12/10, OESS-98)
- FreeBSD Autotools configuration now defaults to 'cc' and 'c++' compilers
On FreeBSD, the autotools defaulted to 'gcc' as the C compiler and did
not process C++ options. Since FreeBSD 10, the default compiler has
been clang (via 'cc').
The default compilers have been set to 'cc' for C and 'c++' for C++,
which will pick up clang and clang++ respectively on FreeBSD 10+.
Additionally, clang options are now set correctly for both C and C++
and g++ options will now be set if that compiler is being used (an
omission from the former functionality).
(DER - 2020/11/28, HDFFV-11193)
- Fixed POSIX problems when building w/ gcc on Solaris
When building on Solaris using gcc, the POSIX symbols were not
being set correctly, which could lead to issues like clock_gettime()
not being found.
The standard is now set to gnu99 when building with gcc on Solaris,
which allows POSIX things to be #defined and linked correctly. This
differs slightly from the gcc norm, where we set the standard to c99
and manually set POSIX #define symbols.
(DER - 2020/11/25, HDFFV-11191)
- Added a configure-time option to consider certain compiler warnings
as errors
A new configure-time option was added that converts some compiler warnings
to errors. This is mainly intended for library developers and currently
only works for gcc and clang. The warnings that are considered errors
will appear in the generated libhdf5.settings file. These warnings apply
to C and C++ code and will appear in "H5 C Flags" and H5 C++ Flags",
respectively. They will NOT be exported to h5cc, etc.
The default is OFF. Building with this option may fail when compiling
on operating systems and with compiler versions not commonly used by
the library developers. Compilation may also fail when headers not
under the control of the library developers (e.g., mpi.h, hdfs.h) raise
warnings.
Autotools: --enable-warnings-as-errors
CMake: HDF5_ENABLE_WARNINGS_AS_ERRORS
(DER - 2020/11/23, HDFFV-11189)
- Autotools and CMake target added to produce doxygen generated documentation
The default is OFF or disabled.
Autoconf option is '--enable-doxygen'
autotools make target is 'doxygen' and will build all doxygen targets
CMake configure option is 'HDF5_BUILD_DOC'.
CMake target is 'doxygen' for all available doxygen targets
CMake target is 'hdf5lib_doc' for the src subdirectory
(ADB - 2020/11/13)
- CMake option to use MSVC naming conventions with MinGW
HDF5_MSVC_NAMING_CONVENTION option enable to use MSVC naming conventions
when using a MinGW toolchain
(xan - 2020/10/30)
- CMake option to statically link gcc libs with MinGW
HDF5_MINGW_STATIC_GCC_LIBS allows to statically link libg/libstdc++
with the MinGW toolchain
(xan - 2020/10/30)
- CMake option to build the HDF filter plugins project as an external project
The HDF filter plugins project is a collection of registered compression
filters that can be dynamically loaded when needed to access data stored
in a hdf5 file. This CMake-only option allows the plugins to be built and
distributed with the hdf5 library and tools. Like the options for szip and
zlib, either a tgz file or a git repository can be specified for the source.
The necessary options are (see the INSTALL_CMake.txt file):
HDF5_ENABLE_PLUGIN_SUPPORT
PLUGIN_TGZ_NAME or PLUGIN_GIT_URL
There are more options necessary for various filters and the plugin project
documents should be referenced.
(ADB - 2020/10/16, OESS-98)
- Added CMake option to format source files
HDF5_ENABLE_FORMATTERS option will enable creation of targets using the
pattern - HDF5_*_SRC_FORMAT - where * corresponds to the source folder
or tool folder. All sources can be formatted by executing the format target;
make format
(ADB - 2020/09/24)
- CMake option to link the generated Fortran MOD files into the include
directory.
The Fortran generation of MOD files by a Fortran compile can produce
different binary files between SHARED and STATIC compiles with different
compilers and/or different platforms. Note that it has been found that
different versions of Fortran compilers will produce incompatible MOD
files. Currently, CMake will locate these MOD files in subfolders of
the include directory and add that path to the Fortran library target
in the CMake config file, which can be used by the CMake find library
process. For other build systems using the binary from a CMake install,
a new CMake configuration can be used to copy the pre-chosen version
of the Fortran MOD files into the install include directory.
The default will depend on the configuration of
BUILD_STATIC_LIBS and BUILD_SHARED_LIBS:
YES YES Default to SHARED
YES NO Default to STATIC
NO YES Default to SHARED
NO NO Default to SHARED
The defaults can be overridden by setting the config option
HDF5_INSTALL_MOD_FORTRAN to one of NO, SHARED, or STATIC
(ADB - 2020/07/09, HDFFV-11116)
- CMake option to use AEC (open source SZip) library instead of SZip
The open source AEC library is a replacement library for SZip. In
order to use it for hdf5 the libaec CMake source was changed to add
"-fPIC" and exclude test files. Autotools does not build the
compression libraries within hdf5 builds. New option USE_LIBAEC is
required to compensate for the different files produced by AEC build.
(ADB - 2020/04/22, OESS-65)
- CMake ConfigureChecks.cmake file now uses CHECK_STRUCT_HAS_MEMBER
Some handcrafted tests in HDFTests.c has been removed and the CMake
CHECK_STRUCT_HAS_MEMBER module has been used.
(ADB - 2020/03/24, TRILAB-24)
- Both build systems use same set of warnings flags
GNU C, C++ and gfortran warnings flags were moved to files in a config
sub-folder named gnu-warnings. Flags that only are available for a specific
version of the compiler are in files named with that version.
Clang C warnings flags were moved to files in a config sub-folder
named clang-warnings.
Intel C, Fortran warnings flags were moved to files in a config sub-folder
named intel-warnings.
There are flags in named "error-xxx" files with warnings that may
be promoted to errors. Some source files may still need fixes.
There are also pairs of files named "developer-xxx" and "no-developer-xxx"
that are chosen by the CMake option:HDF5_ENABLE_DEV_WARNINGS or the
configure option:--enable-developer-warnings.
In addition, CMake no longer applies these warnings for examples.
(ADB - 2020/03/24, TRILAB-192)
Library:
--------
- H5Gcreate1() now rejects size_hint parameters larger than UINT32_MAX
The size_hint value is ultimately stored in a uint32_t struct field,
so specifying a value larger than this on a 64-bit machine can cause
undefined behavior including crashing the system.
The documentation for this API call was also incorrect, stating that
passing a negative value would cause the library to use a default
value. Instead, passing a "negative" value actually passes a very large
value, which is probably not what the user intends and can cause
crashes on 64-bit systems.
The Doxygen documentation has been updated and passing values larger
than UINT32_MAX for size_hint will now produce a normal HDF5 error.
(DER - 2021/04/29, HDFFV-11241)
- H5Pset_fapl_log() no longer crashes when passed an invalid fapl ID
When passed an invalid fapl ID, H5Pset_fapl_log() would usually
segfault when attempting to free an uninitialized pointer in the error
handling code. This behavior is more common in release builds or
when the memory sanitization checks were not selected as a build
option.
The pointer is now correctly initialized and the API call now
produces a normal HDF5 error when fed an invalid fapl ID.
(DER - 2021/04/28, HDFFV-11240)
- Fixes a segfault when H5Pset_mdc_log_options() is called multiple times
The call incorrectly attempts to free an internal copy of the previous
log location string, which causes a segfault. This only happens
when the call is invoked multiple times on the same property list.
On the first call to a given fapl, the log location is set to NULL so
the segfault does not occur.
The string is now handled properly and the segfault no longer occurs.
(DER - 2021/04/27, HDFFV-11239)
- HSYS_GOTO_ERROR now emits the results of GetLastError() on Windows
HSYS_GOTO_ERROR is an internal macro that is used to produce error
messages when system calls fail. These strings include errno and the
the associated strerror() value, which are not particularly useful
when a Win32 API call fails.
On Windows, this macro has been updated to include the result of
GetLastError(). When a system call fails on Windows, usually only
one of errno and GetLastError() will be useful, however we emit both
for the user to parse. The Windows error message is not emitted as
it would be awkward to free the FormatMessage() buffer given the
existing HDF5 error framework. Users will have to look up the error
codes in MSDN.
The format string on Windows has been changed from:
"%s, errno = %d, error message = '%s'"
to:
"%s, errno = %d, error message = '%s', Win32 GetLastError() = %"PRIu32""
for those inclined to parse it for error values.
(DER - 2021/03/21)
- File locking now works on Windows
Since version 1.10.0, the HDF5 library has used a file locking scheme
to help enforce one reader at a time accessing an HDF5 file, which can
be helpful when setting up readers and writers to use the single-
writer/multiple-readers (SWMR) access pattern.
In the past, this was only functional on POSIX systems where flock() or
fcntl() were present. Windows used a no-op stub that always succeeded.
HDF5 now uses LockFileEx() and UnlockFileEx() to lock the file using the
same scheme as POSIX systems. We lock the entire file when we set up the
locks (by passing DWORDMAX as both size parameters to LockFileEx()).
(DER - 2021/03/19, HDFFV-10191)
- H5Epush_ret() now requires a trailing semicolon
H5Epush_ret() is a function-like macro that has been changed to
contain a `do {} while(0)` loop. Consequently, a trailing semicolon
is now required to end the `while` statement. Previously, a trailing
semi would work, but was not mandatory. This change was made to allow
clang-format to correctly format the source code.
(SAM - 2021/03/03)
- Improved performance of H5Sget_select_elem_pointlist
Modified library to cache the point after the last block of points
retrieved by H5Sget_select_elem_pointlist, so a subsequent call to the
same function to retrieve the next block of points from the list can
proceed immediately without needing to iterate over the point list.
(NAF - 2021/01/19)
- Added H5VL_VERSION macro that indicates the version of the VOL framework
implemented by a version of the library. Currently, compatibility
checking enforces that the 'version' field in the H5VL_class_t for
a VOL connector must match the version of the VOL framework for the
library when it is registered or dynamically loaded.
(QAK - 2020/12/10)
- Added two new API routines for tracking library memory use:
H5get_alloc_stats() and H5get_free_list_sizes().
(QAK - 2020/03/25)
Java Library:
-------------
- Added new H5S functions.
H5Sselect_copy, H5Sselect_shape_same, H5Sselect_adjust,
H5Sselect_intersect_block, H5Sselect_project_intersection,
H5Scombine_hyperslab, H5Smodify_select, H5Scombine_select
wrapper functions added.
(ADB - 2020/10/27, HDFFV-10868)
Tools:
------
- h5repack added help text for user-defined filters.
Added help text line that states the valid values of the filter flag
for user-defined filters;
filter_flag: 1 is OPTIONAL or 0 is MANDATORY
(ADB - 2021/01/14, HDFFV-11099)
- h5repack added options to control how external links are handled.
Currently h5repack preserves external links and cannot copy and merge
data from the external files. Two options, merge and prune, were added to
control how to merge data from an external link into the resulting file.
--merge Follow external soft link recursively and merge data.
--prune Do not follow external soft links and remove link.
--merge --prune Follow external link, merge data and remove dangling link.
(ADB - 2020/08/05, HDFFV-9984)
Support for new platforms, languages and compilers
==================================================
-
Bug Fixes since HDF5-1.12.0 release
===================================
Library
-------
- Fixed CVE-2018-14460
The tool h5repack produced a segfault when the rank in dataspace
message was corrupted, causing invalid read while decoding the
dimension sizes.
The problem was fixed by ensuring that decoding the dimension sizes
and max values will not go beyong the end of the buffer.
(BMR - 2021/05/12, HDFFV-11223)
- Fixed CVE-2018-11206
The tool h5dump produced a segfault when the size of a fill value
message was corrupted and caused a buffer overflow.
The problem was fixed by verifying the fill value's size
against the buffer size before attempting to access the buffer.
(BMR - 2021/03/15, HDFFV-10480)
- Fixed CVE-2018-14033 (same issue as CVE-2020-10811)
The tool h5dump produced a segfault when the storage size message
was corrupted and caused a buffer overflow.
The problem was fixed by verifying the storage size against the
buffer size before attempting to access the buffer.
(BMR - 2021/03/15, HDFFV-11159/HDFFV-11049)
- Remove underscores on header file guards
Header file guards used a variety of underscores at the beginning of the define.
Removed all leading (some trailing) underscores from header file guards.
(ADB - 2021/03/03, #361)
- Fixed issue with MPI communicator and info object not being
copied into new FAPL retrieved from H5F_get_access_plist
Added logic to copy the MPI communicator and info object into
the output FAPL. MPI communicator is retrieved from the VFD, while
the MPI info object is retrieved from the file's original FAPL.
(JTH - 2021/02/15, HDFFV-11109)
- Fixed problems with vlens and refs inside compound using
H5VLget_file_type()
Modified library to properly ref count H5VL_object_t structs and only
consider file vlen and reference types to be equal if their files are
the same.
(NAF - 2021/01/22)
- Fix bug and simplify collective metadata write operation when some ranks
have no entries to contribute. This fixes parallel regression test
failures with IBM SpectrumScale MPI on the Summit system at ORNL.
(QAK - 2020/09/02)
- Avoid setting up complex MPI types with 0-length vectors, which some
MPI implementations don't handle well. (In particular, IBM
SpectrumScale MPI on the Summit system at ORNL)
(QAK - 2020/08/21)
- Explicitly declared dlopen to use RTLD_LOCAL
dlopen documentation states that if neither RTLD_GLOBAL nor
RTLD_LOCAL are specified, then the default behavior is unspecified.
The default on linux is usually RTLD_LOCAL while macos will default
to RTLD_GLOBAL.
(ADB - 2020/08/12, HDFFV-11127)
- H5Sset_extent_none() sets the dataspace class to H5S_NO_CLASS which
causes asserts/errors when passed to other dataspace API calls.
H5S_NO_CLASS is an internal class value that should not have been
exposed via a public API call.
In debug builds of the library, this can cause assert() function to
trip. In non-debug builds, it will produce normal library errors.
The new library behavior is for H5Sset_extent_none() to convert
the dataspace into one of type H5S_NULL, which is better handled
by the library and easier for developers to reason about.
(DER - 2020/07/27, HDFFV-11027)
- Fixed the segmentation fault when reading attributes with multiple threads
It was reported that the reading of attributes with variable length string
datatype will crash with segmentation fault particularly when the number of
threads is high (>16 threads). The problem was due to the file pointer that
was set in the variable length string datatype for the attribute. That file
pointer was already closed when the attribute was accessed.
The problem was fixed by setting the file pointer to the current opened file pointer
when the attribute was accessed. Similar patch up was done before when reading
dataset with variable length string datatype.
(VC - 2020/07/13, HDFFV-11080)
- Reduce overhead for H5open(), which is involved in public symbols like
H5T_NATIVE_INT, etc.
(QAK - 2020/06/18)
- Cache last ID looked up for an ID type (dataset, datatype, file, etc),
improving performance when accessing the same ID repeatedly.
(QAK - 2020/06/11)
- Streamline I/O to a single element, improving performance for record
appends to chunked datasets.
(QAK - 2020/06/11)
- Remove redundant tagging of metadata cache entries for some chunked
dataset operations, slightly improving performance for chunked
datasets.
(QAK - 2020/06/10)
- Better detect selections with the same shape, improving performance for
some uses of H5DOappend (and other situations).
(QAK - 2020/06/07)
- Don't allocate an empty (0-dimensioned) chunked dataset's chunk
index, until the dataset's dimensions are increased.
(QAK - 2020/05/07)
Java Library
------------
- JNI utility function does not handle new references.
The JNI utility function for converting reference data to string did
not use the new APIs. In addition to fixing that function, added new
java tests for using the new APIs.
(ADB - 2021/02/16, HDFFV-11212)
- The H5FArray.java class, in which virtually the entire execution time
is spent using the HDFNativeData method that converts from an array
of bytes to an array of the destination Java type.
1. Convert the entire byte array into a 1-d array of the desired type,
rather than performing 1 conversion per row;
2. Use the Java Arrays method copyOfRange to grab the section of the
array from (1) that is desired to be inserted into the destination array.
(PGT,ADB - 2020/12/29, HDFFV-10865)
Configuration
-------------
- Remove arbitrary warning flag groups from CMake builds
The arbitrary groups were created to reduce the quantity of warnings being
reported that overwhelmed testing report systems. Considerable work has
been accomplished to reduce the warning count and these arbitrary groups
are no longer needed.
Also the default for all warnings, HDF5_ENABLE_ALL_WARNINGS, is now ON.
Visual Studio warnings C4100, C4706, and C4127 have been moved to
developer warnings, HDF5_ENABLE_DEV_WARNINGS, and are disabled for normal builds.
(ADB - 2021/03/22, HDFFV-11228)
- Reclassify CMake messages, to allow new modes and --log-level option
CMake message commands have a mode argument. By default, STATUS mode
was chosen for any non-error message. CMake version 3.15 added additional
modes, NOTICE, VERBOSE, DEBUG and TRACE. All message commands with a mode
of STATUS were reviewed and most were reclassified as VERBOSE. The new
mode was protected by a check for a CMake version of at least 3.15. If CMake
version 3.17 or above is used, the user can use the command line option
of "--log-level" to further restrict which message commands are displayed.
(ADB - 2021/01/11, HDFFV-11144)
- Fixes Autotools determination of the stat struct having an st_blocks field
A missing parenthesis in an autoconf macro prevented building the test
code used to determine if the stat struct contains the st_blocks field.
Now that the test functions correctly, the H5_HAVE_STAT_ST_BLOCKS #define
found in H5pubconf.h will be defined correctly on both the Autotools and
CMake. This #define is only used in the tests and does not affect the
HDF5 C library.
(DER - 2021/01/07, HDFFV-11201)
Tools
-----
- Changed how h5dump and h5ls identify long double.
Long double support is not consistent across platforms. Tools will always
identify long double as 128-bit [little/big]-endian float nn-bit precision.
New test file created for datasets with attributes for float, double and
long double. In addition any unknown integer or float datatype will now
also show the number of bits for precision.
These files are also used in the java tests.
(ADB - 2021/03/24, HDFFV-11229)
- Fixed tools argument parsing.
Tools parsing used the length of the option from the long array to match
the option from the command line. This incorrectly matched a shorter long
name option that happened to be a subset of another long option.
Changed to match whole names.
(ADB - 2021/01/19, HDFFV-11106)
Fortran API
-----------
- Fixed configure issue when building HDF5 with NAG Fortran 7.0.
HDF5 now accounts for the addition of half-precision floating-point
in NAG 7.0 with a KIND=16.
(MSB - 2020/02/28, HDFFV-11033)
High-Level Library
------------------
- Eliminated unnecessary code in H5DOappend(), improving its performance.
(QAK - 2020/06/05)
Fortran High-Level APIs
-----------------------
-
Documentation
-------------
- Updated doxygen comments with changes for release
(ADB - 2021/05/03)
F90 APIs
--------
-
C++ APIs
--------
-
Testing
-------
- Stopped java/test/junit.sh.in installing libs for testing under ${prefix}
Lib files needed are now copied to a subdirectory in the java/test
directory, and on Macs the loader path for libhdf5.xxxs.so is changed
in the temporary copy of libhdf5_java.dylib.
(LRK, 2020/07/02, HDFFV-11063)
Supported Platforms
===================
Linux 2.6.32-696.16.1.el6.ppc64 gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18)
#1 SMP ppc64 GNU/Linux g++ (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18)
(ostrich) GNU Fortran (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18)
IBM XL C/C++ V13.1
IBM XL Fortran V15.1
Linux 3.10.0-327.10.1.el7 GNU C (gcc), Fortran (gfortran), C++ (g++)
#1 SMP x86_64 GNU/Linux compilers:
(kituo/moohan) Version 4.8.5 20150623 (Red Hat 4.8.5-4)
Version 4.9.3, 5.2.0, 7.1.0
Intel(R) C (icc), C++ (icpc), Fortran (icc)
compilers:
Version 17.0.0.098 Build 20160721
MPICH 3.1.4
Linux-3.10.0- spectrum-mpi/rolling-release with cmake>3.10 and
862.14.4.1chaos.ch6.ppc64le clang/3.9,8.0
#1 SMP ppc64le GNU/Linux gcc/7.3
(ray) xl/2016,2019
Linux 3.10.0- openmpi/3.1,4.0 with cmake>3.10 and
957.12.2.1chaos.ch6.x86_64 clang 5.0
#1 SMP x86_64 GNU/Linux gcc/7.3,8.2
(serrano) intel/17.0,18.0/19.0
Linux 3.10.0- openmpi/3.1/4.0 with cmake>3.10 and
1062.1.1.1chaos.ch6.x86_64 clang/3.9,5.0,8.0
#1 SMP x86_64 GNU/Linux gcc/7.3,8.1,8.2
(chama,quartz) intel/16.0,18.0,19.0
Linux 4.4.180-94.100-default cray-mpich/7.7.6 with PrgEnv-*/6.0.5, cmake>3.10 and
#1 SMP x86_64 GNU/Linux gcc/7.2.0,8.2.0
(mutrino) intel/17.0,18.0
Linux 4.14.0- spectrum-mpi/rolling-release with cmake>3.10 and
49.18.1.bl6.ppc64le clang/6.0,8.0
#1 SMP ppc64le GNU/Linux gcc/7.3
(lassen) xl/2019
SunOS 5.11 32- and 64-bit Sun C 5.12 SunOS_sparc
(emu) Sun Fortran 95 8.6 SunOS_sparc
Sun C++ 5.12 SunOS_sparc
Windows 10 x64 Visual Studio 2015 w/ Intel Fortran 18 (cmake)
Visual Studio 2017 w/ Intel Fortran 19 (cmake)
Visual Studio 2019 w/ Intel Fortran 19 (cmake)
Visual Studio 2019 w/ MSMPI 10.1 (cmake)
Mac OS X Yosemite 10.10.5 Apple clang/clang++ version 6.1 from Xcode 7.0
64-bit gfortran GNU Fortran (GCC) 4.9.2
(osx1010dev/osx1010test) Intel icc/icpc/ifort version 15.0.3
Mac OS X El Capitan 10.11.6 Apple clang/clang++ version 7.3.0 from Xcode 7.3
64-bit gfortran GNU Fortran (GCC) 5.2.0
(osx1011dev/osx1011test) Intel icc/icpc/ifort version 16.0.2
Mac OS High Sierra 10.13.6 Apple LLVM version 10.0.0 (clang/clang++-1000.10.44.4)
64-bit gfortran GNU Fortran (GCC) 6.3.0
(bear) Intel icc/icpc/ifort version 19.0.4
Mac OS Mojave 10.14.6 Apple LLVM version 10.0.1 (clang/clang++-1001.0.46.4)
64-bit gfortran GNU Fortran (GCC) 6.3.0
(bobcat) Intel icc/icpc/ifort version 19.0.4
Tested Configuration Features Summary
=====================================
In the tables below
y = tested
n = not tested in this release
C = Cluster
W = Workstation
x = not working in this release
dna = does not apply
( ) = footnote appears below second table
<blank> = testing incomplete on this feature or platform
Platform C F90/ F90 C++ zlib SZIP
parallel F2003 parallel
Solaris2.11 32-bit n y/y n y y y
Solaris2.11 64-bit n y/n n y y y
Windows 10 y y/y n y y y
Windows 10 x64 y y/y n y y y
Mac OS X Mountain Lion 10.8.5 64-bit n y/y n y y y
Mac OS X Mavericks 10.9.5 64-bit n y/y n y y ?
Mac OS X Yosemite 10.10.5 64-bit n y/y n y y ?
Mac OS X El Capitan 10.11.6 64-bit n y/y n y y ?
CentOS 6.7 Linux 2.6.18 x86_64 GNU n y/y n y y y
CentOS 6.7 Linux 2.6.18 x86_64 Intel n y/y n y y y
CentOS 6.7 Linux 2.6.32 x86_64 PGI n y/y n y y y
CentOS 7.2 Linux 2.6.32 x86_64 GNU y y/y y y y y
CentOS 7.2 Linux 2.6.32 x86_64 Intel n y/y n y y y
Linux 2.6.32-573.18.1.el6.ppc64 n y/n n y y y
Platform Shared Shared Shared Thread-
C libs F90 libs C++ libs safe
Solaris2.11 32-bit y y y y
Solaris2.11 64-bit y y y y
Windows 10 y y y y
Windows 10 x64 y y y y
Mac OS X Mountain Lion 10.8.5 64-bit y n y y
Mac OS X Mavericks 10.9.5 64-bit y n y y
Mac OS X Yosemite 10.10.5 64-bit y n y y
Mac OS X El Capitan 10.11.6 64-bit y n y y
CentOS 6.7 Linux 2.6.18 x86_64 GNU y y y y
CentOS 6.7 Linux 2.6.18 x86_64 Intel y y y n
CentOS 6.7 Linux 2.6.32 x86_64 PGI y y y n
CentOS 7.2 Linux 2.6.32 x86_64 GNU y y y n
CentOS 7.2 Linux 2.6.32 x86_64 Intel y y y n
Linux 2.6.32-573.18.1.el6.ppc64 y y y n
Compiler versions for each platform are listed in the preceding
"Supported Platforms" table.
More Tested Platforms
=====================
The following platforms are not supported but have been tested for this release.
Linux 2.6.32-573.22.1.el6 GNU C (gcc), Fortran (gfortran), C++ (g++)
#1 SMP x86_64 GNU/Linux compilers:
(mayll/platypus) Version 4.4.7 20120313
Version 4.9.3, 5.3.0, 6.2.0
PGI C, Fortran, C++ for 64-bit target on
x86-64;
Version 17.10-0
Intel(R) C (icc), C++ (icpc), Fortran (icc)
compilers:
Version 17.0.4.196 Build 20170411
MPICH 3.1.4 compiled with GCC 4.9.3
Linux 3.10.0-327.18.2.el7 GNU C (gcc) and C++ (g++) compilers
#1 SMP x86_64 GNU/Linux Version 4.8.5 20150623 (Red Hat 4.8.5-4)
(jelly) with NAG Fortran Compiler Release 6.1(Tozai)
GCC Version 7.1.0
OpenMPI 3.0.0-GCC-7.2.0-2.29
Intel(R) C (icc) and C++ (icpc) compilers
Version 17.0.0.098 Build 20160721
with NAG Fortran Compiler Release 6.1(Tozai)
PGI C (pgcc), C++ (pgc++), Fortran (pgf90)
compilers:
Version 18.4, 19.4
MPICH 3.3
OpenMPI 2.1.5, 3.1.3, 4.0.0
Fedora33 5.10.10-200.fc33.x86_64
#1 SMP x86_64 GNU/Linux GNU gcc (GCC) 10.2.1 20201125 (Red Hat 10.2.1-9)
GNU Fortran (GCC) 10.2.1 20201125 (Red Hat 10.2.1-9)
clang version 11.0.0 (Fedora 11.0.0-2.fc33)
(cmake and autotools)
Ubuntu20.10 5.8.0-41-generic-x86_64
#46-Ubuntu SMP x86_64 GNU/Linux GNU gcc (GCC) 10.2.0-13ubuntu1
GNU Fortran (GCC) 10.2.0-13ubuntu1
(cmake and autotools)
SUSE15sp2 5.3.18-22-default
#1 SMP x86_64 GNU/Linux GNU gcc (SUSE Linux) 7.5.0
GNU Fortran (SUSE Linux) 7.5.0
clang version 7.0.1 (tags/RELEASE_701/final 349238)
(cmake and autotools)
Known Problems
==============
CMake files do not behave correctly with paths containing spaces.
Do not use spaces in paths because the required escaping for handling spaces
results in very complex and fragile build files.
ADB - 2019/05/07
At present, metadata cache images may not be generated by parallel
applications. Parallel applications can read files with metadata cache
images, but since this is a collective operation, a deadlock is possible
if one or more processes do not participate.
CPP ptable test fails on both VS2017 and VS2019 with Intel compiler, JIRA
issue: HDFFV-10628. This test will pass with VS2015 with Intel compiler.
Known problems in previous releases can be found in the HISTORY*.txt files
in the HDF5 source. Please report any new problems found to
help@hdfgroup.org.
CMake vs. Autotools installations
=================================
While both build systems produce similar results, there are differences.
Each system produces the same set of folders on linux (only CMake works
on standard Windows); bin, include, lib and share. Autotools places the
COPYING and RELEASE.txt file in the root folder, CMake places them in
the share folder.
The bin folder contains the tools and the build scripts. Additionally, CMake
creates dynamic versions of the tools with the suffix "-shared". Autotools
installs one set of tools depending on the "--enable-shared" configuration
option.
build scripts
-------------
Autotools: h5c++, h5cc, h5fc
CMake: h5c++, h5cc, h5hlc++, h5hlcc
The include folder holds the header files and the fortran mod files. CMake
places the fortran mod files into separate shared and static subfolders,
while Autotools places one set of mod files into the include folder. Because
CMake produces a tools library, the header files for tools will appear in
the include folder.
The lib folder contains the library files, and CMake adds the pkgconfig
subfolder with the hdf5*.pc files used by the bin/build scripts created by
the CMake build. CMake separates the C interface code from the fortran code by
creating C-stub libraries for each Fortran library. In addition, only CMake
installs the tools library. The names of the szip libraries are different
between the build systems.
The share folder will have the most differences because CMake builds include
a number of CMake specific files for support of CMake's find_package and support
for the HDF5 Examples CMake project.
|