summaryrefslogtreecommitdiffstats
path: root/src/H5B.c
blob: e7436c69c46953100d1f734d9d44b4d1dbb7552c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
/*-------------------------------------------------------------------------
 * Copyright (C) 1997   National Center for Supercomputing Applications.
 *                      All rights reserved.
 *
 *-------------------------------------------------------------------------
 *
 * Created:             hdf5btree.c
 *                      Jul 10 1997
 *                      Robb Matzke <matzke@llnl.gov>
 *
 * Purpose:             Implements balanced, sibling-linked, N-ary trees
 *                      capable of storing any type of data with unique key
 *                      values.
 *
 *                      A B-link-tree is a balanced tree where each node has
 *                      a pointer to its left and right siblings.  A
 *                      B-link-tree is a rooted tree having the following
 *                      properties:
 *
 *                      1. Every node, x, has the following fields:
 *
 *                         a. level[x], the level in the tree at which node
 *                            x appears.  Leaf nodes are at level zero.
 *
 *                         b. n[x], the number of children pointed to by the
 *                            node.  Internal nodes point to subtrees while
 *                            leaf nodes point to arbitrary data.
 *
 *                         c. The child pointers themselves, child[x,i] such
 *                            that 0 <= i < n[x].
 *
 *                         d. n[x]+1 key values stored in increasing
 *                            order:
 *
 *                              key[x,0] < key[x,1] < ... < key[x,n[x]].
 *
 *                         e. left[x] is a pointer to the node's left sibling
 *                            or the null pointer if this is the left-most
 *                            node at this level in the tree.
 *                            
 *                         f. right[x] is a pointer to the node's right
 *                            sibling or the null pointer if this is the
 *                            right-most node at this level in the tree.
 *
 *                      3. The keys key[x,i] partition the key spaces of the
 *                         children of x:
 *
 *                            key[x,i] <= key[child[x,i],j] <= key[x,i+1]
 *
 *                         for any valid combination of i and j.
 *
 *                      4. There are lower and upper bounds on the number of
 *                         child pointers a node can contain.  These bounds
 *                         can be expressed in terms of a fixed integer k>=2
 *                         called the `minimum degree' of the B-tree.
 *
 *                         a. Every node other than the root must have at least
 *                            k child pointers and k+1 keys.  If the tree is
 *                            nonempty, the root must have at least one child
 *                            pointer and two keys.
 *
 *                         b. Every node can contain at most 2k child pointers
 *                            and 2k+1 keys.  A node is `full' if it contains
 *                            exactly 2k child pointers and 2k+1 keys.
 *
 *                      5. When searching for a particular value, V, and
 *                         key[V] = key[x,i] for some node x and entry i,
 *                         then:
 *
 *                         a. If i=0 the child[0] is followed.
 *
 *                         b. If i=n[x] the child[n[x]-1] is followed.
 *
 *                         c. Otherwise, the child that is followed
 *                            (either child[x,i-1] or child[x,i]) is
 *                            determined by the type of object to which the
 *                            leaf nodes of the tree point and is controlled
 *                            by the key comparison function registered for
 *                            that type of B-tree.
 *
 *
 * Modifications:
 *
 *      Robb Matzke, 4 Aug 1997
 *      Added calls to H5E.
 *
 *-------------------------------------------------------------------------
 */
/* private headers */
#include <H5private.h>          /*library                 */
#include <H5ACprivate.h>        /*cache                           */
#include <H5Bprivate.h>         /*B-link trees                    */
#include <H5Eprivate.h>         /*error handling          */
#include <H5MFprivate.h>        /*File memory management  */
#include <H5MMprivate.h>        /*Core memory management          */

#define PABLO_MASK      H5B_mask

#define BOUND(MIN,X,MAX) ((X)<(MIN)?(MIN):((X)>(MAX)?(MAX):(X)))

/* PRIVATE PROTOTYPES */
static H5B_ins_t        H5B_insert_helper(H5F_t *f, const haddr_t *addr,
                                          const H5B_class_t *type,
                                     uint8 *lt_key, hbool_t *lt_key_changed,
                                          uint8 *md_key, void *udata,
                                     uint8 *rt_key, hbool_t *rt_key_changed,
                                          haddr_t *retval);
static herr_t           H5B_insert_child(H5F_t *f, const H5B_class_t *type,
                                  H5B_t *bt, intn idx, const haddr_t *child,
                                         H5B_ins_t anchor, void *md_key);
static herr_t           H5B_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr,
                                  H5B_t *b);
static H5B_t           *H5B_load(H5F_t *f, const haddr_t *addr, const void *_type,
                                 void *udata);
static herr_t           H5B_decode_key(H5F_t *f, H5B_t *bt, intn idx);
static herr_t           H5B_decode_keys(H5F_t *f, H5B_t *bt, intn idx);
static size_t           H5B_nodesize(H5F_t *f, const H5B_class_t *type,
                               size_t *total_nkey_size, size_t sizeof_rkey);
static herr_t           H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
                                  const haddr_t *old_addr, void *udata,
                                  haddr_t *new_addr /*out */ );
#ifdef H5B_DEBUG
static herr_t           H5B_assert(H5F_t *f, const haddr_t *addr,
                                   const H5B_class_t *type, void *udata);
#endif

/* H5B inherits cache-like properties from H5AC */
static const H5AC_class_t H5AC_BT[1] =
{
    {
        H5AC_BT_ID,
        (void *(*)(H5F_t *, const haddr_t *, const void *, void *)) H5B_load,
        (herr_t (*)(H5F_t *, hbool_t, const haddr_t *, void *)) H5B_flush,
    }};

/* Interface initialization? */
#define INTERFACE_INIT NULL
static                  interface_initialize_g = FALSE;

/*-------------------------------------------------------------------------
 * Function:    H5B_create
 *
 * Purpose:     Creates a new empty B-tree leaf node.  The UDATA pointer is
 *              passed as an argument to the sizeof_rkey() method for the
 *              B-tree.
 *
 * Return:      Success:        SUCCEED, address of new node is returned
 *                              through the RETVAL argument.
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jun 23 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5B_create(H5F_t *f, const H5B_class_t *type, void *udata, haddr_t *retval)
{
    H5B_t                  *bt = NULL;
    size_t                  size, sizeof_rkey;
    size_t                  total_native_keysize;
    intn                    offset, i;

    FUNC_ENTER(H5B_create, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(retval);

    /*
     * Allocate file and memory data structures.
     */
    sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
    size = H5B_nodesize(f, type, &total_native_keysize, sizeof_rkey);
    if (H5MF_alloc(f, H5MF_META, size, retval) < 0) {
        HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                      "can't allocate file space for B-tree root node");
    }
    bt = H5MM_xmalloc(sizeof(H5B_t));
    bt->type = type;
    bt->sizeof_rkey = sizeof_rkey;
    bt->dirty = TRUE;
    bt->ndirty = 0;
    bt->type = type;
    bt->level = 0;
    H5F_addr_undef(&(bt->left));
    H5F_addr_undef(&(bt->right));
    bt->nchildren = 0;
    bt->page = H5MM_xcalloc(1, size);   /*use calloc() to keep file clean */
    bt->native = H5MM_xmalloc(total_native_keysize);
    bt->child = H5MM_xmalloc(2 * H5B_K(f, type) * sizeof(haddr_t));
    bt->key = H5MM_xmalloc((2 * H5B_K(f, type) + 1) * sizeof(H5B_key_t));

    /*
     * Initialize each entry's raw child and key pointers to point into the
     * `page' buffer.  Each native key pointer should be null until the key is
     * translated to native format.
     */
    for (i = 0, offset = H5B_SIZEOF_HDR(f);
         i < 2 * H5B_K(f, type);
         i++, offset += bt->sizeof_rkey + H5F_SIZEOF_ADDR(f)) {

        bt->key[i].dirty = FALSE;
        bt->key[i].rkey = bt->page + offset;
        bt->key[i].nkey = NULL;
        H5F_addr_undef(bt->child + i);
    }

    /*
     * The last possible key...
     */
    bt->key[2 * H5B_K(f, type)].dirty = FALSE;
    bt->key[2 * H5B_K(f, type)].rkey = bt->page + offset;
    bt->key[2 * H5B_K(f, type)].nkey = NULL;

    /*
     * Cache the new B-tree node.
     */
    if (H5AC_set(f, H5AC_BT, retval, bt) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
                      "can't add B-tree root node to cache");
    }
#ifdef H5B_DEBUG
    H5B_assert(f, retval, type, udata);
#endif
    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_load
 *
 * Purpose:     Loads a B-tree node from the disk.
 *
 * Return:      Success:        Pointer to a new B-tree node.
 *
 *              Failure:        NULL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jun 23 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static H5B_t           *
H5B_load(H5F_t *f, const haddr_t *addr, const void *_type, void *udata)
{
    const H5B_class_t      *type = (const H5B_class_t *) _type;
    size_t                  size, total_nkey_size;
    H5B_t                  *bt = NULL;
    intn                    i;
    uint8                  *p;
    H5B_t                  *ret_value = NULL;

    FUNC_ENTER(H5B_load, NULL);

    /* Check arguments */
    assert(f);
    assert(addr && H5F_addr_defined(addr));
    assert(type);
    assert(type->get_sizeof_rkey);

    bt = H5MM_xmalloc(sizeof(H5B_t));
    bt->sizeof_rkey = (type->get_sizeof_rkey) (f, udata);
    size = H5B_nodesize(f, type, &total_nkey_size, bt->sizeof_rkey);
    bt->type = type;
    bt->dirty = FALSE;
    bt->ndirty = 0;
    bt->page = H5MM_xmalloc(size);
    bt->native = H5MM_xmalloc(total_nkey_size);
    bt->key = H5MM_xmalloc((2 * H5B_K(f, type) + 1) * sizeof(H5B_key_t));
    bt->child = H5MM_xmalloc(2 * H5B_K(f, type) * sizeof(haddr_t));
    if (H5F_block_read(f, addr, size, bt->page) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_READERROR, NULL,
                      "can't read B-tree node");
    }
    p = bt->page;

    /* magic number */
    if (HDmemcmp(p, H5B_MAGIC, H5B_SIZEOF_MAGIC)) {
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL,
                    "wrong B-tree signature");
    }
    p += 4;

    /* node type and level */
    if (*p++ != type->id) {
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, NULL,
                    "incorrect B-tree node level");
    }
    bt->level = *p++;

    /* entries used */
    UINT16DECODE(p, bt->nchildren);

    /* sibling pointers */
    H5F_addr_decode(f, (const uint8 **) &p, &(bt->left));
    H5F_addr_decode(f, (const uint8 **) &p, &(bt->right));

    /* the child/key pairs */
    for (i = 0; i < 2 * H5B_K(f, type); i++) {

        bt->key[i].dirty = FALSE;
        bt->key[i].rkey = p;
        p += bt->sizeof_rkey;
        bt->key[i].nkey = NULL;

        if (i < bt->nchildren) {
            H5F_addr_decode(f, (const uint8 **) &p, bt->child + i);
        } else {
            H5F_addr_undef(bt->child + i);
            p += H5F_SIZEOF_ADDR(f);
        }
    }

    bt->key[2 * H5B_K(f, type)].dirty = FALSE;
    bt->key[2 * H5B_K(f, type)].rkey = p;
    bt->key[2 * H5B_K(f, type)].nkey = NULL;
    ret_value = bt;

  done:
    if (!ret_value && bt) {
        H5MM_xfree(bt->child);
        H5MM_xfree(bt->key);
        H5MM_xfree(bt->page);
        H5MM_xfree(bt->native);
        H5MM_xfree(bt);
    }
    FUNC_LEAVE(ret_value);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_flush
 *
 * Purpose:     Flushes a dirty B-tree node to disk.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jun 23 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_flush(H5F_t *f, hbool_t destroy, const haddr_t *addr, H5B_t *bt)
{
    intn                    i;
    size_t                  size = 0;
    uint8                  *p = bt->page;

    FUNC_ENTER(H5B_flush, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(addr && H5F_addr_defined(addr));
    assert(bt);
    assert(bt->type);
    assert(bt->type->encode);

    size = H5B_nodesize(f, bt->type, NULL, bt->sizeof_rkey);

    if (bt->dirty) {

        /* magic number */
        HDmemcpy(p, H5B_MAGIC, H5B_SIZEOF_MAGIC);
        p += 4;

        /* node type and level */
        *p++ = bt->type->id;
        *p++ = bt->level;

        /* entries used */
        UINT16ENCODE(p, bt->nchildren);

        /* sibling pointers */
        H5F_addr_encode(f, &p, &(bt->left));
        H5F_addr_encode(f, &p, &(bt->right));

        /* child keys and pointers */
        for (i = 0; i <= bt->nchildren; i++) {

            /* encode the key */
            assert(bt->key[i].rkey == p);
            if (bt->key[i].dirty) {
                if (bt->key[i].nkey) {
                    if ((bt->type->encode) (f, bt, bt->key[i].rkey,
                                            bt->key[i].nkey) < 0) {
                        HRETURN_ERROR(H5E_BTREE, H5E_CANTENCODE, FAIL,
                                      "unable to encode B-tree key");
                    }
                }
                bt->key[i].dirty = FALSE;
            }
            p += bt->sizeof_rkey;

            /* encode the child address */
            if (i < bt->ndirty) {
                H5F_addr_encode(f, &p, &(bt->child[i]));
            } else {
                p += H5F_SIZEOF_ADDR(f);
            }
        }

        /*
         * Write the disk page.  We always write the header, but we don't
         * bother writing data for the child entries that don't exist or
         * for the final unchanged children.
         */
        if (H5F_block_write(f, addr, size, bt->page) < 0) {
            HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL,
                          "unable to save B-tree node to disk");
        }
        bt->dirty = FALSE;
        bt->ndirty = 0;
    }
    if (destroy) {
        H5MM_xfree(bt->child);
        H5MM_xfree(bt->key);
        H5MM_xfree(bt->page);
        H5MM_xfree(bt->native);
        H5MM_xfree(bt);
    }
    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_find
 *
 * Purpose:     Locate the specified information in a B-tree and return
 *              that information by filling in fields of the caller-supplied
 *              UDATA pointer depending on the type of leaf node
 *              requested.  The UDATA can point to additional data passed
 *              to the key comparison function.
 *
 * Note:        This function does not follow the left/right sibling
 *              pointers since it assumes that all nodes can be reached
 *              from the parent node.
 *
 * Return:      Success:        SUCCEED if found, values returned through the
 *                              UDATA argument.
 *
 *              Failure:        FAIL if not found, UDATA is undefined.
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jun 23 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5B_find(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata)
{
    H5B_t                  *bt = NULL;
    intn                    idx = -1, lt = 0, rt, cmp = 1;
    int                     ret_value = FAIL;

    FUNC_ENTER(H5B_find, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(type->decode);
    assert(type->cmp3);
    assert(type->found);
    assert(addr && H5F_addr_defined(addr));

    /*
     * Perform a binary search to locate the child which contains
     * the thing for which we're searching.
     */
    if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) {
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                    "unable to load B-tree node");
    }
    rt = bt->nchildren;

    while (lt < rt && cmp) {
        idx = (lt + rt) / 2;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
                        "unable to decode B-tree key(s)");
        }
        /* compare */
        if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata,
                                 bt->key[idx + 1].nkey)) < 0) {
            rt = idx;
        } else {
            lt = idx + 1;
        }
    }
    if (cmp) {
        HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
                    "B-tree key not found");
    }
    /*
     * Follow the link to the subtree or to the data node.
     */
    assert(idx >= 0 && idx < bt->nchildren);
    if (bt->level > 0) {
        if ((ret_value = H5B_find(f, type, bt->child + idx, udata)) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
                        "key not found in subtree");
        }
    } else {
        ret_value = (type->found) (f, bt->child + idx, bt->key[idx].nkey,
                                   udata, bt->key[idx + 1].nkey);
        if (ret_value < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_NOTFOUND, FAIL,
                        "key not found in leaf node");
        }
    }

  done:
    if (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
                      "unable to release node");
    }
    FUNC_LEAVE(ret_value);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_split
 *
 * Purpose:     Split a single node into two nodes.  The old node will
 *              contain the left children and the new node will contain the
 *              right children.
 *
 *              The UDATA pointer is passed to the sizeof_rkey() method but is
 *              otherwise unused.
 *
 *              The OLD_BT argument is a pointer to a protected B-tree
 *              node.
 *
 * Return:      Success:        SUCCEED.  The address of the new node is
 *                              returned through the NEW_ADDR argument.
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jul  3 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_split(H5F_t *f, const H5B_class_t *type, H5B_t *old_bt,
          const haddr_t *old_addr, void *udata, haddr_t *new_addr /*out */ )
{
    H5B_t                  *new_bt = NULL, *tmp_bt = NULL;
    herr_t                  ret_value = FAIL;
    intn                    i, k;
    size_t                  recsize = 0;

    FUNC_ENTER(H5B_split, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(old_addr && H5F_addr_defined(old_addr));

    /*
     * Initialize variables.
     */
    assert(old_bt->nchildren == 2 * H5B_K(f, type));
    recsize = old_bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);
    k = H5B_K(f, type);

    /*
     * Create the new B-tree node.
     */
    if (H5B_create(f, type, udata, new_addr /*out */ ) < 0) {
        HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
                    "unable to create B-tree");
    }
    if (NULL == (new_bt = H5AC_protect(f, H5AC_BT, new_addr, type, udata))) {
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                    "unable to protect B-tree");
    }
    new_bt->level = old_bt->level;

    /*
     * Copy data from the old node to the new node.
     */
    HDmemcpy(new_bt->page + H5B_SIZEOF_HDR(f),
             old_bt->page + H5B_SIZEOF_HDR(f) + k * recsize,
             k * recsize + new_bt->sizeof_rkey);
    HDmemcpy(new_bt->native,
             old_bt->native + k * type->sizeof_nkey,
             (k + 1) * type->sizeof_nkey);

    for (i = 0; i <= k; i++) {
        /* key */
        new_bt->key[i].dirty = old_bt->key[k + i].dirty;
        if (old_bt->key[k + i].nkey) {
            new_bt->key[i].nkey = new_bt->native + i * type->sizeof_nkey;
        }
        /* child */
        if (i < k) {
            new_bt->child[i] = old_bt->child[k + i];
        }
    }
    new_bt->ndirty = new_bt->nchildren = k;

    /*
     * Truncate the old node.
     */
    old_bt->dirty = TRUE;
    old_bt->ndirty = old_bt->nchildren = k;

    /*
     * Update sibling pointers.
     */
    new_bt->left = *old_addr;
    new_bt->right = old_bt->right;

    if (H5F_addr_defined(&(old_bt->right))) {
        if (NULL == (tmp_bt = H5AC_find(f, H5AC_BT, &(old_bt->right), type,
                                        udata))) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                        "unable to load right sibling");
        }
        tmp_bt->dirty = TRUE;
        tmp_bt->left = *new_addr;
    }
    old_bt->right = *new_addr;

    HGOTO_DONE(SUCCEED);

  done:
    {
        if (new_bt && H5AC_unprotect(f, H5AC_BT, new_addr, new_bt) < 0) {
            HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
                          "unable to release B-tree node");
        }
    }
    FUNC_LEAVE(ret_value);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_decode_key
 *
 * Purpose:     Decode the specified key into native format.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jul  8 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_decode_key(H5F_t *f, H5B_t *bt, intn idx)
{
    FUNC_ENTER(H5B_decode_key, FAIL);

    bt->key[idx].nkey = bt->native + idx * bt->type->sizeof_nkey;
    if ((bt->type->decode) (f, bt, bt->key[idx].rkey,
                            bt->key[idx].nkey) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
                      "unable to decode key");
    }
    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_decode_keys
 *
 * Purpose:     Decode keys on either side of the specified branch.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              Tuesday, October 14, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_decode_keys(H5F_t *f, H5B_t *bt, intn idx)
{
    FUNC_ENTER(H5B_decode_keys, FAIL);

    assert(f);
    assert(bt);
    assert(idx >= 0 && idx < bt->nchildren);

    if (!bt->key[idx].nkey && H5B_decode_key(f, bt, idx) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
                      "unable to decode key");
    }
    if (!bt->key[idx + 1].nkey && H5B_decode_key(f, bt, idx + 1) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
                      "unable to decode key");
    }
    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_insert
 *
 * Purpose:     Adds a new item to the B-tree.  If the root node of
 *              the B-tree splits then the B-tree gets a new address.
 *
 * Return:      Success:        SUCCEED.
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jun 23 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5B_insert(H5F_t *f, const H5B_class_t *type, const haddr_t *addr,
           void *udata)
{
    uint8                   lt_key[1024], md_key[1024], rt_key[1024];
    hbool_t                 lt_key_changed = FALSE, rt_key_changed = FALSE;
    haddr_t                 child, old_root;
    intn                    level;
    H5B_t                  *bt;
    size_t                  size;
    uint8                  *buf;
    H5B_ins_t               my_ins = H5B_INS_ERROR;

    FUNC_ENTER(H5B_insert, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(type->sizeof_nkey <= sizeof lt_key);
    assert(addr && H5F_addr_defined(addr));

    if ((my_ins = H5B_insert_helper(f, addr, type, lt_key, &lt_key_changed,
                                    md_key, udata, rt_key, &rt_key_changed,
                                    &child /*out */ )) < 0 || my_ins < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTINIT, FAIL,
                      "unable to insert key");
    }
    if (H5B_INS_NOOP == my_ins)
        HRETURN(SUCCEED);
    assert(H5B_INS_RIGHT == my_ins);

    /* the current root */
    if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to locate root of B-tree");
    }
    level = bt->level;
    if (!lt_key_changed) {
        if (!bt->key[0].nkey && H5B_decode_key(f, bt, 0) < 0) {
            HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
                          "unable to decode key");
        }
        HDmemcpy(lt_key, bt->key[0].nkey, type->sizeof_nkey);
    }
    /* the new node */
    if (NULL == (bt = H5AC_find(f, H5AC_BT, &child, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to load new node");
    }
    if (!rt_key_changed) {
        if (!bt->key[bt->nchildren].nkey &&
            H5B_decode_key(f, bt, bt->nchildren) < 0) {
            HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, FAIL,
                          "unable to decode key");
        }
        HDmemcpy(rt_key, bt->key[bt->nchildren].nkey, type->sizeof_nkey);
    }
    /*
     * Copy the old root node to some other file location and make the new
     * root at the old root's previous address.  This prevents the B-tree
     * from "moving".
     */
    size = H5B_nodesize(f, type, NULL, bt->sizeof_rkey);
    buf = H5MM_xmalloc(size);
    if (H5MF_alloc(f, H5MF_META, size, &old_root /*out */ ) < 0) {
        HRETURN_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                      "unable to allocate file space to move root");
    }
    if (H5AC_flush(f, H5AC_BT, addr, FALSE) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTFLUSH, FAIL,
                      "unable to flush B-tree root node");
    }
    if (H5F_block_read(f, addr, size, buf) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_READERROR, FAIL,
                      "unable to read B-tree root node");
    }
    if (H5F_block_write(f, &old_root, size, buf) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_WRITEERROR, FAIL,
                      "unable to move B-tree root node");
    }
    if (H5AC_rename(f, H5AC_BT, addr, &old_root) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTSPLIT, FAIL,
                      "unable to move B-tree root node");
    }
    buf = H5MM_xfree(buf);

    /* update the new child's left pointer */
    if (NULL == (bt = H5AC_find(f, H5AC_BT, &child, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to load new child");
    }
    bt->dirty = TRUE;
    bt->left = old_root;

    /* clear the old root at the old address (we already copied it) */
    if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to clear old root location");
    }
    bt->dirty = TRUE;
    bt->ndirty = 0;
    H5F_addr_undef(&(bt->left));
    H5F_addr_undef(&(bt->right));
    bt->nchildren = 0;

    /* the new root */
    if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to load new root");
    }
    bt->dirty = TRUE;
    bt->ndirty = 2;
    bt->level = level + 1;
    bt->nchildren = 2;

    bt->child[0] = old_root;
    bt->key[0].dirty = TRUE;
    bt->key[0].nkey = bt->native;
    HDmemcpy(bt->key[0].nkey, lt_key, type->sizeof_nkey);

    bt->child[1] = child;
    bt->key[1].dirty = TRUE;
    bt->key[1].nkey = bt->native + type->sizeof_nkey;
    HDmemcpy(bt->key[1].nkey, md_key, type->sizeof_nkey);

    bt->key[2].dirty = TRUE;
    bt->key[2].nkey = bt->native + 2 * type->sizeof_nkey;
    HDmemcpy(bt->key[2].nkey, rt_key, type->sizeof_nkey);

#ifdef H5B_DEBUG
    H5B_assert(f, addr, type, udata);
#endif
    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_insert_child
 *
 * Purpose:     Insert a child at the specified address with the
 *              specified left or right key.  The BT argument is a pointer
 *              to a protected B-tree node.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jul  8 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5B_insert_child(H5F_t *f, const H5B_class_t *type, H5B_t *bt,
                 intn idx, const haddr_t *child, H5B_ins_t anchor,
                 void *md_key)
{
    size_t                  recsize;
    intn                    i;

    FUNC_ENTER(H5B_insert_child, FAIL);
    assert(bt);
    assert(child);

    bt->dirty = TRUE;
    recsize = bt->sizeof_rkey + H5F_SIZEOF_ADDR(f);

    if (H5B_INS_RIGHT == anchor) {
        /*
         * The MD_KEY is the left key of the new node.
         */
        HDmemmove(bt->page + H5B_SIZEOF_HDR(f) + (idx + 1) * recsize,
                  bt->page + H5B_SIZEOF_HDR(f) + idx * recsize,
                  (bt->nchildren - idx) * recsize + bt->sizeof_rkey);

        HDmemmove(bt->native + (idx + 1) * type->sizeof_nkey,
                  bt->native + idx * type->sizeof_nkey,
                  ((bt->nchildren - idx) + 1) * type->sizeof_nkey);

        for (i = bt->nchildren; i >= idx; --i) {
            bt->key[i + 1].dirty = bt->key[i].dirty;
            if (bt->key[i].nkey) {
                bt->key[i + 1].nkey = bt->native + (i + 1) * type->sizeof_nkey;
            } else {
                bt->key[i + 1].nkey = NULL;
            }
        }
        bt->key[idx].dirty = TRUE;
        bt->key[idx].nkey = bt->native + idx * type->sizeof_nkey;
        HDmemcpy(bt->key[idx].nkey, md_key, type->sizeof_nkey);

    } else {
        /*
         * The MD_KEY is the right key of the new node.
         */
        HDmemmove(bt->page + (H5B_SIZEOF_HDR(f) +
                              (idx + 1) * recsize + bt->sizeof_rkey),
                  bt->page + (H5B_SIZEOF_HDR(f) +
                              idx * recsize + bt->sizeof_rkey),
                  (bt->nchildren - idx) * recsize);

        HDmemmove(bt->native + (idx + 2) * type->sizeof_nkey,
                  bt->native + (idx + 1) * type->sizeof_nkey,
                  (bt->nchildren - idx) * type->sizeof_nkey);

        for (i = bt->nchildren; i > idx; --i) {
            bt->key[i + 1].dirty = bt->key[i].dirty;
            if (bt->key[i].nkey) {
                bt->key[i + 1].nkey = bt->native + (i + 1) * type->sizeof_nkey;
            } else {
                bt->key[i + 1].nkey = NULL;
            }
        }
        bt->key[idx + 1].dirty = TRUE;
        bt->key[idx + 1].nkey = bt->native + (idx + 1) * type->sizeof_nkey;
        HDmemcpy(bt->key[idx + 1].nkey, md_key, type->sizeof_nkey);
    }

    HDmemmove(bt->child + idx + 1,
              bt->child + idx,
              (bt->nchildren - idx) * sizeof(haddr_t));

    bt->child[idx] = *child;
    bt->nchildren += 1;
    bt->ndirty = bt->nchildren;

    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_insert_helper
 *
 * Purpose:     Inserts the item UDATA into the tree rooted at ADDR and having
 *              the specified type.
 *
 *              On return, if LT_KEY_CHANGED is non-zero, then LT_KEY is
 *              the new native left key.  Similarily for RT_KEY_CHANGED
 *              and RT_KEY.
 *
 *              If the node splits, then MD_KEY contains the key that
 *              was split between the two nodes (that is, the key that
 *              appears as the max key in the left node and the min key
 *              in the right node).
 *
 * Return:      Success:        A B-tree operation.  The address of the new
 *                              node, if the node splits, is returned through
 *                              the NEW_NODE argument.  The new node is always
 *                              to the right of the previous node.
 *
 *              Failure:        H5B_INS_ERROR
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jul  9 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static H5B_ins_t
H5B_insert_helper(H5F_t *f, const haddr_t *addr, const H5B_class_t *type,
                  uint8 *lt_key, hbool_t *lt_key_changed,
                  uint8 *md_key, void *udata,
                  uint8 *rt_key, hbool_t *rt_key_changed,
                  haddr_t *new_node /*out */ )
{
    H5B_t                  *bt = NULL, *twin = NULL, *tmp_bt = NULL;
    intn                    lt = 0, idx = -1, rt, cmp = -1;
    haddr_t                 child_addr;
    H5B_ins_t               my_ins = H5B_INS_ERROR;
    H5B_ins_t               ret_value = H5B_INS_ERROR;

    FUNC_ENTER(H5B_insert_helper, H5B_INS_ERROR);

    /*
     * Check arguments
     */
    assert(f);
    assert(addr && H5F_addr_defined(addr));
    assert(type);
    assert(type->decode);
    assert(type->cmp3);
    assert(type->new);
    assert(lt_key);
    assert(lt_key_changed);
    assert(rt_key);
    assert(rt_key_changed);
    assert(new_node);

    *lt_key_changed = FALSE;
    *rt_key_changed = FALSE;

    /*
     * Use a binary search to find the child that will receive the new
     * data.  When the search completes IDX points to the child that
     * should get the new data.
     */
    if (NULL == (bt = H5AC_protect(f, H5AC_BT, addr, type, udata))) {
        HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
                    "unable to load node");
    }
    rt = bt->nchildren;

    while (lt < rt && cmp) {
        idx = (lt + rt) / 2;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HRETURN_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                          "unable to decode key");
        }
        if ((cmp = (type->cmp3) (f, bt->key[idx].nkey, udata,
                                 bt->key[idx + 1].nkey)) < 0) {
            rt = idx;
        } else {
            lt = idx + 1;
        }
    }

    if (0 == bt->nchildren) {
        /*
         * The value being inserted will be the only value in this tree. We
         * must necessarily be at level zero.
         */
        assert(0 == bt->level);
        bt->key[0].nkey = bt->native;
        bt->key[1].nkey = bt->native + type->sizeof_nkey;
        if ((type->new) (f, H5B_INS_FIRST, bt->key[0].nkey, udata,
                         bt->key[1].nkey, bt->child + 0 /*out */ ) < 0) {
            bt->key[0].nkey = bt->key[1].nkey = NULL;
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINIT, H5B_INS_ERROR,
                        "unable to create leaf node");
        }
        bt->nchildren = 1;
        bt->dirty = TRUE;
        bt->ndirty = 1;
        bt->key[0].dirty = TRUE;
        bt->key[1].dirty = TRUE;
        idx = 0;

        if (type->follow_min) {
            if ((my_ins = (type->insert) (f, bt->child + idx,
                                          bt->key[idx].nkey, lt_key_changed,
                                          md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                          &child_addr /*out */ )) < 0) {
                HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                            "can't insert first leaf node");
            }
        } else {
            my_ins = H5B_INS_NOOP;
        }

    } else if (cmp < 0 && idx <= 0 && bt->level > 0) {
        /*
         * The value being inserted is less than any value in this tree.  Follow
         * the minimum branch out of this node to a subtree.
         */
        idx = 0;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        if ((my_ins = H5B_insert_helper(f, bt->child + idx, type,
                                        bt->key[idx].nkey, lt_key_changed,
                                        md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                        &child_addr /*out */ )) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert minimum subtree");
        }
    } else if (cmp < 0 && idx <= 0 && type->follow_min) {
        /*
         * The value being inserted is less than any leaf node out of this
         * current node.  Follow the minimum branch to a leaf node and let the
         * subclass handle the problem.
         */
        idx = 0;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        if ((my_ins = (type->insert) (f, bt->child + idx,
                                      bt->key[idx].nkey, lt_key_changed,
                                      md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                      &child_addr /*out */ )) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert minimum leaf node");
        }
    } else if (cmp < 0 && idx <= 0) {
        /*
         * The value being inserted is less than any leaf node out of the
         * current node. Create a new minimum leaf node out of this B-tree
         * node. This node is not empty (handled above).
         */
        idx = 0;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        my_ins = H5B_INS_LEFT;
        HDmemcpy(md_key, bt->key[idx].nkey, type->sizeof_nkey);
        if ((type->new) (f, H5B_INS_LEFT, bt->key[idx].nkey, udata, md_key,
                         &child_addr /*out */ ) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert minimum leaf node");
        }
        *lt_key_changed = TRUE;

    } else if (cmp > 0 && idx + 1 >= bt->nchildren && bt->level > 0) {
        /*
         * The value being inserted is larger than any value in this tree.
         * Follow the maximum branch out of this node to a subtree.
         */
        idx = bt->nchildren - 1;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        if ((my_ins = H5B_insert_helper(f, bt->child + idx, type,
                                        bt->key[idx].nkey, lt_key_changed,
                                        md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                        &child_addr /*out */ )) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert maximum subtree");
        }
    } else if (cmp > 0 && idx + 1 >= bt->nchildren && type->follow_max) {
        /*
         * The value being inserted is larger than any leaf node out of the
         * current node.  Follow the maximum branch to a leaf node and let the
         * subclass handle the problem.
         */
        idx = bt->nchildren - 1;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        if ((my_ins = (type->insert) (f, bt->child + idx,
                                      bt->key[idx].nkey, lt_key_changed,
                                      md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                      &child_addr /*out */ )) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert maximum leaf node");
        }
    } else if (cmp > 0 && idx + 1 >= bt->nchildren) {
        /*
         * The value being inserted is larger than any leaf node out of the
         * current node.  Create a new maximum leaf node out of this B-tree
         * node.
         */
        idx = bt->nchildren - 1;
        if (H5B_decode_keys(f, bt, idx) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        my_ins = H5B_INS_RIGHT;
        HDmemcpy(md_key, bt->key[idx + 1].nkey, type->sizeof_nkey);
        if ((type->new) (f, H5B_INS_RIGHT, md_key, udata, bt->key[idx + 1].nkey,
                         &child_addr /*out */ ) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert maximum leaf node");
        }
        *rt_key_changed = TRUE;

    } else if (cmp) {
        /*
         * We couldn't figure out which branch to follow out of this node. THIS
         * IS A MAJOR PROBLEM THAT NEEDS TO BE FIXED --rpm.
         */
        assert("INTERNAL HDF5 ERROR (see rpm)" && 0);

    } else if (bt->level > 0) {
        /*
         * Follow a branch out of this node to another subtree.
         */
        assert(idx >= 0 && idx < bt->nchildren);
        if ((my_ins = H5B_insert_helper(f, bt->child + idx, type,
                                        bt->key[idx].nkey, lt_key_changed,
                                        md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                        &child_addr /*out */ )) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert subtree");
        }
    } else {
        /*
         * Follow a branch out of this node to a leaf node of some other type.
         */
        assert(idx >= 0 && idx < bt->nchildren);
        if ((my_ins = (type->insert) (f, bt->child + idx,
                                      bt->key[idx].nkey, lt_key_changed,
                                      md_key, udata,
                                      bt->key[idx + 1].nkey, rt_key_changed,
                                      &child_addr /*out */ )) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert leaf node");
        }
    }
    assert(my_ins >= 0);

    /*
     * Update the left and right keys of the current node.
     */
    if (*lt_key_changed) {
        bt->dirty = TRUE;
        bt->key[idx].dirty = TRUE;
        if (idx > 0) {
            *lt_key_changed = FALSE;
        } else {
            HDmemcpy(lt_key, bt->key[idx].nkey, type->sizeof_nkey);
        }
    }
    if (*rt_key_changed) {
        bt->dirty = TRUE;
        bt->key[idx + 1].dirty = TRUE;
        if (idx + 1 < bt->nchildren) {
            *rt_key_changed = FALSE;
        } else {
            HDmemcpy(rt_key, bt->key[idx + 1].nkey, type->sizeof_nkey);
        }
    }
    if (H5B_INS_CHANGE == my_ins) {
        /*
         * The insertion simply changed the address for the child.
         */
        bt->child[idx] = child_addr;
        bt->dirty = TRUE;
        bt->ndirty = MAX(bt->ndirty, idx + 1);
        ret_value = H5B_INS_NOOP;

    } else if (H5B_INS_LEFT == my_ins || H5B_INS_RIGHT == my_ins) {
        /* Make sure IDX is the slot number for the new node. */
        if (H5B_INS_RIGHT == my_ins)
            idx++;

        /* If this node is full then split it before inserting the new child. */
        if (bt->nchildren == 2 * H5B_K(f, type)) {
            if (H5B_split(f, type, bt, addr, udata, new_node /*out */ ) < 0) {
                HGOTO_ERROR(H5E_BTREE, H5E_CANTSPLIT, H5B_INS_ERROR,
                            "can't split node");
            }
            if (NULL == (twin = H5AC_protect(f, H5AC_BT, new_node, type, udata))) {
                HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, H5B_INS_ERROR,
                            "can't load B-tree");
            }
            if (idx <= H5B_K(f, type)) {
                tmp_bt = bt;
            } else {
                idx -= H5B_K(f, type);
                tmp_bt = twin;
            }
        } else {
            tmp_bt = bt;
        }

        /* Insert the child */
        if (H5B_insert_child(f, type, tmp_bt, idx, &child_addr, my_ins,
                             md_key) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTINSERT, H5B_INS_ERROR,
                        "can't insert child");
        }
    }
    /*
     * If this node split, return the mid key (the one that is shared
     * by the left and right node).
     */
    if (twin) {
        if (!twin->key[0].nkey && H5B_decode_key(f, twin, 0) < 0) {
            HGOTO_ERROR(H5E_BTREE, H5E_CANTDECODE, H5B_INS_ERROR,
                        "unable to decode key");
        }
        HDmemcpy(md_key, twin->key[0].nkey, type->sizeof_nkey);
        ret_value = H5B_INS_RIGHT;
#ifdef H5B_DEBUG
        /*
         * The max key in the original left node must be equal to the min key
         * in the new node.
         */
        if (!bt->key[bt->nchildren].nkey) {
            herr_t                  status = H5B_decode_key(f, bt, bt->nchildren);
            assert(status >= 0);
        }
        cmp = (type->cmp2) (f, bt->key[bt->nchildren].nkey, udata,
                            twin->key[0].nkey);
        assert(0 == cmp);
#endif
    } else {
        ret_value = H5B_INS_NOOP;
    }

  done:
    {
        herr_t                  e1 = (bt && H5AC_unprotect(f, H5AC_BT, addr, bt) < 0);
        herr_t                  e2 = (twin && H5AC_unprotect(f, H5AC_BT, new_node, twin) < 0);
        if (e1 || e2) {         /*use vars to prevent short-circuit of side effects */
            HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, H5B_INS_ERROR,
                          "unable to release node(s)");
        }
    }

    FUNC_LEAVE(ret_value);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_list
 *
 * Purpose:     Calls the list callback for each leaf node of the
 *              B-tree, passing it the UDATA structure.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jun 23 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5B_list(H5F_t *f, const H5B_class_t *type, const haddr_t *addr, void *udata)
{
    H5B_t                  *bt = NULL;
    haddr_t                 next_addr;
    const haddr_t          *cur_addr = NULL;
    intn                    i;
    herr_t                  ret_value = FAIL;

    FUNC_ENTER(H5B_list, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(type->list);
    assert(addr && H5F_addr_defined(addr));
    assert(udata);

    if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to load B-tree node");
    }
    if (bt->level > 0) {
        if (H5B_list(f, type, bt->child + 0, udata) < 0) {
            HRETURN_ERROR(H5E_BTREE, H5E_CANTLIST, FAIL,
                          "unable to list B-tree node");
        } else {
            HRETURN(SUCCEED);
        }
    } else {

        for (cur_addr = addr; !H5F_addr_defined(cur_addr); cur_addr = &next_addr) {
            if (NULL == (bt = H5AC_protect(f, H5AC_BT, cur_addr, type, udata))) {
                HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                            "unable to protect B-tree node");
            }
            for (i = 0; i < bt->nchildren; i++) {
                if ((type->list) (f, bt->child + i, udata) < 0) {
                    HGOTO_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                                "unable to list leaf node");
                }
            }

            next_addr = bt->right;
            if (H5AC_unprotect(f, H5AC_BT, addr, bt) < 0) {
                HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
                              "unable to release B-tree node");
            }
            bt = NULL;
        }
    }
    HGOTO_DONE(SUCCEED);

  done:
    if (bt && H5AC_unprotect(f, H5AC_BT, cur_addr, bt) < 0) {
        HRETURN_ERROR(H5E_BTREE, H5E_PROTECT, FAIL,
                      "unable to release B-tree node");
    }
    FUNC_LEAVE(ret_value);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_nodesize
 *
 * Purpose:     Returns the number of bytes needed for this type of
 *              B-tree node.  The size is the size of the header plus
 *              enough space for 2t child pointers and 2t+1 keys.
 *
 *              If TOTAL_NKEY_SIZE is non-null, what it points to will
 *              be initialized with the total number of bytes required to
 *              hold all the key values in native order.
 *
 * Return:      Success:        Size of node in file.
 *
 *              Failure:        0
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Jul  3 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5B_nodesize(H5F_t *f, const H5B_class_t *type,
             size_t *total_nkey_size, size_t sizeof_rkey)
{
    size_t                  size;

    FUNC_ENTER(H5B_nodesize, (size_t) 0);

    /*
     * Check arguments.
     */
    assert(f);
    assert(type);
    assert(sizeof_rkey > 0);
    assert(H5B_K(f, type) > 0);

    /*
     * Total native key size.
     */
    if (total_nkey_size) {
        *total_nkey_size = (2 * H5B_K(f, type) + 1) * type->sizeof_nkey;
    }
    /*
     * Total node size.
     */
    size = (H5B_SIZEOF_HDR(f) + /*node header   */
            2 * H5B_K(f, type) * H5F_SIZEOF_ADDR(f) +   /*child pointers */
            (2 * H5B_K(f, type) + 1) * sizeof_rkey);    /*keys          */

    FUNC_LEAVE(size);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_debug
 *
 * Purpose:     Prints debugging info about a B-tree.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        FAIL
 *
 * Programmer:  Robb Matzke
 *              matzke@llnl.gov
 *              Aug  4 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5B_debug(H5F_t *f, const haddr_t *addr, FILE * stream, intn indent,
          intn fwidth, const H5B_class_t *type, void *udata)
{
    H5B_t                  *bt = NULL;
    int                     i;

    FUNC_ENTER(H5B_debug, FAIL);

    /*
     * Check arguments.
     */
    assert(f);
    assert(addr && H5F_addr_defined(addr));
    assert(stream);
    assert(indent >= 0);
    assert(fwidth >= 0);
    assert(type);

    /*
     * Load the tree node.
     */
    if (NULL == (bt = H5AC_find(f, H5AC_BT, addr, type, udata))) {
        HRETURN_ERROR(H5E_BTREE, H5E_CANTLOAD, FAIL,
                      "unable to load B-tree node");
    }
    /*
     * Print the values.
     */
    fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
            "Tree type ID:",
            (int) (bt->type->id));
    fprintf(stream, "%*s%-*s %lu\n", indent, "", fwidth,
            "Size of raw (disk) key:",
            (unsigned long) (bt->sizeof_rkey));
    fprintf(stream, "%*s%-*s %s\n", indent, "", fwidth,
            "Dirty flag:",
            bt->dirty ? "True" : "False");
    fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
            "Number of initial dirty children:",
            (int) (bt->ndirty));
    fprintf(stream, "%*s%-*s %d\n", indent, "", fwidth,
            "Level:",
            (int) (bt->level));

    fprintf(stream, "%*s%-*s ", indent, "", fwidth,
            "Address of left sibling:");
    H5F_addr_print(stream, &(bt->left));
    fprintf(stream, "\n");

    fprintf(stream, "%*s%-*s ", indent, "", fwidth,
            "Address of right sibling:");
    H5F_addr_print(stream, &(bt->right));
    fprintf(stream, "\n");

    fprintf(stream, "%*s%-*s %d (%d)\n", indent, "", fwidth,
            "Number of children (max):",
            (int) (bt->nchildren),
            (int) (2 * H5B_K(f, type)));

    /*
     * Print the child addresses
     */
    for (i = 0; i < bt->nchildren; i++) {
        fprintf(stream, "%*sChild %d...\n", indent, "", i);
        fprintf(stream, "%*s%-*s ", indent + 3, "", MAX(0, fwidth - 3),
                "Address:");
        H5F_addr_print(stream, bt->child + i);
        fprintf(stream, "\n");
    }

    FUNC_LEAVE(SUCCEED);
}

/*-------------------------------------------------------------------------
 * Function:    H5B_assert
 *
 * Purpose:     Verifies that the tree is structured correctly.
 *
 * Return:      Success:        SUCCEED
 *
 *              Failure:        aborts if something is wrong.
 *
 * Programmer:  Robb Matzke
 *              Tuesday, November  4, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
#ifdef H5B_DEBUG
static herr_t
H5B_assert(H5F_t *f, const haddr_t *addr, const H5B_class_t *type,
           void *udata)
{
    H5B_t                  *bt = NULL;
    intn                    i, ncell, cmp;
    static int              ncalls = 0;
    herr_t                  status;

    /* A queue of child data */
    struct child_t {
        haddr_t                 addr;
        int                     level;
        struct child_t         *next;
    }                      *head = NULL, *tail = NULL, *prev = NULL, *cur = NULL, *tmp = NULL;

    FUNC_ENTER(H5B_assert, FAIL);
    if (0 == ncalls++) {
        fprintf(stderr, "HDF5-DIAG: debugging B-trees (expensive)\n");
    }
    /* Initialize the queue */
    bt = H5AC_find(f, H5AC_BT, addr, type, udata);
    assert(bt);
    cur = H5MM_xcalloc(1, sizeof(struct child_t));
    cur->addr = *addr;
    cur->level = bt->level;
    head = tail = cur;

    /*
     * Do a breadth-first search of the tree.  New nodes are added to the end
     * of the queue as the `cur' pointer is advanced toward the end.  We don't
     * remove any nodes from the queue because we need them in the uniqueness
     * test.
     */
    for (ncell = 0; cur; ncell++) {
        bt = H5AC_protect(f, H5AC_BT, &(cur->addr), type, udata);
        assert(bt);

        /* Check node header */
        assert(bt->ndirty >= 0 && bt->ndirty <= bt->nchildren);
        assert(bt->level == cur->level);
        if (cur->next && cur->next->level == bt->level) {
            assert(H5F_addr_eq(&(bt->right), &(cur->next->addr)));
        } else {
            assert(!H5F_addr_defined(&(bt->right)));
        }
        if (prev && prev->level == bt->level) {
            assert(H5F_addr_eq(&(bt->left), &(prev->addr)));
        } else {
            assert(!H5F_addr_defined(&(bt->left)));
        }

        if (cur->level > 0) {
            for (i = 0; i < bt->nchildren; i++) {

                /*
                 * Check that child nodes haven't already been seen.  If they
                 * have then the tree has a cycle.
                 */
                for (tmp = head; tmp; tmp = tmp->next) {
                    assert(H5F_addr_ne(&(tmp->addr), bt->child + i));
                }

                /* Add the child node to the end of the queue */
                tmp = H5MM_xcalloc(1, sizeof(struct child_t));
                tmp->addr = bt->child[i];
                tmp->level = bt->level - 1;
                tail->next = tmp;
                tail = tmp;

                /* Check that the keys are monotonically increasing */
                status = H5B_decode_keys(f, bt, i);
                assert(status >= 0);
                cmp = (type->cmp2) (f, bt->key[i].nkey, udata, bt->key[i + 1].nkey);
                assert(cmp < 0);
            }
        }
        /* Release node */
        status = H5AC_unprotect(f, H5AC_BT, &(cur->addr), bt);
        assert(status >= 0);

        /* Advance current location in queue */
        prev = cur;
        cur = cur->next;
    }

    /* Free all entries from queue */
    while (head) {
        tmp = head->next;
        H5MM_xfree(head);
        head = tmp;
    }

    FUNC_LEAVE(SUCCEED);
}
#endif /* H5B_DEBUG */