1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Copyright by The HDF Group. *
* Copyright by the Board of Trustees of the University of Illinois. *
* All rights reserved. *
* *
* This file is part of HDF5. The full HDF5 copyright notice, including *
* terms governing use, modification, and redistribution, is contained in *
* the files COPYING and Copyright.html. COPYING can be found at the root *
* of the source code distribution tree; Copyright.html can be found at the *
* root level of an installed copy of the electronic HDF5 document set and *
* is linked from the top-level documents page. It can also be found at *
* http://hdfgroup.org/HDF5/doc/Copyright.html. If you do not have *
* access to either file, you may request a copy from help@hdfgroup.org. *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------
*
* Created: H5Cprivate.h
* 6/3/04
* John Mainzer
*
* Purpose: Constants and typedefs available to the rest of the
* library.
*
* Modifications:
*
*-------------------------------------------------------------------------
*/
#ifndef _H5Cprivate_H
#define _H5Cprivate_H
#include "H5Cpublic.h" /* public prototypes */
/* Private headers needed by this header */
#include "H5private.h" /* Generic Functions */
#include "H5Fprivate.h" /* File access */
/**************************/
/* Library Private Macros */
/**************************/
/* Cache configuration settings */
#define H5C__MAX_NUM_TYPE_IDS 28
#define H5C__PREFIX_LEN 32
/* This sanity checking constant was picked out of the air. Increase
* or decrease it if appropriate. Its purposes is to detect corrupt
* object sizes, so it probably doesn't matter if it is a bit big.
*
* JRM - 5/17/04
*/
#define H5C_MAX_ENTRY_SIZE ((size_t)(32 * 1024 * 1024))
#ifdef H5_HAVE_PARALLEL
/* we must maintain the clean and dirty LRU lists when we are compiled
* with parallel support.
*/
#define H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS 1
#else /* H5_HAVE_PARALLEL */
/* The clean and dirty LRU lists don't buy us anything here -- we may
* want them on for testing on occasion, but in general they should be
* off.
*/
#define H5C_MAINTAIN_CLEAN_AND_DIRTY_LRU_LISTS 0
#endif /* H5_HAVE_PARALLEL */
/* Flags for cache client class behavior */
#define H5C__CLASS_NO_FLAGS_SET ((unsigned)0x0)
#define H5C__CLASS_SPECULATIVE_LOAD_FLAG ((unsigned)0x1)
#define H5C__CLASS_COMPRESSED_FLAG ((unsigned)0x2)
/* The following flags may only appear in test code */
#define H5C__CLASS_NO_IO_FLAG ((unsigned)0x4)
#define H5C__CLASS_SKIP_READS ((unsigned)0x8)
#define H5C__CLASS_SKIP_WRITES ((unsigned)0x10)
/* Flags for pre-serialize callback */
#define H5C__SERIALIZE_NO_FLAGS_SET ((unsigned)0)
#define H5C__SERIALIZE_RESIZED_FLAG ((unsigned)0x1)
#define H5C__SERIALIZE_MOVED_FLAG ((unsigned)0x2)
#define H5C__SERIALIZE_COMPRESSED_FLAG ((unsigned)0x4)
/* Upper and lower limits on cache size. These limits are picked
* out of a hat -- you should be able to change them as necessary.
*
* However, if you need a very big cache, you should also increase the
* size of the hash table (H5C__HASH_TABLE_LEN in H5Cpkg.h). The current
* upper bound on cache size is rather large for the current hash table
* size.
*/
#define H5C__MAX_MAX_CACHE_SIZE ((size_t)(128 * 1024 * 1024))
#define H5C__MIN_MAX_CACHE_SIZE ((size_t)(1024))
/* Default max cache size and min clean size are give here to make
* them generally accessable.
*/
#define H5C__DEFAULT_MAX_CACHE_SIZE ((size_t)(4 * 1024 * 1024))
#define H5C__DEFAULT_MIN_CLEAN_SIZE ((size_t)(2 * 1024 * 1024))
/* Maximum height of flush dependency relationships between entries. This is
* currently tuned to the extensible array (H5EA) data structure, which only
* requires 6 levels of dependency (i.e. heights 0-6) (actually, the extensible
* array needs 4 levels, plus another 2 levels are needed: one for the layer
* under the extensible array and one for the layer above it).
*/
#define H5C__NUM_FLUSH_DEP_HEIGHTS 6
/* Values for cache entry magic field */
#define H5C__H5C_CACHE_ENTRY_T_MAGIC 0x005CAC0A
#define H5C__H5C_CACHE_ENTRY_T_BAD_MAGIC 0xDeadBeef
/* Cache configuration validation definitions */
#define H5C_RESIZE_CFG__VALIDATE_GENERAL 0x1
#define H5C_RESIZE_CFG__VALIDATE_INCREMENT 0x2
#define H5C_RESIZE_CFG__VALIDATE_DECREMENT 0x4
#define H5C_RESIZE_CFG__VALIDATE_INTERACTIONS 0x8
#define H5C_RESIZE_CFG__VALIDATE_ALL \
( \
H5C_RESIZE_CFG__VALIDATE_GENERAL | \
H5C_RESIZE_CFG__VALIDATE_INCREMENT | \
H5C_RESIZE_CFG__VALIDATE_DECREMENT | \
H5C_RESIZE_CFG__VALIDATE_INTERACTIONS \
)
/* Cache configuration versions */
#define H5C__CURR_AUTO_SIZE_CTL_VER 1
#define H5C__CURR_AUTO_RESIZE_RPT_FCN_VER 1
/* Number of epoch markers active */
#define H5C__MAX_EPOCH_MARKERS 10
/* Default configuration settings */
#define H5C__DEF_AR_UPPER_THRESHHOLD 0.9999f
#define H5C__DEF_AR_LOWER_THRESHHOLD 0.9f
#define H5C__DEF_AR_MAX_SIZE ((size_t)(16 * 1024 * 1024))
#define H5C__DEF_AR_INIT_SIZE ((size_t)( 1 * 1024 * 1024))
#define H5C__DEF_AR_MIN_SIZE ((size_t)( 1 * 1024 * 1024))
#define H5C__DEF_AR_MIN_CLEAN_FRAC 0.5f
#define H5C__DEF_AR_INCREMENT 2.0f
#define H5C__DEF_AR_MAX_INCREMENT ((size_t)( 2 * 1024 * 1024))
#define H5C__DEF_AR_FLASH_MULTIPLE 1.0f
#define H5C__DEV_AR_FLASH_THRESHOLD 0.25f
#define H5C__DEF_AR_DECREMENT 0.9f
#define H5C__DEF_AR_MAX_DECREMENT ((size_t)( 1 * 1024 * 1024))
#define H5C__DEF_AR_EPCHS_B4_EVICT 3
#define H5C__DEF_AR_EMPTY_RESERVE 0.05f
#define H5C__MIN_AR_EPOCH_LENGTH 100
#define H5C__DEF_AR_EPOCH_LENGTH 50000
#define H5C__MAX_AR_EPOCH_LENGTH 1000000
/* #defines of flags used in the flags parameters in some of the
* following function calls. Note that not all flags are applicable
* to all function calls. Flags that don't apply to a particular
* function are ignored in that function.
*
* These flags apply to all function calls:
* H5C__NO_FLAGS_SET (generic "no flags set" for all fcn calls)
*
*
* These flags apply to H5C_insert_entry():
* H5C__SET_FLUSH_MARKER_FLAG
* H5C__PIN_ENTRY_FLAG
* H5C__FLUSH_LAST_FLAG ; super block only
* H5C__FLUSH_COLLECTIVELY_FLAG ; super block only
*
* These flags apply to H5C_protect()
* H5C__READ_ONLY_FLAG
* H5C__FLUSH_LAST_FLAG ; super block only
* H5C__FLUSH_COLLECTIVELY_FLAG ; super block only
*
* These flags apply to H5C_unprotect():
* H5C__SET_FLUSH_MARKER_FLAG
* H5C__DELETED_FLAG
* H5C__DIRTIED_FLAG
* H5C__PIN_ENTRY_FLAG
* H5C__UNPIN_ENTRY_FLAG
* H5C__FREE_FILE_SPACE_FLAG
* H5C__TAKE_OWNERSHIP_FLAG
*
* These flags apply to H5C_expunge_entry():
* H5C__FREE_FILE_SPACE_FLAG
*
* These flags apply to H5C_flush_cache():
* H5C__FLUSH_INVALIDATE_FLAG
* H5C__FLUSH_CLEAR_ONLY_FLAG
* H5C__FLUSH_MARKED_ENTRIES_FLAG
* H5C__FLUSH_IGNORE_PROTECTED_FLAG (can't use this flag in combination
* with H5C__FLUSH_INVALIDATE_FLAG)
*
* These flags apply to H5C_flush_single_entry():
* H5C__FLUSH_INVALIDATE_FLAG
* H5C__FLUSH_CLEAR_ONLY_FLAG
* H5C__FLUSH_MARKED_ENTRIES_FLAG
* H5C__TAKE_OWNERSHIP_FLAG
* H5C__DEL_FROM_SLIST_ON_DESTROY_FLAG
*/
#define H5C__NO_FLAGS_SET 0x0000
#define H5C__SET_FLUSH_MARKER_FLAG 0x0001
#define H5C__DELETED_FLAG 0x0002
#define H5C__DIRTIED_FLAG 0x0004
#define H5C__PIN_ENTRY_FLAG 0x0008
#define H5C__UNPIN_ENTRY_FLAG 0x0010
#define H5C__FLUSH_INVALIDATE_FLAG 0x0020
#define H5C__FLUSH_CLEAR_ONLY_FLAG 0x0040
#define H5C__FLUSH_MARKED_ENTRIES_FLAG 0x0080
#define H5C__FLUSH_IGNORE_PROTECTED_FLAG 0x0100
#define H5C__READ_ONLY_FLAG 0x0200
#define H5C__FREE_FILE_SPACE_FLAG 0x0800
#define H5C__TAKE_OWNERSHIP_FLAG 0x1000
#define H5C__FLUSH_LAST_FLAG 0x2000
#define H5C__FLUSH_COLLECTIVELY_FLAG 0x4000
#define H5C__DEL_FROM_SLIST_ON_DESTROY_FLAG 0x8000
/* Debugging/sanity checking/statistics settings */
#ifndef NDEBUG
#define H5C_DO_SANITY_CHECKS 1
#define H5C_DO_SLIST_SANITY_CHECKS 0
#define H5C_DO_TAGGING_SANITY_CHECKS 1
#define H5C_DO_EXTREME_SANITY_CHECKS 0
#else /* NDEBUG */
/* With rare execptions, the following defines should be set
* to 0 if NDEBUG is defined
*/
#define H5C_DO_SANITY_CHECKS 0
#define H5C_DO_SLIST_SANITY_CHECKS 0
#define H5C_DO_TAGGING_SANITY_CHECKS 0
#define H5C_DO_EXTREME_SANITY_CHECKS 0
#endif /* NDEBUG */
/* Note: The memory sanity checks aren't going to work until I/O filters are
* changed to call a particular alloc/free routine for their buffers,
* because the H5AC__SERIALIZE_RESIZED_FLAG set by the fractal heap
* direct block serialize callback calls H5Z_pipeline(). When the I/O
* filters are changed, then we should implement "cache image alloc/free"
* routines that the fractal heap direct block (and global heap) serialize
* calls can use when resizing (and re-allocating) their image in the
* cache. -QAK */
#define H5C_DO_MEMORY_SANITY_CHECKS 0
/* H5C_COLLECT_CACHE_STATS controls overall collection of statistics
* on cache activity. In general, this #define should be set to 1 in
* debug mode, and 0 in production mode..
*/
#ifndef NDEBUG
#define H5C_COLLECT_CACHE_STATS 1
#else /* NDEBUG */
#define H5C_COLLECT_CACHE_STATS 0
#endif /* NDEBUG */
/* H5C_COLLECT_CACHE_ENTRY_STATS controls collection of statistics
* in individual cache entries.
*
* H5C_COLLECT_CACHE_ENTRY_STATS should only be defined to true if
* H5C_COLLECT_CACHE_STATS is also defined to true.
*/
#if H5C_COLLECT_CACHE_STATS
#define H5C_COLLECT_CACHE_ENTRY_STATS 1
#else
#define H5C_COLLECT_CACHE_ENTRY_STATS 0
#endif /* H5C_COLLECT_CACHE_STATS */
/****************************/
/* Library Private Typedefs */
/****************************/
/* Typedef for the main structure for the cache (defined in H5Cpkg.h) */
typedef struct H5C_t H5C_t;
/***************************************************************************
*
* Struct H5C_class_t
*
* Instances of H5C_class_t are used to specify the callback functions
* used by the metadata cache for each class of metadata cache entry.
* The fields of the structure are discussed below:
*
* id: Integer field containing the unique ID of the class of metadata
* cache entries.
*
* name: Pointer to a string containing the name of the class of metadata
* cache entries.
*
* mem_type: Instance of H5FD_mem_t, that is used to supply the
* mem type passed into H5F_block_read().
*
* flags: Flags indicating class-specific behavior.
*
* Whoever created the flags field neglected to document the meanings
* of the flags he created. Hence the following discussion of the
* H5C__CLASS_SPECULATIVE_LOAD_FLAG and (to a lesser extent)
* H5C__CLASS_COMPRESSED_FLAG should be viewed with suspicion,
* as the meanings are divined from the source code, and thus may be
* inaccurate. Please correct any errors you find.
*
* Possible flags are:
*
* H5C__CLASS_NO_FLAGS_SET: No special processing.
*
* H5C__CLASS_SPECULATIVE_LOAD_FLAG: This flag appears to be used
* only in H5C_load_entry(). When it is set, entries are
* permitted to change their sizes on the first attempt
* to load.
*
* If the new size is larger than the old, the read buffer
* is reallocated to the new size, loaded from file, and the
* deserialize routine is called a second time on the
* new buffer. The entry returned by the first call to
* the deserialize routine is discarded (via the free_icr
* call) after the new size is retrieved (via the image_len
* call). Note that the new size is used as the size of the
* entry in the cache.
*
* If the new size is smaller than the old, no new loads
* or desearializes are performed, but the new size becomes
* the size of the entry in the cache.
*
* When this flag is set, an attempt to read past the
* end of file is pemitted. In this case, if the size
* returned get_load_size callback would result in a
* read past the end of file, the size is trunkated to
* avoid this, and processing proceeds as normal.
*
* H5C__CLASS_COMPRESSED_FLAG: This flags indicates that the entry
* may be compressed -- i.e. its on disk image is run through
* filters on the way to and from disk. Thus the uncompressed
* (or unfiltered) size of the entry may be different from the
* size of the entry in file.
*
* This has the following implications:
*
* On load, uncompressed size and load size may be different.
* Presumably, load size will be smaller than uncompressed
* size, but there is no requirement for this in the code
* (but note that I have inserted an assertion to this effect,
* which has not been triggered to date).
*
* On insertion, compressed (AKA filtered, AKA on disk) size
* is unknown, as the entry has yet to be run through filters.
* Compressed size is computed whenever the entry is
* written (or the image is updated -- not relevant until
* journaling is brought back).
*
* On dirty (of a clean entry), compressed (AKA filtered,
* AKA on disk) size becomes unknown. Thus, compressed size
* must be computed by the pre-serialize callback before the
* entry may be written.
*
* Once the compressed size becomes unknown, it remains so
* until the on disk image is constructed.
*
* Observe that the cache needs to know the size of the entry
* for space allocation purposes. Since the compressed size
* can change or become unknown, it uses the uncompressed
* size which may change, but which should always be known.
* The compressed size is used only for journaling and disk I/O.
*
* While there is no logical reason why they could not be
* combined, due to absence of need and for simplicity of code,
* the cache does not permit both the the
* H5C__CLASS_COMPRESSED_FLAG and the
* H5C__CLASS_SPECULATIVE_LOAD_FLAG to be set in the same
* instance of H5C_class_t.
*
* The following flags may only appear in test code.
*
* H5C__CLASS_NO_IO_FLAG: This flag is intended only for use in test
* code. When it is set, any attempt to load an entry of
* the type with this flag set will trigger an assertion
* failure, and any flush of an entry with this flag set
* will not result in any write to file.
*
* H5C__CLASS_SKIP_READS: This flags is intended only for use in test
* code. When it is set, reads on load will be skipped,
* and an uninitialize buffer will be passed to the
* deserialize function.
*
* H5C__CLASS_SKIP_WRITES: This flags is intended only for use in test
* code. When it is set, writes of buffers prepared by the
* serialize callback will be skipped.
*
* GET_LOAD_SIZE: Pointer to the 'get load size' function.
*
* This function must be able to determine the size of the disk image of
* a metadata cache entry, given the 'udata' that will be passed to the
* 'deserialize' callback.
*
* Note that if either the H5C__CLASS_SPECULATIVE_LOAD_FLAG or
* the H5C__CLASS_COMPRESSED_FLAG is set, the disk image size
* returned by this callback is either a first guess (if the
* H5C__CLASS_SPECULATIVE_LOAD_FLAG is set) or (if the
* H5C__CLASS_COMPRESSED_FLAG is set), the exact on disk size
* of the entry whether it has been run through filters or not.
* In all other cases, the value returned should be the correct
* uncompressed size of the entry.
*
* The typedef for the deserialize callback is as follows:
*
* typedef herr_t (*H5C_get_load_size_func_t)(void *udata_ptr,
* size_t *image_len_ptr);
*
* The parameters of the deserialize callback are as follows:
*
* udata_ptr: Pointer to user data provided in the protect call, which
* will also be passed through to the deserialize callback.
*
* image_len_ptr: Pointer to the location in which the length in bytes
* of the in file image to be deserialized is to be returned.
*
* This value is used by the cache to determine the size of
* the disk image for the metadata, in order to read the disk
* image from the file.
*
* Processing in the get_load_size function should proceed as follows:
*
* If successful, the function will place the length of the on disk
* image associated with supplied user data in *image_len_ptr, and
* then return SUCCEED.
*
* On failure, the function must return FAIL and push error information
* onto the error stack with the error API routines, without modifying
* the value pointed to by the image_len_ptr.
*
*
* DESERIALIZE: Pointer to the deserialize function.
*
* This function must be able to read a buffer containing the on disk
* image of a metadata cache entry, allocate and load the equivalent
* in core representation, and return a pointer to that representation.
*
* The typedef for the deserialize callback is as follows:
*
* typedef void *(*H5C_deserialize_func_t)(const void * image_ptr,
* size_t len,
* void * udata_ptr,
* boolean * dirty_ptr);
*
* The parameters of the deserialize callback are as follows:
*
* image_ptr: Pointer to a buffer of length len containing the
* contents of the file starting at addr and continuing
* for len bytes.
*
* len: Length in bytes of the in file image to be deserialized.
*
* This parameter is supplied mainly for sanity checking.
* Sanity checks should be performed when compiled in debug
* mode, but the parameter may be unused when compiled in
* production mode.
*
* udata_ptr: Pointer to user data provided in the protect call, which
* must be passed through to the deserialize callback.
*
* dirty_ptr: Pointer to boolean which the deserialize function
* must use to mark the entry dirty if it has to modify
* the entry to clean up file corruption left over from
* an old bug in the HDF5 library.
*
* Processing in the deserialize function should proceed as follows:
*
* If the image contains valid data, and is of the correct length,
* the deserialize function must allocate space for an in core
* representation of that data, load the contents of the image into
* the space allocated for the in core representation, and return
* a pointer to the in core representation. Observe that an
* instance of H5C_cache_entry_t must be the first item in this
* representation. The cache will initialize it after the callback
* returns.
*
* Note that the structure of the in core representation is otherwise
* up to the cache client. All that is required is that the pointer
* returned be sufficient for the clients purposes when it is returned
* on a protect call.
*
* If the deserialize function has to clean up file corruption
* left over from an old bug in the HDF5 library, it must set
* *dirty_ptr to TRUE. If it doesn't, no action is needed as
* *dirty_ptr will be set to FALSE before the deserialize call.
*
* If the operation fails for any reason (i.e. bad data in buffer, bad
* buffer length, malloc failure, etc.) the function must return NULL and
* push error information on the error stack with the error API routines.
*
* Exceptions to the above:
*
* If the H5C__CLASS_SPECULATIVE_LOAD_FLAG is set, the buffer supplied
* to the function need not be currect on the first invocation of the
* callback in any single attempt to load the entry.
*
* In this case, if the buffer is larger than necessary, the function
* should load the entry as described above and not flag an error due
* to the oversized buffer. The cache will correct its mis-apprehension
* of the entry size with a subsequent call to the image_len callback.
*
* If the buffer is too small, and this is the first deserialize call
* in the entry load operation, the function should not flag an error.
* Instead, it must compute the correct size of the entry, allocate an
* in core representation and initialize it to the extent that an
* immediate call to the image len callback will return the correct
* image size.
*
* In this case, when the deserialize callback returns, the cache will
* call the image length callback, realize that the supplied buffer was
* too small, discard the returned in core representation, allocate
* and load a new buffer of the correct size from file, and then call
* the deserialize callback again.
*
* If the H5C__CLASS_COMPRESSED_FLAG is set, exceptions are as per the
* H5C__CLASS_SPECULATIVE_LOAD_FLAG, save that only oversized buffers
* are permitted.
*
*
* IMAGE_LEN: Pointer to the image length callback.
*
* This callback exists primarily to support
* H5C__CLASS_SPECULATIVE_LOAD_FLAG and H5C__CLASS_COMPRESSED_FLAG
* discussed above, although it is also used to obtain the size of
* newly inserted entries.
*
* In the case of the H5C__CLASS_SPECULATIVE_LOAD_FLAG, it is used to
* allow the client to change the size of an entry in the deserialize
* callback.
*
* For the H5C__CLASS_COMPRESSED_FLAG, it is used to allow the client
* to indicate whether the entry is compressed (i.e. whether entries
* are run through filters) and if so, to report both the uncompressed
* and the compressed entry size (i.e. the actual on disk size after
* the entry has been run through filters) if that value is known.
*
* The callback is also used in H5C_insert_entry() to obtain the
* size of the newly inserted entry.
*
* The typedef for the image_len callback is as follows:
*
* typedef herr_t (*H5C_image_len_func_t)(void *thing,
* size_t *image_len_ptr,
* hbool_t *compressed_ptr,
* size_t *compressed_image_len_ptr);
*
* The parameters of the image_len callback are as follows:
*
* thing: Pointer to the in core representation of the entry.
*
* image_len_ptr: Pointer to size_t in which the callback will return
* the length (in bytes) of the cache entry.
*
* If the H5C__CLASS_COMPRESSED_FLAG is not set in the
* associated instance of H5C_class_t, or if the flag is
* set, and the callback sets *compressed_ptr to FALSE,
* this size is the actual size of the entry on disk.
*
* Otherwise, this size is the uncompressed size of the
* entry -- which the cache will use for all purposes OTHER
* than journal writes and disk I/O.
*
* compressed_ptr: Pointer to a boolean flag indicating whether
* the cache entry will be compressed / uncompressed on
* disk writes / reads.
*
* If the H5C__CLASS_COMPRESSED_FLAG is not set in the
* associated instance of H5C_class_t, *compressed_ptr
* must be set to FALSE.
*
* If the H5C__CLASS_COMPRESSED_FLAG is set in the
* associated instance of H5C_class_t, and filters are
* not enabled, *compressed_ptr must be set to FALSE.
*
* If the H5C__CLASS_COMPRESSED_FLAG is set in the
* associated instance of H5C_class_t, and filters are
* enabled, the callback must set *compressed_ptr to TRUE.
*
* Note that *compressed_ptr will always be set to FALSE
* by the caller prior to invocation of the callback. Thus
* callbacks for clients that don't set the
* H5C__CLASS_COMPRESSED_FLAG can ignore this parameter.
*
* compressed_image_len_ptr: Pointer to size_t in which the callback
* may return the length (in bytes) of the compressed on
* disk image of the entry, or the uncompressed size if the
* compressed size has not yet been calculated.
*
* Since computing the compressed image len is expensive,
* the callback should only report the most recently computed
* value -- which will typically be incorrect if the entry
* is dirty.
*
* If *compressed_ptr is set to FALSE, *compressed_image_len_ptr
* should be set to zero. However, as *compressed_image_len_ptr
* will be initialize to zero prior to the call, the callback
* need not modify it if the H5C__CLASS_COMPRESSED_FLAG is
* not set.
*
* If the H5C__CLASS_COMPRESSED_FLAG is not set in the associated
* instance of H5C_class_t, processing in the image_len function
* should proceed as follows:
*
* If successful, the function will place the length of the on disk
* image associated with the in core representation provided in the
* thing parameter in *image_len_ptr, and then return SUCCEED. Since
* *compressed_ptr and *compressed_image_len_ptr will be initialized to
* FALSE and zero respectively before the call, the callback need not
* modify these values, and may declare the associated parameters as
* UNUSED.
*
* If the H5C__CLASS_COMPRESSED_FLAG is set in the associated
* instance of H5C_class_t, processing in the image_len function
* should proceed as follows:
*
* If successful, the function will place the uncompressed length of
* the on disk image associated with the in core representation
* provided in the thing parameter in *image_len_ptr. If filters
* are not enabled for the entry, it will set *compressed_ptr to FALSE,
* and *compressed_image_len_ptr to zero. If filters are enabled,
* it will set *compressed_ptr to TRUE. In this case, it must set
* *compressed_image_len_ptr equal to the last computed compressed
* if the compressed size, or to the uncompressed size if that value
* is yet to be computed. In all cases, it will return SUCCEED if
* successful.
*
* In either case, if the function fails, it must return FAIL and
* push error information onto the error stack with the error API
* routines, and return without modifying the values pointed to by
* the image_len_ptr, compressed_ptr, and compressed_image_len_ptr
* parameters.
*
* PRE_SERIALIZE: Pointer to the pre-serialize callback.
*
* The pre-serialize callback is invoked by the metadata cache before
* it needs a current on-disk image of the metadata entry for purposes
* either constructing a journal or flushing the entry to disk.
*
* If the client needs to change the address or compressed or
* uncompressed length of the entry prior to flush, the pre-serialize
* callback is responsible for these actions, so that the actual
* serialize callback (described below) is only responsible for
* serializing the data structure, not moving it on disk or resizing it.
*
* In addition, the client may use the pre-serialize callback to
* ensure that the entry is ready to be flushed -- in particular,
* if the entry contains references to other entries that are in
* temporary file space, the pre-serialize callback must move those
* entries into real file space so that the serialzed entry will
* contain no invalid data.
*
* One would think that the base address and length of
* the length of the entry's image on disk would be well known.
* However, that need not be the case as free space section info
* entries will change size (and possibly location) depending on the
* number of blocks of free space being manages, and fractal heap
* direct blocks can change compressed size (and possibly location)
* on serialization if compression is enabled. Similarly, it may
* be necessary to move entries from temporary to real file space.
*
* The pre-serialize callback must report any such changes to the
* cache, which must then update its internal structures as needed.
*
* The typedef for the pre-serialize callback is as follows:
*
* typedef herr_t (*H5C_pre_serialize_func_t)(const H5F_t *f,
* hid_t dxpl_id,
* void * thing,
* haddr_t addr,
* size_t len,
* size_t compressed_len,
* haddr_t * new_addr_ptr,
* size_t * new_len_ptr,
* size_t * new_compressed_len_ptr,
* unsigned * flags_ptr);
*
* The parameters of the pre-serialize callback are as follows:
*
* f: File pointer -- needed if other metadata cache entries
* must be modified in the process of serializing the
* target entry.
*
* dxpl_id: dxpl_id passed with the file pointer to the cache, and
* passed on to the callback. Necessary as some callbacks
* revise the size and location of the target entry, or
* possibly other entries on pre-serialize.
*
* thing: Pointer to void containing the address of the in core
* representation of the target metadata cache entry.
* This is the same pointer returned by a protect of the
* addr and len given above.
*
* addr: Base address in file of the entry to be serialized.
*
* This parameter is supplied mainly for sanity checking.
* Sanity checks should be performed when compiled in debug
* mode, but the parameter may be unused when compiled in
* production mode.
*
* len: Length in bytes of the in file image of the entry to be
* serialized. Also the size the image passed to the
* serialize callback (discussed below) unless either that
* value is altered by this function, or the entry will be
* compressed. In the latter case, the compressed size
* of the entry will be reported in *new_compressed_len_ptr.
*
* This parameter is supplied mainly for sanity checking.
* Sanity checks should be performed when compiled in debug
* mode, but the parameter may be unused when compiled in
* production mode.
*
* compressed_len: If the entry is to be compressed (i.e. run through
* filters) prior to flush, Length in bytes of the last know
* compressed size of the entry -- or the uncompressed size
* if no such value exists (i.e. the entry has been inserted,
* but never flushed). This parameter should be set to zero
* in all other cases.
*
* This parameter is supplied mainly for sanity checking.
* Sanity checks should be performed when compiled in debug
* mode, but the parameter may be unused when compiled in
* production mode.
*
* new_addr_ptr: Pointer to haddr_t. If the entry is moved by
* the serialize function, the new on disk base address must
* be stored in *new_addr_ptr, and the appropriate flag set
* in *flags_ptr.
*
* If the entry is not moved by the serialize function,
* *new_addr_ptr is undefined on pre-serialize callback
* return.
*
* new_len_ptr: Pointer to size_t. If the entry is resized by the
* serialize function, the new length of the on disk image
* must be stored in *new_len_ptr, and the appropriate flag set
* in *flags_ptr.
*
* If the entry is not resized by the pre-serialize function,
* *new_len_ptr is undefined on pre-serialize callback
* return.
*
* new_compressed_len_ptr: Pointer to size_t. If the image will be
* compressed (i.e. run through filters) prior to being
* written to disk, the compressed size (in bytes) of the
* on disk image must be stored in *new_compressed_len_ptr,
* and the appropriate flag set in *flags_ptr.
*
* flags_ptr: Pointer to an unsigned integer used to return flags
* indicating whether the preserialize function resized or moved
* the entry, or computed its compressed size. If the entry was
* neither resized or moved, nor will be compressed,
* the serialize function must set *flags_ptr to zero.
* H5C__SERIALIZE_RESIZED_FLAG, H5C__SERIALIZE_MOVED_FLAG
* and H5C__SERIALIZE_COMPRESSED_FLAG must be set to indicate
* a resize, a move, or compression respectively.
*
* If the H5C__SERIALIZE_RESIZED_FLAG is set, the new length
* must be stored in *new_len_ptr.
*
* If the H5C__SERIALIZE_MOVED_FLAG flag is set, the
* new image base address must be stored in *new_addr_ptr.
*
* If the H5C__SERIALIZE_COMPRESSED_FLAG is set, the
* compressed size of the new image must be stored in
* *new_compressed_len_ptr.
*
* Processing in the pre-serialize function should proceed as follows:
*
* The pre-serialize function must examine the in core representation
* indicated by the thing parameter, if the pre-serialize function does
* not need to change the size or location of the on-disk image, or
* compute its compress size, it must set *flags_ptr to zero.
*
* If the (uncompressed) size of the on-disk image must be changed,
* the pre-serialize function must load the length of the new image
* into *new_len_ptr, and set the H5C__SERIALIZE_RESIZED_FLAG in
* *flags_ptr.
*
* If the base address of the on disk image must be changed, the
* pre-serialize function must set *new_addr_ptr to the new base address,
* and set the H5C__SERIALIZE_MOVED_FLAG in *flags_ptr.
*
* If the H5C__CLASS_COMPRESSED_FLAG is set in the assocated instance
* of H5C_class_t, and filters (i.e. compression) are enabled, the
* pre-serialize function must compute the compressed size of the
* on disk image, and if it has changed, load this value into
* *new_compressed_len_ptr, and set H5C__SERIALIZE_COMPRESSED_FLAG in
* *flags_ptr.
*
* Note that to do this, the preserialize function will typically have
* to serialize the entry, and run it through the filters to obtain
* the compressed size. For efficiency, the compressed image may
* be stored to be copied into the supplied buffer by the
* serialize callback. Needless to say this is awkward. We may
* want to re-work the API for cache clients to simplify this.
*
* In addition, the pre-serialize callback may perform any other
* processing required before the entry is written to disk
*
* If it is successful, the function must return SUCCEED.
*
* If it fails for any reason, the function must return FAIL and
* push error information on the error stack with the error API
* routines.
*
*
* SERIALIZE: Pointer to the serialize callback.
*
* The serialize callback is invoked by the metadata cache whenever
* it needs a current on disk image of the metadata entry for purposes
* either constructing a journal entry or flushing the entry to disk.
*
* At this point, the base address and length of the entry's image on
* disk must be well known and not change during the serialization
* process.
*
* While any size and/or location changes must have been handled
* by a pre-serialize call, the client may elect to handle any other
* changes to the entry required to place it in correct form for
* writing to disk in this call.
*
* The typedef for the serialize callback is as follows:
*
* typedef herr_t (*H5C_serialize_func_t)(const H5F_t *f,
* void * image_ptr,
* size_t len,
* void * thing);
*
* The parameters of the serialize callback are as follows:
*
* f: File pointer -- needed if other metadata cache entries
* must be modified in the process of serializing the
* target entry.
*
* image_ptr: Pointer to a buffer of length len bytes into which a
* serialized image of the target metadata cache entry is
* to be written.
*
* Note that this buffer will not in general be initialized
* to any particular value. Thus the serialize function may
* not assume any initial value and must set each byte in
* the buffer.
*
* len: Length in bytes of the in file image of the entry to be
* serialized. Also the size of *image_ptr (below). If
* compression is not enabled, this value is simply the
* uncompressed size of the entry's image on disk. If
* compression is enabled, this value is the size of the
* compressed image.
*
* This parameter is supplied mainly for sanity checking.
* Sanity checks should be performed when compiled in debug
* mode, but the parameter may be unused when compiled in
* production mode.
*
* thing: Pointer to void containing the address of the in core
* representation of the target metadata cache entry.
* This is the same pointer returned by a protect of the
* addr and len given above.
*
* Processing in the serialize function should proceed as follows:
*
* If there are any remaining changes to the entry required before
* write to disk, they must be dealt with first.
*
* The serialize function must then examine the in core
* representation indicated by the thing parameter, and write a
* serialized (and possibly compressed) image of its contents into
* the provided buffer.
*
* If it is successful, the function must return SUCCEED.
*
* If it fails for any reason, the function must return FAIL and
* push error information on the error stack with the error API
* routines.
*
*
* NOTIFY: Pointer to the notify callback.
*
* The notify callback is invoked by the metadata cache when a cache
* action on an entry has taken/will take place and the client indicates
* it wishes to be notified about the action.
*
* The typedef for the notify callback is as follows:
*
* typedef herr_t (*H5C_notify_func_t)(H5C_notify_action_t action,
* void *thing);
*
* The parameters of the notify callback are as follows:
*
* action: An enum indicating the metadata cache action that has taken/
* will take place.
*
* thing: Pointer to void containing the address of the in core
* representation of the target metadata cache entry. This
* is the same pointer that would be returned by a protect
* of the addr and len of the entry.
*
* Processing in the notify function should proceed as follows:
*
* The notify function may perform any action it would like, including
* metadata cache calls.
*
* If the function is successful, it must return SUCCEED.
*
* If it fails for any reason, the function must return FAIL and
* push error information on the error stack with the error API
* routines.
*
*
* FREE_ICR: Pointer to the free ICR callback.
*
* The free ICR callback is invoked by the metadata cache when it
* wishes to evict an entry, and needs the client to free the memory
* allocated for the in core representation.
*
* The typedef for the free ICR callback is as follows:
*
* typedef herr_t (*H5C_free_icr_func_t)(void * thing));
*
* The parameters of the free ICR callback are as follows:
*
* thing: Pointer to void containing the address of the in core
* representation of the target metadata cache entry. This
* is the same pointer that would be returned by a protect
* of the addr and len of the entry.
*
* Processing in the free ICR function should proceed as follows:
*
* The free ICR function must free all memory allocated to the
* in core representation.
*
* If the function is successful, it must return SUCCEED.
*
* If it fails for any reason, the function must return FAIL and
* push error information on the error stack with the error API
* routines.
*
* At least when compiled with debug, it would be useful if the
* free ICR call would fail if the in core representation has been
* modified since the last serialize of clear callback.
*
* CLEAR: Pointer to the clear callback.
*
* In principle, there should be no need for the clear callback,
* as the dirty flag should be maintained by the metadata cache.
*.
* However, some clients maintain dirty bits on internal data,
* and we need some way of keeping these dirty bits in sync with
* those maintained by the metadata cache. This callback exists
* to serve this purpose. If defined, it is called whenever the
* cache marks dirty entry clean, or when the cache is about to
* discard a dirty entry without writing it to disk (This
* happens as the result of an unprotect call with the
* H5AC__DELETED_FLAG set, and the H5C__TAKE_OWNERSHIP_FLAG not
* set.)
*
* Arguably, this functionality should be in the NOTIFY callback.
* However, this callback is specific to only a few clients, and
* it will be called relatively frequently. Hence it is made its
* own callback to minimize overhead.
*
* The typedef for the clear callback is as follows:
*
* typedef herr_t (*H5C_clear_func_t)(const H5F_t *f,
* void * thing,
* hbool_t about_to_destroy);
*
* The parameters of the clear callback are as follows:
*
* f: File pointer.
*
* thing: Pointer to void containing the address of the in core
* representation of the target metadata cache entry. This
* is the same pointer that would be returned by a protect()
* call of the associated addr and len.
*
* about_to_destroy: Boolean flag used to indicate whether the
* metadata cache is about to destroy the target metadata
* cache entry. The callback may use this flag to omit
* operations that are irrelevant it the entry is about
* to be destroyed.
*
* Processing in the clear function should proceed as follows:
*
* Reset all internal dirty bits in the target metadata cache entry.
*
* If the about_to_destroy flag is TRUE, the clear function may
* ommit any dirty bit that will not trigger a sanity check failure
* or otherwise cause problems in the subsequent free icr call.
* In particular, the call must ensure that the free icr call will
* not fail due to changes prior to this call, and after the
* last serialize or clear call.
*
* If the function is successful, it must return SUCCEED.
*
* If it fails for any reason, the function must return FAIL and
* push error information on the error stack with the error API
* routines.
*
* GET_FSF_SIZE: Pointer to the get file space free size callback.
*
* In principle, there is no need for the get file space free size
* callback. However, as an optimization, it is sometimes convenient
* to allocate and free file space for a number of cache entries
* simultaneously in a single contiguous block of file space.
*
* File space allocation is done by the client, so the metadata cache
* need not be involved. However, since the metadata cache typically
* handles file space release when an entry is destroyed, some
* adjustment on the part of the metadata cache is required for this
* operation.
*
* The get file space free size callback exists to support this
* operation.
*
* If a group of cache entries that were allocated as a group are to
* be discarded and their file space released, the type of the first
* (i.e. lowest address) entry in the group must implement the
* get free file space size callback.
*
* To free the file space of all entries in the group in a single
* operation, first expunge all entries other than the first without
* the free file space flag.
*
* Then, to complete the operation, unprotect or expunge the first
* entry in the block with the free file space flag set. Since
* the get free file space callback is implemented, the metadata
* cache will use this callback to get the size of the block to be
* freed, instead of using the size of the entry as is done otherwise.
*
* At present this callback is used only by the H5FA and H5EA dblock
* and dblock page client classes.
*
* The typedef for the clear callback is as follows:
*
* typedef herr_t (*H5C_get_fsf_size_t)(const void * thing,
* size_t *fsf_size_ptr);
*
* The parameters of the clear callback are as follows:
*
* thing: Pointer to void containing the address of the in core
* representation of the target metadata cache entry. This
* is the same pointer that would be returned by a protect()
* call of the associated addr and len.
*
* fs_size_ptr: Pointer to size_t in which the callback will return
* the size of the piece of file space to be freed. Note
* that the space to be freed is presumed to have the same
* base address as the cache entry.
*
* The function simply returns the size of the block of file space
* to be freed in *fsf_size_ptr.
*
* If the function is successful, it must return SUCCEED.
*
* If it fails for any reason, the function must return FAIL and
* push error information on the error stack with the error API
* routines.
*
***************************************************************************/
/* Actions that can be reported to 'notify' client callback */
typedef enum H5C_notify_action_t {
H5C_NOTIFY_ACTION_AFTER_INSERT, /* Entry has been added to the cache
* via the insert call
*/
H5C_NOTIFY_ACTION_AFTER_LOAD, /* Entry has been loaded into the
* from file via the protect call
*/
H5C_NOTIFY_ACTION_AFTER_FLUSH, /* Entry has just been flushed to
* file.
*/
H5C_NOTIFY_ACTION_BEFORE_EVICT /* Entry is about to be evicted
* from cache.
*/
} H5C_notify_action_t;
/* Cache client callback function pointers */
typedef herr_t (*H5C_get_load_size_func_t)(const void *udata_ptr,
size_t *image_len_ptr);
typedef void *(*H5C_deserialize_func_t)(const void *image_ptr,
size_t len, void *udata_ptr, hbool_t *dirty_ptr);
typedef herr_t (*H5C_image_len_func_t)(const void *thing,
size_t *image_len_ptr, hbool_t *compressed_ptr, size_t *compressed_image_len_ptr);
typedef herr_t (*H5C_pre_serialize_func_t)(const H5F_t *f, hid_t dxpl_id,
void *thing, haddr_t addr, size_t len, size_t compressed_len,
haddr_t *new_addr_ptr, size_t *new_len_ptr, size_t *new_compressed_len_ptr,
unsigned *flags_ptr);
typedef herr_t (*H5C_serialize_func_t)(const H5F_t *f, void *image_ptr,
size_t len, void *thing);
typedef herr_t (*H5C_notify_func_t)(H5C_notify_action_t action, void *thing);
typedef herr_t (*H5C_free_icr_func_t)(void *thing);
typedef herr_t (*H5C_clear_func_t)(const H5F_t *f, void * thing,
hbool_t about_to_destroy);
typedef herr_t (*H5C_get_fsf_size_t)(const void * thing, size_t *fsf_size_ptr);
/* Metadata cache client class definition */
typedef struct H5C_class_t {
int id;
const char * name;
H5FD_mem_t mem_type;
unsigned flags;
H5C_get_load_size_func_t get_load_size;
H5C_deserialize_func_t deserialize;
H5C_image_len_func_t image_len;
H5C_pre_serialize_func_t pre_serialize;
H5C_serialize_func_t serialize;
H5C_notify_func_t notify;
H5C_free_icr_func_t free_icr;
H5C_clear_func_t clear;
H5C_get_fsf_size_t fsf_size;
} H5C_class_t;
/* Type defintions of callback functions used by the cache as a whole */
typedef herr_t (*H5C_write_permitted_func_t)(const H5F_t *f,
hbool_t *write_permitted_ptr);
typedef herr_t (*H5C_log_flush_func_t)(H5C_t *cache_ptr, haddr_t addr,
hbool_t was_dirty, unsigned flags);
/****************************************************************************
*
* H5C_ring_t & associated #defines
*
* The metadata cache uses the concept of rings to order the flushes of
* classes of entries. In this arrangement, each entry in the cache is
* assigned to a ring, and on flush, the members of the outermost ring
* are flushed first, followed by the next outermost, and so on with the
* members of the innermost ring being flushed last.
*
* Note that flush dependencies are used to order flushes within rings.
*
* Note also that at the conceptual level, rings are argueably superfluous,
* as a similar effect could be obtained via the flush dependency mechanism.
* However, this would require all entries in the cache to participate in a
* flush dependency -- with the implied setup and takedown overhead and
* added complexity. Further, the flush ordering between rings need only
* be enforced on flush operations, and thus the use of flush dependencies
* instead would apply unecessary constraints on flushes under normal
* operating circumstances.
*
* As of this writing, all metadata entries pretaining to data sets and
* groups must be flushed first, and are thus assigned to the outermost
* ring.
*
* Free space managers managing file space must be flushed next,
* and are assigned to the second outermost ring.
*
* The object header and associated chunks used to implement superblock
* extension messages must be flushed next, and are thus assigned to
* the third outermost ring.
*
* The superblock proper must be flushed last, and is thus assigned to
* the innermost ring.
*
* The H5C_ring_t and the associated #defines below are used to define
* the rings. Each entry must be assigned to the appropriate ring on
* insertion or protect.
*
* Note that H5C_ring_t was originally an enumerated type. It was
* converted to an integer and a set of #defines for convenience in
* debugging.
*/
#define H5C_RING_UNDEFINED 0 /* shouldn't appear in the cache */
#define H5C_RING_USER 1 /* outermost ring */
#define H5C_RING_FSM 2
#define H5C_RING_SBE 4 /* temporarily merged with H5C_RING_SB */
#define H5C_RING_SB 4 /* innermost ring */
#define H5C_RING_NTYPES 5
typedef int H5C_ring_t;
/****************************************************************************
*
* structure H5C_cache_entry_t
*
* Instances of the H5C_cache_entry_t structure are used to store cache
* entries in a hash table and sometimes in a skip list.
* See H5SL.c for the particulars of the skip list.
*
* In typical application, this structure is the first field in a
* structure to be cached. For historical reasons, the external module
* is responsible for managing the is_dirty field (this is no longer
* completely true. See the comment on the is_dirty field for details).
* All other fields are managed by the cache.
*
* The fields of this structure are discussed individually below:
*
* JRM - 4/26/04
*
* magic: Unsigned 32 bit integer that must always be set to
* H5C__H5C_CACHE_ENTRY_T_MAGIC when the entry is valid.
* The field must be set to H5C__H5C_CACHE_ENTRY_T_BAD_MAGIC
* just before the entry is freed.
*
* This is necessary, as the LRU list can be changed out
* from under H5C_make_space_in_cache() by the serialize
* callback which may change the size of an existing entry,
* and/or load a new entry while serializing the target entry.
*
* This in turn can cause a recursive call to
* H5C_make_space_in_cache() which may either flush or evict
* the next entry that the first invocation of that function
* was about to examine.
*
* The magic field allows H5C_make_space_in_cache() to
* detect this case, and re-start its scan from the bottom
* of the LRU when this situation occurs.
*
* cache_ptr: Pointer to the cache that this entry is contained within.
*
* addr: Base address of the cache entry on disk.
*
* size: Length of the cache entry on disk in bytes(exception: if
* the entry is compressed on disk, this field contains the
* uncompressed size of the entry -- see discussion of
* compressed entries below). Note that unlike normal
* caches, the entries in this cache are of arbitrary size.
*
* With the exception of compressed entries, the file space
* allocations for cache entries implied by the addr and size
* fields must be disjoint. For compressed entries,
* the size field contains the uncompressed size -- thus in
* in this case, substitution of compressed size for size
* must result in disjoint file space allocations. However,
* as discussed below, the compressed size may not be know.
*
* Any entry whose associated instance of H5C_class_t has the
* H5C__CLASS_COMPRESSED_FLAG set may be compressed. When
* an entry is compressed (that is, when filters are enabled
* on it), the compressed flag (see below) must be set, and
* the compressed size (if known), must be stored in
* the compressed_size field.
*
* Since the compressed size will be unknown unless the
* entry is clean, or has an up to date image (see the
* image_ptr and image_up_to_date fields below), we use the
* uncompressed size for all purposes other than disk I/O.
*
* compressed: Boolean flag that is set iff the instance of H5C_class_t
* associated with the entry has the H5C__CLASS_COMPRESSED_FLAG
* set, and filters are enabled on the entry.
*
* compressed_size: If compressed is TRUE, this field contains the actual
* compressed size of the entry in bytes, which is also its
* true size on disk -- or the uncompressed size if the
* compressed size is unknown (i.e. the entry has been
* inserted in the cache, but it has not been compressed yet).
* Note that this value will usually be incorrect if the
* entry is dirty.
*
* Since this value is frequently out of date and expensive to
* compute, it is used only for disk I/O. The uncompressed
* size of the entry (stored in the size field above) is used
* for all other purposes (i.e. computing the sum of the sizes
* of all entries in the cache, etc.).
*
* If compressed is FALSE, this field should contain 0.
*
* image_ptr: Pointer to void. When not NULL, this field points to a
* dynamically allocated block of size bytes in which the
* on disk image of the metadata cache entry is stored.
*
* If the entry is dirty, the pre-serialize and serialize
* callbacks must be used to update this image before it is
* written to disk
*
* image_up_to_date: Boolean flag that is set to TRUE when *image_ptr
* is up to date, and set to false when the entry is dirtied.
*
* type: Pointer to the instance of H5C_class_t containing pointers
* to the methods for cache entries of the current type. This
* field should be NULL when the instance of H5C_cache_entry_t
* is not in use.
*
* The name is not particularly descriptive, but is retained
* to avoid changes in existing code.
*
* is_dirty: Boolean flag indicating whether the contents of the cache
* entry has been modified since the last time it was written
* to disk.
*
* NOTE: For historical reasons, this field is not maintained
* by the cache. Instead, the module using the cache
* sets this flag when it modifies the entry, and the
* flush and clear functions supplied by that module
* reset the dirty when appropriate.
*
* This is a bit quirky, so we may want to change this
* someday. However it will require a change in the
* cache interface.
*
* Update: Management of the is_dirty field has been largely
* moved into the cache. The only remaining exceptions
* are the flush and clear functions supplied by the
* modules using the cache. These still clear the
* is_dirty field as before. -- JRM 7/5/05
*
* Update: Management of the is_dirty field is now entirely
* in the cache. -- JRM 7/5/07
*
* dirtied: Boolean flag used to indicate that the entry has been
* dirtied while protected.
*
* This field is set to FALSE in the protect call, and may
* be set to TRUE by the H5C_mark_entry_dirty() call at any
* time prior to the unprotect call.
*
* The H5C_mark_entry_dirty() call exists as a convenience
* function for the fractal heap code which may not know if
* an entry is protected or pinned, but knows that is either
* protected or pinned. The dirtied field was added as in
* the parallel case, it is necessary to know whether a
* protected entry is dirty prior to the protect call.
*
* is_protected: Boolean flag indicating whether this entry is protected
* (or locked, to use more conventional terms). When it is
* protected, the entry cannot be flushed or accessed until
* it is unprotected (or unlocked -- again to use more
* conventional terms).
*
* Note that protected entries are removed from the LRU lists
* and inserted on the protected list.
*
* is_read_only: Boolean flag that is only meaningful if is_protected is
* TRUE. In this circumstance, it indicates whether the
* entry has been protected read only, or read/write.
*
* If the entry has been protected read only (i.e. is_protected
* and is_read_only are both TRUE), we allow the entry to be
* protected more than once.
*
* In this case, the number of readers is maintained in the
* ro_ref_count field (see below), and unprotect calls simply
* decrement that field until it drops to zero, at which point
* the entry is actually unprotected.
*
* ro_ref_count: Integer field used to maintain a count of the number of
* outstanding read only protects on this entry. This field
* must be zero whenever either is_protected or is_read_only
* are TRUE.
*
* is_pinned: Boolean flag indicating whether the entry has been pinned
* in the cache.
*
* For very hot entries, the protect / unprotect overhead
* can become excessive. Thus the cache has been extended
* to allow an entry to be "pinned" in the cache.
*
* Pinning an entry in the cache has several implications:
*
* 1) A pinned entry cannot be evicted. Thus unprotected
* pinned entries must be stored in the pinned entry
* list, instead of being managed by the replacement
* policy code (LRU at present).
*
* 2) A pinned entry can be accessed or modified at any time.
* This places an extra burden on the pre-serialize and
* serialize callbacks, which must ensure that a pinned
* entry is consistant and ready to write to disk before
* generating an image.
*
* 3) A pinned entry can be marked as dirty (and possibly
* change size) while it is unprotected.
*
* 4) The flush-destroy code must allow pinned entries to
* be unpinned (and possibly unprotected) during the
* flush.
*
* JRM -- 3/16/06
*
* in_slist: Boolean flag indicating whether the entry is in the skip list
* As a general rule, entries are placed in the list when they
* are marked dirty. However they may remain in the list after
* being flushed.
*
* Update: Dirty entries are now removed from the skip list
* when they are flushed.
*
* flush_marker: Boolean flag indicating that the entry is to be flushed
* the next time H5C_flush_cache() is called with the
* H5C__FLUSH_MARKED_ENTRIES_FLAG. The flag is reset when
* the entry is flushed for whatever reason.
*
* flush_me_last: Boolean flag indicating that this entry should not be
* flushed from the cache until all other entries without
* the flush_me_last flag set have been flushed.
*
* Note:
*
* At this time, the flush_me_last
* flag will only be applied to one entry, the superblock,
* and the code utilizing these flags is protected with HDasserts
* to enforce this. This restraint can certainly be relaxed in
* the future if the the need for multiple entries getting flushed
* last or collectively arises, though the code allowing for that
* will need to be expanded and tested appropriately if that
* functionality is desired.
*
* Update: There are now two possible last entries
* (superblock and file driver info message). This
* number will probably increase as we add superblock
* messages. JRM -- 11/18/14
*
* clear_on_unprotect: Boolean flag used only in PHDF5. When H5C is used
* to implement the metadata cache In the parallel case, only
* the cache with mpi rank 0 is allowed to actually write to
* file -- all other caches must retain dirty entries until they
* are advised that the entry is clean.
*
* This flag is used in the case that such an advisory is
* received when the entry is protected. If it is set when an
* entry is unprotected, and the dirtied flag is not set in
* the unprotect, the entry's is_dirty flag is reset by flushing
* it with the H5C__FLUSH_CLEAR_ONLY_FLAG.
*
* flush_immediately: Boolean flag used only in Phdf5 -- and then only
* for H5AC_METADATA_WRITE_STRATEGY__DISTRIBUTED.
*
* When a destributed metadata write is triggered at a
* sync point, this field is used to mark entries that
* must be flushed before leaving the sync point. At all
* other times, this field should be set to FALSE.
*
* flush_in_progress: Boolean flag that is set to true iff the entry
* is in the process of being flushed. This allows the cache
* to detect when a call is the result of a flush callback.
*
* destroy_in_progress: Boolean flag that is set to true iff the entry
* is in the process of being flushed and destroyed.
*
*
* Fields supporting rings for flush ordering:
*
* All entries in the metadata cache are assigned to a ring. On cache
* flush, all entries in the outermost ring are flushed first, followed
* by all members of the next outermost ring, and so on until the
* innermost ring is flushed. Note that this ordering is ONLY applied
* in flush and serialize calls. Rings are ignored during normal operations
* in which entries are flushed as directed by the replacement policy.
*
* See the header comment on H5C_ring_t above for further details.
*
* Note that flush dependencies (see below) are used to order flushes
* within rings. Unlike rings, flush dependencies are applied to ALL
* writes, not just those triggered by flush or serialize calls.
*
* ring: Instance of H5C_ring_t indicating the ring to which this
* entry is assigned.
*
*
* Fields supporting the 'flush dependency' feature:
*
* Entries in the cache may have a 'flush dependency' on another entry in the
* cache. A flush dependency requires that all dirty child entries be flushed
* to the file before a dirty parent entry (of those child entries) can be
* flushed to the file. This can be used by cache clients to create data
* structures that allow Single-Writer/Multiple-Reader (SWMR) access for the
* data structure.
*
* The leaf child entry will have a "height" of 0, with any parent entries
* having a height of 1 greater than the maximum height of any of their child
* entries (flush dependencies are allowed to create asymmetric trees of
* relationships).
*
* flush_dep_parent: Pointer to the parent entry for an entry in a flush
* dependency relationship.
*
* child_flush_dep_height_rc: An array of reference counts for child entries,
* where the number of children of each height is tracked.
*
* flush_dep_height: The height of the entry, which is one greater than the
* maximum height of any of its child entries..
*
* pinned_from_client: Whether the entry was pinned by an explicit pin request
* from a cache client.
*
* pinned_from_cache: Whether the entry was pinned implicitly as a
* request of being a parent entry in a flush dependency
* relationship.
*
*
* Fields supporting the hash table:
*
* Fields in the cache are indexed by a more or less conventional hash table.
* If there are multiple entries in any hash bin, they are stored in a doubly
* linked list.
*
* ht_next: Next pointer used by the hash table to store multiple
* entries in a single hash bin. This field points to the
* next entry in the doubly linked list of entries in the
* hash bin, or NULL if there is no next entry.
*
* ht_prev: Prev pointer used by the hash table to store multiple
* entries in a single hash bin. This field points to the
* previous entry in the doubly linked list of entries in
* the hash bin, or NULL if there is no previuos entry.
*
*
* Fields supporting replacement policies:
*
* The cache must have a replacement policy, and it will usually be
* necessary for this structure to contain fields supporting that policy.
*
* While there has been interest in several replacement policies for
* this cache, the initial development schedule is tight. Thus I have
* elected to support only a modified LRU policy for the first cut.
*
* When additional replacement policies are added, the fields in this
* section will be used in different ways or not at all. Thus the
* documentation of these fields is repeated for each replacement policy.
*
* Modified LRU:
*
* When operating in parallel mode, we must ensure that a read does not
* cause a write. If it does, the process will hang, as the write will
* be collective and the other processes will not know to participate.
*
* To deal with this issue, I have modified the usual LRU policy by adding
* clean and dirty LRU lists to the usual LRU list. When reading in
* parallel mode, we evict from the clean LRU list only. This implies
* that we must try to ensure that the clean LRU list is reasonably well
* stocked. See the comments on H5C_t in H5Cpkg.h for more details.
*
* Note that even if we start with a completely clean cache, a sequence
* of protects without unprotects can empty the clean LRU list. In this
* case, the cache must grow temporarily. At the next write, we will
* attempt to evict enough entries to get the cache down to its nominal
* maximum size.
*
* The use of the replacement policy fields under the Modified LRU policy
* is discussed below:
*
* next: Next pointer in either the LRU, the protected list, or
* the pinned list depending on the current values of
* is_protected and is_pinned. If there is no next entry
* on the list, this field should be set to NULL.
*
* prev: Prev pointer in either the LRU, the protected list,
* or the pinned list depending on the current values of
* is_protected and is_pinned. If there is no previous
* entry on the list, this field should be set to NULL.
*
* aux_next: Next pointer on either the clean or dirty LRU lists.
* This entry should be NULL when either is_protected or
* is_pinned is true.
*
* When is_protected and is_pinned are false, and is_dirty is
* true, it should point to the next item on the dirty LRU
* list.
*
* When is_protected and is_pinned are false, and is_dirty is
* false, it should point to the next item on the clean LRU
* list. In either case, when there is no next item, it
* should be NULL.
*
* aux_prev: Previous pointer on either the clean or dirty LRU lists.
* This entry should be NULL when either is_protected or
* is_pinned is true.
*
* When is_protected and is_pinned are false, and is_dirty is
* true, it should point to the previous item on the dirty
* LRU list.
*
* When is_protected and is_pinned are false, and is_dirty
* is false, it should point to the previous item on the
* clean LRU list.
*
* In either case, when there is no previous item, it should
* be NULL.
*
* Cache entry stats collection fields:
*
* These fields should only be compiled in when both H5C_COLLECT_CACHE_STATS
* and H5C_COLLECT_CACHE_ENTRY_STATS are true. When present, they allow
* collection of statistics on individual cache entries.
*
* accesses: int32_t containing the number of times this cache entry has
* been referenced in its lifetime.
*
* clears: int32_t containing the number of times this cache entry has
* been cleared in its life time.
*
* flushes: int32_t containing the number of times this cache entry has
* been flushed to file in its life time.
*
* pins: int32_t containing the number of times this cache entry has
* been pinned in cache in its life time.
*
****************************************************************************/
typedef struct H5C_cache_entry_t {
uint32_t magic;
H5C_t * cache_ptr;
haddr_t addr;
size_t size;
hbool_t compressed;
size_t compressed_size;
void * image_ptr;
hbool_t image_up_to_date;
const H5C_class_t * type;
haddr_t tag;
hbool_t is_dirty;
hbool_t dirtied;
hbool_t is_protected;
hbool_t is_read_only;
int ro_ref_count;
hbool_t is_pinned;
hbool_t in_slist;
hbool_t flush_marker;
hbool_t flush_me_last;
#ifdef H5_HAVE_PARALLEL
hbool_t clear_on_unprotect;
hbool_t flush_immediately;
#endif /* H5_HAVE_PARALLEL */
hbool_t flush_in_progress;
hbool_t destroy_in_progress;
/* fields supporting rings for purposes of flush ordering */
H5C_ring_t ring;
/* fields supporting the 'flush dependency' feature: */
struct H5C_cache_entry_t * flush_dep_parent;
uint64_t child_flush_dep_height_rc[H5C__NUM_FLUSH_DEP_HEIGHTS];
unsigned flush_dep_height;
hbool_t pinned_from_client;
hbool_t pinned_from_cache;
/* fields supporting the hash table: */
struct H5C_cache_entry_t * ht_next;
struct H5C_cache_entry_t * ht_prev;
/* fields supporting replacement policies: */
struct H5C_cache_entry_t * next;
struct H5C_cache_entry_t * prev;
struct H5C_cache_entry_t * aux_next;
struct H5C_cache_entry_t * aux_prev;
#if H5C_COLLECT_CACHE_ENTRY_STATS
/* cache entry stats fields */
int32_t accesses;
int32_t clears;
int32_t flushes;
int32_t pins;
#endif /* H5C_COLLECT_CACHE_ENTRY_STATS */
} H5C_cache_entry_t;
/****************************************************************************
*
* structure H5C_auto_size_ctl_t
*
* Instances of H5C_auto_size_ctl_t are used to get and set the control
* fields for automatic cache re-sizing.
*
* The fields of the structure are discussed individually below:
*
* version: Integer field containing the version number of this version
* of the H5C_auto_size_ctl_t structure. Any instance of
* H5C_auto_size_ctl_t passed to the cache must have a known
* version number, or an error will be flagged.
*
* report_fcn: Pointer to the function that is to be called to report
* activities each time the auto cache resize code is executed. If the
* field is NULL, no call is made.
*
* If the field is not NULL, it must contain the address of a function
* of type H5C_auto_resize_report_fcn.
*
* set_initial_size: Boolean flag indicating whether the size of the
* initial size of the cache is to be set to the value given in
* the initial_size field. If set_initial_size is FALSE, the
* initial_size field is ignored.
*
* initial_size: If enabled, this field contain the size the cache is
* to be set to upon receipt of this structure. Needless to say,
* initial_size must lie in the closed interval [min_size, max_size].
*
* min_clean_fraction: double in the range 0 to 1 indicating the fraction
* of the cache that is to be kept clean. This field is only used
* in parallel mode. Typical values are 0.1 to 0.5.
*
* max_size: Maximum size to which the cache can be adjusted. The
* supplied value must fall in the closed interval
* [MIN_MAX_CACHE_SIZE, MAX_MAX_CACHE_SIZE]. Also, max_size must
* be greater than or equal to min_size.
*
* min_size: Minimum size to which the cache can be adjusted. The
* supplied value must fall in the closed interval
* [MIN_MAX_CACHE_SIZE, MAX_MAX_CACHE_SIZE]. Also, min_size must
* be less than or equal to max_size.
*
* epoch_length: Number of accesses on the cache over which to collect
* hit rate stats before running the automatic cache resize code,
* if it is enabled.
*
* At the end of an epoch, we discard prior hit rate data and start
* collecting afresh. The epoch_length must lie in the closed
* interval [H5C__MIN_AR_EPOCH_LENGTH, H5C__MAX_AR_EPOCH_LENGTH].
*
*
* Cache size increase control fields:
*
* incr_mode: Instance of the H5C_cache_incr_mode enumerated type whose
* value indicates how we determine whether the cache size should be
* increased. At present there are two possible values:
*
* H5C_incr__off: Don't attempt to increase the size of the cache
* automatically.
*
* When this increment mode is selected, the remaining fields
* in the cache size increase section ar ignored.
*
* H5C_incr__threshold: Attempt to increase the size of the cache
* whenever the average hit rate over the last epoch drops
* below the value supplied in the lower_hr_threshold
* field.
*
* Note that this attempt will fail if the cache is already
* at its maximum size, or if the cache is not already using
* all available space.
*
* lower_hr_threshold: Lower hit rate threshold. If the increment mode
* (incr_mode) is H5C_incr__threshold and the hit rate drops below the
* value supplied in this field in an epoch, increment the cache size by
* size_increment. Note that cache size may not be incremented above
* max_size, and that the increment may be further restricted by the
* max_increment field if it is enabled.
*
* When enabled, this field must contain a value in the range [0.0, 1.0].
* Depending on the incr_mode selected, it may also have to be less than
* upper_hr_threshold.
*
* increment: Double containing the multiplier used to derive the new
* cache size from the old if a cache size increment is triggered.
* The increment must be greater than 1.0, and should not exceed 2.0.
*
* The new cache size is obtained by multiplying the current max cache
* size by the increment, and then clamping to max_size and to stay
* within the max_increment as necessary.
*
* apply_max_increment: Boolean flag indicating whether the max_increment
* field should be used to limit the maximum cache size increment.
*
* max_increment: If enabled by the apply_max_increment field described
* above, this field contains the maximum number of bytes by which the
* cache size can be increased in a single re-size.
*
* flash_incr_mode: Instance of the H5C_cache_flash_incr_mode enumerated
* type whose value indicates whether and by what algorithm we should
* make flash increases in the size of the cache to accomodate insertion
* of large entries and large increases in the size of a single entry.
*
* The addition of the flash increment mode was occasioned by performance
* problems that appear when a local heap is increased to a size in excess
* of the current cache size. While the existing re-size code dealt with
* this eventually, performance was very bad for the remainder of the
* epoch.
*
* At present, there are two possible values for the flash_incr_mode:
*
* H5C_flash_incr__off: Don't perform flash increases in the size of
* the cache.
*
* H5C_flash_incr__add_space: Let x be either the size of a newly
* newly inserted entry, or the number of bytes by which the
* size of an existing entry has been increased.
*
* If
* x > flash_threshold * current max cache size,
*
* increase the current maximum cache size by x * flash_multiple
* less any free space in the cache, and start a new epoch. For
* now at least, pay no attention to the maximum increment.
*
*
* With a little thought, it should be obvious that the above flash
* cache size increase algorithm is not sufficient for all
* circumstances -- for example, suppose the user round robins through
* (1/flash_threshold) +1 groups, adding one data set to each on each
* pass. Then all will increase in size at about the same time, requiring
* the max cache size to at least double to maintain acceptable
* performance, however the above flash increment algorithm will not be
* triggered.
*
* Hopefully, the add space algorithm detailed above will be sufficient
* for the performance problems encountered to date. However, we should
* expect to revisit the issue.
*
* flash_multiple: Double containing the multiple described above in the
* H5C_flash_incr__add_space section of the discussion of the
* flash_incr_mode section. This field is ignored unless flash_incr_mode
* is H5C_flash_incr__add_space.
*
* flash_threshold: Double containing the factor by which current max cache
* size is multiplied to obtain the size threshold for the add_space
* flash increment algorithm. The field is ignored unless
* flash_incr_mode is H5C_flash_incr__add_space.
*
*
* Cache size decrease control fields:
*
* decr_mode: Instance of the H5C_cache_decr_mode enumerated type whose
* value indicates how we determine whether the cache size should be
* decreased. At present there are four possibilities.
*
* H5C_decr__off: Don't attempt to decrease the size of the cache
* automatically.
*
* When this increment mode is selected, the remaining fields
* in the cache size decrease section are ignored.
*
* H5C_decr__threshold: Attempt to decrease the size of the cache
* whenever the average hit rate over the last epoch rises
* above the value supplied in the upper_hr_threshold
* field.
*
* H5C_decr__age_out: At the end of each epoch, search the cache for
* entries that have not been accessed for at least the number
* of epochs specified in the epochs_before_eviction field, and
* evict these entries. Conceptually, the maximum cache size
* is then decreased to match the new actual cache size. However,
* this reduction may be modified by the min_size, the
* max_decrement, and/or the empty_reserve.
*
* H5C_decr__age_out_with_threshold: Same as age_out, but we only
* attempt to reduce the cache size when the hit rate observed
* over the last epoch exceeds the value provided in the
* upper_hr_threshold field.
*
* upper_hr_threshold: Upper hit rate threshold. The use of this field
* varies according to the current decr_mode:
*
* H5C_decr__off or H5C_decr__age_out: The value of this field is
* ignored.
*
* H5C_decr__threshold: If the hit rate exceeds this threshold in any
* epoch, attempt to decrement the cache size by size_decrement.
*
* Note that cache size may not be decremented below min_size.
*
* Note also that if the upper_threshold is 1.0, the cache size
* will never be reduced.
*
* H5C_decr__age_out_with_threshold: If the hit rate exceeds this
* threshold in any epoch, attempt to reduce the cache size
* by evicting entries that have not been accessed for more
* than the specified number of epochs.
*
* decrement: This field is only used when the decr_mode is
* H5C_decr__threshold.
*
* The field is a double containing the multiplier used to derive the
* new cache size from the old if a cache size decrement is triggered.
* The decrement must be in the range 0.0 (in which case the cache will
* try to contract to its minimum size) to 1.0 (in which case the
* cache will never shrink).
*
* apply_max_decrement: Boolean flag used to determine whether decrements
* in cache size are to be limited by the max_decrement field.
*
* max_decrement: Maximum number of bytes by which the cache size can be
* decreased in a single re-size. Note that decrements may also be
* restricted by the min_size of the cache, and (in age out modes) by
* the empty_reserve field.
*
* epochs_before_eviction: Integer field used in H5C_decr__age_out and
* H5C_decr__age_out_with_threshold decrement modes.
*
* This field contains the number of epochs an entry must remain
* unaccessed before it is evicted in an attempt to reduce the
* cache size. If applicable, this field must lie in the range
* [1, H5C__MAX_EPOCH_MARKERS].
*
* apply_empty_reserve: Boolean field controlling whether the empty_reserve
* field is to be used in computing the new cache size when the
* decr_mode is H5C_decr__age_out or H5C_decr__age_out_with_threshold.
*
* empty_reserve: To avoid a constant racheting down of cache size by small
* amounts in the H5C_decr__age_out and H5C_decr__age_out_with_threshold
* modes, this field allows one to require that any cache size
* reductions leave the specified fraction of unused space in the cache.
*
* The value of this field must be in the range [0.0, 1.0]. I would
* expect typical values to be in the range of 0.01 to 0.1.
*
****************************************************************************/
enum H5C_resize_status
{
in_spec,
increase,
flash_increase,
decrease,
at_max_size,
at_min_size,
increase_disabled,
decrease_disabled,
not_full
}; /* enum H5C_resize_conditions */
typedef void (*H5C_auto_resize_rpt_fcn)(H5C_t * cache_ptr, int32_t version,
double hit_rate, enum H5C_resize_status status, size_t old_max_cache_size,
size_t new_max_cache_size, size_t old_min_clean_size, size_t new_min_clean_size);
typedef struct H5C_auto_size_ctl_t {
/* general configuration fields: */
int32_t version;
H5C_auto_resize_rpt_fcn rpt_fcn;
hbool_t set_initial_size;
size_t initial_size;
double min_clean_fraction;
size_t max_size;
size_t min_size;
int64_t epoch_length;
/* size increase control fields: */
enum H5C_cache_incr_mode incr_mode;
double lower_hr_threshold;
double increment;
hbool_t apply_max_increment;
size_t max_increment;
enum H5C_cache_flash_incr_mode flash_incr_mode;
double flash_multiple;
double flash_threshold;
/* size decrease control fields: */
enum H5C_cache_decr_mode decr_mode;
double upper_hr_threshold;
double decrement;
hbool_t apply_max_decrement;
size_t max_decrement;
int32_t epochs_before_eviction;
hbool_t apply_empty_reserve;
double empty_reserve;
} H5C_auto_size_ctl_t;
/***************************************/
/* Library-private Function Prototypes */
/***************************************/
H5_DLL H5C_t *H5C_create(size_t max_cache_size, size_t min_clean_size,
int max_type_id, const char *(*type_name_table_ptr),
H5C_write_permitted_func_t check_write_permitted, hbool_t write_permitted,
H5C_log_flush_func_t log_flush, void *aux_ptr);
H5_DLL void H5C_def_auto_resize_rpt_fcn(H5C_t *cache_ptr, int32_t version,
double hit_rate, enum H5C_resize_status status,
size_t old_max_cache_size, size_t new_max_cache_size,
size_t old_min_clean_size, size_t new_min_clean_size);
H5_DLL herr_t H5C_dest(H5F_t *f, hid_t dxpl_id);
H5_DLL herr_t H5C_expunge_entry(H5F_t *f, hid_t dxpl_id,
const H5C_class_t *type, haddr_t addr, unsigned flags);
H5_DLL herr_t H5C_flush_cache(H5F_t *f, hid_t dxpl_id, unsigned flags);
H5_DLL herr_t H5C_flush_to_min_clean(H5F_t *f, hid_t dxpl_id);
H5_DLL herr_t H5C_get_cache_auto_resize_config(const H5C_t *cache_ptr,
H5C_auto_size_ctl_t *config_ptr);
H5_DLL herr_t H5C_get_cache_size(H5C_t *cache_ptr, size_t *max_size_ptr,
size_t *min_clean_size_ptr, size_t *cur_size_ptr,
int32_t *cur_num_entries_ptr);
H5_DLL herr_t H5C_get_cache_hit_rate(H5C_t *cache_ptr, double *hit_rate_ptr);
H5_DLL herr_t H5C_get_entry_status(const H5F_t *f, haddr_t addr,
size_t *size_ptr, hbool_t *in_cache_ptr, hbool_t *is_dirty_ptr,
hbool_t *is_protected_ptr, hbool_t *is_pinned_ptr,
hbool_t *is_flush_dep_parent_ptr, hbool_t *is_flush_dep_child_ptr);
H5_DLL herr_t H5C_get_evictions_enabled(const H5C_t *cache_ptr, hbool_t *evictions_enabled_ptr);
H5_DLL void * H5C_get_aux_ptr(const H5C_t *cache_ptr);
H5_DLL FILE *H5C_get_trace_file_ptr(const H5C_t *cache_ptr);
H5_DLL FILE *H5C_get_trace_file_ptr_from_entry(const H5C_cache_entry_t *entry_ptr);
H5_DLL herr_t H5C_insert_entry(H5F_t *f, hid_t dxpl_id, const H5C_class_t *type,
haddr_t addr, void *thing, unsigned int flags);
H5_DLL herr_t H5C_mark_entry_dirty(void *thing);
H5_DLL herr_t H5C_move_entry(H5C_t *cache_ptr, const H5C_class_t *type,
haddr_t old_addr, haddr_t new_addr);
H5_DLL herr_t H5C_pin_protected_entry(void *thing);
H5_DLL herr_t H5C_create_flush_dependency(void *parent_thing, void *child_thing);
H5_DLL void * H5C_protect(H5F_t *f, hid_t dxpl_id, const H5C_class_t *type,
haddr_t addr, void *udata, unsigned flags);
H5_DLL herr_t H5C_reset_cache_hit_rate_stats(H5C_t *cache_ptr);
H5_DLL herr_t H5C_resize_entry(void *thing, size_t new_size);
H5_DLL herr_t H5C_set_cache_auto_resize_config(H5C_t *cache_ptr, H5C_auto_size_ctl_t *config_ptr);
H5_DLL herr_t H5C_set_evictions_enabled(H5C_t *cache_ptr, hbool_t evictions_enabled);
H5_DLL herr_t H5C_set_prefix(H5C_t *cache_ptr, char *prefix);
H5_DLL herr_t H5C_set_trace_file_ptr(H5C_t *cache_ptr, FILE *trace_file_ptr);
H5_DLL herr_t H5C_stats(H5C_t *cache_ptr, const char *cache_name,
hbool_t display_detailed_stats);
H5_DLL void H5C_stats__reset(H5C_t *cache_ptr);
H5_DLL herr_t H5C_dump_cache(H5C_t *cache_ptr, const char *cache_name);
H5_DLL herr_t H5C_unpin_entry(void *thing);
H5_DLL herr_t H5C_destroy_flush_dependency(void *parent_thing, void *child_thing);
H5_DLL herr_t H5C_unprotect(H5F_t *f, hid_t dxpl_id, haddr_t addr, void *thing,
unsigned int flags);
H5_DLL herr_t H5C_validate_resize_config(H5C_auto_size_ctl_t *config_ptr,
unsigned int tests);
H5_DLL herr_t H5C_ignore_tags(H5C_t *cache_ptr);
H5_DLL void H5C_retag_copied_metadata(H5C_t *cache_ptr, haddr_t metadata_tag);
H5_DLL herr_t H5C_get_entry_ring(const H5F_t *f, haddr_t addr, H5C_ring_t *ring);
#ifdef H5_HAVE_PARALLEL
H5_DLL herr_t H5C_apply_candidate_list(H5F_t *f, hid_t dxpl_id,
H5C_t *cache_ptr, int num_candidates, haddr_t *candidates_list_ptr,
int mpi_rank, int mpi_size);
H5_DLL herr_t H5C_construct_candidate_list__clean_cache(H5C_t *cache_ptr);
H5_DLL herr_t H5C_construct_candidate_list__min_clean(H5C_t *cache_ptr);
H5_DLL herr_t H5C_mark_entries_as_clean(H5F_t *f, hid_t dxpl_id, int32_t ce_array_len,
haddr_t *ce_array_ptr);
#endif /* H5_HAVE_PARALLEL */
#ifndef NDEBUG /* debugging functions */
H5_DLL herr_t H5C_get_entry_ptr_from_addr(const H5F_t *f, haddr_t addr,
void **entry_ptr_ptr);
H5_DLL herr_t H5C_verify_entry_type(const H5F_t *f, haddr_t addr,
const H5C_class_t *expected_type, hbool_t *in_cache_ptr,
hbool_t *type_ok_ptr);
#endif /* NDEBUG */
#endif /* !_H5Cprivate_H */
|