summaryrefslogtreecommitdiffstats
path: root/src/H5Distore.c
blob: 7e80f1a691cec1d68d45ae51bc471ca299483001 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
/*
 * Copyright (C) 1997 NCSA
 *		      All rights reserved.
 *
 * Programmer: Robb Matzke <matzke@llnl.gov>
 *	       Wednesday, October  8, 1997
 */
#include <H5private.h>
#include <H5Dprivate.h>
#include <H5Eprivate.h>
#include <H5Fprivate.h>
#include <H5MFprivate.h>
#include <H5MMprivate.h>
#include <H5Oprivate.h>
#include <H5Vprivate.h>


/* Interface initialization */
#define PABLO_MASK	H5F_istore_mask
static hbool_t		interface_initialize_g = FALSE;
#define INTERFACE_INIT NULL

/* PRIVATE PROTOTYPES */
static size_t H5F_istore_sizeof_rkey(H5F_t *f, const void *_udata);
static herr_t H5F_istore_new_node(H5F_t *f, H5B_ins_t, void *_lt_key,
				  void *_udata, void *_rt_key, haddr_t *);
static intn H5F_istore_cmp2(H5F_t *f, void *_lt_key, void *_udata,
			    void *_rt_key);
static intn H5F_istore_cmp3(H5F_t *f, void *_lt_key, void *_udata,
			    void *_rt_key);
static herr_t H5F_istore_found(H5F_t *f, const haddr_t *addr,
			       const void *_lt_key, void *_udata,
			       const void *_rt_key);
static H5B_ins_t H5F_istore_insert(H5F_t *f, const haddr_t *addr,
				   void *_lt_key, hbool_t *lt_key_changed,
				   void *_md_key, void *_udata,
				   void *_rt_key, hbool_t *rt_key_changed,
				   haddr_t *new_node/*out*/);
static herr_t H5F_istore_decode_key(H5F_t *f, H5B_t *bt, uint8 *raw,
				    void *_key);
static herr_t H5F_istore_encode_key(H5F_t *f, H5B_t *bt, uint8 *raw,
				    void *_key);
static herr_t H5F_istore_debug_key (FILE *stream, intn indent, intn fwidth,
				    const void *key, const void *udata);

/*
 * B-tree key.	A key contains the minimum logical N-dimensional address and
 * the logical size of the chunk to which this key refers.  The
 * fastest-varying dimension is assumed to reference individual bytes of the
 * array, so a 100-element 1-d array of 4-byte integers would really be a 2-d
 * array with the slow varying dimension of size 100 and the fast varying
 * dimension of size 4 (the storage dimensionality has very little to do with
 * the real dimensionality).
 *
 * Only the first few values of the OFFSET and SIZE fields are actually
 * stored on disk, depending on the dimensionality.
 *
 * The chunk's file address is part of the B-tree and not part of the key.
 */
typedef struct H5F_istore_key_t {
    hsize_t	nbytes;				/*size of stored data	*/
    hssize_t	offset[H5O_LAYOUT_NDIMS];	/*logical offset to start*/
} H5F_istore_key_t;

typedef struct H5F_istore_ud1_t {
    H5F_istore_key_t	key;			/*key values		*/
    haddr_t		addr;			/*file address of chunk */
    H5O_layout_t	mesg;			/*layout message	*/
} H5F_istore_ud1_t;

/* inherits B-tree like properties from H5B */
H5B_class_t H5B_ISTORE[1] = {{
    H5B_ISTORE_ID,				/*id			*/
    sizeof(H5F_istore_key_t),			/*sizeof_nkey		*/
    H5F_istore_sizeof_rkey, 			/*get_sizeof_rkey	*/
    H5F_istore_new_node,			/*new			*/
    H5F_istore_cmp2,				/*cmp2			*/
    H5F_istore_cmp3,				/*cmp3			*/
    H5F_istore_found,				/*found			*/
    H5F_istore_insert,				/*insert		*/
    FALSE,					/*follow min branch?	*/
    FALSE,					/*follow max branch?	*/
    NULL,					/*list			*/
    H5F_istore_decode_key,			/*decode		*/
    H5F_istore_encode_key,			/*encode		*/
    H5F_istore_debug_key,			/*debug			*/
}};


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_sizeof_rkey
 *
 * Purpose:	Returns the size of a raw key for the specified UDATA.	The
 *		size of the key is dependent on the number of dimensions for
 *		the object to which this B-tree points.	 The dimensionality
 *		of the UDATA is the only portion that's referenced here.
 *
 * Return:	Success:	Size of raw key in bytes.
 *
 *		Failure:	abort()
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October  8, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5F_istore_sizeof_rkey(H5F_t __unused__ *f, const void *_udata)
{
    const H5F_istore_ud1_t *udata = (const H5F_istore_ud1_t *) _udata;
    size_t		    nbytes;

    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS);

    nbytes = 4 +			/*storage size		*/
	     udata->mesg.ndims * 4; 	/*dimension indices	*/

    return nbytes;
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_decode_key
 *
 * Purpose:	Decodes a raw key into a native key for the B-tree
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_decode_key(H5F_t __unused__ *f, H5B_t *bt, uint8 *raw, void *_key)
{
    H5F_istore_key_t	*key = (H5F_istore_key_t *) _key;
    intn		i;
    intn		ndims = (intn)((bt->sizeof_rkey-4)/4);

    FUNC_ENTER(H5F_istore_decode_key, FAIL);

    /* check args */
    assert(f);
    assert(bt);
    assert(raw);
    assert(key);
    assert(ndims > 0 && ndims <= H5O_LAYOUT_NDIMS);

    /* decode */
    UINT32DECODE (raw, key->nbytes);
    for (i = 0; i < ndims; i++) {
	UINT32DECODE(raw, key->offset[i]);
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_encode_key
 *
 * Purpose:	Encode a key from native format to raw format.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_encode_key(H5F_t __unused__ *f, H5B_t *bt, uint8 *raw, void *_key)
{
    H5F_istore_key_t	*key = (H5F_istore_key_t *) _key;
    intn		ndims = (intn)((bt->sizeof_rkey-4) / 4);
    intn		i;

    FUNC_ENTER(H5F_istore_encode_key, FAIL);

    /* check args */
    assert(f);
    assert(bt);
    assert(raw);
    assert(key);
    assert(ndims > 0 && ndims <= H5O_LAYOUT_NDIMS);

    /* encode */
    UINT32ENCODE (raw, key->nbytes);
    for (i = 0; i < ndims; i++) {
	UINT32ENCODE(raw, key->offset[i]);
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_debug_key
 *
 * Purpose:	Prints a key.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Thursday, April 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_debug_key (FILE *stream, intn indent, intn fwidth,
		      const void *_key, const void *_udata)
{
    const H5F_istore_key_t	*key = (const H5F_istore_key_t *)_key;
    const H5F_istore_ud1_t	*udata = (const H5F_istore_ud1_t *)_udata;
    int				i;
    
    FUNC_ENTER (H5F_istore_debug_key, FAIL);
    assert (key);

    HDfprintf (stream, "%*s%-*s %Hd bytes\n", indent, "", fwidth,
	       "Chunk size:", key->nbytes);
    HDfprintf (stream, "%*s%-*s {", indent, "", fwidth,
	       "Logical offset:");
    for (i=0; i<udata->mesg.ndims; i++) {
	HDfprintf (stream, "%s%Hd", i?", ":"", key->offset[i]);
    }
    fputs ("}\n", stream);

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_cmp2
 *
 * Purpose:	Compares two keys sort of like strcmp().  The UDATA pointer
 *		is only to supply extra information not carried in the keys
 *		(in this case, the dimensionality) and is not compared
 *		against the keys.
 *
 * Return:	Success:	-1 if LT_KEY is less than RT_KEY;
 *				1 if LT_KEY is greater than RT_KEY;
 *				0 if LT_KEY and RT_KEY are equal.
 *
 *		Failure:	FAIL (same as LT_KEY<RT_KEY)
 *
 * Programmer:	Robb Matzke
 *		Thursday, November  6, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static intn
H5F_istore_cmp2(H5F_t __unused__ *f, void *_lt_key, void *_udata,
		void *_rt_key)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    intn		cmp;

    FUNC_ENTER(H5F_istore_cmp2, FAIL);

    assert(lt_key);
    assert(rt_key);
    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS);

    /* Compare the offsets but ignore the other fields */
    cmp = H5V_vector_cmp_s(udata->mesg.ndims, lt_key->offset, rt_key->offset);

    FUNC_LEAVE(cmp);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_cmp3
 *
 * Purpose:	Compare the requested datum UDATA with the left and right
 *		keys of the B-tree.
 *
 * Return:	Success:	negative if the min_corner of UDATA is less
 *				than the min_corner of LT_KEY.
 *
 *				positive if the min_corner of UDATA is
 *				greater than or equal the min_corner of
 *				RT_KEY.
 *
 *				zero otherwise.	 The min_corner of UDATA is
 *				not necessarily contained within the address
 *				space represented by LT_KEY, but a key that
 *				would describe the UDATA min_corner address
 *				would fall lexicographically between LT_KEY
 *				and RT_KEY.
 *				
 *		Failure:	FAIL (same as UDATA < LT_KEY)
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October  8, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static intn
H5F_istore_cmp3(H5F_t __unused__ *f, void *_lt_key, void *_udata,
		void *_rt_key)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    intn		cmp = 0;

    FUNC_ENTER(H5F_istore_cmp3, FAIL);

    assert(lt_key);
    assert(rt_key);
    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS);

    if (H5V_vector_lt_s(udata->mesg.ndims, udata->key.offset,
			lt_key->offset)) {
	cmp = -1;
    } else if (H5V_vector_ge_s(udata->mesg.ndims, udata->key.offset,
			     rt_key->offset)) {
	cmp = 1;
    }
    FUNC_LEAVE(cmp);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_new_node
 *
 * Purpose:	Adds a new entry to an i-storage B-tree.  We can assume that
 *		the domain represented by UDATA doesn't intersect the domain
 *		already represented by the B-tree.
 *
 * Return:	Success:	SUCCEED.  The address of leaf is returned
 *				through the ADDR argument.  It is also added
 *				to the UDATA.
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *		Tuesday, October 14, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_new_node(H5F_t *f, H5B_ins_t op,
		    void *_lt_key, void *_udata, void *_rt_key,
		    haddr_t *addr/*out*/)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    intn		i;

    FUNC_ENTER(H5F_istore_new_node, FAIL);

    /* check args */
    assert(f);
    assert(lt_key);
    assert(rt_key);
    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims < H5O_LAYOUT_NDIMS);
    assert(addr);

    /* Allocate new storage */
    assert (udata->key.nbytes > 0);
    if (H5MF_alloc(f, H5MF_RAW, udata->key.nbytes, addr /*out */ ) < 0) {
	HRETURN_ERROR(H5E_IO, H5E_CANTINIT, FAIL,
		      "couldn't allocate new file storage");
    }
    udata->addr = *addr;

    /*
     * The left key describes the storage of the UDATA chunk being
     * inserted into the tree.
     */
    lt_key->nbytes = udata->key.nbytes;
    for (i=0; i<udata->mesg.ndims; i++) {
	lt_key->offset[i] = udata->key.offset[i];
    }

    /*
     * The right key might already be present.  If not, then add a zero-width
     * chunk.
     */
    if (H5B_INS_LEFT != op) {
	rt_key->nbytes = 0;
	for (i=0; i<udata->mesg.ndims; i++) {
	    assert (udata->mesg.dim[i] < MAX_HSSIZET);
	    assert (udata->key.offset[i]+(hssize_t)(udata->mesg.dim[i]) >
		    udata->key.offset[i]);
	    rt_key->offset[i] = udata->key.offset[i] +
				(hssize_t)(udata->mesg.dim[i]);
	}
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_found
 *
 * Purpose:	This function is called when the B-tree search engine has
 *		found the leaf entry that points to a chunk of storage that
 *		contains the beginning of the logical address space
 *		represented by UDATA.  The LT_KEY is the left key (the one
 *		that describes the chunk) and RT_KEY is the right key (the
 *		one that describes the next or last chunk).
 *
 * Return:	Success:	SUCCEED with information about the chunk
 *				returned through the UDATA argument.
 *
 *		Failure:	FAIL if not found.
 *
 * Programmer:	Robb Matzke
 *		Thursday, October  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_found(H5F_t __unused__ *f, const haddr_t *addr,
		 const void *_lt_key, void *_udata,
		 const void __unused__ *_rt_key)
{
    H5F_istore_ud1_t	   *udata = (H5F_istore_ud1_t *) _udata;
    const H5F_istore_key_t *lt_key = (const H5F_istore_key_t *) _lt_key;
    int			   i;

    FUNC_ENTER(H5F_istore_found, FAIL);

    /* Check arguments */
    assert(f);
    assert(addr && H5F_addr_defined(addr));
    assert(udata);
    assert(lt_key);

    /* Initialize return values */
    udata->addr = *addr;
    udata->key.nbytes = lt_key->nbytes;
    assert (lt_key->nbytes>0);
    for (i = 0; i < udata->mesg.ndims; i++) {
	udata->key.offset[i] = lt_key->offset[i];
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_insert
 *
 * Purpose:	This function is called when the B-tree insert engine finds
 *		the node to use to insert new data.  The UDATA argument
 *		points to a struct that describes the logical addresses being
 *		added to the file.  This function allocates space for the
 *		data and returns information through UDATA describing a
 *		file chunk to receive (part of) the data.
 *
 *		The LT_KEY is always the key describing the chunk of file
 *		memory at address ADDR. On entry, UDATA describes the logical
 *		addresses for which storage is being requested (through the
 *		`offset' and `size' fields). On return, UDATA describes the
 *		logical addresses contained in a chunk on disk.
 *
 * Return:	Success:	An insertion command for the caller, one of
 *				the H5B_INS_* constants.  The address of the
 *				new chunk is returned through the NEW_NODE
 *				argument.
 *
 *		Failure:	H5B_INS_ERROR
 *
 * Programmer:	Robb Matzke
 *		Thursday, October  9, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static H5B_ins_t
H5F_istore_insert(H5F_t *f, const haddr_t *addr, void *_lt_key,
		  hbool_t __unused__ *lt_key_changed,
		  void *_md_key, void *_udata, void *_rt_key,
		  hbool_t __unused__ *rt_key_changed,
		  haddr_t *new_node/*out*/)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*md_key = (H5F_istore_key_t *) _md_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    intn		i, cmp;
    H5B_ins_t		ret_value = H5B_INS_ERROR;

    FUNC_ENTER(H5F_istore_insert, H5B_INS_ERROR);

    /* check args */
    assert(f);
    assert(addr && H5F_addr_defined(addr));
    assert(lt_key);
    assert(lt_key_changed);
    assert(md_key);
    assert(udata);
    assert(rt_key);
    assert(rt_key_changed);
    assert(new_node);

    cmp = H5F_istore_cmp3(f, lt_key, udata, rt_key);
    assert(cmp <= 0);

    if (cmp < 0) {
	/* Negative indices not supported yet */
	assert("HDF5 INTERNAL ERROR -- see rpm" && 0);
	HRETURN_ERROR(H5E_STORAGE, H5E_UNSUPPORTED, H5B_INS_ERROR,
		      "internal error");
	
    } else if (H5V_vector_eq_s (udata->mesg.ndims,
				udata->key.offset, lt_key->offset) &&
	       lt_key->nbytes>0) {
	/*
	 * Already exists.  If the new size is not the same as the old size
	 * then we should reallocate storage.
	 */
#if 1
	if (lt_key->nbytes != udata->key.nbytes) {
	    if (H5MF_realloc (f, H5MF_RAW, lt_key->nbytes, addr,
			      udata->key.nbytes, new_node/*out*/)<0) {
		HRETURN_ERROR (H5E_STORAGE, H5E_WRITEERROR, H5B_INS_ERROR,
			       "unable to reallocate chunk storage");
	    }
	    lt_key->nbytes = udata->key.nbytes;
	    *lt_key_changed = TRUE;
	    udata->addr = *new_node;
	    ret_value = H5B_INS_CHANGE;
	} else {
	    udata->addr = *addr;
	    ret_value = H5B_INS_NOOP;
	}
#else
	assert (lt_key->nbytes == udata->key.nbytes);
	assert (!H5F_addr_defined (&(udata->addr)) ||
		H5F_addr_eq (&(udata->addr), addr));
	udata->addr = *addr;
	ret_value = H5B_INS_NOOP;
#endif

    } else if (H5V_hyper_disjointp(udata->mesg.ndims,
				   lt_key->offset, udata->mesg.dim,
				   udata->key.offset, udata->mesg.dim)) {
	assert(H5V_hyper_disjointp(udata->mesg.ndims,
				   rt_key->offset, udata->mesg.dim,
				   udata->key.offset, udata->mesg.dim));
	/*
	 * Split this node, inserting the new new node to the right of the
	 * current node.  The MD_KEY is where the split occurs.
	 */
	md_key->nbytes = udata->key.nbytes;
	for (i=0; i<udata->mesg.ndims; i++) {
	    assert(0 == udata->key.offset[i] % udata->mesg.dim[i]);
	    md_key->offset[i] = udata->key.offset[i];
	}

	/*
	 * Allocate storage for the new chunk
	 */
	if (H5MF_alloc(f, H5MF_RAW, udata->key.nbytes, new_node/*out*/)<0) {
	    HRETURN_ERROR(H5E_IO, H5E_CANTINIT, H5B_INS_ERROR,
			  "file allocation failed");
	}
	udata->addr = *new_node;
	ret_value = H5B_INS_RIGHT;

    } else {
	assert("HDF5 INTERNAL ERROR -- see rpm" && 0);
	HRETURN_ERROR(H5E_IO, H5E_UNSUPPORTED, H5B_INS_ERROR,
		      "internal error");
    }

    FUNC_LEAVE(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_read
 *
 * Purpose:	Reads a multi-dimensional buffer from (part of) an indexed raw
 *		storage array.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October 15, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_read(H5F_t *f, const H5O_layout_t *layout,
		const H5O_compress_t *comp, const hssize_t offset_f[],
		const hsize_t size[], void *buf)
{
    hssize_t		offset_m[H5O_LAYOUT_NDIMS];
    hsize_t		size_m[H5O_LAYOUT_NDIMS];
    intn		i, carry;
    hsize_t		idx_cur[H5O_LAYOUT_NDIMS];
    hsize_t		idx_min[H5O_LAYOUT_NDIMS];
    hsize_t		idx_max[H5O_LAYOUT_NDIMS];
    hsize_t		sub_size[H5O_LAYOUT_NDIMS];
    hssize_t		offset_wrt_chunk[H5O_LAYOUT_NDIMS];
    hssize_t		sub_offset_m[H5O_LAYOUT_NDIMS];
    size_t		chunk_size;
    uint8		*chunk=NULL, *compressed=NULL;
    H5F_istore_ud1_t	udata;
    herr_t		status;
    herr_t		ret_value = FAIL;

    FUNC_ENTER(H5F_istore_read, FAIL);

    /* Check args */
    assert (f);
    assert (layout && H5D_CHUNKED==layout->type);
    assert (layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS);
    assert (H5F_addr_defined(&(layout->addr)));
    assert (offset_f);
    assert (size);
    assert (buf);

    /*
     * For now, a hyperslab of the file must be read into an array in
     * memory.We do not yet support reading into a hyperslab of memory.
     */
    for (i=0; i<layout->ndims; i++) {
	offset_m[i] = 0;
	size_m[i] = size[i];
    }
    
#ifndef NDEBUG
    for (i=0; i<layout->ndims; i++) {
	assert (offset_f[i]>=0); /*negative offsets not supported*/
	assert (offset_m[i]>=0); /*negative offsets not supported*/
	assert (size[i]<MAX_SIZET);
	assert(offset_m[i]+(hssize_t)size[i]<=(hssize_t)size_m[i]);
	assert(layout->dim[i]>0);
    }
#endif

    /* Determine the chunk size and allocate buffers */
    for (i=0, chunk_size=1; i<layout->ndims; i++) {
	chunk_size *= layout->dim[i];
    }
    chunk = H5MM_xmalloc(chunk_size);
    if (comp && H5Z_NONE!=comp->method) {
	compressed = H5MM_xmalloc (chunk_size);
    }
    
    /*
     * As a special case if the source is aligned on a chunk boundary and is
     * the same size as a chunk, and the destination is the same size as a
     * chunk, then instead of reading into a temporary buffer and then into
     * the destination, we read directly into the destination.
     */
    for (i=0; i<layout->ndims; i++) {
	if (offset_f[i] % layout->dim[i]) break; /*src not aligned*/
	if (size[i]!=layout->dim[i]) break; /*src not a chunk*/
	if (size_m[i]!=layout->dim[i]) break; /*dst not a chunk*/
	udata.key.offset[i] = offset_f[i];
    }
    if (i==layout->ndims) {
	udata.mesg = *layout;
	H5F_addr_undef (&(udata.addr));
	status = H5B_find (f, H5B_ISTORE, &(layout->addr), &udata);
	if (status>=0 && H5F_addr_defined (&(udata.addr))) {
	    if (compressed && udata.key.nbytes<chunk_size) {
		if (H5F_block_read (f, &(udata.addr), udata.key.nbytes,
				    compressed)<0) {
		    HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL,
				 "unable to read raw storage chunk");
		}
		if (chunk_size!=H5Z_uncompress (comp, udata.key.nbytes,
						compressed, chunk_size, buf)) {
		    HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL,
				 "unable to uncompress raw storage chunk");
		}
	    } else {
		assert (udata.key.nbytes==chunk_size);
		if (H5F_block_read (f, &(udata.addr), chunk_size, buf)<0) {
		    HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL,
				 "unable to read raw storage chunk");
		}
	    }
	} else {
	    HDmemset (buf, 0, chunk_size);
	}
	HGOTO_DONE (SUCCEED);
    }

    /*
     * This is the general case.  We set up multi-dimensional counters
     * (idx_min, idx_max, and idx_cur) and loop through the chunks compressing
     * or copying each chunk into a temporary buffer, and then copying it to
     * it's destination.
     */
    for (i=0; i<layout->ndims; i++) {
	idx_min[i] = offset_f[i] / layout->dim[i];
	idx_max[i] = (offset_f[i]+size[i]-1) / layout->dim[i] + 1;
	idx_cur[i] = idx_min[i];
    }

    /* Initialize non-changing part of udata */
    udata.mesg = *layout;

    /* Loop over all chunks */
    while (1) {

	for (i=0; i<layout->ndims; i++) {
	    /* The location and size of the chunk being accessed */
	    assert (layout->dim[i] < MAX_HSSIZET);
	    udata.key.offset[i] = idx_cur[i] * (hssize_t)(layout->dim[i]);

	    /* The offset and size wrt the chunk */
	    offset_wrt_chunk[i] = MAX(offset_f[i], udata.key.offset[i]) -
				  udata.key.offset[i];
	    sub_size[i] = MIN((idx_cur[i]+1)*layout->dim[i],
			      offset_f[i]+size[i]) -
			  (udata.key.offset[i] + offset_wrt_chunk[i]);
	    
	    /* Offset into mem buffer */
	    sub_offset_m[i] = udata.key.offset[i] + offset_wrt_chunk[i] +
			      offset_m[i] - offset_f[i];
	}

	/* Read chunk */
	H5F_addr_undef(&(udata.addr));
	status = H5B_find(f, H5B_ISTORE, &(layout->addr), &udata);
	if (status>=0 && H5F_addr_defined(&(udata.addr))) {
	    if (compressed && udata.key.nbytes<chunk_size) {
		if (H5F_block_read (f, &(udata.addr), udata.key.nbytes,
				    compressed)<0) {
		    HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL,
				 "unable to read raw storage chunk");
		}
		if (chunk_size!=H5Z_uncompress (comp, udata.key.nbytes,
						compressed, chunk_size,
						chunk)) {
		    HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL,
				 "unable to uncompress data");
		}
	    } else {
		assert (udata.key.nbytes == chunk_size);
		if (H5F_block_read(f, &(udata.addr), chunk_size, chunk) < 0) {
		    HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL,
				"unable to read raw storage chunk");
		}
	    }
	} else {
	    HDmemset(chunk, 0, chunk_size);
	}
	
	/* Transfer data from the chunk buffer to the application */
	H5V_hyper_copy(layout->ndims, sub_size, size_m, sub_offset_m,
		       (void *)buf, layout->dim, offset_wrt_chunk, chunk);

	/* Increment indices */
	for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) {
	    if (++idx_cur[i]>=idx_max[i]) idx_cur[i] = idx_min[i];
	    else carry = 0;
	}
	if (carry) break;
    }
    ret_value = SUCCEED;

  done:
    H5MM_xfree(chunk);
    H5MM_xfree (compressed);
    FUNC_LEAVE(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_write
 *
 * Purpose:	Writes a multi-dimensional buffer to (part of) an indexed raw
 *		storage array.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October 15, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_write(H5F_t *f, const H5O_layout_t *layout,
		 const H5O_compress_t *comp, const hssize_t offset_f[],
		 const hsize_t size[], const void *buf)
{
    hssize_t		offset_m[H5O_LAYOUT_NDIMS];
    hsize_t		size_m[H5O_LAYOUT_NDIMS];
    intn		i, carry;
    hsize_t		idx_cur[H5O_LAYOUT_NDIMS];
    hsize_t		idx_min[H5O_LAYOUT_NDIMS];
    hsize_t		idx_max[H5O_LAYOUT_NDIMS];
    hsize_t		sub_size[H5O_LAYOUT_NDIMS];
    hssize_t		offset_wrt_chunk[H5O_LAYOUT_NDIMS];
    hssize_t		sub_offset_m[H5O_LAYOUT_NDIMS];
    hsize_t		chunk_size, nbytes;
    uint8		*chunk=NULL, *compressed=NULL, *outbuf;
    H5F_istore_ud1_t	udata;
    herr_t		ret_value = FAIL;
    
    FUNC_ENTER(H5F_istore_write, FAIL);

    /* Check args */
    assert(f);
    assert(layout && H5D_CHUNKED==layout->type);
    assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS);
    assert(H5F_addr_defined(&(layout->addr)));
    assert (offset_f);
    assert(size);
    assert(buf);

    /*
     * For now the source must not be a hyperslab.  It must be an entire
     * memory buffer.
     */
    for (i=0; i<layout->ndims; i++) {
	offset_m[i] = 0;
	size_m[i] = size[i];
    }

#ifndef NDEBUG
    for (i=0; i<layout->ndims; i++) {
	assert (offset_f[i]>=0); /*negative offsets not supported*/
	assert (offset_m[i]>=0); /*negative offsets not supported*/
	assert(size[i]<MAX_SIZET);
	assert(offset_m[i]+(hssize_t)size[i]<=(hssize_t)size_m[i]);
	assert(layout->dim[i]>0);
    }
#endif

    /*
     * This is the general case.  We set up multi-dimensional counters
     * (idx_min, idx_max, and idx_cur) and loop through the chunks copying
     * each chunk into a temporary buffer, compressing or decompressing, and
     * then copying it to it's destination.
     */
    for (i=0; i<layout->ndims; i++) {
	idx_min[i] = offset_f[i] / layout->dim[i];
	idx_max[i] = (offset_f[i]+size[i]-1) / layout->dim[i] + 1;
	idx_cur[i] = idx_min[i];
    }

    /* Allocate buffers */
    for (i=0, chunk_size=1; i<layout->ndims; i++) {
	chunk_size *= layout->dim[i];
    }
    chunk = H5MM_xmalloc(chunk_size);
    if (comp && H5Z_NONE!=comp->method) {
	compressed = H5MM_xmalloc (chunk_size);
    }

    /* Initialize non-changing part of udata */
    udata.mesg = *layout;

    /* Loop over all chunks */
    while (1) {

	for (i=0; i<layout->ndims; i++) {
	    /* The location and size of the chunk being accessed */
	    assert (layout->dim[i] < MAX_HSSIZET);
	    udata.key.offset[i] = idx_cur[i] * (hssize_t)(layout->dim[i]);

	    /* The offset and size wrt the chunk */
	    offset_wrt_chunk[i] = MAX(offset_f[i], udata.key.offset[i]) -
				  udata.key.offset[i];
	    sub_size[i] = MIN((idx_cur[i]+1)*layout->dim[i],
			      offset_f[i]+size[i]) -
			  (udata.key.offset[i] + offset_wrt_chunk[i]);
	    
	    /* Offset into mem buffer */
	    sub_offset_m[i] = udata.key.offset[i] + offset_wrt_chunk[i] +
			      offset_m[i] - offset_f[i];
	}
	
	/*
	 * If we are writing a partial chunk then load the chunk from disk
	 * and uncompress it if it exists.
	 */
	if (!H5V_vector_zerop_s(layout->ndims, offset_wrt_chunk) ||
	    !H5V_vector_eq_u(layout->ndims, sub_size, layout->dim)) {
	    if (H5B_find (f, H5B_ISTORE, &(layout->addr), &udata)>=0 &&
		H5F_addr_defined (&(udata.addr))) {

		if (compressed && udata.key.nbytes<chunk_size) {
		    if (H5F_block_read(f, &(udata.addr), udata.key.nbytes,
				       compressed)<0) {
			HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL,
				    "unable to read raw storage chunk");
		    }
		    if (chunk_size!=H5Z_uncompress (comp, udata.key.nbytes,
						    compressed, chunk_size,
						    chunk)) {
			HGOTO_ERROR (H5E_IO, H5E_READERROR, FAIL,
				     "unable to uncompress data");
		    }
		} else {
		    assert (chunk_size==udata.key.nbytes);
		    if (H5F_block_read(f, &(udata.addr), udata.key.nbytes,
				       chunk)<0) {
			HGOTO_ERROR(H5E_IO, H5E_READERROR, FAIL,
				    "unable to read raw storage chunk");
		    }
		}
	    } else {
		HDmemset(chunk, 0, chunk_size);
	    }
	}
	
	/* Transfer data to the chunk */
	H5V_hyper_copy(layout->ndims, sub_size,
		       layout->dim, offset_wrt_chunk, chunk,
		       size_m, sub_offset_m, buf);

	/* Compress the chunk */
	if (compressed &&
	    (nbytes=H5Z_compress (comp, chunk_size, chunk, compressed)) &&
	    nbytes<chunk_size) {
	    outbuf = compressed;
	} else {
	    outbuf = chunk;
	    nbytes = chunk_size;
	}
	
	/*
	 * Create the chunk it if it doesn't exist, or reallocate the chunk
	 * if its size changed.  Then write the data into the file.
	 */
	H5F_addr_undef(&(udata.addr));
	udata.key.nbytes = nbytes;
	if (H5B_insert(f, H5B_ISTORE, &(layout->addr), &udata)<0) {
	    HGOTO_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
			 "unable to allocate chunk");
	}
	if (H5F_block_write(f, &(udata.addr), nbytes, outbuf) < 0) {
	    HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL,
			"unable to write raw storage chunk");
	}

	/* Increment indices */
	for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) {
	    if (++idx_cur[i]>=idx_max[i]) idx_cur[i] = idx_min[i];
	    else carry = 0;
	}
	if (carry) break;
    }
    ret_value = SUCCEED;

  done:
    H5MM_xfree(chunk);
    H5MM_xfree (compressed);
    FUNC_LEAVE(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_create
 *
 * Purpose:	Creates a new indexed-storage B-tree and initializes the
 *		istore struct with information about the storage.  The
 *		struct should be immediately written to the object header.
 *
 *		This function must be called before passing ISTORE to any of
 *		the other indexed storage functions!
 *
 * Return:	Success:	SUCCEED with the ISTORE argument initialized
 *				and ready to write to an object header.
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *		Tuesday, October 21, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_create(H5F_t *f, H5O_layout_t *layout /*out */ )
{
    H5F_istore_ud1_t	udata;
#ifndef NDEBUG
    int			i;
#endif

    FUNC_ENTER(H5F_istore_create, FAIL);

    /* Check args */
    assert(f);
    assert(layout && H5D_CHUNKED == layout->type);
    assert(layout->ndims > 0 && layout->ndims <= H5O_LAYOUT_NDIMS);
#ifndef NDEBUG
    for (i = 0; i < layout->ndims; i++) {
	assert(layout->dim[i] > 0);
    }
#endif

    udata.mesg.ndims = layout->ndims;
    if (H5B_create(f, H5B_ISTORE, &udata, &(layout->addr) /*out */ ) < 0) {
	HRETURN_ERROR(H5E_IO, H5E_CANTINIT, FAIL, "can't create B-tree");
    }
    
    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_debug
 *
 * Purpose:	Debugs a B-tree node for indexed raw data storage.
 *
 * Return:	Success:	SUCCEED
 *
 *		Failure:	FAIL
 *
 * Programmer:	Robb Matzke
 *              Thursday, April 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_debug(H5F_t *f, const haddr_t *addr, FILE * stream, intn indent,
		 intn fwidth, int ndims)
{
    H5F_istore_ud1_t	udata;
    
    FUNC_ENTER (H5F_istore_debug, FAIL);

    HDmemset (&udata, 0, sizeof udata);
    udata.mesg.ndims = ndims;

    H5B_debug (f, addr, stream, indent, fwidth, H5B_ISTORE, &udata);

    FUNC_LEAVE (SUCCEED);
}