summaryrefslogtreecommitdiffstats
path: root/tests/appendComp.test
diff options
context:
space:
mode:
authordgp <dgp@users.sourceforge.net>2011-07-12 14:54:45 (GMT)
committerdgp <dgp@users.sourceforge.net>2011-07-12 14:54:45 (GMT)
commit768647c04d60b84308cdc21a86e43682d3094333 (patch)
tree81fddfc984b00375bb7a99c34c2262e343caf8cc /tests/appendComp.test
parent0b44568a3d94257675a1e678ef2066943a7d9c4e (diff)
downloadtcl-unproven.zip
tcl-unproven.tar.gz
tcl-unproven.tar.bz2
Diffstat (limited to 'tests/appendComp.test')
0 files changed, 0 insertions, 0 deletions
ef='#n1008'>1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
/*
 * Copyright (C) 1997-2001 NCSA
 *		           All rights reserved.
 *
 * Programmer: 	Robb Matzke <matzke@llnl.gov>
 *	       	Wednesday, October  8, 1997
 *
 * Purpose:	Indexed (chunked) I/O functions.  The logical
 *		multi-dimensional data space is regularly partitioned into
 *		same-sized "chunks", the first of which is aligned with the
 *		logical origin.  The chunks are given a multi-dimensional
 *		index which is used as a lookup key in a B-tree that maps
 *		chunk index to disk address.  Each chunk can be compressed
 *		independently and the chunks may move around in the file as
 *		their storage requirements change.
 *
 * Cache:	Disk I/O is performed in units of chunks and H5MF_alloc()
 *		contains code to optionally align chunks on disk block
 *		boundaries for performance.
 *
 *		The chunk cache is an extendible hash indexed by a function
 *		of storage B-tree address and chunk N-dimensional offset
 *		within the dataset.  Collisions are not resolved -- one of
 *		the two chunks competing for the hash slot must be preempted
 *		from the cache.  All entries in the hash also participate in
 *		a doubly-linked list and entries are penalized by moving them
 *		toward the front of the list.  When a new chunk is about to
 *		be added to the cache the heap is pruned by preempting
 *		entries near the front of the list to make room for the new
 *		entry which is added to the end of the list.
 */

#define H5F_PACKAGE		/*suppress error about including H5Fpkg	  */

#include "H5private.h"
#include "H5Dprivate.h"
#include "H5Eprivate.h"
#include "H5Fpkg.h"
#include "H5FLprivate.h"	/*Free Lists	  */
#include "H5Iprivate.h"
#include "H5MFprivate.h"
#include "H5MMprivate.h"
#include "H5Oprivate.h"
#include "H5Pprivate.h"
#include "H5Vprivate.h"

/* MPIO driver needed for special checks */
#include "H5FDmpio.h"

/*
 * Feature: If this constant is defined then every cache preemption and load
 *	    causes a character to be printed on the standard error stream:
 *
 *     `.': Entry was preempted because it has been completely read or
 *	    completely written but not partially read and not partially
 *	    written. This is often a good reason for preemption because such
 *	    a chunk will be unlikely to be referenced in the near future.
 *
 *     `:': Entry was preempted because it hasn't been used recently.
 *
 *     `#': Entry was preempted because another chunk collided with it. This
 *	    is usually a relatively bad thing.  If there are too many of
 *	    these then the number of entries in the cache can be increased.
 *
 *       c: Entry was preempted because the file is closing.
 *
 *	 w: A chunk read operation was eliminated because the library is
 *	    about to write new values to the entire chunk.  This is a good
 *	    thing, especially on files where the chunk size is the same as
 *	    the disk block size, chunks are aligned on disk block boundaries,
 *	    and the operating system can also eliminate a read operation.
 */
/* #define H5F_ISTORE_DEBUG */

/* Interface initialization */
#define PABLO_MASK	H5Fistore_mask
static int		interface_initialize_g = 0;
#define INTERFACE_INIT NULL

/*
 * Given a B-tree node return the dimensionality of the chunks pointed to by
 * that node.
 */
#define H5F_ISTORE_NDIMS(X)	((int)(((X)->sizeof_rkey-8)/8))

/* Raw data chunks are cached.  Each entry in the cache is: */
typedef struct H5F_rdcc_ent_t {
    hbool_t	locked;		/*entry is locked in cache		*/
    hbool_t	dirty;		/*needs to be written to disk?		*/
    H5O_layout_t *layout;	/*the layout message			*/
    double	split_ratios[3];/*B-tree node splitting ratios		*/
    H5O_pline_t	*pline;		/*filter pipeline message		*/
    hssize_t	offset[H5O_LAYOUT_NDIMS]; /*chunk name			*/
    size_t	rd_count;	/*bytes remaining to be read		*/
    size_t	wr_count;	/*bytes remaining to be written		*/
    size_t	chunk_size;	/*size of a chunk			*/
    size_t	alloc_size;	/*amount allocated for the chunk	*/
    uint8_t	*chunk;		/*the unfiltered chunk data		*/
    unsigned	idx;		/*index in hash table			*/
    struct H5F_rdcc_ent_t *next;/*next item in doubly-linked list	*/
    struct H5F_rdcc_ent_t *prev;/*previous item in doubly-linked list	*/
} H5F_rdcc_ent_t;
typedef H5F_rdcc_ent_t *H5F_rdcc_ent_ptr_t; /* For free lists */

/* Private prototypes */
static size_t H5F_istore_sizeof_rkey(H5F_t *f, const void *_udata);
static herr_t H5F_istore_new_node(H5F_t *f, H5B_ins_t, void *_lt_key,
				  void *_udata, void *_rt_key,
				  haddr_t*/*out*/);
static int H5F_istore_cmp2(H5F_t *f, void *_lt_key, void *_udata,
			    void *_rt_key);
static int H5F_istore_cmp3(H5F_t *f, void *_lt_key, void *_udata,
			    void *_rt_key);
static herr_t H5F_istore_found(H5F_t *f, haddr_t addr, const void *_lt_key,
			       void *_udata, const void *_rt_key);
static H5B_ins_t H5F_istore_insert(H5F_t *f, haddr_t addr, void *_lt_key,
				   hbool_t *lt_key_changed, void *_md_key,
				   void *_udata, void *_rt_key,
				   hbool_t *rt_key_changed,
				   haddr_t *new_node/*out*/);
static herr_t H5F_istore_iterate(H5F_t *f, void *left_key, haddr_t addr,
				 void *right_key, void *_udata);
static herr_t H5F_istore_decode_key(H5F_t *f, H5B_t *bt, uint8_t *raw,
				    void *_key);
static herr_t H5F_istore_encode_key(H5F_t *f, H5B_t *bt, uint8_t *raw,
				    void *_key);
static herr_t H5F_istore_debug_key(FILE *stream, int indent, int fwidth,
				   const void *key, const void *udata);
#ifdef H5_HAVE_PARALLEL
static herr_t H5F_istore_get_addr(H5F_t *f, const H5O_layout_t *layout,
				  const hssize_t offset[],
				  void *_udata/*out*/);
#endif

/*
 * B-tree key.	A key contains the minimum logical N-dimensional address and
 * the logical size of the chunk to which this key refers.  The
 * fastest-varying dimension is assumed to reference individual bytes of the
 * array, so a 100-element 1-d array of 4-byte integers would really be a 2-d
 * array with the slow varying dimension of size 100 and the fast varying
 * dimension of size 4 (the storage dimensionality has very little to do with
 * the real dimensionality).
 *
 * Only the first few values of the OFFSET and SIZE fields are actually
 * stored on disk, depending on the dimensionality.
 *
 * The chunk's file address is part of the B-tree and not part of the key.
 */
typedef struct H5F_istore_key_t {
    size_t	nbytes;				/*size of stored data	*/
    hssize_t	offset[H5O_LAYOUT_NDIMS];	/*logical offset to start*/
    unsigned	filter_mask;			/*excluded filters	*/
} H5F_istore_key_t;

typedef struct H5F_istore_ud1_t {
    H5F_istore_key_t	key;	/*key values		*/
    haddr_t		addr;			/*file address of chunk */
    H5O_layout_t	mesg;		/*layout message	*/
    hsize_t		total_storage;	/*output from iterator	*/
    FILE		*stream;		/*debug output stream	*/
} H5F_istore_ud1_t;

/* inherits B-tree like properties from H5B */
H5B_class_t H5B_ISTORE[1] = {{
    H5B_ISTORE_ID,				/*id			*/
    sizeof(H5F_istore_key_t),			/*sizeof_nkey		*/
    H5F_istore_sizeof_rkey, 			/*get_sizeof_rkey	*/
    H5F_istore_new_node,			/*new			*/
    H5F_istore_cmp2,				/*cmp2			*/
    H5F_istore_cmp3,				/*cmp3			*/
    H5F_istore_found,				/*found			*/
    H5F_istore_insert,				/*insert		*/
    FALSE,					/*follow min branch?	*/
    FALSE,					/*follow max branch?	*/
    NULL,					/*remove		*/
    H5F_istore_iterate,				/*iterator		*/
    H5F_istore_decode_key,			/*decode		*/
    H5F_istore_encode_key,			/*encode		*/
    H5F_istore_debug_key,			/*debug			*/
}};

#define H5F_HASH_DIVISOR 8     /* Attempt to spread out the hashing */
                                /* This should be the same size as the alignment of */
                                /* of the smallest file format object written to the file.  */
#define H5F_HASH(F,ADDR) H5F_addr_hash((ADDR/H5F_HASH_DIVISOR),(F)->shared->rdcc.nslots)


/* Declare a free list to manage the chunk information */
H5FL_BLK_DEFINE_STATIC(istore_chunk);

/* Declare a free list to manage H5F_rdcc_ent_t objects */
H5FL_DEFINE_STATIC(H5F_rdcc_ent_t);

/* Declare a PQ free list to manage the H5F_rdcc_ent_ptr_t array information */
H5FL_ARR_DEFINE_STATIC(H5F_rdcc_ent_ptr_t,-1);


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_chunk_alloc
 *
 * Purpose:	Allocates memory for a chunk of a dataset.  This routine is used
 *      instead of malloc because the chunks can be kept on a free list so
 *      they don't thrash malloc/free as much.
 *
 * Return:	Success:	valid pointer to the chunk
 *
 *		Failure:	NULL
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, March  21, 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
void *
H5F_istore_chunk_alloc(size_t chunk_size)
{
    void *ret_value;                    /* Pointer to the chunk to return to the user */

    FUNC_ENTER(H5F_istore_chunk_alloc, NULL);

    ret_value=H5FL_BLK_ALLOC(istore_chunk,chunk_size,0);

    FUNC_LEAVE(ret_value);
} /* end H5F_istore_chunk_alloc() */


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_chunk_free
 *
 * Purpose:	Releases memory for a chunk of a dataset.  This routine is used
 *      instead of free because the chunks can be kept on a free list so
 *      they don't thrash malloc/free as much.
 *
 * Return:	Success:	NULL
 *
 *		Failure:	never fails
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, March  21, 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
void *
H5F_istore_chunk_free(void *chunk)
{
    FUNC_ENTER(H5F_istore_chunk_free, NULL);

    H5FL_BLK_FREE(istore_chunk,chunk);

    FUNC_LEAVE(NULL);
} /* end H5F_istore_chunk_free() */


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_chunk_realloc
 *
 * Purpose:	Resizes a chunk in chunking memory allocation system.  This
 *      does things the straightforward, simple way, not actually using
 *      realloc.
 *
 * Return:	Success:	NULL
 *
 *		Failure:	never fails
 *
 * Programmer:	Quincey Koziol
 *		Tuesday, March  21, 2000
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
void *
H5F_istore_chunk_realloc(void *chunk, size_t new_size)
{
    void *ret_value=NULL;               /* Return value */

    FUNC_ENTER(H5F_istore_chunk_realloc, NULL);

    ret_value=H5FL_BLK_REALLOC(istore_chunk,chunk,new_size);

    FUNC_LEAVE(ret_value);
} /* end H5F_istore_chunk_realloc() */


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_sizeof_rkey
 *
 * Purpose:	Returns the size of a raw key for the specified UDATA.	The
 *		size of the key is dependent on the number of dimensions for
 *		the object to which this B-tree points.	 The dimensionality
 *		of the UDATA is the only portion that's referenced here.
 *
 * Return:	Success:	Size of raw key in bytes.
 *
 *		Failure:	abort()
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October  8, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static size_t
H5F_istore_sizeof_rkey(H5F_t UNUSED *f, const void *_udata)
{
    const H5F_istore_ud1_t *udata = (const H5F_istore_ud1_t *) _udata;
    size_t		    nbytes;

    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS);

    nbytes = 4 +			/*storage size		*/
	     4 +			/*filter mask		*/
	     udata->mesg.ndims*8;	/*dimension indices	*/

    return nbytes;
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_decode_key
 *
 * Purpose:	Decodes a raw key into a native key for the B-tree
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_decode_key(H5F_t UNUSED *f, H5B_t *bt, uint8_t *raw, void *_key)
{
    H5F_istore_key_t	*key = (H5F_istore_key_t *) _key;
    int		i;
    int		ndims = H5F_ISTORE_NDIMS(bt);

    FUNC_ENTER(H5F_istore_decode_key, FAIL);

    /* check args */
    assert(f);
    assert(bt);
    assert(raw);
    assert(key);
    assert(ndims>0 && ndims<=H5O_LAYOUT_NDIMS);

    /* decode */
    UINT32DECODE(raw, key->nbytes);
    UINT32DECODE(raw, key->filter_mask);
    for (i=0; i<ndims; i++) {
	UINT64DECODE(raw, key->offset[i]);
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_encode_key
 *
 * Purpose:	Encode a key from native format to raw format.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Friday, October 10, 1997
 *
 * Modifications:
 *	
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_encode_key(H5F_t UNUSED *f, H5B_t *bt, uint8_t *raw, void *_key)
{
    H5F_istore_key_t	*key = (H5F_istore_key_t *) _key;
    int		ndims = H5F_ISTORE_NDIMS(bt);
    int		i;

    FUNC_ENTER(H5F_istore_encode_key, FAIL);

    /* check args */
    assert(f);
    assert(bt);
    assert(raw);
    assert(key);
    assert(ndims>0 && ndims<=H5O_LAYOUT_NDIMS);

    /* encode */
    UINT32ENCODE(raw, key->nbytes);
    UINT32ENCODE(raw, key->filter_mask);
    for (i=0; i<ndims; i++) {
	UINT64ENCODE(raw, key->offset[i]);
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_debug_key
 *
 * Purpose:	Prints a key.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, April 16, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_debug_key (FILE *stream, int indent, int fwidth,
		      const void *_key, const void *_udata)
{
    const H5F_istore_key_t	*key = (const H5F_istore_key_t *)_key;
    const H5F_istore_ud1_t	*udata = (const H5F_istore_ud1_t *)_udata;
    unsigned		u;
    
    FUNC_ENTER (H5F_istore_debug_key, FAIL);
    assert (key);

    HDfprintf(stream, "%*s%-*s %Zd bytes\n", indent, "", fwidth,
	      "Chunk size:", key->nbytes);
    HDfprintf(stream, "%*s%-*s 0x%08x\n", indent, "", fwidth,
	      "Filter mask:", key->filter_mask);
    HDfprintf(stream, "%*s%-*s {", indent, "", fwidth,
	      "Logical offset:");
    for (u=0; u<udata->mesg.ndims; u++) {
        HDfprintf (stream, "%s%Hd", u?", ":"", key->offset[u]);
    }
    HDfputs ("}\n", stream);

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_cmp2
 *
 * Purpose:	Compares two keys sort of like strcmp().  The UDATA pointer
 *		is only to supply extra information not carried in the keys
 *		(in this case, the dimensionality) and is not compared
 *		against the keys.
 *
 * Return:	Success:	-1 if LT_KEY is less than RT_KEY;
 *				1 if LT_KEY is greater than RT_KEY;
 *				0 if LT_KEY and RT_KEY are equal.
 *
 *		Failure:	FAIL (same as LT_KEY<RT_KEY)
 *
 * Programmer:	Robb Matzke
 *		Thursday, November  6, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
H5F_istore_cmp2(H5F_t UNUSED *f, void *_lt_key, void *_udata,
		void *_rt_key)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    int		cmp;

    FUNC_ENTER(H5F_istore_cmp2, FAIL);

    assert(lt_key);
    assert(rt_key);
    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS);

    /* Compare the offsets but ignore the other fields */
    cmp = H5V_vector_cmp_s(udata->mesg.ndims, lt_key->offset, rt_key->offset);

    FUNC_LEAVE(cmp);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_cmp3
 *
 * Purpose:	Compare the requested datum UDATA with the left and right
 *		keys of the B-tree.
 *
 * Return:	Success:	negative if the min_corner of UDATA is less
 *				than the min_corner of LT_KEY.
 *
 *				positive if the min_corner of UDATA is
 *				greater than or equal the min_corner of
 *				RT_KEY.
 *
 *				zero otherwise.	 The min_corner of UDATA is
 *				not necessarily contained within the address
 *				space represented by LT_KEY, but a key that
 *				would describe the UDATA min_corner address
 *				would fall lexicographically between LT_KEY
 *				and RT_KEY.
 *				
 *		Failure:	FAIL (same as UDATA < LT_KEY)
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October  8, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static int
H5F_istore_cmp3(H5F_t UNUSED *f, void *_lt_key, void *_udata,
		void *_rt_key)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    int		cmp = 0;

    FUNC_ENTER(H5F_istore_cmp3, FAIL);

    assert(lt_key);
    assert(rt_key);
    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims <= H5O_LAYOUT_NDIMS);

    if (H5V_vector_lt_s(udata->mesg.ndims, udata->key.offset,
			lt_key->offset)) {
	cmp = -1;
    } else if (H5V_vector_ge_s(udata->mesg.ndims, udata->key.offset,
			     rt_key->offset)) {
	cmp = 1;
    }
    FUNC_LEAVE(cmp);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_new_node
 *
 * Purpose:	Adds a new entry to an i-storage B-tree.  We can assume that
 *		the domain represented by UDATA doesn't intersect the domain
 *		already represented by the B-tree.
 *
 * Return:	Success:	Non-negative. The address of leaf is returned
 *				through the ADDR argument.  It is also added
 *				to the UDATA.
 *
 * 		Failure:	Negative
 *
 * Programmer:	Robb Matzke
 *		Tuesday, October 14, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_new_node(H5F_t *f, H5B_ins_t op,
		    void *_lt_key, void *_udata, void *_rt_key,
		    haddr_t *addr_p/*out*/)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    unsigned		u;

    FUNC_ENTER(H5F_istore_new_node, FAIL);
#ifdef AKC
    printf("%s: Called\n", FUNC);
#endif
    /* check args */
    assert(f);
    assert(lt_key);
    assert(rt_key);
    assert(udata);
    assert(udata->mesg.ndims > 0 && udata->mesg.ndims < H5O_LAYOUT_NDIMS);
    assert(addr_p);

    /* Allocate new storage */
    assert (udata->key.nbytes > 0);
#ifdef AKC
    printf("calling H5MF_alloc for new chunk\n");
#endif
    if (HADDR_UNDEF==(*addr_p=H5MF_alloc(f, H5FD_MEM_DRAW, (hsize_t)udata->key.nbytes))) {
        HRETURN_ERROR(H5E_IO, H5E_CANTINIT, FAIL,
		      "couldn't allocate new file storage");
    }
    udata->addr = *addr_p;

    /*
     * The left key describes the storage of the UDATA chunk being
     * inserted into the tree.
     */
    lt_key->nbytes = udata->key.nbytes;
    lt_key->filter_mask = udata->key.filter_mask;
    for (u=0; u<udata->mesg.ndims; u++) {
        lt_key->offset[u] = udata->key.offset[u];
    }

    /*
     * The right key might already be present.  If not, then add a zero-width
     * chunk.
     */
    if (H5B_INS_LEFT != op) {
        rt_key->nbytes = 0;
        rt_key->filter_mask = 0;
        for (u=0; u<udata->mesg.ndims; u++) {
            assert (udata->mesg.dim[u] < HSSIZET_MAX);
            assert (udata->key.offset[u]+(hssize_t)(udata->mesg.dim[u]) >
                udata->key.offset[u]);
            rt_key->offset[u] = udata->key.offset[u] +
                    (hssize_t)(udata->mesg.dim[u]);
        }
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_found
 *
 * Purpose:	This function is called when the B-tree search engine has
 *		found the leaf entry that points to a chunk of storage that
 *		contains the beginning of the logical address space
 *		represented by UDATA.  The LT_KEY is the left key (the one
 *		that describes the chunk) and RT_KEY is the right key (the
 *		one that describes the next or last chunk).
 *
 * Note:	It's possible that the chunk isn't really found.  For
 *		instance, in a sparse dataset the requested chunk might fall
 *		between two stored chunks in which case this function is
 *		called with the maximum stored chunk indices less than the
 *		requested chunk indices.
 *
 * Return:	Non-negative on success with information about the chunk
 *		returned through the UDATA argument. Negative on failure.
 *
 * Programmer:	Robb Matzke
 *		Thursday, October  9, 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_found(H5F_t UNUSED *f, haddr_t addr, const void *_lt_key,
		 void *_udata, const void UNUSED *_rt_key)
{
    H5F_istore_ud1_t	   *udata = (H5F_istore_ud1_t *) _udata;
    const H5F_istore_key_t *lt_key = (const H5F_istore_key_t *) _lt_key;
    unsigned		u;

    FUNC_ENTER(H5F_istore_found, FAIL);

    /* Check arguments */
    assert(f);
    assert(H5F_addr_defined(addr));
    assert(udata);
    assert(lt_key);

    /* Is this *really* the requested chunk? */
    for (u=0; u<udata->mesg.ndims; u++) {
        if (udata->key.offset[u] >= lt_key->offset[u]+(hssize_t)(udata->mesg.dim[u])) {
            HRETURN(FAIL);
        }
    }

    /* Initialize return values */
    udata->addr = addr;
    udata->key.nbytes = lt_key->nbytes;
    udata->key.filter_mask = lt_key->filter_mask;
    assert (lt_key->nbytes>0);
    for (u = 0; u < udata->mesg.ndims; u++) {
        udata->key.offset[u] = lt_key->offset[u];
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_insert
 *
 * Purpose:	This function is called when the B-tree insert engine finds
 *		the node to use to insert new data.  The UDATA argument
 *		points to a struct that describes the logical addresses being
 *		added to the file.  This function allocates space for the
 *		data and returns information through UDATA describing a
 *		file chunk to receive (part of) the data.
 *
 *		The LT_KEY is always the key describing the chunk of file
 *		memory at address ADDR. On entry, UDATA describes the logical
 *		addresses for which storage is being requested (through the
 *		`offset' and `size' fields). On return, UDATA describes the
 *		logical addresses contained in a chunk on disk.
 *
 * Return:	Success:	An insertion command for the caller, one of
 *				the H5B_INS_* constants.  The address of the
 *				new chunk is returned through the NEW_NODE
 *				argument.
 *
 *		Failure:	H5B_INS_ERROR
 *
 * Programmer:	Robb Matzke
 *		Thursday, October  9, 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value. The NEW_NODE argument
 *		is renamed NEW_NODE_P.
 *-------------------------------------------------------------------------
 */
static H5B_ins_t
H5F_istore_insert(H5F_t *f, haddr_t addr, void *_lt_key,
		  hbool_t UNUSED *lt_key_changed,
		  void *_md_key, void *_udata, void *_rt_key,
		  hbool_t UNUSED *rt_key_changed,
		  haddr_t *new_node_p/*out*/)
{
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *) _lt_key;
    H5F_istore_key_t	*md_key = (H5F_istore_key_t *) _md_key;
    H5F_istore_key_t	*rt_key = (H5F_istore_key_t *) _rt_key;
    H5F_istore_ud1_t	*udata = (H5F_istore_ud1_t *) _udata;
    int		cmp;
    unsigned		u;
    H5B_ins_t		ret_value = H5B_INS_ERROR;

    FUNC_ENTER(H5F_istore_insert, H5B_INS_ERROR);
#ifdef AKC
    printf("%s: Called\n", FUNC);
#endif

    /* check args */
    assert(f);
    assert(H5F_addr_defined(addr));
    assert(lt_key);
    assert(lt_key_changed);
    assert(md_key);
    assert(udata);
    assert(rt_key);
    assert(rt_key_changed);
    assert(new_node_p);

    cmp = H5F_istore_cmp3(f, lt_key, udata, rt_key);
    assert(cmp <= 0);

    if (cmp < 0) {
        /* Negative indices not supported yet */
        assert("HDF5 INTERNAL ERROR -- see rpm" && 0);
        HRETURN_ERROR(H5E_STORAGE, H5E_UNSUPPORTED, H5B_INS_ERROR,
		      "internal error");
	
    } else if (H5V_vector_eq_s (udata->mesg.ndims,
				udata->key.offset, lt_key->offset) &&
	       lt_key->nbytes>0) {
        /*
         * Already exists.  If the new size is not the same as the old size
         * then we should reallocate storage.
         */
        if (lt_key->nbytes != udata->key.nbytes) {
#ifdef AKC
            printf("calling H5MF_realloc for new chunk\n");
#endif
            if (HADDR_UNDEF==(*new_node_p=H5MF_realloc(f, H5FD_MEM_DRAW, addr,
                                  (hsize_t)lt_key->nbytes,
                                  (hsize_t)udata->key.nbytes))) {
                HRETURN_ERROR (H5E_STORAGE, H5E_WRITEERROR, H5B_INS_ERROR,
                       "unable to reallocate chunk storage");
            }
            lt_key->nbytes = udata->key.nbytes;
            lt_key->filter_mask = udata->key.filter_mask;
            *lt_key_changed = TRUE;
            udata->addr = *new_node_p;
            ret_value = H5B_INS_CHANGE;
        } else {
            udata->addr = addr;
            ret_value = H5B_INS_NOOP;
        }

    } else if (H5V_hyper_disjointp(udata->mesg.ndims,
				   lt_key->offset, udata->mesg.dim,
				   udata->key.offset, udata->mesg.dim)) {
        assert(H5V_hyper_disjointp(udata->mesg.ndims,
				   rt_key->offset, udata->mesg.dim,
				   udata->key.offset, udata->mesg.dim));
        /*
         * Split this node, inserting the new new node to the right of the
         * current node.  The MD_KEY is where the split occurs.
         */
        md_key->nbytes = udata->key.nbytes;
        md_key->filter_mask = udata->key.filter_mask;
        for (u=0; u<udata->mesg.ndims; u++) {
            assert(0 == udata->key.offset[u] % udata->mesg.dim[u]);
            md_key->offset[u] = udata->key.offset[u];
        }

        /*
         * Allocate storage for the new chunk
         */
#ifdef AKC
        printf("calling H5MF_alloc for new chunk\n");
#endif
        if (HADDR_UNDEF==(*new_node_p=H5MF_alloc(f, H5FD_MEM_DRAW,
                             (hsize_t)udata->key.nbytes))) {
            HRETURN_ERROR(H5E_IO, H5E_CANTINIT, H5B_INS_ERROR,
                  "file allocation failed");
        }
        udata->addr = *new_node_p;
        ret_value = H5B_INS_RIGHT;

    } else {
        assert("HDF5 INTERNAL ERROR -- see rpm" && 0);
        HRETURN_ERROR(H5E_IO, H5E_UNSUPPORTED, H5B_INS_ERROR,
		      "internal error");
    }

    FUNC_LEAVE(ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_iterate
 *
 * Purpose:	Simply counts the number of chunks for a dataset. If the
 *		UDATA.STREAM member is non-null then debugging information is
 *		written to that stream.
 *
 * Return:	Success:	Non-negative
 *
 *		Failure:	Negative
 *
 * Programmer:	Robb Matzke
 *              Wednesday, April 21, 1999
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_iterate (H5F_t UNUSED *f, void *_lt_key, haddr_t UNUSED addr,
		    void UNUSED *_rt_key, void *_udata)
{
    H5F_istore_ud1_t	*bt_udata = (H5F_istore_ud1_t *)_udata;
    H5F_istore_key_t	*lt_key = (H5F_istore_key_t *)_lt_key;
    unsigned		u;

    FUNC_ENTER(H5F_istore_iterate, FAIL);

    if (bt_udata->stream) {
        if (0==bt_udata->total_storage) {
            fprintf(bt_udata->stream, "    Address:\n");
            fprintf(bt_udata->stream,
                "             Flags    Bytes    Address Logical Offset\n");
            fprintf(bt_udata->stream,
                "        ========== ======== ========== "
                "==============================\n");
        }
        HDfprintf(bt_udata->stream, "        0x%08x %8Zu %10a [",
              lt_key->filter_mask, lt_key->nbytes, addr);
        for (u=0; u<bt_udata->mesg.ndims; u++) {
            HDfprintf(bt_udata->stream, "%s%Hd", u?", ":"", lt_key->offset[u]);
        }
        HDfputs("]\n", bt_udata->stream);
    }

    bt_udata->total_storage += lt_key->nbytes;
    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_init
 *
 * Purpose:	Initialize the raw data chunk cache for a file.  This is
 *		called when the file handle is initialized.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Monday, May 18, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_init (H5F_t *f)
{
    H5F_rdcc_t	*rdcc = &(f->shared->rdcc);
    
    FUNC_ENTER (H5F_istore_init, FAIL);

    HDmemset (rdcc, 0, sizeof(H5F_rdcc_t));
    if (f->shared->rdcc_nbytes>0 && f->shared->rdcc_nelmts>0) {
	rdcc->nslots = f->shared->rdcc_nelmts;
	rdcc->slot = H5FL_ARR_ALLOC (H5F_rdcc_ent_ptr_t,rdcc->nslots,1);
	if (NULL==rdcc->slot) {
	    HRETURN_ERROR (H5E_RESOURCE, H5E_NOSPACE, FAIL,
			   "memory allocation failed");
	}
    }

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_flush_entry
 *
 * Purpose:	Writes a chunk to disk.  If RESET is non-zero then the
 *		entry is cleared -- it's slightly faster to flush a chunk if
 *		the RESET flag is turned on because it results in one fewer
 *		memory copy.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_flush_entry(H5F_t *f, H5F_rdcc_ent_t *ent, hbool_t reset)
{
    herr_t		ret_value=FAIL;	/*return value			*/
    H5F_istore_ud1_t 	udata;		/*pass through B-tree		*/
    unsigned		u;		/*counters			*/
    void		*buf=NULL;	/*temporary buffer		*/
    size_t		alloc;		/*bytes allocated for BUF	*/
    hbool_t		point_of_no_return = FALSE;
    
    FUNC_ENTER(H5F_istore_flush_entry, FAIL);
    assert(f);
    assert(ent);
    assert(!ent->locked);

    buf = ent->chunk;
    if (ent->dirty) {
        udata.mesg = *(ent->layout);
        udata.key.filter_mask = 0;
        udata.addr = HADDR_UNDEF;
        udata.key.nbytes = ent->chunk_size;
        for (u=0; u<ent->layout->ndims; u++) {
            udata.key.offset[u] = ent->offset[u];
        }
        alloc = ent->alloc_size;

        /* Should the chunk be filtered before writing it to disk? */
        if (ent->pline && ent->pline->nfilters) {
            if (!reset) {
                /*
                 * Copy the chunk to a new buffer before running it through
                 * the pipeline because we'll want to save the original buffer
                 * for later.
                 */
                alloc = ent->chunk_size;
                if (NULL==(buf = H5F_istore_chunk_alloc(alloc))) {
                    HGOTO_ERROR(H5E_RESOURCE, H5E_NOSPACE, FAIL,
                        "memory allocation failed for pipeline");
                }
                HDmemcpy(buf, ent->chunk, ent->chunk_size);
            } else {
                /*
                 * If we are reseting and something goes wrong after this
                 * point then it's too late to recover because we may have
                 * destroyed the original data by calling H5Z_pipeline().
                 * The only safe option is to continue with the reset
                 * even if we can't write the data to disk.
                 */
                point_of_no_return = TRUE;
                ent->chunk = NULL;
            }
            if (H5Z_pipeline(f, ent->pline, 0, &(udata.key.filter_mask),
                     &(udata.key.nbytes), &alloc, &buf)<0) {
                HGOTO_ERROR(H5E_PLINE, H5E_WRITEERROR, FAIL,
                    "output pipeline failed");
            }
        }

        /*
         * Create the chunk it if it doesn't exist, or reallocate the chunk if
         * its size changed.  Then write the data into the file.
         */
        if (H5B_insert(f, H5B_ISTORE, ent->layout->addr, ent->split_ratios,
                   &udata)<0) {
            HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL,
                "unable to allocate chunk");
        }
        if (H5F_block_write(f, H5FD_MEM_DRAW, udata.addr, udata.key.nbytes, H5P_DATASET_XFER_DEFAULT,
                    buf)<0) {
            HGOTO_ERROR(H5E_IO, H5E_WRITEERROR, FAIL,
                "unable to write raw data to file");
        }

        /* Mark cache entry as clean */
        ent->dirty = FALSE;
        f->shared->rdcc.nflushes++;
    }
    
    /* Reset, but do not free or removed from list */
    if (reset) {
        point_of_no_return = FALSE;
        ent->layout = H5O_free(H5O_LAYOUT, ent->layout);
        ent->pline = H5O_free(H5O_PLINE, ent->pline);
        if (buf==ent->chunk) buf = NULL;
        if(ent->chunk!=NULL)
            ent->chunk = H5F_istore_chunk_free(ent->chunk);
    }
    
    ret_value = SUCCEED;

done:
    /* Free the temp buffer only if it's different than the entry chunk */
    if (buf!=ent->chunk)
        H5F_istore_chunk_free(buf);
    
    /*
     * If we reached the point of no return then we have no choice but to
     * reset the entry.  This can only happen if RESET is true but the
     * output pipeline failed.  Do not free the entry or remove it from the
     * list.
     */
    if (ret_value<0 && point_of_no_return) {
        ent->layout = H5O_free(H5O_LAYOUT, ent->layout);
        ent->pline = H5O_free(H5O_PLINE, ent->pline);
        if(ent->chunk)
            ent->chunk = H5F_istore_chunk_free(ent->chunk);
    }
    FUNC_LEAVE(ret_value);
}

/*-------------------------------------------------------------------------
 * Function:    H5F_istore_preempt
 *
 * Purpose:     Preempts the specified entry from the cache, flushing it to
 *              disk if necessary.
 *
 * Return:      Non-negative on success/Negative on failure
 *
 * Programmer:  Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_preempt (H5F_t *f, H5F_rdcc_ent_t *ent)
{
    H5F_rdcc_t          *rdcc = &(f->shared->rdcc);
    
    FUNC_ENTER (H5F_istore_preempt, FAIL);

    assert(f);
    assert(ent);
    assert(!ent->locked);
    assert(ent->idx<rdcc->nslots);

    /* Flush */
    if (H5F_istore_flush_entry(f, ent, TRUE)<0) {
        HRETURN_ERROR(H5E_IO, H5E_WRITEERROR, FAIL,
                      "cannot flush indexed storage buffer");
    }

    /* Unlink from list */
    if (ent->prev) {
	ent->prev->next = ent->next;
    } else {
	rdcc->head = ent->next;
    }
    if (ent->next) {
	ent->next->prev = ent->prev;
    } else {
	rdcc->tail = ent->prev;
    }
    ent->prev = ent->next = NULL;

    /* Remove from cache */
    rdcc->slot[ent->idx] = NULL;
    ent->idx = UINT_MAX;
    rdcc->nbytes -= ent->chunk_size;
    --rdcc->nused;

    /* Free */
    H5FL_FREE(H5F_rdcc_ent_t, ent);

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_flush
 *
 * Purpose:	Writes all dirty chunks to disk and optionally preempts them
 *		from the cache.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_flush (H5F_t *f, hbool_t preempt)
{
    H5F_rdcc_t		*rdcc = &(f->shared->rdcc);
    int		nerrors=0;
    H5F_rdcc_ent_t	*ent=NULL, *next=NULL;
    
    FUNC_ENTER (H5F_istore_flush, FAIL);

    for (ent=rdcc->head; ent; ent=next) {
	next = ent->next;
	if (preempt) {
	    if (H5F_istore_preempt(f, ent)<0) {
		nerrors++;
	    }
	} else {
	    if (H5F_istore_flush_entry(f, ent, FALSE)<0) {
		nerrors++;
	    }
	}
    }
    
    if (nerrors) {
	HRETURN_ERROR (H5E_IO, H5E_CANTFLUSH, FAIL,
		       "unable to flush one or more raw data chunks");
    }
    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_dest
 *
 * Purpose:	Destroy the entire chunk cache by flushing dirty entries,
 *		preempting all entries, and freeing the cache itself.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_dest (H5F_t *f)
{
    H5F_rdcc_t		*rdcc = &(f->shared->rdcc);
    int		nerrors=0;
    H5F_rdcc_ent_t	*ent=NULL, *next=NULL;
    
    FUNC_ENTER (H5F_istore_dest, FAIL);

    for (ent=rdcc->head; ent; ent=next) {
#ifdef H5F_ISTORE_DEBUG
	HDfputc('c', stderr);
	HDfflush(stderr);
#endif
	next = ent->next;
	if (H5F_istore_preempt(f, ent)<0) {
	    nerrors++;
	}
    }
    if (nerrors) {
	HRETURN_ERROR (H5E_IO, H5E_CANTFLUSH, FAIL,
		       "unable to flush one or more raw data chunks");
    }

    H5FL_ARR_FREE (H5F_rdcc_ent_ptr_t,rdcc->slot);
    HDmemset (rdcc, 0, sizeof(H5F_rdcc_t));
    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_prune
 *
 * Purpose:	Prune the cache by preempting some things until the cache has
 *		room for something which is SIZE bytes.  Only unlocked
 *		entries are considered for preemption.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_prune (H5F_t *f, size_t size)
{
    int		i, j, nerrors=0;
    H5F_rdcc_t		*rdcc = &(f->shared->rdcc);
    size_t		total = f->shared->rdcc_nbytes;
    const int		nmeth=2;	/*number of methods		*/
    int		w[1];		/*weighting as an interval	*/
    H5F_rdcc_ent_t	*p[2], *cur;	/*list pointers			*/
    H5F_rdcc_ent_t	*n[2];		/*list next pointers		*/

    FUNC_ENTER (H5F_istore_prune, FAIL);

    /*
     * Preemption is accomplished by having multiple pointers (currently two)
     * slide down the list beginning at the head. Pointer p(N+1) will start
     * traversing the list when pointer pN reaches wN percent of the original
     * list.  In other words, preemption method N gets to consider entries in
     * approximate least recently used order w0 percent before method N+1
     * where 100% means tha method N will run to completion before method N+1
     * begins.  The pointers participating in the list traversal are each
     * given a chance at preemption before any of the pointers are advanced.
     */
    w[0] = rdcc->nused * f->shared->rdcc_w0;
    p[0] = rdcc->head;
    p[1] = NULL;

    while ((p[0] || p[1]) && rdcc->nbytes+size>total) {

	/* Introduce new pointers */
	for (i=0; i<nmeth-1; i++) if (0==w[i]) p[i+1] = rdcc->head;
	
	/* Compute next value for each pointer */
	for (i=0; i<nmeth; i++) n[i] = p[i] ? p[i]->next : NULL;

	/* Give each method a chance */
	for (i=0; i<nmeth && rdcc->nbytes+size>total; i++) {
	    if (0==i && p[0] && !p[0]->locked &&
		((0==p[0]->rd_count && 0==p[0]->wr_count) ||
		 (0==p[0]->rd_count && p[0]->chunk_size==p[0]->wr_count) ||
		 (p[0]->chunk_size==p[0]->rd_count && 0==p[0]->wr_count))) {
		/*
		 * Method 0: Preempt entries that have been completely written
		 * and/or completely read but not entries that are partially
		 * written or partially read.
		 */
		cur = p[0];
#ifdef H5F_ISTORE_DEBUG
		HDputc('.', stderr);
		HDfflush(stderr);
#endif
		
	    } else if (1==i && p[1] && !p[1]->locked) {
		/*
		 * Method 1: Preempt the entry without regard to
		 * considerations other than being locked.  This is the last
		 * resort preemption.
		 */
		cur = p[1];
#ifdef H5F_ISTORE_DEBUG
		HDputc(':', stderr);
		HDfflush(stderr);
#endif
		
	    } else {
		/* Nothing to preempt at this point */
		cur= NULL;
	    }

	    if (cur) {
		if (H5F_istore_preempt(f, cur)<0) nerrors++;
		for (j=0; j<nmeth; j++) {
		    if (p[j]==cur) p[j] = NULL;
		}
	    }
	}
	
	/* Advance pointers */
	for (i=0; i<nmeth; i++) p[i] = n[i];
	for (i=0; i<nmeth-1; i++) w[i] -= 1;
    }

    if (nerrors) {
	HRETURN_ERROR (H5E_IO, H5E_CANTFLUSH, FAIL,
		       "unable to preempt one or more raw data cache entry");
    }
    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_lock
 *
 * Purpose:	Return a pointer to a dataset chunk.  The pointer points
 *		directly into the chunk cache and should not be freed
 *		by the caller but will be valid until it is unlocked.  The
 *		input value IDX_HINT is used to speed up cache lookups and
 *		it's output value should be given to H5F_rdcc_unlock().
 *		IDX_HINT is ignored if it is out of range, and if it points
 *		to the wrong entry then we fall back to the normal search
 *		method.
 *
 *		If RELAX is non-zero and the chunk isn't in the cache then
 *		don't try to read it from the file, but just allocate an
 *		uninitialized buffer to hold the result.  This is intended
 *		for output functions that are about to overwrite the entire
 *		chunk.
 *
 * Return:	Success:	Ptr to a file chunk.
 *
 *		Failure:	NULL
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-08-02
 *		The split ratios are passed in as part of the data transfer
 *		property list.
 *-------------------------------------------------------------------------
 */
static void *
H5F_istore_lock(H5F_t *f, hid_t dxpl_id, const H5O_layout_t *layout,
		const H5O_pline_t *pline, const H5O_fill_t *fill,
		const hssize_t offset[], hbool_t relax,
		unsigned *idx_hint/*in,out*/)
{
    int		idx=0;			/*hash index number	*/
    unsigned		temp_idx=0;			/* temporary index number	*/
    hbool_t		found = FALSE;		/*already in cache?	*/
    H5F_rdcc_t		*rdcc = &(f->shared->rdcc);/*raw data chunk cache*/
    H5F_rdcc_ent_t	*ent = NULL;		/*cache entry		*/
    unsigned		u;			/*counters		*/
    H5F_istore_ud1_t	udata;			/*B-tree pass-through	*/
    size_t		chunk_size=0;		/*size of a chunk	*/
    size_t		chunk_alloc=0;		/*allocated chunk size	*/
    herr_t		status;			/*func return status	*/
    void		*chunk=NULL;		/*the file chunk	*/
    void		*ret_value=NULL;	/*return value		*/

    FUNC_ENTER (H5F_istore_lock, NULL);

    if (rdcc->nslots>0) {
        /* We don't care about loss of precision in the following statement. */
        for (u=0, temp_idx=0; u<layout->ndims; u++) {
            temp_idx *= layout->dim[u];
            temp_idx += offset[u];
        }
        temp_idx += (unsigned)(layout->addr);
        idx=H5F_HASH(f,temp_idx);
        ent = rdcc->slot[idx];
        
        if (ent && layout->ndims==ent->layout->ndims &&
                H5F_addr_eq(layout->addr, ent->layout->addr)) {
            for (u=0, found=TRUE; u<ent->layout->ndims; u++) {
                if (offset[u]!=ent->offset[u]) {
                    found = FALSE;
                    break;
                }
            }
        }
    }

    if (found) {
        /*
         * Already in the cache.  Count a hit.
         */
        rdcc->nhits++;

    } else if (!found && relax) {
        /*
         * Not in the cache, but we're about to overwrite the whole thing
         * anyway, so just allocate a buffer for it but don't initialize that
         * buffer with the file contents. Count this as a hit instead of a
         * miss because we saved ourselves lots of work.
         */
#ifdef H5F_ISTORE_DEBUG
        HDputc('w', stderr);
        HDfflush(stderr);
#endif
        rdcc->nhits++;
        for (u=0, chunk_size=1; u<layout->ndims; u++) {
            chunk_size *= layout->dim[u];
        }
        chunk_alloc = chunk_size;
        if (NULL==(chunk=H5F_istore_chunk_alloc (chunk_alloc))) {
            HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL,
                 "memory allocation failed for raw data chunk");
        }
        
    } else {
        /*
         * Not in the cache.  Read it from the file and count this as a miss
         * if it's in the file or an init if it isn't.
         */
        for (u=0, chunk_size=1; u<layout->ndims; u++) {
            udata.key.offset[u] = offset[u];
            chunk_size *= layout->dim[u];
        }
        chunk_alloc = chunk_size;
        udata.mesg = *layout;
        udata.addr = HADDR_UNDEF;
        status = H5B_find (f, H5B_ISTORE, layout->addr, &udata);
        H5E_clear ();
        if (NULL==(chunk = H5F_istore_chunk_alloc (chunk_alloc))) {
            HGOTO_ERROR (H5E_RESOURCE, H5E_NOSPACE, NULL,
                 "memory allocation failed for raw data chunk");
        }
        if (status>=0 && H5F_addr_defined(udata.addr)) {
            /*
             * The chunk exists on disk.
             */
            if (H5F_block_read(f, H5FD_MEM_DRAW, udata.addr, udata.key.nbytes, H5P_DATASET_XFER_DEFAULT,
                       chunk)<0) {
                HGOTO_ERROR (H5E_IO, H5E_READERROR, NULL,
                     "unable to read raw data chunk");
            }
            if (H5Z_pipeline(f, pline, H5Z_FLAG_REVERSE,
                     &(udata.key.filter_mask), &(udata.key.nbytes),
                     &chunk_alloc, &chunk)<0 || udata.key.nbytes!=chunk_size) {
                HGOTO_ERROR(H5E_PLINE, H5E_READERROR, NULL,
                    "data pipeline read failed");
            }
            rdcc->nmisses++;
        } else if (fill && fill->buf) {
            /*
             * The chunk doesn't exist in the file.  Replicate the fill
             * value throughout the chunk.
             */
            assert(0==chunk_size % fill->size);
            H5V_array_fill(chunk, fill->buf, fill->size, chunk_size/fill->size);
            rdcc->ninits++;
        } else {
            /*
             * The chunk doesn't exist in the file and no fill value was
             * specified.  Assume all zeros.
             */
            HDmemset (chunk, 0, chunk_size);
            rdcc->ninits++;
        }
    }
    assert (found || chunk_size>0);
    
    if (!found && rdcc->nslots>0 && chunk_size<=f->shared->rdcc_nbytes &&
            (!ent || !ent->locked)) {
        /*
         * Add the chunk to the cache only if the slot is not already locked.
         * Preempt enough things from the cache to make room.
         */
        if (ent) {
#ifdef H5F_ISTORE_DEBUG
            HDputc('#', stderr);
            HDfflush(stderr);
#endif
#if 0
            HDfprintf(stderr, "\ncollision %3d %10a {",
                  idx, ent->layout->addr);
            for (u=0; u<layout->ndims; u++) {
                HDfprintf(stderr, "%s%Zu", u?",":"", ent->offset[u]);
            }
            HDfprintf(stderr, "}\n              %10a {", layout->addr);
            for (u=0; u<layout->ndims; u++) {
                HDfprintf(stderr, "%s%Zu", u?",":"", offset[u]);
            }
            fprintf(stderr, "}\n");
#endif
            if (H5F_istore_preempt(f, ent)<0) {
                HGOTO_ERROR(H5E_IO, H5E_CANTINIT, NULL,
                    "unable to preempt chunk from cache");
            }
        }
        if (H5F_istore_prune(f, chunk_size)<0) {
            HGOTO_ERROR(H5E_IO, H5E_CANTINIT, NULL,
                "unable to preempt chunk(s) from cache");
        }

        /* Create a new entry */
        ent = H5FL_ALLOC(H5F_rdcc_ent_t,0);
        ent->locked = 0;
        ent->dirty = FALSE;
        ent->chunk_size = chunk_size;
        ent->alloc_size = chunk_size;
        ent->layout = H5O_copy(H5O_LAYOUT, layout, NULL);
        ent->pline = H5O_copy(H5O_PLINE, pline, NULL);
        for (u=0; u<layout->ndims; u++) {
            ent->offset[u] = offset[u];
        }
        ent->rd_count = chunk_size;
        ent->wr_count = chunk_size;
        ent->chunk = chunk;
        
        assert(H5I_GENPROP_LST==H5I_get_type(dxpl_id));
        assert(TRUE==H5Pisa_class(dxpl_id,H5P_DATASET_XFER_NEW));
        H5Pget(dxpl_id,H5D_XFER_BTREE_SPLIT_RATIO_NAME,&(ent->split_ratios));
        
        /* Add it to the cache */
        assert(NULL==rdcc->slot[idx]);
        rdcc->slot[idx] = ent;
        ent->idx = idx;
        rdcc->nbytes += chunk_size;
        rdcc->nused++;

        /* Add it to the linked list */
        ent->next = NULL;
        if (rdcc->tail) {
            rdcc->tail->next = ent;
            ent->prev = rdcc->tail;
            rdcc->tail = ent;
        } else {
            rdcc->head = rdcc->tail = ent;
            ent->prev = NULL;
        }
        found = TRUE;
        
    } else if (!found) {
        /*
         * The chunk is larger than the entire cache so we don't cache it.
         * This is the reason all those arguments have to be repeated for the
         * unlock function.
         */
        ent = NULL;
        idx = UINT_MAX;

    } else if (found) {
        /*
         * The chunk is not at the beginning of the cache; move it backward
         * by one slot.  This is how we implement the LRU preemption
         * algorithm.
         */
        if (ent->next) {
            if (ent->next->next) {
                ent->next->next->prev = ent;
            } else {
                rdcc->tail = ent;
            }
            ent->next->prev = ent->prev;
            if (ent->prev) {
                ent->prev->next = ent->next;
            } else {
                rdcc->head = ent->next;
            }
            ent->prev = ent->next;
            ent->next = ent->next->next;
            ent->prev->next = ent;
        }
    }

    /* Lock the chunk into the cache */
    if (ent) {
        assert (!ent->locked);
        ent->locked = TRUE;
        chunk = ent->chunk;
    }

    if (idx_hint)
        *idx_hint = idx;
    ret_value = chunk;
    
 done:
    if (!ret_value)
        H5F_istore_chunk_free (chunk);
    FUNC_LEAVE (ret_value);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_unlock
 *
 * Purpose:	Unlocks a previously locked chunk. The LAYOUT, COMP, and
 *		OFFSET arguments should be the same as for H5F_rdcc_lock().
 *		The DIRTY argument should be set to non-zero if the chunk has
 *		been modified since it was locked. The IDX_HINT argument is
 *		the returned index hint from the lock operation and BUF is
 *		the return value from the lock.
 *
 *		The NACCESSED argument should be the number of bytes accessed
 *		for reading or writing (depending on the value of DIRTY).
 *		It's only purpose is to provide additional information to the
 *		preemption policy.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-08-02
 *		The split_ratios are passed as part of the data transfer
 *		property list.
 *-------------------------------------------------------------------------
 */
static herr_t
H5F_istore_unlock(H5F_t *f, hid_t dxpl_id, const H5O_layout_t *layout,
		  const H5O_pline_t *pline, hbool_t dirty,
		  const hssize_t offset[], unsigned *idx_hint,
		  uint8_t *chunk, size_t naccessed)
{
    H5F_rdcc_t		*rdcc = &(f->shared->rdcc);
    H5F_rdcc_ent_t	*ent = NULL;
    int		found = -1;
    unsigned		u;
    
    FUNC_ENTER (H5F_istore_unlock, FAIL);

    if (UINT_MAX==*idx_hint) {
	/*not in cache*/
    } else {
	assert(*idx_hint<rdcc->nslots);
	assert(rdcc->slot[*idx_hint]);
	assert(rdcc->slot[*idx_hint]->chunk==chunk);
	found = *idx_hint;
    }
    
    if (found<0) {
        /*
         * It's not in the cache, probably because it's too big.  If it's
         * dirty then flush it to disk.  In any case, free the chunk.
         * Note: we have to copy the layout and filter messages so we
         *	 don't discard the `const' qualifier.
         */
        if (dirty) {
            H5F_rdcc_ent_t x;

            HDmemset (&x, 0, sizeof x);
            x.dirty = TRUE;
            x.layout = H5O_copy (H5O_LAYOUT, layout, NULL);
            x.pline = H5O_copy (H5O_PLINE, pline, NULL);
            for (u=0, x.chunk_size=1; u<layout->ndims; u++) {
                x.offset[u] = offset[u];
                x.chunk_size *= layout->dim[u];
            }
            x.alloc_size = x.chunk_size;
            x.chunk = chunk;

            assert(H5I_GENPROP_LST==H5I_get_type(dxpl_id));
            assert(TRUE==H5Pisa_class(dxpl_id,H5P_DATASET_XFER_NEW));
            H5Pget(dxpl_id,H5D_XFER_BTREE_SPLIT_RATIO_NAME,&(x.split_ratios));
            
            H5F_istore_flush_entry (f, &x, TRUE);
        } else {
            if(chunk)
                H5F_istore_chunk_free (chunk);
        }
    } else {
        /*
         * It's in the cache so unlock it.
         */
        ent = rdcc->slot[found];
        assert (ent->locked);
        if (dirty) {
            ent->dirty = TRUE;
            ent->wr_count -= MIN (ent->wr_count, naccessed);
        } else {
            ent->rd_count -= MIN (ent->rd_count, naccessed);
        }
        ent->locked = FALSE;
    }
    
    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_read
 *
 * Purpose:	Reads a multi-dimensional buffer from (part of) an indexed raw
 *		storage array.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October 15, 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-08-02
 *		The data transfer property list is passed as an object ID
 *		since that's how the virtual file layer wants it.
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_read(H5F_t *f, hid_t dxpl_id, const H5O_layout_t *layout,
		const H5O_pline_t *pline, const H5O_fill_t *fill,
		const hssize_t offset_f[], const hsize_t size[], void *buf)
{
    hssize_t		offset_m[H5O_LAYOUT_NDIMS];
    hsize_t		size_m[H5O_LAYOUT_NDIMS];
    hsize_t		idx_cur[H5O_LAYOUT_NDIMS];
    hsize_t		idx_min[H5O_LAYOUT_NDIMS];
    hsize_t		idx_max[H5O_LAYOUT_NDIMS];
    hsize_t		sub_size[H5O_LAYOUT_NDIMS];
    hssize_t		offset_wrt_chunk[H5O_LAYOUT_NDIMS];
    hssize_t		sub_offset_m[H5O_LAYOUT_NDIMS];
    hssize_t		chunk_offset[H5O_LAYOUT_NDIMS];
    int		i, carry;
    unsigned		u;
    size_t		naccessed;		/*bytes accessed in chnk*/
    uint8_t		*chunk=NULL;		/*ptr to a chunk buffer	*/
    unsigned		idx_hint=0;		/*cache index hint	*/

    FUNC_ENTER(H5F_istore_read, FAIL);

    /* Check args */
    assert(f);
    assert(layout && H5D_CHUNKED==layout->type);
    assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS);
    assert(H5F_addr_defined(layout->addr));
    assert(offset_f);
    assert(size);
    assert(buf);

    /*
     * For now, a hyperslab of the file must be read into an array in
     * memory.We do not yet support reading into a hyperslab of memory.
     */
    for (u=0; u<layout->ndims; u++) {
        offset_m[u] = 0;
        size_m[u] = size[u];
    }
    
#ifndef NDEBUG
    for (u=0; u<layout->ndims; u++) {
        assert(offset_f[u]>=0); /*negative offsets not supported*/
        assert(offset_m[u]>=0); /*negative offsets not supported*/
        assert(size[u]<SIZET_MAX);
        assert(offset_m[u]+(hssize_t)size[u]<=(hssize_t)size_m[u]);
        assert(layout->dim[u]>0);
    }
#endif

    /*
     * Set up multi-dimensional counters (idx_min, idx_max, and idx_cur) and
     * loop through the chunks copying each to its final destination in the
     * application buffer.
     */
    for (u=0; u<layout->ndims; u++) {
        idx_min[u] = offset_f[u] / layout->dim[u];
        idx_max[u] = (offset_f[u]+size[u]-1) / layout->dim[u] + 1;
        idx_cur[u] = idx_min[u];
    }

    /* Loop over all chunks */
    while (1) {
        for (u=0, naccessed=1; u<layout->ndims; u++) {
            /* The location and size of the chunk being accessed */
            assert(layout->dim[u] < HSSIZET_MAX);
            chunk_offset[u] = idx_cur[u] * (hssize_t)(layout->dim[u]);

            /* The offset and size wrt the chunk */
            offset_wrt_chunk[u] = MAX(offset_f[u], chunk_offset[u]) -
                      chunk_offset[u];
            sub_size[u] = MIN((idx_cur[u]+1)*layout->dim[u],
                      offset_f[u]+size[u]) -
                  (chunk_offset[u] + offset_wrt_chunk[u]);
            naccessed *= sub_size[u];
            
            /* Offset into mem buffer */
            sub_offset_m[u] = chunk_offset[u] + offset_wrt_chunk[u] +
                      offset_m[u] - offset_f[u];
        }
#ifdef H5_HAVE_PARALLEL
        /*
         * If MPIO is used, must bypass the chunk-cache scheme because other
         * MPI processes could be writing to other elements in the same chunk.
         * Do a direct write-through of only the elements requested.
         */
        if (IS_H5FD_MPIO(f)) {
            H5F_istore_ud1_t	udata;
            H5O_layout_t	l;	/* temporary layout */

            if (H5F_istore_get_addr(f, layout, chunk_offset, &udata)<0){
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                    "unable to locate raw data chunk");
            };
            
            /*
             * use default transfer mode as we do not support collective
             * transfer mode since each data write could decompose into
             * multiple chunk writes and we are not doing the calculation yet.
             */
            l.type = H5D_CONTIGUOUS;
            l.ndims = layout->ndims;
            for (u=l.ndims; u-- > 0; /*void*/)
                l.dim[u] = layout->dim[u];
            l.addr = udata.addr;
            if (H5F_arr_read(f, H5P_DATASET_XFER_DEFAULT, &l, pline, fill, NULL/*no efl*/,
                     sub_size, size_m, sub_offset_m, offset_wrt_chunk, buf)<0) {
                HRETURN_ERROR (H5E_IO, H5E_READERROR, FAIL,
                     "unable to read raw data from file");
            }
        } else {
#endif

#ifdef AKC
            printf("Locking chunk( ");
            for (u=0; u<layout->ndims; u++){
                printf("%ld ", chunk_offset[u]);
            }
            printf(")\n");
#endif
            /*
             * Lock the chunk, transfer data to the application, then unlock
             * the chunk.
             */
            if (NULL==(chunk=H5F_istore_lock(f, dxpl_id, layout, pline, fill,
                         chunk_offset, FALSE, &idx_hint))) {
                HRETURN_ERROR(H5E_IO, H5E_READERROR, FAIL,
                      "unable to read raw data chunk");
            }
            H5V_hyper_copy(layout->ndims, sub_size, size_m, sub_offset_m,
                   (void*)buf, layout->dim, offset_wrt_chunk, chunk);
            if (H5F_istore_unlock(f, dxpl_id, layout, pline, FALSE,
                      chunk_offset, &idx_hint, chunk,
                      naccessed)<0) {
            HRETURN_ERROR(H5E_IO, H5E_READERROR, FAIL,
                      "unable to unlock raw data chunk");
            }
#ifdef H5_HAVE_PARALLEL
        }
#endif

        /* Increment indices */
        for (i=(int)(layout->ndims-1), carry=1; i>=0 && carry; --i) {
            if (++idx_cur[i]>=idx_max[i])
                idx_cur[i] = idx_min[i];
            else
                carry = 0;
        }
        if (carry)
            break;
    }
    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_write
 *
 * Purpose:	Writes a multi-dimensional buffer to (part of) an indexed raw
 *		storage array.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *		Wednesday, October 15, 1997
 *
 * Modifications:
 *		Robb Matzke, 1999-08-02
 *		The data transfer property list is passed as an object ID
 *		since that's how the virtual file layer wants it.
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_write(H5F_t *f, hid_t dxpl_id, const H5O_layout_t *layout,
		 const H5O_pline_t *pline, const H5O_fill_t *fill,
		 const hssize_t offset_f[], const hsize_t size[],
		 const void *buf)
{
    hssize_t	offset_m[H5O_LAYOUT_NDIMS];
    hsize_t		size_m[H5O_LAYOUT_NDIMS];
    int		i, carry;
    unsigned		u;
    hsize_t		idx_cur[H5O_LAYOUT_NDIMS];
    hsize_t		idx_min[H5O_LAYOUT_NDIMS];
    hsize_t		idx_max[H5O_LAYOUT_NDIMS];
    hsize_t		sub_size[H5O_LAYOUT_NDIMS];
    hssize_t	chunk_offset[H5O_LAYOUT_NDIMS];
    hssize_t	offset_wrt_chunk[H5O_LAYOUT_NDIMS];
    hssize_t	sub_offset_m[H5O_LAYOUT_NDIMS];
    uint8_t		*chunk=NULL;
    unsigned		idx_hint=0;
    size_t		chunk_size, naccessed;
    
    FUNC_ENTER(H5F_istore_write, FAIL);

    /* Check args */
    assert(f);
    assert(layout && H5D_CHUNKED==layout->type);
    assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS);
    assert(H5F_addr_defined(layout->addr));
    assert(offset_f);
    assert(size);
    assert(buf);

    /*
     * For now the source must not be a hyperslab.  It must be an entire
     * memory buffer.
     */
    for (u=0, chunk_size=1; u<layout->ndims; u++) {
        offset_m[u] = 0;
        size_m[u] = size[u];
        chunk_size *= layout->dim[u];
    }

#ifndef NDEBUG
    for (u=0; u<layout->ndims; u++) {
        assert(offset_f[u]>=0); /*negative offsets not supported*/
        assert(offset_m[u]>=0); /*negative offsets not supported*/
        assert(size[u]<SIZET_MAX);
        assert(offset_m[u]+(hssize_t)size[u]<=(hssize_t)size_m[u]);
        assert(layout->dim[u]>0);
    }
#endif

    /*
     * Set up multi-dimensional counters (idx_min, idx_max, and idx_cur) and
     * loop through the chunks copying each chunk from the application to the
     * chunk cache.
     */
    for (u=0; u<layout->ndims; u++) {
        idx_min[u] = offset_f[u] / layout->dim[u];
        idx_max[u] = (offset_f[u]+size[u]-1) / layout->dim[u] + 1;
        idx_cur[u] = idx_min[u];
    }


    /* Loop over all chunks */
    while (1) {
        for (u=0, naccessed=1; u<layout->ndims; u++) {
            /* The location and size of the chunk being accessed */
            assert(layout->dim[u] < HSSIZET_MAX);
            chunk_offset[u] = idx_cur[u] * (hssize_t)(layout->dim[u]);

            /* The offset and size wrt the chunk */
            offset_wrt_chunk[u] = MAX(offset_f[u], chunk_offset[u]) -
                      chunk_offset[u];
            sub_size[u] = MIN((idx_cur[u]+1)*layout->dim[u],
                      offset_f[u]+size[u]) -
                  (chunk_offset[u] + offset_wrt_chunk[u]);
            naccessed *= sub_size[u];
            
            /* Offset into mem buffer */
            sub_offset_m[u] = chunk_offset[u] + offset_wrt_chunk[u] +
                      offset_m[u] - offset_f[u];
        }

#ifdef H5_HAVE_PARALLEL
        /*
         * If MPIO is used, must bypass the chunk-cache scheme because other
         * MPI processes could be writing to other elements in the same chunk.
         * Do a direct write-through of only the elements requested.
         */
        if (IS_H5FD_MPIO(f)) {
            H5F_istore_ud1_t	udata;
            H5O_layout_t	l;	/* temporary layout */

            if (H5F_istore_get_addr(f, layout, chunk_offset, &udata)<0){
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                    "unable to locate raw data chunk");
            };
            
            /*
             * use default transfer mode as we do not support collective
             * transfer mode since each data write could decompose into
             * multiple chunk writes and we are not doing the calculation yet.
             */
            l.type = H5D_CONTIGUOUS;
            l.ndims = layout->ndims;
            for (u=l.ndims; u-- > 0; /*void*/)
                l.dim[u] = layout->dim[u];
            l.addr = udata.addr;
            if (H5F_arr_write(f, H5P_DATASET_XFER_DEFAULT, &l, pline, fill, NULL/*no efl*/,
                     sub_size, size_m, sub_offset_m, offset_wrt_chunk, buf)<0) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "unable to write raw data to file");
            }
        } else {
#endif

#ifdef AKC
            printf("Locking chunk( ");
            for (u=0; u<layout->ndims; u++){
                printf("%ld ", chunk_offset[u]);
            }
            printf(")\n");
#endif
            /*
             * Lock the chunk, copy from application to chunk, then unlock the
             * chunk.
             */
            if (NULL==(chunk=H5F_istore_lock(f, dxpl_id, layout, pline, fill,
                             chunk_offset,
                             (hbool_t)(naccessed==chunk_size),
                             &idx_hint))) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "unable to read raw data chunk");
            }
            H5V_hyper_copy(layout->ndims, sub_size,
               layout->dim, offset_wrt_chunk, chunk, size_m, sub_offset_m, buf);
            if (H5F_istore_unlock(f, dxpl_id, layout, pline, TRUE,
                      chunk_offset, &idx_hint, chunk,
                      naccessed)<0) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "uanble to unlock raw data chunk");
            }
#ifdef H5_HAVE_PARALLEL
        }
#endif
        
        /* Increment indices */
        for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) {
            if (++idx_cur[i]>=idx_max[i])
                idx_cur[i] = idx_min[i];
            else
                carry = 0;
        }
        if (carry)
            break;
    }

    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_create
 *
 * Purpose:	Creates a new indexed-storage B-tree and initializes the
 *		istore struct with information about the storage.  The
 *		struct should be immediately written to the object header.
 *
 *		This function must be called before passing ISTORE to any of
 *		the other indexed storage functions!
 *
 * Return:	Non-negative on success (with the ISTORE argument initialized
 *		and ready to write to an object header). Negative on failure.
 *
 * Programmer:	Robb Matzke
 *		Tuesday, October 21, 1997
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_create(H5F_t *f, H5O_layout_t *layout /*out */ )
{
    H5F_istore_ud1_t	udata;
#ifndef NDEBUG
    unsigned			u;
#endif

    FUNC_ENTER(H5F_istore_create, FAIL);

    /* Check args */
    assert(f);
    assert(layout && H5D_CHUNKED == layout->type);
    assert(layout->ndims > 0 && layout->ndims <= H5O_LAYOUT_NDIMS);
#ifndef NDEBUG
    for (u = 0; u < layout->ndims; u++) {
	assert(layout->dim[u] > 0);
    }
#endif

    udata.mesg.ndims = layout->ndims;
    if (H5B_create(f, H5B_ISTORE, &udata, &(layout->addr)/*out*/) < 0) {
	HRETURN_ERROR(H5E_IO, H5E_CANTINIT, FAIL, "can't create B-tree");
    }
    
    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_allocated
 *
 * Purpose:	Return the number of bytes allocated in the file for storage
 *		of raw data under the specified B-tree (ADDR is the address
 *		of the B-tree).
 *
 * Return:	Success:	Number of bytes stored in all chunks.
 *
 *		Failure:	0
 *
 * Programmer:	Robb Matzke
 *              Wednesday, April 21, 1999
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
hsize_t
H5F_istore_allocated(H5F_t *f, unsigned ndims, haddr_t addr)
{
    H5F_istore_ud1_t	udata;

    FUNC_ENTER(H5F_istore_nchunks, 0);

    HDmemset(&udata, 0, sizeof udata);
    udata.mesg.ndims = ndims;
    if (H5B_iterate(f, H5B_ISTORE, addr, &udata)<0) {
        HRETURN_ERROR(H5E_IO, H5E_CANTINIT, 0,
		      "unable to iterate over chunk B-tree");
    }
    FUNC_LEAVE(udata.total_storage);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_dump_btree
 *
 * Purpose:	Prints information about the storage B-tree to the specified
 *		stream.
 *
 * Return:	Success:	Non-negative
 *
 *		Failure:	negative
 *
 * Programmer:	Robb Matzke
 *              Wednesday, April 28, 1999
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_dump_btree(H5F_t *f, FILE *stream, unsigned ndims, haddr_t addr)
{
    H5F_istore_ud1_t	udata;

    FUNC_ENTER(H5F_istore_dump_btree, FAIL);

    HDmemset(&udata, 0, sizeof udata);
    udata.mesg.ndims = ndims;
    udata.stream = stream;
    if (H5B_iterate(f, H5B_ISTORE, addr, &udata)<0) {
        HRETURN_ERROR(H5E_IO, H5E_CANTINIT, 0,
		      "unable to iterate over chunk B-tree");
    }
    FUNC_LEAVE(SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_stats
 *
 * Purpose:	Print raw data cache statistics to the debug stream.  If
 *		HEADERS is non-zero then print table column headers,
 *		otherwise assume that the H5AC layer has already printed them.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, May 21, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_stats (H5F_t *f, hbool_t headers)
{
    H5F_rdcc_t	*rdcc = &(f->shared->rdcc);
    double	miss_rate;
    char	ascii[32];
    
    FUNC_ENTER (H5F_istore_stats, FAIL);
    if (!H5DEBUG(AC)) HRETURN(SUCCEED);

    if (headers) {
        fprintf(H5DEBUG(AC), "H5F: raw data cache statistics for file %s\n",
            f->name);
        fprintf(H5DEBUG(AC), "   %-18s %8s %8s %8s %8s+%-8s\n",
            "Layer", "Hits", "Misses", "MissRate", "Inits", "Flushes");
        fprintf(H5DEBUG(AC), "   %-18s %8s %8s %8s %8s-%-8s\n",
            "-----", "----", "------", "--------", "-----", "-------");
    }

#ifdef H5AC_DEBUG
    if (H5DEBUG(AC)) headers = TRUE;
#endif

    if (headers) {
        if (rdcc->nhits>0 || rdcc->nmisses>0) {
            miss_rate = 100.0 * rdcc->nmisses /
                    (rdcc->nhits + rdcc->nmisses);
        } else {
            miss_rate = 0.0;
        }
        if (miss_rate > 100) {
            sprintf(ascii, "%7d%%", (int) (miss_rate + 0.5));
        } else {
            sprintf(ascii, "%7.2f%%", miss_rate);
        }

        fprintf(H5DEBUG(AC), "   %-18s %8u %8u %7s %8d+%-9ld\n",
            "raw data chunks", rdcc->nhits, rdcc->nmisses, ascii,
            rdcc->ninits, (long)(rdcc->nflushes)-(long)(rdcc->ninits));
    }

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_debug
 *
 * Purpose:	Debugs a B-tree node for indexed raw data storage.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Robb Matzke
 *              Thursday, April 16, 1998
 *
 * Modifications:
 *		Robb Matzke, 1999-07-28
 *		The ADDR argument is passed by value.
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_debug(H5F_t *f, haddr_t addr, FILE * stream, int indent,
		 int fwidth, int ndims)
{
    H5F_istore_ud1_t	udata;
    
    FUNC_ENTER (H5F_istore_debug, FAIL);

    HDmemset (&udata, 0, sizeof udata);
    udata.mesg.ndims = ndims;

    H5B_debug (f, addr, stream, indent, fwidth, H5B_ISTORE, &udata);

    FUNC_LEAVE (SUCCEED);
}


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_get_addr
 *
 * Purpose:	Get the file address of a chunk if file space has been
 *		assigned.  Save the retrieved information in the udata
 *		supplied.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Programmer:	Albert Cheng
 *              June 27, 1998
 *
 * Modifications:
 *
 *-------------------------------------------------------------------------
 */
#ifdef H5_HAVE_PARALLEL
static herr_t
H5F_istore_get_addr(H5F_t *f, const H5O_layout_t *layout,
		    const hssize_t offset[], void *_udata/*out*/)
{
    H5F_istore_ud1_t	*udata = _udata;
    int		i;
    herr_t		status;			/*func return status	*/
    
    FUNC_ENTER (H5F_istore_get_addr, FAIL);

    assert(f);
    assert(layout && (layout->ndims > 0));
    assert(offset);
    assert(udata);

    for (i=0; i<layout->ndims; i++) {
	udata->key.offset[i] = offset[i];
    }
    udata->mesg = *layout;
    udata->addr = HADDR_UNDEF;
    status = H5B_find (f, H5B_ISTORE, layout->addr, udata);
    H5E_clear ();
    if (status>=0 && H5F_addr_defined(udata->addr))
	HRETURN(SUCCEED);

    FUNC_LEAVE (FAIL);
}
#endif /* H5_HAVE_PARALLEL */


/*-------------------------------------------------------------------------
 * Function:	H5F_istore_allocate
 *
 * Purpose:	Allocate file space for all chunks that are not allocated yet.
 *		Return SUCCEED if all needed allocation succeed, otherwise
 *		FAIL.
 *
 * Return:	Non-negative on success/Negative on failure
 *
 * Note:	Current implementation relies on cache_size being 0,
 *		thus no chunk is cashed and written to disk immediately
 *		when a chunk is unlocked (via H5F_istore_unlock)
 *		This should be changed to do a direct flush independent
 *		of the cache value.
 *
 * Programmer:	Albert Cheng
 *		June 26, 1998
 *
 * Modifications:
 *		rky, 1998-09-23
 *		Added barrier to preclude racing with data writes.
 *
 *		rky, 1998-12-07
 *		Added Wait-Signal wrapper around unlock-lock critical region
 *		to prevent race condition (unlock reads, lock writes the
 *		chunk).
 *
 * 		Robb Matzke, 1999-08-02
 *		The split_ratios are passed in as part of the data transfer
 *		property list.
 *-------------------------------------------------------------------------
 */
herr_t
H5F_istore_allocate(H5F_t *f, hid_t dxpl_id, const H5O_layout_t *layout,
		    const hsize_t *space_dim, const H5O_pline_t *pline,
		    const H5O_fill_t *fill)
{

    int		i, carry;
    unsigned		u;
    hssize_t		chunk_offset[H5O_LAYOUT_NDIMS];
    uint8_t		*chunk=NULL;
    unsigned		idx_hint=0;
    size_t		chunk_size;
#ifdef AKC
    H5F_istore_ud1_t	udata;
#endif
    
    FUNC_ENTER(H5F_istore_allocate, FAIL);
#ifdef AKC
    printf("Enter %s:\n", FUNC);
#endif

    /* Check args */
    assert(f);
    assert(space_dim);
    assert(pline);
    assert(layout && H5D_CHUNKED==layout->type);
    assert(layout->ndims>0 && layout->ndims<=H5O_LAYOUT_NDIMS);
    assert(H5F_addr_defined(layout->addr));

    /*
     * Setup indice to go through all chunks. (Future improvement
     * should allocate only chunks that have no file space assigned yet.
     */
    for (u=0, chunk_size=1; u<layout->ndims; u++) {
        chunk_offset[u]=0;
        chunk_size *= layout->dim[u];
    }

    /* Loop over all chunks */
    while (1) {
	
#ifdef AKC
	printf("Checking allocation for chunk( ");
	for (u=0; u<layout->ndims; u++){
	    printf("%ld ", chunk_offset[u]);
	}
	printf(")\n");
#endif
#ifdef NO
        if (H5F_istore_get_addr(f, layout, chunk_offset, &udata)<0) {
#endif
            /* No file space assigned yet.  Allocate it. */
            /* The following needs improvement like calling the */
            /* allocation directly rather than indirectly using the */
            /* allocation effect in the unlock process. */

#ifdef AKC
            printf("need allocation\n");
#endif
            /*
             * Lock the chunk, copy from application to chunk, then unlock the
             * chunk.
             */

#ifdef H5_HAVE_PARALLEL
            /* rky 981207 Serialize access to this critical region. */
            if (SUCCEED!= H5FD_mpio_wait_for_left_neighbor(f->shared->lf)) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "unable to lock the data chunk");
            }
#endif
            if (NULL==(chunk=H5F_istore_lock(f, dxpl_id, layout, pline,
                          fill, chunk_offset, FALSE, &idx_hint))) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "unable to read raw data chunk");
            }
            if (H5F_istore_unlock(f, dxpl_id, layout, pline, TRUE,
                      chunk_offset, &idx_hint, chunk, chunk_size)<0) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "uanble to unlock raw data chunk");
            }
#ifdef H5_HAVE_PARALLEL
            if (SUCCEED!= H5FD_mpio_signal_right_neighbor(f->shared->lf)) {
                HRETURN_ERROR (H5E_IO, H5E_WRITEERROR, FAIL,
                       "unable to unlock the data chunk");
            }
#endif
#ifdef NO
        } else {
#ifdef AKC
            printf("NO need for allocation\n");
            HDfprintf(stdout, "udata.addr=%a\n", udata.addr);
#endif
        }
#endif
	
        /* Increment indices */
        for (i=layout->ndims-1, carry=1; i>=0 && carry; --i) {
            chunk_offset[i] += layout->dim[i];
            if (chunk_offset[i] >= (hssize_t)(space_dim[i])) {
                chunk_offset[i] = 0;
            } else {
                carry = 0;
            }
        }
        if (carry)
            break;
    }

#ifdef H5_HAVE_PARALLEL
    /*
     * rky 980923
     * 
     * The following barrier is a temporary fix to prevent overwriting real
     * data caused by a race between one proc's call of H5F_istore_allocate
     * (from H5D_init_storage, ultimately from H5Dcreate and H5Dextend) and
     * another proc's call of H5Dwrite.  Eventually, this barrier should be
     * removed, when H5D_init_storage is changed to call H5MF_alloc directly
     * to allocate space, instead of calling H5F_istore_unlock.
     */
    if (MPI_Barrier(H5FD_mpio_communicator(f->shared->lf))) {
        HRETURN_ERROR(H5E_INTERNAL, H5E_MPI, FAIL, "MPI_Barrier failed");
    }
#endif

    FUNC_LEAVE(SUCCEED);
}